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Abstract. We study the left action α of a Cartan subgroup on the
space X = G/Γ, where Γ is a lattice in a simple split connected Lie
group G of rank n > 1. Let µ be an α-invariant measure on X. We
give several conditions using entropy and conditional measures each of
which characterizes the Haar measure on X. Furthermore, we show that
the conditional measure on the foliation of unstable manifolds has the
structure of a product measure. The main new element compared to the
previous work on this subject is the use of noncommutativity of root
foliations to establish rigidity of invariant measures.

1. Introduction

1.1. Overview. This paper is a part of an ongoing effort to understand
the structure of invariant measures for algebraic (homogeneous and affine)
actions of higher rank abelian groups (Zn and Rn for n ≥ 2) with hyper-
bolic behavior. It is started from attempts to answer the question raised in
Furstenberg’s paper [4] concerning common invariant measures for multipli-
cation by p and q on the circle, where pn 6= qm unless n = m = 0 (see [12],
[14], [15], [5], [18], [6], [8], [7], [2], [3] and the references thereof; in particular,
for an account of results on Furstenberg’s question see the introduction to
[12]). This study of invariant measures can in turn be viewed as a part of
a broader program of understanding rigidity properties of such actions, in-
cluding local and global differentiable rigidity, cocycle rigidity and suchlike
([9], [10], [11], [13]).

The principal conjecture concerning invariant measures (see ‘main con-
jecture’ in the introduction of [12]) asserts that unlike the ‘rank one case’
(actions of Z and R) the collection of invariant measures is rather restricted;
in a somewhat imprecise way one may say that those measures are of alge-
braic nature unless a certain degeneracy appears which essentially reduces
the picture to a rank one situation. Notice however, that the picture is intrin-
sically considerably more complicated than in the case of unipotent actions
which has been fully understood in the landmark work by Ratner [22, 23].
In the latter case the leading paradigm is unique ergodicity although other
measures of algebraic nature may be present. Such measures appear only in
finitely many continuous parameterized families such as closed horocycles
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on SL(2,R)/SL(2,Z). In the case of higher rank hyperbolic actions there
are always infinitely many isolated compact orbits of increasing complexity
which are dense in the phase space so that in the ideal situation (which
corresponds to unique ergodicity in the unipotent case) one expects the δ–
measures on those orbits to be the only ergodic measures other than Haar.

All the progress made, both for Furstenberg’s question and for the general
case, concerns invariant measures which have positive entropy with respect
to at least some elements of the action. The reason for this is that the avail-
able techniques introduced explicitly in [12] (and implicitly present already
in earlier work on the Furstenberg question) are based on the consideration
of families of conditional measures for various invariant foliations, which are
contracted by some elements of the action. For a zero-entropy measure ev-
ery such conditional measure is atomic, so no further information can be
obtained from these methods. In the positive entropy case the algebraic na-
ture of conditional measures is established first, and this serves as a basis
of showing rigidity of the global measure. There are several methods for
showing that conditional measures are algebraic, which all involve various
additional assumptions. The starting point of all considerations is show-
ing that conditional measures are invariant under certain isometries which
appear as restrictions of certain singular elements of the action (see Propo-
sition 5.1 below). In order to produce a sufficiently rich collection of such
isometries, typical leaves of the foliation in question should be contained in
ergodic components of the corresponding singular elements. This of course
follows from ergodicity of the element. However, ergodicity of the whole ac-
tion with respect to an invariant measure in general does not imply ergod-
icity of individual elements, and singular elements are particularly prone to
be exceptional in this case. Many of the basic results in the works mentioned
above include explicit ergodicity assumptions for singular elements.

There are several ways to verify these conditions. For special measures
in some applications such as isomorphism rigidity these assumptions are
satisfied automatically [8, 7] due the properties of Haar measure. For actions
by automorphisms of the torus, which have been studied most extensively so
far, there are specific tools from linear algebra and algebraic number theory.
One possible assumption, which is used in [12] and [14] (see also [5]) to prove
rigidity of ergodic measures with nonvanishing entropy for some actions by
toral automorphisms, is that no two Lyapunov exponents are negatively
proportional. Such actions are called totally non-symplectic (TNS).

First results for other cases including the Weyl chamber flows were ob-
tained in [12, Sect. 7], and [14] where certain errors in the original presenta-
tion were corrected. For Weyl chamber flows and similar examples Lyapunov
exponents always appear in pairs of opposite sign (this is a corollary of the
structure of root systems for semisimple Lie groups), so the TNS condition
never holds. Accordingly in the work of Katok and Spatzier quoted above
as well as in the recent more advanced work in that direction [7] some form
of ergodicity for certain singular directions is assumed.
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In this paper we take a different course. We study a more restricted class
of the Weyl chamber flows than in those papers, but we manage to find suffi-
cient conditions for algebraicity which avoid any ergodicity type assumptions
for individual elements.

Our main technical innovation is the observation that noncommutativ-
ity of the foliations corresponding to roots allows to produce the desired
translations in some directions; assuming the conditional measures for two
directions are nonatomic, translation invariance is obtained for the commu-
tator direction. This key observation is carried out in Lemma 6.1 for the
SL(n,R) case and in Proposition 7.1 for the general split case.

1.2. The setting. We consider a simple (R-)split connected Lie group G of
rank n > 1, a lattice Γ in G and the action α of a maximal Cartan subgroup
of G on the quotient G/Γ.

1.2.1 The SL(n,R) case. To illustrate the picture let us first consider the
special case given by the subgroup α of SL(n+1,R) consisting of all diagonal
matrices with positive entries. The left action of α on X = SL(n + 1,R)/Γ
is often called the Weyl chamber flow, and is defined by

αtx =




et1

. . .
etn+1


x

where x ∈ X and

t ∈ R =
{
t ∈ Rn+1 :

n+1∑

i=1

ti = 0
}
∼= Rn.

Let m be the Haar measure on X, which is invariant under the left action
of SL(n+1,R) and, in particular, α-invariant. We study ergodic α-invariant
measures µ on X. Aside from Haar measure there are also δ-measures on
compact orbits of α; such orbits are dense (see [21], [20], or [1] for a quanti-
tative statement). We say the measure is standard if it is the Haar measure
or a measure supported on a compact orbit. Among the standard measures
only Haar has positive entropy with respect to individual elements.

We will give several conditions each of which characterizes the Haar mea-
sure on X.

In the unpublished manuscript by M. Rees [24] (see Section 9) a lattice
Γ in SL(3,R) was constructed for which there exist nonstandard invariant
measures on X. With respect to some of these measures the entropies hµ(αt)
of some individual elements of the Weyl chamber flow are positive. Further-
more, the conditional measure for the foliation into unstable manifolds for
αt is supported on a single line. Thus unlike the TNS case for toral automor-
phisms positive entropy for some elements of the Weyl chamber flow alone
is in general not sufficient to deduce that µ = m.

We show that for SL(3,R) in terms of conditional measure structure the
picture which appears in Rees’s example is the only one possible for measures
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other than Haar. A part of this result has been outlined without proofs at
the end of [12].

There are other assumptions (see Theorem 4.1) about entropy, or the
conditional measures which are sufficient in order to show that µ = m. For
instance if all elements of the flow have positive entropy

hµ(αt) > 0 for all t ∈ R \ {0}
for the action on SL(n + 1,R)/Γ or some elements have sufficiently large
entropy, then µ = m.

1.2.2 The general split case. Let now G be a simple split connected Lie group
of rank greater than one, let Γ be a lattice in G, and let α be a maximal
Cartan subgroup which acts from the left on X = G/Γ. We write again
αt for the action of an individual element of the Cartan subgroup, where
t ∈ Rn and n > 1 is the (real) rank of the Lie group. We denote the (nonzero)
roots of G with respect to α by the letter λ and the set of all roots by Φ.
Furthermore, we let g be the Lie algebra of G, and gλ be the root space
corresponding to the root λ. Then gλ is one-dimensional since G is simple
and split. For any t the root space gλ is an eigenspace for the adjoint action
of αt on the Lie algebra g, the corresponding eigenvalue is eλ(t).

In this case the Haar measure is characterized as the only Borel probability
measure invariant and ergodic with respect to the left action of α for which
the conditional measures on the one-dimensional foliations corresponding to
all root spaces are nonatomic, or as the measure with a sufficiently large
entropy (see Theorem 4.1).

Before presenting the result and its proof in Sections 4–8 we will give
in the next two sections a short description of the foliations of X and the
conditional measures for µ.

1.3. Extensions. 1.3.1 Implications for Diophantine approximation There
are interesting connections between number theory and dynamics of higher
rank actions. For example, the famous Littlewood conjecture on Diophan-
tine approximation would follow if one can show that any bounded orbit
of the Weyl chamber flow on SL(n,R)/SL(n,Z) for n ≥ 3 is closed. [16,
Section 5.3]. This statement is a topological version of the rigidity of invari-
ant measures. Our results may be applied to obtain certain partial results
along the line of showing that possible counterexamples to the Littlewood
conjecture form a “thin” set.

1.3.2 Infinite volume factors While we present our results in the setting of
a finite volume factor G/Γ, finiteness of the volume (i.e. the fact that Γ is
a lattice) does not play any role in our considerations. One can consider
left actions of a maximal Cartan subgroup on factor–spaces of more general
kind G/Λ where Λ is a discrete subgroup of G. It is the finiteness of the
measure µ which is important. Thus if the factor–space has infinite volume
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our conditions properly modified will imply that an invariant measure with
one of the additional properties (see Theorem 4.1) simply does not exists.

1.3.3 Nonsplit groups The assumption that G is split is technically important
for our argument since it guarantees that the root spaces are one-dimensional
and hence the only nonatomic algebraic measures are Lebesgue. In the case
of more general (nonsplit) semisimple groups of higher rank considerations
of conditionals within the root spaces are more involved. Still one can find
conditions guaranteeing algebraicity without invoking ergodicity directly.
These results will appear in a separate paper subsequently.

2. Foliations of X

2.1. SL(n,R) case. We begin by briefly describing some foliations for the
special case X = SL(n + 1,R)/Γ, their expanding and contracting behavior
and the Weyl chamber picture in R. Let d(·, ·) denote a right invariant metric
on SL(n + 1,R) and the induced metric on X.

Recall that a foliation F is contracted under αt for a fixed t ∈ R if
for any x ∈ X and any y ∈ F (x), d(αntx, αnty) → 0 for n → ∞. In
other words the leaf through x is a part of the stable manifold at x. A
foliation is expanded under αt if it is contracted under α−t, or each leaf
is a part of an unstable manifold. A foliation F is isometric under αt if
d(αtx, αty) = d(x, y) whenever y ∈ F (x) is close to x (in the metric of the
submanifold F (x)).

Let 1 ≤ a, b ≤ n +1 always denote two fixed different indices, and let exp
be the exponentiation map for matrices. Define the matrix

va,b =
(
δ(a,b)(i,j)

)
(i,j)

,

where δ(a,b)(i,j) is 1 if (a, b) = (i, j) and 0 otherwise. So va,b has only one
nonzero entry, namely, that in row a and column b. With this we define the
foliation Fa,b, for which the leaf

Fa,b(x) =
{
exp(sva,b)x : s ∈ R}

(2.1)

through x consists of all left multiples of x by matrices of the form exp(sva,b) =
Id+sva,b.

The foliation Fa,b is invariant under α, in fact a direct calculation shows

αt
(
Id+sva,b

)
x =

(
Id+seta−tbva,b

)
αtx, (2.2)

the leaf Fa,b(x) is mapped onto Fa,b(αtx) for any t ∈ R. Consequently the
foliation Fa,b is contracted (corr. expanded or neutral) under αt if ta < tb
(corr. ta > tb or ta = tb). If the foliation Fa,b is neutral under αt, it is in fact
isometric under αt.

The leaves of the orbit foliation O(x) = {αtx : t ∈ R} can be described
similarly using the matrices

ua,b = (δ(a,a)(k,l) − δ(b,b)(k,l))k,l.

