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Abstract. Linnik proved in the late 1950’s the equidistribution of in-
teger points on large spheres under a congruence condition. The congru-
ence condition was lifted in 1988 by Duke (building on a break-through
by Iwaniec) using completely different techniques. We conjecture that
this equidistribution result also extends to the pairs consisting of a vector
on the sphere and the shape of the lattice in its orthogonal complement.
We use a joining result for higher rank diagonalizable actions to obtain
this conjecture under an additional congruence condition.

1. Introduction

A theorem of Legendre, whose complete proof was given by Gauss in
[Gau86], asserts that an integer D can be written as a sum of three squares
if and only if D is not of the form 4m(8k + 7) for some m,k ∈ N. Let
D = {D ∈ N : D 6≡ 0, 4, 7 mod 8} and Z3

prim be the set of primitive vectors

in Z3. Legendre’s Theorem also implies that the set

S2(D)
def
=

{
v ∈ Z3

prim : ‖v‖22 = D
}

is non-empty if and only if D ∈ D. This important result has been refined in
many ways. We are interested in the refinement known as Linnik’s problem.

Let S2
def
=

{
x ∈ R3 : ‖x‖2 = 1

}
. For a subset S of rational odd primes we

set

D(S) =
{
D ∈ D : for all p ∈ S, −D mod p ∈

(
F×
p

)2}
.

In the late 1950’s Linnik [Lin68] proved that
{

v
‖v‖ : v ∈ S2(D)

}
equidis-

tribute to the uniform measure on S2 when D → ∞ under the restrictive
assumption D ∈ D(p) where p is an odd prime. As we will again recall in
this paper (see equation (3.4)) the condition D ∈ D(p) should be thought
of as a splitting condition for an associated torus subgroup over Qp, which
enables one to use dynamical arguments. Assuming GRH Linnik was able
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to remove the congruence condition. A full solution of Linnik’s problem was
given by Duke [Duk88] (following a breakthrough by Iwaniec [Iwa87]), who
used entirely different methods.

In this paper we concern ourself not just with the direction of the vec-

tor v ∈ S2(D) but also with the shape of the lattice Λv
def
= Z3 ∩ v⊥ in the

orthogonal complement v⊥. To discuss this refinement in greater detail we

introduce the following notation. Fix a copy of R2 def
= R2 × {0} in R3. To

any primitive vector v ∈ S2(D) we attach an orthogonal lattice [Λv ] and an
orthogonal grid [∆v] in R2 by the following procedure.

First, note that

(1.1) [Z3 : (Zv ⊕ Λv)] = D

since primitivity of v implies that the homomorphism Z3 → Z defined by
u 7→ (u, v) is surjective and v⊕Λv is the preimage of DZ. Now we choose an
orthogonal transformation kv in SO3(R) that maps v to ‖v‖ e3 and so maps
v⊥ to our fixed copy of R2. We rotate Z3 ∩ v⊥ by kv and obtain a lattice
in R2, which has covolume

√
D by (1.1). In order to normalize the covolume

we also multiply by the diagonal matrix av = diag(D− 1
4 ,D− 1

4 ,D
1
2 ). This

defines a unimodular lattice [Λv ] in R2, which is well defined up to planar
rotations and so defines an element

[Λv] ∈ X2
def
= SO2(R) \ SL2(R)/SL2(Z).

We will refer to [Λv] as “the shape of the orthogonal lattice” attached to v.
We may still obtain a bit more geometric information from the given

vector v as follows. We choose a basis v1, v2 of the lattice Λv such that
det(v1, v2, v) > 0. Choose w ∈ Z3 with (w, v) = 1 and let gv denote the
matrix whose columns are v1, v2, w. Note that gv ∈ SL3(Z) and that the set
of choices of gv is the coset gvASL2(Z), where ASL2 = {( g ∗

0 1 ) |g ∈ SL2}. Also
note that the set of choices for kv is the coset StabSO3(R)(e3)kv = SO2(R)kv.
As av commutes with SO2(R), we obtain the double coset

[∆v] = SO2(R)avkvgvASL2(Z).

It does not depend on the choices made above and belongs to the space

Y2
def
= SO2(R) \ASL2(R)/ASL2(Z),

where we used that avkvgv ∈ ASL2(R). Elements of the form [∆v] will be
refered to as “orthogonal grids” and can be identified with two-dimensional
lattices together with a marked point on the associated torus, defined up to
a rotation.

Let ν̃D denote the normalized counting measure on the set
{(

v

‖v‖ , [∆v]

)
: v ∈ S2(D)

}
⊂ S2 × Y2.

We are interested to find A ⊂ D for which

(1.2) ν̃D
weak∗−→ mS2 ⊗mY2

as D → ∞ with D ∈ A
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where mS2 ⊗ mY2
is the product of the natural uniform measures on S2

and Y2. We propose the following conjecture as a generalization of Linnik’s
problem and Theorem 1.2 below as a generalization of Linnik’s theorem:

Conjecture 1.1. The convergence in (1.2) holds for the subset A = D =
{D : D 6≡ 0, 4, 7 mod 8}.

Consider the natural projection π : Y2 → X2 induced by the natural map

φ : ASL2 → SL2. Then µ̃D
def
= (Id× π)∗ ν̃D is the normalized counting

measure on {(
v

‖v‖ , [Λv ]

)
: v ∈ S2(D)

}
⊂ S2 × X2.

Slightly simplifying the above problem we are interested to find A ⊂ D for
which

(1.3) µ̃D
weak∗−→ mS2 ⊗mX2

as D → ∞ with D ∈ A.

Using two splitting conditions (see §4) we are able to prove:

Theorem 1.2 (Main Theorem). Let F denote the set of square free integers
and p, q denote two distinct odd prime numbers. Then the convergence (1.3)
holds for A = D({p, q}) ∩ F.

Remarks 1.3. Our interest in the above problem arose via the work of
Marklof [Mar10] and W. Schmidt [Sch98] (see also [EMSS]), but as we later
learned from P. Sarnak and R. Zhang, the question is closely related to the
work of Maass [Maa56].

Our method of proof builds on the equidistribution on S2 and on X2

(respectively on related covering spaces) as obtained by Linnik [Lin68] or
Duke [Duk88] (and in one instance more precisely the refinement of Duke’s
theorem obtained by Harcos and Michel [HM06]). The crucial step is to
upgrade these statements to the joint equidistribution. To achieve that we
apply the recent classification of joinings for higher rank actions obtained
by E. Lindenstrauss and the second named author in [EL15]. As such a
classification is only possible in higher rank we need to require Linnik’s
splitting condition at two different primes.

The restriction to square-free numbers can be avoided but appears cur-
rently in our proof through the work of Harcos and Michel [HM06], see also
Remark 4.3. As Theorem 1.2 is assuming a splitting condition (actually
two) Linnik’s method [Lin68] could (most likely) be used to overcome the
square-free condition. We refer also to [ELMV09,EMV10], where the Linnik
method is used for slightly different problems.

