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Abstract. The periodic points of a morphism of good reduction for a smooth
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1. Introduction and Results

In this paper we study the behaviour of periodic points for a morphism
on a smooth curve over @p, the algebraic closure of ), with p-adic
norm | - | normalized to have |p| = 1/p. Under a regularity condition,
we prove that the asymptotic distance of a given point to the periodic
points is equal to one in a suitable metric. This result generalises the
case of polynomial morphisms on the projective line in [4].

Let Op = {z € Q, | |z| < 1} be the ring of integers in Q,, with
maximal ideal p = {z € Q, | |2| < 1}. Identify the quotient O,/p
with the algebraic closure I, of F, = Z/pZ. Let P"(Q,) denote n-
dimensional projective space over @p, and write X = (Xo,...,X,) €
@ZH for the homogeneous coordinates of a point [X] € P*(Q,). It will
be useful always to choose the homogeneous coordinates to have

| X| = max{|Xol,...,|Xn|} = 1. (1)
Writing z = [X],y = [V], define a function on P*(Q,) by
Az, y) = max|X;Y; — X;Yil. (2)
l?]
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Then, just as in the one-dimensional case (see [3] for example), A is a
metric. In this metric, projective space P" (@p) has diameter one. The
regularity property used here — good reduction — will be defined in the
next section.

A point x € C is a fixed point for a map ¢ : C — C if ¢(x) = z, is
a point of period n if ¢"(x) = x, and has least period n if z is periodic
(of period n) and the orbit {z, ¢(x), ¢*(x), ...} has cardinality n.

THEOREM 1. Let C C P"(Q,) be an irreducible smooth curve with
good reduction, and let ¢ : C — C' be a morphism of good reduction
with degree d > 1. Then for every point x € C' there is a constant ky
with

Aw,y) = (ko)

for any ¢-periodic point y with least period n.

COROLLARY 2. For every point x € C, and every r < 1, the number
of points y € C that are periodic under ¢ and satisfy A(x,y) < r is
finite.

The Riemann-Hurwitz formula [5, Sect. IV.2] shows that
(2-29)(d—1) >0

where g is the genus of the curve C, since the ramification divisor of
¢ is non-negative. In particular, the hypothesis of Theorem 1 implies
that C has genus 0 or 1.

In the case of the projective line C = P! (@p) there are infinitely
many periodic points (see [1, Theorem 6.2.2]; it is enough to prove this
over any field). The proof of Theorem 1 simplifies in this case. If the
point at infinity of the projective line is fixed by ¢, then the periodic
points of the morphism are related to the morphic height associated to
¢ (cf. Theorem 3 below; the morphic height is defined in [3]).

A rational function ¢ has good reduction modulo p if it can be
written in homogeneous coordinates in the form

H(X,Y) = (F(X,Y),G(X,Y)) with F,G € Oy[X,Y]

where F' and G have no common root modulo p (see [2], [3] and [14]).
Write A4, for the local morphic height (sometimes called the canonical
local height in the literature) as defined in [3].

THEOREM 3. Let ¢ : P1(Q,) — PY(Q,) be a rational function of good
reduction and degree d > 1. Assume that the point (0,1) at infinity is
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fized under ¢. Fiz a point x € @p, and a sequence ¥y, € @p of points of
least period n under ¢. Then

|z — yul

— 1 for n — oo.
max(1, |x|) max(1,|y,|)

Moreover,
log |z — yn| — Agp(x) = log™ |z,

and, if x is not a periodic point, then
1

108 () — 290(2)] = Agple) = log™ |2

where ¢" = 12 50 fn(t) — tgn(t) is the polynomial whose roots are

n

ezxactly the periodic points of period n.

Notice that there are infinitely many points whose least period ex-
ceeds 1 (cf. Remark 6). Theorem 3 is a morphic analogue of Jensen’s
classical formula (see Section 3). We should point out that a paper of
Lubin [10] contains results closely related to those presented here, and
Hua—Chieh Li has made an extensive study [7], [8], [9], of periodic points
for p-adic power series, mainly aimed at counting the points of given
period. Finally, Morton and Silverman [12] studied the multiplicities of
periodic points and used this to construct algebraic units in number
fields.

