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1. Introduction

The interaction between the theory of dynamical systems and number theory, and
in particular of the theory of diophantine approximation, has a long and fruitful
history. In particular, the study of the action of subgroups H < SL,(R) on the
quotient X,, = SLy,(Z)\ SL,(R) is often intimately linked to number theoretic
problems.

For instance G. A. Margulis used in the late 1980’s the subgroup

SO(2,1)(R)® C SL3(R)

acting on

X3 = SL3(Z)\ SL3(R)

by right translation to prove the long-standing Oppenheim conjecture concerning
the values Q(Z") of an indefinite quadratic form in n > 3 variables, see [38].
Here the acting group SO(2,1)(R)° is (locally isomorphic to SLy(R) and so is)
a simple non-compact subgroup of SL3(R) that is generated by unipotent one-
parameter subgroups. Here a unipotent one-parameter subgroup is the image of a
homomorphism v : R — SL,,(R) given by u(t) = exp(tm) for ¢t € R and some given
nilpotent matrix m € Mat,, (R).

*This research has been supported by the NSF (0554373) and the SNF (200021-127145).
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Due to the work of Ratner [44, 45] the dynamics of H on X,, is to a large
extent understood if H is generated by unipotent one-parameter subgroups. These
theorems and their extensions by Dani, Margulis, Mozes, Shah, and others, have
found numerous applications in number theory and dynamics. We refer to [32],
[40], and [46] for more details on these important topics.

These notes concern the dynamics of the diagonal subgroup A of SL,,(R), with
the aim to explain the many connections between number theory and the action of
A on X, (or similar actions). We hope that the compilation of these applications
will serve as a motivation to find new connections.

Before we list the applications let us briefly describe the dynamics of the di-
agonal subgroup. First we need to point out that the dynamical properties of a
one-parameter subgroup a(t) of A is quite different from the dynamical properties
of a unipotent one-parameter subgroup. For instance if n = 2 then the dynamical
system given by right translation of the diagonal elements

t/2
)= (% ) = dinge2, e

on X, is precisely the geodesic flow on the unit tangent bundle of the modular
surface M = SLy(Z)\H. This flow is' hyperbolic and one can find, e.g. by using
the Anosov shadowing lemma, an abundance of arbitrarily weird orbits. We refer to
[31] for the theory of hyperbolic flows and to [18, §9.7] for a discussion of A-invariant
measures on Xo. This should be contrasted with the dynamics of the horocycle

. . . 1 ¢
flow, i.e. the dynamics of the unipotent one-parameter subgroup u(t) = (0 1)

on Xo where every orbit is either periodic or is equidistributed in X5 with respect
to the Haar (or Liouville) measure, see [4] and [18, §11.7].

However, if n > 3 and A denotes the full (n — 1)-dimensional subgroup, then it
is expected that the orbits are better behaved. For instance, we have the following
conjecture of G. A. Margulis.

Conjecture 1.1. Let n > 3 and let
A ={diag(a1,...,an) :a1,...,a, >0,a1---a, = 1}.

Then any v € X,, = SL,(Z)\ SL,(R) for which xA has compact closure in X,
must actually belong to a periodic (i.e. compact) orbit.

The problem of classifying all A-invariant measures on X,, for n > 3 is strongly
related to the study of orbits?. In fact, by the pointwise ergodic theorem the time-
average of a function over the orbit of a (typical) point approximates the integral of
the function with respect to an invariant measure. Here is the analogous conjecture
for invariant measures.

Lapart from technical difficulties arising from the presence of the cusp
2Conjecture 1.2 implies Conjecture 1.1, but in contrast to the case of unipotent dynamics an
equidistribution result for A-orbits is not conjectured.
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Conjecture 1.2. Let n > 3 and let A be as above. Then any A-invariant and
ergodic probability measure on X, is necessarily the normalized Haar measure on
a finite volume orbit xH of an intermediate group A C H C SL,(R).

However, we also would like to mention the simplest case of such a conjectured
classification result. Furstenberg proved in [21] that the full torus T = R/Z and
certain finite sets of rational points are the only closed sets in T that are invariant
under z — 2z and x — 3z. The related question for invariant measures is a famous
conjecture also due to Furstenberg (unpublished).

Conjecture 1.3. Let p be an invariant and ergodic probability measure on T =
R/Z for the joint action of v — 2x and x — 3x. Then either p equals the Lebesgue
measure or must have finite support (consisting of rational numbers).

