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Abstract. We classify joinings between a fairly general class of
higher rank diagonalizable actions on locally homogeneous spaces.
In particular, we classify joinings of the action of a maximal R-split
torus on G/Γ, with G a simple Lie group of R-rank ≥ 2 and Γ < G
a lattice. We deduce from this a classification of measurable factors
of such actions, as well as certain equidistribution properties.

1. Introduction

In a landmark paper [9] Furstenberg introduced two fundamental
ideas: 1) joinings, and how they can be used to investigate dynami-
cal systems both in the topological and the measurable category 2) for
natural multidimensional algebraic actions (Furstenberg studies the ex-
ample of multiplication by multiplicatively independent integers p and
by q on the one torus), it is often the case that while the action of every
individual element is quite flexible, the full action may display remark-
able rigidity properties. Both of these ideas have had a major impact on
modern ergodic theory. Joinings and the related notion of disjointness
have become an indispensable tool to ergodic theorists (to illustrate
this point, one may look for example at [10]). The multidimensional
algebraic action whose study Furstenberg pioneered still contain many
mysteries and are far from being understood, but substantial progress
has been made and this study, particularly in the context of locally ho-
mogeneous spaces such as SL(n,R)/ SL(n,Z), has found applications in
number theory and the arithmetic theory of quantum chaos (which is
closely connected to the theory automorphic forms); we refer the reader
to the survey [21] or to [20, 6] for more details. It is interesting to note
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that the first such application was provided already by Furstenberg in
his original paper [9].

In this paper we consider the following type of algebraic dynamical
systems: we take G to be a connected Lie group, Γ < G a lattice, i.e.
a discrete group of finite covolume, and let α : Rn → G be an injective
homomorphism to an R-split torus of G (more precisely what we need
is that the image of α composed with the adjoint representation of G
is diagonalizable over R). Then α gives us an action of Rn on G/Γ by
left translations, and in this paper we will always assume that n ≥ 2.

Such systems are natural generalizations of the system considered
by Furstenberg of multiplication by p and by q on the one torus. Here
again the properties of the action of any individual element is very
different from that of the full group. For example, there are many
invariant measures for the action of any individual element or even
every one dimensional (connected) subgroup of Rn. For the full action,
however, Furstenberg, Katok and Spatzier [14] and Margulis [24] con-
jectured that α-invariant probability measures are rare: they are all
algebraic unless there are factors for which the actions degenerates to
a rank one situation, where we call a probability measure algebraic if
it is an L-invariant measure on a single (necessarily closed) orbit of a
closed subgroup L ≤ G.

Progress on that conjecture has been made so far only under ad-
ditional assumptions [14, 15, 5, 12]. In some cases [29, 7, 20, 6] the
only remaining additional assumption is that the measure has positive
entropy under some element of the action.

We combine the two themes in Furstenberg’s original paper by study-
ing joinings of two such systems. For i = 1, 2 let αi be an actions of
Rn as above on Xi = Gi/Γ and let mi be the normalized Haar mea-
sure on Xi. Define αt = αt

1 × αt
2 for t ∈ Rn. A joining between α1

and α2 (with respect to m1 and m2) is an α-invariant measure µ on
X = X1 ×X2 such that (πi)∗µ = mi for i = 1, 2.

Before we give our theorem we give some examples of joinings. The
trivial joining m1×m2 always exists. A more general class of joinings
are algebraic joinings: Suppose H ⊂ G1 × G2 contains α(Rn) and
projects surjectively to Gi for i = 1, 2. If H(x1, x2) is closed with finite
volume for some (x1, x2) ∈ X1 × X2, then its (normalized) volume
measure µ gives an algebraic joining between α1 and α2.

The actions α1 and α2 are disjoint if the trivial joining is the only
joining between them.

Note that if n = 1, the time one maps α1
i have positive entropy

(and are even Bernoulli automorphisms [2]). Therefore, in this case
α1

1 and α1
2 have for any small enough s common Bernoulli factors of
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entropy s by Sinai’s factor theorem (see [30] or [10, Ch. 20]). The well
known construction of the relatively independent joining over a factor
(see (6.4)) gives now uncountably many non-algebraic joinings. This
explains the requirement of injectivity and n ≥ 2.

In this paper we give an unconditional classification of joinings for
such Rn-actions in many cases. In particular, we prove the following:

Theorem 1.1. For i = 1, 2 let Gi be a connected simple Lie group,
let Γi ⊂ Gi be a lattice, let mi be the normalized Haar measure on
Xi = Gi/Γi, and let αi : Rn → Gi be an injective homomorphism to
an R-split torus of Gi. Suppose n ≥ 2 and that µ is an ergodic joining
between α1 and α2, then µ is algebraic. Moreover, if µ is not the
trivial joining, then G1 and G2 are locally isomorphic and the lattices
induced by Γ1 and Γ2 in the common universal cover G of G1 and
G2 are commensurable up to an automorphism of G intertwining the
actions corresponding to α1 and α2.

Recall that two lattices Γ1 and Γ2 in a Lie group G are commensu-
rable if Γ1∩Γ2 has finite index in Γ1 and Γ2 (or equivalently if Γ1∩Γ2

is still a lattice).
With respect to the assumption of ergodicity in Theorem 1.1 note

that any joining µ can be decomposed into ergodic components with
respect to α (see [32] or [11, Thm. 4.2.6]), and that the projection
of this decomposition to Xi gives a decomposition of mi. However,
since the latter is an ergodic measure for the action αi by Moore’s
ergodic criterion (see [25] or Section 2.2 for more details) it follows
that a.e. ergodic component of µ is an ergodic joining. Therefore, the
characterization of ergodic joinings in Theorem 1.1 gives a complete
description of all possible joinings between these actions.

We remark that for the dynamical system considered by Furstenberg
of multiplication by p and q or more generally actions of non virtually-
cyclic groups of commuting toral endomorphisms a full classifications
of joinings has not been obtained, the available results describe ergodic
joinings only up to zero entropy [13, 12, 7]. In fact, for these actions
the classifications of joinings is equivalent to the classifications of all
invariant measures, which is a well known open problem.

From Theorem 1.1 we easily obtain using a standard argument (orig-
inally due to Furstenberg) the following consequence about equidistri-
bution of orbits. Let α be an Rn-action on a locally compact metric
space X, let µ be an α-ergodic and invariant probability measure on
X. We say that a point x ∈ X has µ-equidistributed α-orbit if

lim
`→∞

1

(2`)n

∫
[−`,`]n

f(αtx) dt =

∫
f dµ
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for all f ∈ C(X) with compact support.1 Note that for any ergodic µ,
one has that µ-a.e. point has µ-equidistributed α-orbit by the pointwise
ergodic theorem.

Corollary 1.2. Let G be a simple connected Lie group and let α : Rn →
G be an injective homomorphism to an R-split torus of G. For i = 1, 2
let Γi ⊂ G be a lattice and let mi be the normalized Haar measure on
Xi = G/Γi. Suppose n ≥ 2 and that there is no automorphism of G
commuting with left translations by elements in the image of α taking
Γ2 to a lattice commensurable with Γ1. If xi ∈ Xi has mi-equidistributed
α-orbit for i = 1, 2, then (x1, x2) ∈ X1×X2 has m1×m2-equidistributed
α-orbit, where α acts on X1×X2 by left multiplication with αt×αt for
t ∈ Rn.

Clearly, a similar statement holds if Xi = Gi/Γi for two locally non-
isomorphic simple connected Lie groups G1 and G2.

We now describe a more general setup that allows us to show rigidity
of joinings. We will not assume that G is simple, or even semisimple.
Note however, that if for instance

X = SL(2,R)× SL(2,R)/ SL(2,Z)× SL(2,Z)

then the projection to the first coordinate is well defined and the R2-
action on X descends to Y = SL(2,R)/ SL(2,Z). However, in this
factor the subgroup {0} × R acts trivially – Y is a (global) rank one
factor. Similar to the case of n = 1 the action α on X allows many non-
algebraic joinings. We avoid this situation with the following definition.

Definition 1.3. Let G be a Lie group and let α : Rn → G be a ho-
momorphism. We say α is R-diagonalizable if the associated adjoint
action of α on the Lie algebra g is diagonalizable over R. If h ⊂ g
is a Lie ideal, then consider the induced action of α via the adjoint
representation on g/h. We say that α has no local rank one factors
if for any proper Lie ideal h the weights of the adjoint action of α on
g/h do not lie on a one-dimensional subspace.

