
FUNDAMENTAL COCYCLES OF TILING SPACES

MANFRED EINSIEDLER

Abstract. We study continuous cocycles defined on the set of planar
tilings with values in discrete groups. Following Schmidt we show that
for generalized domino tilings, L-tiles, and some systems of paths there
exists a fundamental cocycle, i. e. we find a cocycle cf , so that all other
continuous cocycles c are cohomologous to a homomorphic image of cf .

1. Introduction and Definitions

Fundamental cocycles for higher-dimensional subshifts of finite type were
introduced by Schmidt in [4]. The question of which higher-dimensional
subshifts of finite type have such cocycles is central to our understanding
of cohomological properties. In this work we find fundamental cocycles for
a class of two-dimensional subshifts of finite type. We also investigate for
those subshifts the relation between cocycles and hole-filling.

In the following sections we will consider tilings of the plane by a fixed set
of square tiles. These tiles should always be aligned to the lattice (that is, the
corners of the tiles should be lattice points). A Wang tile system is a set of
unit squares where each edge has a colour and the set of colours of horizontal
edges is disjoint from the set of colours of vertical edges. The allowed tilings
have to satisfy that two squares which have an edge in common should have
the same colour at this edge. The set of all allowed tilings of R2 is a shift of
finite type which we call the tiling space X. As usual, we use in this shift
of finite type the subspace topology of the product topology. That means a
basis of the topology is given by the cylinder-sets, each of which consists of
those tilings which are equal to a given tiling in a fixed finite rectangle. Let
σ be the usual shift-action on the tiling space.

A continuous cocycle of σ on X with values in a discrete group G is a
continuous function

c : Z2 ×X → G

which satisfies
c(m + n, x) = c(m, σnx)c(n, x) (1)

for all m,n ∈ Z2 and all x ∈ X (see for instance [3]). One can think of this
formula as a form of path-independence. For instance the equation

c
(
(0, 1), σ(1,0)x

)
c
(
(1, 0), x

)
= c
(
(1, 0), σ(0,1)x

)
c
(
(0, 1), x

)
(2)

means that one can either go first to the right and then up or the other way
round if one writes the corresponding cocycle-values in the right order.

An example of a continuous cocycle is a coboundary which has the form
c(n, x) = b(σnx)b(x)−1 for a continuous function b : X → G. One can
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also obtain a new cocycle c′ from an existing one c by modifying it with a
continuous function b : X → G in the following way

c′(n, x) = b(σnx)c(n, x)b(x)−1. (3)

Two cocycles c and c′ are called cohomologous if there exists a continu-
ous function b satisfying (3). A fundamental cocycle cf with values in the
discrete group Γ is a continuous cocycle for which any continuous cocycle c
with values in any discrete group G is cohomologous to a homomorphic im-
age η ◦ cf where η : Γ→ G is a group homomorphism. More intuitively one
can say that a fundamental cocycle has all the information which any cocy-
cle can have. For some examples we will show that there exist fundamental
cocycles.

As c(n, x) = n ∈ Z2 is always a cocycle, if there is a fundamental cocycle
there exists a homomorphism φ : Γ → Z2. The kernel ker(φ) of this map
expresses somehow the complexity of the dynamical system. In the known
examples (see [4]) this kernel is either finite or Z. Here we want to give
examples where this kernel has a different structure. We will find dynamical
systems where this kernel is, for instance, the free group with finitely many
generators.

One way to construct a continuous cocycle for the shift σ on a tiling space
X is via Conway’s tiling group Γ (see [1] or [5]). This group is defined by
the generators which are the colours of the edges of the tiles and, for each
tile W , the relation d−1c−1ba = 1, where a, b, c, d are the colours of the tile

W =
a

c
bd .

The tiling cocycle cΓ is defined by the two functions

cΓ

(
(1, 0), x

)
= bottom colour of x(0,0)

cΓ

(
(0, 1), x

)
= left colour of x(0,0).

Now the relation d−1c−1ba = 1 is just a reformulation of Equation (2).
We extend the cocycle to all n ∈ Z2, for example in the following way

cΓ(n, x) = cΓ

(
(0, n2), σ(n1,0)x

)
cΓ

(
(n1, 0), x

)
,

where for positive n1 we define

cΓ

(
(n1, 0), x

)
= cΓ

(
(1, 0), σ(n1−1,0)x

)
cΓ

(
(1, 0), σ(n1−2,0)x

)
. . .

. . . cΓ

(
(1, 0), σ(1,0)x

)
cΓ

(
(1, 0), x

)
(4)

and for negative n1

cΓ

(
(n1, 0), x

)
= cΓ

(
(−n1, 0), σ(n1,0)x

)−1
.

The function cΓ

(
(0, n2), x

)
is defined in an analogous way. The proof that

this gives a cocycle uses the relations of the tiling group.
In connection with the tiling group we also investigate whether or not a

given roughly rectangular hole in a tiling can be filled by using the tiles. If
we go around the hole and write down the consecutive colours from right
to left, then the resulting value in the tiling group must be equal to the
identity of the group if the hole allows a tiling. This is because if the hole
can be tiled then this gives a point x ∈ X and the calculated value is equal
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to cΓ

(
(0, 0), x

)
. If the hole is tile-able after enlarging the hole then this

algebraic condition is also satisfied, because the cocycle value around the
enlarged hole is conjugate to the original value.

In the examples we also search for criteria for tile-ability of such holes.
An easy example for this is the system defined by the two one-dimensional
tiles [0, 3] and [0, 5]. The Wang-tiles of those tiles are intervals of length one
with a colour on each side. If we write the colours of those intervals as an
ordered pair (left colour, right colour), we have the following pairs:

(0, 1), (1, 2), (2, 0), (2, 3), (3, 4), (4, 0).

Using these intervals or the original intervals one can of course tile each hole
whose length has a representation as a sum of multiples of 3 and 5. It is easy
to see that each interval which is sufficiently large has such a representation.
However, it is not true that every interval has a representation. So it is
more convenient to ask for a condition which is sufficient for large intervals
or for a condition which is sufficient if one allows first an enlarging of the
hole. This will also occur in our two-dimensional tilings. The enlargement
of the hole is in some two-dimensional tilings even more important because
the boundary sometimes prevents a tiling although after an enlarging the
hole is tile-able.

When we speak below of the tiling of a given region, the tiles have to cover
the region and have to be contained in the region, so we mean an exact tiling.
The term over tiling should mean that the tiles cover the region but some
parts of them can extend beyond the region.