Using a break-through of Iwaniec [Iwa87], it was shown by Duke [Duk88]
that the congruence condition D ∈ D(p) in Linnik’s work is redundant.
In Conjecture 1.1 we expressed our belief that the congruence condition
D ∈ D({p, q}) in Theorem 1.2 is also superfluous. It is possible that analytic
methods can again be used to eliminate these congruence conditions in the
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future although it does not seem to be a straightforward matter. We refer
to Appendix A for some findings in this direction.

As we explain in §4.1 the equidistribution of
{
[Λv] : v ∈ S2(D)

}
on X2

follows from a (refined) version of Duke’s Theorem. In this context it is not
clear how to establish equidistribution of

{
[∆v] : v ∈ S2(D)

}
on Y2 using the

analytic methods. Using the methods below any such equidistribution result
on Y2 will imply a corresponding convergence in (1.2) for A = D({p, q}).

The higher dimensional analogues are more accessible. In fact working
with spheres in Rd we use unipotent dynamics in [AES14] to establish the
equidistribution if d ≥ 6. The cases d = 4, 5 are slightly harder and need
a mild congruence condition (namely that p ∤ D for a fixed odd prime p)
for the method of [AES14]. In an upcoming paper [ERW14] of Ph. Wirth,
R. Rühr, and the second named author the full result is obtained for d = 4, 5
by using effective dynamical arguments.

Acknowledgements: We would like to thank Elon Lindenstrauss, Philippe
Michel, and Akshay Venkatesh for many fruitful conversations over the last
years on various topics and research projects that lead to the current pa-
per. While working on this project the authors visited the Israel Institute
of Advanced Studies (IIAS) at the Hebrew University and its hospitality is
deeply appreciated. We thank Peter Sarnak and Ruixiang Zhang for many
conversations on these topics at the IIAS.

2. Notation and organization of the paper

We first fix some common notation from algebraic number theory: Let
VQ be the set of places on Q containing all primes p and the archimedean
place ∞. Let Zp denote the p-adic numbers and for S ⊂ VQ we let QS =∏′

p∈S Qp be the restricted direct product w.r.t. the compact open subgroups

Zp. Finally, we set Af =
∏′

p∈VQ\{∞} Qp, Ẑ =
∏

p∈VQ\{∞} Zp and ZS =

Z
[{

1
p : p ∈ S \ {∞}

}]
. Recall that Q = ZVQ is a cocompact lattice in the

adeles A = QVQ
. The letter e with or without a subscript will denote the

identity element of a group which is clear from the context.
A sequence of probability measures µn on a measurable space X is said

to equidistribute to a probability measure µ as n → ∞ if the sequence
converges to µ in the weak∗ topology on the space of probability measures
on X. A probability measure µ is called a weak∗ limit of a sequence of
measures µn if there exists a subsequence (nk) such that µnk

equidistribute
to µ as k → ∞.

Given a locally compact group L and a subgroup M < L such that L/M
admits an L-invariant probability measure, it is unique and we denote it
by mL/M and call it the uniform measure on L/M . Finally, the letter π
(with or without some decorations) is used to denote various projection
maps whose definition will be clear from the context. E.g. if M < L are as
above and K < L is a compact subgroup, there is a canonical projection
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map π : L/M → K\L/M and we will still refer to π∗(mL/M ) as the uniform
measure on K\L/M .

We now give an overview of our proof of Theorem 1.2 and discuss the
organization of the paper. In §3, we establish that the convergence (1.3)
follows from an equidistribution of ”joined” adelic (or S-adic) torus orbits
on a product of two homogeneous spaces. In §4.1, we use Duke’s Theorem
(resp. [HM06]) to deduce that these orbits equidistribute to a joining (see
§4 for the definition). Then, in §4.2 we show that this joining must be the
trivial joining. This will imply Theorem 1.2.

3. Joined Adelic, S-adic and real torus orbits

In this section we show that Conjecture 1.1 and Theorem 1.2 follow from
the equidistribution of a sequence of “adelic diagonal” torus orbits on a
product of homogeneous spaces. We first explain this connection for Con-
jecture 1.1, involving a homogeneous space for ASL2.

Let G1 = SO3,G2 = ASL2 and G = G1×G2, Gj = Gj(R),Γj = Gj(Z) for
j = 1, 2 and G = G(R),Γ = G(Z), K = SO2(R) and fix v ∈ S2(D),D ∈ D
throughout this section. We wish to identifyK\G1

∼= S2 so we let k ∈ G1 act
on S2 by the right action (k, u) 7→ k.u = k−1u; we find it simpler to think of
S2 as row vectors and use the definition (k, ut) 7→ k.ut = utk. Note that this
defines a transitive action satisfying K = StabG1

(e3). Recall the definition

of gv, kv , av, [∆v ] from the introduction and note that et3kv = ‖v‖−1 vt.

Let S2 def
= S2/Γ1 and S2(D)

def
= S2(D)/Γ1 and v = vtΓ1 and set [∆v] =

[∆v] which is well-defined as [∆γ.v] = [∆v] for all γ ∈ Γ1. The map v ∈
S2(D) 7→ v

‖v‖ ∈ S2 is also well-defined. It follows that the following double

coset

(3.1) K ×K (kv , avkvgv) Γ1 × Γ2

represents the pair (
v

‖v‖ , [∆v]

)
∈ S2 × Y2.

Note that all the measures appearing in equation (1.2) (resp. equation
(1.3)) are Γ1-invariant so if we consider their projection νD (resp. µD) of ν̃D
(resp. µ̃D) to S2 ×Y2 (resp. S2 ×X2) we have that the convergence (1.2) is
equivalent to

(3.2) νD
weak-∗−→ m

S
2 ⊗mY2

,D → ∞,D ∈ A

and the convergence (1.3) is equivalent to

(3.3) µD
weak-∗−→ m

S
2 ⊗mX2

,D → ∞,D ∈ A.

Roughly speaking, integral orbits on the Z-points of a variety admitting a
Z-action of an algebraic group P may be parametrized by an adelic quotient
of the stabilizer. E.g., as we will see below, Γ1-orbits of S2(D), can be
parametrized as an adelic quotient of the stabilizer of v. The interested
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reader may consult [EV08, §3], [EMV10, §6.1] and [PR94, Theorem 8.2].
The novelty here is that we consider a “joint parametrization” and combine
this with a recent work of the second named author with E. Lindenstrauss
[EL15].

More concretely, consider the above right action of G1 on K \ G1
∼= S2

and set Hv
def
= StabG1

(v). The group Hv is defined over Z ⊂ Q as v ∈ Z3.
Naturally, k−1

v StabG1
(e3) kv = k−1

v Kkv = Hv(R).
In the proofs below we will frequently use the ternary quadratic form

Q0((v1, v2, v3)) = v21+v22+v23 = ‖(v1, v2, v3)‖22 for (v1, v2, v3) belonging to Q3

or one of its completions. The following lemma explains the congruence
condition D ∈ D(p).

Lemma 3.1. Let v ∈ Z3
p and D = Q0(v). We have that

(3.4) −D = x2 for some x ∈ Zp ⇒ Hv(Qp) is a split torus.

Proof. Let w1, w2 be a basis of the orthogonal complement of v within Q3
p.

