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Abstract

We model agents’ preferences by cash-invariant concave functionals defined on L∞, and
formulate the optimal risk allocation problem as their infimal-convolution. We study the case
of agents whose choice functionals are law-invariant with respect to different probability mea-
sures and show how, in this case, the value function preserves a desirable dual representation
(equivalent to the Fatou property).

1 Introduction

We consider the problem of the optimal allocation of risk among agents endowed with cash-

invariant concave choice functionals. In this way well-known classes of functionals are included,

as the coherent and convex risk measures introduced by Artzner et al. [2] and Föllmer and

Schied [7]. We fix L∞ as the space of admissible financial positions and formulate the optimiza-

tion problem as the convolution of the agents’ choice functionals. This problem has been studied

by several authors, e.g. in Barrieu and El Karoui [3], Jouini et al. [10], Acciaio [1], Filipović

and Svindland [6], where some answers are given about the existence and characterization of

the optimal risk allocations. Here we analyze the case of agents whose choice functionals are

law-invariant with respect to different probability measures, and prove a dual representation

result for the value function of our optimization problem.

1.1 Set Up and Notations

We consider a measurable space (Ω,F) and two equivalent probability measures P1, P2 on it

such that (Ω,F , Pi), i = 1, 2, are non-atomic standard probability spaces. Denote by L∞ :=

L∞(Ω,F , P1) = L∞(Ω,F , P2) the space of all (equivalence classes of) essentially bounded ran-

dom variables, and by ba = (L∞)∗ its dual space, which collects all bounded, finitely additive set

functions µ on (Ω,F) with the property that µ(A) = 0 whenever Pi(A) = 0. The Yosida-Hewitt
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theorem (see [11]) implies, for each µ ∈ (L∞)∗, the existence of a uniquely defined decomposition

µ = µa +µp, where µa is a σ-additive measure, absolutely continuous with respect to Pi, and µp

is a purely finitely additive measure.

We fix L∞ as the space of admissible financial positions in a fixed future date, and on such

space we define agents’ choice functionals as follows.

Definition 1.1. A proper functional U : L∞ → [−∞,+∞) is called monetary utility functional

(m.u.f.) if it is

(i) concave: U(αX + (1− α)Y ) ≥ αU(X) + (1− α)U(Y ), ∀ X, Y ∈ L∞, α ∈ (0, 1),

(ii) cash-invariant: U(X + c) = U(X) + c, ∀ X ∈ L∞, c ∈ R,

(iii) monotone: U(X) ≥ U(Y ), ∀ X, Y ∈ L∞ s.t. X ≥ Y ,

i.e., if −U is a convex risk measure in the sense of Föllmer and Schied [8].

By the Fenchel-Moreau theorem, each m.u.f. U admits dual representation

U(X) = inf
µ∈(L∞)∗

{V (µ) + 〈µ,X〉}, ∀X ∈ L∞, (1)

through its convex conjugate function (or Fenchel-Legendre transform) V : (L∞)∗ → [U(0),+∞],

defined as

V (µ) := sup
X∈L∞

{U(X)− 〈µ,X〉}, ∀µ ∈ (L∞)∗.

Note that, by cash-invariance and monotonicity, its domain satisfies

dom(V ) ⊆ P := {µ ∈ (L∞)∗+ : µ(Ω) = 1} (2)

and therefore (L∞)∗ in (1) can be replaced by P.

Let now recall two well-known properties, which are the basis for what follows.

Definition 1.2. Let (Ω,F , P) be a fixed probability space and U a proper functional defined on

L∞(Ω,F , P). We say that

(i) U satisfies the Fatou property w.r. to P, if for any bounded sequence (Xn)n∈N ⊆ L∞(Ω,F , P)

converging P-a.s. to some X, then U(X) ≥ lim supn U(Xn);

(ii) U is P-law-invariant, if U(X) = U(Y ) for any X, Y ∈ L∞(Ω,F , P) having the same law

under P.
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In our framework, since we consider P1, P2 equivalent probability measures, we do not need

to specify the measure we refer to when speaking of the Fatou property, fact that clearly

is not true as far as the law-invariance is concerned. We recall that, for a concave upper

semi-continuous (usc) function, the law-invariance is stronger than the Fatou property (which

is the main result proved in [9]). On the other hand, a concave functional on L∞ has the

