Ramsey numbers of hypergraphs of a given size

Domagoj Bradač

ETH Zürich

joint work with Jacob Fox and Benny Sudakov

Domagoj Bradač [Ramsey numbers of hypergraphs of a given size](#page-41-0) BCC, London, 5.7.2024.

The q-color Ramsey number of a k-uniform hypergraph H, denoted by $r^{(k)}(H;q)$ is the smallest integer N such that in every q -edge coloring of $K_N^{(k)}$ $N^{\left(\kappa\right)}$, there is a monochromatic copy of $H.$

The q-color Ramsey number of a k-uniform hypergraph H, denoted by $r^{(k)}(H;q)$ is the smallest integer N such that in every q -edge coloring of $K_N^{(k)}$ $N^{\left(\kappa\right)}$, there is a monochromatic copy of $H.$

Theorem (Ramsey '30)

These numbers exist for every q, k, H .

The q-color Ramsey number of a k-uniform hypergraph H, denoted by $r^{(k)}(H;q)$ is the smallest integer N such that in every q -edge coloring of $K_N^{(k)}$ $N^{\left(\kappa\right)}$, there is a monochromatic copy of $H.$

Theorem (Ramsey '30)

These numbers exist for every q, k, H .

√ $\overline{2}^n < r^{(2)}(K_n;2) < 3.993^n$ (Erdős '47; Campos, Griffiths, Morris, Sahasrabudhe '23+).

The q-color Ramsey number of a k -uniform hypergraph H , denoted by $r^{(k)}(H;q)$ is the smallest integer N such that in every q -edge coloring of $K_N^{(k)}$ $N^{\left(\kappa\right)}$, there is a monochromatic copy of $H.$

Theorem (Ramsey '30)

These numbers exist for every q, k, H .

- √ $\overline{2}^n < r^{(2)}(K_n;2) < 3.993^n$ (Erdős '47; Campos, Griffiths, Morris, Sahasrabudhe '23+).
- For $k\geq 3, \, \mathrm{tw}_{k-1}(\Omega(n^2))\leq r^{(k)}(K_n;2)\leq \mathrm{tw}_k(O(n))$ and $r^{(k)}(K_n;4) = \text{tw}_k(\Theta(n))$ (Erdős, Hajnal, Rado).

$$
tw_1(x) = x, \, tw_2(x) = 2^x, \, tw_3(x) = 2^{2^x}, \dots
$$

For any graph G with $\binom{n}{2}$ $n \choose 2}$ edges, $r(G; 2) \leq r(K_n; 2)$.

For any graph G with $\binom{n}{2}$ $n \choose 2}$ edges, $r(G; 2) \leq r(K_n; 2)$.

Conjecture (Erdős '84)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

For any graph G with $\binom{n}{2}$ $n \choose 2}$ edges, $r(G; 2) \leq r(K_n; 2)$.

Conjecture (Erdős '84)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

Theorem (Sudakov '11)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

For any graph G with $\binom{n}{2}$ $n \choose 2}$ edges, $r(G; 2) \leq r(K_n; 2)$.

Conjecture (Erdős '84)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

Theorem (Sudakov '11)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

Question

Let $k\geq 3.$ What is the largest value of $r^{(k)}(G;q)$ for k -graph G with m edges?

For any graph G with $\binom{n}{2}$ $n \choose 2}$ edges, $r(G; 2) \leq r(K_n; 2)$.

Conjecture (Erdős '84)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

Theorem (Sudakov '11)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

Question

Let $k\geq 3.$ What is the largest value of $r^{(k)}(G;q)$ for k -graph G with m edges? Is it $\text{tw}_k(\Theta(m^{1/k}))$?

Question

Let $k\geq 3.$ What is the largest value of $r^{(k)}(G;q)$ for k -graph G with m edges? Is it $\text{tw}_k(\Theta(m^{1/k}))$?

Question

Let $k\geq 3.$ What is the largest value of $r^{(k)}(G;q)$ for k -graph G with m edges? Is it $\text{tw}_k(\Theta(m^{1/k}))$?

Theorem (Conlon, Fox, Sudakov '09)

No! There is a 3-graph H with m edges for which $r^{(3)}(H;4) > 2^{2c\sqrt{m}}$.

Question

Let $k\geq 3.$ What is the largest value of $r^{(k)}(G;q)$ for k -graph G with m edges? Is it $\text{tw}_k(\Theta(m^{1/k}))$?