In Section 2 we will consider dominoes and generalized dominoes. Here
we find a fundamental cocycle but we will prove as well that there cannot
exist a cocycle which gives a sufficient condition for tile-ability of holes.
In Section 3 we examine the tiling system of paths in the plane. For those
systems there are examples of both behaviors. Some systems of paths have a
characterization of tile-ability of holes and some do not, although all of them
have a fundamental cocycle. In Section 4 we will consider the L-tiles, find a
necessary and sufficient condition for tile-ability of holes and a fundamental
cocycle.

2. The Dominoes

In [4, Section 6] Schmidt studied the dominoes which are given by the
following tiles

and the corresponding dynamical system. Theorem 6.7 in [4] gives a funda-
mental cocycle for the domino shift. We want to generalize this theorem to
all systems which are defined by two rectangular tiles but with the restric-
tion that the system is topologically mixing. For algorithms regarding the
question of tile-ability for some of these systems see also [2].

The two rectangles Ri(i = 1, 2) have the dimensions mi× ni. We call the
colours on the horizontal and the vertical edges H and V respectively. We
also have to fix colours for the edges in the interior of the tiles in order to
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define a system of Wang tiles. We do this as indicated in the 2 × 2, 3 × 3
example below:

H

H
v1V
H

a1
V

H
v1V
H
V

H

H
v1V

H
v1V

H
v1V

H

H
v2

H
v2

H
v2

H

b1
V

b2
V

H
V

Each tiling of R2 with the above Wang tiles corresponds to a tiling with
the 2× 2- and 3× 3-rectangles and the other way round.

Write k ⊥ l to mean that k and l are coprime.

Lemma 2.1. The dynamical system corresponding to two rectangles as tiles
is topologically mixing if and only if m1 ⊥ m2 and n1 ⊥ n2.

Proof. Assume that k > 1 is the greatest common divisor of m1 and m2.
We want to show that the dynamical system is not mixing. To show this we
take one of the rectangles and define the open set O to be the set of tilings
of the plane such that the fixed rectangle occurs at position (0, 0). If the
system is mixing there would be a L such that O ∩ σ(−l,0)(O) 6= ∅ for l ≥ L.
However, for l = ak + 1 ≥ L it is easy to see that the intersection must be
empty.

Now we assume that the condition is satisfied and we want to show that
the system is mixing. We have to take two non-empty open sets O1, O2,
where we can assume that the sets are defined by fixed patterns around the
position (0, 0). We want to construct a tiling of a vertical strip with finite
horizontal width such that the left and the right boundary are flat and that
the pattern for O1 occurs at (0, 0). If we can do the same for the pattern of
O2, we can move the two strips away from each other such that the distance
is big. Then the distance is a sum of positive multiples of m1 and m2 as
the two integers are coprime. Therefore one can easily tile the gap between.
This proves mixing since one can do the same for horizontal strips.

Take a point x ∈ O1. To construct a tiling of a vertical strip we have to
find a finite part of the tiling x which contains the pattern and allows us to
construct the tiling of the strip. This can be done for instance if the finite
part is such that each horizontal part of the boundary has a length which is
a sum of positive multiples of m1 and m2.

In the above picture this condition is satisfied but if one removes the right-
most rectangle then the condition would fail. If we already have such a
region then we can put the two rectangles above (resp. below) all the hori-
zontal parts corresponding to how the length is written as a sum of positive
multiples of m1 and m2 and get a tiling of the vertical strip.

To find such a finite part of x we have to find a path going around the
pattern of O1 which splits into four paths. We start somewhere to the right
and above the pattern of O1 at a point which is on an outer edge of a
rectangle in x. First we want to go down and to the right always on the
outer edges of the rectangles in x. There exists a natural number N such
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that each n ≥ N is a sum of positive multiples of m1 and m2. The rule
which forces our path is to go right until we reach a point where this is
impossible or our actual horizontal step has reached a length of N where
we go down when possible. The path eventually leads under the lowest part
of the pattern, then we stop and change our rule. From here on we want
to go to the left and down. We go to the left whenever possible and down
when not. Eventually we are left to the left end of the pattern and again we
change our rule. Now we want to go up and to the left. Our rule is now to go
left until our horizontal step has reached a length of N or left is not possible,
then we go up. Eventually we are above the upper end of the pattern, then
we start going to the right when possible or up. If we hit our path we stop.
If we miss our path we will get above our previous starting point, stop and
start again in our starting point to go to the left when possible or up and
hit the path.

The above path encloses a finite part of x which contains the pattern cor-
responding to O1, is exactly tiled by rectangles and satisfies the constraints
about the horizontal steps which concludes our proof. �

To calculate the tiling group we again look at our Wang tiles and we
see that each colour in the interior of the rectangles can be expressed in
terms of H and V . The two rectangles then correspond to the two relations
Hm1V n1 = V n1Hm1 and Hm2V n2 = V n2Hm2 .

In the following Ck ∗Cl denotes the non-abelian free product of the cyclic
groups Ck ∼= Z/kZ and Cl which is given by the set of all alternating prod-
ucts of elements in the two groups. We also write the cyclic groups mul-
tiplicatively, where H (resp. V ) stands for the generator of the first (resp.
second) cyclic group in the free product. The map η : Ck ∗ Cl → Ck × Cl
denotes the canonical map to the direct product, where the elements of
the first group are multiplied regardless of their positions to get the first
component, and the same for the second group.

The following proposition generalizes [2, Section 3.1].

Proposition 2.2. Let m1 ⊥ m2 and n1 ⊥ n2, so that the dynamical system
corresponding to the two rectangles is topologically mixing. The tiling group
Γ of the system is isomorphic to

∆ ⊆ Z2 × (Cm1 ∗ Cn2)× (Cm2 ∗ Cn1)

where ∆ is defined to be those elements
(
(k1, k2), γ1, γ2

)
which satisfy

η(γ1) =
(
Hk1 mod m1 , V k2 mod n2

)
and

η(γ2) =
(
Hk1 mod m2 , V k2 mod n1

)
.

The map which gives an isomorphism is defined by

φ : H 7→
(
(1, 0), H,H

)
and

φ : V 7→
(
(0, 1), V, V

)
.

Proof. First we want to prove that φ is well-defined, i. e. that φ(Γ)) ⊆ ∆
and that the two relations

HmiV niH−miV −ni = 1 (i = 1, 2)
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are respected by φ. As ∆ is a subgroup and φ(H), φ(V ) ∈ ∆ we already
know that φ(Γ) ⊆ ∆. The easy calculation

φ(H)m1φ(V )n1φ(H)−m1φ(V )−n1 =(
(0, 0),1 · V n1 · 1 · V −n1 , Hm1 · 1 ·H−m1 · 1)

)
= 1

and a second one like this show that φ is well-defined. To prove that φ is an
isomorphism we use a chain of normal subgroups in Γ and in ∆.