In fact exp(ua,b) = αt for some t ∈ R.
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Clearly the tangent vectors to the leaves in (2.1) for various pairs (a, b)
together with the orbit directions form a basis of the tangent space at every
x ∈ X.

For every a 6= b the equation ta = tb defines a hyperplane Ha,b ⊂ R. The
connected components of

A = R \
⋃

a 6=b

Ha,b

are the Weyl chambers C of the flow α. For every t ∈ A only the orbit
directions are neutral; such a t is called a regular element.

Let I = {(a, b) : a < b}, and let MI be the span of va,b for (a, b) ∈ I
(in the Lie algebra of SL(n + 1,R)). For the invariant foliation FI the leaf
through x is defined by

FI(x) =
{
exp(w)x : w ∈ MI

}
. (2.3)

Furthermore, there exists a Weyl chamber C such that for every t ∈ C,
the leaf FI(x) is the unstable manifold for αt. In fact C = {t ∈ R : ta >
tb for all a < b}, this Weyl chamber is called the positive Weyl chamber.

2.2. General split case. Let exp : g → G be the exponential map form
the Lie algebra to the Lie group. For any root λ and w ∈ gλ it follows that
αt exp(w) = exp(eλ(t)w)αt. We define the foliation Fλ on G/Γ by its leaf
through x

Fλ(x) = {exp(w)x : w ∈ gλ}.
By construction Fλ is an invariant foliation which is contracted by αt if
λ(t) < 0, expanded if λ(t) > 0 and isometric if λ(t) = 0. For every root
λ fix a nontrivial element vλ ∈ gλ. The tangent space of G/Γ at any fixed
point is isomorphic to g and splits into the sum of gα and the various root
spaces gλ for λ ∈ Φ. Here gα is the Lie algebra of the Cartan subgroup –
and corresponds to the orbit directions in G/Γ. Any Lie subalgebra h which
is a sum of root spaces defines similarly an invariant foliation Fh. For a fixed
t and the subalgebra generated by the root spaces {gλ : λ(t) > 0} this
foliation is the foliation into unstable manifolds for αt. The notions of Weyl
chambers and regular elements apply similarly. In the context of SL(n+1,R)
the set Φ and the root spaces are naturally described by pairs λ = (a, b) of
different indices and the corresponding matrix spaces as above.

In what follows the foliation F will always be the orbit foliations of a
unipotent subgroup normalized by the Cartan subgroup, such that the foli-
ation F is expanded by a single element of the action. More precisely, there
is a Lie subalgebra h which is a sum of root spaces, such that H = exp h
is a unipotent subgroup, the leaf F (x) = Hx is the orbit of x ∈ X under
H, and there is a t ∈ Rn such that F is expanded under αt. Notice that,
under those assumptions the parameterization map ϕh

x(w) = exp(w)x for
w ∈ h and most fixed x ∈ X is injective. In fact, if the map is not injec-
tive at x then discreteness of Γ implies that α−ntx eventually stays outside
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every compact set of X when n → ∞. This is impossible if X is compact.
Furthermore, for a general X we see that the map is injective for a.e. x ∈ X
with respect to any αt-invariant probability measure. We say A ⊂ F (x) is
open (bounded, etc.) if A is open (bounded, etc.) in the topology of the
submanifold F (x), i.e. if and only if there is an open (bounded, etc.) subset
B ⊂ h with A = ϕh

x(B).
As in the case of SL(n+1,R) we let d(·, ·) be a fixed right invariant metric

on G and use the induced metric on X = G/Γ.

3. The conditional measures

Throughout the paper the standing assumption on µ is that µ is a Borel
probability measure, which is ergodic with respect to the action α. We will
study µ by means of its conditional measures µF

x for various foliations F
of the kind described in Section 2. We recall some of the basic facts, see
also Section 4 of [12]. We write Fλ, resp. F for a foliation whose leaves are
one-dimensional corresponding to a root space resp. to a Lie subalgebra h
which is a sum of root spaces. As was noted before, we assume that there is
a map αt which expands the foliation F .

3.1. Construction of conditional measures for foliations. First we
recall the basic notion of conditional measures with respect to a σ-algebra
A or a measurable partition. All statements (or characterizations) below
should be understood a.e. with respect to µ. The conditional measures µAx
are a family of probability measures satisfying the following characterizing
properties.

(i) The assignment x → µAx is A-measurable, where we use the weak∗
topology in the space of probability measures.

(ii) For any integrable function f and A ∈ A∫

A
f(x) dµ(x) =

∫

A

[∫

X
f(y) dµAx (y)

]
dµ(x).

Using the conditional expectation the above properties together are equiv-
alent to

E(f |A)(x) =
∫

X
f(y) dµAx (y)

for all integrable functions f . If A is countably generated by A1, . . . , Ai, . . .,
the atom of x is defined by

[x] = [x]A =
⋂

i:x∈Ai

Ai ∩
⋂

i:x/∈Ai

X \Ai.

Then µAx is a probability measure on the atom [x] for a.e. x ∈ X.
The foliations of the kind we are considering are usually not measurable

with respect to a measure µ, hence the above construction cannot be applied
directly. Typically those foliations have dense leaves. Conditional measure in
such a setting are defined by approximation; there are measurable partitions
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whose elements are large pieces of the leaves of the foliations. While this
construction can be carried out in greater generality we will restrict our
description to the particular case of homogeneous foliations on factor–spaces
of Lie groups.

Let F be the foliation defined by the Lie algebra h (as always a sum of
root spaces), and let

T =
∑

λ:vλ /∈h

gλ + gα

be the subspace transversal to h. The conditional measure µF
x for a foliation

is a family of σ-finite measures with the following characterizing properties.
(i) For a.e. pair of points x, y ∈ X the conditional measures agree up to

a multiplicative constant C > 0

µx = Cµy whenever F (x) = F (y) (3.1)

is their common leaf.
(ii) The complement of the leaf F (x) is a null set with respect to µF

x for
a.e. x ∈ X.

(iii) Let z ∈ X, O ⊂ h× T be a bounded open set such that

ϕO,z(w, w′) = exp(w) exp(w′)z for (w,w′) ∈ O

is injective. Define the σ-algebra for the “foliated set” U = ϕO,z(O)
to be

A(O, F ) =
{
X \ U,ϕO,z(O ∩B) :

B = h× C and C ⊂ T is measurable
}
.

Notice that, the atoms [x] of x with respect to the σ-algebra A(O, F )
are X\U for x /∈ U , and ϕO,z

(
O∩(h×{w′})) for x = ϕO,z(w,w′) ∈ U

and (w, w′) ∈ O. In the second case the atom is an open subset of
the leaf F (x). Then µF

x satisfies for a.e. x ∈ U that the conditional
measures for A(O, F ) and µF

x are up to a multiplicative constant
equal when restricted to [x]. More precisely the function g(x) =
µF

x ([x]) is finite and measurable, and

µA(O,F )
x (C) =

µF
x (C ∩ [x])
µF

x ([x])

for any measurable C ⊂ X and a.e. x ∈ X.
The existence of the conditional measures for a foliation F can be shown

by using the conditional measure for various σ-algebras A(O, F ). There is
a sequence of open sets as in Property (iii) above whose images cover X.
Furthermore, by applying the powers of the automorphism αt which expands
F , one can make the atoms [x] for A(O, F ) become larger and larger pieces
of the leaf F (x). This produces a (doubly infinite) sequence of σ-algebras
A(O, F ) with the property that for a.e. point x ∈ X and any bounded set
C ⊂ F (x) there is a σ-algebra A(O, F ) of that sequence such that C ⊂
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[x] ⊂ F (x). The conditional measure µF
x is a limit of scalar multiples of

the conditional measures for such σ-algebras A(O, F ). It is necessary to use
multiples since otherwise the conditional measure on a larger atom might
not extend the conditional measure on the smaller one – one fixes for every
point x a bounded set Dx ⊂ F (x) and uses Dx as a normalizing set so
that µF

x (Dx) = 1. This can be carried out so that the measurability part of
Property (iii) is satisfied.

We summarize the most important properties. The conditional measure
µF

x is a σ-finite measure on the leaf F (x), and locally finite when considered
as a measure on the manifold F (x). Although this measure is not canonically
defined, the ratios

µF
x (A)

µF
x (O)

for a measurable A ⊂ F (x) and an open bounded set O ⊂ F (x) which con-
tains x are canonical. The invariance of the measure under the flow implies
that

µF
αtx(αtA) = CµF

x (A) (3.2)

for any t ∈ R, a.e. x ∈ X, some constant C > 0 (depending on x and t) and
any measurable A ⊂ F (x).

For a foliation Fλ into one-dimensional leaves defined by a root λ (or a
pair of different indices λ = (a, b)) we write µλ

x for the family of conditional
measures and impose the following normalization

µλ
x

({exp(svλ)x : s ∈ [−1, 1]}) = 1, (3.3)

where vλ ∈ gλ is a fixed nontrivial vector in the root space (or the matrix
vλ = va,b). This and Equation (3.2) imply

µλ
αtx(αtA) = µλ

x(A) if Fλ is isometric under αt. (3.4)

A close relation of µ and its conditional measures is how null sets of the
first behave under the second. We note the following lemma for later use.

Lemma 3.1. Let F1, . . . , Fj be several foliations as in Section 2. Let N be a
null set, then there exists a null set N ′ ⊃ N with µFi

x (N ′) = 0 for all x /∈ N ′
and i = 1, . . . , j.

Proof. For a conditional measure with respect to a σ-algebra A, it follows
from Property (ii) of the characterizing properties that µAx (N) = 0 for a.e.
x ∈ X. Using the characterizing properties for µF

x we get similarly µFi
x (N) =

0 for a.e. x ∈ X and all i, say Ci(N) ⊃ N is a null set for which µx(N) = 0
for x /∈ Ci(N).

Let N0 = N and Nk+1 = C1(C2(· · ·Cj(Nk) · · · )) for k = 0, . . .. Clearly
N ′ =

⋃
Nk is a null set. If x /∈ N ′ and k ≥ 0, we have µFi

x (Nk) = 0 because
x /∈ Ci(Nk) ⊂ Nk+1. Since µF

x is a measure we conclude µF
x (N ′) = 0. ¤
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3.2. Some dynamical properties. We say µλ
x is Lebesgue a.e., if it is

invariant under left multiplication with exp(svλ) for a.e. x ∈ X and all
s ∈ R. We say µF

x is atomic a.e. (corr. trivial a.e.) if µF
x is an atomic measure

(corr. µF
x = δx) for a.e. x ∈ X.

Lemma 3.2. Let µ be an α-invariant ergodic measure on X. Either µλ
x is

Lebesgue a.e. or the conditional measure is almost never Lebesgue. Similarly
either µF

x is atomic a.e. (corr. trivial a.e.) or µF
x has no atoms (corr. is not

trivial) a.e.
Furthermore, if µF

x is atomic a.e., it is in fact trivial a.e.

Sketch of Proof. The first statement follows from Equation (3.2), which im-
plies that the set of points x ∈ X where µλ

x is Lebesgue (atomic or trivial)
is α-invariant. For the second statement let ε > 0 and let x be an atom
of µF

x . Then there is a small neighborhood U ⊂ h of the origin such that
µF

x (exp(U)x\{x}) ≤ εµF
x ({x}). Let A be the set of points where this inequal-

ity for a fixed ε and U holds. We claim that A is measurable. First we can
divide X into countably many pieces Xk such that for x ∈ Xk ⊂ ϕOk,zk

(Ok)
we have exp(U)x ⊂ [x]A(Ok,F ). Then A∩Xk is measurable because of Prop-

erty (iii) of µF
x and Property (i) of µ

A(Ok,F )
x . Let αt be such that F is

expanded. By Poincaré recurrence a.e. x ∈ A returns infinitely often to A,
i.e. there are infinitely many positive integers n with αntx ∈ A. We see from
Equation (3.2) that

µF
x

(
F (x) \ {x}) ≤ εµF

x ({x})
for a.e. x ∈ A. The set B of points x with the above property is α-invariant,
and so B = X. However, by varying U and ε we see that µF

x is trivial a.e. ¤

The conditional measure µF
x for various foliations F cannot be used to

describe µ uniquely (locally one would need a transversal factor measure as
well). However, the measure µ and the measures µF

x for x ∈ X are closely
related, and some properties of µ can be characterized by the conditionals.