These conjectures and its counterparts on similar homogeneous spaces are still
open, we refer to [14] for related more general versions of this conjecture. What is
known towards Conjecture 1.2 is the following theorem which we obtained in joint
work with A. Katok and E. Lindenstrauss [12].

Theorem 1.4. Let n > 3. Then an A-invariant and ergodic probability measure
w on X, either equals the normalized Haar measure on a closed finite volume orbit
xH of an intermediate group A C H C SL,(R) or the measure-theoretic entropy
h.(a) vanishes for alla € A. Ifn is a prime number, then necessarily H = SL,(R).

This theorem is the analogue to the theorem of Rudolph [48] towards Con-
jecture 1.3. Moreover, it is related to works of A. Katok, Spatzier, and Kalinin
[29, 30, 27, 28] and uses arguments both from our joint work with A. Katok [11]
and the paper of E. Lindenstrauss [36] on the Arithmetic Quantum Unique Ergo-
dicty conjecture. We do not want to describe the history of the theorem in detail
and instead refer to [14].

Theorem 1.4 reduces the problem to understanding the case where entropy is
zero. Depending on the application, this unsolved problem is avoided by showing
that the measure in the application has positive entropy. However, this sometimes
(but not always) forces extra conditions in the application. In these cases the the-
orem in the application would improve if one could show that an ergodic measure
with vanishing entropy must be the volume measure on a periodic A-orbit xA.

Theorem 1.4 has been generalized (technically speaking to all maximal R resp.
Q,-split diagonal subgroups acting on any quotient of an S-algebraic group). How-
ever, for this care must be taken as e.g. no such theorem can be true for the two-
parameter diagonal subgroup A on the space SLa(Z) x SL2(Z)\ SL2(R) x SLa(R), as
any product of two invariant measures for the geodesic flow would be an invariant
measure for A. Moreover, this scenario can hide e.g. inside I'\ SL4(R). Whether or
not this is an issue crucially depends on the lattice I, which stands in contrast to
the theorems concerning subgroups generated by unipotent subgroups where the
precise nature of the lattice is not that important. We refer to [14] for the precise
formulation and more details.

Here is the list of applications that we will discuss.
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e Arithmetic Quantum Unique Ergodicity, see §2

e Diophanine approximation for points (and vectors) in fractals, see §3
e Non-uniformity of bad approximations of na, see §4

e Littlewood’s conjecture, see §5

e Compact orbits and ideal classes, see §6

e Counting rational points in a certain variety, see §7

e Divisility properties of Hamiltonian quaternions, see §8

We also want to refer to the lecture notes [15] for the Clay summer school in Pisa
in 2007 which explain in detail the (otherwise not so readily available) background
of the papers [11, 12] as well as their content, and discusses two applications. Fi-
nally, we also wrote together with E. Lindenstrauss a joint survey [14] on this topic,
which explains in detail the general conjectures and partial measure classifications
and again some of the applications. In contrast to these surveys and lecture notes,
we want to give here a description of all the applications and try to point out most
concretely how these topics are connected to diagonal actions. For these appli-
cations we do not have to consider the most general theorems as all applications
concern quotients of the group SL,, (or products of the form SL,, x - - - x SL,,). This
is unfortunate, as the theorems (in appropriate formulations) are more general.

I would like to thank my co-authors A. Katok, E. Lindenstrauss, Ph. Michel,
and A. Venkatesh for the many collaborations on these subjects.

2. Arithmetic Quantum Unique Ergodicity

Historically the first application of a partial measure classification for diagonal
flows (outside of ergodic theory) concerns the distributional properties of Hecke-
Maass cusp forms ¢ on M = SLo(Z)\H and similar quotients of the hyperbolic
plane H by congruence subgroups. Here a Maass cusp form is a smooth function ¢
on M which is an eigenfunction of the hyperbolic Laplace operator Aj; and also
belongs to L2(M) — we will always assume the normalization ||¢|[> = 1. A Hecke-
Maass cusp form is a Maass cusp form that in addition is also an eigenfunction of
the Hecke operators T, for all p.

Rudnick and Sarnak [47] conjectured that for any sequence of Maass cusp
forms ¢; on M for which the eigenvalues go to infinity the probability measures
defined by |¢;|? dvolys converges in the weak* topology to the uniform measure
dvolys. These conjectures are of interest to mathematical physics as well as number
theory. In quantum physics eigenfunctions of A are energy states of a free (spinless,
non-relativistic) quantum particle, moving in the absence of external forces on
M. In number theory the eigenfunctions are of central importance due to many
connections between them and the theory of L-functions. We refer to the survey
[50] and the more recent [49] for more details.
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After a conditional proof of the following theorem by Watson [59] relying on the
generalized Riemann hypothesis, Lindenstrauss [36] used a partial measure classifi-
cation to show the equidistribution except for the possibility that the limit measure
may not be a probability measure (or even the zero measure). Soundararajan [56]
complemented the proof of Lindenstrauss showing that the limit measure must
indeed be a probability measure. Together this gives the following unconditional
theorem.