It is easy to see that H commutes with V n1n2 and V with Hm1m2 as
m1 ⊥ m2 and n1 ⊥ n2. Therefore V n1n2 and Hm1m2 are in the center of the
group. Let G1 be the subgroup generated by those two elements. G1 is a
normal subgroup and is mapped injectively to the subgroup of ∆ generated
by
(
(m1m2, 0),1,1

)
and

(
(0, n1n2),1,1

)
.

The quotient ∆/φ(G1) is isomorphic to

(Cm1 ∗ Cn2)× (Cm2 ∗ Cn1) (5)

as the first coordinates of the elements in ∆ can be calculated from the η-
images of the others modulo a point in φ(G1) by using the Chinese remainder
theorem.

Let G2 be the subgroup generated by Hm2 , V n1 . We have to show that
G2 is a normal subgroup. For instance V aHm2V −a must be an element of
G2. There exists an integer k such that n2|kn1 − 1. As V n2 commutes with
Hn2 we have

V aHm2V −a =

V aV
an2

“
kn1−1

n2

”
Hm2V

−an2

“
kn1−1

n2

”
V −a = V akn1Hm2V −akn1 ∈ G2.

The same can be done for HaV n1H−a, which proves that G2 is a normal
subgroup. Assume φ(γ) = 1 for γ ∈ G2/G1. Then we write γ as an alternate
product of powers of Hm2 and of V n1 where we cancel the factors of the form
(Hm2)m1 or (V n1)n2 . If the product is non-empty then φ(γ) is non-trivial
as no cancellation in Cm1 ∗ Cn2 takes place. Therefore φ|G2/G1

is injective.
As m1 ⊥ m2 and n1 ⊥ n2 the image φ(G2/G1) is (Cm1 ∗ Cn2)× {1}.

If we take Γ modulo G2 we see that the group we get is defined only by
the relations Hm2 = V n1 = 1. Therefore it is isomorphic to Cm2 ∗Cn1 which
is the quotient of the group in (5) modulo φ(G2/G1). This proves that φ is
bijective. �

For the proof that the tiling cocycle is a fundamental cocycle we will need
a result which says roughly that the tiling group describes the shift space
quite well. For instance, if the tiling cocycle characterized tile-ability, this
would be sufficient. Unfortunately, the tiling cocycle for the dominoes does
not characterize tile-ability of rectangular holes which can be seen in the
following example due to Sam Lightwood.

Example 2.3. If we look at the ordinary dominoes with dimensions 2 × 1
and 1× 2 then the following pattern
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extended to infinity gives us a hole which is not tile-able by the dominoes.
First we would like to point out that the tiling cocycle of the path around

the hole vanishes, so that our algebraic condition is satisfied. This can be
seen in two ways. If we take only the shape of the hole and add a domino,
the cocycle value corresponding to the shape of the region will not change.
By doing this as shown below

the hole becomes tile-able, so the cocycle value has to vanish. The second
way to see this is a better analysis of the tiling group (see [4, Section 6]).
For this tiling system the tiling cocycle value corresponding to a hole counts
the difference between the number of white and black squares inside the hole
if one colours the plane like a chess board. This difference vanishes in our
example.

Let us consider a hole which is constructed by removing dominoes in the
above tiling. The original and also the new tiling contain two regular patterns
above and below the series of horizontal dominoes. If we remove finitely
many dominoes out of this pattern, the only way to tile the uncovered space
is to rebuild the pattern. Therefore one comes eventually to the original
tiling, where the hole is not tile-able.

Together we have now that the tiling cocycle vanishes for this hole, but it
is not tile-able even after enlarging the hole.

This example shows that the tiling cocycle is somehow not good enough
to characterize tile-ability and one would ask for better cocycles. But we
will show that the tiling cocycle is a fundamental cocycle, so there is no
cocycle which can characterize tile-ability of holes.

For convenience we state here a completely elementary fact about the
tile-ability of some rectangles using our rectangles.

Lemma 2.4. The rectangles

[0, km1 + lm2]× [0, n1n2] and [0,m1m2]× [0, kn1 + ln2]

for k, l ≥ 0 are tile-able by using the rectangles m1 × n1 and m2 × n2.

We will now state and prove the proposition which will show that the
tiling group describes the shift space well.

Proposition 2.5. Let k be a positive integer and Y be the set of tilings of
the strip [0, km1m2]× R by the two rectangles such that

cf
(
(km1m2, 0), y

)
= Hkm1m2 .

The shift space Y is topologically transitive.
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In the following proof the term weight of the boundary refers to the co-
cycle value of the path which follows the boundary but without the possible
simplifications. We also write in contrast to Equation (1) the weight from
the left to the right.

Proof. Let G1 = Cm1 ∗ Cn2 and G2 = Cm2 ∗ Cn1 be the second resp. the
third factor of the group introduced in Proposition 2.2. For the proof of
transitivity we have to look at the various shapes of the upper boundary of
finite tilings. We will show that each boundary occurs as a bottom boundary
of a tiling with the upper boundary being flat. By symmetry this suffices to
establish topological transitivity.

We choose the boundary following the outer edges of the tiles such that
each horizontal step has a length which is representable as a sum of positive
multiples of m1 and m2. To find such a boundary we start on the left of
the strip and search for a way to the right. If possible we go to the right,
if not we go up until it is possible again to go to the right. This path gives
us a boundary which satisfies the constraints because the tiles just below
the horizontal step give us the representation. We also assume without loss
of generality that the path describing the boundary starts and ends at the
same vertical height.

In the following we split the original boundary into its horizontal and
vertical steps. We call a step Gi-trivial if the corresponding value in Gi is
vanishing. We call a part of the boundary Gi-trivial if each horizontal and
vertical step of this part is Gi-trivial. Our assumption is that the value
corresponding to the boundary is trivial. If it is in addition G1-trivial and
G2-trivial then each horizontal (resp. vertical) step has a length which is a
multiple of m1m2 (resp. n1n2). But then it is easy to find a tiling which
ends with a flat boundary above due to Lemma 2.4. Therefore we want
to add some rectangles above the original boundary until the boundary is
G1-trivial and afterwards until it is G2-trivial.

