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1. Introduction

In 1967 Furstenberg, in his seminal paper [F], proved that any closed
subset of the torus T = R/Z which is invariant under the action of
multiplication by 2 and by 3 ( mod 1) is either finite or T.
For every n ∈ N we denote by Tn the following map on T:

Tn(x) = nx ( mod 1), x ∈ T.
The structure of (T2, T3)-invariant measures on the torus is still not
fully understood.

Problem (Furstenberg): Is it true that a (T2, T3)-invariant ergodic
Borel probability measure on T is either Lebesgue or has finite support?

The best known result regarding Furstenberg’s measure rigidity prob-
lem is due to Rudolph [R] who proved measure rigidity for the (T2, T3)
action under the additional assumption of positivity of entropy.

Theorem 1.1. (Rudolph) Let µ be a (T2, T3)-invariant ergodic proba-
bility Borel measure on T = R/Z. Then either hµ(T2) = hµ(T3) = 0 or
µ is Lebesgue measure.

We prove that if a Borel probability measure µ on T is invariant un-
der the action of a “large” multiplicative semigroup (lower logarithmic
density is positive) and the action of the whole semigroup is ergodic
then µ is either Lebesgue or has finite support, without any entropy
assumption.

Theorem 1.2. Let α > 0 and let Σ ⊂ N be a multiplicative semigroup
with

(1.1) lim inf
N→∞

# (Σ ∩ [1, N ])

Nα
> 0.

Let µ be an ergodic Σ-invariant Borel probability measure on T = R/Z.
Then either µ is supported on a finite number of points or µ is Lebesgue
measure.
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We note that the assumption in the theorem is equivalent to posi-
tivity of the expression

lim inf
N→∞

log # (Σ ∩ [1, N ])

logN
.

Also note that if Σ has a positive upper density (which corresponds to
the much stronger assumption of α = 1)

lim sup
N→∞

# (Σ ∩ [1, N ])

N
> 0,

then the statement of the theorem follows by an application of the
Wiener lemma, see [K, p. 47].

This work is motivated by recent results of Bourgain, Furman, Lin-
denstrauss and Mozes (see [BFLM]) but it is much simpler. Our case
is much easier because the semigroup Σ is abelian. The largeness of
Σ makes it possible to deduce that zero entropy implies finite support
for µ. So, the remaining case is of positive entropy. In this case we use
Johnson’s result from [J], which we state below and is a generalization
of Rudolph’s theorem (Thm. 1.1).

This paper shows, in the concrete setting of endomorphisms of T,
that positivity of entropy is a checkable condition (see Lemma 3.2).
The reader is strongly recommended to consult the papers [BL], [EKL],
[EL], [ELMV1], [ELMV2], [L] and [MV], to see examples of number-
theoretic implications of the checkability of positivity of entropy in
more complex situations.

The authors would like to thank A. Furman, E. Lindenstrauss, F.Nazarov
and T. Ward for fruitful discussions and the referee for his comments
which made the text much more readable. M.E. was supported by the
NSF DMS grant 0622397.

2. Main ingredients

We remind the reader of the Shannon-McMillan-Breiman theorem.

Theorem 2.1. Let (X,B, µ, T ) be a measure preserving system such
that B is a countably generated σ-algebra, and let ξ be a countable
measurable partition of X with finite entropy

Hµ(ξ) =
∑
A∈ξ

− log(µ(A))µ(A) <∞.

Then
1

n
Iµ

(
n−1∨
i=0

T−i(ξ)

)
(x)→ hµEx(T, ξ)
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for µ-almost every x ∈ X and in L1
µ, where Iµ (ξ) is the information

function of the partition ξ defined by

Iµ(ξ)(x) = − log µ(A), x ∈ A ∈ ξ,

the measures {µEx}x∈X are the ergodic measures for the transformation
T in the ergodic decomposition of µ:

µ =

∫
X

µExdµ,

and hµEx(T, ξ) denotes the entropy of T with respect to ξ and the measure

µEx.

The other ingredient is Johnson’s theorem ([J]) which is a generaliza-
tion of Rudolph’s theorem 1.1.
We recall the notion of a nonlacunary multiplicative semigroup.

Definition 2.1. A multiplicative semigroup Σ ⊂ N is called nonlacu-
nary if there does not exist a ∈ N such that Σ ⊂ {an |n ∈ N ∪ {0}}.

Theorem 2.2. (Johnson) If Σ is a nonlacunary multiplicative semi-
group of integers whose action on T as multiplication ( mod 1) has an
ergodic invariant Borel probability measure µ, then either µ is Lebesgue
measure or the entropy of each map Tn, n ∈ Σ, has µ-entropy zero.

3. Proof of Theorem 1.2

We start with a reformulation of the Shannon-Mcmillan-Breiman
theorem (Thm. 2.1) in the setting considered here.

Lemma 3.1. In the setting of Theorem 1.2, if hµ(Tp) = 0 for some
p ∈ Σ, then for any ε > 0 and any β > 0, there exist δ0 > 0 and
X ′ ⊂ T of measure µ(X ′) > 1 − ε, such that for every positive δ ≤ δ0
and every x ∈ X ′,

µ(Bδ(x)) > δβ,

where Bδ(x) is the ball of radius δ with center at x.