In particular, if α is an Rn-action with no local rank one factors then
n > 1. Conversely if G is a simple Lie group, n > 1, α is injective and
R-diagonalizable, then α has no local rank one factors. To see this
note first that the only proper Lie ideal is h = {0}. However, for g the
Lyapunov weights of α cannot lie in a one-dimensional subspace, oth-
erwise there exists some t with λ(t) = 0 for all Lyapunov weights and

1One can replace the cube [−`, `]n with other averaging sets, e.g. balls around
0 or [0, `]n. The latter gives a weaker notion of equidistribution, but the above
remains true also in this case.
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αt would belong to the center of G. Therefore the following generalizes
Theorem 1.1

Theorem 1.4. For i = 1, 2 let Gi be a connected Lie group, let Γi

be a lattice in Gi, and let mi be the Haar measure on Xi = Gi/Γi.
Furthermore, let αi : Rn → Gi be injective homomorphism that are R-
diagonalizable and have no local rank one factors. Let µ be an ergodic
joining between α1 and α2. Then there is a closed subgroup H ≤ G1×G2

projecting on to G1 and G2 such that µ is the Haar measure on a closed
H-orbit in X1 ×X2.

It is a general fact due to Dave Witte Morris [34, 35] that an algebraic
classification of self joinings of the Rn-action given by α on (G/Γ,m)
can be used to classify measurable factors of this action, or equivalently
countably generated α invariant σ-algebras of Borel subsets of G/Γ. A
special case of this general principle was given earlier by Marina Ratner
in [27]. Using this we can deduce the following from Theorem 1.4:

Theorem 1.5. Let G be a connected Lie group, Γ a lattice in G, and m
the Haar measure on X = G/Γ. Let α : Rn → G be an R-diagonalizable
injective homomorphism with no local rank one factors. Let A be an α-
invariant countably generated σ-algebra of Borel subsets of G/Γ. Then
there is a surjective homomorphism of Lie groups ψ : G→ G1, a lattice
Γ1 ≥ ψ(Γ) (in particular, ψ(Γ) is discrete), and a compact subgroup Φ
of the group of affine automorphisms Aff(G1/Γ1) of G1 modulo right
translation by elements of Γ1 so that A is equivalent mod m to ψ−1(BΦ),
with BΦ denoting the σ-algebra of Φ-invariant subsets of G1/Γ1.

(Note that since Φ is compact, BΦ and hence ψ−1(BΦ) is automatically
countably generated, see Corollary 6.7.)

In particular, as we will explicate in §6, Theorem 1.5 implies the
following:

Corollary 1.6. Let G be a connected semisimple Lie group with finite
center and each factor of G of R-rank ≥ 2, let Γ < G be an irreducible
lattice, and let α be an embedding of Rn onto the connected component
of the identity of a maximal R-split torus2. Let M denote a maximal
compact subgroup of CG(α(Rn)). Consider the action from the left
given by α on the double quotient X = M\G/Γ; this action preserves
a smooth probability measure m. Let A be a nontrivial3 α-invariant

2In other words the image of α is precisely the closed connected subgroup A
appearing in the Iwasawa decomposition KAN of G, equivalently the Lie algebra
of A is the negative eigenspace of a Cartan involution θ of a θ-stable maximally
non-compact Cartan subalgebra.

3i.e. not equivalent modulo m to {∅, X}
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countably generated σ-algebra of Borel subsets of X. Then for m-a.e.
x ∈ X the atom [x]A is finite. Moreover, if Γ is maximal, and every
automorphism of G fixing α(Rn) pointwise is an inner automorphism,
then |[x]A| = 1 a.s., in other words A is equivalent mod m to the full
Borel σ-algebra.

For example, any automorphism of PGL(n,R) fixing the positive diag-
onal matrices (which are the identity component of a maximal R-split
torus) is an inner automorphism.

Previous results on joinings of semisimple actions were obtained by
Kalinin and Spatzier [12], but their method of proof required an addi-
tional assumption regarding ergodicity of certain one parameter sub-
groups on the joining µ. Here we will use as the main tool the high
entropy argument as provided in a recent work by A. Katok and the
first named author [4]. Our argument also uses elements of [8], where
disjointness results were obtained for actions on zero-dimensional com-
pact abelian groups. These tools will lead us to a situation where we
will be able to apply Ratner’s theorem [28] for a subgroup of G gener-
ated by unipotent elements.

More generally, we expect that similar results can be proved for e.g.
semisimple Lie groups even if Gi have local rank one factors, as long
as the action of αi on Gi/Γi have no global rank one factors. This,
however, will require a totally different proof, and in particular will
require a general version of the low entropy argument used in [20, 6],
a general version which we are currently in the process of writing.

2. Definitions, ergodicity, and entropy

In this section we summarize some background material needed for
the proof of Theorem 1.4.

2.1. Lyapunov weights. We recall some definitions from [4]. Let G
be a connected Lie group with Lie algebra g and let Γ ⊂ G be a lattice.
Recall that for a ∈ G the derivative of the map x 7→ axa−1 defines the
adjoint automorphism Ada of g. Let α be an Rn-action on G/Γ. Then
α induces an adjoint action on g of G, and α is Ad-semisimple if the
adjoint action is diagonalizable over C, and R-diagonalizable if the same
holds over R. The logarithm of the absolute value of the eigenvalues
of this action can be collected to form the Lyapunov weights, which
are linear functionals λ : Rn → R. For every Lyapunov weight λ there
corresponds a sum of eigenspaces uλ which is called the Lyapunov
space corresponding to λ.
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Note that for an R-diagonalizable action the Lyapunov weights are
the weights of the adjoint representation restricted to α and the Lya-
punov weight spaces are in fact the eigenspaces for the adjoint action.
Moreover, if for some t ∈ Rn all weights λ(t) are zero, then αt is in the
center of the group.

We define an equivalence relation between the Lyapunov weights,
λ ∼ η if there is an c > 0 so that λ = cη. For every nonzero equivalence
class Λ we define the coarse Lyapunov space uΛ by

uΛ =
⊕
λ∈Λ

uλ.

An element u ∈ G is Ad-unipotent if Adu is unipotent as an auto-
morphism of g, and a subgroup U ≤ G is Ad-unipotent if all of its
elements are. The coarse Lyapunov spaces uΛ are in fact nilpotent Lie
subalgebras, and the coarse Lyapunov subgroups UΛ = exp uΛ are
connected, Ad-unipotent, and normalized by α.

2.2. The Mautner phenomenon and ergodicity. The Mautner
phenomenon (see [25], [31, Thm. 2.1], or [16, Thm. 2.1.4]) implies the
following proposition.

Proposition 2.1. Let G be a connected Lie group, let Γ ⊂ G be a
lattice, and let α be an Rn-action without local rank one factors on
the locally homogeneous space X = G/Γ. Then there exists a two
dimensional subspace in Rn such that the restriction α̃ of α to that plane
still has no local rank one factors, and any nonzero element t ∈ R2

satisfies that a = α̃t ∈ G acts ergodically with respect to the Haar
measure m of X.

Proof. Let λ1, . . . , λ` be all Lyapunov weights for α. For any two dimen-
sional subspace the Lyapunov weights λ̃1, . . . , λ̃` for the restriction α̃
are obtained by restricting λ1, . . . , λ` to the subspace. In general these
restrictions could be (positively or negatively) proportional Rλ̃i = Rλ̃j,

or some of them might be trivial λ̃k = 0, even though this was not true
for the original Lyapunov weights. However, it is easy to choose the
plane so that this never happens. We claim that with this choice α̃ has
also no local rank one factors. Suppose this is not true, then there ex-
ists a proper Lie ideal h in the Lie algebra g of G such that all weights
of α̃ on g/h lie on a single line. Suppose these weights are λ′1, . . . , λ

′
k

for some k ≤ `. (For the remaining weights the weight spaces are
contained in h.) Then the weights of α on g/h are λ1, . . . , λk, which
have to lie on a single line by construction of α̃. This contradicts the
assumption that α has no local rank factors.
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Suppose now α is an R2-action without local rank one factors. The
Moore normal subgroup M ⊂ G with respect to a = αt is defined to
be the smallest normal subgroup such that Ada on g/m is semisimple
and all of its eigenvalues are of absolute value one. Here m is the Lie
algebra of M . It follows that m = g. For otherwise, λ(t) = 0 for all
weights λ of the adjoint action of α on g/m. However, then g/m would
be a local rank one factor of the R2-action α.