Proposition 3.3. Let µ be an ergodic α-invariant measure on X. If µλ
x is

Lebesgue a.e. for all roots λ ∈ Φ (resp. pairs of different indices λ = (a, b)),
then µ = m is the Haar measure.

For a fixed map αt the entropy hµ(αt) is trivial if and only if the condi-
tional measure µF

x is trivial for the foliation F into unstable manifolds.

Sketch of Proof. For the first statement consider an element g = exp(svλ)
for a small s and some B ⊂ X with small diameter. There exists an open set
O as in Property (iii) for conditional measures on leaves, which contains B
and gB. By Property (iii) the conditional measure for the σ-algebraA(O,Fλ)
and x ∈ ϕO,z(O) is the restriction of µλ

x to the atom [x] almost surely. From
this we conclude µ(B) = µ(gB). Clearly every set B can be partitioned
into at most countably many sets of small diameter, so the same holds
for any measurable B. Furthermore, the tangent space of X is spanned by
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the tangent vectors to the various Fλ and the orbit directions, so that the
measure is left invariant under any small g ∈ G. It follows that µ = m.

The second statement is taken from Proposition 4.1 in [12]. ¤
Notice that, if the conditional measures with respect to a foliation are

δ-measures, then the foliation is in fact measurable, the corresponding σ-
algebra is the σ-algebra of all measurable sets and hence the measurable
partition corresponding to this σ-algebra is the partition whose elements
are single points: almost every leaf has only one “significant” point, the
support of the conditional measure.

It follows from the second statement of Proposition 3.3 that, if F is the fo-
liation into unstable manifolds and Fλ is a one-dimensional subfoliation with
nonatomic conditional measure, then µF

x is nonatomic a.e. and the entropy
of αt is positive. We will study in Section 8 how the conditional measures
µλ

x for λ ∈ Φ determine the conditional measure µF
x for the foliation F

into unstable manifolds. Corollary 7.2 will give a closer connection between
the conditional measures on the one-dimensional foliations and entropy, in
particular a converse to the above.

4. Formulation of results

As we noted in the introduction – see also Section 9 – positive entropy
for certain maps of the Weyl chamber flow is not sufficient to deduce that
µ is the Haar measure.

Theorem 4.1. Let G be a simple split connected Lie group of rank n > 1
and let Γ ⊂ G be a lattice. Let α be the left action of a maximal Cartan
subgroup on X = G/Γ. For a fixed regular element αt there exists a number
q < 1 such that for any ergodic α-invariant probability measure µ on X the
following conditions are equivalent;

(i) µ = m is the Haar measure on X.
(ii) For every root λ ∈ R the conditional measure µλ

x is nonatomic a.e.
(iii) The entropies of αt with respect to µ and m satisfy the inequality

hµ(αt) > q hm(αt).
If G = SL(n + 1,R) we have additionally the condition

(iv) The entropy hµ(αs) > 0 is positive for all nontrivial αs.

We will see in Example 9.5 that in general Condition (iv) does not char-
acterize the Haar measure (or a Haar measure on an invariant homogeneous
submanifolds).

As a model for the proof, and since stronger statements are available in
the case of SL(3,R), we have the following theorem.

Theorem 4.2. Let G = SL(3,R) and let α be the R2 Weyl chamber flow
on X = G/Γ, where Γ is a lattice in G. Let µ be an ergodic α-invariant
probability measure on X. The following are equivalent;

(i) µ = m is the Haar measure on X.
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(ii) For every a 6= b the conditional measure µ
(a,b)
x is nonatomic a.e.

(iii) For at least three different pairs of indices (a, b) with a 6= b the
conditional measure µ

(a,b)
x is nonatomic a.e.

(iv) The entropy hµ(αt) > 0 is positive for all t ∈ R \ {0}.
(v) For some t ∈ R \ {0} the entropies with respect to µ and m satisfy

hµ(αt) >
1
2

hm(αt).

(vi) The entropy function t 7→ hµ(αt) does not agree with a linear map
on a halfspace.

Furthermore, if µ is not Haar and the entropy with respect to an element
αt of the action is positive, there exists a pair of indices (a, b) such that the
following holds:

(*) For any element of the action αs the conditional measure on its stable
manifold is supported by a single leaf of Fa,b or Fb,a.

Notice that for every regular element of the action and every pair of indices
(a, b) either Fa,b or Fb,a is expanded and the other one is contracted.

In Rees’s example (see [24] and Section 9) a nonstandard ergodic invariant
measure is supported on a compact homogeneous subspace M which fibers
over a compact manifold, and the action on M splits into an R-action and a
rotation on the fibers. In this case the product of any R-invariant measure
in the base and Lebesgue measure in the fibers is α-invariant. Here the
statements of Theorem 4.2 can be checked easily.

The main conjecture in [12] implies in this case that this is the only
possible picture for an invariant measure as in (*) in Theorem 4.2.

We indicate some possible strengthenings of Theorem 4.1.
First, as we noticed in the introduction, it is not necessary for our proofs

to assume that Γ is a lattice. However, if µ satisfies any of Condition (ii) or
(iii) then Γ is a lattice and µ = m.

The particular value of q in Condition (iii) in Theorem 4.1 does not depend
on the lattice Γ, only on the roots and root spaces of the Cartan action α.
An optimal choice of q requires an analogue of Condition (iii) in Theorem
4.2 for general groups.

One not optimal such analogue is the following. It is enough to assume
that µλ

x is nonatomic a.e. for a set of roots λ, whose root spaces together
generate g.

5. Beginning of the proof: translation invariance of
conditional measures

For the proofs of the theorems we need more information about the con-
ditional measures. The next proposition will be used, similarly to Lemma
5.4 in [12], to show that the conditional measures are invariant under trans-
lations. The letter λ will in the following always denote a root of the Lie
algebra g of G. In the case of SL(n + 1,R) we can identify the roots with
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the pairs λ = (a, b) of different indices. Recall that µ is assumed to be an
α-ergodic probability measure on X.

Proposition 5.1. Let αt be such that Fλ is an isometric foliation of X.
There exists a null set N ⊂ X such that the following holds. For any two
x, y /∈ N for which there exists

y′ = exp(svλ)x ∈ Fλ(x)

with
d(αnty, αnty′) → 0 for n →∞, (5.1)

we define the map

φ : Fλ(y) → Fλ(x)
exp(rvλ)y 7→ exp((r + s)vλ)x

which maps z ∈ Fλ(y) to the unique z′ ∈ Fλ(x) satisfying Equation (5.1)
with z and z′, see Figure 1. The conditional measure µλ

x coincides with the
image of µλ

y under φ up to a multiplicative constant.

r r

r

r

r Fλ(y)

Fλ(x)
x y′ z′

y z

Figure 1. The two leaves Fλ(x) and Fλ(y) approach each
other, when αnt is applied to them and n →∞.

Sometimes it is more convenient to use the following locally finite measure
νλ

x on R which is just an isomorphic copy of µλ
x. For a measurable set A ⊂ R

we define
νλ

x (A) = µλ
x

({exp(rvλ)x : r ∈ A}).
With this notation the conclusion of Proposition 5.1 can be expressed as

νλ
y (A) = Cνλ

x (A + s)

for a multiplicative constant C > 0 and any measurable A ⊂ R. Also note
that in the case of y′ = x the number s vanishes and by the normalization
in Equation (3.3) the multiplicative constant equals 1. This leads to the
corollary.

Corollary 5.2. Let λ, ξ be two roots (or pairs of indices). Assume λ 6= ±ξ
(or that the pair λ is neither the pair ξ nor the reversed pair), then for a.e.
x ∈ X and µξ

x-a.e. y ∈ Fξ(x)

νλ
x = νλ

y .
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Proof. From the discussion above the corollary follows at once if we find a
map αt contracting Fξ and stabilizing Fλ. In the case of SL(n + 1,R) and
the pairs λ = (a, b) and ξ = (c, d) 6= (a, b), (b, a) it is easy to find t satisfying
ta = tb and tc < td.

For the general case note that λ and ξ cannot be multiples of each other,
since this can only be if λ = ±ξ. However, this means that λ and ξ are
linearly independent linear functionals on the Lie algebra gα corresponding
to the Cartan subgroup. There exists an element αt of the Cartan subgroup
which contracts Fξ and acts isometrically on Fλ. ¤

Proof of Proposition 5.1. The proof is a variation of Hopf’s argument. Let
g′ ⊂ g be the Lie subalgebra whose elements are contracted by the ad-
joint action of αt. Then the points x, y, y′ as in the proposition satisfy
y′ = exp(w)y for some w ∈ g′ and y′ = exp(svλ)x for some s ∈ R. If
z = exp(rvλ)y ∈ Fλ(y), then

z′ = exp((r + s)vλ)x = exp(rvλ) exp(w) exp(−rvλ)z ∈ Fλ(x)

satisfies Equation (5.1) with z and z′. Here we use that the metric d is the
induced metric of a right invariant metric on G. Since Fλ is an isometric
foliation there can be only one such z′.

The map x 7→ νλ
x is measurable, where we use the weak∗ topology on

the set of locally finite measures. More precisely, we claim x 7→ ∫
f dνλ

x

is measurable for any continuous function with compact support f : R →
R. Let O ⊂ h × T be as in Property (iii) of the characterizing properties
for µF

x , write A = A(O, Fλ) for the corresponding σ-algebra, and fix the
function f with support in [−N,N ]. Let O′ ⊂ O be an open sets such that
[−N, N ]× {0}+ O′ ⊂ O. There is a sequence of such open sets O′

i ⊂ Oi for
which ϕOi,zi(O

′
i) covers X. For this reason it is enough to show measurability

for x ∈ ϕO,z(O′) for a fixed such O′ ⊂ O.
Using a local inverse of ϕ = ϕO,z one can define a uniformly continuous

function k : ϕ(O′) × ϕ(O) satisfying k(exp(svλ)x, x) = f(s) for all |s| ≤ N
and x ∈ ϕ(O′). For this function

∫
f dνλ

x =
1

C(x)

∫
k(y, x) dµAx (y) for any x ∈ π(U),

where C(x) is the normalizing constant. We consider first the measurability
of the integral.

Note that u 7→ µAu is measurable by one of the properties of the conditional
measures. This shows that

K(u, x) =
∫

k(y, x) dµAu (y)

is measurable in u ∈ π(O′) for any fixed x ∈ π(O). If x′ is close to x, then
K(u, x′) is uniformly close to K(u, x). We cover π(O) by a sequence of ε-
balls Bε(xi), and produce a measurable partition {P1, . . .} with Pi ⊂ Bε(xi).
Then Kε(u, x) = K(u, xi) for x ∈ Pi defines a measurable function Kε on
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ϕ(O′)× ϕ(O). Letting ε tend to zero, Kε tends to K. This shows that K is
measurable as a function in two variables. Therefore K(x, x) is a measurable
function in x, which is exactly the integral term above. The multiplicative
constant C(x) is equal to K(x, x) if f is the characteristic function of the
interval [−1, 1] – approximating the characteristic function by continuous
functions from above shows in the limit that C(x) is measurable.

Let N0 be a null set such that for any two points not in N0 Properties
(3.1) and (3.4) hold for all powers of αt.

