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Dirac-type problems

Suppose a graph G has minimum degree δ(G) ≥ αn. Does G
necessarily contain a specified spanning subgraph H?

Theorem (Dirac, 1952)

A graph G with δ(G) ≥ 1
2n has a Hamilton cycle.

A Kr-tiling of a graph is a partition of its vertices into disjoint
r-cliques.

Theorem (Hajnal, Szemerédi, 1972)

If r divides n then any graph G with δ(G) ≥ (1− 1/r)n contains a
Kr-tiling.
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The Pósa-Seymour Conjecture

The rth power of a graph is obtained by adding an edge for
every pair of vertices at distance at most r. We denote the rth

power of a Hamilton cycle by Hr.

Conjecture (Pósa, Seymour)

If δ(G) ≥
(

1− 1
r+1

)
n, then G contains a copy of Hr.

Theorem (Komlós, Sárközy, Szemerédi, 1998)

For any r ∈ N and ε > 0 there exists n0 ∈ N so that any graph G
on n ≥ n0 vertices with δ(G) ≥

(
1− 1

r+1 + ε
)
n has a copy of Hr.

Theorem (Komlós, Sárközy, Szemerédi, 1998)

For any r ∈ N there exists n0 ∈ N so that any graph G on n ≥ n0
vertices with δ(G) ≥

(
1− 1

r+1

)
n has a copy of Hr.
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Discrepancy . . .

Suppose we are given a family F of subsets of a ground set U . Can
we color the elements of U in 2 colors such that set in F has
roughly the same number of elements from each color?
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Discrepancy in the graph setting

Suppose we are given a family F of subsets of a ground set U . Can
we color the elements of U in 2 colors such that set in F has
roughly the same number of elements from each color?

U = edges of G
F = labelled copies of a given subgraph H
Let f be a coloring of the edges of G into +1 (blue) or -1 (red).
For a subgraph F of G, define

f(F ) =
∑
e∈F

f(e).

We are given a graph G with δ(G) ≥ αn. Does G contain, for every
coloring f : E(G)→ {−1, 1}, a copy of H with high discrepancy,
i.e. a subgraph F isomorphic to H such that |f(F )| is large?
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Previous results

Theorem (Balogh, Csaba, Jing and Pluhár, 2020)

Let G be a graph with δ(G) ≥ (3/4 + η)n. Given any edge coloring
f : E(G)→ {−1, 1}, there exists a Hamilton cycle of absolute
discrepancy at least ηn/32 with respect to f.

Theorem (Balogh, Csaba, Pluhár and Treglown, 2020)

For every η > 0, there is a γ > 0 and n0 ∈ N such that the
following holds. Let G be a graph on n ≥ n0 vertices with
δ(G) ≥ (1− 1

r+1 + η)n. Then, given any edge coloring
f : E(G)→ {−1, 1}, there exists a Kr-tiling of G with absolute
discrepancy at least γn with respect to f.

Balogh, Csaba, Pluhár and Treglown, 2020

For fixed r ≥ 2, what is the degree threshold for containing the rth

power of a Hamilton cycle with large absolute discrepancy?(
1− 1

r+2

)
n?
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Results

Theorem
For any η > 0, there exist n0 ∈ N and γ > 0 such that the
following holds. Suppose a graph G on n ≥ n0 vertices with
minimum degree δ(G) ≥ (3/4 + η)n and an edge coloring
f : E(G)→ {−1, 1} are given. Then in G there exists the square
of a Hamilton cycle H2 satisfying |f(H2)| > γn.

Theorem
For any integer r ≥ 3 and η > 0, there exist n0 ∈ N and γ > 0 such
that the following holds. Suppose a graph G on n ≥ n0 vertices
with minimum degree δ(G) ≥ (1− 1/(r + 1) + η)n and an edge
coloring f : E(G)→ {−1, 1} are given. Then in G there exists the
rth power of a Hamilton cycle Hr satisfying |f(Hr)| > γn.
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Threshold comparison

Threshold Discrepancy threshold

Kr-tiling (1− 1
r )n [HS, ’70] (1− 1

r+1)n [BCPT, ’20]

H 1
2n [D, ’52] 3

4n [BCJP, ’20]

H2 2
3n [KSS, ’98] 3

4n [B, ’20]

Hr, r ≥ 3 (1− 1
r+1)n [KSS, ’98] (1− 1

r+1)n [B, ’20]
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Lower bound for r = 1, 2

δ(G) = 3
4n.

In a copy of Hr, we have n
4 · 2r = nr

2 blue edges.
Hr has nr edges, so f(Hr) = 0.
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Lower bound for r ≥ 3

r + 1 clusters

Note: δ(G) = (1− 1
r+1)n.

Any copy of Hr must cycle through clusters in some fixed
order.
In Hr, every vertex has 2 neighbours in each of the other
clusters.