Theorem 2.1 (Arithmetic Quantum Unique Ergodicity). Let M = I'\H, with T
a congruence lattice over Q. Then |¢;|? dvolys converges in the weak* topology to
dvolys as i — oo for any sequence of Hecke-Maass cusp forms for which the Maass
eigenvalues \j — —oo as i — o0.

The connection of this problem to the problem of classifying invariant measures
on X = TI'\ SLy(R) with respect to the geodesic flow is well motivated due to the
interpretation of the Maass forms on M as the distribution of quantum particles on
the surface M with a given energy (which up to a constant equals the eigenvalue for
the Laplace operator) and the study of the semi-classical limit (corresponding to
the limit where the energy goes to infinity). Moreover, Shnirelman [55], Zelditch
[61] and Coin-de Verdeire [6] used this connection before to show the so-called
Quantum Ergodicity. This theorem says that for any compact quotient I'\H and a
subsequence of all eigenfunctions of density one, the measures |¢;|? dvolys indeed
converge to dvoly;. Part of this proof is the construction of a so-called micro-
local lift of a weak™ limit, which is a measure g on the unit tangent bundle X =
I\ SLo(R) that is invariant under the geodesic flow.

The additional assumption in Theorem 2.1 that ¢; is also an eigenfunction of
the Hecke-operators can be used to prove additional properties of the micro-local
lift. Indeed, Bourgain and Lindenstrauss [2] show that a micro-local lift must have
the property that all of its ergodic components have positive entropy. Here the
positivity of entropy is shown by proving that the measure of a small ball B.(z)
for z € X decays like <, €' for § = %. The ‘trivial bound’ in this case is < €
since the measure is known to be invariant under the one-dimensional subgroup A
consisting of diagonal elements. Any improvement of the form <, €' for some
0 > 0 shows positivity of entropy of almost all ergodic components.

Furthermore, Lindenstrauss [36] also shows that such a micro-local lift of a
sequence of Hecke-Maass cusp forms has an additional recurrence property under
the p-adic group SL2(Q,) for any p — this is a much weaker requirement than
invariance but suffices due to the following theorem [36].

Theorem 2.2. Let ' be a congruence lattice over Q, let X = T'\ SLy(R) and let
w1 be a probability measure satisfying the following properties:

(1) w is invariant under the geodesic flow,

(E) the entropy of every ergodic component of 1 is positive for the geodesic flow,
and

(R) p is Hecke p-recurrent for a prime p.
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Then u is the uniform Haar measure mx on X.

The proof of this theorem uses an idea from [11] and also an idea from the work
of Ratner on the rigidity of the horocycle flow [42, 43]. The latter is surprising as
the measure p under consideration has a-priori very little structure with respect
to the horocycle flow.

We refer to the lecture notes [17], which explain carefully the arguments in [2]
and [36] (with the exception of the proof of Theorem 2.2).

After the work of Lindenstrauss, Silberman and Venkatesh [53] have generalized
this approach to quotients of SL, (R) by congruence lattices arising from division
algebras, where the degree n of the division algebra is assumed to be a prime
number. (In this case Theorem 1.4 holds in the same way.)

3. Diophantine approximation for points in fractals

The connection between the continued fraction expansion and the geodesic flow
on X5 = SL(Z)\ SLa(R) goes back to work of Artin [1], see also [51, 52]. This
link between Diophantine approximation of real numbers and dynamics on homo-
geneous spaces has been extended to higher dimension by Dani [3] and since then
has been used successfully by many authors. We will recall this connection below.

In the theory of metric Diophantine approximations, one wishes to understand
how well vectors in R? can be approximated by rational vectors. In particular, we
say v € R? is well approzimable if for any ¢ > 0 there are infinitely many nonzero
integers ¢ for which there exists an integer vector p € Z? with

C
gt

1
[v—-pl <
q

Similarly we say v is badly approximable if there exists a constant ¢ > 0 such that

1 c
v =Pl = S5 (1)

for all ¢ € Z and p € Z% We will write WA (resp. BA) for the set of well
approximable (resp. badly approximable) vectors. It is well known that almost
every v is well approximable, but that the set of badly approximable vectors is also
in many ways big — e.g. W. Schmidt has shown that the set of badly approximable
vectors has full Hausdorff dimension.