By Luzin’s Theorem there exists a compact subset Kj ⊂ X \ N0 with
measure

µ(Kj) > 1− 1
j

(5.2)

such that the restriction of νλ
x to Kj is continuous. We can assume the

sequence Kj is increasing. Let

fj(x) = lim
n→∞

1
n

n−1∑

k=0

1Kj (α
ktx)

be the limit of the Birkhoff averages of the characteristic function 1Kj . Define

Lj =
{
x ∈ X : fj(x) ≤ 1

2
}
,

clearly Lj is decreasing. We claim limj→∞ µ(Lj) = 0. From Equation (5.2)
and the ergodic theorem we get

1 = lim
j→∞

∫

X
fj dµ

≤ lim
j→∞

(
µ(X \ Lj) +

1
2
µ(Lj)

)

≤ 1− 1
2

lim
j→∞

µ(Lj).

This proves the claim. We obtain from this the null set N = N0 ∪
⋂

j Lj .
Now suppose x, y /∈ N are such that there exists a y′ as in the assumptions

of the proposition. By definition of N we can find j such that x, y /∈ Lj .
Therefore both points return to Kj infinitely often and with a frequency
higher than 1

2 . So one can find a single sequence of integers ni → ∞ such
that

αnitx, αnity ∈ Kj for all i.

Since Kj is compact we can find a subsequence (again denoted by ni) and
two points x̄, ȳ ∈ Kj such that

αnitx → x̄

and the same for y and ȳ (along the same sequence).
From Equation (3.4) we get

νλ
x = νλ

αnitx
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and by the continuity on Kj

νλ
x = νλ

x̄ .

The same argument for y shows

νλ
y = νλ

ȳ .

Since y and y′ satisfy Equation (5.1) the limit points satisfy ȳ ∈ Fλ(x̄) and
µλ

ȳ = Cµλ
x̄ by Property (3.1). This shows the required equality of measures.

¤

6. Proof in the SL(n,R) case

One main ingredient of the proof of Theorem 4.1 is the non-abelian struc-
ture of the foliations. The next lemma makes use of this. We will first turn
to the case of G = SL(n + 1,R) and consider the general case later.

Lemma 6.1. Let G = SL(n + 1,R) and let α be the Weyl chamber flow
on X = G/Γ. Suppose µ is an invariant ergodic measure and 1 ≤ a, b, c ≤
n + 1 are three different indices. If µ

(a,b)
x and µ

(b,c)
x are nonatomic a.e., the

conditional measure µ
(a,c)
x is Lebesgue a.e.

The idea of the proof is to translate the measure ν
(a,c)
x along a rectangle

with sides parallel to the foliations Fa,b and Fb,c, and use the fact that
due to the commutation relations such a rectangle does not close up. The
two endpoints are in the same Fa,c-leaf, see Figure 2. We will show that the

z z′

x

y′
y

Fa,b(z)

Fa,b(y)

Fa,c(x)

Fb,c(z) Fb,c(z′)

Figure 2. The rectangle with sides parallel to Fa,b and Fc,d

only closes up with another side parallel to Fa,c.

measure νa,c
x on R does not change under such a translation. However, for this

it is necessary to avoid non-typical points. Here we will use Proposition 5.1.

Proof. Find a null set N0 such that Proposition 5.1, Corollary 5.2 and Prop-
erty (3.1) holds for all pairs of indices and all x /∈ N0. Enlarge N0 to N such
that µ

(i,j)
x (N) = 0 for all x /∈ N and i 6= j as in Lemma 3.1. Let z /∈ N ,

we are going to define all points in Figure 2. Since µ
(a,b)
z is nonatomic, there
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exists a point z′ = (Id +rva,b)z ∈ Fa,b(z) \N with r ∈ R \ {0}. Since every
neighborhood of z has positive measure with respect to µ

(a,b)
z the number r

can be chosen arbitrarily small. Since z, z′ /∈ N , we have

µ(b,c)
z (N) = µ

(b,c)
z′ (N) = 0.

By Corollary 5.2, νb,c
z = νb,c

z′ . Since this measure is nonatomic but the preim-
ages of N under the parameterization maps at z and z′ are null sets, there
exists an arbitrarily small s ∈ R \ {0} with x = (Id+svb,c)z /∈ N and
y = (Id+svb,c)z′ /∈ N . For x and y we see that

y = (Id+svb,c)(Id+rva,b)z = (Id +svb,c)(Id+rva,b)(Id+svb,c)−1x.

By the commutation relation for va,b and vb,c we get

y = (Id+rva,b)(Id−rsva,c)x = (Id +rva,b)y′

where y′ = (Id−rsva,c)x ∈ Fa,c(x). Choosing αt such that Fa,b is contracted
and Fa,c is isometric we get from Proposition 5.1

νa,c
z = νa,c

z′ and
νa,c

x (A) = Dνa,c
y (A− rs)

for some D > 0 and any measurable A ⊂ R. Furthermore, νa,c
x = νa,c

z and
νa,c

y = νa,c
z′ by Corollary 5.2.

We have shown that for z ∈ X\N there are arbitrarily small non-vanishing
t ∈ R and a constant D > 0 such that

νa,c
z (A + t) = Dνa,c

z (A) for any measurable A ⊂ R, (6.1)

in other words νa,c
z is invariant under t in the affine sense. This situation

also appeared in the proof of measure rigidity in case of automorphisms of
the torus Tn, the arguments in [12], [14] or [5] could be used to complete
the proof. We present here a slightly different proof for completeness.

We claim that D = 1 a.e., so that νa,c
z is invariant under t in the strict

sense. We assume by contradiction that D 6= 1 on a set of positive measure.
We define the measurable function

f(z) = lim sup
r→∞

log νa,c
x ([−r, r])

2r

which measures the exponential growth of the measure νa,c
x . (Measurability

of the fraction follows easily by using a decreasing sequence of continuous
functions approximating the characteristic function of [−r, r] from above.)
Replacing t with −t if necessary, we can assume D > 1. Iterating Equation
(6.1) starting with A = [−1, 1] we get

νa,c
x ([−1 + nt, 1 + nt]) = Dn.

If t > 0 let rn = 1 + nt. Then

log νa,c
x ([−rn, rn]) ≥ n log D
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shows that f(x) > 0. The other case and the proof that f(x) < ∞ are
similar, together we have shown that f(x) ∈ (0,∞) whenever D 6= 1.

Suppose αt expands Fa,c, then eta−tc > 1. The function f satisfies

f(αtx) = lim sup
r→∞

log νa,c
αtx

([−r, r])
2r

= lim sup
r→∞

log Cνa,c
x (etc−ta [−r, r])

2r

= eta−tc lim sup
r→∞

log νa,c
x (etc−ta [−r, r])

2etc−tar

= eta−tcf(x).

In the second line we used the analog to Formula (3.2) for the measures
νa,c

x . However, this contradicts Poincaré recurrence since f(αntx) ↗ ∞.
This shows that D = 1 and νa,c

z is invariant under t.
For every z define

Gz = {t ∈ R : νa,c
z is invariant under t}.

Obviously Gz is a subgroup of R. Therefore there are three cases, either
Gz = R and νa,c

z is the Lebesgue measure. Or Gz is a discrete subgroup, or
Gz is a dense subgroup. We show that the first case happens a.e.

Since t can be made arbitrarily small, Gz cannot be a discrete subgroup.
Suppose Gz is dense and νa,c

z has atoms, then by invariance under Gz there is
a dense set of atoms which all have the same mass. However, this contradicts
that νa,c

z is locally finite. Suppose now Gz is dense and νa,c
z does not have any

atoms, let I be any interval in R. The function g(t) = νa,c
z (I+t) is continuous

in t and constant on Gz. Therefore g is constant. Since this holds for any
interval the measure is invariant under any t ∈ R and Gz = R.

Since νa,c
z is the isomorphic copy of µ

(a,c)
z using the parameterization of

Fa,c, this completes the proof that µ
(a,c)
z is Lebesgue a.e. ¤

We proceed to the proof of Theorem 4.2 and part of Theorem 4.1 in the
case of G = SL(n + 1,R). It is clear that the Haar measure always satisfies
the other conditions in the theorem, so we only have to prove one direction.

Proof that (ii) implies (i) for G = SL(n + 1,R). Suppose Condition (ii) holds,
let a, c be two different indices. There exists b different from a and c, by as-
sumption µ

(a,b)
x and µ

(b,c)
x are nonatomic a.e. By Lemma 6.1 µ

(a,c)
x is Lebesgue

a.e. This holds for all a 6= c and Proposition 3.3 concludes the proof. ¤

We will use the following lemma (a version of the Ledrappier-Young en-
tropy formula, see [17]) to conclude the proof of the case SL(n + 1,R) and
postpone the proof of the lemma to Section 8.

Lemma 6.2. There are constants sa,b with

sa,b = 0 if µ(a,b)
x is atomic a.e. and
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sa,b ∈ (0, 1] otherwise,

such that for any t ∈ R

hµ(αt) =
∑

a,b

sa,b(ta − tb)+. (6.2)

Here (r)+ = max(0, r) denotes the positive part of r ∈ R.
In particular the entropy hµ(αt) is positive if and only if there is a pair

(a, b) whose foliation is expanded and has nonatomic conditional measure.
In the case of the Haar measure sa,b = 1 for all (a, b).

Clearly the last statement of the lemma holds for foliations which are con-
tracted as well. Below we say the pair (a, b) of different indices is nonatomic,
if the conditional measure µ

(a,b)
x is nonatomic a.e.

Proof that (iv) implies (ii) in Theorem 4.1 and Theorem 4.2. Consider an
element t ∈ R with t1 > t2 = t3 = · · · = tn+1. Clearly (ta − tb) > 0 only
for the pairs (1, 2), . . . , (1, n + 1). Since the entropy hµ(α) > 0 is positive by
assumption, Lemma 6.2 shows that one of the pairs (1, 2), . . . , (1, n + 1) is
nonatomic. By rearranging the indices from 2 to n + 1 we can assume (1, 2)
is nonatomic, this does not change the set of pairs {(1, 2), . . . , (1, n + 1)}.

We proceed by induction and show the pairs (1, 2), . . . , (1, n+1) are non-
atomic. Assume (1, 2), . . . , (1, k) are nonatomic. Let t satisfy t1 = · · · =
tk > tk+1 = · · · = tn+1. As above we see that there is a nonatomic pair (a, b)
whose foliation is expanded by αt – so a ≤ k < b. If a > 1 we know (1, a) and
(a, b) are nonatomic, and Lemma 6.1 shows that (1, b) is nonatomic. With-
out loss of generality is b = k+1 and we have shown that (1, 2), . . . , (1, k+1)
are nonatomic.

Repeating the argument for contracting foliations we get (2, 1), . . . , (n +
1, 1) are nonatomic pairs. Let a 6= b, we want to show that (a, b) is nonatomic.
If a = 1 or b = 1 we already know that. Otherwise (a, 1) and (1, b) are two
nonatomic pairs and Lemma 6.1 shows that (a, b) is nonatomic. ¤

Proof that (iii) implies (ii) in Theorem 4.2. Assume that

(a1, b1), (a2, b2), (a3, b3)

are three different nonatomic pairs. For one of the three - say (a1, b1) - the
reversed pair (b1, a1) is not among the three. Let c be the index different
from a1 and b1. If (b1, c) is among the list, Lemma 6.1 shows that (a1, c)
is nonatomic. If (c, a1) appears in the list, similarly (c, b1) is nonatomic. If
none of the above cases takes place, the other indices must be

{(a2, b2), (a3, b3)} = {(a1, c), (c, b1)}
because (b1, a1) is not in the list. In all three cases we found indices d, e, f
such that

(d, e), (d, f), (e, f) (6.3)
are nonatomic.
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Assume for simplicity d = 1, e = 2, f = 3. Then the pairs in List (6.3) are
all pairs from the upper triangle. We claim that the remaining pairs

(2, 1), (3, 1), (3, 2)

are also nonatomic. Let t ∈ R be such that

t1 = t2 > t3.