For an easier understanding of the following it is useful to keep track of
Example 2.6. We prove the existence of theG1-trivial boundary by induction
on the number of horizontal and vertical steps which are not G1-trivial. The
weight of the boundary looks like

Ha0 · V b1 ·Ha1 · · · · · V bk ·Hak · V bk+1 (6)

with a0, bk+1 ≥ 0 and ai, bi > 0 for 0 < i ≤ k. The factors Hai and V bi

correspond to the horizontal and vertical steps of the boundary respectively.
As the value is vanishing in G1 there is a possible cancellation. There are
two possibilities for the first cancellation: some non-trivial factors of the
form V bi (or of the form Hai) are separated by trivial factors of the form
V bj or Haj . The collection of the trivial factors corresponds to a part of
the boundary which is G1-trivial per definition. We know that this part
consists of horizontal (resp. vertical) steps of a length which is a multiple of
m1 (resp. n2). Therefore we can use the rectangle m1×n1 to raise this part
of the boundary by a multiple of n1.

Assume V bi and V bj with i < j are non-trivial and separated by trivial
factors. The raising described above ends with a boundary whose weight
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looks like
· · · · V bi+kn1 · (trivial factors) · V bj−kn1 · · · ·

and we choose k such that bi + kn1 is divisible by n2. Therefore the factor
V bi+kn1 is G1-trivial and we have reduced the number of non-trivial factors.

If the non-trivial factors Hai and Haj are separated by some trivial fac-
tors, we write the first exponent as a sum ai = km1 + lm2 with k, l ≥ 0. As
Hai is not G1-trivial we have l > 0. If the next horizontal step lies below
this one (that means if bi+1 < 0) then we raise this step by the height of
a multiple of n1n2 by filling the enclosed area with rectangles (see Lemma
2.4) such that the new bi+1 > 0. As V bi+1 is trivial in G1, we know n2|bi+1.
Therefore we can fill the rectangle

km1 lm2

hn2 = bi+1

︸ ︷︷ ︸
ai

with the m2×n2-rectangle. The changed boundary has now a weight of the
form

. . . ·Hai−lm2 · V bi+1 ·Hai+1+lm2 · . . . .
The new exponent a′i = ai− lm2 = km1 shows that the corresponding factor
Ha′i = 1 ∈ G1. If j = i+ 1 we are done because we have again reduced the
number of non-trivial factors. If j > i+1 we repeat the above modifications
until lm2 is finally added to aj .

Now our assumption is that the boundary is G1-trivial and its corre-
sponding cocycle value is trivial in G2. As above we prove the existence of a
G1-trivial boundary which is also G2-trivial by induction. Again we search
for the first cancellation of non-trivial factors in the product in (6) viewed
in G2. Assume that V bi and V bj with i < j are non-trivial in G2 and are
separated by trivial factors. Then we add tiles such that the boundary looks
like

m1m2

m1m2

m1m2
k

bi

k′

bj

︸ ︷︷ ︸
trivial factors

which reduces the number of non-trivial factors if we choose the height k
such that the first vertical step has a length bi+k which is divisible by n1n2.

If Hai and Haj are non-trivial and separated by trivial factors, we can
simplify the boundary corresponding to the trivial factors like in the picture
above with k being a multiple of n1n2. Therefore the trivial factors simplify
to V bi+kH lm1m2V bj+k and we can assume that j = i+ 2. In the picture

ai

ai+1

ai+2
bi

bi+1
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the rectangles are tile-able as n1n2|bi, bi+1. As the changed boundary is still
G1-trivial and has now less G2-nontrivial factors we have finished the proof
that we can reach a boundary which is both G1-trivial and G2-trivial. �

Example 2.6. We again use the two tiles 2× 2 and 3× 3.

We take the boundary

of a possible tiling below and want to construct a flat boundary above and a
tiling of the region between. We want to use the proof of Proposition 2.5 so
we first check if the assumption is satisfied. In the group G1 = C2 ∗ C3 we
calculate

V H3V −1H2V H3V −1H4 = V H3V −1V H3V −1 = V H6V −1 = 1

and in G2 = C3 ∗ C2 we have

V H3V −1H2V H3V −1H4 = V V −1H2V V −1H4 = H6 = 1.

So in the first group the cancellation starts at V −1H2V and we only have to
use the 2× 2-rectangle

to get to the term V 3H2V −3 instead which is G1-trivial. Now H3 left and
right of this term are non-trivial and we can use the 3 × 3-rectangle to get
the picture.

Here V 4H8V −4 is the term which simplifies next. Therefore we put again
the 2× 2-rectangles on top.

We have achieved a G1-trivial boundary with the weight V 6H8V −6H4.
Our last step is to achieve a G2-trivial boundary. The only non-trivial

factors are H8 and H4 which are separated by V −6. We can fill the rectangle
with the edges V −6 and H4 and obtain the tiling

whose boundary is G1-trivial and G2-trivial. In fact it is a ‘flat’ boundary.

Now we turn our attention to cocycles and prove that the tiling cocycle
is a fundamental cocycle.

Theorem 2.7. The tiling cocycle for the system corresponding to two rect-
angles m1 × n1 and m2 × n2 with m1 ⊥ m2 and n1 ⊥ n2 is fundamental.
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Proof. We write cf for the tiling cocycle and Γ for the tiling group. Let
c : Z2 ×X → G be a second continuous cocycle. We have to find a homo-
morphism η and a function b : X → G with

c(n, x) = b
(
σn(x)

)
η
(
cf (n, x)

)
b(x)−1

for all n ∈ Z2 and x ∈ X.
As the two functions c

(
(1, 0), ·

)
and c

(
(0, 1), ·

)
are continuous they depend

only on a fixed part of the tiling. More precisely there exists a natural
number r such that c

(
(1, 0), x

)
= c

(
(1, 0), y

)
and c

(
(0, 1), x

)
= c

(
(0, 1), y

)
whenever the two tiling x and y coincide on the square [−r, r]2. We call this
number r a sight radius.

For the purpose of finding the homomorphism η it would be good to
produce a situation where the unknown function b is constant. This will be
achieved by looking at tilings x and tuples n ∈ Z2 with the property that
x and σnx coincide on a large square. For this we call the periodic pattern
consisting of the first rectangle and aligned such that the corner of one of
the rectangle is in (0, 0) the standard pattern S.

We will assume for convenience that m1m2|r and n1n2|r. We always use
the pattern S big enough such that at least the area [−r, r]2 is covered by
rectangles. The set OS is defined as the open set of tilings which look like
S in the square [−r, r]2.

