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An analogy with Dehn’s work 1/3

Notation: If M is a manifold Diff(M) denotes the group of diffeomorphisms of
M that restrict to Id∂M .

Consider the projection π : S1 × D1 → D1. The subgroup of fiber-preserving
diffeomorphisms in Diff(S1 × D1) has the homotopy-type of ΩDiff+(S1), i.e.

Diffπ(S1 × D1) ' ΩS1 ' Z

These are called model Dehn twists.



An analogy with Dehn’s work 2/3

Given an annulus A embedded in a surface Σ one can extend a model Dehn
twist on A to all Σ via the identity map. These are called Dehn twists in Σ.

Dehn proved π0Diff+(Σ) is finitely generated by such Dehn twists, and that
isotopy-classes can be distinguished by their actions on π1Σ.



An analogy with Dehn’s work 3/3

Our work is roughly modelled on Dehn’s.

(1) Provided n ≥ 3 we construct a model family of fiber-preserving
diffeomorphisms

Ω2Sn−1 → Diff(Bn+1)

where Bn+1 is a handlebody we call a barbell manifold – the exterior of a
2-component string-link in Dn+1.

Where Dehn detected and distinguished his twists in π0Diff(Σ) using the
action on π1Σ, we will detect our diffeomorphisms using variations of Cerf’s

scanning map Diff(Dn)
' // ΩEmb(Dn−1,Dn) .

(2) We embed the barbell manifolds Bn+1 → S1 × Dn and detect the inclusion
Ω2Sn−1 → Diff(S1 × Dn) using a scanning map of the form

Diff(S1 × Dn)→ Ωn−1Emb(I , S1 × Dn).

(3) We show that πn−3Diff(S1 × Dn) is a not finitely-generated abelian group
for all n ≥ 3.



Points of emphasis

(1) These results are essentially classical in nature, using only elementary
algebraic and differential topology, such as homotopy groups of wedges of
spheres, the Pontriagin-Thom construction, isotopy extension and transversality.

(2) These are high-dimensional topology results that just happen to begin in
dimension four, i.e. we are proving theorems about πn−3Diff(S1 × Dn) for
n ≥ 3.

(3) We find some ‘guidance’ in the Embedding Calculus, in that it tells us
where to look for things. But we do not require any theorems from the subject
in our proofs.

(4) Most of these arguments appear in our paper Knotted 3-balls in S4 (arXiv
v3). The remaining argument will appear in an upcoming paper titled
Scanning Diffeomorphisms.



(0) Cerf’s Scanning Theorem 1/2

Theorem: (Cerf) There is a homotopy-equivalence

Diff(Dn)→ ΩEmb(Dn−1,Dn)

Proof sketch: Consider the restriction fibre-bundle (Palais)

Diff(Dn)→ Emb(Dn−1,Dn).

I The fiber has the homotopy-type of Diff(Dn)2.

I The fiber-bundle is null homotopic.

I The fiber inclusion Diff(Dn)2 → Diff(Dn) is homotopic to group
multiplication.

I Conclude the homotopy-fiber of the inclusion Diff(Dn)2 → Diff(Dn) is
homotopy-equivalent to both ΩEmb(Dn−1,Dn) and Diff(Dn).

Chasing through Serre models for homotopy-fibers tells us the
homotopy-equivalence is the scanning map.



(0) Cerf’s Scanning Theorem 2/2



(1) Barbells 1/7

Definition: A (n, k)-handlebody of genus g is obtained by attaching g
disjoint k-handles to the n-disc, Dn.

Example:

I An (n, 0)-handlebody is a disjoint union of n-discs.

I A (3, 1)-handlebody is the traditional 3-manifold handlebody.

Definition: A trivial (n + 1, n − 1)-handlebody of genus 2 is what we call a
barbell manifold.

Alternatively, the barbell manifold can be thought of as the result of drilling
neighbourhoods of two properly-embedded arcs from Dn+1, or as the boundary
connect-sum of two copies of Sn−1 × D2.