Recently, the question how special submanifolds or fractals within R? intersect
the set of badly or well approximable vectors (as well as other classes of vectors
with special Diophantine properties) has attracted attention. For instance, it was
shown for the Cantor set C C [0,1] in [33] and [34], that the dimension of C NBA
is full, i.e. equals log2/log 3. However, until recently little was known about the
intersection of WA with fractals. In joint work [10] with L. Fishman and U. Shapira
we obtained the following application of Theorem 2.2.
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Theorem 3.1. Almost any point in the middle third Cantor set (with respect
to the natural measure) is well approzimable and moreover its continued fraction
expansion contains all patterns.

We would like to point out that the special invariance properties that the
Cantor set has, are actually crucial for the proof of Theroem 3.1 while the result
concerning the intersection of the Cantor set with BA are much more general. The
same method that gives Theorem 3.1 can also be used for d = 2 together with
Theorem 1.4 and leads to the following theorem.

Theorem 3.2. Let A : R?/Z? — R2?/Z? be a hyperbolic automorphism, induced by
the linear action of a matrix A € SLo(Z) and let u be a probability measure which
18 invariant and ergodic with respect to A, and has positive dimension. Then u
almost any v € R?/Z? is well approzimable.

To see the connection between these two theorems and Theorem 2.2 resp. The-
orem 1.4 we need to recall the interpretation of X,, = SL,(Z)\SL,(R) as the
space of unimodular lattices in R™. In fact, we may identify the identity coset
SL,(Z) with the unimodular (i.e. covolume one) lattice A = Z™. More generally,
we identify the coset SL,,(Z)g with the lattice A = Z™g. This gives an isomorphism
between X, and the space of unimodular lattices in R™, and makes it possible to
classify compact subsets by the following geometric property.

Theorem 3.3 (Mahler’s compactness criterion). A subset C' C X, is bounded (i.e.
its closure is compact) if and only if there exists € > 0 such that for any lattice
A e C, AN B(0) =0 i.e. if and only if there exists a uniform lower bound for the
lengths of nonzero vectors belongings to points in C.

This gives the basis of the dynamical interpretation of badly approximable
vectors v (used as row vector) in terms of the orbit of the associated lattice

Ao —gdt1 (a0
v v 1

with respect to the generalization of the geodesic flow defined below. Here we write
14 for the d x d-identity matrix.

Corollary 3.4. We define the diagonal elements

@ — et/dfd 0
e 0 et

for any t € R. Then a vector v.€ R? is badly approzimable if and only if the
forward orbit

{Ava; : t >0}

of the lattice Ay associated to v is bounded in Xqy1.
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Let us indicate one direction of this characterization. If v is badly approximable
as in (1) and ¢t > 0, then the elements of the lattice Aya; are of the form

t/d —t
)

((p—qv)e’® e q).

We claim that any non-zero such element cannot be closer to the origin in R+!
than c¢. Otherwise, we derive from ¢ > 0 that ¢ # 0 and by taking the product of
the norm of (p — gv)e*/? and of the d-th root of e~*q that ¢'/¢||p — qv|| <c— a
contradiction to (1). The opposite implication is similar.

Let us indicate now the relationship between Theorem 2.2 and Theorem 3.1.
Write v for the uniform measure on the middle third Cantor set. We may embed
Vo as a measure on Xy by push-forward via the map v — A,. By Corollary 3.4
what we would like to show is that for vc-a.e. point the orbit under the geodesic
flow is unbounded.

To better phrase the special invariance properties that the Cantor set has, it
makes sense to introduce the 3-adic extension of X5. One can check that

X, ~ SLz(Z[%])\SLz(R) « SLa(Qs)/ SLa(Zs),

so that we should think of X5 = SL2(Z([3])\ SL2(R) x SL2(Qs3) as an extension of
X2 by compact fibers isomorphic to SLo(Z3).
We note that

stazlz) (1 9) (5 52) =ste@izd (g, 9).

which shows that right-multiplication by the diagonal element <3 corre-

0
0 371
sponds to multipying v by 9. As the Cantor set has a special relationship with
respect to multiplication by 3 (or equivalently ternary digit expansions), this can

be exploited and one can construct an invariant measure v on X5 for the map that

multiplies on the right — both in the real and 3-adic component — by (?) 301>.