Let x ∈ X be such that x ∈ OS and σ(n,0)(x) ∈ OS for some n ≥ 1, i. e.
that the standard pattern occurs in x at the positions (0, 0) and (n, 0). We
would like to set

η
(
cf
(
(n, 0), x

))
= c
(
(n, 0), x

)
. (7)

In order to prove that this is well-defined we have to look at two x, y with the
same tiling cocycle value. But then the two horizontal paths which appear
have the same length n. We look at the rectangles in x and separately for
them in y which hit the strip [−r, n+ r]× [−r, r] and get two pictures like

S S

where the rectangular tiles may stand out of the dashed line. In order to
get to a situation where we can apply Proposition 2.5 we fix for all elements
γ ∈ Γ which appears in this way a point zγ with zγ ∈ OS ∩ σ−1

(0,l)OS such
that cf

(
(0, l), zγ

)
γ = Hn+l and m1m2|n+ l. If we now glue the two stripes

for x and zγ such that the right standard pattern of x is exactly the left
standard pattern for zγ then the tiling cocycle value from the left standard
pattern for x to the right one for zγ is equal to Hn+l. Now we can view this
long strip as a finite part of a tiling of the strip [r, n+ l− r]× [−r, r] where
we removed the two standard pattern left and right. This point satisfies the
assumption in Proposition 2.5 so we can find a finite tiling above our strip
inside [r, n+ l− r]×R which ends with a flat boundary above. If necessary
we add by using Lemma 2.4 and m1m2|n+ l−2r additional rectangles above
the boundary such that the total height from the x-axes to the top boundary
is divisible by n1n2.

We do the same for y but this time we search for a flat boundary below
of the strip of y and with the same restriction of the height. If we now put
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the tiling from y above the one from x and add left and right of this strip
the standard pattern then we get something like

S Sx zγ S

S Sy zγ S

S S

where the height between the two original horizontal strip is divisible by
n1n2. If we use the cocycle c we get the relation

gc
(
(l, 0), zγ

)
c
(
(n, 0), x)

)
= c
(
(l, 0), zγ

)
c
(
(n, 0), y

)
g

where g is the cocycle value for the path upwards. As we can do the same
with the doubled height, the same equation holds also for g2. Therefore we
have proved that c

(
(n, 0), x)

)
= c
(
(n, 0), y

)
.

It is now easy to check that

η(γδ) = η(γ)η(δ) (8)

for γ and δ appearing as a cocycle value for a horizontal path from the
standard pattern to itself. We extend our definition by setting

η(H−km1m2γ) = η(Hm1m1)−kη(γ)

for k ≥ 0 and γ like above. This is a valid definition because for

H−km1m2γ = H−lm1m2δ

we get

H lm1m2γ = Hkm1m2δ

η(Hm1m1)lη(γ) = η(Hm1m1)kη(δ) and

η(Hm1m1)−kη(γ) = η(Hm1m1)lη(δ).

As Hm1m2 is in the center of Γ this extended definition still satisfies Equa-
tion (8).

Let β ∈ Γ be such that the exponents of V in β sum up to zero. We would
like to find k ≥ 0 and γ like above such that β = H−km1m2γ and η(β) is
defined. As Hm1m2 is in the center of Γ we can increase the exponents of H
somewhere in β by increasing k simultaneously. Therefore we can assume
that γ starts and ends with Hr and each exponent of H appearing in the
product between is representable by a sum of positive multiples of m1 and
m2. But for a γ with this properties it is easy to find a point x ∈ X and an
integer n ≥ 1 with x, σ(n,0)x ∈ OS and cf

(
(n, 0), x

)
= γ. So we have already

defined η(β) for all “horizontal” elements β ∈ Γ.
What we have to do next is to define η(V ). We can not do this directly,

because we still want to work with paths starting and ending in the standard
pattern. So we define

η(V n1) = c
(
(0, n1), xS

)
where xS is the periodic point corresponding to the standard pattern S. As
xS has vertical period n1 this path satisfies the above restraint.

Let y be a point of the following form



FUNDAMENTAL COCYCLES OF TILING SPACES 13

S

S

where between the two standard patterns there is a layer of the m2 × n2-
rectangles. We define

η(V 2r+n2) = c
(
(0, 2r + n2), y

)
as the cocycle value for the path from the bottom standard pattern to the
top one.

It is now easy to check that both definitions are compatible with the
definitions of η for ‘horizontal’ elements. If γ ∈ Γ corresponds to a horizontal
path, the same is true for V n1γV −n1 and we have

η(V n1γV −n1) = η(V n1)η(γ)η(V n1)−1

which can be seen immediately by looking at the corresponding paths in a
point x which defines η(γ). One can do the same for η(V 2r+n2).

As n1|r we get that n1(2r + n2) is the least common multiple of n1 and
2r + n2. We have to check if

η(V n1)2r+n2 = η(V 2r+n2)n1 .

For the proof of this we take a point of the following form

S S

S S

S
...

where the left column is chosen such that the cocycle value from the bottom
standard pattern to the top one is η(V 2r+n2)n1 . So we get

η(H2r)η(V 2r+n2)n1 = η(V n1)2r+n2η(H2r),

and if we use the same loop in the point xS we get

η(H2r)η(V n1)2r+n2 = η(V n1)2r+n2η(H2r).

The commutativity law for η(V n1) and η(V 2r+n2) can be proved similarly
by using the patterns:

S

S

S

S

S

S

S

S

So the definition
η(V ) = η(V n1)aη(V 2r+n2)b,

where a and b are such that an1 + b(2r + n2) = 1, extends η to a group
homomorphism from Γ to G.
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Now we can define c′(n, x) = η
(
cf (n, x)

)
and have two cocycles c and c′

with values in the same group G. So the assumptions of the next proposition
are satisfied and this concludes the proof. �

The proof of Theorem 2.7 is completed by the following Proposition.

Proposition 2.8. Let X be a topologically mixing two-dimensional shift of
finite type, c and c′ be two continuous cocycles with values in a discrete
group and r be its sight radius. Fix a point S and define OS to be the set of
tilings which look like S in the square [−r, r]2. Assume that for all x ∈ X
and n ∈ Z with x, σ(n,0)(x) ∈ OS the equation

c
(
(n, 0), x

)
= c′

(
(n, 0), x

)
(9)

holds. In addition we have the same for two particular patterns y1, y2 and
two numbers l1 ⊥ l2 as vertical distances. Then the two cocycles are coho-
mologous.

Proof. We define two functions b, b′ : X → G as follows. Take an arbitrary
point x ∈ X. As the shift is topologically mixing we know that there is a
point z+(x) ∈ X which looks exactly like x in the square [−r, r]2 and like
the standard pattern in [−r+ n(x), r+ n(x)]× [−r, r] for some nonnegative
n(x). For x ∈ OS we choose n(x) = 0. We choose for each point y which
looks like x in [−r, r]2 the same z+(y), therefore the definitions

b(x) = c
(
(n(x), 0), z+(x)

)
b′(x) = c′

(
(n(x), 0), z+(x)

)
gives us two continuous functions on X with values in G. We can do the
same for a non positive m(x) and define the two functions d, d′ : X → G via
the corresponding tiling z−(x):

d(x) = c
(
(m(x), 0), z−(x)

)−1

d′(x) = c′
(
(m(x), 0), z−(x)

)−1

For the definitions of the functions b, b′ only the right half of the tiling z+(x)
is important and for the functions d, d′ only the left half of z−(x).