The standard barbell we denote Bn+1 ≡ Sn−1 × D2#∂S
n−1 × D2.



(1) Barbells - diffeomorphisms 2/7

The barbell manifold Bn+1 fibers (trivially) over the interval I

Bn+1 '
(
Sn−1 × D1#∂S

n−1 × D1
)
× I .

Consider fiber-preserving subgroup Diffπ(Bn+1) of diffeomorphisms of Bn+1. By
design,

Diffπ(Bn+1) ' ΩDiff(Sn−1 × D1#∂S
n−1 × D1).

Sn−1×D1#∂S
n−1×D1 is the twice-punctured ball. So there is a fiber sequence

Diff(Sn−1 × D1#∂S
n−1 × D1) // Diff(Dn)

null
// Emb(t2B

n,Dn).



(1) Barbells - diffeomorphisms 3/7

Diff(Sn−1 × D1#∂S
n−1 × D1)→ Diff(Dn)→ Emb(t2B

n,Dn).

The above bundle map is null-homotopic, and the induced fiber sequence

ΩEmb(t2B
n,Dn)→ Diff(Sn−1 × D1#∂S

n−1 × D1)→ Diff(Dn)

is trivial.

Proposition: (BG)

Diffπ(Bn+1) ' Ω2Sn−1 × Ω2SO2
n × ΩDiff(Dn)

The map Ω2Sn−1 → Diff(Bn+1) is the barbell diffeomorphism family.



(1) Barbells - visualizing diffeomorphisms 4/7

Step back – a Dehn twist.

Dehn twists could be viewed as being parametrized by ΩS1 ≡ Z.



(1) Barbell - visualizing diffeomorphisms 5/7

Visualizing the barbell diffeomorphism. Parametrized by Ω2Sn−1.

The mid-ball of the barbell Bn+1 is the linearly embedded Dn splitting Bn+1 into
two copies of Sn−1 × D2.
The standard cocores E1 and E2 are the cocores of our (n − 1)-handle
attachments, i.e. if we puncture Bn+1 at the cocores it becomes a Dn+1.



(1) Barbells - visualizing diffeomorphisms 6/7

Proposition: (BG) There is a homomorphism πn−3Diff(Bn+1)→ Z
making the composite

Z ≡ πn−3Ω2Sn−1 → πn−3Diff(Bn+1)→ Z

an isomorphism.

Sketch: Fiber the mid-ball by parallel oriented intervals. The homomorphism is
signed count of of pairs of points t1 < t2 on a common mid-ball interval such
that f (t1) ∈ E1 and f (t2) ∈ E2.



(1) Barbells - visualizing diffeomorphisms 7/7

Conclusion: The fibering of the mid-ball by parallel intervals induces a
scanning map Diff(Bn+1)→ Ωn−1Emb(I ,Bn+1). The image of the induced map

πn−3Diff(Bn+1)→ π2n−4Emb(I ,Bn+1)

contains a split infinite-cyclic subgroup of π2n−4Emb(I ,Bn+1).



(2) Implantations 1/11

An embedding Bn+1 → M to an (n + 1)-manifold M gives an induced
homomorphism

πn−3Diff(Bn+1)→ πn−3Diff(M).

Provided M has a suitable fiber structure compatible with the barbell’s
mid-ball fibering, this gives hope one can show the image is non-trivial.

For M = S1 × Dn we use the fibering of {1} × Dn by intervals, i.e.
Diff(S1 × Dn)→ Ωn−1Emb(I , S1 × Dn) giving

πn−3Diff(S1 × Dn)→ π2n−4Emb(I ,S1 × Dn).

Think of this as a variation of Cerf’s scanning map
Diff(Dn)→ ΩEmb(Dn−1,Dn).



(2) Implantations - detection, calc. of embeddings 2/11

Tools to study embedding spaces such as Emb(I , S1 × Dn) were developed in
the 60’s and 70’s by Cerf, Hatcher-Quinn, Haefliger and Dax. I will describe a
later refinement due to Goodwillie, Weiss and Klein called the embedding
calculus.

