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QUOTIENTS OF SEMI-SIMPLE GROUPS

MANFRED EINSIEDLER AND ELON LINDENSTRAUSS

Abstract. We classify invariant and ergodic probability mea-
sures on arithmetic homogeneous quotients of semisimple S-algebraic
groups invariant under a maximal split torus in at least one simple
local factor, and show that the algebraic support of such a measure
splits into the product of four homogeneous spaces: a torus, a ho-
mogeneous space on which the measure is (up to finite index) the
Haar measure, a product of homogeneous spaces on each of which
the action degenerates to a rank one action, and a homogeneous
space in which every element of the action acts with zero entropy.

1. Introduction

1.1. Background. It is well-known that orbits of one parameter diag-

onal groups such as the group

{(

s
s−1

)

: s ∈ R×

}

on the quotient

space SL(2,Z)\ SL(2,R) can have very irregular closures (this remains
true even if one assumes the orbits are bounded), as well as the closely
interlinked fact that this action has a profusion of invariant probabil-
ity measures. This phenomenon occurs more generally for actions of
rank one R-split tori (embeddings of the multiplicative group of R in
an R-algebraic group G) on quotient spaces Γ\G(R) (see e.g. [18]) as
well as for Qp-groups.
This situation changes dramatically for the action of higher rank tori,

and implicitly this has been observed already in the 1950’s by Cassels
and Swinnerton-Dyer [1] (though in a different, dual, language). In
particular, [1, Hypothesis A] is equivalent to the existence of a bounded
but non-periodic orbit of the rank 2 diagonal group A < SL(3,R) on
SL(3,Z)\ SL(3,R), and Cassels and Swinnerton-Dyer state that they
“tend rather to believe” that this Hypothesis is false (an interesting
account of this insightful paper, as well as its connection to Margulis’
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proof of the Oppenheim Conjecture, has been given by Margulis [23]).
This phenomenon was independently discovered and investigated by
Furstenberg, who studied subsets of R/Z invariant under non-virtually
cyclic multiplicative semigroups of integers [12]. Furstenberg also posed
(though not in print) an influential conjecture regarding the possible
invariant measures for such actions, a conjecture that is still open.
One of the highlights of the theory of flows on homogeneous spaces

is the work of Ratner on the action of groups H generated by Ad-
unipotent one parameter subgroups (e.g. [30, 31, 32]), which was later
extended by Ratner [33] and by Margulis and Tomanov [24] to the S-
algebraic setting we consider in this paper. This important work has
had numerous applications in number theory, geometry, and other ar-
eas in mathematics. The cornerstone of Ratner’s approach to the study
of the action of such groups H on quotient spaces Γ\G is the study of
H-invariant and ergodic probability measures on such spaces, and in
a series of papers culminating in [31] she gives a complete classifica-
tion of these measures. Using this classification, Ratner has been able
to resolve in full Raghunathan’s Conjecture on orbit closures for the
action of such groups, as well as establish the equidistribution of indi-
vidual orbits for one parameter unipotent groups [32]. Special cases of
Raghunathan’s Conjecture were established earlier by purely topolog-
ical methods by Dani and Margulis, such as in the paper [2].
With regards to the action of higher rank tori, and in particular the

conjecture of Cassels and Swinnerton-Dyer quoted above, the most sig-
nificant progress to date has also been achieved via the study of invari-
ant measures, though to date a full classification of invariant measures
remains elusive.
The first substantial results regarding measures invariant under higher

rank abelian actions were in the context of actions on R/Z. Rudolph
[35] (following some results of Lyons [21]) showed that Lebesgue mea-
sure is the only probability measure on R/Z invariant and ergodic un-
der the action of the multiplicative semigroup of integers generated
by two relatively prime integers which has positive ergodic theoretic
entropy with respect to one of the generators of the semigroup (his
result was subsequently generalized to any non-virtually cyclic semi-
group by Johnson [14]). This result is substantial in part because
the condition of having entropy larger than some given positive lower
bound is stable under weak∗ limits, which allows one to deduce interest-
ing corollaries from this partial measure classification results; perhaps
the first instance where the strategy was utilized was in Johnson and
Rudolph’s paper [15]. By now there are several genuinely different