Then αt expands exactly the two one-dimensional foliations for the pairs
(1, 3) and (2, 3). Since those pairs are nonatomic, Lemma 6.2 implies that the
entropy hµ(αt) > 0 is positive. The inverse map expands only the foliations
corresponding to the pairs (3, 1) and (3, 2). By Lemma 6.2 we see that at
least one of the two pairs is nonatomic. Using a different map it follows
similarly that at least one of the pairs (3, 1) and (2, 1) is nonatomic.

If (3, 1) is nonatomic, Lemma 6.1 implies (3, 2) is nonatomic since (1, 2)
is nonatomic. Similarly (2, 1) must be nonatomic as well, showing that all
pairs are nonatomic.

The only other case to consider would be that (3, 2) and (2, 1) are non-
atomic. However, Lemma 6.1 implies immediately that (3, 1) is nonatomic
as well. Therefore we have shown Condition (ii). ¤
Proof that (v) implies (iii) and (vi) implies (iii) in Thm. 4.2. We prove that
if Condition (iii) fails, Condition (v) and (vi) fail as well.

If there is no nonatomic pair, entropy vanishes and the other conditions
fail trivially. Furthermore, it is not possible to have exactly one nonatomic
pair. For if (a, b) is nonatomic and αt expands the corresponding foliation,
the entropy hµ(αt) must be positive by Lemma 6.2 and using the contracting
foliations there must be another nonatomic pair.

Lemma 6.3. Suppose now there are exactly two different nonatomic pairs
and assume they are

(1, 2), (a, b).
Then (a, b) = (2, 1).

Proof. If (a, b) is equal to (2, 3) or (3, 1) Lemma 6.1 implies immediately
that there are three nonatomic pairs. If (a, b) is equal to (1, 3) (resp. (3, 2))
the element αt for t1 > t2 = t3 (resp. t1 = t3 > t2) expands both nonatomic
pairs and therefore the entropy hµ(αt) must be positive by Lemma 6.2.
However, this shows that there must be another nonatomic pair for which
the foliation is contracted which is again a contradiction. So the only possible
case is (a, b) = (2, 1) as claimed. ¤

Lemma 6.2 shows that for t satisfying t1 > t2 the right hand side of
Equation (6.2) is linear in t. Therefore the entropy coincides with a linear
map on a halfspace showing that (vi) cannot hold.

For Condition (v) let t ∈ R be arbitrary. Lemma 6.2 shows hµ(αt) ≤
|t1 − t2|. By the triangle inequality

2 hµ(αt) ≤ 2|t1 − t2| ≤ |t1 − t2|+ |t3 − t1|+ |t2 − t3| = hm(αt).
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Therefore Condition (v) cannot hold. ¤

Proof of (*). From Lemma 6.3 we know that the only nonatomic pairs are
(a, b) and (b, a) for some a, b. Note that if Fa,b is contracted by some αt then
Fb,a is expanded. Let F be the foliation into unstable manifolds for αt. By
Proposition 8.3 the conditional measure µF

x is the product measure of the
conditionals on three pairs, of which only one is not a δ-measure. Hence the
measure µF

x is supported by a single one-dimensional leaf of either Fa,b or
Fb,a. ¤

We have completed the proof of Theorem 4.2 (up to Lemma 6.2 and
Proposition 8.3).

7. Proof in the general case

We turn our attention to the general case in Theorem 4.1. The main
argument above was the repeated use of Lemma 6.1 which we replace by the
next proposition.

Recall that the roots λ ∈ R of the simple split Lie algebra g are elements
of the dual space of the Lie algebra of the Cartan subgroup. Since G is
simple and split, the root spaces gλ ⊂ g are one-dimensional eigenspaces for
the adjoint action of αt with eigenvalue eλ(t). For a fixed basis of the Cartan
subgroup the dual is isomorphic to Rn where n is the rank of G. For a root
λ the only multiple of λ which is also a root is −λ. If λ1 6= −λ2 are two
roots, the sum λ1 + λ2 is a root if and only if v = [vλ1 , vλ2 ] is nontrivial, in
which case v = svλ (s ∈ R) is in the root space of λ = λ1 + λ2 (see [25, pg.
268 and 282]).

Proposition 7.1. Let λ1, λ2 ∈ Φ be roots such that λ = λ1 + λ2 is a root
and µλi

x is nonatomic a.e. for i = 1, 2. Then µλ
x is Lebesgue a.e.

Furthermore, the same is true for every root ξ different from λ1 and λ2

with vξ belonging to the Lie algebra generated by vλ1 and vλ2.

Proof. The proof is similar to the proof of Lemma 6.1. The difference in
the general situation here is that [vλ, vλi ] might not be zero for some i. Let
Φ′ ⊃ {λ, λ1, λ2} be the set of roots ξ with vξ belonging to the Lie algebra
generated by vλ1 and vλ2 . By the discussion above, every root ξ ∈ Φ′ can be
expressed as ξ = n1λ1 + n2λ2 with integers n1, n2 ≥ 0 (see Figure 3). The
space g′ =

∑
λ∈Φ′ gλ is a nilpotent Lie algebra. For r, s 6= 0 the commutator

exp(svλ2) exp(rvλ1) exp(−svλ2) exp(−rvλ1)

= exp(s1vξ1) · · · exp(s`vξ`
) (7.1)

can be expressed as a product over various exponentials of elements of root
spaces. We use a fixed ordering of the elements in Φ′ = {λ1, λ2, ξ1, . . . , ξ`},
which will be further specified later. Note that λ1 and λ2 do not appear on
the right side of Equation (7.1). If r, s are small and nonzero, the elements si
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λ1

λ2 λ ξ

Figure 3. A possible configuration for Φ′.

are small, and sk for ξk = λ is small and nonzero. This follows for instance
from the Campbell-Baker-Hausdorff formula.

Let N be a null set satisfying Proposition 5.1 for all root spaces (and
finitely many elements of the action which are used in the proof). Enlarge N

so that µξ
x(N) = 0 for every root ξ and x /∈ N using Lemma 3.1. Let z /∈ N ,

as before we will define the points as in Figure 2. Since µλ1
z is nontrivial

and µλ1
z (N) = 0, there exists a point z′ = exp(rvλ1)z ∈ Fλ1(z) \ N . From

Corollary 5.1 we have νξ
z = νξ

z′ for any ξ ∈ Φ′ \ {λ1}. The assumption
that µλ2

x is nonatomic a.e. implies now that there exists s 6= 0 such that
x = exp(svλ2)z and y = exp(svλ2)z

′ do not belong to N . The point x /∈ N
satisfies that y = exp(svλ2) exp(rvλ1) exp(−svλ2)x /∈ N . This is similar to
Figure 2, but the fifth line might not be part of a single leaf.

To overcome this problem we proceed by induction, and show for Φ′ step
by step that µξ

x is Lebesgue for more and more roots in Φ′ \ {λ1, λ2} until
we reach ξ = λ. This will prove the first statement, and second follows from
the first.

We order the elements ξ = n1λ1 + n2λ2 ∈ Φ′ with n1, n2 > 0 (or equiv-
alently ξ 6= λ1, λ2) by the quotient n2/n1 starting with the biggest. The
chosen order of the roots implies for every i ≤ ` that

vλ, vξi
do not appear as commutators in

∑

j≥i

gξj
+ gλ1 , (7.2)

which we will use below in the following form: changing the order of multi-
plication for terms involving only roots with j ≥ i can be compensated for
by changing some coefficients without effecting those for λ and ξi.

For the induction it is convenient to prove first the following fact. Suppose
x′, y′ /∈ N , νξ

x′ = νξ
y′ for all ξ ∈ φ′ \ {λ1, λ2}, and

y′ = exp(s′ivξi) · · · exp(s′`vξ`
) exp(rvλ1)x

′.

Then νξi

x′ is invariant under translation by s′i in the affine sense.
Notice first that ξi 6= λ1. Therefore there exists an element αt of the

action such that Fξi is isometric and Fλ1 is contracted. By the choice of the
order on Φ′ the foliations Fξj for j > i are contracted as well. Proposition
5.1 implies the claim.
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Assume we already showed that µξ
x is Lebesgue a.e. for all roots ξ in a

subset Φ′′ ⊂ Φ′. From the commutator relation in (7.1) we see

y = exp(svλ2) exp(rvλ1) exp(−svλ2)x

= exp(s1vξ1) · · · exp(s`vξ`
) exp(rvλ1)x (7.3)

Let
ξi = n1λ1 + n2λ2 ∈ Φ′ \ (Φ′′ ∪ {λ1, λ2})

be such that q = n2/n1 is biggest.
We claim there are points x′, y′ /∈ N with the same conditionals νξ

x′ = νξ
x

and νξ
y′ = νξ

y for ξ ∈ Φ′ such that

y′ = exp(s′ivξi) · · · exp(s′`vξ`
) exp(rvλ1)x

′, (7.4)

where sk = s′k for ξk = λ. If the first element ξ1 ∈ Φ′ in (7.3) does not
belong to Φ′′, there is no difference between (7.3) and (7.4), we set x′ = x

and y′ = y. So suppose ξ1 ∈ Φ′′ then µξ1
x and µξ1

y are Lebesgue. Furthermore,
µξ1

x (N) = µξ1
y (N) = 0, there exists t ∈ R with x′ = exp(tvξ1)x, y′ = exp((t−

sξ)vξ1)y /∈ N . Since x′ ∈ Fξ1(x), Corollary 5.2 implies that νξ
x = νξ

x′ other
than for ξ = ξ1. However, µξ1

x , µξ1
x′ are both Lebesgue, so these conditionals

agree as well. The same applies to y and y′. Changing to the new points
Equation (7.3) becomes

y′ = exp(tvξ1)
(
exp(s2vξ2) · · · exp(s`vξ`

) exp(rvλ1)
)
exp(−tvξ1)x

′

= exp(s′2vξ2) · · · exp(s′`vξ`
) exp(rvλ1)x

′,

where we used the statement after (7.2) to rewrite the product, which also
implies that s′k = sk does not change. Repeating the argument if necessary
we finally find x′, y′ as claimed.

Clearly s and r can be chosen arbitrarily small, we fix a sequence s(n), r(n) →
0. If the term s′i in Equation (7.4) does not vanish for infinitely many n in
the sequence a.e., we conclude that νξi

x is invariant in the affine sense under
translation by elements of a dense subgroup. As in the proof of Lemma 6.1
this implies that νξi

x is Lebesgue. If s′i vanishes for almost all n, we remove
this term in the product Equation (7.4) and proceed to i + 1. Since s′k = sk

remains unchanged – and so nonzero – in this procedure, we have shown that
µξ

x is Lebesgue for some ξ ∈ Φ′ \Φ′′. This concludes the inductive argument,
after finitely many steps we see that µλ

x is Lebesgue a.e. ¤
For the proof of Theorem 4.1 we will use the following generalization of

Lemma 6.2 – a corollary to Proposition 8.3.

Corollary 7.2. Let α be the left action of a maximal Cartan subgroup on
G/Γ, where Γ is a lattice in the simple split connected Lie group G. Assume
µ is an ergodic α-invariant measure on X. Let Φ be the set of roots and let
µλ

x be the conditional measure for the one-dimensional invariant foliation Fλ

corresponding to λ ∈ Φ. There exists a set of numbers sλ ∈ [0, 1] for λ ∈ Φ
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with the following properties. If µλ
x is nonatomic a.e. then sλ is positive and

zero otherwise. For any element αt of the action the entropy with respect to
µ equals

hµ(αt) =
∑

λ∈Φ

sλ(λ(t))+.

Here (a)+ = max(a, 0) denotes the positive part of the number a and eλ(t)

is the eigenvalue of the adjoint of αt on the root space gλ.
In case µ = m we have sλ = 1 for every λ ∈ Φ.

Proof of Theorem 4.1. Clearly the Haar measure µ = m satisfies all the
other conditions. For the converse note that we only have to consider the
Conditions (ii) and (iii). In the case of G = SL(n + 1,R) Condition (iv) has
been shown to be sufficient earlier.