However, this dynamical system is different from the extension of the geodesic

e
the real component. Taking the average of vc along the orbit under a; one ob-
tains a measure that is invariant under the diagonal subgroup — both in the real
component and the 3-adic component. To this limit measure 1 one can apply The-
orem 2.2. The recurrence condition is assured since p is actually invariant under
a non-compact subgroup of SLs(Q3). The entropy assumption is satisfied in the
weaker sense that the entropy of u is positive — this is a consequence of the fact
that v had positive dimension. From this, we conclude not necessarily that p
equals the Haar measure but at least that it contains the Haar measure as one of
the ergodic components. Clearly the Haar measure has non-compact support, and
this can be used to deduce® Theorem 3.1.

t
flow a¢, which is just right multiplication by the diagonal element (eo 9t> in

3The cautious reader may notice that what we said implies only that the quantity c as in (1)
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4. Non-uniformity of bad approximations

Recall that every irrational = € [0,1] can be written as a continued fraction. The
digits of the continued fraction expansion relates to the discussion of the Diophan-
tine approximation above. In fact, x is badly approximable if and only if the digits
an (x) of the expansion are bounded. If x is badly approximable, then the quantity
¢(z) = limsup a,(z) measures the extend to which = is badly approximable. In
this sense, the next theorem says that the sequence z,2x,...,nx,... cannot be
uniformly badly approximable.

Theorem 4.1. If we denote for v € [0,1], c(v) = limsup a,(v) where a,(v) are
the coefficients in the continued fraction expansion of v, then for any irrational
v € [0,1], sup,, ¢(n?v) = oo, where n?v is calculated modulo 1.

This is also joint work with L. Fishman and U. Shapira [10]. We would like
to point out that this relates to a conjecture of M. Boshernitzan, who reported to
us that a stronger version of Theorem 4.1 holds for the special case of quadratic
irrationals.

The proof of Theorem 4.1 is similar in spirit to the proof of Theorem 3.1, but
this time takes place on

Xo.4 = SLa(Q)\ SL2(A)

where multiplication of v by n? can be converted to right multiplication by the
matrix (g n01> (in every component). These elements together with the real

diagonal subgroup give a big subgroup A’ of the full group A, of adelic points of
the diagonal subgroup, more precisely the quotient of Ag by A’ is compact. In this
theorem there is no mention of entropy or dimension due to the following theorem
by E. Lindenstrauss [35] (which is the combination of Theorem 2.2 and the method
in [2]).

Theorem 4.2. The action of the group, Aa, of adelic points of the diagonal sub-
group in SLa on Xo p = SLo(Q)\ SL2(A) is uniquely ergodic.

5. Littlewood’s conjecture

Historically the second application of a partial measure classification result for
diagonal subgroups (in this case Theorem 1.4) has been a partial result towards
Littlewood’s conjecture.

Conjecture 5.1 (Littlewood (c. 1930)). For every a, 8 € R,

lim inf n||na|||n8] = 0, (2)

where ||w|| = min,ez |w — n| is the distance of w € R to the nearest integer.

cannot be uniform for a.e. point in C, but with a bit more work, using only ergodicity of the
Haar measure, one really obtains a proof.
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Similar to Corollary 3.4 one can also show the following characterization of
Littlewood’s conjecture in dynamical terms.

Proposition 5.2. («, ) satisfy (2) if and only if the orbit
1 0 0

Aa,gas’t = SL(?), Z) 0 1 0 As.t
a g 1

under the semigroup

et 0 0
At = {a(s,t) : s,t > 0} a(s,t)=10 e°
0 0 e'=s

is unbounded in X3 = SL(3,7Z)\ SL(3,R).
Together with Theorem 1.4 this leads to the following theorem.
Theorem 5.3 ([12, Theorem 1.5]). For any § > 0, the set!

(1]

5 ={(0.8) € [0,1% s tim inf nllnal[ng] > 5}

. . = . —_— .
has zero upper box dimension®. In particular, s~ Zs has zero Hausdorff dimen-
sion.

We refer to [12] or to [15] for an explanation on how the entropy assumption
in Theorem 1.4 is converted to the box dimension result above. A full solution of
either Conjecture 1.1 or Conjecture 1.2 would imply Conjecture 5.1.

The same method can also be used to obtain a partial result towards a conjec-
ture of B. de Mathan and O. Teulié [5]. They conjectured® that for every prime
number p, for every u € R and € > 0

€ €
‘qu - QO‘ < da = — for infinitely many pairs (¢, qo) € Z2,
q|q|p q

where ¢ = ¢'p* for some k > 0, ¢’ is coprime to p, and |g|, = 1/p* denotes the
p-adic norm. Equivalently one can ask whether

liminf g - |l - llqull =0, 3)

In joint work with Kleinbock [13] we have shown the following analogue to Theo-
rem 5.3.