Therefore, the Moore normal subgroup M = G. Mautner’s phe-
nomenon [16, Thm. 2.1.4] now states that every a-fixed vector in a
unitary representation of G must be fixed under M = G. In particular,
every a-fixed function of L2(X,m) must be constant function and a
acts ergodically with respect to the Haar measure m. �

2.3. Entropy and a generating partition. In this section we fix
some a ∈ G and consider left multiplication by a on X = G/Γ. For a
countable partition P ⊂ BX we let

P [k,`) =
`−1∨
i=k

a−iP .

Let U < G be a subgroup. We recall that a countably generated
sigma algebra A is said to be subordinate to the foliation into U -
orbits (subordinate to U) with respect to µ if for a.e. x there exists a
relatively compact neighborhood Vx ⊂ U of the identity element e ∈ U

such that

[x]A = Vxx. (2.1)

Here [x]A is the atom of x, i.e. the intersection of all elements A of A
or a countable generating algebra of A that contain x.

Any countably generated sigma algebra A gives us a system of condi-
tional measures µAx with each such measure supported on the respective
atom [x]A and the map x 7→ µAx is A measurable. For any two count-
ably generated sigma algebras A,A′ so that every atom of A intersects
at most countably many atoms of A′ we set

Iµ(A′ | A)(x) = − log µAx ([x]A′) and

Hµ(A′ | A) =

∫
Iµ(A′ | A)(x)dµ(x).

We now quote the following from [23, Prop. 9.2] (and some addi-
tional facts appearing in the proof of that proposition). These results
are an adaptation of results of Ledrappier and Young [18, 19] for C2-
diffeomorphisms on compact manifolds.
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Proposition 2.2. Let G be a connected Lie group, and let Γ ⊂ G be
a lattice in G. Let a ∈ G and consider the left multiplication by a on
X = G/Γ. Let

U− =
{
g ∈ G : lim

n→∞
anga−n = e

}
be the stable horospherical subgroup defined by a. Let µ be an
a-invariant and ergodic probability measure on X. Then there exists a
countable partition P of X that satisfies the following properties:

(1) P has finite entropy Hµ(P) <∞.
(2) A = P [0,∞) is subordinate to U−.
(3) P is a generating partition with respect to a, i.e. P(−∞,∞) = BX

modulo µ-null sets. In particular,

hµ(a) = Hµ

(
aP|A

)
.

Corollary 2.3. With the same notation as in Proposition 2.2, let U ≤
U− be normalized by a. Then there exists a σ-algebra AU ⊃ A that
satisfies

(4) AU is subordinate to U .
(5) aAU = aP ∨ AU modulo µ-null sets.
(6) The entropy contribution of U

hµ(a, U) = H(aP|AU) (2.2)

is at most the entropy hµ(a).

Note that by (3), hµ(a) = hµ(a, U−).

Before we start the proof, note that the map u 7→ ux for u ∈ U−

is injective for a.e. x. Since Γ is discrete, this map is clearly locally
injective in the sense that for any compact subset K ⊂ X there exists
ε > 0 such that u 7→ ux is injective for u ∈ Bε(e) and any fixed x ∈ K.
Suppose now this map is not injective for some x, then there exists a
non-trivial u ∈ U− with x = ux. Then anx = (anua−n)anx, and since
anua−n → e it follows that anx→∞ for n→∞. These points form a
null set by Poincaré recurrence.

Proof of Corollary 2.3. Given a point x0 ∈ X and a sufficiently small
ε > 0 it is easy to define a countably generated σ-ring R with maximal
element Bε(x0) that is subordinate to the foliation into U -orbits. Here
the atom [x]R will consist of BU

2ε(e)x ∩Bε(x0) for any x ∈ Bε(x0).
If x0 ∈ suppµ, the construction in [23, Prop. 9.2] shows that one can

choose P such that there exists an element P0 ∈ P with µ(P0) > 0 and
P0 ⊂ Bε(x0). Moreover, the set Vx ⊂ U− as in (2.1) for the σ-algebra
A = P [0,∞) has diameter less than 2ε for all x ∈ P0. We define PU to
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be the smallest σ-algebra that contains P and R ∩ P0 for any R ∈ R.
Let

AU = P [0,∞)
U .

We claim that

[x]AU
= [x]A ∩ Ux for µ-a.e. x.

Then (4) follows using the injectivity we noted before. Moreover, the
claim also implies that aAU and aP ∨ AU have the same atoms for
a.e. x, so that (5) follows as well. Then (6) follows from the definition
of the entropy contribution since A ⊂ AU .

For the claim note first that [x]AU
⊂ Ux is obvious for x ∈ P0 by the

definition of R, and follows for a.e. x from that and ergodicity. Now let
y = ux ∈ [x]A for some u ∈ U , we need to show that anx, any belong to
the same atom of PU for all n ≥ 0. If anx, any /∈ P0, then this follows
from the definition of A. Otherwise, anx and any = (anua−n)(anx)
belong to the same A-atom, and so anx and any = vanx differ by an
element v ∈ Vanx ⊂ BU−

2ε (e) by the above mentioned property of P0 and
A. By injectivity we must have v = anua−n ∈ BU

2ε(e). It follows that
anx and any are in the same atom of R which proves the claim. �

2.4. Entropy contribution and conditional measures. The en-
tropy contributions as defined in the previous subsection are dependent
of the choice of sigma-algebra AU . In this section we give an alternative
definition of entropy contribution which does not involve such choices.
Let a ∈ G and U < G a subgroup normalized by a (later on we will
assume U is a subgroup of the stable horospherical subgroup U− of
a). Let µ be a probability measure on X = G/Γ invariant under left
translation by a.

The measure µ gives rise to a system of locally finite measures µx,U ,
which we refer to as the conditional measures on U orbits. This system
of conditional measures µx,U has the following characterizing property:
For any σ-algebra AU that is subordinate to U we have

µAU
x =

1

µx,U(Vx)
(µx,U |Vx)x for a.e. x,

where Vx is as in (2.1) and (µx,U |Vx)x denotes the push forward of the
restriction of µx,U to Vx under the map u 7→ ux. These conditional
measures are transformed in a nice way under the transformation x 7→
ax: write θ(h) = aga−1. Then for almost every x we have that

µx,U ∝ θ∗µax,U . (2.3)

A general construction of these conditional measures can be found in
[20, Sect. 2-3].
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We now assume U is a subgroup of the stable horospherical subgroup
U− (so θ, defined as above, uniformly contracts U). We define the
volume decay entropy at x by

volµ(a, U, x) = − lim
n→∞

log µx,U

(
θn(BU

1 (e))
)

n
(2.4)

in particular, the above limits exists almost everywhere, see [4, Sect. 9.1].
This gives a pointwise definition of the entropy contribution, and we
define

hµ(a, U) =

∫
volµ(a, U, x) dµ. (2.5)

By [4, Lemma 9.2] the two definitions (2.2) and (2.5) agree whenever
the σ-algebra AU as in Corollary 2.3 exists.

2.5. Product structure and summation formula. Using the prod-
uct structure of the conditional measures, the entropy contributions of
the coarse Lyapunov subgroups can be related to the total entropy.
This summation formula, which we present below, is closely related to
the Ledrappier-Young entropy formula [19].

