Ramsey numbers of hypergraphs of a given size

Domagoj Bradač

ETH Zürich

joint work with Jacob Fox and Benny Sudakov

Domagoj Bradač

Ramsey numbers of hypergraphs of a given size

BCC, London, 5.7.2024.

The q-color Ramsey number of a k-uniform hypergraph H, denoted by $r^{(k)}(H;q)$ is the smallest integer N such that in every q-edge coloring of $K_N^{(k)}$, there is a monochromatic copy of H.

The q-color Ramsey number of a k-uniform hypergraph H, denoted by $r^{(k)}(H;q)$ is the smallest integer N such that in every q-edge coloring of $K_N^{(k)}$, there is a monochromatic copy of H.

Theorem (Ramsey '30)

These numbers exist for every q, k, H.

The q-color Ramsey number of a k-uniform hypergraph H, denoted by $r^{(k)}(H;q)$ is the smallest integer N such that in every q-edge coloring of $K_N^{(k)}$, there is a monochromatic copy of H.

Theorem (Ramsey '30)

These numbers exist for every q, k, H.

• $\sqrt{2}^n < r^{(2)}(K_n; 2) < 3.993^n$ (Erdős '47; Campos, Griffiths, Morris, Sahasrabudhe '23+).

The q-color Ramsey number of a k-uniform hypergraph H, denoted by $r^{(k)}(H;q)$ is the smallest integer N such that in every q-edge coloring of $K_N^{(k)}$, there is a monochromatic copy of H.

Theorem (Ramsey '30)

These numbers exist for every q, k, H.

- $\sqrt{2}^n < r^{(2)}(K_n; 2) < 3.993^n$ (Erdős '47; Campos, Griffiths, Morris, Sahasrabudhe '23+).
- For $k \geq 3$, $\operatorname{tw}_{k-1}(\Omega(n^2)) \leq r^{(k)}(K_n; 2) \leq \operatorname{tw}_k(O(n))$ and $r^{(k)}(K_n; 4) = \operatorname{tw}_k(\Theta(n))$ (Erdős, Hajnal, Rado).

$$tw_1(x) = x, tw_2(x) = 2^x, tw_3(x) = 2^{2^x}, \dots$$

For any graph G with $\binom{n}{2}$ edges, $r(G; 2) \leq r(K_n; 2)$.

Ramsey numbers of graphs with m edges

Conjecture (Erdős, Graham '75)

For any graph G with $\binom{n}{2}$ edges, $r(G;2) \leq r(K_n;2)$.

Conjecture (Erdős '84)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

For any graph G with $\binom{n}{2}$ edges, $r(G;2) \leq r(K_n;2)$.

Conjecture (Erdős '84)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

Theorem (Sudakov '11)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

For any graph G with $\binom{n}{2}$ edges, $r(G;2) \leq r(K_n;2)$.

Conjecture (Erdős '84)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

Theorem (Sudakov '11)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

Question

Let $k \ge 3$. What is the largest value of $r^{(k)}(G;q)$ for k-graph G with m edges?

For any graph G with $\binom{n}{2}$ edges, $r(G;2) \leq r(K_n;2)$.

Conjecture (Erdős '84)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

Theorem (Sudakov '11)

For any graph G with m edges, $r(G; 2) = 2^{O(\sqrt{m})}$.

Question

Let $k \ge 3$. What is the largest value of $r^{(k)}(G;q)$ for k-graph G with m edges? Is it $tw_k(\Theta(m^{1/k}))$?

Question

Let $k \ge 3$. What is the largest value of $r^{(k)}(G;q)$ for k-graph G with m edges? Is it $tw_k(\Theta(m^{1/k}))$?

Question

Let $k \ge 3$. What is the largest value of $r^{(k)}(G;q)$ for k-graph G with m edges? Is it $tw_k(\Theta(m^{1/k}))$?

Theorem (Conlon, Fox, Sudakov '09)

No! There is a 3-graph H with m edges for which $r^{(3)}(H;4) > 2^{2^{c\sqrt{m}}}$

Question

Let $k \ge 3$. What is the largest value of $r^{(k)}(G;q)$ for k-graph G with m edges? Is it $tw_k(\Theta(m^{1/k}))$?

