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Suppose a graph G has minimum degree 6(G) > an. Does G
necessarily contain a specified spanning subgraph H?
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Suppose a graph G has minimum degree 6(G) > an. Does G
necessarily contain a specified spanning subgraph H?

A graph G with §(G) > 3n has a Hamilton cycle.
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Dirac-type problems

Suppose a graph G has minimum degree §(G) > an. Does G
necessarily contain a specified spanning subgraph H?

Theorem (Dirac, 1952)
A graph G with 6(G) > n has a Hamilton cycle.

e A K, -tiling of a graph is a partition of its vertices into disjoint
r-cliques.

Theorem (Hajnal, Szemerédi, 1972)

If r divides n then any graph G with §(G) > (1 — 1/r)n contains a
K, -tiling.
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The Pésa-Seymour Conjecture

@ The " power of a graph is obtained by adding an edge for
every pair of vertices at distance at most 7. We denote the rt*
power of a Hamilton cycle by H".
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@ The r*" power of a graph is obtained by adding an edge for

every pair of vertices at distance at most 7. We denote the "
power of a Hamilton cycle by H™.

If§(G) >

(1 = ﬁ) n, then G contains a copy of H".
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The Pésa-Seymour Conjecture

@ The " power of a graph is obtained by adding an edge for
every pair of vertices at distance at most 7. We denote the rt*
power of a Hamilton cycle by H".

Conjecture (Pésa, Seymour)

If6(G) > (1 — H%) n, then G contains a copy of H".

Theorem (Komlés, Sarkdzy, Szemerédi, 1998)
For any r € N and € > 0 there exists ng € N so that any graph G

onmn > ngy vertices with 6(G) > (1 = ﬁll + 5) n has a copy of H".
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The Pésa-Seymour Conjecture

@ The " power of a graph is obtained by adding an edge for
every pair of vertices at distance at most 7. We denote the rt*
power of a Hamilton cycle by H".

Conjecture (Pésa, Seymour)

If6(G) > (1 — H%) n, then G contains a copy of H".

Theorem (Komlés, Sarkdzy, Szemerédi, 1998)

For any r € N and € > 0 there exists ng € N so that any graph G
onmn > ngy vertices with 6(G) > (1 = ﬁll + 5) n has a copy of H".

Theorem (Komlés, Sarkdzy, Szemerédi, 1998)

For any r € N there exists ng € N so that any graph G on n > ng

vertices with 6(G) > (1 — == ) n has a copy of H".
r4+1
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Discrepancy . ..

Suppose we are given a family F of subsets of a ground set ¢/. Can
we color the elements of U in 2 colors such that set in F has
roughly the same number of elements from each color?
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Discrepancy in the graph setting

Suppose we are given a family F of subsets of a ground set ¢/. Can
we color the elements of U in 2 colors such that set in F has
roughly the same number of elements from each color?

U = edges of G
F = labelled copies of a given subgraph H
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Suppose we are given a family F of subsets of a ground set ¢/. Can
we color the elements of U/ in 2 colors such that set in F has
roughly the same number of elements from each color?

U = edges of G

F = labelled copies of a given subgraph H

Let f be a coloring of the edges of G into +1 (blue) or -1 (red).
For a subgraph F' of GG, define

F(F) =" fle).
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Discrepancy in the graph setting

Suppose we are given a family F of subsets of a ground set ¢/. Can
we color the elements of U/ in 2 colors such that set in F has
roughly the same number of elements from each color?

U = edges of G

F = labelled copies of a given subgraph H

Let f be a coloring of the edges of G into +1 (blue) or -1 (red).
For a subgraph F' of GG, define

F(F) =" fle).

ecF

We are given a graph G with §(G) > an. Does G contain, for every
coloring f: E(G) — {—1,1}, a copy of H with high discrepancy,
i.e. a subgraph F' isomorphic to H such that |f(F)| is large?
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Let G be a graph with 6(G) > (3/4 + n)n. Given any edge coloring
f: E(G) — {—1, 1}, there exists a Hamilton cycle of absolute
discrepancy at least nn/32 with respect to f.

«40>» «Fr» « =)>»

Do
6/21



Previous results

Theorem (Balogh, Csaba, Jing and Pluhar, 2020)

Let G be a graph with §(G) > (3/4 + n)n. Given any edge coloring
f: E(G) — {—1,1}, there exists a Hamilton cycle of absolute
discrepancy at least nn /32 with respect to f.

Theorem (Balogh, Csaba, Pluhar and Treglown, 2020)

For every n > 0, there is a y > 0 and ny € N such that the
following holds. Let G be a graph on n > nq vertices with
(G)>(1- ﬁ + n)n. Then, given any edge coloring

f: E(G) — {—1,1}, there exists a K,-tiling of G with absolute
discrepancy at least yn with respect to f.
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For fixed > 2, what is the degree threshold for containing the 7"
power of a Hamilton cycle with large absolute discrepancy?