Associated to two compact manifolds M,N there is a tower of maps

Emb(M,N)
evk //

evk−1

((

TkEmb(M,N)

��

Tk−1Emb(M,N)

TkEmb(M,N) is called the k-th stage of the tower. The map evk is called the
k-th evaluation map.



(2) Implantations - detection, calc. of embeddings 3/11

Theorem: (GWK) The map evk is k(n−m− 2) + 1−m-connected, i.e. an
isomorphism on πj for j < k(n −m − 2) + 1−m and an epimorphism for
j = k(n −m − 2) + 1−m.

The Mapping Space Model (due to Dev Sinha) for the Taylor Tower in
Embedding calculus is the mapping space

TkEmb(I ,M) ' Map(Cn[I ],C ′n[M]).

I Cn[M] indicates the Fulton-Macpherson compactified configuration space
of n-tuples of distinct points in M.

I C ′n[M] is the pull-back of UTMn to Cn[M], i.e. the points are decorated
with unit tangent vectors.

I The maps are required to be stratum-preserving.

I The maps are aligned.

I evk (f ) is the map (t1, · · · , tk ) 7−→ (f ′(t1), · · · , f ′(tk )).



(2) Implantations - detection, Whitehead products 4/11

We will be computing Whitehead products in homotopy groups, using the
Pontriagin-Thom construction.

The Whitehead product of two maps fi : Ski → X i = 1, 2 is the obstruction to
the map f1 ∨ f2 : Sk1 ∨ Sk2 → X extending over Sk1 × Sk2 , and denoted
[f1, f2] ∈ πk1+k2−1X .

The Whitehead product [·, ·] : πnX × πmX → πm+n−1X satisfies:

I it is bilinear,

I graded symmetric, i.e. [y , x ] = (−1)nm[x , y ],

I the Jacobi identity

(−1)pr [[f , g ], h] + (−1)pq[[g , h], f ] + (−1)rq[[h, f ], g ] = 0, where

f ∈ πpX , g ∈ πqX , h ∈ πrX with p, q, r ≥ 2.



(2) Implantations - detection, Pontriagin construction 5/11

The Pontriagin-Thom construction tells us that maps of spheres into wedges
of spheres, taken up to homotopy, corresponds with the framed cobordism
classes of disjoint manifolds in the domain sphere (remove its basepoint).

Example:

π2(S1 ∨ S2) ' Z[t±1]



(2) Implantations - detection, Pontriagin construction 6/11

Example:

π3(S2 ∨ S2) ' Z⊕ Z⊕ Z



(2) Implantations - detection, Ck [S1 × Dn] 7/11

Theorem: (Hilton-Milnor) The rational homotopy groups of a wedge of
spheres is freely generated by the rational homotopy groups of the wedge
summands, with respect to the Whitehead bracket structure.

There is the (split) fiber-sequence

S1 ∨ Sn ∨ · · · ∨ Sn → Ck (S1 × Dn)→ Ck−1(S1 × Dn),

thus the homotopy-group πmCk (S1 × Dn) is isomorphic to

⊕
0≤j<k

πm

(
S1 ∨

∨
j

Sn

)

which are themselves rationally generated by Whitehead products.



(2) Implantations - detection, Ck [S1 × Dn] 8/11

Denote the generators of π1Ck [S1 × Dn] ' Zk by {ti : i = 1, 2, · · · , n}.

The class wij ∈ πnCk [S1 ×Dn] has all k points stationary, with the exception of
point j that orbits around point i .

πnCk [S1 × Dn] is generated by the set {tq
l .wij ∀i , j , l , q}, with the relations

I wii = 0 ∀i
I wij = (−1)n+1wji ∀i 6= j .

I tl .wij = wij provided l /∈ {i , j}.
I tj .wij = t−1

i .wij ∀i , j .



(2) Implantations - detection, Ck [S1 × Dn] 9/11

The homotopy-group π2n−1Ck [S1 × Dn] is rationally generated by Whitehead
products of the πn generators, and they satisfy the relations:

I tp.[f , g ] = [tp.f , tp.g ] ∀p ∈ Z, f , g ∈ πnCk [S1 × Dn].