Suppose every conditional measure µλ
x is nonatomic a.e. as in Condition

(ii). Let λ ∈ Φ be a root. Since G is simple and the rank is n > 1, there exists
an element ξ ∈ Φ such that λ + ξ ∈ Φ. Otherwise we have [v±λ, v±ξ] = 0
for all ξ 6= ±λ, vλ and v−λ generate an ideal g1, Φ \ {λ,−λ} generate an
ideal g2, and this contradicts g = g1 ⊕ g2 being simple. By assumption the
conditional measures µλ+ξ

x and µ−ξ
x are nonatomic a.e., so Proposition 7.1

shows that the conditional measure µλ
x is Lebesgue a.e. Since this holds for

all roots, Proposition 3.3 implies that µ = m.
Fix a regular element αt of the action as in Condition (iii). Let Φ′ be the

set of roots with λ(αt) > 0. From Corollary 7.2 we know that

hµ(αt) =
∑

λ∈Φ′
sλλ(t) ≤

∑

λ∈Φ′
λ(t) = hm(αt).

From this it is easy to find a number q such that hµ(αt) > q hm(αt) forces all
sλ to be positive for λ ∈ Φ′. Applying the same to the inverse map α−t shows
that sλ > 0 for all λ ∈ Φ \ Φ′. However, this shows that every conditional
measure is nonatomic a.e. and we already know this implies µ = m. ¤

This completes the proof of Theorem 4.1 assuming Corollary 7.2. The
corollary (which includes Lemma 6.2) will be proved at the end of the next
section.

8. Product structure of the conditional measure on the
expanding manifolds

In this section we show that the conditional measure for foliations into
higher dimensional leaves is a product measure of the measures on the one-
dimensional leaves. For this we need some preliminaries.

Let ν be a locally finite measure on Rk. Let V = R × {0}k−1 be the
subspace generated by the first basis vector. Define B(1) to be the σ-algebra
whose atoms are the cosets a + V for a ∈ Rk. There exists a collection of
locally finite conditional measures ν

(1)
a on the subspaces a + V which are

defined uniquely a.e. up to a multiplicative constant such that the following
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holds. For every rectangle Q = [−M, M ]k let νQ be the probability measure
coming from ν by normalizing the restriction of ν to Q. Let B(1)

Q be the

restriction of B(1) to Q. For a.e. a ∈ Q the measures ν
(1)
a restricted to the

intersection (a + V ) ∩Q and normalized to be a probability measure is the
conditional measure of νQ with respect to B(1)

Q . The conditional measures
are easily constructed from the latter probability measures for the σ-algebra
B(1)

Q for M →∞.

The above construction of the conditional measures ν
(1)
a is similar to the

construction of µF
x for a foliation F of X and in fact is also related to it by

the next lemma. If the foliation F = Fh is defined by the Lie subalgebra h,
we write µh

x = µF
x for the conditional measure.

Note that in general a measure can only be pushed forward under a mea-
surable map. However, the functions we are using are injective for a.e. base
point x ∈ X, and so we can use the pullback.

Lemma 8.1. Let Φ′ be a set of roots such that g′ =
∑

λ∈Φ′ gλ is a Lie
subalgebra which is contracted by the adjoint of some element of the Cartan
subgroup. Fix an order on Φ′ = {λ1, . . . , λk}. If ν is the pullback of the
conditional measure µg′

x under the map ϕx defined by

s ∈ Rk 7→ exp(s1vλ1) · · · exp(skvλk
)x ∈ Fg′(x), (8.1)

then the conditional measure ν
(1)
a is (up to a multiplicative constant) a.e.

the pullback of the conditional measure µλ1

ϕx(a).

a + V Fg′′(y)

Q ⊂ Rk Q ⊂ X

Figure 4. Both conditional measures µλ1
x and ν

(1)
a are char-

acterized by how they restrict to large rectangle-like sets Q.

Proof. Clearly the parameterization map ψy corresponding to Fλ1 for y ∈
Fg′(x) with y = ϕx(a) for a ∈ Rk agrees with the restriction of ϕx to the
coset a + V . In other words the leaves for the foliation Fλ1 are the images
of the cosets a + V for a ∈ Rk.

We consider the restriction of µ to a set ϕO,z(O) ⊂ X as in the charac-
terizing properties of the conditional measures in Section 3. Let M > 0 and
choose an open subset O′ ⊂ O with the following properties. The preimage
Q under ϕO,z of the atom [x] for the σ-algebra A(O,Fg′) and x ∈ π(O′)
contains the rectangle [−M, M ]k. As X can be covered by a sequence of
images of such sets O′, it is enough to consider the points x ∈ ϕO,z(O′) of
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one such set. Using the same open set for the foliation Fλ1 gives a σ-algebra
A(O, Fλ1) ⊃ A(O, Fg′). The conditional expectation with respect to two
such σ-algebras satisfies

E
(
f
∣∣A(O, Fg′)

)
= E

(
E

(
f
∣∣A(O,Fλ1)

)∣∣∣A(O, Fg′)
)

for any integrable function f . For a characteristic function f of a measurable
set B and typical points x this implies

µ
A(O,Fg′ )
x (B) =

∫
µ
A(O,Fλ1

)
y (B) dµ

A(O,Fg′ )
x (y)

Up to a scalar multiple µ
A(O,Fg′ )
x and µg′

x agree on [x], and the same holds
respectively for λ1 on the atoms for the σ-algebra A(O,Fλ1). Taking preim-
ages under ϕx shows that the normalized restriction νQ of ν to Q, and the

pullbacks ν ′′a of µ
A(O,Fλ1

)

ϕx(a) satisfy

νQ(B) =
∫

ν ′′a(B) dνQ(a) for any measurable B ⊂ Q.

Since the same holds for the properly normalized ν
(1)
a instead of ν ′′a , those

two measures agree νQ a.e. This is the same as saying that the lemma holds
for the restrictions of the measures to the set Q. We let M go to infinity,
and the lemma follows. ¤

We can use the conditional measures ν
(1)
a to characterize product mea-

sures. Let W = {0}×Rk−1. Clearly if ν = νV × νW is a product measure on
R×Rk−1, the conditional measure on a.e. fiber a+V is up to a multiplicative
constant a copy of νV .

Lemma 8.2. Let ν be a locally finite measure on Rk. Assume the
conditional measures ν

(1)
a are equal up to a multiplicative constant in the

following sense: on almost every coset a+V we have ν
(1)
a (a+A) = CνV (A)

where a ∈ W = {0}p × Rq, νV is a fixed measure on V , and C = Ca may
depend on a. Then the same holds similarly for the conditional measures
on the cosets b + W and for a fixed measure νW on W , and ν is up to a
multiplicative constant the product measure of νV and νW .

Proof. Let M > 0 and let νQ be a probability measure on Q = [−M,M ]k.
First we show the lemma in this case.

Let A = {[−M, M ], ∅} × B be the product of the trivial σ-algebra and
the Borel σ-algebra in [−M, M ]k−1. The atoms for A are planes of the form
[−M, M ]× (a2, . . . , ak) with (a2, . . . , ak) ∈ [−M, M ]k−1. Assume the condi-
tional measure ν

(1)
a on the atoms [−M,M ]× (a2, . . . , ak) for A are equal to

νV,Q in the mentioned sense. We claim νQ is the product measure of νV,Q

and some measure νW,Q on [−M,M ]k−1.
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Let B and C be measurable sets in [−M, M ] and [−M, M ]k−1. The prop-
erties of conditional measures in Section 3 state that

νQ(B × C) =
∫

Q
νV,M (B)1[−M,M ]×C(a) dνQ(a)

= νV,M (B)νQ([−M, M ]× C).

Define νW,Q(C) = νQ([−M,M ]×C). Varying B and C, it follows that νW,Q

is a probability measure, and that νQ is the product measure of νV,Q and
νW,Q. The conditional measures for the atoms a1× [−M,M ]k−1 agree in the
mentioned sense with νW,Q.

For ν the above shows that for every M the restriction to [−M, M ]k equals
a product measure up to a multiplicative constant. However, if ν([M, M ]k) >
0 this constant has to remain the same for every M ′ > M and the lemma
follows. ¤

Proposition 8.3. Let Φ′ ⊂ Φ be a set of roots such that g′ =
∑

λ∈Φ′ gλ is a
Lie subalgebra satisfying that the foliation Fg′ is expanded by some element
of the flow. For any order λ1, . . . , λk of the elements of Φ′ we let ϕx be the
map defined in (8.1) parameterizing the leaf Fg′(x) through x. The pullback
νg′

x of the conditional measure µg′
x under the map ϕx is up to a multiplicative

constant the product measure
k∏

i=1

νλi
x .

Proof. First we prove by induction that there is an order for the elements
of Φ′ for the which the statement is true. After the inductive argument we
will show using Proposition 7.1, that changing the order does not effect the
statement. The case |Φ′| = 1 holds by definition of νλ

x . For the induction we
need to find λ1 ∈ Φ′, so that Φ′′ = Φ′ \ {λ1} satisfies the assumptions of
the proposition, so that additionally Fλ1 is isometric and Fλi

for i > 1 are
contracted for some fixed αs.

Let Φ′ be a set of roots satisfying the assumptions of the proposition
and |Φ′| = k. There is an element αt with λ(αt) > 0 for all λ ∈ Φ′. We
identify the dual of the Lie algebra of the Cartan subgroup α with Rn, so
that λ(αt) = λ · t can be written as an inner product. Let C be the set of
all vectors in Rn which can be expressed as a linear combination

∑
λ∈Φ′ cλλ

with nonnegative coefficients cλ ≥ 0. Then C is a cone and the intersection
C ∩ P with the hyperplane P = {a : a · t = 1} is a convex set in P . Let
a be an extremal element of C ∩ P , then a must be a multiple of some
element λ = λ1 ∈ Φ′. By the construction λ cannot be expressed as a sum
of elements of Φ′′ = Φ′ \ {λ}. Furthermore, since a is extremal, there exists
a linear map on Rn whose maximal value on C ∩P is 0 and is achieved only
at a. In other words, there exists αs such that Fλ is isometric and Fξ for
ξ ∈ Φ′′ are contracted.
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The comment before Proposition 7.1 implies that g′′ =
∑k

i=2 gλi
is a

Lie ideal in g′. In particular Φ′′ satisfies the assumptions of the proposition
and has fewer elements. By the inductive assumption, there exists an order
on Φ′′ so that the following holds: If ψx is the map from Rk−1 to Fg′′(x)
defined analogous to (8.1), the preimage ν ′′ of µg′′

x under ψx is the product
measure of νλi

x for i = 2, . . . , k for a.e. x ∈ X. Let N be a null set such that
this property, Proposition 5.1 for λ and αs, and Property (3.1) hold for all
x, y /∈ N . By Lemma 3.1 we can enlarge N so that µξ

x(N) = 0 for all x /∈ N
and ξ ∈ Φ. Notice that, the restriction of ϕx to W = {0}×Rk−1 agrees with
ψx. For that reason we will not distinguish between this restriction and ψx,
and identify ν ′′ with a measure on W .

Let ν be the pullback of the conditional measure µg′
x under the map ϕx.

The lines a + V for V = R×{0}k−1 are mapped onto the leaves Fλ(ϕx(a)).
By Lemma 8.1 the conditional measure ν

(1)
a is the pullback of µλ

ϕx(a) under
the map ϕx. Since Fg′′ is contracted under αs, we can apply Proposition 5.1
for any point y ∈ Fg′(x). Let y = ϕx(a) /∈ N , then µλ

x is the image of µλ
y

under φ as in Proposition 5.1. It is easy to check that φ corresponds to the
translation mapping from a + V to V along the orthogonal subspace W .
However, this shows the assumption of Lemma 8.2 for ν and νV = νλ

x . We
will show that the measure νW equals the pull back ν ′′ of µg′′ under ϕx.