<6 /21



Previous results

Theorem (Balogh, Csaba, Jing and Pluhar, 2020)

Let G be a graph with §(G) > (3/4 + n)n. Given any edge coloring
f: E(G) — {—1, 1}, there exists a Hamilton cycle of absolute
discrepancy at least nn/32 with respect to f.

Theorem (Balogh, Csaba, Pluhar and Treglown, 2020)

For every p > 0, there is a v > 0 and ng € N such that the
following holds. Let G be a graph on n > nq vertices with
(G)>(1- % + n)n. Then, given any edge coloring

f: E(G) — {—1,1}, there exists a K,-tiling of G with absolute
discrepancy at least yn with respect to f.

v

For fixed > 2, what is the degree threshold for containing the 7"
power of a Hamilton cycle with large absolute discrepancy?

1
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Results

Theorem

For any n > 0, there exist nyp € N and v > 0 such that the
following holds. Suppose a graph G on n > ng vertices with
minimum degree 6(G) > (3/4 + n)n and an edge coloring

f: E(G) = {—1,1} are given. Then in G there exists the square
of a Hamilton cycle H? satisfying | f(H?)| > yn.
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Results

Theorem

For any n > 0, there exist ny € N and ~v > 0 such that the
following holds. Suppose a graph G on n > ng vertices with
minimum degree §(G) > (3/4 4+ n)n and an edge coloring

f: E(G) — {—1,1} are given. Then in G there exists the square
of a Hamilton cycle H? satisfying | f(H?)| > yn.

Theorem

For any integer r > 3 and n > 0, there exist ng € N and v > 0 such
that the following holds. Suppose a graph G on n > ny vertices
with minimum degree 6(G) > (1 — 1/(r + 1) + n)n and an edge
coloring f: E(G) — {—1,1} are given. Then in G there exists the
" power of a Hamilton cycle H' satisfying |f(H")| > yn.
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Threshold comparison

Threshold Discrepancy threshold
K,-tiling | (1—%)n  [HS,'70] | (1—=5)n [BCPT, "20]
H in D, '52] 3n [BCJP, "20]
H? Zn [KSS, '98] 3n [B, '20]
H',r>3|(1—=7)n [KSS, 98] | (l——=7)n [B, '20]
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0 J(G) = 3n.

o Ina copy of H", we have % - 2r = I blue edges.
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0 J(G) = 3n.

o Ina copy of H", we have % - 2r = I blue edges.

e H" has nr edges, so f(H") = 0.
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Lower bound for » > 3

r 4+ 1 clusters
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Lower bound for r > 3

e Note: 6(G) = (1 — %)n
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Lower bound for » > 3

r 4+ 1 clusters

e Note: §(G) = (1— %)n
order.

@ Any copy of H" must cycle through clusters in

some fixed
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Lower bound for » > 3

r 4+ 1 clusters

e Note: §(G) = (1— %)n

@ Any copy of H" must cycle through clusters in some fixed
order.

@ In H", every vertex has 2 neighbours in each of the other
clusters.
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Lower bound for » > 3

r 4+ 1 clusters

e Note: §(G) = (1— %)n

@ Any copy of H" must cycle through clusters in some fixed
order.

@ In H", every vertex has 2 neighbours in each of the other
clusters. = f(H") =0.
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Using Szemerédi's regularity lemma

Using a multicolored version of Szemerédi's regularity lemma, we
can partition vertices into clusters Vy, V4, ..., V. Additionally, on
the vertex set {V1,...,V;} we can define the reduced graph R and

an edge coloring fr: E(R) — {—1,1} such that:
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containing all edges labelled x is (g,7/4)-regular.
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Using Szemerédi's regularity lemma

Using a multicolored version of Szemerédi's regularity lemma, we
can partition vertices into clusters Vy, V4, ..., V. Additionally, on
the vertex set {V1,...,V;} we can define the reduced graph R and
an edge coloring fr: E(R) — {—1,1} such that:
o |[Vo| <enand [Vi| =[] =--- = V| = Q(n),
o If fr(Vi,V;) = z then the bipartite graph between V; and V}
containing all edges labelled x is (g,7/4)-regular.

