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- Consider compact smooth manifolds V and X with nonempty boundary, with
k:=dimV,and d := dimX such that 1< k < d.

- General goal. Study the homotopy type of the space

Emba(V, X)

of smooth neat embeddings K: V < X which near 9V agree with a fixed
basepoint U: V < X. We denote s := Ulay: OV — IX.

- Recall that a smooth map K is an embedding if it is injective and at any
v € V the derivative dK|, is injective, and K is neat if it is transverse to the
boundary and K(V) N oX = K(aV).

- For example, for (k,d) = (1,3) and (2,3):

- For V = DF, the setting with a dual: if there exists G: S“~F < 9X, such that G
has trivial normal bundle and G ' s = {pt}. Like pictures 2 and 3!
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Note. Connected sum of knots is on arcs given by

stacking the cubes horizontally — so well-defined .__C\/_*
N

on space-level!

- Recently, intensively studied is the set of (long) 2-knots in a 4-manifold M:
o Emba(Dz,M)

This can be huge - for example, “spinning” a classical knot gives a 2-knot in
70 Emby (S?, R*) = 79 Embgy (D?, D).
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Theorem (Space level light bulb trick [K-Teichner "21])

Forany 1< k < d, in a setting with a dual, any choice of U: D* < M leads to
an (explicit) homotopy equivalence

Embs(D*, M) ~ Q Emb% (D", X).
where X := M U, % In particular, if d = 4 we have

7o Emba(D?, M) 2 7 Embg(D', X).
Superscript e means embedded disks are equipped with “push-offs”...
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- We make this more explicit, and compute many classes of examples in K' 21.
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kR =2: Emba(D?, M) ~ Q Emb(D', X).
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= We recover (and generalise) LBT for spheres of Gabai 20 and
Schneiderman-Teichner '21.

- Moreover, we get an (unexpected) group structure on mg Embg (D2, M)!
d—1: Emba(D?",S" x D/™") ~ Q Emby (D2, D%)
d =4: 7 Emba(]D)3,S1 x D?) = 71 Embg(D?, D%), cf. Budney-Gabai.
k = d : Recovers a theorem (and proof) of Cerf '68:

k

Theorem (Cerf '68)
There is a homotopy equivalence Diff}(D?) ~ Q Embs(D?~',D?). In particular,
o Diff§ (D*) & m(Emba (D, D*); U).

Open problem
Is mo Diff (D*) trivial? Compute it.

See Budney-Gabai, Gay, Watanabe for some candidate diffeomorphisms.
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Stable, metastable, metastable...(?)

A generic smooth immersion V¢ ¢ X¢ has transverse self-intersections only of
multiplicity n < 7%,

- Whitney '40s: stable range ¢ < 9.
= n <2 <= generically no double points.
- Can show: Emb(V, X) < Imm(V, X) is (d — 2¢ — 1)-connected.
- Haefliger '60s and Dax '70s: metastable range £ < 23—"
= n <3 <= generically no triple points.
- Dax upgraded this to:
Emb(V,X) < P2(V,X) is (2d — 3¢ — 3)-connected,
for a certain space P,(V, X) built out of pairs of points in X.
- Goodwillie-Klein-Weiss embedding calculus.
- Construct a tower of spaces Pn(V, X), n > 1, with:
P1 = Imm(V, X) and P,(V, X) = the Haefliger-Dax space.
- Emb(V,X) = Pn(V,X) is (nd — (n + 1)£ — (2n — 1))-connected (hard)).
- Use homotopy theoretic tools to study Pn(V, X).



About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said
pu: mn(Emba (DY, X), u) = m(Immy (D, X), u) = 7 X,  for0<n<d—20-2.

is just the well-known computation of the homotopy groups of immersions,
using Smale-Hirsch theory.



About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said
pu: mn(Emba (DY, X), u) = m(Immy (D, X), u) = 7 X,  for0<n<d—20-2.

is just the well-known computation of the homotopy groups of immersions,
using Smale-Hirsch theory.

- Forn =d — 2¢ — 1 we still have a surjection

Ta—20-1 Emba (D, X) = mg_oe—1 Imma(D, X) 2 mg_g_iX.
Dax tells us how to compute its kernel.



About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said
pu: mn(Emba (DY, X), u) = m(Immy (D, X), u) = 7 X,  for0<n<d—20-2.

is just the well-known computation of the homotopy groups of immersions,
using Smale-Hirsch theory.

- Forn =d — 2¢ — 1 we still have a surjection

Tg—20—1 Emba(D*, X) — mg_oe—1 Imma (D", X) = my_p_1X.
Dax tells us how to compute its kernel.
- Firstly, study the relative homotopy group

Ty—20—1(Imm(V, X), Emb(V, X))



About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said
pu: mn(Emba (DY, X), u) = m(Immy (D, X), u) = 7 X,  for0<n<d—20-2.

is just the well-known computation of the homotopy groups of immersions,
using Smale-Hirsch theory.

- Forn =d — 2¢ — 1 we still have a surjection

Tg—20—1 Emba(D*, X) — mg_oe—1 Imma (D", X) = my_p_1X.
Dax tells us how to compute its kernel.
- Firstly, study the relative homotopy group

Ty—20—1(Imm(V, X), Emb(V, X))

- Then study the image of the map

6Imm: Td—2¢ Imm(\/ﬂ X) - ﬂ-d—ZZ—‘\(Imm(Vv X)a Emb(V7 X))



About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said
pu: mn(Emba (DY, X), u) = m(Immy (D, X), u) = 7 X,  for0<n<d—20-2.

is just the well-known computation of the homotopy groups of immersions,
using Smale-Hirsch theory.