Take a positive k and any x ∈ X. We define y = σ(k,0)(x). Now Equa-
tion (9) and the tiling below (which is build from the various parts as labeled)

S x y Sz−(x) z+(y)

leads to the equation

b(y)c
(
(k, 0), x

)
d(x) = b′(y)c′

(
(k, 0), x

)
d′(x). (10)

The same argument with

S x Sz−(x) z+(x)

gives us
b(x)d(x) = b′(x)d′(x). (11)

If we multiply (10) from the right with the inverse of (11) then we get

b(y)c
(
(k, 0), x

)
b−1(x) = b′(y)c′

(
(k, 0), x

)
b′
−1(x).
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If we now define the function e(x) = b(x)−1b′(x) then we conclude that

c
(
(k, 0), x

)
= e(σ(k,0)(x))c′

(
(k, 0), x

)
e−1(x). (12)

Therefore we have already showed the desired equation for horizontal paths.
We define

c′′(n, x) = e(σn(x))c′(n, x)e−1(x).
We will show that c and c′′ are equal. We have already the equality along
horizontal paths. From our assumptions we also know that c and c′′ are
equal for yi along n = (0, li) because for points in OS the value e vanishes.

For an arbitrary x ∈ X the mixing property implies that there exists a
k ≥ 1 and a point z ∈ X which looks like yi in [−r, r]× [−r, li + r] and like
σ(k,0)(x) in [k − r, k + r] × [−r, li + r]. The cocycle equation for c and c′′

applied to z yields c
(
(0, li), x

)
= c′′

(
(0, li), x

)
because we know c and c′′ are

equal along the other three sides of the rectangle between (0, 0) and (k, li).
Because l1 and l2 generate Z we get the equality of c and c′′. �

3. Paths

In this section we will consider systems of paths in the plane. We will
look both at directed and undirected coloured paths which will be allowed
either to cross each other or not. In order to describe the corresponding
system in more detail we define the following set of tiles.

The tile in

E =

{
H

H

VV

}
stands for an empty space. The tiles in

Pda =

{
au

au

VV ↑ ,
ad

ad

VV ↓ ,
H

H

arar→ ,
H

H

alal← ,
au

H

Val↖ , . . .

}
describe directed paths with colour a where the subscript of a in the tiles
always indicates the direction of the path crossing this edge. In addition
to the above tiles we allow paths of different colour to share a unit square.
This means that the set

N d
a,b =

{
au

br

bual↖
↖ , . . .

}
for two colours a, b is allowed. Here we only list the cases where the paths
with the different colours are not intersecting each other.

If we have a tiling of the plane by using the tiles in E , Pda and N d
a,a then

this corresponds exactly to a collection of paths in the plane with colour a.
For two colours we get collections of paths in the plane, where each path has
one of the two colours. But the paths with colour a are not crossing paths
with colour b.

We can also allow paths of different colours to cross each other, this gives
us for two colours a, b the set

Cda,b =

{
au

au

brbr ↑→ ,
ad

ad

brbr ↓→ , . . .

}
.
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If we allow for two colours a, b all the tiles we have had up to now, we get a
tiling space where each tiling corresponds to a collection of paths with two
colours and the paths can cross each other.

For the undirected case we can analogously define the set

Pua =

{
ah

ah

VV ,
H

H

avav ,
ah

H

Vav , . . .

}
and similarly N u

a,b and Cua,b.
We can now form the four different tiling systems by taking the appro-

priate unions. For each finite set of colours A we can define

TAd = E ∪
⋃
a∈A
Pda ∪

⋃
a,b∈A

N d
a,b,

TAdc = E ∪
⋃
a∈A
Pda ∪

⋃
a,b∈A

N d
a,b ∪

⋃
a,b∈A

Cda,b,

TAu = E ∪
⋃
a∈A
Pua ∪

⋃
a,b∈A

N u
a,b,

TAuc = E ∪
⋃
a∈A
Pua ∪

⋃
a,b∈A

N u
a,b ∪

⋃
a,b∈A

Cua,b.

For instance TAu defines the system of undirected paths with colours in
A which are not allowed to cross.

Proposition 3.1. The tiling group ΓuA of the tiles in TAu is isomorphic to
Z2 ×

∏∗
a∈AC2, where C2 is the cyclic group of order two and

∏∗ denotes
the free product. Similarly we have ΓucA ≡ Z2 ×CA2 , ΓdA ≡ Z2 ×

∏∗
a∈A Z and

ΓdcA ≡ Z2 × ZA.

Proof. We know from the tile in E that H and V are commuting. The first
tiles in Pua show that V commutes with ah and H with av. The finite tiling

ah

H
V

H

ah
V

shows that H also commutes with ah.
We define a = ahH

−1. The tile

ah

H
Vav

shows that a = avV
−1. The equation a2 = 1 can be seen from

ah

H
V

ah

H
V

Therefore we have for each colour a ∈ A a corresponding element of order
two in the tiling group. The colours commute with H and V , but satisfy no
non-trivial relation between them except that they all have order two. This
proves the first case; the others are similar. �

Our next step is to prove that the tiling group has enough information to
characterize the transitive components of the corresponding one-dimensional
shift. So the next statement replaces Proposition 2.5.
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Proposition 3.2. Let Y be the set of tilings in the strip [0, n]×R by coloured
paths (directed or not, allowed to cross or not) with the property that the
tiling cocycle value from the left border of this strip to the right one is equal
to Hn. The one-dimensional shift of finite type Y is topologically mixing.

Proof. Similarly as in the proof of Proposition 2.5 we can search the position
of first cancellation of the cocycle value and simplify the boundary there.
In the undirected case without crossing this would work for instance for the
boundary given by ah, H, bh, bh, ah like this:

ah

ah
V

H bh
bv
bh ah

ah
V

H
avV
H H H H

Vav

�

As our systems are clearly mixing the proof of Theorem 2.7 now also
proves the next theorem.

Theorem 3.3. For any finite set of colours A the tiling cocycle for each of
the above system of paths with colours in A is fundamental.

We also want to check whether the tiling cocycle characterizes tile-ability
of the holes in the different systems. The rest of this section is joint work
with Sam Lightwood and answers this question.