I [wij ,wlm] = 0 if {i , j} ∩ {l ,m} = ∅
I [wij ,wjl ] = [wjl ,wli ] = [wli ,wij ]

To show there are no further relations we construct submanifolds of
C3[S1 × Dn] such that they intersect the above homotopy-classes in non-trivial
framed cobordism classes.

I The collinear submanifolds of C3[R1×Dn] are defined as Col1
α,β consists of

triples (p2, t
α.p1, t

β .p3) that sit on a straight line with this linear ordering.

I Similarly Col3
α,β are the triples (tα.p1, t

β .p3, p2) that sit on a straight line
with this linear ordering.

These two manifolds are disjoint, and detect the homotopy class [tα2 w12, t
β
2 w32].



(2) Implantations - detection, Ck [S1 × Dn] 10/11

Example:

Col1
α,β detects tα2 w12, and Col3

α,β detects tβ2 w32. These manifolds are disjoint,

and their preimage via the map [tα2 w12, t
β
2 w32] : S2n−1 → C3(S1 × Dn) is a

Hopf link, therefore not null cobordant.



(2) Implantations - detection, Ck [S1 × Dn] 11/11

Brackets of the form [tαi wij , t
β
i wij ] are detected by pairs of cohorizontal

manifolds in Ck [R× Dn].

The cohorizontal submanifold t lCo j
i of C2[R× Dn] is the submanifold where

t l .pj = pi + εζ where ζ ∈ {0} × ∂Dn is some fixed direction, and ε > 0.



(3) Closure operations 1/13

Proposition: (BG) Given an element of [f ] ∈ πn−2Emb(I , S1 × Dn),
consider the 2nd stage of the Taylor tower

ev2(f ) : Sn−2 × C2[I ]→ C ′2[S1 × Dn].

There is a canonical null homotopy of ev2(f ) restricted to Sn−2 × ∂C2[I ],
giving us a closure map

ev2(f ) : Sn → C ′2[S1 × Dn]

Sketch: Along the t1 = t2 facet this map is giving derivative of f , in the sense
of grade-school calculus. Use the lift of ev2 to the universal cover to construct
the extension Sn−2 × C2[I ]→ Sn. Further observe this extension restricted to
t1 = 0 and t2 = 1 can be straight-line homotoped to the constant map.



(3) Closure operations 2/13

The homotopy group πnC
′
2[S1 × Dn] ' Z[t±1]⊕ Z2, where the isomorphism is

given by the cohorizontal count, plus the degree of the velocity vector maps. If
we denote the generators by tk , α1, α2, the figure below depicts the allowable
cobordisms, giving us the isomorphism

W2 : πn−2Emb(I ,S1 × Dn)→ Z[t±1]/〈t0〉.



(3) Closure operations 3/13

Given an element of [f ] ∈ π2n−4Emb(I , S1 × Dn) such that
ev2(f ) ∈ π2n−4T2Emb(I , S1 × Dn) is null, we form the closure of the 3rd

evaluation map ev3(f ) : S2n−4 × C3[I ]→ C ′3[S1 × Dn] by attaching
null-homotopies to all four faces, giving us a based map

ev3(f ) : S2n−1 → C ′3[S1 × Dn].

Proposition: (BG) The homotopy-class of ev3(f ) is well-defined modulo a
subgroup we call R, generated by the torsion subgroup plus

[tα2 w23, t
β
2 w23] on t1 = 0 face,

[tα1 w13 + tα2 w23 + a1w21, t
β
1 w13 + tβ2 w23 + a1w21] on t1 = t2 face,

[tα1 w12 + tα1 w13 + a2w32, t
β
1 w12 + tβ1 w13 + a2w32] on t2 = t3 face,

[tα1 w12, t
β
1 w12] on t3 = 1 face.



