Zumma G. There exist a collection of frames immersed opheres
$$\{G_m\}$$

that is algobiaically dual to the collection $\{W_m\}$.
i.e. $\widehat{T}(G_n rh W_m) = \delta_{nm}$.
Unreover, G_m are disjoint from all A_j and B_i .
wy Thm [Freedman 1982] - Dire Euberbling Thm -
Jf M is a modele connected 4-manifold with $\partial M = \emptyset$ and $\pi_i M$ a good group,
and $W_m: (D^*, \partial D^*) \longrightarrow (M, \partial M)$ is a framed immersed collection with emb boundary
which has a framed immersed collection $\{G_m\}$ of algebraic duals,
then
there exists a locally flat embedded callection $\{W_m\}$
with the same framed boundary as $\{W_m\}$
into the same framed immersed collection $\{G_m\}$ of geometric duals
into the same frame boundary as $\{W_m\}$
with the same framed boundary as $\{W_m\}$
met messel
into the same framed boundary as $\{W_m\}$
of messel
into the same framed boundary as $\{W_m\}$
not nessel
with $G_m \cong G_m$.
Theore VERY HARD.
Theore VERY HARD.
We now capply Dire Eule. Thus:
the W_m and G_m in $M := W_{1k} \cdot (U_V B_i \cup U_V A_j)$.
Note: $\pi_i M \cong \pi_i \cdot W_{1k} \cong \pi_i W_1$
into A_j and B_i have duals (so their meridians are vuluinomotypic in M).
Therefore, we can perform Whitney mores on A_j along the framed la flat isotopy of A_j ,
meaning it into a geometric dual of B_j , so that 2-aus 3-haudes geom cancel.
There are no other haudles $m(W, 2,W)$, so W is homeomorphic the $2W \cdot b_i$.

LECTURE 13.

Zumma[#]. Zet C staus either for A or B.
There is an unfamed immensed callections of appenes {C⁺₁}
that is geometrically dual to the framed embedded callection {C₁}
i.e. C⁺₁, the C₃ = Ø united is j when = 1pt³.
proof of Zumma[#].
Since
$$T_{n}(0,M) \longrightarrow T_{n}(W^{e2})$$
 is an isomorphismu,
2-haudies of W are attracted along bomohysically trivial circles in $2W$.
So in $W_{12} = 2W^{e2}$ the attracted glue to an immensed proce B⁺ that intersects the left ophese
B⁺₁ of the 2-haudies. There glue to an immensed growthe B⁺₁ that intersects the left ophese
B⁺₁ of the concerns in a night point.
Since 2-haudies are instally disjoint, the ophese B⁺₁ is disjoint from B⁺₂ for j+1.
Thus, the collection {B⁺₁} is geometrical to the embedded collection {B⁺₁}.
The base asymmetrical point is provided to the embedded collection {B⁺₁}.
The base asymmetric over the features of \pm opheres.
We also have no control over the features of \pm opheres.
We also have no control over the features of \pm opheres.
We also have no control over the features of \pm opheres.
We also have a famile immensed collection of apheres {B⁺₁} $\int A^+_{1}$.
There is a featured immensed collection of apheres {B⁺₁} $\int A^+_{1}$.
There is a featured immensed collection of apheres {B⁺₁} $\int A^+_{1}$.
There is a featured immensed collection of apheres and C⁺₂ $\int A^+_{1}$.
There is a featured immensed collection of A^+_{1} .
Note: Not only this produces featured opheres B⁺ and A⁺.
Note: Not only this produces featured opheres B⁺ and A⁺.
Note: Not only this produces featured opheres B⁺ and A⁺.

Zenning G. There exists a framed immersed collection of spheres (Gm 5 that is algebraically dual to the collection fWmg i.e. $\widetilde{T}(G_n \oplus W_m) = \delta_{nm}$. Moreover, Gim are disjoint from all Aj and Bi. proof of Lemma G. ⁺in tuio half-dm⁽picture the torus is ⁻T= S°×S° where one S°= meridiau to A other S°= meridiau to B₊ Wm We use Clifford tori: Each W_m has associated a torus $T_m = S \times S'$ at one of the intersection point in AnB. Think locally around the point: $S' \times S' \leq \mathbb{R}^2 \times \mathbb{R}^2$. We have $T_m \wedge W_m = \frac{1}{pt}$ and Sx 1pt , 1pt x S' STm band dirus in W112 that are meridian to A, B resp. So there durins are evulcided and internet only A,B respectively. We can table those intersections into and B respectively. Call these aps. Then we do the hymmetric nurgery to Tim along there caps: ~~> This results in a framed immerned sphere that still interscus Wm algebiaically once: we use each cap tuice, with opposite sign, no any interneurin of a cap with Wm will appear again with the opposite sign. Д.

§ COROLLARIES

THM [Freedman 1982] - Dift-to-Top Poincaré Coný in Dim 4 -Every cloned smooth 4-manuifold homotypy receivalent to S⁴ is homeomorphic to it.

froof. Ucum. Such a 4-manifold M bounds a smooth contractible 5-manifold. Remove a small ball form it to obtain a 5-dimi cobordian W From Stop M. By Top 5-cold. Hom this is homes to Stx So, 17, 80 M is homes to St.

口

when surgery theory of Wall's Thim, see Sec 20.2 in DET-book.

Remark. We saw how Smale's h-w6. This shows Diff Poincaré any in dim >6. For drn=5 one needs a similar argument to the above, showing facet M⁵ bounds a contractible 6-manifold, then remain a boll, and whe Smale's h-w6. This is dim=6.

Note: DNA 5D s- cold thun is unown to be false (so there are smooth's-use that are month's). Top 4D s-cold thun is unown to be false (so the are typ. 42 s-cold that are nontriv.)

I. Open problems. 4D Drff Poincaré anj. Every doned smooth 4-manufold homotypy equivalent to S⁴ is homeomorphic to it. Equivalently: Every smooth 4-manufold homeomorphic to S⁴ is Infleomorphic to if. Equivalently: S⁴ has no exotic smooth simulares. Drff 4D S-cob. Thrm.