2. Proofs of theorems

In this section we prove Theorems 1 and 3 assuming some results on
good reduction curves and uniformizers that will be proved later. Recall
that X = (Xy,...,X,) always denotes the homogeneous coordinates
of a point x = [X] € C chosen so that Equation (1) holds.

Let 7 : P"(Q,) — P*(F,) be the reduction map, defined by

W(.T) = [X0+P>X1+P,---,Xn +P],

which is well-defined by (1). Let C' be an irreducible projective curve
in P”(@p), with ideal of relations I = I(C). Let J = 1N Oy[To,...,T),]
be generated by the forms fi,..., f;. Fix a point y € C, and assume
without loss of generality that Y # 0. The curve is non-singular at y if

9gi .
rank (8—U](y)> =n-—1, (3)

l?]
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where g;(Uy,...,Uy,) = fi(1,Uy,...,Upy). The curve C' is smooth if it is
non-singular at every point.

Define J = J mod p C Fp[Tp,...,Ty], and let C C P*(F,) be the
variety defined by the ideal J (which of course may not in general
coincide with the ideal of relations of the algebraic set C). The curve
C has good reduction if (3) holds mod p for every § € C. From now on
we will assume that the curve C' is smooth with good reduction.

The metric (2) on an integral affine piece simplifies as follows: for
z=[X],y=[Y] € P"(Q,) with Xg =1,Yy =1 and X;,Y; € O,

A(w,y) = max|Y; - X;|.

A rational function f = F//G on C is defined by two forms F' and G
in Q,[To, ..., Ty] of the same degree with G ¢ I(C). A rational function
is regular at x € C if there are two forms F’, G’ with G'(X) # 0 and
FG' — F'G € I (in other words f = F'/G"). Moreover, f is reqular at
T € C C P*(F,) if there are two forms F',G' € O,[Ty,...,T,] such
that G'(X) # 0, FG' — F'G € I, and X € FZ“ is a homogeneous
coordinate of Z. In that case f = F/G defines a rational function on C
which is regular at z € C.

A uniformizer of C at x € C'is a rational function z which is regular

at x, such that the vector (%)i is not in the image of the matrix in

(3)-

PROPOSITION 9 (cf. Section 4.) Fiz a point x € C. Then there exists
a uniformizer z of C at x such that z is regqular at w(x) and Z is a
uniformizer at w(x). The restriction z : U — p of z to U = {y € C'|
A(y,z) < 1} is a bijection and its inverse, in each affine coordinate,
is a convergent power series with coefficients in O,. Hence A(y,y') =

|2(y) — 2(/)| for all y,y’ € U.
For example, if the curve is P*(Q,) and X = (1,0), one may choose

z2(y) = % for the uniformizer in Proposition 9.
Now let ¢ : C' — C be a morphism, defined by forms

(Fo, ..., Fn) € Q [Ty, ..., T)" !

of the same degree, with F; ¢ I(C) for some j. Since ¢ is a map from
Cto C, f(Fy,...,Fy,) € I(C) for every f € I(C). In order for ¢ to be
defined on all of C, at each = [X] € C there must be a representation

(Go,...,Gn) € Q[Ty,..., T,])" (4)
of the morphism, with

FG; — F;G; € I(C) for 0 <i,5 <n (5)
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and
(Go(X),...,Gn(X)) # (0,...,0). (6)
Here (5) means that the forms (Go,...,Gy) define the same map as
the forms (Fy, ..., F,) do, and (6) means that ¢ is well defined at z.
The morphism ¢ : C — C has good reduction if for every z € C,
there is a representation

((;0,...,(;n) S Chdjb,...,jh]n+1
of ¢ satisfying (5) such that
(Go(X),...,Gn(X)) & p™ T,

Here p"*! denotes the (n + 1)-fold Cartesian product of p and X is a
homogeneous coordinate for z € C' C FZH.