Theorem (Conlon, Fox, Sudakov '09)

No! There is a 3-graph H with m edges for which $r^{(3)}(H;4) > 2^{2^{c\sqrt{m}}}$. On other hand, for every k-graph H with m edges:

$$r^{(k)}(H;q) = \begin{cases} \operatorname{tw}_3(O(\sqrt{m}\log m)), & \text{if } k = 3, \\ \operatorname{tw}_k(O(\sqrt{m})), & \text{if } k \ge 4. \end{cases}$$

Theorem (B., Fox, Sudakov '24+)

Let $k \ge 3$ and $q \ge 2$ be fixed. For any k-uniform hypergraph H with m edges and no isolated vertices, it holds that

$$r^{(k)}(H;q) \le \operatorname{tw}_k(c_{k,q}\sqrt{m}).$$

Theorem (B., Fox, Sudakov '24+)

Let $k \ge 3$ and $q \ge 2$ be fixed. For any k-uniform hypergraph H with m edges and no isolated vertices, it holds that

$$r^{(k)}(H;q) \le \operatorname{tw}_k(c_{k,q}\sqrt{m}).$$

Up to the constant $c_{k,q}$ this is tight for all $k \ge 3$ and $q \ge 4$.

Stepping-up: the function δ

For distinct nonnegative integers x, y, define $\delta(x, y)$ as the index counted from the right of the most significant bit at which their binary representations differ.

Stepping-up: the function δ

For distinct nonnegative integers x, y, define $\delta(x, y)$ as the index counted from the right of the most significant bit at which their binary representations differ.

E.g. $\delta(2,3) = \delta(010_2, 011_2) = 1, \delta(5,7) = \delta(101_2, 111_2) = 2.$

Stepping-up: the function δ

For distinct nonnegative integers x, y, define $\delta(x, y)$ as the index counted from the right of the most significant bit at which their binary representations differ.

 $\mathsf{E.g.} \ \ \delta(2,3)=\delta(010_2,011_2)=1, \\ \delta(5,7)=\delta(101_2,111_2)=2.$

• If x < y < z, then $\delta(x, y) \neq \delta(y, z)$, and

•
$$\delta(x,z) = \max{\{\delta(x,y), \delta(y,z)\}}.$$

• If
$$x_1 < x_2 < \dots < x_t$$
, then $\delta(x_1, x_t) = \max_{1 \le i \le t-1} \delta(x_i, x_{i+1})$

Suppose $k \ge 4$ and we have a coloring $\phi^{(k-1)} {[N] \choose k-1} \to \{A, B, C, D\}.$

Stepping-up construction

Suppose $k \ge 4$ and we have a coloring $\phi^{(k-1)}\binom{[N]}{k-1} \to \{A, B, C, D\}$. We define $\phi^{(k)}\binom{[2^N]}{k} \to \{A, B, C, D\}$. For $x_1 < x_2 < \cdots < x_k$, consider the sequence $\mathbf{s} = (\delta_1, \ldots, \delta_{k-1})$, where $\delta_i = \delta(x_i, x_{i+1})$.

Stepping-up construction

Suppose $k \ge 4$ and we have a coloring $\phi^{(k-1)}\binom{[N]}{k-1} \to \{A, B, C, D\}$. We define $\phi^{(k)}\binom{[2^N]}{k} \to \{A, B, C, D\}$. For $x_1 < x_2 < \cdots < x_k$, consider the sequence $\mathbf{s} = (\delta_1, \ldots, \delta_{k-1})$, where $\delta_i = \delta(x_i, x_{i+1})$.

$$\phi^{(k)}(\{x_1,\ldots,x_k\}) = \begin{cases} \phi^{(k-1)}(\{\delta_1,\ldots,\delta_{k-1}\}) & \text{if s is monotone, else} \\ A, & \text{if } \max \delta_i \in \{\delta_1,\delta_{k-1}\}, \\ B, & \text{if } \max \delta_i \notin \{\delta_1,\delta_{k-1}\}. \end{cases}$$

Stepping-up construction

Suppose $k \ge 4$ and we have a coloring $\phi^{(k-1)} {[N] \choose k-1} \to \{A, B, C, D\}$. We define $\phi^{(k)} {[2^N] \choose k} \to \{A, B, C, D\}$. For $x_1 < x_2 < \cdots < x_k$, consider the sequence $\mathbf{s} = (\delta_1, \ldots, \delta_{k-1})$, where $\delta_i = \delta(x_i, x_{i+1})$.

$$\phi^{(k)}(\{x_1,\ldots,x_k\}) = \begin{cases} \phi^{(k-1)}(\{\delta_1,\ldots,\delta_{k-1}\}) & \text{if s is monotone, else} \\ A, & \text{if } \max \delta_i \in \{\delta_1,\delta_{k-1}\}, \\ B, & \text{if } \max \delta_i \notin \{\delta_1,\delta_{k-1}\}. \end{cases}$$

For k = 3, we start with a two-coloring $\phi^{(2)}$ of $\binom{[N]}{2}$ and then $\phi^{(3)}(\{x_1, x_2, x_3\})$ records $\phi^{(2)}(\{\delta_1, \delta_2\})$ and whether $\delta_1 > \delta_2$.