MEASURES INVARIANT UNDER TORI 3

proofs of Rudolph’s theorem, all require in a crucial way the entropy
assumption.
Katok and Spatzier [17] were the first to give a partial measure clas-

sification result for the action of higher rank groups on homogeneous
spaces, using an argument that is related to Rudolph’s. However, in
the context of homogeneous spaces these techniques seem to give less
than they give on R/Z, and so in addition to an entropy assumption
Katok and Spatzier needed to assume some mixing properties for the
flow, an assumption which does not behave nicely under weak∗ limits.
The purpose of this paper is to give a meaningful, and usable, classi-

fication of measures invariant under higher-rank tori. This extends our
earlier work with A. Katok [5] on measures invariant under the diagonal
group in Γ\G for G = SL(n,R) and Γ = SL(n,Z), as well as the work
of the second author [20] which treated the case of G = SL(2,Z)×H .
Both of these results have had applications beyond the theory of flows
on homogeneous spaces: we mention in particular of the proof of Arith-
metic Quantum Unique Ergodicity in [20], an estimate on the dimen-
sion of the set of exception to Littlewood’s Conjecture in [5], as well
as extensions of results of Linnik and Duke to number fields of higher
degree by Michel, Venkatesh and the authors [10, 11].
The classification we provide is less complete than that given by

Ratner because of two main reasons, one of which is inherent to the
action of higher rank tori, the other due to our inability to say anything
meaningful about zero entropy measures:

• Rank one subactions. As mentioned above, there can be no mean-
ingful measure classification for the action of rank one tori. Even if
we are considering the action of higher rank tori on a quotient of
a simple algebraic group we can encounter a situation in which the
action essentially degenerates into a rank one action if the measure
is not fully supported, as was pointed out first by M. Rees [34] [3,
Sect. 9] who constructed irregular orbit closures for the action of the
full diagonal group on a compact quotient of SL(3,R).

• Zero entropy subactions. Similarly, even if there is some element
of the acting group which acts with positive entropy the measure
may be supported on a product of homogeneous spaces on one of
which there may be an exotic zero entropy measure.

1.2. Statement of main results. Before stating our main theorem
we need to set up some notations. Let G be a semi-simple linear alge-
braic group defined over Q. Let S be a finite set of places including ∞
if G(R) is non-compact. We define G = G(QS) =

∏

σ∈S G(Qσ), where
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G(Qσ) is the group of Qσ-points of G for σ ∈ S and Q∞ = R. Further-
more, let Γ < G(Q) be a lattice in G commensurable with G(OS) with
OS denoting the ring Z[1

p
: p ∈ S]. We define the homogeneous space

X to be the quotient X = Γ\G.
For every σ ∈ S we suppose G considered over Qσ has the almost

direct Qσ-almost simple factors Gσ,f for f ∈ Fσ (we use G,L, . . . to
denote algebraic groups defined over the global field Q and G,L, . . . to
denote algebraic groups defined over a local field). Take F =

⊔

σ∈S Fσ

to be the disjoint union of the index sets and we simply write Gf for
the almost direct factor of G over Qσ (with σ = σ(f) ∈ S uniquely
determined by the index f). Moreover, we write Gf = Gf (Qσ) for the
group of Qσ-points of Gf for any f ∈ F .
Now let F ′ ⊂ F be a non-empty subset of the set of factors. Let

Af ⊂ Gf , for f ∈ F ′, be a subgroup of finite index of the group of Qσ-
points of a maximal Qσ-split torus Af < Gf . We define A =

∏

f∈F ′ Af

and define the rank of A as

rank(A) =
∑

f∈F ′

dimQσ(f)
(Af ).

We consider A as a subgroup of G — in particular, A acts by right
translation on X .

Theorem 1.1. Let G be a semi-simple linear algebraic group over Q,
and let S,Γ, X, F, F ′ ⊂ F , and A be as above. Let µ be an A-invariant
and ergodic probability measure on X and let p ∈ G be such that
Γp ∈ supp µ. Then there exists a reductive linear algebraic subgroup
L defined over Q so that the following holds:

(S) (Support) The measure µ is supported on the periodic orbit ΓL(QS)p,
and L is the smallest Q-group1 so that some right translate of
ΓL(QS) supports µ.