Example 3.4. We first consider the case of directed paths. We will see that
the cocycle cannot characterize tile-ability if there is only one colour, so the
same happens for more colours. In the picture

all the paths are going down and you should consider the infinite pattern
by continuing the picture to all directions. It is easy to see that the hole
is not tile-able as four paths should go through the dotted line. But the
same argument applies if you enlarge the hole. As the algebraic condition is
satisfied we see that the cocycle does not characterize tile-ability.

Example 3.5. Let us now consider the case of undirected paths with at least
two colours a, b which are not allowed to cross. Here you can essentially use
the last picture with the same argument.

Give the paths colours. Starting from the middle of the left edge the colours
should be a, b, a, b, b, a, b, a in clockwise order. So the algebraic condition is
satisfied but the hole is not tile-able because otherwise there would be to many
paths crossing the dotted line. If you introduce colours also on all other paths
such that colours of two adjacent paths are different then the hole is also not
tile-able if you enlarge it. Therefore the cocycle does not give a sufficient
condition for tile-ability of holes.

Lemma 3.6. In the tiling space corresponding to TAuc the tiling cocycle
characterizes tile-ability of holes. In other words, assume you have finitely
many colours on the edges of a big rectangle. You can connect them to each
other with paths of the right colour if the paths are allowed to cross and the
number of edges of a particular colour is even. This can be done in such a
way that each unit square does not contain more than two paths.
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Proof. Assume that the sides of the rectangular hole are big corresponding
to the number of colours. Take one of the sides of the rectangle. We assume
it is the one at the bottom. If there is one colour which occurs more than
once on this edge or on the two consecutive unit edges of the left and the
right side than we take this colour a. Now we connect the first occurrence of
this a with the second, and so on by using only the first row of the rectangle.
This can for instance look like:

a

b c a a b a d a

g

After we have done this we connect all the other colours with the top bound-
ary of this strip

a

b c a a b a d a

g
@@ @@

which is always possible because we have connected at least two copies of a
to each other. We can repeat this for the other colours as well and conclude
that after this process each colour occurs at most |A| times in the bottom
side as the colour a can also appear on the two edges left and right in the
next row. We do the same with the other sides as well.

Now we know that each colour does only occur at most |A| times on each
side. As the length of the side is big we can shift the colours to the middle
by another manipulation like the one above so that we have many edges on
the left and on the right without colours. We repeat this on the other sides
of the rectangle. If we now repeat the first process, there are no colours on
the left resp. right edge. So this time we can eliminate copies of the same
colour.

Now each side of the smaller rectangle has for each colour at most one
edge with this colour. As the rectangle is still big there is enough space for
connecting the remaining coloured edges. �

4. The L-Tiles

We define four tiles which we call the L-tiles.

The corresponding shift X consists of all possible tiling of the plane with
the above tiles which are aligned to the lattice. This could also be described
using the following Wang tiles. The colour of the solid edges are H or V
corresponding to the direction of the edge.

u

d
l r

u
r

u
l

d
r l

d
(13)

The tilings of the plane using the above tiles with the property that adjacent
tiles have the same colour on their common edge correspond in a one-to-one
way with the tilings using the L-tiles. This is because the last four tiles
in (13) determine exactly two of their neighbor tiles to form the differently
oriented L-tiles.
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Proposition 4.1. The tiling group of the L-tiles is isomorphic to Z×Z×C3

where C3 is the cyclic group of order three and the multiplication is given by

(n1, n2, n3)(m1,m2,m3) = (n1 +m2, n2 +m2, n3 +m3 + n2m1).

The isomorphism maps H to (1, 0, 0) and V to (0, 1, 0).

The group in the proposition is a factor of the discrete Heisenberg group.
If we write xn1yn2zn3 instead of the triple (n1, n2, n3), then it is easy to
check that z lies in the center of the group and that y−1x−1yx = z.

Proof. As before we examine tilings to see algebraic relations. As the two
tilings

u
d

u
d

have the same boundary, we know that the cocycle has the same value when
one goes from one side to the other. So we get the equalities uH = Hu and
dH = Hd. A similar argument shows that ud = du.

If we go along the boundary of the above rectangles we see that V 3 (resp.
H3) commutes with H2 (resp. V 2). Therefore H commutes with V 6 but as
u = V −1HV and d = V HV −1 this is also true for u and d. In the picture

d u d u→

→

the arrows have a vertical distance of 6 units, therefore we get

H6 = V 6(uHd)2V −6.

We define
u = H−1u and d = H−1d, (14)

then the above equality says (ud)2 = 1. The same arguments with another
tiling shows that d3 = 1. Together we know that u = d

−1 has order three.
Completely similar arguments show the same for r and l. From the defi-

nitions of these elements it follows that

u = H−1u = H−1V −1HV = r−1V = (V −1r)−1 = r−1 = l.

As H and V generate Γ we only have to define φ(H) and φ(V ) as in the
proposition stated and to check if all relations are satisfied by the images.
Therefore let φ be the morphism from the free group generated by V,H
defined by φ(H) = x and φ(V ) = y. The first four tiles in (13) define the
elements u, d, r, l in terms of V and H and do not correspond to relations
in V and H. Using these definitions we can compute the images of u, d, r, l
under φ: This leads to

φ(u) = xz−1 φ(d) = xz
φ(l) = yz−1 φ(r) = yz

The last four tiles in (13) give relations whose images should be equal to the
identity. For example the fifth tile gives the relation

φ(V −1u−1rH) = y−1(xz−1)−1(yz)x = z3 = 1.
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The same hold for the other tiles and therefore the map is well defined on
Γ.

The morphism φ is of course surjective, it remains to check the injectivity.
Take the subgroup G of Γ which is generated by u. We already know that
G is cyclic of order three. And as u commutes with H and l with V we
know that u = l lies in the center of the group. The subgroup G is therefore
normal. The restriction φ|G maps u to z and is injective. On the quotients
Γ/G and Z2 the map φ is also an isomorphism as, for instance, modulo the
subgroup G the “horizontal” elements u, d and H are all equal. �

As we now know the structure of the tiling group we take a closer look at
the shift and its dynamical properties. But first we start with some lemmas
which will be useful later.

Lemma 4.2. The one-dimensional shift of finite type which consists of all
tilings of the bi-infinite strip [0, 4] × R by L-tiles is topologically transitive
and has period three. In other words if one has two finite tilings which are
over tilings of [0, 4]× [1, n] and partial tilings of [0, 4]× [0, n+ 1], then one
can move them away from each other such that the gap between them can be
filled. The same is true for the tilings of the strip [0, 8]× R.