Theorem 5.4. The set of u € R which do not satisfy (3) has Hausdorff dimension
zero.

4Since (2) depends only on «, 8 mod 1 it is sufficient to consider only (o, 3) € [0,1]2.
51.e., for every € > 0, for every 0 < r < 1, one can cover Zs by Os,e(r~¢) boxes of size r X r.
6Their conjecture is more general.
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6. Compact orbits and ideal classes

Another interesting connection between the dynamics of the full diagonal subgroup
A on X,, = SL,(Z)\ SL,(R) and number theory arises in the study of periodic (i.e.
compact) orbits of A on X,,.

In fact, if I C Ok is an ideal in the ring of integers of a totally real number
field K of degree n then this ideal can give rise to a compact A-orbit as follows. To
see this, let ¢1,...,¢, : K — R be the complete list of Galois embeddings. Then

{(¢1(k)77¢n(k3)) ke I} CR"

is a lattice in R™, which after normalization of the covolume, gives an element
Ay € X,,. By Dirichlet’s unit theorem, there are n—1 multiplicatively independent
units in the ring Og. Let £ be one such unit. Replacing & by &2 if necessary, we
may assume that ¢;(£) > 0 for all i. Then a = diag(¢1(§),...,dn(€)) € A satisfies

{(@1(F), .-, on(K)) - k € T}a = {(Pr(k), ..., on(K)) : k € &1},

which shows that A; = Aja is fixed under a since €I = I for any unit. As A has
n — 1 dimensions and we have n — 1 independent units, one obtains that A;A is an
n — 1-dimensional torus and so compact. We write pp, for the Lebesgue measure
on this torus normalized to be a probability measure and viewed as a meaure on
X,

One can furthermore check that two ideals give rise to the same compact orbit
if and only if the two ideals are equivalent. Therefore, the number of compact A
orbits arising from the maximal order Ok of the field is precisely the class number
of the field.

The same construction shows that any ideal in any order O of K gives rise to a
compact A-orbit. Allowing this more general construction one actually obtains all
compact A-orbits. It is natural to ask how the various compact orbits for a given
order distribute within X,,. If n = 2 special cases of the expected equidistribution
theorem have been proven around 1960 by Linnik [37] and Skubenko [54]. The
full statement has been proven by Duke [7] in 1988 using subconvexity estimates
of L-functions. For n = 3 the analogue has been obtained more recently in joint
work with Lindenstrauss, Michel, and Venkatesh [9].

Theorem 6.1. Let K, be a sequence of totally real degree three extensions of Q,
and let hy the class number of Ko. Let x1 4A, ..., zp, ¢ A C X3 be the periodic A or-
bits corresponding to the ideal classes of Ky as above. Let py = h%] Zz Ha; A Then
e converge in the weak* topology to the SL(3,R) invariant probability measure
mx, on Xs.

The proof uses a combination of methods. First, subconvexity estimates of
Duke, Friedlander and Iwaniec [8] imply that for certain test functions f, the
integrals fX3 fdppy converge to the expected value (i.e. fX3 fdmx,). The space
of these test functions is not sufficient to conclude Theorem 6.1, but can be used
to deduce that p (s is a probability measure (i.e. there is no escape of mass to the
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cusp) and that the entropy of every ergodic component in such a limiting measure
is greater than an explicit lower bound. Once these two facts have been established,
Theorem 1.4 gives the result.

We also refer to [9, 16] and the survey [39] for more details on this and related
application.

7. Counting rational points

For the following application we fix a monic irreducible polynomial P(X) € Q[A]
of degree n. Let us assume that P(\) factorizes over R. Let V C Mat,, be
the variety consisting of all matrices whose characteristic polynomial equals P(\).
Next recall that for any rational vector v = (£t,...,B) represented in lowest
terms, we can define the height as the maximum of the absolute values |p;| and
the common denominator ¢q. Zamojski [60] has proven the following asymptotic

counting formula.

Theorem 7.1. If Ni denotes the number of rational matrices with characteristic
polynomial P(\) and height bounded by R, then the limit

. Nr
RLI,%O Rn(n—1)/2+1

exists and is positive.

This proves a new case of Manin’s conjecture (see [57, 58]) which concerns sim-
ilar counting problems on more general varieties. There is already a rich history
for the interaction between asymptotic counting problems and ergodic theory. Ini-
tially, only mixing in the form of the theorem by Howe and Moore was used, see for
instance the influential work of Eskin and McMullen [19]. However, after Ratner
proved her theorems [44] further cases of the counting problem could be handled.
For instance, Eskin, Mozes, and Shah [20] have proven in 1996 the integer version
of Theorem 7.1.