(D) (Decomposition) As an algebraic group, the group L is the almost
direct product of a Q-anisotropic Q-torus LT and semi-simple al-
gebraic Q-subgroups LI ,LR,LZ (where some of the subgroups may
be trivial). Furthermore, if we set for t ∈ {T, I, R, Z} the group At

to be A ∩ p−1Lt(QS)p then

Ă = ATAIARAZ

has finite index in A.
(T) (Torus) The quotient (LT (QS) ∩ Γ)\LT (QS) is a compact abelian

group, and there exists a closed subgroup T ⊂ LT (QS) contain-
ing pATp

−1 so that µ is p−1Tp-invariant and (T ∩Γ)\T is compact.

1Reductive or not.
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(I) (Invariance) There exists a finite index subgroup LI < p−1LI(QS)p
which is normalized by AI such that µ is LI-invariant and for µ-a.e.
x the orbit xLI is periodic.

(R) (Rank one factor) The algebraic subgroup LR is an almost direct
product LR =

∏

i LR,i of Q-almost simple algebraic groups, AR

contains the product of the subgroups AR,i = A ∩ p−1LR,i(QS)p as
a finite-index subgroup and rank(AR,i) = 1 for all i.

(Z) (Zero entropy) hµ(a) = 0 for all a ∈ AZ .

Using the information provided by Theorem 1.1, it is possible to
provide a more explicit description of the possible A-invariant measures
µ on Γ\G:

Corollary 1.2. Under the conditions of Theorem 1.1, and with nota-
tions as in the statement of that theorem, there are for t ∈ {T, I, R, Z}
probability measures µt on (Lt(Q) ∩ Γ)\Lt(QS), invariant and ergodic
under pAtp

−1, with

(T) There is a closed subgroup T ⊂ LT (QS) containing pATp
−1 so that

µT is T -invariant, supported on a single T -orbit
(I) µI is pLIp

−1-invariant, supported on a single pLIp
−1-orbit

(Z) hµZ
(a) = 0 for any a ∈ pAZp

−1

so that µ is (up to translations) an almost direct product of µT , µI , µR, µZ.
More precisely, for t ∈ {T, I, R, Z} let µ̃t be the natural2 lift of µt to

Lt(QS). Let µ̃′ denote the push forward of the product measure µ̃T ×
µ̃I×µ̃R×µ̃Z on the direct product LT (QS)×LI(QS)×LR(QS)×LZ(QS)
to L(QS)p via the map (gT , gI , gR, gZ) 7→ gTgIgRgZp. Then the natural
lift µ̃ of µ to L(QS)p satisfies

µ̃ =
1

[A : Ă]

∑

a∈A/Ă

µ̃′a.

Note that (T) and (I) above are not symmetrical: we have less con-
trol over the closed subgroup T ⊂ LT (QS) then we have on LI which
we know (after conjugation) is a finite index subgroup of LI(QS). De-
termining which subgroups T may occur is linked with difficult Dio-
phantine questions, closely connected to the conjectures discussed in
[26]; see also [40, §4.4].
We shall deduce Theorem 1.1 from the following pleasantly concise

special case of that theorem:

Theorem 1.3. Let G be a Q-almost simple linear algebraic group, and
let S,Γ, X, F, F ′ ⊂ F , and A be as above. Let µ be an A-invariant and
ergodic probability measure on X. Suppose in addition that

2I.e. left Γ ∩ Lt(Q)-invariant.
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(1) µ is not supported on any periodic orbit ΓL(QS)p for any p ∈ G
and reductive Q-subgroup L � G,

(2) rank(A) ≥ 2,
(3) hµ(a) > 0 for some a ∈ A.

Then there is a finite index subgroup LI < G so that µ is LI-invariant
and supported on a single LI-orbit.

Remark: For some groups G and Qσ, it may occur that there are
restrictions on the possible reductive subgroup L < G with the same
Qσ-rank as G and with Q-anisotropic center that may simplify the
statements of the results above. The nicest situation is when any such
L < G will be Q-almost simple. In such a case, if A has rank ≥
2 and contains a maximal Qσ-split torus in G(Qσ) the statement of
Theorem 1.1 and Corollary 1.2 simplifies considerably: indeed, in such
a case, if µ is an A-invariant and ergodic measure on Γ\G(QS) so that
hµ(a) > 0 for some a ∈ A then LT ,LR,LZ are all trivial, and the
measure µ is L-invariant and supported on a single periodic orbit of L.
This happens in particular for G = SL(n) for all Qσ, or more generally
for G = SL(k,D) where D is a division algebra of degree ℓ over Q for
all Qσ for which D is unramified (i.e. D⊗Qσ

∼=Mℓ×ℓ(Qσ)). These are
precisely the cases considered in [5, 10]; cf. also [38].