In the case of C = Pl(@p), there exists a canonical representation
(Fy, F1) satisfying (6) for all z € P*(Q,). We can assume that Fy, Fy €
O,[Ty,T1] and at least one of the two polynomials has a coefficient in
O,’. Then the morphism ¢ has good reduction if and only if the two
forms Fy, F1 do not have a common zero on P!(F,) — they define a
rational function on P!(F)).

REMARK 4. A morphism ¢ : C — C' has good reduction in the above
sense if and only if it extends to a morphism over the scheme Spec(O,).

From now on we will assume that ¢ is a morphism of good reduction.

Let K denote the field of rational functions on C'. The degree of the
morphism ¢ is defined as the degree of the field extension [K : ¢*(K)],
where

" : K—- K
fr=feoo
is the map induced by ¢. Alternatively, one can define the degree as the
common number of pre-images (counted with multiplicities) of points
under the map ¢. B
In the case of a rational function ¢ on P! (Q,) this is again obvious

since the degree d of ¢ coincides with the degree of the forms in the
canonical representation (Fy, F1).

COROLLARY 11 (cf. Section 4.) Let ¢ : C — C be a morphism of
good reduction, and let x € C be a fixed point. Then there exists a
uniformizer z, also satisfying Proposition 9, such that

o
P*z=z0¢= Zaizi with a; € O,.
i=1
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Again if C = P}(Q,) and ¢ is a rational function on P*(Q,) with
good reduction, it is easy to see that Corollary 11 holds: Assume X =
(1,0), then z(y) = % is a uniformizer at x, and
_h(Y)

Fo(Y)

*2(y)

Since z is a fixed point, F1(X) = 0 and Fy(X) # 0. Moreover, ¢
has good reduction and therefore Fy(X) ¢ p. Changing to the affine
coordinate z, write ¢*z = ;{1)8 with f1(0) = 0 and |fo(0)] = 1. Since
the constant term of fo is a unit in O), the polynomial fjy is a unit in
Opl[2]]- So the rational function ¢*z € O,|[[z]] satisfies Corollary 11.

LEMMA 5. Let f(z) = >.5°, a;z* be a power series with coefficients
a; € Op. Then, for any n > 1,

f*(z) =alz+ z2gn,

where g, € Op[[2]]. Assume now that a; =1 and let e be the first index
e > 1 with ac # 0, so that f(z) = z+2°g for some g € Opl[z]]. For any
n > 1 there exists a power series hy, € Op[[z]] with

f(2) = 2z +nzg + 2% th,.

This may be seen by a simple induction argument. For the proof
of the second statement, notice that g(z + 2¢F(z)) = g(z) + 2°G(z)
for some G depending on g and F'. Note also that Lemma 5 played an
important role in [12].

REMARK 6. Some rather general properties of periodic points in the
setting are needed later and assembled here.

1. The second statement in Lemma 5 can be used to show that if a
point x is a multiple root of f"(z) — z = 0, then it is never a
higher multiplicity root of any other equation of the form f™(z) —
z = 0 (notice this is only true for multiplicity two or higher). In
particular, if x € C is a point of period n for ¢ with multiplicity two
or higher, then that multiplicity cannot increase when x is viewed
as a point with pertod m > n.

2. If the curve is Pl(@p) then many of the roots of ¢"(z) — z = 0
are genuine points with least period n, and in particular there are
infinitely many points whose least period exceeds any given number.
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3. Any map for which the number of points of period n grows ex-
ponentially fast will have the same exponential rate of growth in
the number of points of least period n (cf. [13]). In fact if p, is
the number of periodic points of period n and p}, is the number of
periodic points of least period n, then p /p, — 1 for n — oco.

LEMMA 7. Let f(z) = >.5°, a;2" be a power series with coefficients
a; € Op such that |a; — 1] < p~ Y@= Then every periodic point y €
p\ {0} of f of least period n > 1 satisfies

lyl = (sln)) /",

where the constant k > 0 does not depend on n.

Proof. The assumptions on f imply that |f(y)| < |y| for any y € p.
So if y € p is a periodic point of least period n, then the points y; =
v, y2 = f(y),...,yn = f"(y) along the orbit of y all have the same
norm.