Notice first that Hv(Qp) ∼= SO(aX2 + bXY + cY 2), where a = ‖w1‖22 , c =

‖w2‖22 , b = 2(w1, w2). The determinant of the companion matrix of Q0

w.r.t. the basis v,w1, w2 is 1 up-to (Q×
p )

2, that is, D(ac− 1
4b

2) ∈ (Q×
p )

2. By

the assumption on D, − 4
D ∈ (Q×

p )
2 so b2 − 4ac ∈ (Q×

p )
2 which shows that

aX2 + bXY + cY 2 is isotropic over Qp. This implies the lemma. �

Similarly, consider the action of G2 on K \G2 and note that

StabG2
(Kavkvgv) = g−1

v k−1
v a−1

v Kavkvgv = g−1
v Hv(R)gv.

Define the “diagonally embedded” algebraic torus Lv by

Lv(R) :=
{(

h, g−1
v hgv

)
: h ∈ Hv(R)

}

for any ring R. It is defined over Z ⊂ Q as so is Hv and gv ∈ SL3(Z).
In what follows we consider projections of an adelic orbit onto S-arithmetic

homogeneous spaces. In order to define these projections note that G1 and
G2 have class number one, that is, for j = 1, 2 and for any T ⊂ VQ \ {∞}
we have

(3.5) Gj

(∏

p∈T
Zp

)
Gj

(
ZT

)
= Gj

(
QT

)
.

Indeed, for G1 see [EMV10, §5.2] and for G2 it follows from the same, well-
known (see [PR94]), assertions for the simply-connected algebraic group SL2

and for G2
a. This implies that for {∞} ⊂ S ⊂ S′ ⊂ VQ, if we let XS

j
def
=

Gj(QS)/Gj(Z
S), XS def

= XS
1 × XS

2 we have a well-defined projection map

πS′,S : XS′ → XS . The map πS′,S is given by dividing by G(
∏

p∈S′\S Zp)

from the left and using (3.5). Now, consider the following adelic orbit

OA
D := (kv , ef , avkvgv, ef )Lv(A)G(Q) ⊂ XVQ ,
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where ef denotes the identity element in Gj(Ẑ) for j = 1, 2. Fix {∞} ⊂ S ⊂
VQ and set OS

D
def
= πVQ,S

(
OA

D

)
and µOS

D
= (πVQ,S)∗(µOA

D
) where µOA

D
is the

uniform measure on this orbit. Although strictly speaking OS
D depends on

v we omit v from the notation as we will see below that it will not play a
crucial role.

We now describe O∞
D . Take a complete set of representatives Mv ⊂

Hv(Af ) for the double coset space

Hv(R× Ẑ) \Hv(A)/Hv(Q) ∼= Hv(Ẑ) \Hv(Af )/Hv(Q),

which is finite by [PR94, Theorem 5.1]. For h ∈ Mv, using (3.5) we decom-
pose h = c1(h)γ1(h)

−1 and g−1
v hgv = c2(h)γ2(h)

−1 with

(3.6) cj(h) ∈ Gj(Ẑ), γj(h) ∈ Gj(Q), j = 1, 2.

We will use the abbreviation ΘK
def
= {(k, k) : k ∈ K}. Moreover, let us write

Oh
def
= ΘK(kvγ1(h), avkvgvγ2(h))G(Z)

for h ∈ Mv.

Proposition 3.2. Let p : G/Γ → (K ×K) \G/Γ be the natural projection.
Then,

(1) O∞
D =

⊔
h∈Mv

Oh.
(2) For any h ∈ Mv the orbit Oh projects under p to a single point in

supp(νD). Moreover, the correspondence h 7→ p(Oh) is a bijection
between Mv and supp(νD).

(3) p∗(µOD
∞

) = νD.

Proof. (1) Using the set Mv of representatives we can write OA
D as a disjoint

union of Lv(R× Ẑ)-orbits:

OA
D =

⊔

h∈Mv

(kv , ef , avkvgv , ef )Lv(R× Ẑ)(e∞, h, e∞, g−1
v hgv)G(Q).

Decomposing each h ∈ Mv and g−1
v hgv as in (3.6) and using that

(γ1(h), γ1(h), γ2(h), γ2(h)) ∈ G(Q)

we arrive at

OA
D =

⊔

h∈Mv

(kv, ef , avkvgv, ef )Lv(R× Ẑ)(γ1(h), c1(h), γ2(h), c2(h))G(Q).

Recalling that πVQ,{∞} is given by dividing by G(Ẑ) from the left we get

(3.7) O∞
D =

⊔

h∈Mv

(kv, avkvgv)Lv(R)(γ1(h), γ2(h))G(Z).

As G(Ẑ) ∩ Lv(Af ) = Lv(Ẑ) this is indeed a disjoint union. Noting that
ΘK = (kv, avkvgv)Lv(R)(k

−1
v , (avkvgv)

−1) we arrive at (1).
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(2) We analyze p(Oh) for h ∈ Mv. We first concentrate on the G1 com-

ponent. Identifying K \ G1/Γ1
∼= S2 we claim that h

φ7→ Kkvγ1(h)Γ1 is a
well-defined bijection between Mv and the set S2(D). Indeed, it is shown in
the proof of [PR94, Theorem 8.2] that under the above identification, φ is
well-defined bijection between Mv and the set of all w ∈ S2(D) such that for
all primes p there exists gp ∈ G1(Zp) with gp.v = w for some v ∈ v, w ∈ w

(where one uses the facts that G1 has class number 1 and that by Witt’s
Theorem G1(Q) act transitively on S2(D)). Now, by [EMV10, Lemma 5.4.1]
the latter holds for any w ∈ S2(D), so φ is in fact a bijection from Mv to
S2(D)1.

To conclude the proof of (2) we show that if the first coordinate of p(Oh) is
u then the second one is [Λu]. Let h ∈ Mv and denote γj = γj(h), cj = cj(h)
for j = 1, 2 so that Oh = ΘK(kvγ1, avkvgvγ2)Γ1 × Γ2. Note that et3kvγ1 =

vtγ1 =
(
γ−1
1 v

)t
. We denote u = γ−1

1 v. We need to show that

(3.8) Kavkvgvγ2Γ2
?
= [∆u] = KaukuguΓ2.

To see this note first that av = au and that kvγ1 is a legitimate choice
of ku. With these choices, (3.8) (using the identity element of K on both
sides) will follow once we show g−1

u γ−1
1 gvγ2 ∈ Γ2. The element g−1

u γ−1
1 gvγ2

is certainly a determinant 1 element which maps R2 to itself. Furthermore,
the third entry of its third column is positive by the orientation requirement
in the definition of gv and gu. Therefore, it will be enough to show that this

element maps Z3 to itself. Using that Z = Ẑ ∩ Q ⊂ Af , we can see this as
follows:

Q3 ⊃ g−1
u γ−1

1 gvγ2Z
3 = g−1

u c−1
1 (c1γ

−1
1 )gv(γ2c

−1
2 )c2Z

3 =

= g−1
u c−1

1 hgvg
−1
v h−1gvc2Z

3 = g−1
u c−1

1 gvc2Z
3 ⊂ Ẑ3.