1.3. Some remarks about the proofs, and relation to prior
works. A key construction that was first used in the context of mea-
sure classification for diagonalizable actions by Katok and Spatzier [17]
(though implicitly can be found also in the proof of Rudolph’s theorem
[35] on invariant measures on R/Z) is the construction of leafwise mea-
sures for a measure µ on X : a system of measures that can be defined
for orbits of arbitrary subgroups of G [20], but which is particularly
informative for the orbits of A-normalized unipotent groups U which
are contracted by some a ∈ A. Whether these systems of measures
degenerate and become trivial is closely connected to the positivity of
entropy of µ, and this is precisely why the condition of positive entropy
is so useful.
In broad outline, our argument is similar to that of our joint paper

with Katok [5]. Using the leafwise measures, one is able to isolate the
contribution of each non-divisible root α of G to the entropy using the
leafwise measures for the group Uα corresponding to the roots α and
possibly 2α (if 2α is also a root). If there are non-commuting roots
α, β which contribute nontrivially to the entropy (the “high entropy”
case) then the work of Katok and the first author [3, 4] gives that
µ is invariant under some one parameter unipotent group (in which



MEASURES INVARIANT UNDER TORI 7

case one can then apply Ratner’s Measure Classification Theorem or
its S-algebraic extensions).
If, however, there is a root α which contributes nontrivially to the

entropy but the high entropy assumption is not satisfied (the “low
entropy” case) a completely different argument is used which uses
non-measure preserving (even non measure-class preserving!) dynamics
along Uα, using ideas developed in earlier works of Ratner on rigidity
of horocycle flows [27, 28, 29] (where of course the unipotent flow was
measure preserving). The measure preserving action of the group A
merely exists in the background and ensures suitable regularity. This
argument was first applied in the paper [20] by the second author, and
was combined with the high entropy argument in our joint paper with
Katok [5].
The most difficult part of extending the measure classification result

of [5] to the substantially more general case we consider here is that
in the case of the R-split torus action on a quotient of SL(n,R), the
groups Uα corresponding to the roots were one dimensional, whereas
in our case these groups Uα are multidimensional and even (if we have
double roots) noncommutative. As there is no invariance under the
Uα, one cannot reduce to the one-dimensional case, and a detailed
analysis of the leafwise measures on the Uα is needed. In the paper
[4] the high entropy argument was generalized to the case of multidi-
mensional root groups. Generalizing the low entropy argument proved
to be quite tricky, and was carried out, specifically for this purpose, in
our paper [8], which should be considered as a technical first part of
the present paper.
The tools we use give some information also for more general higher

rank abelian actions on homogeneous spaces. In particular, in [4] (using
only the high entropy argument) it is shown that in many cases any
measure invariant and ergodic under a higher rank abelian action with
entropy sufficiently close to that of uniform measure must coincide
with the uniform measure on this homogeneous space. However, we
believe we have pushed these tools to the limit if one wants to get
relatively sharp measure classification results such as Theorem 1.1 and
Corollary 1.2. Beyond the class of actions we consider here new ideas
are needed.
The results of this paper have been announced (in slightly different,

less arithmetic form) in [7]. We thank the Clay institute for mathe-
matics for the generous support it provided to the authors during the
time the ideas of this paper have been obtained. This paper has been
finalized while both authors have been Fellows of the Israel Institute
of Advanced Studies special program on Arithmetic and Dynamics.
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We thank the anonymous referees for their careful reading and useful
comments.

2. Some reductions

The purpose of this section is to show how Theorem 1.1 can be
reduced to its special case Theorem 1.3. We achieve this gradually in
several steps.

2.0. Reduction to the case Γe in the support of µ. Mostly for
notational convenience, by replacing µ with µp−1 (i.e., the push-forward
of µ under the map x 7→ xp−1) and A with pAp−1 for p ∈ G with
Γp ∈ supp µ we may assume that Γe ∈ suppµ.

2.1. Passage to finite index subgroups. We continue our reduc-
tion by showing how Theorem 1.1 for some group A =

∏

f∈F ′ Af can
be deduced from knowing that this theorem holds for a finite index
subgroup A′ =

∏

f∈F ′ A′
f < A.