Suppose first that a; # 1. From the p-adic logarithm (see [6, Sect. IV.1])
it follows that for every integer n > 1, |a} — 1| > k|n|, where k =
|log,, a1|. Consider the power series

Fo(z) = f"(2) =2 =Y _biz' € Op[[2]]; (7)
=1

the first nontrivial term for this series is by = a} — 1. If y is a periodic
point in p \ {0} of least period n, then all the points y; on the orbit
of y are roots of the equation F,(z) = 0. From the usual Newton
polygon arguments (see for example [6, Sect. IV.4]) we see that log |y| =
log |y;| < 0 equals one of the slopes of the Newton polygon of F, say
the slope between the points P, and P, defined by the coefficients by
and by with k < ¢ (cf. Figure 1). Since ¢ — k is exactly the number

Figure 1. The Newton polygon of F' is defined by the points P; = (i, — log |b;|). The
slopes determine the norms of the roots.

of roots whose norm equals the slope, we get £ — k > n. Furthermore
|b1] < |bg|, because otherwise the point defined by by is higher in the
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Newton polygon and the slope between the points P, and P, is positive
— contradicting |y| < 1. Furthermore, |bs| <1 and

log [b1] _ log|bi| —0 _ log|[bk| — log |b|
A 0~k

= log |y|.

Together with the estimate on b; = a] — 1, this proves the lemma in
the case a1 # 1.

If a; = 1, choose Kk = |b|, where b, is the first non-zero coefficient
in (7), use the second equation in Lemma 5, and deduce in a similar
fashion the same inequality.

We are grateful to a referee for pointing out that the condition
jar — 1] </

in the hypotheses of Lemma 7 can be removed entirely by arguing as
follows. Let m > 1 be the smallest integer with |af* — 1| < p~/®=1_ If
ai’ # 1, then choose x = |log,(af")|. For n > 1,
jaf = 1] > a]"™"" — 1| = Kln/d > x]n|

where d = ged(m, n); the second inequality being arrived at as in the
proof above. If a* = 1, then choose kK = |ape|, Where ap, . is the
coefficient of 2¢ in the expansion of F,,(z) = f"(z) —z and e > 2 is the
smallest integer for which this is non-zero. Let b, be the coefficient of the
z¢ term of F,,,/q (d = ged(m,n) as before). By Lemma 7, be = Zam.e,
80 |be| > k[n|. The equation F,,/q(2) = 0 has at least n distinct roots
of norm |y| for any point y with least period n under ¢; the rest of the
argument proceeds as before.

Proof of Theorem 1. We begin the proof with the case where z itself
is a periodic point. Clearly every periodic point for ¢ is also a periodic
point for a power of ¢. So it is enough to consider the case where z is
a fixed point.

By Proposition 9 and Corollary 11 the action of ¢ in the open unit
disk U with centre z with respect to the metric A is conjugate to the
action of a power series f(z) = 302, a;2 on p. If |a| < 1, then it is
easy to see that |f(y)| < |y| for any y € p \ {0}. So there cannot be
any periodic points in p other than 0. For ¢ this means that there is
no periodic point y € C' with A(y,x) < 1.

Assume now |a;| = 1. Then, for some n, |a} — 1] < 1/p. As before,
without loss of generality replace ¢ by ¢ and assume |a; — 1| < 1/p.
Lemma 7 shows that there are only finitely many periodic points y € p
for f with |y| < r. This shows the theorem for periodic points.
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Assume now x is an arbitrary point. If there is no periodic point
y with A(z,y) < 1, the statement is trivial. So assume that for some
periodic point y, R = A(xz,y) < 1. By the above we know A(y,y') <r
holds for only finitely many periodic points ¢/. If R < r < 1, then the
ultrametric inequality shows that the discs around the centre points z
resp. y with radius r agree; the theorem follows.

Proof of Theorem 3. The first statement simply specializes Theo-
rem 1. For the second, notice that Theorem 1 applied to the point at
infinity implies that log™ |y,| — 0, so log |z — y,,| — log™ |z| — 0. The
third follows by factorizing the polynomial f,(t) — tg,(t) and noting
that most roots of f,(t) —tg,(t) = 0 are points with least period n (cf.
Remark 6).