(3) Recalling that µO∞

D
= (πVQ,∞)∗(µOA

D
), we see that µO∞

D
(Oh) is con-

trolled by ∣∣∣StabLv(R×Ẑ)

(
(e, h, e, g−1

v hgv)G(Q)
)∣∣∣

which is independent of h as Lv is commutative. This together with (2)
shows that p∗(µO∞

D
) is the normalized counting measure on its support. To

show the same statement for νD we need to show that |StabΓ1
(Kkvγ1(h))| is

independent of h. For large enough D this is clear since Γ1 is finite and every
nontrivial γ ∈ Γ1 fixes only two integer primitive points. The remaining
cases can easily be checked (and are not really important for us). �

3.1. From ASL2 to SL2 . Let us momentarily (see Remark 3.4) denote

G2 = SL2 and let XS
j , µXS

j

,OS
D, µOS

D

be the analogous objects to the ones

defined above. Note that G2 also has class number 1. Simplified version of

1Strictly speaking this is not needed but slightly simplifies the argument in §4.1.1 (cf.
the higher dimensionsal case in [AES14]).
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the discussion above implies analogous results for these analogous objects.
In particular we have:

Corollary 3.3. In order to establish the convergence (3.3) for a subset
A ⊂ N, it is enough to show that for some {∞} ⊂ S, µOS

D

equidistribute to

µ
XS

1

⊗ µ
XS

2

when D → ∞,D ∈ A.

Remark 3.4. Since in the rest of the paper we will only prove results regard-
ing SL2 and in order not to burden the notation we change the notation
introduced above and denote the objects related to SL2 without the over-
line. For example, from now on, G2 = SL2.

4. Duke’s Theorem and Joinings

Choose any two distinct odd prime numbers p, q and define S0 = {∞, p, q}.
Let η be a weak∗ limit of

(
µOS0

D

)
D∈D({p,q})∩F

and let πj : XS0 → XS0

j

denote the natural projections for j = 1, 2. Corollary 3.3 reduces the proof
of Theorem 1.2 to the statement that η = µ

X
S0
1

⊗ µ
X

S0
2

. Roughly speaking,

the latter will be obtained in two steps: the first, which relies on Duke’s
Theorem, is to show that (πj)∗ η = µ

X
S0
j

for j = 1, 2. The second uses

[EL15] to bootstrap the information furnished by the first step to deduce
that η = µ

X
S0
1

⊗ µ
X

S0
2

(and it is this final step that requires the splitting

condition at two places). For both steps (but mainly for the second step)
we will need the following preliminary lemma:

Lemma 4.1. Let η be a weak ∗ limit as above. There exist 0 6= vp ∈ Z3
p, 0 6=

vq ∈ Z3
q and gp ∈ SL3(Zp), gq ∈ SL3(Zq) such that η is invariant under a

diagonalizable subgroup of the form

(4.1) T
def
=

{(
hp, hq, g

−1
p hpgp, g

−1
q hqgq

)
: (hp, hq) ∈ Hvp(Qp)×Hvq (Qq)

}
.

Furthermore, Hvℓ(Qℓ), ℓ = p, q are split tori, and so Hvp(Qp) × Hvq (Qq)

contains a group isomorphic to Z2 which is generated by an element ap ∈
Hvp(Qp) with eigenvalues p, 1, p−1 and an element aq ∈ Hvq(Qq) with eigen-

values q, 1, q−1.

Proof. By Hensel’s lemma any vector vD with D ∈ D(S0) has the property
that D = Q0(vD) ∈ −(Z×

ℓ )
2 for ℓ = p, q. Moreover, gvD ∈ SL3(Zℓ) for any

prime ℓ. We assume that η is the weak∗ limit of µOS0
Dn

and let vDn denote

the integral vector defining the orbit OS0

Dn
.

For any prime ℓ, Z3
ℓ and SL3(Zℓ) are compact sets. Thus we may choose a

subsequence or, to simplify the notation, simply assume that (vDn) converges
in Z3

p to the vector vp, in Z3
q to vq,

(
gvDn

)
converges in SL3(Zp) to gp, and

in SL3(Zq) to gq. Note that OS0

Dn
admits a description, which is simliar to

Proposition 3.2(1), as a union of ΘK × LvDn
(Q{p,q})-orbits. In particular
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µOS0
Dn

is LvDn
(Q{p,q})-invariant. It readily follows that η is invariant under

the group appearing in (4.1).
For the second assertion note that Hvℓ is the (split) orthogonal group of

the quadratic form Qvℓ and that Q0(vℓ) ∈ −(Z×
ℓ )

2 for ℓ = p, q. Here Qvℓ
is the isotropic (see the proof of (3.4)) quadratic form on the orthogonal
complement of vℓ ∈ Q3

p. The last assertion follows since G1(Qℓ) ∼= PGL2(Qℓ)
for ℓ = p, q and any split torus is conjugated to the diagonal group. �

4.1. Two instances of Duke’s Theorem. In this section we prove the
following proposition (which would hold for any S with ∞ ∈ S):

Proposition 4.2. For j = 1, 2 let µi,D denote the normalized probabil-

ity measures on πj(OS0

D ). Then µi,D equidistribute to µ
X

S0
j

when D → ∞
with D ∈ D({p, q}) ∩ F. In particular, (πj)∗ η = µ

X
S0
j

for j = 1, 2.

Both cases are special cases of the so-called Duke’s Theorem [Duk88] and
its refinements [HM06] (cf. [MV06] where Theorem 1 there corresponds to
j = 1 and Theorem 2 to j = 2).

4.1.1. Proof for j = 1. As we wish to show equidistribution on the S0-adic
space, we will use the formulation in [ELMV11, §4.6], with G = G1 = SO3

being the projectivized group of units in the Hamiltonian quaternions.
Let µ be a weak∗ limit of a subsequence of µ1,D. Lemma 4.1 implies that µ

is invariant under a product of two split tori T = Tp×Tq ⊂ G1(Qp)×G1(Qq).

By [ELMV11, §4.6] µ is also invariant under G1(QS0
)+

def
= Π

(
G̃1(QS0

)
)

where Π : G̃1 → G1 is the natural morphism from the simply-connected
cover of G1. We will be done once we show the following claim: G1(QS0

) is

generated by G1(QS0
)+ and T . To this end, note that G̃1(R) → G1(R) is

surjective and so by [PR94, §8.2] there exists a homomorphism Ψ mapping

the group G1(QS0
)/G1(QS0

)+ to S
def
= Q×

p /
(
Q×

p

)2 × Q×
q /

(
Q×

q

)2
. Further-

more, under the natural isomorphisms G1(Qℓ) ∼= PGL2(Qℓ), ℓ = p, q, the
coboundary map Ψ is nothing but the determinant map. With this it is
easy to verify that the torus T is mapped surjectively onto S. Hence the
proposition follows for j = 1.