Theorem (Conlon, Fox, Sudakov '09)

No! There is a 3-graph H with m edges for which $r^{(3)}(H;4) > 2^{2c\sqrt{m}}$. On other hand, for every k -graph H with m edges:

$$
r^{(k)}(H;q) = \begin{cases} \text{tw}_3(O(\sqrt{m}\log m)), & \text{if } k = 3, \\ \text{tw}_k(O(\sqrt{m})), & \text{if } k \ge 4. \end{cases}
$$

Theorem (B., Fox, Sudakov '24+)

Let $k \geq 3$ and $q \geq 2$ be fixed. For any k-uniform hypergraph H with m edges and no isolated vertices, it holds that

$$
r^{(k)}(H;q) \le \text{tw}_k(c_{k,q}\sqrt{m}).
$$

Theorem (B., Fox, Sudakov '24+)

Let $k > 3$ and $q > 2$ be fixed. For any k-uniform hypergraph H with m edges and no isolated vertices, it holds that

$$
r^{(k)}(H;q) \le \text{tw}_k(c_{k,q}\sqrt{m}).
$$

Up to the constant $c_{k,q}$ this is tight for all $k \geq 3$ and $q \geq 4$.

Stepping-up: the function δ

For distinct nonnegative integers x, y , define $\delta(x, y)$ as the index counted from the right of the most significant bit at which their binary representations differ.

Stepping-up: the function δ

For distinct nonnegative integers x, y, define $\delta(x, y)$ as the index counted from the right of the most significant bit at which their binary representations differ.

E.g. $\delta(2,3) = \delta(010_2, 011_2) = 1, \delta(5,7) = \delta(101_2, 111_2) = 2.$

Stepping-up: the function δ

For distinct nonnegative integers x, y, define $\delta(x, y)$ as the index counted from the right of the most significant bit at which their binary representations differ.

E.g. $\delta(2,3) = \delta(010_2, 011_2) = 1, \delta(5,7) = \delta(101_2, 111_2) = 2.$

• If $x < y < z$, then $\delta(x, y) \neq \delta(y, z)$, and

•
$$
\delta(x, z) = \max{\delta(x, y), \delta(y, z)}
$$
.

• If
$$
x_1 < x_2 < \cdots < x_t
$$
, then $\delta(x_1, x_t) = \max_{1 \leq i \leq t-1} \delta(x_i, x_{i+1})$

Suppose $k \geq 4$ and we have a coloring $\phi^{(k-1)}\binom{[N]}{k-1}$ ${}_{k-1}^{[N]}$ \to {A, B, C, D}.

Stepping-up construction

Suppose $k \geq 4$ and we have a coloring $\phi^{(k-1)}\binom{[N]}{k-1}$ $\binom{\lfloor N\rfloor}{k-1}\rightarrow \{A,B,C,D\}.$ We define $\phi^{(k)} \binom{[2^N]}{k}$ $\binom{[k]}{k}\rightarrow \{A,B,C,D\}.$ For $x_1 < x_2 < \cdots < x_k.$ consider the sequence $\mathbf{s}=(\delta_1,\ldots,\delta_{k-1})$, where $\delta_i=\delta(x_i,x_{i+1})$.

Stepping-up construction

Suppose $k \geq 4$ and we have a coloring $\phi^{(k-1)}\binom{[N]}{k-1}$ $\binom{\lfloor N\rfloor}{k-1}\rightarrow \{A,B,C,D\}.$ We define $\phi^{(k)} \binom{[2^N]}{k}$ $\binom{[k]}{k}\rightarrow \{A,B,C,D\}.$ For $x_1 < x_2 < \cdots < x_k.$ consider the sequence $\mathbf{s}=(\delta_1,\ldots,\delta_{k-1})$, where $\delta_i=\delta(x_i,x_{i+1})$.

$$
\phi^{(k)}(\{x_1,\ldots,x_k\}) = \begin{cases} \phi^{(k-1)}(\{\delta_1,\ldots,\delta_{k-1}\}) & \text{if s is monotone, else} \\ A, & \text{if } \max \delta_i \in \{\delta_1,\delta_{k-1}\}, \\ B, & \text{if } \max \delta_i \notin \{\delta_1,\delta_{k-1}\}. \end{cases}
$$

Stepping-up construction

Suppose $k \geq 4$ and we have a coloring $\phi^{(k-1)}\binom{[N]}{k-1}$ $\binom{\lfloor N\rfloor}{k-1}\rightarrow \{A,B,C,D\}.$ We define $\phi^{(k)} \binom{[2^N]}{k}$ $\binom{[k]}{k}\rightarrow \{A,B,C,D\}.$ For $x_1 < x_2 < \cdots < x_k.$ consider the sequence $\mathbf{s}=(\delta_1,\ldots,\delta_{k-1})$, where $\delta_i=\delta(x_i,x_{i+1})$.

$$
\phi^{(k)}(\lbrace x_1,\ldots,x_k\rbrace)=\begin{cases}\phi^{(k-1)}(\lbrace \delta_1,\ldots,\delta_{k-1}\rbrace) & \text{if s is monotone, else} \\ A, & \text{if } \max\delta_i\in\lbrace \delta_1,\delta_{k-1}\rbrace, \\ B, & \text{if } \max\delta_i\not\in\lbrace \delta_1,\delta_{k-1}\rbrace.\end{cases}
$$

For $k=3$, we start with a two-coloring $\phi^{(2)}$ of ${[N] \choose 2}$ $\binom{N}{2}$ and then $\phi^{(3)}(\{x_1,x_2,x_3\})$ records $\phi^{(2)}(\{\delta_1,\delta_2\})$ and whether $\delta_1>\delta_2.$

Stepping-up construction lower bound

Erdős, Hajnal: $r^{(k)}(t; 4) \geq 2^{r^{(k-1)}(t/2; 4)}$.