Fatou property if and only if it admits dual representation in the set of σ-additive mea-

sures absolutely continuous w.r. to the reference measure (see [4], [8], [1]), that in our case

is Pσ := {µ : µ σ-additive measure on (Ω,F), µ � Pi}. Therefore each m.u.f. U satisfying the

Fatou property can be represented as

U(X) = inf
Q∈Q

{V (Q) + EQ[X]}, ∀X ∈ L∞, (3)

where Q := {Q : Q probability measure on (Ω,F), Q � Pi} = P ∩ Pσ.

By means of the level sets of the dual function V of U :

Ck := {µ ∈ (L∞)∗ : V (µ) ≤ k}, k ∈ R, (4)

the Fatou property can be restated as

Ck ∩Q
w∗ = Ck, for all k ∈ R, (5)

where the closure is taken in the weak∗-topology. Indeed, if U satisfies the Fatou property, then

it is weak∗-usc and its acceptance set A := {X ∈ L∞ : U(X) ≥ 0} is weak∗-closed. Then it

is sufficient to apply the bipolar theorem twice, w.r. to the (L∞, (L∞)∗)- and to the (L∞, L1)-

duality, to obtain (5). On the other hand, from (5) it follows that U admits dual representation

over probabilities, i.e. (3) holds true. This characterization of the Fatou property will be used

in Section 2 to prove our results.

1.2 Optimal Risk Allocation Problem

Consider two economic agents endowed with initial risky positions ξ1, ξ2 ∈ L∞ and preference

relations represented by concave functionals U1, U2. The optimal sharing of the total risk X :=

ξ1 + ξ2 is formulated as the convolution of their choice functionals:

U(X) := U1�U2(X) = sup
X1, X2 ∈ L∞,

X1 + X2 = X

{U1(X1) + U2(X2)} . (6)
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Note that, when U1 and U2 are monetary utility functionals, the value function U : L∞ →
[−∞,+∞] inherits the properties of concavity, cash-invariance and monotonicity.

We denote by V1, V2 and V the dual conjugates of U1, U2 and U , and by C1
k , C2

k and Ck

their respective level sets, i.e., we define Ck as in (4) and similarly C1
k and C2

k . From classical

results of convex analysis we know that V = V1 + V2, thus clearly Ck =
k−U2(0)⋃
j=U1(0)

(C1
j ∩ C2

k−j) for

k ≥ U1(0) + U2(0), and Ck = ∅ otherwise.

In general the Fatou property is not preserved by convolution (see, e.g., Delbaen [5]). How-

ever in the next section we prove that, for functionals law-invariant with respect to equivalent

probability measures, the convolution functional has the Fatou property. This means that the

value function in (6) admits dual representation in the space of σ-additive measures, and this

constitutes a first step towards the study of that optimization problem.

2 Representation Results

In the framework described in the previous section, we can formulate the following theorem that,

together with Theorem 2.5, is the main result of the paper.

Theorem 2.1. Let U1 and U2 be monetary utility functionals on L∞, law-invariant w.r. to P1

and P2 respectively, such that the value function U1�U2 in (6) is proper. Then U1�U2 has the

Fatou property, i.e.

U1�U2(X) = inf
Q∈Q

{V1(Q) + V2(Q) + EQ[X]}, ∀X ∈ L∞. (7)

The proof of Theorem 2.1 will be given at the end of this section. We first translate the notion

of law-invariance to sets of elements in ba. Recall that a measure preserving transformation

(mpt) τ of a given non-atomic standard probability space (Ω,F , P), is a bi-measurable bijection

τ : (Ω,F , P) → (Ω,F , P) which leaves P invariant, i.e. τ(P) = P. Now, a set D ⊆ L∞(Ω,F , P)∗ is

called P-law-invariant if, for any µ ∈ D and any measure preserving transformation τ , µ◦ τ ∈ D

as well. Note that, for a P-law-invariant m.u.f., the level sets of its conjugate function are P-law-

invariant subsets of L∞(Ω,F , P)∗.