4.1.2. Proof for j = 2. In this case, equidistribution follows from a subtler
argument. For more details on the classical number theory constructions
we are considering below see [Coh93, §5.2]. Recall that a binary quadratic
form q = aX2 + bXY + cY 2 over Z is called primitive if (a, b, c) = 1 and

that disc(q)
def
= b2 − 4ac. Primitivity and discriminant are stable under the

usual SL2(Z)-equivalence. Let BinL = {[q] : disc(q) = L} denote the set
of primitive positive definite binary quadratic forms of discriminant L < 0
considered up-to SL2(Z)-equivalence. Finally recall that a number is called
a fundamental discriminant if it is the discriminant of the maximal order in
a quadratic field.
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Claim 1. Let v ∈ S2(D). If D ≡ 1, 2 mod 4 then the two dimensional

quadratic lattice qv
def
=

(
Λv, x

2 + y2 + z2
)
defines an element in Bin−4D. If

D ≡ 3 mod 4 then qv
def
=

(
Λv ,

1
2(x

2 + y2 + z2)
)
defines an element in Bin−D.

Proof of Claim 1. The possible choices for an oriented basis of Λv give rise
to the SL2(Z)-equivalence of binary quadratic forms. For calculating the
discriminant and show primitivity, we choose v1, v2 as in the introduction as
a Z-basis for Λv and define Qv to be the quadratic form

(
Λv, x

2 + y2 + z2
)

with respect to this basis. That is, Qv = aX2 + bXY + cY 2, where a =
(v1, v1), b = 2(v1, v2), c = (v2, v2). It follows from Equation (1.1) that ac−
b2

4 = D or disc(Qv) = −4D < 0. By construction Qv is positive definite.
We will show that if D ≡ 3 mod 4 then 2|a and 2|c. Indeed, if 4 ∤ b the

equation ac − b2

4 = D implies that ac is divisible by 4. The claim follows
since a and c are sums of three squares so if 4|a or 4|c we will have a contra-
diction to the primitivity of the vectors v1 or v2. If 4|b then ac ≡ 3 mod 4.
So without loss of generality we may assume that a ≡ 3, c ≡ 1 mod 4. This
implies that all the coordinates of v1 are odd and exactly two of the coordi-
nates of v2 are even. But then b

2 = (v1, v2) is odd, which is a contradiction.

Primitivity of Qv (resp. 1
2Qv for D ≡ 3 mod 4) and the last statement of

the claim follow since for D ∈ F we have disc(Qv)= disc(Q(
√
−D) (resp.

disc(12Qv)= disc(Q(
√
−D) for D ≡ 3 mod 4), which implies the claim2. �

Due to Claim 1 we always set L = −4D if D ≡ 1, 2 mod 4 and L = −D
if D ≡ 3 mod 4. Recall that X2

∼= Γ2\H by sending KgΓ2 to Γ2g
−1.i ∈ Γ2\

H, where the action on i ∈ H is given by the regular Möbius transformation.
For α ∈ BinL choose a quadratic form q such that α = [q] and we denote
by zq the unique root of q(X, 1) belonging to the hyperbolic plane H and by
zq its Γ2-orbit. If q = 1

2Q (c.f. the case D ≡ 3 mod 4 above), we may use
the polynomial q(X, 1) or Q(X, 1) and obtain the same root — we may also
write zQ for the Γ2-orbit of the root. Finally, we define zα = zq and note
that this definition does not depend on the choice of q (within the Γ2-orbit).

The set of Heegner points of discriminant L is HL
def
= {zα : α ∈ BinL}.

Claim 2. Under the isomorphism X2
∼= Γ2 \ H described above we have

zqv = [Λv].

Proof of Claim 2. This follows from a straightforward calculation which is
crucial to the argument, so we carry it out in details. Recall that φ : ASL2 →
SL2 denotes the natural projection and let Mv = φ(avkvgv). The claim will
follow once we show that M−1

v .i = zQv where Qv is the quadratic form

w.r.t. the basis v1, v2 used to define gv. To this end, let Nv =
(

α β
γ δ

)
be the

matrix whose columns are the first two entries of the vectors kvv1, kvv2 ∈ R3.

2The argument from [AES14, Lemma 3.3] could also be used to prove primitivity
without the assumption D ∈ F.
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As scalar matrices act trivially as Möbius transformations, the action of av
may be ignored and also the cases D ≡ 3 mod 4 and D ≡ 1, 2 mod 4 may
be treated uniformly. In other words, it is enough to show that N−1

v .i = zQv .
By the definition of kv, the third entries of kvv1, kvv2 ∈ R3 are zeroes, so we
have the following equalities: α2 + γ2 = ‖v1‖2 = a, β2 + δ2 = ‖v2‖2 = c and

αβ + γδ = (v1, v2) =
b
2 and finally by (1.1) that detNv = αδ − βγ =

√
D.

The claim now follows since

N−1.i =
δi − β

−γi+ α
=

− b
2 + i

√
D

a

=
−b+

√
−4D

2a
=

−b+
√
b2 − 4ac

2a
= zQv .

�

It is well-known [Coh93, 5.2.8] that BinL, and therefore also HL, is

parametrized by CD def
= Pic(RL), the class group of the unique order RL ⊂

Q(
√
−D) of discriminant L. By Claim 1, in both cases (regarding the defi-

nition of L in terms of D), CD is the class group of Q(
√
−D).

Let

(4.2) PD
def
=

{
zqv : v ∈ S2(D)

}
⊂ HL.

Another instance of Duke’s Theorem (see [MV06, Theorem 2]) implies that
HL equidistribute on Γ2 \H when D → ∞, D ∈ D ∩ F. If PL would always
be equal to HL, we could conclude in the same way as we did in the case
j = 1 above (e.g. using [ELMV11, §4.6]). However, this is not always the
case by the following claim.

Claim 3. Let C2
D be the subgroup of squares in CD. Under the above men-

tioned parametrization of HL in terms of the class group CD the set PD

corresponds to a coset of C2
D < CD. We further note that

∣∣C2
D

∣∣ ≍ D
1
2
+o(1)

(and C2
D = CD if D is a prime).

Proof. This is shown in [EMV10, §4.2] as we now explain. Fix D ∈ F∩D. As
explained in [EMV10, §6], and in fact is proven implicitly in Proposition 3.2,
the set S2(D) is a torsor3 of CD. Also, BinL is naturally a torsor of CD. Note
that αv

def
= [qv] ∈ BinL for v ∈ v is well-defined. It is shown in [EMV10, §4.2]

that under these torsors structures, for any γ ∈ CD,v ∈ S2(D) we have

αγ.v = γ2.αv.

Thus, it follows that the image of the map v 7→ αv in the torsor BinL corre-
sponds to a coset of C2

D. Thus, the same is true for PD =
{
zqv : v ∈ S2(D)

}
,

which is the corresponding image in HL.
It is well-known [EMV10, (1.1)] that CD,S2(D) andHL are asymptotically

of size D
1
2
+o(1). Gauss’ genus theory [Cas78, Chapter 14.4] tells us that

3A torsor of a group G is a set on which G acts freely and transitively.



INTEGER POINTS AND THEIR ORTHOGONAL LATTICES 13

[CD : C2
D] = 2r(D)−1 where r(D) is the number of distinct primes dividing

D. Thus we also have
∣∣C2

D

∣∣ = |PD| ≍ D
1
2
+o(1). �

We can now establish the desired equidistribution on XS0

2 . Recall from
Proposition 3.2 that p∗(µO∞

D
) = νD. Let π2 also denote the projection

fromX∞ toX∞
2 , and let πK denote the projection fromX∞

2 toK\X∞
2 = X2.