Assume $x_1 < x_2 < \cdots < x_t$ monochromatic t -clique in $\phi^{(k)}.$

- Assume $x_1 < x_2 < \cdots < x_t$ monochromatic t -clique in $\phi^{(k)}.$
- Consider $(\delta_1,\ldots,\delta_{t-1})$ with $\delta_i = \delta(x_i,x_{i+1})$.

- Assume $x_1 < x_2 < \cdots < x_t$ monochromatic t -clique in $\phi^{(k)}.$
- Consider $(\delta_1,\ldots,\delta_{t-1})$ with $\delta_i = \delta(x_i,x_{i+1})$.
- $\bullet \implies \exists$ monotone interval of length $t/2$.

- Assume $x_1 < x_2 < \cdots < x_t$ monochromatic t -clique in $\phi^{(k)}.$
- Consider $(\delta_1,\ldots,\delta_{t-1})$ with $\delta_i = \delta(x_i,x_{i+1})$.
- $\bullet \implies \exists$ monotone interval of length $t/2$.
- \implies \exists monochromatic $(t/2)$ -clique in $\phi^{(k-1)}$, \Rightarrow \Leftarrow .

- Assume $x_1 < x_2 < \cdots < x_t$ monochromatic H_k on t vertices in $\phi^{(k)}.$
- Consider $(\delta_1,\ldots,\delta_{t-1})$ with $\delta_i = \delta(x_i,x_{i+1})$.
- $\bullet \implies \exists$ monotone interval of length $t/1000$.
- \implies ∃ monochromatic H_{k-1} on $t/1000$ vertices in $\phi^{(k-1)}$, \Rightarrow \Leftarrow .

Let G be a graph and $k \geq 2$. Define a k-uniform hypergraph $H = H(G, k)$:

 \bullet $V(H) = V(G)$.

- Let G be a graph and $k \geq 2$. Define a k-uniform hypergraph $H = H(G, k)$:
	- \bullet $V(H) = V(G)$.
	- \bullet $E(H) = \{ \{x_1, \ldots, x_{k-1}, y\} | (x_1, \ldots, x_{k-1})$ is a path in $G \}.$

Let G be a graph and $k > 2$. Define a k-uniform hypergraph $H = H(G, k)$:

- \bullet $V(H) = V(G)$.
- \bullet $E(H) = \{ \{x_1, \ldots, x_{k-1}, y\} | (x_1, \ldots, x_{k-1})$ is a path in $G \}.$

Note: $H(G, 2) = K_{v(G)}$.

Let G be a graph and $k > 2$. Define a k-uniform hypergraph $H = H(G, k)$:

- \bullet $V(H) = V(G)$.
- $E(H) = \{ \{x_1, \ldots, x_{k-1}, y\} | (x_1, \ldots, x_{k-1})$ is a path in $G \}.$

Note: $H(G, 2) = K_{v(G)}$.

Let G be an n -vertex expander with degree $d=10^{20k}$ and $H=H(G,k).$ So $e(H) = O(n^2)$.

Let G be a graph and $k > 2$. Define a k-uniform hypergraph $H = H(G, k)$:

- \bullet $V(H) = V(G)$.
- $E(H) = \{ \{x_1, \ldots, x_{k-1}, y\} | (x_1, \ldots, x_{k-1})$ is a path in $G \}.$

Note: $H(G, 2) = K_{v(G)}$.

Let G be an n -vertex expander with degree $d=10^{20k}$ and $H=H(G,k).$ So $e(H) = O(n^2)$.

Let $\phi^{(2)}$ be a 2-coloring on 2^{c_kn} vertices with no monochromatic clique of size $2c_kn$. Step up $k-2$ times

 \rightarrow 4-colorings $\phi^{(3)},\phi^{(4)},\ldots,\phi^{(k)}$, where $\phi^{(r)}$ is on $\text{tw}_r(c_k n)$ vertices.

Let G be a graph and $k > 2$. Define a k-uniform hypergraph $H = H(G, k)$:

 \bullet $V(H) = V(G)$.