Vaguely speaking, the conclusion of the lemma is that µ has zero
dimension.

Proof. Let p ∈ Σ such that hµ(Tp) = 0. Take the partition

ξ =

{(
0,

1

p

]
,

(
1

p
,
2

p

]
, . . . ,

(
p− 1

p
, 1

]}
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of T. Then
∨n−1
i=0 T

−i
p (ξ) = {(0, 1

pn
], . . . , (p

n−1
pn

, 1]}. Therefore, for every

x ∈
(
k
pn
, k+1
pn

]
and k ∈ {0, 1, . . . , pn − 1} we have

Iµ

(
n−1∨
i=0

T−ip (ξ)

)
(x) = − log µ

((
k

pn
,
k + 1

pn

])
.

Let β > 0, without loss of generality we may assume β ∈ (0, 1).
By the a.e. convergence in the Shannon-McMillan-Breiman theorem

it follows that for every ε > 0 there exists a measurable set X ′ ⊂ T
with µ(X ′) > 1− ε and an N such that for every n ≥ N we have

1

n
Iµ

(
n−1∨
i=0

T−ip (ξ)

)
(x) <

β

2
log p

for every x ∈ X ′. Take δ1 = p−N and let δ be any positive number
with δ ≤ δ1. Let n be the smallest integer such that p−n < δ (n ≥ N).

If x ∈ A =
(
k
pn
, k+1
pn

]
∈
∨n−1
i=0 T

−i
p (ξ) then A ⊂ Bδ(x). Therefore, for

every x ∈ X ′, we have

Iµ

(
n−1∨
i=0

T−ip (ξ)

)
(x) = − log µ (A) ≥ − log µ(Bδ(x)).

So we have, for every x ∈ X ′,

1

n
(− log µ(Bδ(x))) ≤ 1

n
Iµ

(
n−1∨
i=0

T−ip (ξ)

)
(x) <

β

2
log p.

The latter implies that

µ(Bδ(x)) > e−n
β
2

log p ≥ δ
β
2 p−

β
2 .

as p−n+1 ≥ δ by choice of n. Rewriting the right hand side, we have
equivalently

µ(Bδ(x)) > δβ
(
δ−

β
2 p−

β
2

)
This gives the desired conlusion once δ < δ0 = min(δ1,

1
p
), for then the

last term in the parenthesis on the right is ≥ 1. �

In the following we will make use of the assumption of positive log-
arithmic density of Σ.

Lemma 3.2. Under the assumptions of Theorem 1.2, if hµ(Tp) = 0
for some p ∈ Σ, then the measure µ has finite support.
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Proof. Recall that α > 0 satisfies the condition (1.1). We define β =
α
20

. Also by (1.1) there exists M0 such that for M ≥ M0 we have

# (Σ ∩ [1,M ]) > M
α
2 . We also define δ = δ(M) = M−5.

Assume that hµ(Tp) = 0 for some p ∈ Σ. From Lemma 3.1 it follows
that for every ε > 0 — ε = 1

2
will do — there exists a set X ′ ⊂ T such

that µ(X ′) > 1− ε and there exists δ0 > 0 such that for every positive
δ < δ0 and every x ∈ X ′,

µ(Bδ(x)) > δβ.

We may assume δ(M) ≤ δ0 for M ≥M0 (by adjusting M0 if necessary).
At this point we use the invariance1 of µ under Σ. Fix some x ∈ X ′

and δ ≤ δ0. For every q ∈ Σ ∩ [1,M ] we write Aq = qBδ(x). Then
Bδ(x) ⊂ T−1

q (Aq), and so by invariance of µ under the action of Tq we
get

µ(Aq) = µ(qBδ(x)) = µ(T−1
q (Aq)) ≥ µ(Bδ(x)) > δβ.

We vary q ∈ Σ ∩ [1,M ] and note that

M
α
2 δβ = M

α
2
−5 α

20 = M
α
4 > 1.

To summarize, if we restrict ourselves to q ∈ Σ∩[1,M ] — and there are
at least M

α
2 many such choices, every image interval Aq = qBδ(x) has

µ-measure at least δβ. In total this would contradict the assumption of
having a probability space unless the various sets Aq are not all disjoint.

Hence there exist for any given x ∈ X ′

q1, q2 ∈ Σ ∩ [1,M ], q1 > q2

with
q1Bδ(x) ∩ q2Bδ(x) 6= ∅.

Thus there exist i1, i2 ∈ Bδ(x) such that q1i1 − q2i2 = k ∈ Z.
We now think of x ∈ [0, 1) and i1, i2 ∈ R as real numbers instead of

as cosets belonging to T = R/Z. The formulae

k = q1(i1− x+ x)− q2(i2− x+ x) = q1(i1− x)− q2(i2− x) + (q1− q2)x
and

|q1(i1 − x)− q2(i2 − x)| ≤ 2δM = 2M−4

imply that

x =
k

q1 − q2
+ κ, |κ| ≤ 2M−4.

