Addendum to "Optimal Risk Sharing with Different Reference Probabilities": the Case of m Agents

Beatrice Acciaio & Gregor Svindland

May 20, 2009

Abstract

We consider the problem of optimal risk sharing between m agents endowed with cashinvariant choice functions which are law-invariant with respect to different reference probability measures. As for the case of 2 agents considered in [1], we give sufficient conditions for the existence of Pareto optimal allocations in a discrete setting.

1 Setting and Formulation of the Problem

We consider a measurable space (Ω, \mathcal{F}) and m probability measures $\mathbb{P}_1, ..., \mathbb{P}_m$ on (Ω, \mathcal{F}) such that $(\Omega, \mathcal{F}, \mathbb{P}_i), i = 1, ..., m$ are non-atomic standard probability spaces. The measure \mathbb{P}_i describes the view of agent i on the world (Ω, \mathcal{F}) and $U_i : L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}_i) \to \mathbb{R}$ her preferences on $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}_i)$. The choice function U_i is assumed to satisfy the following conditions:

- (C1) concavity: $U_i(\alpha X + (1 \alpha)Y) \ge \alpha U_i(X) + (1 \alpha)U_i(Y)$ for all $X, Y \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}_i)$ and $\alpha \in (0, 1)$;
- (C2) cash-invariance: $U_i(X+c) = U_i(X) + c$ for all $X \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}_i)$ and $c \in \mathbb{R}$;
- (C3) normalization: $U_i(0) = 0;$
- (C4) \mathbb{P}_i -law-invariance: $U_i(X) = U_i(Y)$ whenever $X, Y \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}_i)$ are identically distributed under \mathbb{P}_i ;
- (C5) upper semi-continuity (u.s.c.): for any sequence $(X_n)_{n\in\mathbb{N}}\subset L^{\infty}(\Omega,\mathcal{F},\mathbb{P}_i)$ converging to some $X\in L^{\infty}$, we have $U_i(X)\geq \limsup_n U_i(X_n)$.

We assume that the agents agree to exchange risk on a finite set of possible scenarios. Let $A = \{A_1, \ldots, A_n\} \subset \mathcal{F}$ be a finite partition of Ω and $\mathcal{F}_A := \sigma(\{A_1, \ldots, A_n\})$ the σ -algebra it generates. A is called admissible if

• $\mathbb{P}_i(A_j) > 0$ for all j = 1, ..., n, i = 1, ..., m,

• $\mathbb{P}_1(A_j) \in \mathbb{Q}^+$ for all $j = 1, \ldots, n$.

The space of admissible financial positions which the agents consider in the exchange of risk, is the collection S_A of all \mathcal{F}_A -measurable random variables, that is isomorphic to \mathbb{R}^n . The optimal risk allocation problem, for any aggregate risk $X = \sum_{j=1}^n x_j \mathbf{1}_{A_j} \in S_A$, is therefore formulated as follows:

$$\Box_{i=1}^{m} u_{i}(x) = \sup_{\substack{y^{1}, \dots, y^{m} \in \mathbb{R}^{n}, \\ y^{1} + \dots + y^{m} = x}} \sum_{i=1}^{m} u_{i}(y^{i}), \qquad (1.1)$$

where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $u_i(y_1^i, \ldots, y_n^i) = U_i(\sum_{j=1}^n y_j^i \mathbf{1}_{A_j}), i = 1, \ldots, m$. We denote v_i the dual conjugate of u_i , $i = 1, \ldots, m$, and v the dual conjugate of $u = \Box_{i=1}^m u_i$.

2 Existence result

Assumption 2.1. Agents 2, ..., m give a finite penalty to the reference probability measure of agent 1, *i.e.*

$$\mathbb{P}_1 \in dom(v_i), \ \forall i = 2, ..., m, \tag{2.1}$$

where \mathbb{P}_1 is identified with the vector (p_1, \ldots, p_n) , with $p_j = \mathbb{P}_1(A_j)$ for all $j = 1, \ldots, n$.

Assumption 2.2. Either of the following two conditions holds:

- (i) No Risk-Arbitrage (NRA), i.e. $\Box_{i=1}^m u_i(0) = 0$,
- (*ii*) $\partial v_i(\mathbb{P}_1) \neq \emptyset, \ \forall i = 2, ..., m.$

Theorem 2.3. Let $A = \{A_j\}_{j=1}^n$ be an admissible partition of Ω . Then, under Assumptions 2.1, 2.2, the convolution $\Box_{i=1}^m u_i$ in (1.1) is exact at any $x \in \mathbb{R}^n$.

In the proof of Theorem 2.3 we will use the following results.