Let µ be an α-invariant and ergodic measure on X. Let U− be the
stable horospherical subgroup for some fixed αt, and let UΛ1 , . . . , UΛ` ≤
U− be all coarse Lyapunov subgroups contained in U−. Then U− =
UΛ1 · · ·UΛ` and the map that sends (u1, . . . , u`) ∈ UΛ1 × · · · × UΛ` to
u1 · · ·u` is a homeomorphism (but in general not a group isomorphism).
Using this homeomorphism implicitly we have

µx,U− ∝ µx,UΛ1 × · · · × µx,UΛ` for a.e. x (2.6)

by [4, Thm. 8.4], where∝ denotes proportionality up to a multiplicative
constant. This readily implies that

hµ(αt) = volµ(αt, U−, x) =
∑̀
i=1

volµ(αt, UΛi , x). (2.7)

More generally, the above holds for any U ≤ U− that is normalized by
α, i.e.

volµ(αt, U, x) =
∑̀
i=1

volµ(αt, U ∩ UΛi , x) a.e. (2.8)

3. An entropy inequality and the support of the
conditional measure

We start our study of joinings, and will show in this section that the
conditional measures for a joining have large support. Let G = G1×G2

with Lie algebra g = g1×g2, let Γi be a lattice in Gi and let Xi = Gi/Γi
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for i = 1, 2. Define X = X1×X2 and πi to be the projection map from
X to Xi or the projection map from G to Gi for i = 1, 2 depending on
the context. We will not assume that α has no local rank one factors.

Proposition 3.1. Let a = (a1, a2) ∈ G1 × G2, and consider left mul-
tiplication by a on X = X1 × X2 where Xi = Gi/Γi for some lattice
Γi and i = 1, 2. Suppose ai acts ergodically on Xi with respect to the
Haar measure mi for i = 1, 2. Let U1 < G1 and U2 < G2 be connected
unipotent subgroups, and suppose U = U1U2 is normalized by a and is
contained in the stable horospherical subgroup U−. Let µ be a (not nec-
essarily ergodic) joining between a1 and a2, i.e. an a-invariant measure
that projects (πi)∗µ = mi to the Haar measure on Xi for i = 1, 2. Then

hµ(a, U) ≤ hm1(a1, U1) + hµ(a, U2). (3.1)

Proof. We will need the following partitions and σ-algebras. For i =
1, 2 we use the ergodic action of ai on Xi and Proposition 2.2 to find
generating countable partitions P̄i of Xi with finite mi-entropy so that

P̄ [0,∞)
i is subordinate to the stable horospherical subgroup U−i < Gi

of ai. Let Pi = π−1
i (P̄i) be the corresponding partition of X, and set

P = P1∨P2. Since µ is a joining, it follows that P has finite µ-entropy
and is generating for a. Moreover, P [0,∞) is subordinate to the stable
horospherical subgroup U− < G of a. Now apply Corollary 2.3 to find
for i = 1, 2 the σ-algebra ĀUi

⊂ BXi
that is subordinate to Ui. Define

Ai = π−1
i ĀUi

for i = 1, 2 and AU = A1∨A2 = ĀU1 ×ĀU2 . As above, it
follows that AU is subordinate to U and that BX1 ×ĀU2 is subordinate
to U2 since µ is a joining.

The various entropy contributions are now defined by

hµ(a, U) = Hµ

(
aP | AU

)
,

hm1(a1, U1) = Hm1

(
a1P̄1 | ĀU1

)
, and (3.2)

hµ(a, U2) = Hµ

(
aP | BX1 × ĀU2

)
. (3.3)

Applying Corollary 2.3 (5) for ĀUi
and i = 1, 2, we see that aP ∨

AU = aAU . Therefore, we get

hµ(a, U) =
1

n
Hµ (anAU | AU) =

1

n
Hµ

(
P [−n,0) | AU

)
=

1

n
Hµ

(
P [−n,0)

1 | AU

)
+

1

n
Hµ

(
P [−n,0)

2 | AU ∨ P [−n,0)
1

)
(3.4)



JOININGS OF DIAGONALIZABLE ACTIONS 13

We first deal with the first term on the right hand side of (3.4). Since
A1 = π−1

1 ĀU1 ⊂ AU , by the properties of conditional entropy and (3.2),

1

n
Hµ

(
P [−n,0)

1 | AU

)
≤ 1

n
Hµ

(
P [−n,0)

1 | A1

)
=

1

n
Hm1

(
P̄ [−n,0)

1 | ĀU1

)
= hm1(a1, U1). (3.5)

We now proceed to consider the second term on the right hand side
of (3.4):

1

n
Hµ

(
P [−n,0)

2 | AU ∨ P [−n,0)
1

)
=

1

n

n∑
k=1

Hµ

(
akP2 | AU ∨ P [−n,0)

1 ∨ P [−k+1,0)
2

)
=

1

n

n∑
k=1

Hµ

(
akP2 | ak−1AU ∨ P [−n,−k)

1

)
=

1

n

n∑
k=1

Hµ

(
P2 | AU ∨ P [−n+k,0)

1

)
(3.6)

and by the martingale convergence theorem [26, Ch. 2, Thm. 6] for
entropy one sees that

Hµ

(
P2 | AU ∨ P [−n+k,0)

1

)
→ Hµ

(
P2 | AU ∨ P(−∞,0)

1

)
.

However, by definition AU contains P [0,∞)
1 , and since P̄1 is generating

for a1 we see that AU ∨ P(−∞,0)
1 = BX1 × ĀU2 . From (3.3) it follows

that

Hµ

(
P2 | AU ∨ P(−∞,0)

1

)
= hµ(T, U2)

and the average in (3.6) converges to hµ(a, U2) which establishes (3.1).
�

Proposition 3.2. Let a,X, U, µ be as in Proposition 3.1. If equal-
ity holds in (3.1) then U1 is the smallest connected subgroup that is
normalized by a and contains π1(suppµx,U) for a.e. x.

Proof. Suppose by contradiction that U ′1 < U1 is a proper connected
subgroup that contains π1(suppµx,U) for a.e. x and is normalized by
a1. Then the conditional measure µx,U is supported by U ′ = U ′1U2 and
so satisfies (µx,U)|U ′ = µx,U ′ for a.e. x. It follows from the pointwise
definition of the entropy contribution in (2.4) and Proposition 3.1 that

hµ(a, U) = hµ(a, U ′) ≤ hm1(a1, U
′
1) + hµ(a, U2)

< hm1(a1, U1) + hµ(a, U2),
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where the last strict inequality follows easily from the fact that U ′1 ⊂ U1

is a proper subgroup and a uniformly contracts U1. This is a contra-
diction to our assumption. �

Proposition 3.3. Let a, µ, and X = X1 × X2 be as in Proposition
3.1. For the stable horospherical subgroup U− = U−1 U

−
2 of a we have

equality in (3.1).

Proof. The Abramov-Rohklin conditional entropy formula gives that

hµ(a) = hm1(a1) + hµ

(
a|π−1

1 BX1

)
.

By Proposition 2.2 we have hµ(a, U−) = hµ(a) and hm1(a1, U
−
1 ) =

hm1(a1). It remains to match the last term of the above and (3.1).
By (3.3)

hµ(a, U−2 ) = Hµ

(
aP|BX1 × ĀU−

2

)
= Hµ

(
aP|BX1 × P̄ [0,∞]

2

)
,

where we used that P̄ [0,∞)
2 is U−2 -foliated by Proposition 2.2. However,

the last expression equals the conditional entropy hµ(a|π−1
1 BX1) since

P is a generating partition for a. �

We can now use the product structure to deduce a similar result
regarding the coarse Lyapunov foliations.

Corollary 3.4. Let α : R → G be an Ad-semisimple homomorphism
such that for every nontrivial t the transformation αt

i on Xi acts er-
godically with respect to mi for i = 1, 2. Let µ be a joining between
α1 and α2. Then we also have equality in (3.1) for a coarse Lyapunov
subgroup U = UΛ = UΛ

1 U
Λ
2 ≤ U−.

Proof. Let µ be α-invariant. Let UΛ be a coarse Lyapunov subgroup.
Choose some a = αt such that UΛ is contained in the stable horospher-
ical subgroup U− to a. Let U− = UΛ1 · · ·UΛ` be the decomposition of
the stable horospherical subgroup into coarse Lyapunov subgroups as
in Section 2.5 with Λ = Λ1. For any j Proposition 3.1 gives

hµ(a, UΛj) ≤ hm1(a1, U
Λj

1 ) + hµ(a, U
Λj

2 ).