By Claim 2 we further get that (πK ◦ π2)∗νD can be identified with the
counting measure on PD ⊂ X2

∼= Γ2 \H.
Therefore, the equidistribution of (πK ◦ πS0,∞)∗ µ2,D on X2 is equivalent

to the equidistribution of PD on X2. The equidistribution of such subsets,
that is, subsets corresponding to cosets of large enough subgroups was estab-
lished by [HM06, Theorem 6] (see also [Har, Corollary 1.4]) when D → ∞
along D∩F. This equidistribution comes in fact from a corresponding adelic
statement. Since SL2 is simply-connected (and in particular has class num-
ber 1) the desired S-arithmetic equidistribution for j = 2 follows from the
proof of [HM06, Theorem 6]. �

Remark 4.3. The only instance in which we use the assumption thatD ∈ F is
in the application of [HM06, Theorem 6]. Nevertheless it is known to experts
that [HM06, Theorem 6] holds without the assumption that D ∈ F, but such
statement does not exist in print. A general adelic statement that will work
for all discriminants is planned to appear in an appendix by Philippe Michel
to an upcoming preprint ([?AKA3]) of the first named author.

We also remark that as we assume the congruence condition D ∈ D(S0)
both equidistribution statements , i.e. for µ1,D and µ2,D, may be deduced
from the so-called Linnik’s Method (as it is done in slightly different con-
text in [ELMV09, EMV10], see in particular [ELMV09, Prop. 3.6 (Basic
lemma)] which only cares about the asymptotic size as in the last statement
of Claim 3).

4.2. Joinings. From Proposition 4.2 we know that (πj)∗ η = µ
X

S0
j

, j = 1, 2

and that η is a probability measure as π2 has compact fibers and η(XS0) =

µ
X

S0
2

(XS0

2 ) = 1. Furthermore, by Lemma 4.1 η is invariant under the group

T that appears in (4.1). This means that η is a joining for the action

of T on the product space XS0

1 × XS0

2 . Our goal, which is to show that
η = µ

X
S0
1

⊗ µ
X

S0
2

, will follow from [EL15, Theorem 1.1]. Roughly speaking,

it is shown there that a joining for a higher rank action (this is the reason we
insist on S0 to contain two primes) is always algebraic. As XS

1 is compact
and XS

2 is non-compact, the only algebraic joining is given by the trivial
joining. Below we will expand this argument in greater detail, where we
will be more careful regarding the precise assumptions of [EL15, Theorem
1.1]. To satisfy these assumptions we need to reduce to the case where
unipotents act ergodically, where we have a diagonally embedded action of
Z2 by semisimple elements, and where the joining is ergodic. The precise
definitions will be given below.



INTEGER POINTS AND THEIR ORTHOGONAL LATTICES 14

We fix some ad-hoc notation for this proof. Let GS0 = GS0

1 × GS0

2 and

ΓS0 = ΓS0

1 × ΓS0

2 where GS0

j = Gj(QS0
) and ΓS0

j = Gj(Z
S0) for j = 1, 2.

Finally let G+ = G+
1 × GS0

2 where G+
1 = G1(QS0

)+ is the (normal) open
group defined in §4.1.1. Using G+ we decompose XS0 into finitely many

disjoint G+-orbits Xr
def
= G+(gr, e)Γ

S0 , r ∈ R for some gr ∈ GS0

1 and an
index set R.

By Proposition 4.2 for j = 1 we know that

(4.3) η(Xr) = µ
X

S0
1

(G+
1 grΓ

S0

1 ) = µXS0 (G
+(gr, e)Γ

S0) > 0.

for all r ∈ R. Now fix some r ∈ R and define the probability measure

ηr
def
= 1

η(Xr)
η|Xr . It follows that

(π1)∗ ηr = µr
1
def
=

1

η(Xr)
µ
X

S0
1

∣∣∣
G+

1 grΓ
S0
1

,

where we may identify the latter with the normalized probability measure
µ
G+

1 /
(
G+

1 ∩grΓS0
1 g−1

r

). Also note that (π2)∗ ηr = µ
X

S0
2

, that G+
1 ∩ G1(R) =

G1(R) is connected, and that G+
1 ∩ G1(Q{p,q}) and GS0

2 are generated by
one-parameter unipotent subgroups (see e.g. [BT73, §6.7]). Furthermore,

G+
1 (resp. GS0

2 ) act ergodically on the quotient G+
1 /

(
G+

1 ∩ grΓ
S0

1 g−1
r

)
(resp.

on XS0

2 ) with respect to their uniform measure. This establishes one of the
assumptions in [EL15, Thm. 1.1] — in the terminology of [EL15] the quo-

tients G+
1 /

(
G+

1 ∩ grΓ
S0

1 g−1
r

)
and GS0

2 /ΓS0

2 are “saturated by unipotents”.

Let

A = {(a1(n), a2(n)) : n ∈ Z2} < G(Q{p,q})

be a subgroup isomorphic to Z2 as in Lemma 4.1. By construction a2(n) =
(g−1

p , g−1
q )a1(n)(gp, gq) for all n ∈ Z2. Then, by Lemma 4.1 we have that

η is invariant under A and that a(n) = (a1(n), a2(n)) defines for n ∈ Z2

a “class-A′ homomorphism”, in the terminology of [EL15]. Fix r ∈ R.

As G+
1 has finite-index in GS0

1 , it follows that there exists a finite-index
subgroup Λ < Z2 (again isomorphic to Z2) such that ηr is invariant under
B = a(Λ). The restriction of a to Λ is also of class-A′. This establish
another assumption of [EL15, Thm. 1.1].

In general ηr may not be B-ergodic, but a.e. ergodic component ηr,τ
(with τ belonging to the probability space giving the ergodic decomposition)
will now satisfy all assumptions in [EL15, Thm. 1.1]. In fact ηr,τ is an ergodic
“joining for the higher rank action of B = a(Λ)” and we may conclude
that ηr,τ is an algebraic joining. I.e. ηr,τ is the Haar measure on a closed orbit
of the form gr,τMΓ where M is a finite index subgroup of a Q-group M <
G1 × G2 which projects onto Gj for j = 1, 2. However, as both G1 and G2

are simple Q-groups whose adjoint forms are different over Q we obtain M =
G1 ×G2 and that ηr,τ = µr

1 ⊗µ
X

S0
2

(for more details, see the comment after
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[EL15, Theorem 1.1]). Using (4.3), it now follows that η = µ
X

S0
1

⊗ µ
X

S0
2

as

we wanted to show.

Appendix A. the Associated Dirichlet Series

By Ruixiang Zhang

In this appendix, we look at a sum related to the study of the equidistri-
bution in Theorem 1.2, and explain some facts about them from the scope of
classical analytic number theory. Theorem 1.2 has high dimensional twins,
but we will concentrate on the theory in dimension 3, since we already saw
that this is the most interesting dimension. Parallel theories have been
developed in the references for higher dimensions.

