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Abstract

We consider the problem of optimal risk sharing between m agents endowed with cash-
invariant choice functions which are law-invariant with respect to different reference proba-
bility measures. As for the case of 2 agents considered in [1], we give sufficient conditions for
the existence of Pareto optimal allocations in a discrete setting.

1 Setting and Formulation of the Problem

We consider a measurable space (Ω,F) and m probability measures P1, ..., Pm on (Ω,F)
such that (Ω,F , Pi), i = 1, ...,m are non-atomic standard probability spaces. The measure Pi

describes the view of agent i on the world (Ω,F) and Ui : L∞(Ω,F , Pi) → R her preferences
on L∞(Ω,F , Pi). The choice function Ui is assumed to satisfy the following conditions:

(C1) concavity: Ui(αX + (1 − α)Y ) ≥ αUi(X) + (1 − α)Ui(Y ) for all X, Y ∈ L∞(Ω,F , Pi)
and α ∈ (0, 1);

(C2) cash-invariance: Ui(X + c) = Ui(X) + c for all X ∈ L∞(Ω,F , Pi) and c ∈ R;

(C3) normalization: Ui(0) = 0;

(C4) Pi-law-invariance: Ui(X) = Ui(Y ) whenever X, Y ∈ L∞(Ω,F , Pi) are identically dis-
tributed under Pi;

(C5) upper semi-continuity (u.s.c.): for any sequence (Xn)n∈N ⊂ L∞(Ω,F , Pi) converging to
some X ∈ L∞, we have Ui(X) ≥ lim supn Ui(Xn).

We assume that the agents agree to exchange risk on a finite set of possible scenarios. Let
A = {A1, . . . , An} ⊂ F be a finite partition of Ω and FA := σ({A1, . . . , An}) the σ−algebra
it generates. A is called admissible if

• Pi(Aj) > 0 for all j = 1, . . . , n, i = 1, . . . ,m,
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• P1(Aj) ∈ Q+ for all j = 1, . . . , n.

The space of admissible financial positions which the agents consider in the exchange
of risk, is the collection SA of all FA−measurable random variables, that is isomorphic to
Rn. The optimal risk allocation problem, for any aggregate risk X =

∑n
j=1 xj1Aj ∈ SA, is

therefore formulated as follows:

2m
i=1ui(x) = sup

y1, ..., ym ∈ Rn,

y1 + ... + ym = x

m∑
i=1

ui(yi), (1.1)

where x = (x1, . . . , xn) ∈ Rn, ui(yi
1, . . . , y

i
n) = Ui(

∑n
j=1 yi

j1Aj
), i = 1, ...,m. We denote vi

the dual conjugate of ui, i = 1, ...,m, and v the dual conjugate of u = 2m
i=1ui.

2 Existence result

Assumption 2.1. Agents 2, ...,m give a finite penalty to the reference probability measure
of agent 1, i.e.

P1 ∈ dom(vi), ∀i = 2, ...,m, (2.1)

where P1 is identified with the vector (p1, . . . , pn), with pj = P1(Aj) for all j = 1, . . . , n.

Assumption 2.2. Either of the following two conditions holds:

(i) No Risk-Arbitrage (NRA), i.e. 2m
i=1ui(0) = 0,

(ii) ∂vi(P1) 6= ∅, ∀i = 2, ...,m.

Theorem 2.3. Let A = {Aj}n
j=1 be an admissible partition of Ω. Then, under Assump-

tions 2.1, 2.2, the convolution 2m
i=1ui in (1.1) is exact at any x ∈ Rn.

In the proof of Theorem 2.3 we will use the following results.

Lemma 2.4. (i) For all x1, ..., xm ∈ Rn such that
∑m

i=1 xi = 0 and xi ∈ 0+Ai, and for
all y ∈ dom(v), 〈y, x1〉 = 0;

(ii) 2m
i=1ui is exact at every x ∈ Rn if and only if A1 + ... +Am = A2m

i=1ui
;

(iii) 2m
i=1ui is exact at every x ∈ Rn if and only if A1 + ... +Am is closed;

(iv) Let C1, ..., Cm be non-empty closed convex sets in Rn. If there are no x1, ..., xm not all
zero in Rn such that xi ∈ 0+Ci and

∑m
i=1 xi = 0, then C1 + ... + Cm is closed.

Proof. (of Theorem 2.3) We first consider the case when the partition A = {A1, . . . , An} of
Ω is balanced w.r.to P1, i.e. P1(Aj) = 1

n ,∀j = 1, . . . , n. If n = 1, exactness of 2m
i=1ui follows

from cash-invariance. Henceforth, let n ≥ 2. If there are no x1, ..., xm not all zero in Rn such
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that
∑m

i=1 xi = 0 and xi ∈ 0+Ai, then the exactness follows from Lemma 2.4 (iii)-(iv). Now
suppose there exist x1, ..., xm not all zero in Rn such that

∑m
i=1 xi = 0 and xi ∈ 0+Ai. Define

E on Rn by E[z] = 1
n

∑n
i=1 zi, and E = {z ∈ Rn : E[z] = 0}. From Assumption 2.1 and

Lemma 2.4 (i), we have that E[x1] = 0, hence x1 ∈ E ∩ 0+A1. Then we proceed as in the
proof of Theorem 3.6 in [1] and obtain u1 = E. Therefore 2m

i=1ui = E +v2(P1)+ ...+vm(P1).
Thus, if condition (i) of Assumption 2.2 holds, then vi(P1) = 0∀i = 2, ...,m and 2m

i=1ui =
E = u1, which in particular ensures the exactness of the convolution. On the other hand,
if condition (ii) of Assumption 2.2 is satisfied, then for any x ∈ Rn and yi ∈ −∂vi(P1), i =
2, ...,m, we have y1 := x−

∑m
i=2 yi ∈ −∂v1(P1) = Rn. Therefore (y1, ..., ym) is a POA of x,

by Proposition 2.5, hence the convolution is exact.
Now consider a generic partition. By admissibility, the probabilities ai := P1(Ai) are in

Q+ for all i = 1, . . . , n. Consider the greatest rational number a s.t. ai/a are all integers for
i = 1, . . . , n. By the non-atomicity of (Ω,F , Pk), k = 1, ...,m,, for each i = 1, . . . , n we can
find a partition {Bi1, . . . , Bimi

} ⊂ F of the event Ai such that

P1(Bij) =
P1(Ai)

mi
= a and Pk(Bij) =

Pk(Ai)
mi

, k = 1, ...,m, (2.2)

where mi := ai/a. Therefore, we end up with a P1-balanced admissible partition B =
{Bij , j = 1, . . . ,mi, i = 1, . . . , n} of Ω, refinement of partition A, and we are back to the
previous case (see the proof of Theorem 2.3 in [1]).

Proposition 2.5. Let (Ω,F , P) be a probability space and Ui : L∞(Ω,F , P) → [−∞,∞) be
proper concave u.s.c. functions, i = 1, ...,m. Then, for X ∈ L∞(Ω,F , P) s.t. ∂2m

i=1Ui(X) 6= ∅
and for any allocation (X1, ..., Xm) ∈ L∞(Ω,F , P)× · · · × L∞(Ω,F , P) of X,

2m
i=1Ui(X) =

m∑
i=1

Ui(Xi) ⇐⇒ ∂2m
i=1Ui(X) = ∩m

i=1∂Ui(Xi).
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