Proof. For the proof of this lemma one has to look at the possible boundaries
of finite tilings. We want to show that each upper boundary allows a tiling
above with the other boundary being flat. So there are only 16 cases to be
considered, two of them are already flat. The proof is left to the reader: we
only look at one of the cases.

As the same holds for the bottom boundaries of a given tiling this proves
the topological transitivity.

There exists a tiling with standard bottom and standard top boundary
and length three

(15)
so the shift is either periodic with period three or is aperiodic. But the shift
can not be aperiodic because the cocycle cΓ

(
(4, 0), ·

)
has at consecutive

heights the values
. . . , x4zi, x4zi+1, x4zi+2, . . .

which have exactly the period three.
The strip of width 8 is treated similarly. �

As the proof above resembles an analysis of the game Tetris, the next
lemma looks like the proof of the solubility of a slightly changed version of
Tetris.

Lemma 4.3. Let [0, 3] × [1,∞] ⊆ R ⊆ [0, 4] × [0,∞] be a region which is
constructed from [0, 4] × [0,∞] by removing some unit squares which are
again aligned to the lattice. Then the region R can be tiled by L-tiles if at
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most one of the squares [2, 3]× [0, 1] and [3, 4]× [1, 2] is removed or together
with those two also the square [3, 4]× [0, 1].

We first look at a region R′ which does not satisfy the last assumption in
the lemma. Here the enclosed square [3, 4]× [0, 1] is part of the region.

This region is of course not tile-able by L-tiles so we must avoid such situa-
tions.

Proof. We leave the details to the reader but one can prove this by a re-
cursion where at each step one fills one row so that in the next row the
additional assumption of the lemma is satisfied. This could be done if one
always fills the right most square if possible. �

Now we can go back to the two-dimensional shift space and start with an
application of the last lemma.

Proposition 4.4. The tiling space of the L-tiles is topologically mixing.

Proof. The definition of mixing says that we have to take two open sets
O1, O2 and prove that their intersection O1 ∩ σ−n(O2) is nontrivial if n is
large enough. Without loss of generality we take the cylinder sets

Oi = {x : x is in the rectangle [0, N ]2 equal to zi} with i = 1, 2

and look for an intersection. That means we have to find a tiling of the
plane which contains the two fixed parts z1, z2 which describe the cylinder
sets. Assume that the first coordinate n1 of n is positive and large and take
two tilings x ∈ O1 and y ∈ O2. Take the partial tiling x1 which consists
of all L-tiles in x which have nontrivial intersection with (−∞, N) × R.
This gives a right boundary as it appeared in Lemma 4.3. According to a
rotated version of that lemma we can extend this to a tiling x2 of the region
(−∞, N + 4] × R. The same can be done for y but this time we want a
tiling y2 of [−4,+∞)× R which is equal to y on the set [0,+∞)× R. If we
now apply the shift σ−n(y2) then we have a tiling of [n1 − 4,+∞) × R. If
n1 > N + 9 then the distance between x2 and σ−n(y2) is at least two and
the strip between them is therefore tile-able by using the rectangles 2 × 3
and 3× 2 which can be tiled with the L-tiles as we have already seen above.
The joined tiling z ∈ O1 ∩ σ−n(O2) constructed from x2, σ−n(y2) and the
tiling of the strip completes the proof. �

Now we turn our attention to the holes mentioned in Section 1 for the
case of L-tiles.

Lemma 4.5. A sufficiently large rectangle is tile-able by L-tiles if and only
if its area is divisible by three. More precisely if M,N ≥ 9 then the rectangle
[0,M ]× [0, N ] is tile-able by L-tiles if 3|MN .

Without the assumption of sufficiently large rectangles the lemma is false
because the rectangle [0, 3]× [0, 1] is of course not tile-able by L-tiles.

Proof. The only if part of the proposition is clear because each L-tiles fills
exactly three unit squares.
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Assume now the area is divisible by three. Then one side of the rectangle
[0,M ]×[0, N ] is divisible by three. Without loss of generality we can assume
that 3|N . If M is even then the tiling could be done with the 2×3-rectangles
we have already used. So we only have to look at the case M = 2m + 1.
As M ≥ 9 we can cut the rectangle into the two part [0, 9] × [0, N ] and
[9,M ]× [0, N ]. The second rectangle is tile-able because the length M −9 is
even. So it remains to tile the first one. If N is even then the same argument
holds. So we can assume that N ≥ 9 is odd and by doing the same cutting
argument we only have to look at the rectangle [0, 9]× [0, 5]:

�

Now we allow rectangles with a rough boundary as in Lemma 4.3.

Proposition 4.6. Let [1,M − 1] × [1, N − 1] ⊆ R ⊆ [0,M ] × [0, N ] be a
region which is obtained from [0,M ]× [0, N ] by removing some unit squares
which are aligned to the lattice. Assume for each corner square which is part
of R that one of their neighboring squares is also part of R and that M,N
are sufficiently large. Then there is a tiling of R if the area of R is divisible
by three.

The additional assumption about R is necessary to avoid situations like
the one mentioned before the proof of Lemma 4.3 where a tiling is of course
impossible.

Proof. One can reduce the problem to Lemma 4.5 by using Lemma 4.3 to
flatten the boundary. �

Corollary 4.7. There exists a natural number s such that the following is
true. Let R be any region with [1,M − 1]× [1, N − 1] ⊆ R ⊆ [0,M ]× [0, N ]
whose area is divisible by three, and which is obtained from [0,M ]× [0, N ] by
removing some unit squares which are aligned to the lattice. For any tiling
x of the complement of the region R with L-tiles we can define the tiling y
of all tiles in x which are not contained in [−s,M + s]× [−s,N + s]. Then
there is an extension z ∈ X of the tiling y to a tiling of the whole plane.

Proof. This is an easy reformulation of the Proposition 4.6 as for s > 1 no
problems in the corners are appearing. One has to choose s big enough to
ensure that the enlarged hole is big enough for applying Proposition 4.6. �

Theorem 4.8. The tiling cocycle of the L-tiles is a fundamental cocycle.

Proof. The proof of this theorem resembles very much the proof of Theo-
rem 2.7. We also have a statement, which says that our cocycle describes
the shift space quite well:

We know roughly speaking that a hole is tile-able if the area M of un-
covered squares is divisible by three. If we calculate the cocycle value for a
path which goes around the hole, we get zM . So the cocycle value vanishes
if and only if there is a tiling of a slightly enlarged hole.
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If one defines η similarly to (7) in the proof of Theorem 2.7, but with
2(r + s) as the width of the strips, one can prove that this map is well
defined by using Corollary 4.7. �
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