Let H be the usual upper half plane. Take φ on X2 = SL(2,Z) \ H to
be a constituent of the spectrum decomposition, which can be a constant,
a unitary Eisenstein series or a Maass cusp form, and then take a spherical
harmonic ω on R3. Assume k is the degree of the polynomial ω. We form
the following Weyl sum for each positive integer n:

(A.1) S(n, ω, φ) =
∑

v∈Z3
prim

,‖v‖2=n

ω(
v

‖v‖ )φ(zv).

Here zv ∈ Γ \ H is defined as the following: Let the plane bv be the
orthogonal complement (with an orientation given by v) of v and Lv the
lattice consisting of all the integer points on bv. The shape of Lv corresponds
to a point zv ∈ Γ \H in the usual sense. In other words, zv in this appendix
will denote the Heegner point attached to v (previously defined by zqv in
§4.1.2).

The motivation of this sum is the joint equidistribution Conjecture 1.1
in the paper. By a standard harmonic analysis argument (see the end), the
pairs ( v

‖v‖ , zv) are jointly equidistributed if this sum, divided by the total

number of v’s, tend to zero (in some quantitative fashion) when either ω or
φ is nontrivial.

As the first part of the appendix, we show that (A.1) is familiar to num-
ber theorists. In fact, this sum S(n, ω, φ) can be interpreted as the n-th
coefficient of the Dirichlet series obtained by taking the special value at
the identity of a maximal parabolic Eisenstein series on SL(3,Z) \ SL(3,R)
formed with respect to φ and ω. We now explain this correspondence and
will state it as Theorem A.1.

In G = SL(3,R), let the discrete subgroup Γ = SL(3,Z). Take a maximal
parabolic subgroup P ⊆ G to be

(A.2) P =








∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


 ∈ G



 .

According to the Langlands decomposition, we have G = MANK where
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M =








∗ ∗ 0
∗ ∗ 0
0 0 1





 ,

A =








a−
1
4 0 0

0 a−
1
4 0

0 0 a
1
2


 , a > 0





,

N =








1 0 ∗
0 1 ∗
0 0 1







K = SO(3,R).

Let

(A.3) Γ∞ =








∗ ∗ ∗
∗ ∗ ∗
0 0 1


 ∈ Γ



 .

For an arbitrary g ∈ G we can decompose it into

g = m(g)a(g)n(g)k(g),m(g) ∈ M,a(g) ∈ A,n(g) ∈ N, k(g) ∈ K.

This decomposition may not be unique. However, it is easy to see that a(g)
is unique, the bottom row v(g) of k(g) is unique. By abuse of notation we
will use ω(k(g)) to denote ω(v(g)), and use a(g) to denote the bottom right
entry of (the matrix) a(g). Moreover, φ(m(g)) is well defined. It is also
easy to verify that ω(k(g)), a(g) and φ(m(g)) are invariant under the left
multiplication by any element in Γ∞.

Therefore, for any g ∈ G, we form the sum

(A.4) E(s, g, ω, φ) =
∑

[γ]∈Γ∞\Γ
ω(k(γg))φ(m(γg))a(γg)−s

which is the maximal parabolic Eisenstein series we mentioned above.
Since all elements in Γ have integral entries, when evaluated at the identity

g = I, this series E(s, I, ω, φ) become a Dirichlet series
∑∞

n=1
an
ns . We have

(A.5) an =
∑

[γ]∈Γ∞\Γ: the third row of γ has length
√
n

ω(k(γg))φ(m(γg)).

We see some similarity between the summands of an and S(n, ω, φ). Ac-
tually we have the following

Theorem A.1.

(A.6) an = S(n, ω, φ).
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Proof. First, note that all the primitive integer vectors of length
√
n have

a natural 1-1 correspondence to the last rows of γ that have length
√
n,

where [γ] ∈ Γ∞ \ Γ. Thus with a primitive integer vector v = (a, b, c) of
length

√
n we associated 1 summand in both sides. It suffices to show that

both summands associated with v are the same. It is obvious that the ω
parts agree. We must show that the φ parts also agree. This is elementarily
equivalent to the following statement: for the vector v, the following two
lattices have the same shape: (a) Z3 ∩v⊥ and (b) the projection of Z3 onto
v⊥ (which are both easily seen to be lattices of rank 2).

We now prove that for any vector w ∈ Z3 ∩ v⊥, there exists an integer
vector u such that w = v × u. In fact, we can assume w = (f, g, h) and
without loss of generality assume that c 6= 0. Then we must find integers
r, s, t such that f = bt−cs, g = cr−at, h = as−br. Note that by assumption
we have af+bg+ch = 0. We deduce gcd(b, c)|af . Since (a, b, c) is primitive,
we have gcd(a, gcd(b, c)) = 1 and thus gcd(b, c)|f . Hence we can choose t
such that c|f − bt. In this situation c|af + bg − a(f − bt), or c|b(g + at).
Hence we can change t by a multiple of c

gcd(b,c) , if necessary, to make both

c|f − bt and c|g + at. Now we just set s = bt−f
c , r = g+at

c . It is then easy to
deduce h = as− br by the fact that af + bg + ch = 0.

By the last paragraph, the entire lattice (a) is the cross product of the
lattice (b) and the vector v. Hence they have the same shape and the
theorem is proved. �

It is not surprising that one could use the Dirichlet series E(s, I, ω, φ) to
study the analytic properties of the Weyl sum an, which would be naturally
required if one wants to remove the congruence conditions of Theorem 1.2
and prove Conjecture 1.1.

To address the problem, we need a good estimate for all individual coef-
ficients an. The work of Gauss (see e.g. [Ven70] for a nice account) shows
that the total number of summands in an is given by the following theorem.

Theorem A.2 (Gauss[GM89]). Given an integer n > 3. The number of
coprime integer solutions (x, y, z) to the equation n = x2 + y2 + z2 is 12h
for n ≡ 1, 2 mod 4, and is 24h′ for n ≡ 3 mod 8, where h and h′ are
the number of properly and improperly primitive classes of positive forms of
determinant −n.

By Siegel’s theorem together with Dirichlet’s class number formula (see

[Dav67]), h and h′ ≫ǫ n
1
2
−ǫ, and are usually around n

1
2 (with an arbitrary

small error on the exponent). So we would like to have a power saving from
the exponent 1

2 for all an.

Remark A.3. We note that it suffices to consider even forms ω and φ. Oth-
erwise it is obvious that an = 0. We assume this is the case for the rest of
the discussion.
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It is still not clear how to do this in the greatest generality. But there have
been partial results. Part of the following brief account already appeared
in §4.1 but we recall it once more for the reader’s convenience. In the
special case φ = 1, this reduces to a situation that could be treated with
Iwaniec’s celebrated estimation of Fourier coefficients for half-integral weight
holomorphic modular forms [Iwa87], as the series become a theta series. For
the case ω = 1 again by the work of Gauss [Ven70] we know we are summing
the φ over a certain genus of quadratic forms of determinant −n. If we
pretend that we are summing over all the quadratic forms (CM points), this
can be settled using Duke’s generalization of Iwaniec’s argument to non-
holomorphic forms [Duk88]. Using Waldspurger’s formula and subconvexity
the power saving for the real problem is also known [HM06].