- Forn =d — 2¢ — 1 we still have a surjection

Tg—20—1 Emba(D*, X) — mg_oe—1 Imma (D", X) = my_p_1X.
Dax tells us how to compute its kernel.
- Firstly, study the relative homotopy group

Ty—20—1(Imm(V, X), Emb(V, X))

- Then study the image of the map

6Imm: Td—2¢ Imm(\/ﬂ X) - ﬂ-d—ZZ—‘\(Imm(Vv X)a Emb(V7 X))

- The desired kernel is the cokernel of 8jmm-



About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said
pu: mn(Emba (DY, X), u) = m(Immy (D, X), u) = 7 X,  for0<n<d—20-2.

is just the well-known computation of the homotopy groups of immersions,
using Smale-Hirsch theory.

- Forn =d — 2¢ — 1 we still have a surjection

Tg—20—1 Emba(D*, X) — mg_oe—1 Imma (D", X) = my_p_1X.
Dax tells us how to compute its kernel.
- Firstly, study the relative homotopy group

ma—ze—r(Imm(V, X), Emb(V, X)) = 24, -

- Then study the image of the map

6Imm: Td—2¢ Imm(\/ﬂ X) - ﬂ-d—ZZ—‘\(Imm(Vv X)a Emb(V7 X))

- The desired kernel is the cokernel of 8jmm-



About the lowest degree in the metastable range

- Therefore, part 1) in the Main Theorem, which said
pu: mn(Emba (DY, X), u) = m(Immy (D, X), u) = 7 X,  for0<n<d—20-2.

is just the well-known computation of the homotopy groups of immersions,
using Smale-Hirsch theory.

- Forn =d — 2¢ — 1 we still have a surjection

Tg—20—1 Emba(D*, X) — mg_oe—1 Imma (D", X) = my_p_1X.
Dax tells us how to compute its kernel.
- Firstly, study the relative homotopy group

ma—ze—r(Imm(V, X), Emb(V, X)) = 24, -

- Then study the image of the map
6Imm: Td—2¢ Imm(\/ﬂ X) - ﬂ-d—ZZ—‘\(Imm(Vv X)a Emb(V7 X))

It turns out this is given as the image of a certain homomorphism
dax: mg_ X — Z[mX\1].
- The desired kernel is the cokernel of 8jmm-



About the lowest degree in the metastable range

Theorem [Dax '72]

There is an isomorphism mg_,—1(Imm(V, X), Emb(V, X), u) = Qo(Cu; 6u), the

degree 0 normal bordism group of a certain space C, with a stable normal
bundle 6, over it.



About the lowest degree in the metastable range

Theorem [Dax '72]
There is an isomorphism 7g—2,—1(Imm(V, X), Emb(V, X), u) = Qo(Cy; 6u), the
degree 0 normal bordism group of a certain space C, with a stable normal
bundle 6, over it.

Theorem [K-Teichner '22]
There is an isomorphism Dax: mg_z—1(Imm(V, X), Emb(V, X), u) — Z[mx]/rele,d
given as follows: represent a relative class by a “perfect” map
Fo (270197272 % {0}, 1972 x {1} U A" 72 x I) = (Imm, Emb, u)
i.e. Fis smooth and its track
F I x v 1% < X, (£ v) = (§ F(E V),

has no triple points and double points (&, x) € 1%~ x Vfori=1,...,rare
isolated and transverse.



About the lowest degree in the metastable range

Theorem [K-Teichner '22]
There is an isomorphism Dax: mg_z¢—1(Imm(V, X), Emb(V, X), u) — Z[mX]/relz,d
given as follows: represent a relative class by a “perfect” map
Fr (@277 197272 % {0}, 19772 x {1} U a1 %72 x I) — (Imm, Emb, u)
i.e. Fis smooth and its track
F I x v 1% % X, (Gv) = (4 F(E V),
has no triple points and double points (&, x) € 1%~ x Vfori=1,...,rare

isolated and transverse. Then Dax([F]) = >_7_, £ x) 9@ x) 1S the sum of signed
double point loops of F.

ik Sy
Fi)<w, -

0X



The realisation map and the Dax invariant

Moreover, the inverse of Dax can be made explicit: for g € mX\ 1 the relative
homotopy class dt(g) is given by
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The realisation map and the Dax invariant

Moreover, the inverse of Dax can be made explicit: for g € mX\ 1 the relative
homotopy class dt(g) is given by

Finally, for V = D" we can describe im(dimm) as (1) @ im(dax) where
dax: my_oX — Z[mX\1], dax(a) = Dax(A),

where we represent a € my_¢X by a map A: 172 x D — X.



The realisation map and the Dax invariant

Moreover, the inverse of Dax can be made explicit: for g € mX\ 1 the relative
homotopy class dt(g) is given by

Finally, for V = D" we can describe im(dimm) as (1) @ im(dax) where
dax: my_oX — Z[mX\1], dax(a) = Dax(A),
where we represent a € my_¢X by a map A: 172 x D — X.

We can compute this in many classes of examples! See [K '21].



Thank you!
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