=⇒ f(Hr) = 0.
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Using Szemerédi’s regularity lemma

Using a multicolored version of Szemerédi’s regularity lemma, we
can partition vertices into clusters V0, V1, . . . , V`. Additionally, on
the vertex set {V1, . . . , V`} we can define the reduced graph R and
an edge coloring fR : E(R)→ {−1, 1} such that:

|V0| ≤ εn and |V1| = |V2| = · · · = |V`| = Ω(n),

If fR(Vi, Vj) = x then the bipartite graph between Vi and Vj
containing all edges labelled x is (ε, η/4)-regular.
δ(R) ≥ (1− 1

r+1 + η
4 )|R|

(
or δ(R) ≥ (34 + η

4 )|R| for r = 2
)
,

Blow-up Lemma (Komlós, Sárközy, Szemerédi, 1994)

“Regular pairs behave like complete bipartite graphs in terms of
containing bounded degree subgraphs.“
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Szemerédi’s regularity lemma
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rth powers of cycles in R

Denote the rth power of the cycle (v1, v2, . . . , vk) by
(v1, v2, . . . , vk)

r.

Its discrepancy is given as
fR(v1, v2, . . . , vk)

r =
∑k

i=1

∑r
j=1 fR(vi, vi+j), where

vk+i = vi

Example: (v1, v2, v3, v4)
2 is a 4-clique, but

fR
(
(v1, v2, v3, v4)

2
)

= fR(v1, v3)+fR(v2, v4)+
∑
i<j

fR(vi, vj).

Cr-tiling

A Cr-tiling T of R is a partition of its vertices into rth powers of
simple cycles. Its discrepancy is defined as
fR(T ) =

∑
Cr∈T fR(Cr).
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Using a tiling of high discrepancy

Lemma (Tiling Lemma)

Suppose there is a Cr-tiling T of R with |fR(T )| = Ω(|R|). Then
in G there exists the rth power of a Hamilton cycle Hr satisfying
|f(Hr)| ≥ γn.

Proof in the case δ(G) ≥ (1− 1
r+2 + η)n:

δ(R) ≥ (1− 1
r+2 + η

4 )|R|.
Balogh, Csaba, Pluhár and Treglown: there is a Kr+1-tiling of
R with linear discrepancy.
We are done by the Tiling Lemma.
r = 2
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Cr-templates

Cr-template

Let F be a graph. A collection of rth powers of cycles
F = {Cr1 , . . . , Crs} is a Cr-template of F if every vertex in F
appears the same number of times.
They need not be distinct nor simple. Its discrepancy is defined as
fR(F) =

∑s
i=1 fR(Cri ).

Lemma (Template Lemma)

Let F1 and F2 be two “small“ Cr-templates on some subgraph F
of R. If both F1 and F2 contain each vertex of F exactly k times,
but have different discrepancies, then we are done.

16 / 21



Cr-templates

Cr-template

Let F be a graph. A collection of rth powers of cycles
F = {Cr1 , . . . , Crs} is a Cr-template of F if every vertex in F
appears the same number of times.
They need not be distinct nor simple. Its discrepancy is defined as
fR(F) =

∑s
i=1 fR(Cri ).

Lemma (Template Lemma)

Let F1 and F2 be two “small“ Cr-templates on some subgraph F
of R. If both F1 and F2 contain each vertex of F exactly k times,
but have different discrepancies, then we are done.

16 / 21



Proof outline

We only use: δ(R) ≥ (1− 1
r+1 + η

4 )|R|, the Tiling Lemma and
the Template Lemma.

All cliques in R of size at most r + 2 are of one of four types.
By Hajnal-Szemerédi’s theorem, we get a Kr+1-tiling T of R.
T has small discrepancy =⇒ the four types of cliques in T
are balanced.
Two cliques of different types cannot have too many edges
between them.
Contradiction with δ(R) ≥ (1− 1

r+1 + η
4 )|R|.
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(r + 2)-cliques in R

Consider some (r + 2)-clique K = {v1, v2, . . . , vr+2} in R.

Let Cr1 = (v1, . . . , vr+2)
r and Cr2 = (v2, v1, v3, v4, . . . , vr+2)

r.

Note that fR(Cr1) = 2
∑

i<j fR(vi, vj)−
∑r

i=1 f(vi, vi+1).

From the Template Lemma, we have:

0 = fR(Cr1)− fR(Cr2)

= fR(v1, v3) + fR(v2, vr+2)− fR(v2, v3)− fR(v1, vr+2).

Same for every a, b, c, d ∈ K.
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(r + 2)-cliques in R

When does K satisfy this?

If it is monochromatic. Suppose not
and v has at least two blue and one red edge.

Because δ(R) ≥ (1− 1
r+1 + η)|R|, any smaller clique is contained

in an (r+ 2)-clique. Thus, any clique of size at most r+ 2 is either
monochromatic, a red star or a blue star. In particular, this holds
for any clique in T .
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Finishing the proof
A B C D

We can assume |B|+ |C| ≥ |A|+ |D|.
Consider two cliques X and Y in T and a vertex v ∈ X. We
show d(v, Y ) ≤ r − 1 if:

X ∈ A and Y ∈ B or
X ∈ A and Y ∈ C or
X ∈ C, Y ∈ D and v is the head of X.

Let X ∈ A and v ∈ X. Then
d(v) ≤ (r− 1) (|B|+ |C|) + (r+ 1) (|A|+ |D|) ≤ r

r+1 |R|. So,
A = ∅.
|fR(T )| ≤ β|R| =⇒ |B| ≤ β|R| and |B|+ |C| − |D| ≤ β|R|.
Let X ∈ C and v be the head of X. Then
d(v) ≤ (r − 1)|D|+ (r + 1) (|B|+ |C|) ≤

(
r
r+1 + β

)
|R|.

C = ∅, contradiction.
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