In all of these proofs of asymptotic counting the following equidistribution
problem is of crucial importance. The variety V as above is actually a single orbit
of PGL,,(R), we write H for its stabilizer. Similar to the discussion in §6 the
orbit PGL,,(Z)H of the identity coset is compact, we write p for the measure on
X = PGL,(Z)\ PGL,(R) that is supported on PGL,,(Z)H and invariant under H.
Then the counting problem of integer points in V is related to the equidistribution
of the measure ug (obtained by applying right multiplication by ¢) on the space
X. In [20] it is shown that, at least on average, ug indeed equidistributes. For this
the theory of unipotent dynamics was used, which at first may be surprising as H
does not contain any unipotents. The key link of this problem to unipotents lies in
the fact that ug is invariant under g~ Hg, which if g, — oo in H\G implies that
any limit measure of ug, is invariant under a one-parameter unipotent subgroup.

For counting rational points on homogenous varieties it is natural to replace
the quotient X by the corresponding adelic quotient, as was shown in the work
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of Gorodnik, Maucourant, and Oh [22]. Also in the proof of Theorem 7.1 the
equidistribution of translates of a given finite volume measure on the adelic quo-
tient PGL,,(Q)\ PGL,(A) is studied. However, unlike the case of counting integer
points, it is no longer true that the translated measures will on average develop in-
variance properties under a unipotent subgroup. Roughly speaking this is because
it is not true that if a sequence g,, € PGL, (A) goes to infinity, then for some place
p the projection of g, to this place goes to infinity. Indeed, as Zamojski shows
for most sequences g,, the projections stay bounded within each place. Hence the
limit measures are only known to have the same invariance as the original measure
i — invariance under a conjugate of the diagonal subgroup A. Zamojski shows,
similar to a part of the proof of Theorem 6.1 in [9] that a limit measure must
have positive entropy (for all of its ergodic components) and so Theorem 1.4 can
be applied. However, if n is not a prime number, Zamojski gives an additional
argument which rules out the measures corresponding to intermediate subgroups.

8. Divisibility properties of Hamiltonian quater-
nions

Our last application uses an analogue of Theorem 2.2 for a quotient of the form
I'\ PGL2(Q,) xPGL2(Q,) for two primes p # ¢, and concerns divisibility properties
of integer Hamiltonian quaternions. This is a special case of ongoing joint work
with S. Mozes.

Let H = R[i, , k] be the Hamiltonian quaternions, and let O = Z[i, j, k] be the
order consisting of integer combinations of 1 and the three imaginary units 1, j, k.
We write N(a + bi + cj + dk) = a® + b* + ¢*> + d? for the norm on H.

Let p # 2 be a prime number. Then

I') ={a € O:N(a)is a power of p}

is a multiplicative semi-group, for which +1 and p generates the center C. Taking
the quotient by the center, one obtains a group PT', = I',/C. As a consequence
of Pall’s unique factorization theorem for elements of O it follows that PI', is
virtually a free group (more concretely it contains a free group with p—;l generators
and index 4).

Similarly if p,q # 2 are two different odd prime numbers, then we define the
semigroup

Ipq={acO:N(a)isa product of powers of p and ¢}

which once more gives a group PT', , =T, ,/C after dividing by the center.

The group PT', , is far from being a free group. This is known, but is also
shown clearly by the following theorem. For stating the theorem we need some
definitions. We say an element o € O appears’ in 3 € O if there exits some

"We write ”appears” for this notion of divisibility to distinguish this notion from a left- or
right-divisibility that is sometimes considered for non-commutative rings.
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£,r € O such that 8 = far. The fact that PI',, contains a free subgroup shows
that for any fixed o € T'), with N(a) > 1 the set

{8 €T, : a does not appear in § and N(5) = pk}

grows exponentially with k. We say that o € I'p, is reduced if %oz ¢ O and
%oz ¢ O. In contrast to I';, we have the following theorem concerning I', ,.

Theorem 8.1. Let p, q # 2 be two different primes. Then for any reduced o € T',, 4
the set

{B €T, : a does not appear in 3 and N(B) = p*q*}

grows sub-exponentially. That is, if M (k) is the cardinality of the set, then

.1
klirrgo z log M (k) = 0.