In case µλ
x is atomic a.e., then νV = δ0 and for a.e. x, y /∈ N with y ∈

Fg′(x) we have in fact y ∈ Fg′′(x). Therefore the two σ-algebras in the
characterizing properties of µg′

x and µg′′
x are on the complement of N equal,

the same holds for the conditional measures with respect to these σ-algebras,
and µg′

x = µg′′
x a.e. follows. Therefore ν = ν ′′, and the inductive assumption

shows that ν is the product measure as stated.
Assume now µλ

x is nonatomic a.e. Let y = ϕx(b) /∈ N . Let ν ′b be the
conditional measure for the coset b + W (defined analogously to ν

(1)
x as in

the beginning of the section). We claim that ν ′b transported back to W is
equal to ν ′′ for a.e. b. By Lemma 8.2 the same holds for νW , so that νW

agrees with ν ′′. Therefore the claim and the inductive assumption imply
ν = νλ

x × νW is again the product measure.
In case b ∈ W the claim is trivial. In case b ∈ V \ ϕ−1

x (N) Corollary 5.2
implies that νλi

x = νλi
y for 1 < i ≤ k. By assumption ν ′′ is the product mea-

sure of νλi
x , and the same holds for the preimage of µg′′

y under ψy. However,
the restriction of ϕx to the plane b + W might not be equal to ψy′ . In fact

ϕx(b + w) = exp(b1vλ)
k∏

i=2

exp(wivλi)x

and in ψy(w) the first term would be right in front of x since y = exp(b1vλ)x.
If exp(b1vλ) commutes with the other terms, moving the first term to x
does not change the terms in between, and ψy is the restriction of ϕx. If
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µλi
x is trivial a.e., then wi = 0 and the terms commute whenever w ∈ W

with b+w /∈ ϕ−1
x N . Otherwise whenever exp(w1λ) does not commute with

exp(bivλi) moving the first behind the latter produces a shearing along some
directions exp(vλj ). For j like that Proposition 7.1 shows that ν

λj
x is Lebesgue

and the mentioned shearing does not change the product measure. We see
that the conditional measure on the hyperplane b + W is a translate of ν ′′.
Similarly one shows that the conditional measure for the planes b + W and
b′ + W are translates of each other if b,b′ /∈ ϕ−1

x N and b′ − b ∈ V .
Let now b ∈ Rk be arbitrary. The measures ν

(1)
0 and ν

(1)
b are translates

of each other along (0, b2, . . . , bk) ∈ W . This point might belong to the null
set ϕ−1

x N and we cannot argue using it. By the assumption on N we have

W

V

0

bb′

a′

Figure 5. We can reach b from 0 in two steps.

ν
(1)
0 (ϕ−1N) = ν

(1)
b (ϕ−1N) = 0. Therefore there exists two points b′ ∈ b+V

and a′ ∈ V which do not belong to ϕ−1
x N such that b′ ∈ a+W – see Figure

5. From the two cases before we know that the conditional measures for the
planes W , a′ + W = b′ + W and b + W are all translates of ν ′′x along V .
This proves the claim and concludes the inductive argument.

To conclude the proof of the proposition we need to show that the state-
ment holds for any order of the roots. Without loss of generality we consider
a new order where only two neighboring indices are swapped. Let ϕx be the
parameterization of Fg′(x) defined by (8.1) and define ϕ̃x by swapping the
two terms exp(sivλi) and exp(si+1)vλi+1 in the product (leaving their order
in the parameter space unchanged). In case λi +λi+1 is not a root, those two
elements commute and the two maps agree. Otherwise the two maps differ
but have the same image Fg′(x). We show that in all cases the pullbacks of
the measure µg′

x under ϕx and ϕ̃x agree.
In case µ

λj
x is atomic a.e. for some j ∈ {i, i + 1}, the product measure

νg′
x is supported on a hyperplane {m ∈ Rk : sj = 0}, and the maps ϕx

and ϕ̃x are equal a.e. with respect to νg′
x . Since νg′

x is the pullback of µg′
x

under ϕx the same is true for ϕ̃x. Assume now the two conditional measures
are nonatomic a.e. The commutator of exp(sivλi

) and exp(si+1vλi+1
) can be

expressed as a product of various exp(sjvλj ). From Proposition 7.1 for every

such j the conditional measure µ
λj
x is Lebesgue a.e. Therefore the maps ϕx

and ϕ̃x differ by an application of a measure preserving action on Rk – a
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shearing along some directions where ν
λj
x is Lebesgue. The product measure

again equals the pullback of µg′
x . ¤

Let F be the foliation into unstable manifolds for αt. Since µF
x is a product

measure we can proceed to the proof of Corollary 7.2, which gives a uniform
description of the entropy hµ(αt).

Proof of Corollary 7.2. We will use the Ledrappier-Young entropy formula
[17]. Note that our space X might not be compact, but due to the algebraic
nature of α this is not a necessary assumption (see also [19, Sect. 9] for part
of the Ledrappier-Young theory in this setting).

For a root λ ∈ Φ we define for a.e. x

δλ(x) = lim
ε→0

log νλ
x ([−ε, ε])
log ε

and

sλ =
∫

δλ(x) dµ

The existence of the limit follows from the arguments in [17, Section 9–10],
where one uses a partition subordinate to the foliation Fλ instead of the
foliation mentioned there and an element of the action which expands Fλ.
Furthermore, sλ ∈ [0, 1], and sλ = 0 if and only µλ

x is atomic a.e. In case µλ
x is

Lebesgue a.e. we see immediately sλ = 1. The number sλ can be interpreted
as the dimension of µ along the leaves of Fλ.

Let αt be a fixed element of the action, and let Φ′ = {λ ∈ Φ : λ(αt) > 0}
be the set of roots whose foliations are expanded. We order Φ′ = {λ1, . . . , λk}
such that

λ′1 = λ1(αt) = · · · = λk1(α
t) > λ′2 = λk1+1(αt) = · · · = λk2(α

t) >

· · · > λ′r = λkr−1+1(αt) = · · · = λk(αt) > 0.

The set of roots Φ1 = {λ1, . . . , λk1} defines a Lie subalgebra h1, in fact
the elements of the root spaces commute with each other (this follows from
the statement before Proposition 7.1). The foliation F1 defined by h1 is the
foliation for the biggest Lyapunov exponent λ′1 of αt. In the notation of [17]
the dimension of µ along F1 is

δ1(x) = lim
ε→0

log µF1
x

(
Bε

(
x, F1

))

log ε

for a.e. x. Here the set Bε

(
x, F1

)
is the ε-ball around x in the leaf F1(x). It

is easy to see that the exact shape of the ε-ball is not important. If we use
a product of ε-balls in the one-dimensional leaves instead, Proposition 8.3
implies

δ1(x) = δλ1(x) + · · ·+ δλk1
(x).

Proceeding similarly it follows for any j that Φj = {λ1, . . . , λkj} defines a Lie
subalgebra, and that the dimension of µ along the corresponding foliation
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Fj is given by

δj(x) =
kj∑

i=1

δλi(x).

[17, Theorem C] now reads

hµ(αt) =
∫ ∑

λ∈Φ′
λ(αt)δλ(x) dµ

=
∑

λ∈Φ′
λ(αt)sλ =

∑

λ∈Φ

(
λ(αt)

)+
sλ,

which concludes the proof of the corollary and the theorems. ¤

9. Nonstandard and nonalgebraic measures

In the unpublished manuscript [24] M. Rees gives an example of a uni-
form lattice Γ ⊂ SL(3,R) which allows compact invariant submanifolds and
nonstandard invariant measures. We will reproduce the construction and
give further examples along those lines. Some of the measures below are ho-
mogenous measures, i.e. Haar measures on homogenous submanifolds. More
important for our discusiion is the fact that there are huge varieties of non-
algebraic measures which are supported by some of those invariant homoge-
neous submanifolds.

Let Z[ 4
√

2] be the ring generated by 4
√

2 and write the elements of Z[ 4
√

2]
as s = s1 + s2

4
√

2 with s1, s2 ∈ Z[
√

2], then s = s1 − s2
4
√

2 is the Galois
conjugate of s. For w1, w2 ∈ Matn(Z[

√
2]) we define similarly

w1 + w2
4
√

2 = w1 − w2
4
√

2

and

Γ =
{
w = w1 + w2

4
√

2 ∈ SL(n,R) : w1, w2 ∈ Matn(Z[
√

2]) and wtw = Id
}
.

We will show later that Γ is a uniform lattice in SL(n,R). Another feature
of this lattice is that it contains many diagonal matrices. A diagonal matrix
with entries λ1, . . . , λn belongs to Γ if λi are units of Z[ 4

√
2] with λiλi = 1

and λ1 · · ·λn = 1. A direct calculation shows that τ = 3+2 4
√

2+2
√

2+2 4
√

8
is such a unit. Therefore the diagonal matrix with entries τki belongs to Γ
if

∑
i ki = 0.

Let P = {P1, . . . , Pk} denote a partition of {1, . . . , n} into sets of consec-
utive indices, in particular

P1 =
{{1, 2}, {3}} and

P2 =
{{1, 2, 3}, {4, 5}}.
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For a partition element Pi ∈ P we define SL(Pi,R) to be the subgroup of
SL(n,R) whose elements are block matrices




Id
w

Id


 with w ∈ SL(|Pi|,R).

Here the matrix w is placed on the diagonal corresponding to the partition
element Pi. For every partition P, we define GP as the subgroup generated
by SL(Pi,R) for i = 1, . . . , k and the diagonal matrices αt for t ∈ R. Since
the various SL(Pi,R) commute with each other, the group GP is isomorphic
to a product of subgroups isomorphic to SL(|Pi|,R) and a diagonal subgroup
D. In particular

GP1 =








w1,1 w1,2 0
w2,1 w2,2 0
0 0 w3,3


 ∈ SL(3,R) : w3,3 > 0





' SL(2,R)×D1

where

D1 =
{(

et Id2

e−2t

)
∈ SL(3,R) : t ∈ R

}

and similarly
GP2 ' SL(3,R)× SL(2,R)×D2

where

D2 =
{(

e2t Id3

e−3t Id2

)
∈ SL(5,R) : t ∈ R

}
.

Here Idj ∈ Matj(R) denotes the identity matrix. In general D will be the
subgroup of all diagonal matrices αt with equal entries ta = tb for different
elements a, b ∈ P ∈ P in the same partition element. Notice that D is a
finite index subgroup of the center of GP .

Proposition 9.1 (M. Rees [24]). The subgroup Γ, as above, is a uniform
lattice in SL(n,R). More generally for a fixed partition P and any P ∈ P the
subgroups Γ∩ SL(P,R), Γ∩D and Γ∩GP are uniform lattices in SL(P,R),
D and GP respectively.

The proof will rely on the Borel-Harish-Chandra theorem.

Proof. For any two w1, w2 ∈ Matn(C) and a fixed number r 6= 0 we define
the conjugation map

φ(w1, w2) =
1
2

(
Id r Id

1
r Id − Id

)(
w1

w2

) (
Id r Id

1
r Id − Id

)
.

A direct calculation shows that

φ(w1, w2) =
(

A r2B
B A

)
(9.1)
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where

A =
w1 + w2

2
B =

w1 − w2

2r

are two matrices in Matn(C). Exchanging w1 and w2 clearly leaves A un-
changed and replaces B by −B. If we transpose w1 and w2 this transposes
A and B.