Suppose µ is a measure on Γ\G invariant and ergodic under A. Then
we may write µ as

µ =
1

[A : A′]

∑

a∈A/A′

µ′a (2.1)

with µ′ invariant and ergodic under A′. Here and throught the paper
we use the suggestive notation µ′a for the push-forward of µ′ under
right-multiplication by a ∈ A.
Applying Theorem 1.1 to µ′ and A′ we obtain Q-groups L, LT , LI ,

LR, LZ and finite index subgroups LI < LI(QS) as in that theorem.
It follows from Theorem 1.1.(S) applied to µ′ that A′ < L(QS).

Recall that for any f ∈ F ′ both Af and A′
f are finite index subgroups

of the Qσ(f)-points of a maximally Qσ(f)-split torus Af of Gf . As A
′
f is

Zariski dense in Af we may conclude that Af (hence A) are contained
in L(QS). Equation (2.1) implies that µ also satisfies Theorem 1.1.(S)
for the same L.
Theorem 1.1.(D) and Theorem 1.1.(R) are purely algebraic state-

ments that do not involve µ′ and moreover the validity of these state-
ments for A′ implies elementarily that they are valid for A as well.
Using the relation between µ and µ′ given in (2.1) and basic properties
of the ergodic theoretic entropy it is easy to see that Theorem 1.1.(Z)
for µ′ and A′ implies the same for µ and A. Indeed, for any a ∈ AZ =
A ∩ LZ(QS) there exists some n ≥ 1 such that a′ = an ∈ A′, hence
also in A′

Z = A′ ∩ LZ(QS). From (2.1) and hµ′(a′) = 0 it follows that
hµ(a

′) = 0, hence hµ(a) = 0.
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Theorem 1.1.(T) for µ and A again follows from the same statement
for µ′ and A′ — we only have to note that A commutes with LT .
Thus it only remains to verify Theorem 1.1.(I) for µ and A. We note

that if LI satisfies Theorem 1.1.(I) for µ′ and A′ then so does any finite
index subgroup of LI . Hence by replacing LI with

⋂

a∈A/A′

aLIa
−1 (2.2)

we may assume that LI is normalized not just by A′
I but by AI . More-

over since for µ′ almost every x, the orbit xLI is periodic, it follows
from (2.1) that the same holds for µ-almost every x.

2.2. Reduction to the case of G a Q-almost simple group. Sup-
pose G is not Q-almost simple. We reduce Theorem 1.1 for G from
the Q-almost simple case by writing G as an almost direct product
∏M

i=1H(i) of Q-almost simple groups H(i) and passing to the space

Γ̃\G̃(QS), where G̃ is the direct product of the groups H(i), and Γ̃
the product of the lattices Γ ∩ H(i)(QS) in H(i)(QS). We also assume
as we may (see §2.0) that Γe ∈ suppµ.

Let ψ : G̃ → G be the obvious isogeny. Setting G̃ = G̃(QS), it

is clear that ψ also induces finite-to-one maps G̃ → G and Γ̃\G̃ →
Γ\G that will also be denoted by ψ. To avoid confusion, we make a
notational distinction between the algebraic Q-subgroup H(i) of G and

the isomorphic subgroup H̃(i) of G̃. By construction, Section 2.1, and
after relabeling indices if necessary, we may assume that the group A

can be written as an almost direct product group
∏M ′

i=1A(i) with A(i)

a nontrivial subgroup of H(i)(QS). Let Ã be the corresponding direct

product group in G̃. Note that while in general ψ(G̃) may have finite

index in G, the way things have been set up assures that ψ(Ã) = A.
Since µ is A-ergodic and A ⊂ ψ(G̃) it follows that µ is supported on

a single orbit of ψ(G̃). Since Γe ∈ suppµ we conclude that supp µ ⊂
Γψ(G̃).

The collection of probability measures ν on Γ̃\G̃ with ψ∗ν = µ is
a convex compact set, which is clearly nonempty since µ is supported
on Γψ(G̃). By averaging over Følner sets in Ã and taking a limit, we
can find inside this collection an Ã-invariant measure, and by taking
ergodic component we deduce that there is an Ã-ergodic and invariant
probability measure µ̃ on Γ̃\G̃ so that ψ∗µ̃ = µ. Since µ̃ is ergodic
under the action of a product group of a product space, it must be of
the form µ̃ = µ̃(1) × · · · × µ̃(M) with µ̃(i) for i ≤ M ′ an Ã(i)-ergodic
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and invariant measure on Γ̃(i)\H̃(i)(QS) and µ̃(i) atomic, supported on
a single point, for i > M ′.
Assuming that Theorem 1.1 has been established forQ-almost simple