Taking the sum over j, each term here sums up the corresponding term
for U− = U−1 U

−
2 by (2.7)–(2.8). However, we already showed that the

latter satisfy an exact summation formula so the same has to be true
for the coarse Lyapunov subgroups. �

The following is now a direct consequence of Proposition 3.2 and
Corollary 3.4:
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Corollary 3.5. Let U = UΛ
1 U

Λ
2 be a coarse Lyapunov subgroup for α,

and let P ≤ U be the smallest connected subgroup that is normalized by
α such that suppµx,U ⊂ P for a.e. x. Then πi(P ) = UΛ

i for i = 1, 2.

In the notations of Corollary 3.5, for every x ∈ X let Px ≤ U denote
the smallest connected subgroup normalized by α containing suppµx,U .
Since a connected Lie group is determined by its Lie algebra, we can
give the set of subgroups of U a natural topology coming from the
Grassmannians of all dimensions of LieU . The map x 7→ Px is measur-
able (we leave the straightforward but tedious verification of this fact
to the pedantic reader) and is (modulo null sets) α invariant, hence
if µ is α ergodic Px is constant almost everywhere. This constant Lie
group is necessarily the group P of Corollary 3.5 and so we obtain

Corollary 3.6. Let µ be an α-ergodic joining of X1 and X2 as above,
and Let U = UΛ

1 U
Λ
2 be a coarse Lyapunov subgroup for α. For every x,

let Px denote the smallest connected subgroup Px ≤ U that is normalized
by α containing suppµx,U . Then there is a group P ≤ U with πi(P ) =
UΛ

i for i = 1, 2, so that for a.e. x we have that Px = P .

4. The high entropy theorem

As mentioned before, our main tool is the high entropy case as in [4,
Thm. 8.5]. We will need the following special case.

Theorem 4.1. Let G be a Lie group, let Γ ⊂ G be a discrete subgroup,
and let X = G/Γ. Let α : Rn → G be an R-diagonalizable homomor-
phism, and let U− be the stable horospherical subgroup to some element
a = αt. Furthermore, let U− = UΛ1 · · ·UΛ` be the decomposition of U−

into coarse Lyapunov subgroups. For any α-invariant probability mea-
sure µ there exist for a.e. x two subgroups

Hx ⊆ Px ⊆ U−

with the following properties:

(1) µx,U− is supported by Px.
(2) µx,U− is left- and right-invariant under multiplication with ele-

ments of Hx.
(3) Hx and Px are connected and their Lie algebras are direct sums

of subspaces of the weight spaces.
(4) Hx is a normal subgroup of Px and any elements g ∈ Px ∩ UΛr

and h ∈ Px∩UΛs of different coarse Lyapunov subgroups (r 6= s)
satisfy that gHx and hHx commute with each other in Px/Hx.

(5) µx,UΛi is left- and right-invariant under multiplication with ele-

ments of Hx ∩ UΛi for i = 1, . . . , `.
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We quote also (a special case of) [4, Lemma 9.6] and its short proof
since it is crucial to this paper.

Lemma 4.2. Let G be a connected Lie group, let Γ ⊂ G be a lattice,
and let α : Rn → G be a homomorphism. Let g be the Lie algebra of
G, and let gζ denote the weight space associated for any weight ζ. Let
V be a subspace of the dual of Rn. Then g(V ) = 〈gζ , [gζ , gξ] : ζ, ξ /∈ V 〉
is a Lie ideal in g.

Therefore, if there are no rank one factors, then every element of gλ

is a sum of expressions [v, w] with v ∈ gζ, w ∈ gξ and ζ, ξ /∈ Rλ.

Proof. Since Ada(g
ζ) = gζ and Ada([u, v]) = [Ada(u),Ada(v)] for any

a = αt, it follows that g(V ) is invariant under the adjoint action induced
by α. Therefore, g(V ) splits into a sum of subspaces of the weight spaces.
We need to show that [gη, g(V )] ⊆ g(V ) for all η (including η = 0).

Suppose first that u ∈ gη and v ∈ gζ∩g(V ) with ζ /∈ V . If η /∈ V then
[u, v] ∈ g(V ) by definition of g(V ), and otherwise [u, v] ∈ gη+ζ ⊆ g(V )

because η + ζ /∈ V and again the definition.
Let u ∈ gη, v ∈ gζ , and w ∈ gξ with ζ, ξ /∈ V (so that [v, w] ∈ g(V )).

Again, if η + ζ + ξ /∈ V then there is nothing to show. So assume
η + ζ + ξ ∈ V . If η /∈ V then ζ + ξ /∈ V and we are again done. The
remaining case is η, η + ζ + ξ ∈ V . By the Jacobi identity [u, [v, w]] =
−[v, [w, u]] − [w, [u, v]] and the two expressions on the right belong to
g(V ) since ζ, ξ + η, ξ, η + ζ /∈ V .

For the final statement let V = Rλ. Then g(V ) defines a Lie ideal
such that the adjoint action on g/g(V ) has no weights outside of V .
Since there are no rank one factors, we have g(V ) = g and every u ∈ gλ

belongs to g(V ). By restricting the sum that expresses u to those terms
that belong to gλ the lemma follows. �

Note that in particular since gη is nilpotent for every η 6= 0, the
above lemma implies that a connected Lie group with no local rank
one factors is generated by unipotent one parameter subgroups.

5. Translation invariance of the conditional measures
and the joining

In this section we will use the assumption that the adjoint action to
α has real eigenvalues and that there are no local rank one factors by
applying the main results of [4]. For g ∈ G write Lg(h) = gh for the
left action of g on G. We simply say a measure is g-invariant if it is
invariant under Lg.

If µ is an ergodic joining between α1 and α2 as in Theorem 1.4, then
by Proposition 2.1 (applied to m1×m2) it contains a subaction α̃ with
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the same coarse Lyapunov subgroups such that any element of α̃i acts
ergodically on Xi with respect to mi for i = 1, 2. So, the results of
Section 3 apply to this situation.

Proposition 5.1. For every coarse Lyapunov subgroup UΛ = UΛ
1 U

Λ
2

the connected subgroup

IΛ = {u ∈ UΛ : µ is u-invariant}
satisfies πi(i

Λ) = uΛ
i for i = 1, 2. Here iΛ is the Lie algebra of IΛ and

uΛ
i is the Lie algebra of UΛ

i .

Proof. It is easy to see that IΛ is closed and normalized by α which
implies that IΛ is also connected. Similarly it has been shown in [4,
Prop. 6.2] for a.e. x that

IΛ
x =

{
u ∈ UΛ : µx,UΛ is u-invariant

}
is connected and that its Lie algebra is a direct sum of subspaces of
uλ for λ ∈ Λ. Since we assume that the eigenvalues of the adjoint
representation of α are real, we conclude that the Lie algebra of IΛ

x is
a direct sum of eigenspaces. Therefore, IΛ

x is normalized by α which
shows together with (2.3) that IΛ

x = IΛ
αtx for every t ∈ Rn and a.e.

x ∈ X.
The map x 7→ IΛ

x is measurable (we again omit the details which
are straightforward but tedious) and so by ergodicity we conclude that
IΛ
x is independent of x a.e., and by [20, Prop. 4.3] we conclude that
IΛ
x = IΛ for a.e. x.
Let λ ∈ Λ and v ∈ uλ

1 . Applying Lemma 4.2 (which makes use of
the assumption that there are no local rank one factors) we see that v

can be expressed as a finite sum of terms [w1, w2] with w1 ∈ uλ1
1 ,

w2 ∈ uλ2
1 , and λ1, λ2 linearly independent. We will show that the all

these terms [w1, w2] belongs to the Lie algebra π1(i
Λ). Then v ∈ π1(i

Λ)
and the proposition will follow.

So consider now w1 ∈ uλ1
1 , w2 ∈ uλ2

1 , and λ1, λ2 linearly independent.
Since λi are the weights, [w1, w2] ∈ uλ

1 and λ = λ1 + λ2. By the linear
independence there exists some t ∈ Rn such that λ(t), λ1(t), λ2(t) < 0,
in other words the stable horospherical subgroup U− corresponding to
a = αt contains UΛ, UΛ1 , and UΛ2 (where Λj = R+λj).

Next we apply Theorem 4.1 to U−: for a.e. x there exist two closed
connected subgroups Hx ≤ Px ≤ U− such that µx,U− is supported by
Px and is invariant under elements of Hx, and gj ∈ Px∩UΛj for j = 1, 2
implies [g1, g2] ∈ Hx. Furthermore, Hx and Px are normalized by α,
since their Lie algebras are direct sums of subspaces of uζ for various ζ
and since we assume that α is R-diagonalizable. By Corollary 3.6 there
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exists a connected subgroup P ≤ U− that is normalized by α such that
suppµx,U ⊂ P ≤ Px for a.e. x ∈ X.