(3) Closure operations 4/13

Given an element of [f ] ∈ π2n−4Emb(I , S1 × Dn) such that
ev2(f ) ∈ π2n−4T2Emb(I , S1 × Dn) is null, we form the closure of the 3rd

evaluation map ev3(f ) : S2n−4 × C3[I ]→ C ′3[S1 × Dn] by attaching
null-homotopies to all four faces, giving us a based map

ev3(f ) : S2n−1 → C ′3[S1 × Dn].

Proposition: (BG) The homotopy-class of ev3(f ) is well-defined modulo a
subgroup we call R, generated by the torsion subgroup plus(

tα−β1 t−β3 − tα1 t
α−β
3 + (−1)n−1

(
tβ1 t

β−α
3 − tβ−α1 t−α3

))
[w12,w23],

[tα2 w23, t
β
2 w23], [tα1 w12, t

β
1 w12],

[tα1 w13, t
β
1 w13] +

(
tα−β1 t−β3 + (−1)ntβ−α1 t−α3

)
[w12,w23].



(3) Closure operations 5/13

The relator

tα−β1 t−β3 − tα1 t
α−β
3 + (−1)n−1

(
tβ1 t

β−α
3 − tβ−α1 t−α3

)
we call the hexagon relation as the subgroup of GL2Z generated by the
exponent-mapping automorphisms, i.e.

(
α− β
−β

)
7−→

(
α

α− β

)
,

(
α− β
−β

)
7−→

(
β

β − α

)
,

(
α− β
−β

)
7−→

(
β − α
−α

)
is isomorphic to the dihedral group of the hexagon. There is a partition of the
integer lattice Z2 into orbits of the dihedral group action. Modulo this relator,
the subgroup generated by the 12-element orbits have rank 7.



(3) Closure operations 6/13

Since π2n−4T2Emb(I ,S1 × Dn) is torsion (exponent |π2n−2S
n|) there is a

well-defined map

π2n−4Emb(I , S1 × Dn)→ Q⊗ π2n−1C
′
3[S1 × Dn]/R

extending the f 7−→ ev3(f ) construction.

Definition: We call the above extension W3 (the coarse closure)

W3 : π2n−4Emb(I , S1 × Dn)→ Q⊗ π2n−1C
′
3[S1 × Dn]/R.

To compute W3 we use the collinear manifolds.



(3) Closure operations - Computation 7/13

Computational Device: There is a (singular) ‘cobordism’ of the manifold pairs

(Col1
α,β ,Col

3
α,β)

(which detected [tα2 w12, t
β
3 w23]) and

(tαCo1
2 − tα−βCo1

3 , t
β−αCo3

1 − tβCo3
2 )



(3) Closure operations - Computation 8/13

Computational Device:

Warning! The manifold pair (tαCo1
2 − tα−βCo1

3 , t
β−αCo3

1 − tβCo3
2 ) is not

disjoint. But this is not a problem for us. This argument was inspired by Misha
Polyak.



(3) Closure operations - Computation 9/13

To define the family G(α, β) we begin with a ‘chord diagram’.

The purpose of this diagram is to describe an immersion I → S1 × Dn with
four double-point pairs.

α, β indicate the homotopy-class of the ‘short-cut loop’ in the S1 factor,
π1S

1 ' Z.



(3) Closure operations - Computation 10/13

Resolving this immersion would give us a map

Ĝ(α, β) : Sn−2 × Sn−2 × Sn−2 × Sn−2 → Emb(I ,S1 × Dn).

We pre-compose Ĝ(p, q) with the map

∆ : Sn−2 × Sn−2 → Sn−2 × Sn−2 × Sn−2 × Sn−2

given by ∆(v ,w) = (v ,M(v),w ,M(w)) where M : Sn−2 → Sn−2 is a map with
deg(M) = −1. This corresponds to the signs in the initial chord diagram.



(3) Closure operations - Computation 11/13

The composite Ĝ(α, β) ◦∆, when restricted to Sn−2 ∨ Sn−2 is null, giving us a
commutative diagram

Sn−2 × Sn−2

**

Ĝ(p,q)◦∆
// Emb(I , S1 × Dn)

Sn−2 × Sn−2/Sn−2 ∨ Sn−2 ≡ S2n−4

G(p,q)
44

.