We set r = 4
√

2 and define ϕ(w) = φ(w, (wt)−1) for any w ∈ SL(n,R). Let
GR be the image of ϕ in SL(2n,R). From the properties of φ it follows that
a matrix in GR can be decomposed into matrices A and B as in (9.1) which
have additionally the property(

A
√

2B
B A

)(
At −√2Bt

−Bt At

)
=

(
Id

Id

)
. (9.2)

The inverse of ϕ is given by(
A

√
2B

B A

)
7→ A + 4

√
2B. (9.3)

Define the two polynomials p and q whose variables are the matrix coeffi-
cients of A and B and whose coefficients are in Z[

√
2] by

p(A,B) + 4
√

2q(A,B) = det(A + 4
√

2B),

they can be found by expanding the right hand side and collecting the terms
with (resp. without) the factor 4

√
2 to 4

√
2q (resp. p). For any element of GR

p(A,B) + 4
√

2q(A,B) = det(w) = 1

p(A,B)− 4
√

2q(A,B) = det((wt)−1) = 1
(9.4)

and therefore p(A,B) = 1 and q(A,B) = 0. The second equation in (9.4)
follows by taking the conjugate of the first. This shows that GR is the set of
matrices which satisfy a certain set of polynomial equations. The equations
ensure that the matrix decomposes into A and B, satisfies Equation (9.2)
and that the determinant of the preimage is 1, the latter corresponds to
p = 1, q = 0. All coefficients of the polynomials needed belong to Q[

√
2].

Let GZ[
√

2] = GR ∩ SL(2n,Z[
√

2]) and GQ[
√

2] = GR ∩ SL(2n,Q[
√

2]). The
isomorphism ϕ maps Γ exactly to GZ[

√
2].

Similar to the above we can define an isomorphism ϕ′ from SU(n) to the
group G′

R using r = i 4
√

2. The group G′
R consists of all matrices

(
C −√2D
D C

)
(9.5)

with C, D ∈ Matn(R) satisfying the equations p(C, D) = 1, q(C, D) = 0 and
(

C −√2D
D C

)(
Ct

√
2Dt

−Dt Ct

)
=

(
Id

Id

)
.

Since SU(n) and G′
R are isomorphic, both are compact. Note that the equa-

tions defining G′
R are exactly the images of the equations for GR under the
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Galois automorphism of Q[
√

2] defined by
√

2 7→ −√2. The subgroup G′
Q[
√

2]

of matrices in G′
R with entries in Q[

√
2] is isomorphic to GQ[

√
2] using the

same automorphism. And since every unitary matrix is diagonalizable every
matrix in GQ[

√
2] is diagonalizable as well.

We claim GR × G′
R ' SL(n,R) × SU(n) is isomorphic to a group H

which is algebraic over Q, i.e. H is the set of all elements of Mat4n(R)
satisfying a certain set of polynomial equations with rational coefficients.
Let w ∈ SL(n,R) and v ∈ SU(n) and define A,B, C,D by the maps ϕ and
ϕ′ as above. Using φ for r =

√
2 we define

ψ(w, v) = φ

(
ϕ(w)

ϕ′(v)

)
=

(
a 2b
b a

)
∈ Mat4n(R)

where we used Equation (9.1). From the shape of the matrices in (9.3) and
(9.5) we see furthermore

a =
1
2

(
A + C

√
2(B −D)

B + D A + C

)
b =

1
2
√

2

(
A− C

√
2(B + D)

B −D A− C

)
.

With the abbreviations

e1 =
1
2
(A + C) f1 =

1
2
√

2
(B −D)

e2 =
1

2
√

2
(A− C) f2 =

1
2
(B + D)

the above becomes

a =
(

e1 2f1

f2 e1

)
b =

(
e2 f2

f1 e2

)
.

We know in GR (and similarly in G′
R) that the inverse is given by the pair

At and −Bt. This is the same as saying that for ψ(w−1, v−1) = ψ(w, v)−1

the four matrices are et
1, e

t
2,−f t

1,−f t
2, this statement corresponds to a set

of polynomial equations with rational coefficients. The only other equations
defining GR were p(A,B) = 1 and q(A,B) = 0, and similar p(C, D) = 1 and
q(C, D) = 0 for G′

R. Therefore we get the four equations for e1, e2, f1, f2

p(e1 +
√

2e2, f2 +
√

2f1) = 1 p(e1 −
√

2e2, f2 −
√

2f1) = 1

q(e1 +
√

2e2, f2 +
√

2f1) = 0 q(e1 −
√

2e2, f2 −
√

2f1) = 0,

the two on the left (resp. right) correspond the equations for GR (resp.
G′
R). Since the right equations are the conjugates of the left ones, we can

rewrite them – similar to (9.4) – as four equations with rational coefficients.
This shows that the image H = Im(ψ) is the subgroup of SL(4n,R) whose
elements satisfy a certain set of polynomial equations – H is algebraic over
Q.

Every element g of HQ = H ∩SL(4n,Q) is diagonalizable because ψ−1(g)
decomposes into two blocks φ(w) ∈ GQ[

√
2] and φ′(v) ∈ GQ[

√
2]. To see this
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note that by definitions of ei and fi the element ψ(φ(w), φ′(v)) belongs to
HQ if and only if

A = e1 +
√

2e2 B = f1 +
√

2f2

C = e1 −
√

2e2 D = f1 −
√

2f2

and e1, e2, f1, f2 belong to Mat(n,Q), this holds similarly for Z instead of
Q. By the construction H is isomorphic to the product SL(n,R) × SU(n)
and is semisimple. From the Borel-Harish-Chandra theorem it follows that
HZ = H ∩ SL(4n,Z) is a uniform lattice in H. This shows that ψ−1HZ
is a uniform lattice in GR × G′

R. However, the factor G′
R is compact and

therefore π1(ψ−1HZ) = GZ[
√

2] is a uniform lattice in GR. The isomorphism
ϕ concludes the proof that Γ is a uniform lattice in SL(n,R).

Let P be a partition of {1, . . . , n}. The set Γ∩D forms a uniform lattice in
D since one can use τ = 3+2 4

√
2+2

√
2+2 4

√
8 to define diagonal elements of

Γ which generate a lattice in D. In the case of the one-dimensional subgroup
D1 it is enough to note that

(
τ Id2

τ−2

)
∈ Γ ∩D1 (9.6)

and similarly for D2. Let SL(P,R) be the subgroup of SL(n,R) corresponding
to a partition element P ∈ P and denote the lattice in SL(n,R) by Γn. The
subgroup SL(Pi,R) is isomorphic to SL(|Pi|,R), this isomorphism carries
the intersection Γn ∩ SL(Pi,R) to Γ|Pi|. Therefore Γn ∩H forms a uniform
lattice in H for every direct factor H of GP , and Γn∩GP is a uniform lattice
in GP which concludes the proof. ¤

Let XP = GP/(Γ ∩ GP). Since Γ ∩ GP is a lattice, there exists a left
invariant probability measure µP . Let MP denote the image of XP inside
X, then MP is a compact submanifold. Write µP again for the image of the
measure.

Lemma 9.2. Let P be a partition and let µP be as above. The entropy of
αt with respect to µP vanishes if and only if αt belongs to D.

The conditional measure (µP)(a,b)
x for a pair of different indices a 6= b is

nonatomic (and in this case Lebesgue) if and only if a and b belong to the
same partition element.

Proof. Since (X, µP) and (XP , µP) are isomorphic as measure spaces, we
can calculate the entropy of αt in (XP , µP). If αt ∈ D, then αt only acts
as translation in the direction of D and entropy vanishes. If αt /∈ D, then
ta 6= tb for a pair of different indices a, b in the same partition element Pi.
Here αt acts on SL(Pi,R)/Γ|Pi| with positive entropy.

If a, b belong to the same partition element, then Id+sva,b belongs to GP
and left invariance of µP shows that (µP)(a,b)

x is Lebesgue a.e.
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Assume a, b belong to different partition elements Pi and Pj . Let αt ∈ D
be such that ta > tb. As Fa,b is expanded by αt and the entropy vanishes,
the conditional measure (µP)(a,b)

x has to be trivial a.e. ¤
Example 9.3. For the partition P1 = {{1, 2}, {3}} and the corresponding
measure µ1 = µP1 we consider the Weyl chamber flow on SL(3,R)/Γ.

The flow along the direction t = (1, 1,−2) is periodic since the matrix in
(9.6) is in the center of GP1 and in the lattice and therefore acts trivial on
(SL(3,R)/Γ, µ1). The flow along the direction of t = (1,−1, 0) has positive
entropy – there is one expanding (and one contracting) one-dimensional
foliation whose conditional measure is nonatomic (Lebesgue). Locally the
system is a direct product of an Anosov flow and a periodic flow on the
circle.

There are many more invariant measures on SL(3,R)/Γ3. In fact let ν
be any invariant measure on Y = SL(2,R)/Γ2 (with positive entropy or
zero entropy for the flow), then ν × m defines an invariant measure on
Y ×(

D/(Γ∩D)
)
. The system GP1 is a finite-to-one factor of Y ×(

D/(Γ∩D)
)
,

let µ be the induced measure on SL(3,R)/Γ3. Again the flow along t =
(1, 1,−2) is periodic and the conditional measure on the one expanding (resp.
contracting) one-dimensional foliation is equal to the conditional measure
for ν.

Example 9.4. A similar analysis for the partition P2 = {{1, 2, 3}, {4, 5}}
shows that with respect to the measure µP2 the space SL(5,R)/Γ5 is locally
a direct product of SL(3,R)/Γ3, SL(2,R)/Γ2 and a periodic flow on the
circle. The entropy vanishes only for the periodic direction.

To construct invariant measures other than Haar measure coming from
subgroups, one can again use an ergodic invariant measure ν on SL(2,R)/Γ2

to define a measure µ on SL(5,R)/Γ5. The measure µ is invariant under an
SL(3,R)-action, α-ergodic but not a Haar measure if ν is not a Haar measure.

We conclude the paper with two simple examples showing that several of
the conditions of Theorem 4.1 fail in the non-split case or if G 6= SL(n,R).

Example 9.5. Let G = Sp(n,R) ⊆ SL(2n,R) be the symplectic group, i.e.
the Lie group of matrices which leave the exterior form

x1 ∧ xn+1 + x2 ∧ xn+2 + · · ·+ xn ∧ x2n

in R2n invariant. The subgroup consisting of diagonal matrices of the form

αt =
(

Dt1,...,tn

D−1
t1,...,tn

)
where Dt1,...,tn =




et1

. . .
etn




make up a maximal Cartan subgroup in G, the rank of G is n. It is well
known that G is a simple split Lie group. By the Borel-Harish-Chandra
theorem the subgroup Γ = SL(2n,Z) ∩ G of integer matrices is a lattice in
G. Let X = G/Γ. For a fixed index 1 ≤ j ≤ n the subgroup Gj of matrices
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g ∈ Sp(n,R) which leave the basis elements ei for i 6= j, n + j and the
subspace 〈ej , en+j〉 invariant is isomorphic to SL(2,R). Clearly the elements
of Gi and Gj for i 6= j commute with each other, we write G′ =

∏
i Gi for

the generated subgroup of G. Then

Γ′ = Γ ∩G′ =
∏

i

(Γ ∩Gi)

is a lattice in G′. Let ν be any ergodic measure on SL(2,R)/SL(2,Z) for the
geodesic flow, so that the flow has positive entropy. The product measure
µ = ν × · · · ν on

n∏

i=1

Gi/(Γ ∩Gi) ∼= G′/Γ′ ⊂ G/Γ.

is ergodic under the left action α of the Cartan subgroup. Suppose t 6= 0,
then it is easy to see from the construction that hµ(αt) > 0.

This gives an example of a simple split Lie group G = Sp(n,R), a lattice
Γ ⊂ G, and an ergodic measure which is not the Haar measure m on G/Γ
such that every nontrivial element of the flow has positive entropy. Therefore
Condition (iv) in Theorem 4.1 does not characterize the Haar measure in
general.

Example 9.6. Let Y = SL(n,R)/SL(n,Z) and X = SL(n,C)/ SL(n,Z[i]).
We can consider Y as a subset Y ⊂ X and the Haar measure mY as a
measure on X. For any αt the entropy with respect to mY is half the entropy
with respect to mX . In particular the entropy function is fully positive. For
every (two-dimensional) foliation Fa,b the conditional measure is nonatomic
a.e., in fact Lebesgue supported on a one-dimensional line.
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