Corollary 3.5 implies now that π1(Px) = U1 for a.e. x. Therefore,
there exist for j = 1, 2 elements gj ∈ Px such that π1(gj) = exp(wj).
Since the Lie algebra of Px is a direct sum of subspaces of the uζ , we
can assume here that gj ∈ Px ∩ UΛj . However, then [g1, g2] ∈ Hx

by Theorem 4.1. Note that π1([g1, g2]) = exp([w1, w2] + . . .) by the
Campbell-Hausdorff formula,

where the dots indicate elements of uζ for various ζ 6= λ. Therefore
and since the Lie algebra of Hx is a direct sum of subspaces of Lya-
punov spaces, we conclude that Hx contains an element g ∈ UΛ with
π1(g) = exp([w1, w2]). By the properties of Hx we know that µx,U− is
left invariant under g. By (2.6) we know µx,U− is a product measure,
where we can assume that Λ1 = Λ is the first coarse Lyapunov weight
that appears. However, this means that µx,UΛ is left invariant under g
and so g ∈ IΛ

x = IΛ. Since IΛ is connected, we have log g ∈ iΛ and so
[w1, w2] ∈ π1(i

Λ) as claimed. �

Let I be the subgroup generated by all Ad-unipotent one-parameter
subgroups that preserve µ, and let i be its Lie algebra.

Corollary 5.2. πi(i) = gi for i = 1, 2. Moreover, i ∩
(
{0} × g2

)
is a

Lie ideal.

Proof. By Lemma 4.2 the Lie algebra hi generated by uζ
i for non-zero

ζ is a Lie ideal in gi, so that hi = gi by the assumption that there are
no local rank one factors for αi. The first statement now follows from
Proposition 5.1

For the second statement, suppose (0, w) ∈ i and (v1, v2) ∈ g. Then
there exists some v′1 with (v′1, v2) ∈ i, and so

[(0, w), (v1, v2)] = [(0, w), (v′1, v2)] = (0, [w, v2]) ∈ i.

�

Note that I is a subgroup for which Ratner’s theorem [28] applies.
So it remains to show that µ is an I-invariant and ergodic measure,
which will imply that µ is algebraic.

Let J ≤ G be the group generated by all one-parameter subgroups
that preserve µ and let j be its Lie algebra. Clearly α(Rn)I ⊂ J so
that a + i ⊂ j where a is the Lie algebra of α(Rn).

Further, denote by n ⊂ r the nil radical and the radical of g, i.e. n
is the maximal nilpotent Lie ideal and r is the maximal solvable ideal.

Lemma 5.3. We have j ∩ n ⊂ i.



JOININGS OF DIAGONALIZABLE ACTIONS 19

Proof. Let v ∈ j ∩ n. Then µ is invariant under exp(tv) for t ∈ R by
definition of j, and adv is a nilpotent endomorphism of g since n is a
nilpotent ideal. It follows that exp(tv) is Ad-unipotent, and so v ∈ i
by definition. �

Lemma 5.4. If α has no local rank one factors, then n = r.

Proof. By [33, Thm. 3.8.3(iii)] we have [g, r] ⊂ n. Therefore, r′ = r/n is
in the center and simultaneously the radical of g′ = g/n. If g′ = g′s+r′ is
the Levi decomposition, then g′s is an ideal. Therefore, r′ is an abelian
factor of g. By the assumption that there are no local rank one factors
we must have r′ = 0. �

Proof of Theorem 1.4. It suffices to show that a ⊂ i. Because then
α(Rn) ⊂ I which means that µ is I-invariant and ergodic. By Ratner’s
theorem [28] this implies that µ is algebraic.

So let v = (v1, v2) ∈ a. By Corollary 5.2 it follows that there exists
v′2 ∈ g2 such that (v1, v

′
2) ∈ i. Then (0, v2 − v′2) = (0, w) belongs

to j – the Lie algebra of the group J generated by all one parameter
subgroups that preserve µ.

Moreover, since I is normalized by α, its Lie algebra i is a direct sum
of subspaces of weight spaces. Since (v1, v

′
2) ∈ i and (v1, v2) ∈ a ⊂ u0,

this shows we can choose v′2 so that (v1, v
′
2), (0, w) ∈ u0, i.e. w is

fixed under the adjoint representation restricted to α2. By the first
statement of Corollary 5.2 it follows that [(0, w), i] = (0, [w, g2]) ⊂ j.
Since (0, w) ∈ u0 we have (0, [w, uλ

2 ]) ⊂ uλ. For any nonzero λ any
element of uλ gives rise to a Ad-unipotent one parameter subgroup,
therefore, (0, [w, uλ

2 ]) = i. By our assumption that there are no local
rank one factors and by Lemma 4.2 every element of u0 can be written
as a linear sum of expressions [u, u′] with u ∈ uλ

2 and u′ ∈ u−λ
2 for some

nonzero λ. By the second statement of Corollary 5.2 the Lie algebra i2
with i ∩ ({0} × g2) = {0} × i2 is actually a Lie ideal in g2. The Jacobi
identity now implies that

[w, [u, u′]] = −[u, [u′, w]]− [u′, [w, u]] ∈ i2.

Therefore, [w, g2] ⊂ i2.
Since α2 has no local rank one factors, it follows from Lemma 5.4

that the nil radical n2 of g2 is also the radical. Therefore g2 = g2/n2

is semisimple and it follows that w̄ = w + n2 belongs to the Lie ideal
generated by [w̄, g2]. Therefore, w ∈ i2 + n2 and there exists some
w′ ∈ i2 with w − w′ ∈ n2. However, since both (0, w), (0, w′) ∈ j the
same applies to (0, w − w′) ∈ {0} × n2. By Lemma 5.3 (0, w − w′) ∈ i
and so (0, w), v ∈ i as claimed. �
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6. Factors of higher rank abelian actions

Let G be a connected Lie group, Γ a lattice in G, and m Haar
measure onX = G/Γ. Let α : Rn → G be an injective homeomorphism
diagonalizable over R with no local rank one factors, and set A =
α(Rn). For every g ∈ G we let Lg and Rg denote the element of
Aff G given by left (respectively right) translation, i.e. Lg(h) = gh and
Rg(h) = hg for any h ∈ G. Furthermore, if H is a subgroup of G
we let LH = {Lh : h ∈ H} and RH = {Rh : h ∈ H}. We let Aff1G <
Aff G denote those affine groups which preserve a Haar measure on G
(since G has a lattice it is in particular unimodular and so we need not
distinguish between left and right Haar measures). Note that both LG

and RG are normal subgroups of Aff1G.
In this section we want to classify measurable factors (also called

quotients) of G/Γ, or what amounts to the same countably generated
A-invariant sigma algebras A of Borel subsets of G/Γ. Our input to
this classification of factors is the classification of self joining; we will
also use the fact that G is generated by unipotent one parameter sub-
groups (which follows from the local rank assumption) though this is
a minor technical point. Essentially everything we do in this section
is contained in Dave Witte Morris papers [34, 35] and the references
cited there, in particular [3]; we have tried to give here a slightly more
streamlined version of his proof (on the other hand, Witte Morris’
setup, particularly in [35] is more general than ours).

It would be more convenient for us to view A as a left A-invariant
sigma algebra of right Γ-invariant subsets of G (notice the asymmetric
role of A and Γ: for every set B ∈ A and γ ∈ Γ we have that RγB = B
whereas regarding A we know that for every B ∈ A and a ∈ A the set
aB = LaB is in A but typically will not be equal to B).

Consider the group

HA = {h ∈ G : for every B ∈ A, mG(Rh(B)4B) = 0} . (6.1)

Clearly, HA > Γ. We want to reduce to the case that HA = Γ.

Lemma 6.1. HA is a closed subgroup of G.