© 5(R) = (1 47 + DIR| (or 8(R) = (§ + D)IR] for r = 2),

Blow-up Lemma (Komlés, Sarkdzy, Szemerédi, 1994)

“Regular pairs behave like complete bipartite graphs in terms of
containing bounded degree subgraphs."
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Szemerédi's regularity lemma
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Szemerédi's regularity lemma




@ Denote the 7" power of the cycle (v1,va,...,vx) by
('Ul, V2, ... ,’Uk)r.
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@ Denote the 7" power of the cycle (v1,va,...,vx) by
('Ul, V2, ... ,’Uk)r.

o lIts discrepancy is given as
fR(Ula V2, ... )Uk')T =
Vk+i = Vs

S iy FR(i, vigs), where
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r'" powers of cycles in R

o Denote the 7" power of the cycle (v1,va,...,v) by
(v1,v2,...,08)".

@ lts discrepancy is given as
fr(v1, 02, )" =S8, > i—1 [r(vi, viyj), where
Vkti = Vj

e Example: (vi,vs,vs,v4)? is a 4-clique, but

i ((v1,v2,03,02)%) = fr(v1,03)+ fR(v2,va) + Y fr(Vi,v;).

1<j
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r" powers of cycles in R

o Denote the r*" power of the cycle (v, vs,.
(v1,v2,...,08)".

@ lts discrepancy is given as

Fr(v1,va, o op)" = S0y S0 fr(vi,vigs), where
Vki = Vj

) by

e Example: (vi,vs,vs,v4)? is a 4-clique, but

i ((v1,v2,03,02)%) = fr(v1,03)+ fR(v2,va) + Y fr(Vi,v;).

1<j

A C"-tiling T of R is a partition of its vertices into 7" powers of
simple cycles. Its discrepancy is defined as

fR(T) = ZcreT fR(CT)~
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From a C"-tiling to H"
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[f(H")| = yn.

in G there exists the r** power of a Hamilton cycle H" satisfying

Suppose there is a C"-tiling T of R with |fr(T)| = Q(|R]). Then
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Suppose there is a C"-tiling T of R with |fr(T)| = Q(|R]). Then

in G there exists the r** power of a Hamilton cycle H" satisfying
|f(HT)] = n.

Proof in the case 6(G) > (1 — % +n)n:
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Suppose there is a C"-tiling T of R with |fr(T)| = Q(|R]). Then

in G there exists the r** power of a Hamilton cycle H" satisfying
|f(HT)] = n.

Proof in the case S(G) >(1- % +n)n:
° 5(R) > (1~ 5 + IR
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Using a tiling of high discrepancy

Lemma (Tiling Lemma)

Suppose there is a C"-tiling T of R with |fr(T)| = Q(|R|). Then
in G there exists the ' power of a Hamilton cycle H" satisfying

|f(H")| = yn.

Proof in the case §(G) > (1 — ﬁ +n)n:

o 3(R)>(1- L5 + DR

@ Balogh, Csaba, Pluhar and Treglown: there is a K, ;-tiling of
R with linear discrepancy.
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Using a tiling of high discrepancy

Lemma (Tiling Lemma)

Suppose there is a C"-tiling T of R with |fr(T)| = Q(|R|). Then
in G there exists the ' power of a Hamilton cycle H" satisfying

|f(H")| = yn.

Proof in the case §(G) > (1 — ﬁ +n)n:

° §(R) > (1~ o5 + DIRI.
@ Balogh, Csaba, Pluhar and Treglown: there is a K, ;-tiling of

R with linear discrepancy.

@ We are done by the Tiling Lemma.
e r=2v
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C"-templates

Let F' be a graph. A collection of 7" powers of cycles
F=A{CT,...,Cl}is a C"-template of F' if every vertex in F'
appears the same number of times.

They need not be distinct nor simple. lts discrepancy is defined as

fr(F) =772 fr(CY).

CIRY= = E : 9ac
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C"-templates

Let F be a graph. A collection of 7 powers of cycles
F=A{CT,...,Cl}is a C"-template of F' if every vertex in F'
appears the same number of times.

They need not be distinct nor simple. Its discrepancy is defined as

fr(F) =325 FR(CT).

Lemma (Template Lemma)

Let F1 and Fy be two “small” C"-templates on some subgraph F
of R. If both F; and F, contain each vertex of ' exactly k times,
but have different discrepancies, then we are done.
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o We only use: 6(R) > (1 — 5 + )[R, the Tiling Lemma and
the Template Lemma.
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Proof outline

@ We only use: §(R) > (1— TJ%I + 1)|R|, the Tiling Lemma and
the Template Lemma.

@ All cliques in R of size at most r + 2 are of one of four types.
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@ We only use: §(R) > (1— TJ%I + 1)|R|, the Tiling Lemma and
the Template Lemma.

@ All cliques in R of size at most r + 2 are of one of four types.
e By Hajnal-Szemerédi's theorem, we get a K, 11-tiling T of R.