Let us indicate the connection between the above theorem and the dynamics of
diagonal flows, which goes back to [41]. First we may choose a subgroupI' C PT'p,
of finite index which does not contain the images of the elements +i, +7, +k and is
generated by two free subgroups of PI', and PI'y. Then I' is naturally a lattice in
the group G = PGL2(Q,) x PGL2(Q,) for which a fundamental domain is given
by the compact set F' = PGLy(Z,) x PGL2(Z,).

Let a, = x I, where I denotes the identity. Define a, similarly. Since F

p 0
0 1
is a fundamental domain, there exists for every f € F some element v € ' NPT,
and some f' € F for which fa, = vf’. Clearly, if f is replaced by a slight
perturbation of f, then « will not change. In this sense, v corresponds to an open
subset O, of F' ~ I'\G. More generally, if v € I' then v is the image of some
reduced element in O which we assume has norm pF¢* and we can define the open
(and non-empty) subset

Oyz{feF:fal;af; € vF}.

If now 3 = lar for elements «, 8,1, € O with N(I) = p™¢", then f € Og implies
that fa;'ay € On. This has a partial converse, meaning that if f € Og satisfies
faytag € T'O, for sufficiently small values of m and n then we deduce that «
appears in 3.

In this sense an element 3 of norm N(3) = p*¢* in which a does not appear,
gives rise to a piece of an orbit under the joint action of a, and a, on I'\G that
does not visit the open set I'O,. If there are exponentially many such elements 3
as k — oo, then one can construct (with the help of the variational principle from
ergodic theory) from these many large pieces of orbits an invariant measure on I'\G
with positive entropy and zero mass on the set O,. The analogue of Theorem 1.4
for the action of a, and a, on I'\G holds and is indeed a version of Theorem 2.2,
hence we derive a contradiction and Theorem 8.1 follows.
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9. Open problems

We already mentioned the main open problems: Furstenberg’s Conjecture 1.3 re-
garding jointly invariant probability measures for the times 2 and times 3 maps
on T, and Margulis’ Conjectures 1.1-1.2 regarding bounded orbits and invariant
measures on SL,(Z)\ SL,(R) for n > 3. We also refer to [14] and [23] for related
conjectures on the measure classification.

However, even if we allow ourselves the positive entropy assumption there are
still unsolved cases where no analogue to Theorem 1.4 is known. For instance
we may take a subgroup A’ C A of dimension two within the three-dimensional
diagonal subgroup A C SL4(R) and ask what are the A’-invariant and ergodic
probability measures on Xy = SL4(Z)\ SL4(R) for which some element a € A" acts
with positive entropy. The current techniques that go into Theorem 1.4 fall short
in this case.

The list of the applications, discussed above, also suggests a number of open
problems. For instance, Theorem 3.2 currently only holds for d = 2 and Theo-
rem 4.1 only for d = 1. However, we certainly would expect that these hold in any
dimension.

Also Theorem 6.1 currently only holds for cubic fields and the non-compact
space X3, so it is natural to ask for the same for higher dimensions or for compact
quotients of SL3(R) by the units in a degree 3 division algebra over Q.

Another interesting question arises by comparing the argument in [10] (see §3)
with Host’s theorem [24, 25].

Conjecture 9.1. Let p be a probability measure on an irreducible quotient X =
I\ SL2(R) xSLa(R). Suppose p is invariant and ergodic with respect to the action of
the one-parameter diagonal subgroup Ay C SLa(R)x {1} of the first copy of SL2(R),
and suppose p has positive entropy with respect to A;. Write As C {1} x SLa(R)
for the one-parameter diagonal subgroup in the second SLa(R). Then p-a.e. x € X
has equidistributed orbit for the action of As.

The theorem in [24] concerns the same problem with X = T, A; replaced by
x2, and As replaced by x3. A slightly easier problem would be to generalize the
related theorem of Johnson and Rudolph [26], which might look as follows.

Conjecture 9.2. Let p be a probability measure on an irreducible quotient X =
I'\ SL2(R) xSLa(R). Suppose p is invariant and ergodic with respect to the action of
the one-parameter diagonal subgroup Ay C SLa(R)x {1} of the first copy of SLa(R),
and suppose |1 has positive entropy with respect to Ay. Write Ay C {1} x SLy(R)
for the one-parameter diagonal subgroup in the second SLa(R). Then

%/X /OT F(xazs) dt dp(z).

converges to ffde where f € C.(X) and agy € Ay denotes a homomorphism
from R to As.

Similarly, the above two conjectures can be asked for other quotients for which
the analogue of Theorem 2.2 or Theorem 1.4 holds.
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