Let ` = q1 − q2, so ` < M . We summarize: We have shown that x is
close to a rational number k

`
with related bounds on the denominator

` and on how close x is to k
`
. Actually the reader should be surprised

1We will use invariance in the ‘wrong way’ by using that the image of an interval
has at least the measure of the original interval.
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here on how good a bound on the error κ we have achieved — this will
be important.

For a given x ∈ X ′ let us denote the rational number k
`

obtained

above with the given M as r(M) = k
`
. Take some M1 ≥ M0. and

denote by k1
`1

the rational r(M1) obtained with the above properties.

Similarly denote by k2
`2

the rational r(M2
1 ). So, we have∣∣∣∣x− k2

`2

∣∣∣∣ ≤ 2M−8
1

and
`2 ≤M2

1 .

If we suppose that k1
`1
6= k2

`2
then∣∣∣∣k1

`1
− k2

`2

∣∣∣∣ ≥ 1

`1`2
≥M−3

1

On the other hand,∣∣∣∣k1

`1
− k2

`2

∣∣∣∣ ≤ ∣∣∣∣k1

`1
− x
∣∣∣∣+

∣∣∣∣k2

`2
− x
∣∣∣∣ ≤ 2(M−4

1 +M−8
1 ).

For M1 sufficiently large (there exists positive M ′
0 ≥ M0 such that M1

should satisfy M1 ≥ M ′
0), we get a contradiction. Thus k1

`1
= k2

`2
. Re-

peating the argument for the given x ∈ X ′ infinitely often (continuing
with M2

1 ,M
4
1 , . . . replacing M1 in that order) improves the accuracy of

the approximation without changing the rational number and so shows
that x = k1

`1
.

The last argument proves that X ′ has only finitely many points but
has µ-measure at least 1

2
. So µ has atoms. By ergodicity, we get that

µ has a finite support. �

Theorem 1.2 follows from A.Johnson theorem cited in Section 2 com-
bined with Lemma 3.2.

4. Further Discussion

As equidistribution and rigidity of invariant measures often take
place simultaneously, one may believe that Theorem 1.2 holds because
of some kind of equidistribution phenomenon. We indicate in this sec-
tion that in the case at hand, at least naively, this is not true.

It was pointed out to us by Fedor Nazarov that for every α 6∈ Q
one can construct a multiplicative semigroup Σ = {σ1 < σ2 < . . . <
σn < . . .} of positive lower density such that the sequence {σnα} is
not equidistributed in T. We thank Fedor Nazarov for allowing us to
reproduce the construction here.
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Our semigroup Σ will satisfy that

d∗(Σ) = lim inf
N→∞

# (Σ ∩ {1, . . . , N})
N

≥ 1

200
.

Choose α 6∈ Q. We construct Σ by an iterative process.
Let S ⊂ N. For any N ∈ N denote by SN = S ∩ {1, . . . , N}.
Let N0 ∈ N be such that for any n ≥ N0 we have

(4.1)
n

8
− n

1000
<

∣∣∣∣{k ≤ n|0 < kα( mod 1) <
1

8

}∣∣∣∣ < n

8
+

n

1000
.

We choose N1 = 2N0 and let BN1 to be the subset of size at least
1
10
N0 of {N0 + 1, . . . , N1} such that for every k ∈ BN1 we have

0 < kα( mod 1) <
1

8
.

If we take the semigroup Σ1 generated by BN1 then there exists a
smallest N ′2 = N12

`1 (with `1 ∈ N) such that

(4.2) |(Σ1)2N ′2
| ≤ 2N ′2

100
.

Let N2 = 2N ′2. We use the lower bound of (4.1) in the interval
{1, . . . , 2N ′2}, the upper bound of (4.1) in the interval {1, . . . , N ′2} and
the inequality (4.2) to conclude that we can find 1

10
N ′2 elements k in

the set {N ′2 + 1, . . . , 2N ′2} \ Σ1 with 0 < kα(mod 1) < 1
8
, denote this

set by A2. We define BN2 = (Σ1)N2 ∪ A2.
Then we can repeat that process infinitely many times. We will get

a sequence of times N1 < N2 < . . . < Nm < . . . and the sequence of
finite sets BN1 ⊂ BN2 ⊂ . . . such that for every k ∈ N we have

(4.3) Re

 1

|BNk |
∑
σ∈BNk

exp (2πiσα)

 ≥ 1

20

√
2

2
− 1

100
> 0.

Denote by Σ = ∪kBNk and notice that by construction ΣNk = BNk for
any k ≥ 1.

It is now relatively straight forward to check that Σ is a multiplicative
semigroup, and that (by the minimality of the `k in the construction)
the lower density of Σ is at least 1

200
as claimed. Clearly (4.3) implies

that Σα is not uniformly distributed.
By a similar construction, for any choice of countably many irra-

tional numbers α1, . . . , αn, . . . there exists a multiplicative semigroup
of a linear growth (of positive lower density) Σ such that for every
k ∈ N we have Σαk is not uniformly distributed.
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