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Ramsey numbers

Definition

The q-color Ramsey number of a k-uniform hypergraph H, denoted by
r(k)(H; q) is the smallest integer N such that in every q-edge coloring of

K
(k)
N , there is a monochromatic copy of H.

Theorem (Ramsey ‘30)

These numbers exist for every q, k,H.

√
2
n
< r(2)(Kn; 2) < 3.993n (Erdős ‘47; Campos, Griffiths, Morris,

Sahasrabudhe ‘23+).

For k ≥ 3, twk−1(Ω(n
2)) ≤ r(k)(Kn; 2) ≤ twk(O(n)) and

r(k)(Kn; 4) = twk(Θ(n)) (Erdős, Hajnal, Rado).

tw1(x) = x, tw2(x) = 2x, tw3(x) = 22
x
, . . .
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Ramsey numbers of graphs with m edges

Conjecture (Erdős, Graham ‘75)

For any graph G with
(
n
2

)
edges, r(G; 2) ≤ r(Kn; 2).

Conjecture (Erdős ‘84)

For any graph G with m edges, r(G; 2) = 2O(
√
m).

Theorem (Sudakov ‘11)

For any graph G with m edges, r(G; 2) = 2O(
√
m).

Question

Let k ≥ 3. What is the largest value of r(k)(G; q) for k-graph G with m
edges?

Is it twk(Θ(m1/k))?

Domagoj Bradač Ramsey numbers of hypergraphs of a given size BCC, London, 5.7.2024.



Ramsey numbers of graphs with m edges

Conjecture (Erdős, Graham ‘75)
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Ramsey numbers of graphs with m edges

Question

Let k ≥ 3. What is the largest value of r(k)(G; q) for k-graph G with m
edges? Is it twk(Θ(m1/k))?

Theorem (Conlon, Fox, Sudakov ‘09)

No! There is a 3-graph H with m edges for which r(3)(H; 4) > 22
c
√
m
. On

other hand, for every k-graph H with m edges:

r(k)(H; q) =

{
tw3(O(

√
m logm)), if k = 3,

twk(O(
√
m)), if k ≥ 4.
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Results

Theorem (B., Fox, Sudakov ‘24+)

Let k ≥ 3 and q ≥ 2 be fixed. For any k-uniform hypergraph H with m
edges and no isolated vertices, it holds that

r(k)(H; q) ≤ twk(ck,q
√
m).

Up to the constant ck,q this is tight for all k ≥ 3 and q ≥ 4.
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Stepping-up: the function δ

For distinct nonnegative integers x, y, define δ(x, y) as the index counted
from the right of the most significant bit at which their binary
representations differ.

E.g. δ(2, 3) = δ(0102, 0112) = 1, δ(5, 7) = δ(1012, 1112) = 2.

If x < y < z, then δ(x, y) ̸= δ(y, z), and

δ(x, z) = max{δ(x, y), δ(y, z)}.
If x1 < x2 < · · · < xt, then δ(x1, xt) = max1≤i≤t−1 δ(xi, xi+1)
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Stepping-up construction

Suppose k ≥ 4 and we have a coloring ϕ(k−1)
( [N ]
k−1

)
→ {A,B,C,D}.

We

define ϕ(k)
([2N ]

k

)
→ {A,B,C,D}. For x1 < x2 < · · · < xk, consider the

sequence s = (δ1, . . . , δk−1), where δi = δ(xi, xi+1).

ϕ(k)({x1, . . . , xk}) =


ϕ(k−1)({δ1, . . . , δk−1}) if s is monotone, else

A, if max δi ∈ {δ1, δk−1},
B, if max δi ̸∈ {δ1, δk−1}.

For k = 3, we start with a two-coloring ϕ(2) of
(
[N ]
2

)
and then

ϕ(3)({x1, x2, x3}) records ϕ(2)({δ1, δ2}) and whether δ1 > δ2.
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Stepping-up construction lower bound

Erdős, Hajnal: r(k)(t; 4) ≥ 2r
(k−1)(t/2;4).

Coloring ϕ(k−1)
( [N ]
k−1

)
→ {A,B,C,D} with no monochromatic clique of

size t/2. We defined ϕ(k)
([2N−1]

k

)
→ {A,B,C,D}.