•
$$
E(H) = \{ \{x_1, \ldots, x_{k-1}, y\} | (x_1, \ldots, x_{k-1}) \text{ is a path in } G \}.
$$

Note: $H(G, 2) = K_{v(G)}$. Let G be an n -vertex expander with degree $d=10^{20k}$ and $H=H(G,k).$ So $e(H) = O(n^2)$. Let $\phi^{(2)}$ be a 2-coloring on 2^{c_kn} vertices with no monochromatic clique of size $2c_k n$. Step up $k-2$ times \rightarrow 4-colorings $\phi^{(3)},\phi^{(4)},\ldots,\phi^{(k)}$, where $\phi^{(r)}$ is on $\text{tw}_r(c_k n)$ vertices.

Lemma

If in $\phi^{(k)}$ there is a monochromatic copy of $H(G, k)$, then in $\phi^{(k-1)}$ there is a monochromatic copy of $H(G[U], k-1)$ with $U \subseteq V(G), |U| \geq n/1000$.

Let G be a graph and $k > 2$. Define a k-uniform hypergraph $H = H(G, k)$:

- \bullet $V(H) = V(G)$.
- $E(H) = \{ \{x_1, \ldots, x_{k-1}, y\} | (x_1, \ldots, x_{k-1})$ is a path in $G \}.$

Note: $H(G, 2) = K_{v(G)}$. Let G be an n -vertex expander with degree $d=10^{20k}$ and $H=H(G,k).$ So $e(H) = O(n^2)$. Let $\phi^{(2)}$ be a 2-coloring on 2^{c_kn} vertices with no monochromatic clique of size $2c_kn$. Step up $k-2$ times

 \rightarrow 4-colorings $\phi^{(3)},\phi^{(4)},\ldots,\phi^{(k)}$, where $\phi^{(r)}$ is on $\text{tw}_r(c_k n)$ vertices.

Lemma

If in $\phi^{(k)}$ there is a monochromatic copy of $H(G, k)$, then in $\phi^{(k-1)}$ there is a monochromatic copy of $H(G[U], k-1)$ with $U \subseteq V(G), |U| \geq n/1000$.

 $\implies \exists U \subseteq V(G), |U| \geq n/1000^{k-2}$ s.t. there is a monochromatic copy of $H(G[U], 2) = K_{|U|}$ in $\phi^{(2)}, \Rightarrow \Leftarrow$.

Ingredients:

Ingredients:

Lemma

Let H be a k-uniform hypergraph with m edges and no isolated vertices. Then, H is a subgraph of $K_{s_1,...,s_t}^{(k)}$ for some $t, s_1,...,s_t$ satisfying

 $t = O(\sqrt{m}),$ $\prod_{i=1}^{t} s_i = 2^{O(\sqrt{m})}.$

Ingredients:

Lemma

Let H be a k-uniform hypergraph with m edges and no isolated vertices. Then, H is a subgraph of $K_{s_1,...,s_t}^{(k)}$ for some $t, s_1,...,s_t$ satisfying

 $t = O(\sqrt{m}),$ $\prod_{i=1}^{t} s_i = 2^{O(\sqrt{m})}.$

$$
r^{(k)}(K_t; q) \le \text{tw}_k(O(t)).
$$

Ingredients:

Lemma

Let H be a k-uniform hypergraph with m edges and no isolated vertices. Then, H is a subgraph of $K_{s_1,...,s_t}^{(k)}$ for some $t, s_1,...,s_t$ satisfying

 $t = O(\sqrt{m}),$ $\prod_{i=1}^{t} s_i = 2^{O(\sqrt{m})}.$

$$
r^{(k)}(K_t; q) \le \text{tw}_k(O(t)).
$$

Supersaturation argument: many monochromatic t-cliques in one color.

Ingredients:

Lemma

Let H be a k-uniform hypergraph with m edges and no isolated vertices. Then, H is a subgraph of $K_{s_1,...,s_t}^{(k)}$ for some $t, s_1,...,s_t$ satisfying

 $t = O(\sqrt{m}),$ $\prod_{i=1}^{t} s_i = 2^{O(\sqrt{m})}.$

$$
r^{(k)}(K_t; q) \le \text{tw}_k(O(t)).
$$

Supersaturation argument: many monochromatic t-cliques in one color.

Theorem (Erdős '64) Let $s_1, \ldots, s_t \geq 1$ and denote $P = \prod_{i=1}^t s_i$. Then for all $n \geq 1$, $ex(n, K_{s_1,...,s_t}^{(k)}) \le Pn^{t-1/P}.$

Theorem (B., Fox, Sudakov '24+)

Let $k > 3$ and $q \ge 2$ be fixed. For any k-uniform hypergraph H with m edges and no isolated vertices, it holds that

 $r^{(k)}(H;q) \leq \text{tw}_k(c_{k,q}\sqrt{m}).$

Up to the constant $c_{k,q}$ this is tight for all $k \geq 3$ and $q \geq 4$.

Thank you!