Stepping-up construction lower bound

Erdős, Hajnal: $r^{(k)}(t;4) \ge 2^{r^{(k-1)}(t/2;4)}$.

• Assume $x_1 < x_2 < \cdots < x_t$ monochromatic *t*-clique in $\phi^{(k)}$.

- Assume $x_1 < x_2 < \cdots < x_t$ monochromatic *t*-clique in $\phi^{(k)}$.
- Consider $(\delta_1, \ldots, \delta_{t-1})$ with $\delta_i = \delta(x_i, x_{i+1})$.

- Assume $x_1 < x_2 < \cdots < x_t$ monochromatic *t*-clique in $\phi^{(k)}$.
- Consider $(\delta_1, \ldots, \delta_{t-1})$ with $\delta_i = \delta(x_i, x_{i+1})$.
- \implies \exists monotone interval of length t/2.

- Assume $x_1 < x_2 < \cdots < x_t$ monochromatic *t*-clique in $\phi^{(k)}$.
- Consider $(\delta_1, \ldots, \delta_{t-1})$ with $\delta_i = \delta(x_i, x_{i+1})$.
- \implies \exists monotone interval of length t/2.
- \implies \exists monochromatic (t/2)-clique in $\phi^{(k-1)}$, $\Rightarrow \leftarrow$.

- Assume $x_1 < x_2 < \cdots < x_t$ monochromatic H_k on t vertices in $\phi^{(k)}$.
- Consider $(\delta_1, \ldots, \delta_{t-1})$ with $\delta_i = \delta(x_i, x_{i+1})$.
- \implies \exists monotone interval of length t/1000.
- $\implies \exists$ monochromatic H_{k-1} on t/1000 vertices in $\phi^{(k-1)}$, $\Rightarrow \leftarrow$.

Let G be a graph and $k\geq 2.$ Define a k-uniform hypergraph H=H(G,k):

• V(H) = V(G).

- Let G be a graph and $k\geq 2.$ Define a k-uniform hypergraph H=H(G,k):
 - V(H) = V(G).
 - $E(H) = \{\{x_1, \dots, x_{k-1}, y\} \mid (x_1, \dots, x_{k-1}) \text{ is a path in } G\}.$

Let G be a graph and $k \ge 2$. Define a k-uniform hypergraph H = H(G, k):

- V(H) = V(G).
- $E(H) = \{\{x_1, \dots, x_{k-1}, y\} \mid (x_1, \dots, x_{k-1}) \text{ is a path in } G\}.$

Note: $H(G, 2) = K_{v(G)}$.

Let G be a graph and $k\geq 2.$ Define a k-uniform hypergraph H=H(G,k):

• V(H) = V(G).

•
$$E(H) = \{\{x_1, \dots, x_{k-1}, y\} \mid (x_1, \dots, x_{k-1}) \text{ is a path in } G\}.$$

Note: $H(G, 2) = K_{v(G)}$.

Let G be an n-vertex expander with degree $d = 10^{20k}$ and H = H(G, k). So $e(H) = O(n^2)$.

Let G be a graph and $k\geq 2.$ Define a k-uniform hypergraph H=H(G,k):

• V(H) = V(G).

•
$$E(H) = \{\{x_1, \dots, x_{k-1}, y\} \mid (x_1, \dots, x_{k-1}) \text{ is a path in } G\}.$$

Note: $H(G, 2) = K_{v(G)}$.

Let G be an n-vertex expander with degree $d = 10^{20k}$ and H = H(G, k). So $e(H) = O(n^2)$.

Let $\phi^{(2)}$ be a 2-coloring on $2^{c_k n}$ vertices with no monochromatic clique of size $2c_k n$. Step up k-2 times

 \rightarrow 4-colorings $\phi^{(3)}, \phi^{(4)}, \dots, \phi^{(k)}$, where $\phi^{(r)}$ is on $\operatorname{tw}_r(c_k n)$ vertices.

Let G be a graph and $k\geq 2.$ Define a k-uniform hypergraph H=H(G,k):

- V(H) = V(G).
- $E(H) = \{\{x_1, \dots, x_{k-1}, y\} \mid (x_1, \dots, x_{k-1}) \text{ is a path in } G\}.$

Note: $H(G, 2) = K_{v(G)}$.

Let G be an n-vertex expander with degree $d = 10^{20k}$ and H = H(G, k). So $e(H) = O(n^2)$.