Assume x1 < x2 < · · · < xt monochromatic in ϕ(k).

Consider (δ1, . . . , δt−1) with δi = δ(xi, xi+1).

=⇒ ∃ monotone interval of length .

=⇒ ∃ monochromatic in ϕ(k−1), ⇒⇐.
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Stepping-up construction lower bound

Erdős, Hajnal: r(k)(t; 4) ≥ 2r
(k−1)(t/2;4).

Coloring ϕ(k−1)
( [N ]
k−1

)
→ {A,B,C,D} with no monochromatic clique of

size t/2. We defined ϕ(k)
([2N−1]

k

)
→ {A,B,C,D}.

Assume x1 < x2 < · · · < xt monochromatic Hk on t vertices in ϕ(k).

Consider (δ1, . . . , δt−1) with δi = δ(xi, xi+1).

=⇒ ∃ monotone interval of length t/1000.

=⇒ ∃ monochromatic Hk−1 on t/1000 vertices in ϕ(k−1), ⇒⇐.
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Lower bound construction

Let G be a graph and k ≥ 2. Define a k-uniform hypergraph
H = H(G, k):

V (H) = V (G).

E(H) = {{x1, . . . , xk−1, y} | (x1, . . . , xk−1) is a path in G}.
Note: H(G, 2) = Kv(G).

Let G be an n-vertex expander with degree d = 1020k and H = H(G, k).
So e(H) = O(n2).
Let ϕ(2) be a 2-coloring on 2ckn vertices with no monochromatic clique of
size 2ckn. Step up k − 2 times
→ 4-colorings ϕ(3), ϕ(4), . . . , ϕ(k), where ϕ(r) is on twr(ckn) vertices.

Lemma

If in ϕ(k) there is a monochromatic copy of H(G, k), then in ϕ(k−1) there is
a monochromatic copy of H(G[U ], k − 1) with U ⊆ V (G), |U | ≥ n/1000.

=⇒ ∃U ⊆ V (G), |U | ≥ n/1000k−2 s.t. there is a monochromatic copy of
H(G[U ], 2) = K|U | in ϕ(2), ⇒⇐ .
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→ 4-colorings ϕ(3), ϕ(4), . . . , ϕ(k), where ϕ(r) is on twr(ckn) vertices.

Lemma

If in ϕ(k) there is a monochromatic copy of H(G, k), then in ϕ(k−1) there is
a monochromatic copy of H(G[U ], k − 1) with U ⊆ V (G), |U | ≥ n/1000.

=⇒ ∃U ⊆ V (G), |U | ≥ n/1000k−2 s.t. there is a monochromatic copy of
H(G[U ], 2) = K|U | in ϕ(2), ⇒⇐ .
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Upper bound

Ingredients:

Lemma

Let H be a k-uniform hypergraph with m edges and no isolated vertices.

Then, H is a subgraph of K
(k)
s1,...,st for some t, s1, . . . , st satisfying

t = O(
√
m),∏t

i=1 si = 2O(
√
m).

r(k)(Kt; q) ≤ twk(O(t)).

Supersaturation argument: many monochromatic t-cliques in one color.

Theorem (Erdős ‘64)

Let s1, . . . , st ≥ 1 and denote P =
∏t

i=1 si. Then for all n ≥ 1,

ex(n,K(k)
s1,...,st) ≤ Pnt−1/P .
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Let s1, . . . , st ≥ 1 and denote P =
∏t

i=1 si. Then for all n ≥ 1,

ex(n,K(k)
s1,...,st) ≤ Pnt−1/P .
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Let s1, . . . , st ≥ 1 and denote P =
∏t

i=1 si. Then for all n ≥ 1,

ex(n,K(k)
s1,...,st) ≤ Pnt−1/P .
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Domagoj Bradač Ramsey numbers of hypergraphs of a given size BCC, London, 5.7.2024.



Theorem (B., Fox, Sudakov ‘24+)

Let k ≥ 3 and q ≥ 2 be fixed. For any k-uniform hypergraph H with m
edges and no isolated vertices, it holds that

r(k)(H; q) ≤ twk(ck,q
√
m).

Up to the constant ck,q this is tight for all k ≥ 3 and q ≥ 4.

Thank you!
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