3. Examples

In this section, we are going to present several examples to exhibit our
main conclusions. The first example explains the earlier remark that
Theorem 3 is a version of Jensen’s Formula.

3.1. JENSEN’S FORMULA AND SQUARING

Assume that p > 2 and let f(z) = 22, This map gives rise to a good
reduction morphism on P*(Q,) with degree 2. Theorem 3 shows that

lim 27" Z log ¢ — x|, = log™ |z],.

n—oo -
¢r=¢

Working over C instead of @p the sum on the left would tend to the in-
tegral over the unit circle, and the statement would be exactly Jensen’s
Formula. For more details on this point of view, see [4].

3.2. LOCAL HEIGHT ON AN ELLIPTIC CURVE

Let a and b denote elements of @p with the property that 4a® + 27b°

does not reduce to zero. For p > 2, the morphism of degree 4 on P! (@p)
defined by

FX,Y) = (X1 = 20X7Y2 = 8DXY® 4 0?4 4Y (X5 4 aX V2 4+ b))
has good reduction at p. If the underlying elliptic curve

v =2 +ar+0
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is in minimal form at the prime p, then our results show that the (un-
normalized) local height of the point Q = (z(Q), y(Q)) can be expressed
as a limit

lim 47" Z log |z(P) — z(Q)|,.

n—oo
2MP=0

This example comes about from the duplication map on the elliptic
curve. The reduction condition guarantees that the elliptic curve has
non-singular reduction, and the condition p > 2 guarantees that the
duplication morphism has good reduction. This can all be generalized
to the multiplication by m map, and we can also handle the case of an
elliptic curve embedded in projective space in a non-trivial way.

3.3. SEGRE EMBEDDING

Let F denote an elliptic curve defined over @p with non-singular reduc-
tion. Initially, think of E embedded in P? (@p). For any positive integers
k and ¢, map the curve kE X (E to P*(Q,) via the Segre embedding (this
means we map £ — E x E using the map P — (kP,{P) € P? x P? and
then embed the image in P® via the Segre embedding; if gcd(k,£) = 1
this is an embedding of F). The map @ — m(@, where m is co-prime
to p, induces a morphism on this curve to which Theorem 1 applies.

Notice that this is not essentially different to Section 3.2, but gives
an example of how curves can occur in higher-dimensional projective
space.

4. Background results on the curve and the morphism

Let C C P”(@p) be an irreducible projective smooth curve with good
reduction. For x € C, the ring of regular functions at x is defined by

O, = {f | f is a rational regular function on C at x}.
For 7(x) € C, define similarly
Or(@) = {f | f is a rational regular function on C at 7(z)}.

Notice that these two rings have quite different properties. For instance,
for z € C, O is an algebra over Q,,, and

(0) €{f €0 | f(z) =0}

is a maximal chain of prime ideals in O,. On the other hand, O, is
an algebra over O,, and

(0) €{f € Orwy | f(2) =0} S{f € Orey | [f(2)] <1}
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is a maximal chain of prime ideals in Oy (). Hence, the Krull dimension
of O, is equal to 1, while that of Or(,) is equal to 2.

PROPOSITION 8. Let z € C. Any function z € Opr) which van-

ishes at x, and maps modulo p to a uniformizer Z at w(x) for C, is a
uniformizer at x for C. If f € Og(,) vanishes at x, then there erists
9 € Or(z) such that f = zg. The local power series

satisfies a; € Op. Let y € C with Ax,y) < 1, then

Fly) =2 aiz(y)" (8)

=0
Proof. Let * = [X] € C, z € Og;) be as in the statement of
Proposition 8. Assume that Xg = 1, and work in affine coordinates.
Let
Iy Q;EEJLH,...,U%]ZMJd Jo = L)f?(hdlﬁ,...,Uﬁ]
be the affine ideals corresponding to the homogeneous ideals I and J.
Let
my; = <U1 _X17~~~7Un _Xn> g@p[Ul,...,Un]

be the maximal ideal at x, and define a map

0 : mm/mi —>@Z

[ Of of
0(f) = (8—(]1(X),...,8Un(X)>.