@ 7 has small discrepancy = the four types of cliques in T
are balanced.

@ Two cliques of different types cannot have too many edges
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o Consider some (r 4 2)-clique K = {v1,v2,...,v,42} in R.
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o Consider some (r 4 2)-clique K = {v1,v2,...,v,42} in R.
o Let Cf = (vy,

S Upy2)" and Cf = (v2,v1,v3,04, ..., Vpp2)"
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o Consider some (r 4 2)-clique K = {v1,v2,...,v,42} in R.
o Let Cf = (vy,

S Upy2)" and Cf = (v2,v1,v3,04, ..., Vpp2)"

e Note that fr(C]) = ZEKJ. Tr(vi,v5) = >0 f(vi, vigr).
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(r 4+ 2)-cliques in R

e Consider some (r + 2)-clique K = {v1,v2,..., 0,42} in R.
o Let C7 = (v1,...,vr42)" and C§ = (v, v1, V3,04, ..., Vr42)".

o Note that fr(CT) =23, fr(vi,vj) — >iy f(vi,vit1).
@ From the Template Lemma, we have:

0= fr(CY) — fr(C3)
= fr(vi,v3) + fr(v2, vr42) — fR(V2,v3) — fR(VI, Vrs2).
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(r 4+ 2)-cliques in R

Consider some (r + 2)-clique K = {v1,v2,...,0y42} in R.
Let CT = (v1,...,0r42)" and cy = (vg,vl,v3,v4, e, UT+2)T.

Note that fR(Cf) =2 Zi<j fR(UZ', Uj) — Z::l f(vz-, ’Uz'+1).
From the Template Lemma, we have:
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When does K satisfy this? If it is monochromatic. Suppose not
and v has at least two blue and one red edge.
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(r 4+ 2)-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not
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<+— head

red star

Because §(R) > (1 — m + n)|R|, any smaller clique is contained
in an (r + 2)-clique.
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(r 4+ 2)-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not
and v has at least two blue and one red edge.

<+— head

red star

Because §(R) > (1 — m + n)|R|, any smaller clique is contained
in an (r + 2)-clique. Thus, any clique of size at most r + 2 is either
monochromatic, a red star or a blue star. In particular, this holds
for any clique in 7.
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e XeC,Y €D and v is the head of X.
@ Let X € Aand v € X. Then
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Finishing the proof

A B c D
e We can assume |B| + |C| > |A| + |D|.
e Consider two cliques X and Y in 7 and a vertex v € X. We
show d(v,Y) <r —1if:
e XcAandY € Bor
e XecAandY € Cor
e XeC,Y €D and v is the head of X.
@ Let X € Aand v € X. Then
d(v) < (r=1) (|B|+[C]) + (r+ 1) (JA[ + |D]) < Z=|R]. So,
A=1.
o [fr(T) < BIR|
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Finishing the proof

A B c D
e We can assume |B| + |C| > |A| + |D|.
e Consider two cliques X and Y in 7 and a vertex v € X. We
show d(v,Y) <r —1if:
e XcAandY € Bor
e XecAandY € Cor
e XeC,Y €D and v is the head of X.
@ Let X € Aand v € X. Then
d(v) 5 (r=1)(IB] +1C]) + (r+1) (Al + |D]) < 7Rl So,
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Finishing the proof

A B c D

We can assume |B| + |C| > |A| + | D|.
Consider two cliques X and Y in 7 and a vertex v € X. We
show d(v,Y) <r —1if:

e XcAandY € Bor

e XecAandY € Cor

e XeC,Y €D and v is the head of X.
@ Let X € Aand v € X. Then
d(v) 5 (r=1)(IB] +1C]) + (r+1) (Al + |D]) < 7Rl So,
A=10.
[fr(T)| < BIR| = |B| < B|R| and |B|+|C| - |D| < B|R|.
Let X € C and v be the head of X. Then
d(v) < (r = DID|+ (r + 1) (Bl +[C]) < (41 + B) Rl
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Finishing the proof

A B c D

We can assume |B| + |C| > |A| + | D|.
Consider two cliques X and Y in 7 and a vertex v € X. We
show d(v,Y) <r —1if:

e XcAandY € Bor

e XecAandY € Cor

e XeC,Y €D and v is the head of X.
@ Let X € Aand v € X. Then
d(v) 5 (r=1)(IB] +1C]) + (r+1) (Al + |D]) < 7Rl So,
A=10.
\fr(T)| < BIR| = |B| < B|R| and |B[ +|C| - |D| < B|R|.
Let X € C and v be the head of X. Then
d(v) < (r = DID|+ (r + 1) (Bl +[C]) < (41 + B) Rl
e C = (), contradiction.
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