Lemma 2.2. Let D ⊆ L∞(Ω,F , P)∗+ be a convex, weak∗-closed, P-law-invariant set. Then, for

any µ = µa + µp ∈ D, the following inclusion holds true:

{ν ∈ L∞(Ω,F , P)∗+ : ν = νa + νp, ν(Ω) = µ(Ω) and νa ≥ µa} ⊆ D.
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Proof. Fix any µ = µa + µp ∈ D. By the Yosida-Hewitt theorem (see [11]), µp purely finitely

additive measure is characterized by some decreasing sequence of sets (An)n∈N such that An ↓ ∅
and µp(An) = µp(Ω) =: s. W.l.g., we fix P(An) = 1/n. We claim that, for any B ∈ F with

P(B) > 0, there exists a purely finitely additive measure β with β(B) = β(Ω) = s and s.t.

µa + β ∈ D. First consider a set B in F s.t. P(B) > 0 and B ∩ An = ∅ for n sufficiently large.

Let Bk be a subset of B such that P(Bk) = 1/k and Bk ∩ Ak = ∅, for some k ∈ R. Fix a mpt

τk : (Ω,F , P) → (Ω,F , P) such that τk(Ak) = Bk, τk(Bk) = Ak and τk = Id on Ω \ (Ak ∪ Bk).

Now, for each n > k, define Bn := τ−1
k (An), so that P(Bn) = 1/n and Bn ⊆ Bn−1, and let τn :

(Ω,F , P) → (Ω,F , P) be a mpt such that τn

∣∣
Bn

= τk

∣∣
Bn

(in particular, τn(Bn) = τk(Bn) = An),

τn(An) = Bn and τn = Id on Ω \ (An ∪Bn). In this way, for any set G ∈ F we have

µp ◦ τn(G) = µp(τn(G) ∩An) = µp(τn(G ∩Bn)) = µp(τk(G ∩Bn))

= µp(τk(G) ∩An) = µp ◦ τk(G),

for all n > k. On the other hand, since P(An ∪ Bn) → 0 for n → ∞ and µa is absolutely

continuous w.r. to P, by definition of τn we have w∗- lim
n→∞

(µa ◦ τn) = µa. Therefore, from D law-

invariant and weak∗-closed, the sequence (µ ◦ τn)n≥k ⊆ D has weak∗-limit µa + β ∈ D, where

β = µp ◦ τk is a purely finitely additive measure with β(Bn) = β(Ω) = s ∀n ≥ k. Now, for

any other set in F that does not intersect Bn for n sufficiently large, we can follow the same

procedure and so on, thus obtaining what we claimed at the beginning of the proof. We call E
the collection of all convex combinations of measures µa +β obtained in this way. Clearly E ⊆ D

being D convex.

Let now fix any measure η ∈ L∞(Ω,F , P)∗+ with η(Ω) = s. We claim that (µa + η) ∈ D. Call

H the family of all finite partitions H of Ω, i.e. H = {H1, . . . ,Hn} ⊆ F s.t. Ω =
⋃n

i=1 Hi and

Hi∩Hj = ∅ ∀i 6= j. For each H = {H1, . . . ,Hn} ∈ H, we define a purely finitely additive function

ηH s.t. µa + ηH ∈ E with ηH(Hi) = η(Hi)∀ i = 1, . . . , n. Consider the net (ηH)H∈H where the

order relation given on H is the refinement of partitions. In this way we obtain η = w∗- lim
H∈H

ηH .

Indeed, by definition of limit of a net, we have to show that for any neighborhood N of η there

exists an index H ∈ H such that, for all refinements K ∈ H of H, ηK is in N . Consider the

following basis of neighborhoods of η in the weak∗-topology:

N(η, X1, . . . , Xm, ε) = {ξ ∈ (L∞)∗ : |〈ξ − η, Xi〉| < ε, ∀ i = 1, . . . ,m},

for some X1, . . . , Xm ∈ L∞ and ε > 0. Fix X1, . . . , Xm ∈ L∞ and ε > 0 and consider simple

random variables Yi =
∑
j∈Ji

yij1Fij , with |Ji| < ∞, such that ‖Yi − Xi‖L∞ ≤ 1/2sε, for i =
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1, . . . ,m. Call H the partition of Ω generated by {Fij , j ∈ Ji, i = 1, . . . ,m}. Then for any

refinement K of H we have

|〈ηK − η, Xi〉| ≤ |〈ηK − η, Yi〉|+ |〈ηK − η, Xi − Yi〉| = |〈ηK − η, Xi − Yi〉|

≤ 2s
1

2sε
= ε,

for all i = 1, . . . ,m, as wanted. Therefore, µa + η = µa + w∗- lim
H∈H

ηH = w∗- lim
H∈H

(µa + ηH) ∈ D,

being D weak∗-closed and (µa + ηH) ∈ E ⊆ D, and this concludes the proof.

Corollary 2.3. Let D be as in Lemma 2.2. If there is some measure µ ∈ D s.t. µ = µp, then

{ν ∈ L∞(Ω,F , P)∗+ : ν(Ω) = µ(Ω)} ⊆ D.

Now we are able to prove our main theorem.

Proof. [of Theorem 2.1] We use the characterization of the Fatou property given in (5). Fix

k ∈ R. Fix k ∈ R. The inclusion ‘⊆’ is immediate consequence of the weak∗-lower semi-continuity

of the dual function V . Let now consider µ = µa + µp ∈ Ck, i.e. µ ∈ C1
j ∩ C2

k−j for some j ∈ R.

If µ = µa there is nothing to prove. On the other hand, if µ = µp, then C1
j = C2

k−j = P from

(2) and Corollary 2.3, and Ck = P = Qw∗ . As last, consider the case µ = µa + µp ∈ Ck with

µp(Ω) ∈ (0, 1). Since Pσ is weak∗-dense in (L∞)∗, there exists a net (ηj)j in Pσ converging

weak∗ to µp, where of course ηj can be chosen positive and such that ηj(Ω) = µp(Ω). Therefore,

applying Lemma 2.2 to C1
j and C2

k−j , we get (µa + ηj) ∈ C1
j ∩ C2

k−j ∩ Q ⊆ Ck ∩ Q, with

w∗-limj(µa + ηj) = µ, which concludes the proof.

By applying, to the negative and positive parts of signed measures, arguments similar to

those used in the proof of Lemma 2.2, we obtain the following lemma.

Lemma 2.4. Let D ⊆ L∞(Ω,F , P)∗ be a convex, weak∗-closed, P-law-invariant set. Then, for

any µ = µa + µp ∈ D, the following inclusion holds true:

{ν ∈ L∞(Ω,F , P)∗ : ν = µa + η, with η ∈ L∞(Ω,F , P)∗ such that

η+(Ω) = (µp)+(Ω) and η−(Ω) = (µp)−(Ω)} ⊆ D.

This allows us to extend the result of Theorem 2.1 to the case of possibly non-monotone

choice functionals. Note that for an usc proper functional U : L∞ → [−∞,+∞) satisfying
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properties (i)-(ii) in Definition 1.1, the dual representation in (1) still holds. In this case the

Fatou property is equivalent to

U(X) = inf
Q∈Qs

{V (Q) + EQ[X]}, ∀X ∈ L∞,

where Qs := {Q : Q σ-additive measure on (Ω,F), Q � Pi, Q(Ω) = 1}, and it can be restated

as Ck ∩Qs
w∗ = Ck for all k ∈ R, similarly to the monotone case.

Theorem 2.5. Let U1 and U2 be usc proper functionals on L∞ satisfying properties (i)-(ii) in

Definition 1.1, law-invariant w.r. to P1 and P2 respectively, and such that the value function

U1�U2 in (6) is proper and usc. Then U1�U2 has the Fatou property, i.e.

U1�U2(X) = inf
Q∈Qs

{V1(Q) + V2(Q) + EQ[X]}, ∀X ∈ L∞. (8)

Theorems 2.1 and 2.5 ensure the representation of the convolution functional in terms of

σ-additive measures, and then allow to deal with the more tractable spaces Q,Qs instead of the

whole dual space (L∞)∗.
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