groups, we have for each i ≤ M ′ four Q-groups L̃(i)
t of H̃(i) for t ∈

{T, I, R, Z} that satisfy all the conditions of Theorem 1.1 for µ̃(i) on

Γ̃(i)\H(i)(QS). The Q-groups Lt = ψ(
∏M ′

i=1 L̃
(i)
t ) for t ∈ {T, I, R, Z} are

now natural candidates for satisfying the conditions of Theorem 1.1
for G.
Verifying that this choice satisfies (S), (D), (T), (I), (R) of Theo-

rem 1.1 is straightforward (for (I), and in obvious notations, AI may

contain ψ(
∏

i Ã
(i)
I ) as a nontrivial finite index subgroup, hence may

hypothetically fail to normalize LI := ψ(
∏

i L̃
(i)
I ), but replacing LI by

a finite index subgroup if necessary as in (2.2) alleviates this minor
nuisance).
To see that (Z) holds, i.e. that for every a ∈ AZ the entropy hµ(a) =

0, we note first that it is enough to check this for a in the (at worst)

finite index subgroup ψ(
∏

iA
(i)
Z ), i.e. for a = ψ((a1, . . . , aM ′, e, . . . , e))

with ai ∈ Ã
(i)
Z . Since ψ : Γ̃\G̃ 7→ Γ\G is finite-to-one and ψ∗µ̃ = µ

hµ(a) = hµ̃((a1, . . . , aM ′, e, . . . , e)) =

M ′

∑

i=1

hµ̃(i)
(ai) = 0

where we used µ̃ = µ̃(1) × · · · × µ̃(M), ai ∈ Ã
(i)
Z and the fact that µ̃(i)

satisfies Theorem 1.1.(Z).

2.3. Completing the reduction. Our strategy in deducing Theo-
rem 1.1 from Theorem 1.3 is simple: we find in G a minimal reductive
subgroup L over Q so that ΓL(QS)p supports µ for some p ∈ G. As-
suming as we may that Γe ∈ suppµ, it is enough to take p = e. We
show that L does not have any Q-characters, split L into an almost
direct product of a torus LT and a semisimple group Lss, and reduce
the study of µ to the study of an A∩ Lss(QS)-ergodic component of µ
on (Γ∩Lss(Q))\Lss(QS) which we show also satisfies the assumptions
of Theorem 1.1.

Lemma 2.1. Let G be a semisimple Q-group, A, G, S and Γ as in The-
orem 1.1 and µ an A-invariant and ergodic probability measure on Γ\G
with Γe ∈ supp µ. Let L be a Q-subgroup of G so that µ(ΓL(QS)) = 1.
Then there is a normal Q-subgroup L′ ⊳ L, without Q-characters, for
which suppµ ⊂ ΓL′(QS).

Note in particular that since normal algebraic subgroups of reduc-
tive algebraic groups are reductive, Lemma 2.1 implies that if L is
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the smallest reductive Q-group so that supp µ ⊂ ΓL(QS) then L does
not have Q-characters. For later purposes, we also stress that in the
statement of the above lemma L is not assumed to be reductive.

Proof. Suppose χ is a Q-character of L, and let L = L(QS). If ℓ =
(ℓσ)σ∈S ∈ L with ℓσ ∈ L(Qσ) define

|χ| (ℓ) =
∏

σ∈S

|χ(ℓσ)|σ .

This is a group homomorphism L→ R×, and moreover |χ| (γ) = 1 for
every γ ∈ L(OS). Since ΓL := Γ∩L(Q) is commensurable with L(OS)
we see that ΓL is in the kernel of |χ|, hence |χ| is defined on the points3

of ΓL. The group A has to be in the kernel of |χ| since if there were
an element a0 ∈ A with |χ(a0)| > 1 then for any x ∈ ΓL we would
have |χ| (xan0 ) → ∞ contradicting Poincare recurrence. It follows that
χ itself must be trivial on A ∩ G(Qσ) for every σ ∈ S, hence A is
contained in the proper normal Q-subgroup L′ = (L ∩ kerχ)⊳ L. By
ergodicity of µ, it follows that µ has to be supported on a single orbit
ΓL′(QS)p = ΓpL′(QS) for some p ∈ L, establishing the lemma. �

We now continue with the reduction. Suppose L is a minimal reduc-
tive Q-group with µ(ΓL(QS)) = 1. We split this reductive Q-group L
as the semi-direct product of a Q-torus LT and a semisimple Q-group
Lss. By the discussion following the statement of Lemma 2.1 the group
L has no Q-characters, hence the torus LT is Q-anisotropic.
We aim to establish two important facts about how A lies in the

product LT (QS)Lss(QS):

(1) AT := A∩LT (QS) and Ass := A∩Lss(Qss) satisfy that ATAss is a
finite index subgroup of A.