Proof. Indeed, let m′ be a probability measure in the same measure
class as Haar measure mG. Then for any B ∈ A the characteristic
function 1B ∈ L2(m′), and the map h 7→ 1Rh(B) is a continuous map
G → L2(m′). It follows that {h : mG(Rh(B)4B) = 0} is closed and
therefore so is HA. �

Lemma 6.2. The connected component of the identity H0
A ≤ HA is

normal in G.
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Proof. From Lemma 4.2 it follows that G is generated by unipotent
one parameter subgroups, indeed that there is some element αt so that
G is generated by the groups Uλ with λ(t) 6= 0.

By [22, Theorem II.2.5], for any continuous representation of G any
Γ-invariant subspace is G-invariant. Since Γ < HA it follows that the
Lie algebra of H0

A is a Γ-invariant subspace of g under the adjoint
representation, hence is G-invariant. From this we conclude that H0

A
is normal in G as claimed. �

Now let NA denote the maximal closed normal subgroup of G con-
tained in HA. By replacing G with G1 = G/NA and Γ with the lattice
Γ1 = HA/NA < G1 we may, and will for the remainder of this
section, assume without loss of generality that

HA = Γ and Γ contains no normal subgroup of G. (6.2)

Note that HA/NA is discrete since NA > H0
A by Lemma 6.2.

The following reformulation of (6.1) will be useful: we will say that

two points x, x′ ∈ X are equivalent modulo A (x
A∼ x′) if [x]A =

[x′]A. Then since A is countably generated, (6.1) is easily seen to be
equivalent to

HA =
{
h ∈ G : gh

A∼ g for a.e. g ∈ G
}
.

Note that the equivalence relation
A∼ induces an equivalence relation

on G which we shall also denote by
A∼.

Now consider the group

Ξ = {ξ ∈ CAff G(LA) : for every B ∈ A, m(ξ(B)4B) = 0} (6.3)

=
{
ξ ∈ CAff G(LA) : ξ(g)

A∼ g a.e.
}
,

where CAff G(LA) denotes the centralizer in Aff G of the group of left
translations LA. Notice that by (6.2), the group Ξ ∩ RG = RΓ. The
same proof as in Lemma 6.1 gives that Ξ is a closed subgroup of Aff G,
and hence so is ΞL = Ξ ∩ LG. Notice that both ΞL and RΓ are normal
subgroups of Ξ. We also note the following:

Lemma 6.3. Let ξ = Lg0ξ0 ∈ Ξ with ξ0 an automorphism of G. Then
ξ0(Γ) = Γ.

Proof. Suppose for example ξ0(Γ) � Γ. Then for almost every g ∈ G
and γ ∈ Γ we have

gξ0(γ)
A∼ g−1

0 ξ−1
0 (g)γ

A∼ g−1
0 ξ−1

0 (g)
A∼ g
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and HA ≥ ξ0(Γ) in contradiction to our assumption. Similarly, one
rules out ξ0(Γ) � Γ using ξ−1

0 instead of ξ0 in the above argument. �

In particular, since Γ is a lattice in G we have that

Ξ ≤ Aff1G.

We recall the definition of the relatively independent joining m×Am:
it is the measure on G/Γ×G/Γ defined by

m×A m(B × C) =

∫
X

mA
x (B)×mA

x (C)dm(x). (6.4)

Lemma 6.4. For every ξ ∈ Ξ, the map Id× ξ preserves m×A m.

Proof. Let ξ ∈ Ξ. By definition of Ξ, ξ preserves the atoms of A,
so m-a.s. one has mA

ξ(x) = mA
x . Also, the measure m is preserved by

any element of Aff1G, in particular by ξ, and so m-a.s. ξ∗m
A
x = mA

ξ(x).

Combining this with the previous assertion we get that ξ∗m
A
x = mA

x a.s.
Lemma 6.4 now follows directly from the definition (6.4) ofm×Am. �

The results so far are true for any action; now comes the two main
steps which comes from careful analysis of the ergodic decomposition
of the relatively independent joining m×A m.

Lemma 6.5. Let JA be the set of self joinings ρ for the action corre-
sponding to α on (X,m) (in particular, ρ is a probability measure on
X ×X) so that

ρ
({

(x, x′) ∈ X ×X : x
A∼ x′

})
= 1. (6.5)

then for every ergodic ρ ∈ JA there is a ξ ∈ Ξ (unique up to an element
of RΓ), commuting with LA, so that ρ is the unique self joining of X
supported on the graph {(g, ξg) : g ∈ G}.

Proof. By Theorem 1.4 there is a closed connected subgroup H ≤ G×
G, projecting onto G in each component, so that ρ is the Haar measure
on a closed orbit of H. Let π1, π2 denote the projections of G×G to the
first and second coordinate. Suppose this H orbit is H(g′0, g0)(Γ×Γ) =
(g′0, g0)H̃(Γ × Γ) with H̃ = (g′0

−1, g−1
0 )H(g′0, g0). Since π1(H) = G, we

may as well assume g′0 is the identity e ∈ G.
Consider now the group H1 = π−1

2 (e) ∩ H̃. Since π1(H) = G, and
H normalizes H1, it follows that π1(H1) C G. We also claim that
H1 ≤ HA; indeed, for every h ∈ π1(H1), for almost every (g1, g2) ∈ H̃,

both g1
A∼ g0g2 and g1h

A∼ g0g2 hence by transitivity of
A∼ and the fact

that π1(H) = G it holds that g1
A∼ g1h for almost every g1 and so

h ∈ HA. By our assumptions (6.2) on HA it follows that π1(H1) being
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a normal subgroup of HA = RΓ is the identity, and the same holds for
H1. Similarly, H2 = π−1

1 (e) ∩ H̃ is trivial.
It follows that the group H̃ < G×G is the graph of an automorphism

ξ0 of G and that for a.e. g, g
A∼ g0ξ0(g), and define ξ = Lg0ξ0. since ρ is

invariant under {(αt, αt) : t ∈ Rn}, this group is contained in H, and
working through the definitions this implies that ξ commutes with Lαt

for every t.
It follows that ξ ∈ Ξ and that ρ is the unique self joining of X

supported on the graph {(gΓ, ξgΓ) : g ∈ G}. �

Lemma 6.6. (1) The group Φ = Ξ/RΓ has a Φ-invariant probabil-
ity measure, hence is compact.

(2) There is a conull set X1 ⊂ G/Γ so that for every x, y ∈ X1 in
the same atom of A, there is an element φ ∈ Φ taking x to y.

Proof. Aff G, hence also its closed subgroup Ξ, is a locally compact
group, RΓ a countable discrete subgroup, and so Φ = Ξ/RΓ is a nice
locally compact topological group. Note that Φ acts on X = G/Γ
by (ξRΓ).(gΓ) = ξ(g)Γ which is well defined by Lemma 6.3 and the
definition of RΓ.

The set JA is a Borel subset of the space of probability measures on
X × X equipped with the weak∗ topology. For any ξ ∈ Ξ, the image
ρξ of Haar measure on G/Γ under gΓ 7→ gΓ, ξ(g)Γ is an element of JA,
and this map ξ 7→ ρξ is a Borel (indeed, continuous) map Ξ → JA.
Since this map is RΓ-invariant, we actually get a Borel map ι : Φ → JA.
This map is clearly 1-1, and it follows that the image of ι is a Borel set
and ι−1 is a Borel map [1, Theorem 3.3.2].4

The ergodic decomposition of m×A m with respect to the diagonal
embedding of the group A gives us a probability measure ν on the space
of joinings of X with itself. Since by definition

m×A m
({

(x, x′) ∈ X ×X : x
A∼ x′

})
= 1

the same holds for almost every ergodic component of m×A m, hence
ν is supported on the ergodic joinings in JA, which by Lemma 6.5 are
in ι(Φ). Using ι−1, we get a Borel probability measure ν ′ = ι−1

∗ ν on Φ.
By Lemma 6.4, for every ξ ∈ Ξ, we have that (Id, ξ) preserves m×A

m, and since ξ commutes with LA it follows that (Id, ξ)∗ preserves ν.

4This whole discussion (which is somewhat less generally applicable than the rest
of this proof) can be circumvented by defining an associative composition operation
on JA which can be shown to give a group structure when restricted to the ergodic
joinings, or, what amounts to the same, by using the topology of convergence in
measure on Aff(G/Γ). See [35] for further discussion of this issue.
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But for every ρξ′ ∈ JA,

(Id, ξ)∗(ρξ′) = ρξξ′

and so ν ′ is right invariant under the action of Ξ on Φ. It follows that
ν ′ is a finite Haar measure on the locally compact group Φ, hence Φ is
a compact group, proving Lemma 6.6.(1).