The homotopy-class of G(α, β) ∈ π2n−4Emb(I ,S1 × Dn) is uniquely defined.



(3) Closure operations - Computation 12/13

Proposition: (BG)

W3(G(p, q)) = tp−q
1 t−q

3 [w12,w23]

ev2(f ) and its null-homotopy.



(3) Closure operations - Computation 13/13

Coefficient of tp
1 t

q
3 is lk(ev3(f )−1(tpCo1

2 − tp−qCo1
3 , t

q−pCo3
1 − tqCo3

2 )).



(4) The δk computation 1/9

Theorem: (BG) The set {δk : k ≥ 4} is Z-linearly independent in
πn−3Diff(S1 × Dn).



(4) The δk computation 2/9

Our approach is to consider the map

πn−3Diff(S1×Dn)→ π2n−4Emb(I , S1×Dn)

for the elements δk .

We fiber {1} × Dn by intervals. δk

leaves these intervals fixed if they do
not cross through the barbell. When
the interval passes through the l-th
strand, the action is depicted in the
lower part of the figure.



(4) The δk computation 3/9

δk projected to Dn



(4) The δk computation 4/9

Co2
1 cohorizontal chord diagram with null-homotopy, l < k − 1

Think of time flowing into the screen, i.e. we close the red cohorizontal points
before the blue.



(4) The δk computation (l < k − 1) 5/9

Co1
2 and Co3

1 linking in S2n−4 × C3[I ]
tα1 t

β
3 monomial lk(ev3(f )−1(tαCo1

2 − tα−βCo1
3 , t

β−αCo3
1 − tβCo3

2 ))



(4) The δk computation (l < k − 1) 6/9

Co1
2 and Co3

2 linking in S2n−4 × C3[I ]
tα1 t

β
3 monomial lk(ev3(f )−1(tαCo1

2 − tα−βCo1
3 , t

β−αCo3
1 − tβCo3

2 ))



(4) The δk computation (l < k − 1) 7/9

Co1
3 and Co3

2 linking in S2n−4 × C3[I ]
tα1 t

β
3 monomial lk(ev3(f )−1(tαCo1

2 − tα−βCo1
3 , t

β−αCo3
1 − tβCo3

2 ))



(4) The δk computation (l = k − 1) 8/9

Details skipped!

Co2
1 cohorizontal chord diagram with null-homotopy, l = k − 1



(4) The δk computation 9/9

Theorem: (BG) Provided k ≥ 3

W3(δk ) = (k − 1)
(
t−1

1 t1−k
3 + (−1)n−1t1−k

1 t−1
3 − t2−k

1 t1
3 + (−1)nt1t

2−k
3

)
+

t1t
k−1
3 + (−1)n−1tk−1

1 t3 − t1−k
1 t2−k

3 + (−1)nt2−k
1 t1−k

3

Corollary: (BG) The group

πn−3Diff(S1 × Dn)

is not finitely generated for n ≥ 3.

T. Watanabe has an alternative proof of the above for n = 3, and has sketched
an argument for n odd.



(5) Relations to other problems 1/9

Definition: An n-dimensional half-disc is the intersection of the standard
n-disc with the half-space

HDn = {x ∈ Rn :
∑

x2
i ≤ 1, x1 ≤ 0}.

We call (∂Dn) ∩ HDn the round boundary, and {x ∈ HDn : x1 = 0} the flat
boundary.

Definition: Emb(HD j ,Dn) denotes the space of embeddings of HD j into
Dn that agree with the standard inclusion p 7−→ (p, 0) on the round boundary.

These embedding spaces are contractible, using a variant of the uniqueness of
collar neighbourhoods argument.



(5) Relations to other problems 2/9

Theorem: (Cerf, BG) There is a locally-trivial fibre bundle

Emb(HD j ,Dn)
restr. //

flatface
// Emb+

u (D j−1,Dn) .