This is an isomorphism between m,/m2 and @; Since C' is smooth
with good reduction,

by

dim(0(Jp) +p") =n —1, (9)

where p™ as before is the n-fold Cartesian product of p. Here 8(f)+p™ €
FZ for f € Jy. Let

Wiyeee s Wn-1 € 0(‘]0)
and wy, = 6(2) € O} be elements such that wi+p, ..., w,+p are linearly
independent over Fp. Then wy,...,w, € Oy are linearly independent,

and the determinant of the matrix formed by those vectors is a unit in
O,p. Write v € 6(Jy) as a linear combination v = >i*; a;w; with a; €
O,. Since wy, ..., wp—1,v € 0(Jy) we must have a,, = 0, for otherwise
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6(Ip) = Q,0(Jo) would be n-dimensional, contradicting the fact that
C is a curve for which the rank condition (3) holds. This shows that
wi, ..., wy—1 is a basis for 6(Jy) over O,. Therefore 0(z) ¢ (), and
z is a uniformizer at z € C.

Now define the ideal

For any f € q, there exists a € O, such that 6(f)—af(z) € 6(Jy). Since
f —az = 1 is a rational function which is regular at 7(z) we see that
h(z) = 0 and so #(h) = 0 by the product formula for derivatives. It
follows that h € g2, so
f—azeq?
and therefore
q= Oﬁ(w)z + C|2.

Using Nakayama’s Lemma [11, Th. 2.2] this shows that

q= OT('(:D)Z7 (10)

which is the first statement of the proposition.

For any f € Or(,;) we can now find ap € O, such that f —ap € q.
By (10) there exists f1 € Or(;) with f —ag = f12. For f; we can find
a1 € Op and fo € Op(y) with f; —ay = faz, and therefore

f—(ag +a12) = fo2°
Continuing like this gives sequences a; € O) and f; € Or(;) such that
n .
f—- Zaizz = fup12™L. (11)
i=0

Let y € C with A(z,y) < 1, then 7(z) = 7(y) and |z2(y)| = ¢ < 1.
Equation (11) shows that

which concludes the proof.

PROPOSITION 9. Fiz a point x € C. There exists a uniformizer z of
C at x such that z is regular at w(x) and Z is a uniformizer at w(x). The
restriction z : U — p of z to U = {y € C | A(y,z) < 1} is a bijection
and its inverse is, in each affine coordinate, a convergent power series
with coefficients in Op. Hence A(y,y') = |2(y) —2(y')| for ally,y’ € U.
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Proof. Choose z as in Proposition 8. Assume Xy = 1 and work in
the corresponding affine piece. The function z € Op(;) which vanishes
at x maps U into p and all the affine coordinate projections U; : C' —
@p U{oc} are elements of Or(,). Applying Proposition 8 concludes the
proof.

Finally, some information about the morphism is needed.

PROPOSITION 10. Let C be an irreducible projective smooth curve
with good reduction. Let ¢ : C — P™(Q,) be a morphism of good
reduction and x € C. Then ¢ induces a map

¢+ Or(s(@) = On()
¢ (f)=Ffo0
Proof. By the definition of good reduction for maps, there are forms
Fy, ..., F,, such that ¢ is represented by (Fp, ..., Fy;,) and for a homo-
geneous coordinate X for x

X| = 1= [Fo(X),..., Fu(X)].

Let g € Ox(¢(x)) be chosen so that the homogeneous coordinate ¥ =
(Fo(X), ..., F(X)) of the point y = ¢(x) satisfies |[G(Y)| = 1. Then

F(Fy,...,Fn)  F*

T TN T e

with |G*(X)| = 1, which means that ¢* (g) € Or(a)-

Proposition 8 and Proposition 10 together yield the next corollary.

COROLLARY 11. Let ¢ : C — C be a morphism of good reduction,
and let x € C be a fixed point. Then there exists a uniformizer z, also
satisfying Proposition 9, such that

(0.]
P*z=z0¢= Zaizi with a; € O,.
i=1

This completes the proof of the tools required for Theorem 1.
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