To see (2), we first present m ×A m in two ways: for any bounded
measurable f ,∫

X×X

f(x, y)dm×A m(x, y) =

∫∫
X

f(x, y)dmA
x (y)dm(x)

=

∫
X×X

∫
JA
f(x, y)dρ(x, y)dν(ρ)

=

∫
X

∫
Φ

f(x, φ(x))dxdν ′(φ).

It follows that m-a.s. mA
x = (R̃x)∗(ν

′), with R̃x : Φ → X the map
φ 7→ φ(x).

Let X1 denote the set

X1 =
{
x ∈ X : mA

x = (R̃x)∗(ν
′)
}
.

Suppose x, x′ ∈ X1 with x
A∼ x′, i.e. [x]A = [x′]A and hence mA

x = mA
x′ .

Then mA
x -almost every y ∈ [x]A can be represented as η(x) as well as

φ(x′) for η, φ ∈ Ξ/RΓ. Find one y ∈ [x]A that can be represented in
both of these ways. Then x = η−1φ(x′) with η−1φ ∈ Φ as claimed. �

Corollary 6.7. The sigma algebra BΦ of Φ-invariant Borel subsets of
X is countably generated and is equivalent mod m to A.

Proof. That BΦ is countably generated is a general property of compact
group actions on standard Borel spaces, which can be easily verified as
follows: take Bi to be a generating sequence of Borel sets in X. Con-
sider the functions fBi

=
∫

Φ
1Bi

(φx)dφ. The level sets {a < fBi
(x) < b}

for a, b ∈ Q form a countable generating set for BΦ.
We now show that BΦ is equivalent mod m to A. By the definition

(6.3) of Ξ , every set B ∈ A is almost invariant under Ξ and therefore
also under Φ, i.e. m(φB4B) = 0 for every φ ∈ Φ. As is well-known
(see e.g. [36, Lemma 2.2.15]) this implies that there is a Φ-invariant
Borel set B′ with m(B′4B) = 0 and by definition B′ ∈ BΦ.

Conversely, let B ∈ BΦ. Then the function

E(1B | A)(x) =

∫
X

1B(x′)dmA
x (x′)
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is A-measurable. Let X1 be a conull set as in Lemma 6.6.(2). For every
x ∈ B ∩X1 we have that B ⊃ Φx ⊃ [x]A ∩X1, hence

mA
x (B) ≥ mA

x ([x]A ∩X1) = 1 a.s

and hence E(1B | A) ≥ 1B a.e.. Applying the same to B{ we get the
reverse inequality, hence E(1B | A) = 1B a.e. and so there is a B′ ∈ A
with m(B4B′) = 0. �

This completes the proof of Theorem 1.5. We now specialize to the
case where G is semisimple with finite center, all factors have R-rank
≥ 2, and Γ < G is an irreducible lattice (i.e. a lattice which is not
commensurable to a product of lattices in factors of G) and deduce
Corollary 1.6 from the more general Theorem 1.5. As in that corollary,
we let A = α(Rn) to be the connected component of the identity in
a maximal R-split torus. Then its centralizer CG(A) = MA where
M = CK(A) by [17, Lemma 7.22] and the fact that A is maximal R-
split. Here M is the unique maximal compact subgroup of CG(A), it is
compact since K is compact by the assumption that G has finite center,
see [17, Theorem 6.31]. Note that in this case, since Γ is irreducible,
there can be no nontrivial connected NCG so that NΓ is closed, hence
Γ′ := HA ≥ Γ is discrete.

Lemma 6.8. Let G, Γ, α and A be as in Corollary 1.6 (with A identi-
fied with a σ-algebra of left M-invariant subsets of G/Γ in the obvious
way5). Then

(1) there is an open neighborhood U of the identity in Aff1(G) so
that U ∩ Ξ ⊂ LG,

(2) Ξ ∩ LG = LM

Proof. Claim (1) follows from the fact that Γ′ is finitely generated and
Lemma 6.3.

Since A consists of LM -invariant sets by definition of Ξ, LM ≤
LG∩Ξ. By definition of Ξ, every ξ ∈ Ξ commutes with left translation
by elements of A, so Ξ ∩ LG ≤ LCG(A). Recall that CG(A) = MA. If
Ξ∩LG > LM holds strictly, then Ξ∩LG contains a nontrivial element
of LA. However, this is impossible since Φ = Ξ/RΓ′ ≤ Aff1(G/Γ) is
compact and since the powers of a nontrivial element of LA are not
contained in a compact subset of Aff1(G/Γ) . �

Proof of Corollary 1.6. By Lemma 6.8 LM CΞ and Ξ/LM is discrete, so
Ξ/LMRΓ′ is both discrete and compact, hence finite, and consequently

5If we view A in this way then the assertion of Corollary 1.6 that [y]A is finite
for a.e. y ∈ M\G/Γ translates to [x]A is a union of finitely many orbits of M on
G/Γ.
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so is Ξ/LMRΓ. By Lemma 6.6.(2) this shows that for a.e. x ∈ G/Γ the
atom [x]A consists of finitely many orbits of M . This concludes the
proof of the first claim in the corollary.

If Γ is maximal, Γ′ = Γ and furthermore the normalizer in G of
Γ is equal to Γ. Any ξ ∈ Ξ can be written as ξ = Lhξ0 = ξ1Rh′

with ξ0, ξ1 ∈ AutG; by definition of Ξ, ξ1 fixes A0 pointwise, and by
Lemma 6.3 ξ0 sends Γ to itself. By the assumptions on G and A in the
second part of the corollary, ξ1 and hence also ξ0 is necessarily an inner
automorphism, and by the maximality of Γ we have that ξ0(g) = γ−1gγ
for some γ ∈ Γ. It follows that Lhγ−1 ∈ Ξ and so by Lemma 6.8.(2)
hγ−1 ∈ M , and ξ ∈ LMRΓ. It follows that [x]A is almost surely a
single orbit of M , or translating back to y ∈ M\G/Γ that [y]A is a
single point a.s.: which implies that when viewing A as a σ-algebra of
Borel subsets of M\G/Γ that it is equal mod m to the full Borel sigma
algebra. �

7. Equidistribution

As pointed out in Section 1 Theorem 1.1 follows from Theorem 1.4.
We now give the proof of the corollary regarding equidistributed orbits.

Proof of Corollary 1.2. In the following write αi for the action on Xi =
G/Γi for i = 1, 2 and α for the action on X1 ×X2. Let x = (x1, x2) be
as in the corollary. For ` > 0 define the probability measure

µ`(B) =
1

2n`n

∫
[−`,`]n

1B(αtx) dt

for any measurable B ⊂ X. Then a weak∗ limit µ of any subsequence
of µ` for ` → ∞ is α-invariant. Moreover, we claim µ is a probability
measure and a joining between α1 and α2. However, then the assump-
tions to the corollary and Theorem 1.1 show that µ = m1 ×m2 is the
only such measure. Since µ was any weak∗ limit, the corollary follows.

To see the claim, let f ∈ C(X1) be non-negative with compact sup-
port. Let ε > 0 be arbitrary, take a g ∈ C(X2) with 0 ≤ g ≤ 1,
compact support, and

∫
g dm1 > 1 − ε. Then for large enough ` we

have ∫
[−`,`]n

g(αt
2(x2)) dt > (1− ε)2n`n
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by the assumption that x2 has m2-equidistributed α2-orbit. Therefore,

1

2n`n

∫
[−`,`]n

f(αt
1x1) dt ≤ 1

2n`n

∫
[−`,`]n

f ⊗ g(αt(x1, x2)) dt+ ε‖f‖∞ ≤

1

2n`n

∫
[−`,`]n

f(αt
1x1) dt + ε‖f‖∞

which shows that ∣∣∫ f ⊗ g dµ−
∫
f dm1

∣∣ ≤ ε‖f‖∞.

Since this holds for any g with compact support as above and any ε,
we conclude that ∫

f d(π1)∗µ =

∫
f dm1.

Varying f the claim and the corollary follow. �
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