- **Lemma 2.4.** (i) For all $x^1, ..., x^m \in \mathbb{R}^n$ such that $\sum_{i=1}^m x^i = 0$ and $x^i \in 0^+ \mathcal{A}_i$, and for all $y \in dom(v)$, $\langle y, x^1 \rangle = 0$;
- (ii) $\Box_{i=1}^{m} u_i$ is exact at every $x \in \mathbb{R}^n$ if and only if $\mathcal{A}_1 + \ldots + \mathcal{A}_m = \mathcal{A}_{\Box_{i-1}^{m} u_i}$;
- (iii) $\Box_{i=1}^m u_i$ is exact at every $x \in \mathbb{R}^n$ if and only if $\mathcal{A}_1 + \ldots + \mathcal{A}_m$ is closed;
- (iv) Let $C_1, ..., C_m$ be non-empty closed convex sets in \mathbb{R}^n . If there are no $x^1, ..., x^m$ not all zero in \mathbb{R}^n such that $x^i \in 0^+C_i$ and $\sum_{i=1}^m x^i = 0$, then $C_1 + ... + C_m$ is closed.

Proof. (of Theorem 2.3) We first consider the case when the partition $A = \{A_1, \ldots, A_n\}$ of Ω is balanced w.r.to \mathbb{P}_1 , i.e. $\mathbb{P}_1(A_j) = \frac{1}{n}, \forall j = 1, \ldots, n$. If n = 1, exactness of $\Box_{i=1}^m u_i$ follows from cash-invariance. Henceforth, let $n \geq 2$. If there are no x^1, \ldots, x^m not all zero in \mathbb{R}^n such

2

that $\sum_{i=1}^{m} x^i = 0$ and $x^i \in 0^+ \mathcal{A}_i$, then the exactness follows from Lemma 2.4 (iii)-(iv). Now suppose there exist $x^1, ..., x^m$ not all zero in \mathbb{R}^n such that $\sum_{i=1}^{m} x^i = 0$ and $x^i \in 0^+ \mathcal{A}_i$. Define E on \mathbb{R}^n by $E[z] = \frac{1}{n} \sum_{i=1}^{n} z_i$, and $\mathcal{E} = \{z \in \mathbb{R}^n : E[z] = 0\}$. From Assumption 2.1 and Lemma 2.4 (i), we have that $E[x^1] = 0$, hence $x^1 \in \mathcal{E} \cap 0^+ \mathcal{A}_1$. Then we proceed as in the proof of Theorem 3.6 in [1] and obtain $u_1 = E$. Therefore $\Box_{i=1}^m u_i = E + v_2(\mathbb{P}_1) + ... + v_m(\mathbb{P}_1)$. Thus, if condition (i) of Assumption 2.2 holds, then $v_i(\mathbb{P}_1) = 0 \forall i = 2, ..., m$ and $\Box_{i=1}^m u_i =$ $E = u_1$, which in particular ensures the exactness of the convolution. On the other hand, if condition (ii) of Assumption 2.2 is satisfied, then for any $x \in \mathbb{R}^n$ and $y^i \in -\partial v_i(\mathbb{P}_1), i =$ 2, ..., m, we have $y^1 := x - \sum_{i=2}^m y^i \in -\partial v_1(\mathbb{P}_1) = \mathbb{R}^n$. Therefore $(y^1, ..., y^m)$ is a POA of x, by Proposition 2.5, hence the convolution is exact.

Now consider a generic partition. By admissibility, the probabilities $a_i := \mathbb{P}_1(A_i)$ are in \mathbb{Q}_+ for all $i = 1, \ldots, n$. Consider the greatest rational number a s.t. a_i/a are all integers for $i = 1, \ldots, n$. By the non-atomicity of $(\Omega, \mathcal{F}, \mathbb{P}_k), k = 1, \ldots, m$, for each $i = 1, \ldots, n$ we can find a partition $\{B_{i1}, \ldots, B_{im_i}\} \subset \mathcal{F}$ of the event A_i such that

$$\mathbb{P}_{1}(B_{ij}) = \frac{\mathbb{P}_{1}(A_{i})}{m_{i}} = a \quad \text{and} \quad \mathbb{P}_{k}(B_{ij}) = \frac{\mathbb{P}_{k}(A_{i})}{m_{i}}, k = 1, ..., m,$$
(2.2)

where $m_i := a_i/a$. Therefore, we end up with a \mathbb{P}_1 -balanced admissible partition $B = \{B_{ij}, j = 1, \ldots, m_i, i = 1, \ldots, n\}$ of Ω , refinement of partition A, and we are back to the previous case (see the proof of Theorem 2.3 in [1]).

Proposition 2.5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $U_i : L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to [-\infty, \infty)$ be proper concave u.s.c. functions, i = 1, ..., m. Then, for $X \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ s.t. $\partial \Box_{i=1}^m U_i(X) \neq \emptyset$ and for any allocation $(X_1, ..., X_m) \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \times \cdots \times L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ of X,

$$\Box_{i=1}^m U_i(X) = \sum_{i=1}^m U_i(X_i) \quad \Longleftrightarrow \quad \partial \Box_{i=1}^m U_i(X) = \bigcap_{i=1}^m \partial U_i(X_i).$$

References

[1] B. Acciaio and G. Svindland (2009). Optimal risk sharing with different reference probabilities, *Insurance: Mathematics and Economics* 44, 426–433.