For general φ and ω, the connection of the series E(s, I, ω, φ) to modular
forms is still mysterious and we currently do not have the desired power sav-
ing. Nevertheless, since it is a specific value (meaning for the fixed g = I) of
an Eisenstein series, the analytic continuation and the functional equation
are known (see e.g. [Ter82]). Interestingly, Maass, when originally dealing
with this very equidistribution problem (but in the ball, not on the sphere),
also deduced these analytic properties [Maa59] [Maa71]. The following the-
orem could be easily derived from Maass’s work in [Maa71] (see Chapter
16).

Theorem A.4. Let Ξ(s, ω, φ) = E(s, I, ω, φ)Λ∗(s, φ). Then Ξ(s, ω, φ) is
holomorphic on C except for a possible pole at s = 3

2 . The pole exists if
and only if both ω and φ are trivial. Also Ξ(s, ω, φ) satisfies the functional
equation

(A.7) Ξ(
3

2
− s, ω, φ) = Ξ(s, ω, φ).

Here Λ∗(s, φ) is a kind of “completed L-function of φ” which we now

define. Assume λ(1− λ) is the eigenvalue of the Laplacian ∆ = −y2( ∂2

∂x2 +
∂2

∂y2
) for φ. When φ is a constant or unitary Eisenstein series, Λ∗(s, φ)

factorizes:

(A.8) Λ∗(s, φ) = Λ(2s − λ, ζ)Λ(2s − (1− λ), ζ)

where Λ(s, ζ) = π− s
2Γ( s2)ζ(s) is (up to normalization) the completed Rie-

mann zeta function. When φ is a Maass cusp form, Λ∗(s, φ) = Λ(2s− 1
2 , φ).

Where Λ(s, φ) is the usual completed L−function of φ (we use the fact that
φ is even):

(A.9) Λ(s, φ) = π−sΓ(
s

2
+

λ

2
− 1

4
)Γ(

s

2
− λ

2
+

1

4
)L(s, φ).

With only the analytic properties stated in Theorem A.4, we cannot ex-
pect to get a good control of the size of each individual term |an|. However
we can get an “average bound” for the sum of an. Next we will show one
such bound.
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We prove the following:

Theorem A.5.

(A.10)
∑

n≤X

an =

(
1

Area(S2)

∫

S2
ω

)(
1

Area(X2)

∫

X2

φ

)
X

3
2 +Oω,φ,ǫ(X

15
14

+ǫ).

Obviously, the product of the integrals (main term) in (A.10) is nonzero
if and only if both ω and φ are trivial.

Proof. We fix ω, φ from the beginning. By lattice points counting, the the-
orem is obvious when ω and φ are trivial. Next we assume that this is not
the case. To be explicit, let’s assume φ is a Maass cusp form. Other cases
are similar. We invoke a theorem, which is a general bound about sums of
coefficients of Dirichlet series. We state the theorem in the form we need.

Theorem A.6 (A special case of Theorem 4.1 in [CN62]). Assuming we

have two Dirichlet series f(s) =
∑∞

n=1
cn
ns and g(s) =

∑∞
n=1

dn
ns and a prod-

uct of Gamma factors ∆(s) =
∏N

ν=1 Γ(ανs + βν), satisfying the functional
equation

(A.11) ∆(s)f(s) = ∆(M − s)g(M − s)

for some M > 0. Also assume f is entire. Then

(A.12)
∑

n≤X

cn = O(X
M
2
− 1

4A
+2Aηu) +O(

∑

X<n≤X′

|cn|).

In (A.12), A =
∑N

ν=1 αν ≥ 1, X ′ = X + O(X1−η− 1
2A ), u = β − M

2 − 1
4A

where β satisfies
∑∞

n=1
|dn|
nβ < ∞, η is any positive number at our disposal.

Take f = g = E(s, I, ω, φ)L(2s − 1
2 , φ). Maass proved E(s, I, ω, φ)L(2s −

1
2 , φ) is entire [Maa71], which enables us to do the substitution. We see

here M = 3
2 . By Theorem A.4, E(s, I, ω, φ)L(2s − 1

2 , φ) has a functional
equation with two Gamma factors, meaning A = 2. Finally we determine

β. Assume L(s, φ) =
∑∞

n=1
bn
ns . Then L(2s − 1

2 , φ) =
∑∞

n=1
bn

√
n

n2s . Hence

|cn| = |dn| ≤
∑

m2k=n |ak||bm|√m ≤
∑

m2k=n k
1
2
+ǫm ≪ n

1
2
+ǫ. We can take

β = 3
2 + ǫ and thus u = 5

8 + ǫ.

We conclude that
∑

n≤X cn = O(X
5
8
+( 5

2
+ǫ)η) + O(X

5
4
+ǫ−η). After an

optimization we get
∑

n≤X cn = O(X
15
14

+ǫ). Now if 1
L(s,φ) =

∑∞
n=1

hn

ns , from

the Euler product of L(s, φ) we easily get |hn| ≪ n
1
2 . Hence

(A.13)

|
∑

n≤X

an| = |
∑

n≤X

hn
√
n

∑

mn2≤X

cm| ≪ |
∑

n≤X

|hn|
√
n(

X

n2
)
15
14

+ǫ| ≪ X
15
14

+ǫ.

�
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We end the discussion with some further remarks concerning this ap-
proach. All the dependencies on ω and φ are polynomial in terms of their
eigenvalues and can be made explicit by a slightly more careful treatment.
It is then standard to do a spectral decomposition (of the smoothed char-
acteristic function of the underlying domain) and take the Weyl law (see
[Sel91]) into account, to get an estimate of the remainder term needed for
the joint equidistribution result “in a big ball” — pairs ( v

‖v‖ , zv) get jointly

equidistributed for ‖v‖ ≤ n when n → ∞. We can also get the joint
equidistribution “in a thinner shell” (for some X1−θ < ‖v‖ < X) where
θ > 0 depends on the remainder term we have. But the conjectured joint
equidistribution result “on every sphere of a reasonable radius” (Conjecture
1.1) requires new ideas.

This type of (quantitative) bounds for the remainder term of the averaged
size of an were also obtained by elementary methods by Schmidt [Sch98], in
more general cases. Our approach will also have corresponding generaliza-
tion for higher dimensional settings.
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M.E. Departement Mathematik, ETH Zürich, Rämistrasse 101, 8092 Zurich,

Switzerland

E-mail address: manfred.einsiedler@math.ethz.ch



INTEGER POINTS AND THEIR ORTHOGONAL LATTICES 22

U.S. Department of Mathematics, Technion, Haifa, Israel

E-mail address: ushapira@tx.technion.ac.il

R.Z. Departement of Mathematics, Princeton University, Fine Hall, Wash-

ington Road, Princeton, NJ USA 08544

E-mail address: ruixiang@math.princeton.edu


	1. Introduction
	2. Notation and organization of the paper
	3. Joined Adelic, S-adic and real torus orbits
	3.1. From ASL2 to SL2 

	4. Duke's Theorem and Joinings
	4.1. Two instances of Duke's Theorem.
	4.2. Joinings. 

	Appendix A. the Associated Dirichlet Series By Ruixiang Zhang
	References