Let $\phi^{(2)}$ be a 2-coloring on $2^{c_k n}$ vertices with no monochromatic clique of size $2c_k n$. Step up k-2 times

 \rightarrow 4-colorings $\phi^{(3)}, \phi^{(4)}, \dots, \phi^{(k)}$, where $\phi^{(r)}$ is on $\operatorname{tw}_r(c_k n)$ vertices.

Lemma

If in $\phi^{(k)}$ there is a monochromatic copy of H(G, k), then in $\phi^{(k-1)}$ there is a monochromatic copy of H(G[U], k-1) with $U \subseteq V(G)$, $|U| \ge n/1000$.

Let G be a graph and $k\geq 2.$ Define a k-uniform hypergraph H=H(G,k):

- V(H) = V(G).
- $E(H) = \{\{x_1, \dots, x_{k-1}, y\} \mid (x_1, \dots, x_{k-1}) \text{ is a path in } G\}.$

Note: $H(G, 2) = K_{v(G)}$.

Let G be an n-vertex expander with degree $d = 10^{20k}$ and H = H(G, k). So $e(H) = O(n^2)$.

Let $\phi^{(2)}$ be a 2-coloring on $2^{c_k n}$ vertices with no monochromatic clique of size $2c_k n$. Step up k-2 times

 \rightarrow 4-colorings $\phi^{(3)}, \phi^{(4)}, \dots, \phi^{(k)}$, where $\phi^{(r)}$ is on $\operatorname{tw}_r(c_k n)$ vertices.

Lemma

If in $\phi^{(k)}$ there is a monochromatic copy of H(G, k), then in $\phi^{(k-1)}$ there is a monochromatic copy of H(G[U], k-1) with $U \subseteq V(G)$, $|U| \ge n/1000$.

 $\implies \exists U \subseteq V(G), |U| \geq n/1000^{k-2} \text{ s.t. there is a monochromatic copy of } H(G[U],2) = K_{|U|} \text{ in } \phi^{(2)}, \rightleftharpoons$

Ingredients:

Ingredients:

Lemma

Let H be a k-uniform hypergraph with m edges and no isolated vertices. Then, H is a subgraph of $K_{s_1,\ldots,s_t}^{(k)}$ for some t, s_1, \ldots, s_t satisfying

•
$$t = O(\sqrt{m})$$
,
• $\prod_{i=1}^{t} s_i = 2^{O(\sqrt{m})}$

Ingredients:

Lemma

Let H be a k-uniform hypergraph with m edges and no isolated vertices. Then, H is a subgraph of $K_{s_1,\ldots,s_t}^{(k)}$ for some t, s_1, \ldots, s_t satisfying

•
$$t = O(\sqrt{m})$$
,
• $\prod_{i=1}^{t} s_i = 2^{O(\sqrt{m})}$

$$r^{(k)}(K_t;q) \le \operatorname{tw}_k(O(t)).$$

Ingredients:

Lemma

Let H be a k-uniform hypergraph with m edges and no isolated vertices. Then, H is a subgraph of $K_{s_1,...,s_t}^{(k)}$ for some t, s_1, \ldots, s_t satisfying

• $t = O(\sqrt{m})$, • $\prod_{i=1}^{t} s_i = 2^{O(\sqrt{m})}$.

$$r^{(k)}(K_t;q) \le \operatorname{tw}_k(O(t)).$$

Supersaturation argument: many monochromatic *t*-cliques in one color.

Ingredients:

Lemma

Let H be a k-uniform hypergraph with m edges and no isolated vertices. Then, H is a subgraph of $K_{s_1,...,s_t}^{(k)}$ for some t, s_1, \ldots, s_t satisfying

• $t = O(\sqrt{m})$, • $\prod_{i=1}^{t} s_i = 2^{O(\sqrt{m})}$.

$$r^{(k)}(K_t;q) \le \operatorname{tw}_k(O(t)).$$

Supersaturation argument: many monochromatic *t*-cliques in one color.

Theorem (Erdős '64) Let $s_1, \ldots, s_t \ge 1$ and denote $P = \prod_{i=1}^t s_i$. Then for all $n \ge 1$, $ex(n, K_{s_1, \ldots, s_t}^{(k)}) \le Pn^{t-1/P}$. Theorem (B., Fox, Sudakov '24+)

Let $k \ge 3$ and $q \ge 2$ be fixed. For any k-uniform hypergraph H with m edges and no isolated vertices, it holds that

 $r^{(k)}(H;q) \le \operatorname{tw}_k(c_{k,q}\sqrt{m}).$

Up to the constant $c_{k,q}$ this is tight for all $k \ge 3$ and $q \ge 4$.

Thank you!