The base space is the space of smooth embeddings of D j−1 into Dn that agree
with the standard inclusion p 7−→ (p, 0) on the boundary, equipped with a unit
normal vector field, which is also standard on the boundary. The subscript u
indicates the embeddings in the base-space are all unknotted.

The fiber of this bundle has the homotopy-type of Emb(D j , Sn−j × D j ).



(5) Relations to other problems 3/9

Corollary:
ΩEmb+

u (D j−1,Dn) ' Emb(D j , Sn−j × D j )

Thus π0Emb(D j ,Sn−j × D j ) is a group. Both spaces are monoids from the
stacking operation, provided j > 1. These two operations are the same, under
the equivalence.

This is typically called an Eckmann-Hilton argument.



(5) Relations to other problems - Hatcher-Wagoner 4/9

Theorem: (Hatcher-Wagoner) Provided n ≥ 6,

π0Diff(S1 × Dn) ' π0Diff(Dn+1)⊕ π0Diff(Dn)⊕
⊕
∞

Z2.

Proposition: (BG) There is a homotopy-equivalence
Diff(S1 × Dn) ' Diff(Dn+1)× Emb(Dn,S1 × Dn).

The above allows the reinterpretation of Hatcher-Wagoner as

π0Emb(Dn, S1 × Dn) '
parametrization

π0Diff(Dn) ⊕
image⊕
∞

Z2 .



(5) Relations to other problems 5/9

Proposition: (BG) The operation of lifting a disc to the m-sheeted
covering space of S1 × Dn induces an endomorphism

π0Emb(Dn, S1 × Dn)→ π0Emb(Dn, S1 × Dn)

provided n > 1.

The fixed points, provided m > 1, is a subgroup isomorphic to
π0Emb(Dn,Dn+1). These are the isotopy-classes of embeddings Dn → Dn+1

that agree with the inclusion p 7−→ (p, 0) on the boundary.



(5) Relations to other problems - Schönflies 6/9

Notice π0Emb(Dn,Dn+1) ' π0Emb(Sn,Sn+1).

The Schönflies Problem asks if every smoothly-embedded Sn in Sn+1 is isotopic
to the round Sn, or equivalently, if

π0Diff(Dn)→ π0Emb(Dn,Dn+1)

is onto.

Our δk examples are in the kernel of the endomorphisms of
π0Emb(D3, S1 × D3) for m ≥ k.



(5) Relations to other problems - trivial knots 7/9

Earlier we observed a homotopy-equivalence

ΩEmb+
u (Dn−1,Dn+1) ' Emb(Dn, S1 × Dn)

where Emb+
u (Dn−1,Dn+1) is the space of unknotted co-dimension 2 discs in

Dn+1. We deduce from that:

I πn−3Emb(Dn, S1 × Dn) is not finitely generated,

I πn−2Emb+
u (Dn−1,Dn+1) is not finitely generated for n ≥ 3.

I πn−2Embu(Dn−1,Dn+1) is not finitely generated for n ≥ 3.

I πn−2Embu(Sn−1,Sn+1) is not finitely generated for n ≥ 3.
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Allen Hatcher has shown that the space

Embu(D1,D3)

is contractible, or equivalently,

Embu(S1, S3) ' V4,2 ' S3 × S2.

This says the space of unknottable embeddings of S1 in S3 has the
homotopy-type of the subspace of round circles in S3. The analogue to
Hatcher’s theorem is false above dimension 3.
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Hatcher-Wagoner describe an isomorphism (n ≥ 6)

π0Emb(Dn, S1 × Dn)→ π0Diff(Dn)⊕
⊕
∞

Z2.

Conjecture: (BG) The Hatcher-Wagoner diffeomorphisms are detectable
by scanning, Emb(Dn, S1 × Dn)→ Ωn−1Emb(I , S1 × Dn).

π0Diff(S1 × Dn)→ π0Emb(Dn,S1 × Dn)→ πn−1Emb(I ,S1 × Dn)



Thank-you.

Questions?