(2) If we decompose for each σ ∈ S the group Lss, considered now as a
Qσ-group, as the almost direct product of almost simple Qσ-groups
Lj with j ∈ Jσ and set J =

⊔

σ∈S Jσ the group
∏

j∈J

(

A ∩ Lj(Qσ(j))
)

is a finite index subgroup of Ass satisfying the conditions of Theo-
rem 1.1 for Lss.

It will be helpful to make a notational distinction between the Q-
group L and the same group considered as a Qσ-group which we denote

3We identify ΓL with the L-orbit of the identity coset Γe in Γ\G; note that it is
isomorphic to (L ∩ Γ)\L.
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by L (and similarly for LT etc.); to make notations less cumbersome
we keep the dependence on σ implicit.
For any f ∈ F let σ ∈ S be the associated valuation and consider

the Qσ-group Gf ∩ L. Since Gf is normal in G, this intersection is
a normal algebraic subgroup of a reductive algebraic group and hence
reductive. Moreover, its decomposition into torus and semisimple parts
is given by

Gf ∩ L = (Gf ∩ LT ) · (Gf ∩ Lss). (2.3)

Indeed, decomposeGf∩L as a product of aQσ-torus L̃T and a semisim-

ple Qσ-group L̃ss. The group Lss ∩ Gf is a normal subgroup of a

semisimple group, hence semisimple, hence Lss ∩ Gf ⊂ L̃ss. On the

other hand, L̃ss is generated by commutators of elements L̃ss ⊂ L
hence is contained in Lss and we conclude that Lss ∩Gf = L̃ss. Sim-

ilarly LT ∩ Gf commutes with L̃ss hence is contained in L̃T ; on the

other hand, L̃T commutes with Lss ∩ Gf as well as with all Gf ′ for

f ′ ∈ Fσ \ {f}, hence L̃T commutes with Lss, hence is contained in LT ,
and (2.3) follows.
Suppose now f ∈ F ′, and σ = σ(f) is the appropriate place. Let

Af be a maximal Qσ-split torus in Gf as in the setup of Theorem 1.1.
By definition of L (and the assumptions that Γe ∈ suppµ) it follows
that Af < L ∩ Gf . Equation (2.3) allows us to project4 Af to split
Qσ-tori in LT ∩ Gf and Lss ∩ Gf ; since Af is a maximal split torus
it must coincide with the product of these projections, hence (Af ∩
LT )(Af ∩Lss) has finite index in Af . Taken over all f ∈ F ′ this implies
Claim (1) above. Similarly, for every f ∈ F ′, and taking Jf ⊂ Jσ(f)
to be the indices of all almost simple Qσ(f)-groups appearing in the
decomposition of Lss∩Gf , it follows from the maximality of rank of Af

that
∏

j∈Jf

(

Af ∩ Lj(Qσ(f))
)

is a finite index subgroup of Af ∩Lss, and

moreover each Af∩Lj is a maximal split Qσ(f)-torus in Lj , establishing
Claim (2).
In view of Claims (1) and (2) and §2.1 we may as well assume that

A = ATAss and that Ass =
∏

j∈J

(

A ∩ Lj(Qσ(j))
)

. Let µ =
∫

X
µE
x dµ(x)

be the decomposition of µ into its ergodic components with respect
to Ass. For any a0 ∈ A the action of Ass on the measure µE

x is measure
theoretically conjugate to the action on the translated measure µE

xa0;
moreover, by uniqueness of ergodic decomposition we have that µ-a.s.,

4Formally there is only a projection from Gf ∩ L to Gf ∩ Lt/Z for t ∈ {T, ss}
where Z = (Gf ∩LT )∩ (Gf ∩Lss) is a finite subgroup of the center. The projected
torus is then defined as the connected component of the preimage in Gf ∩Lt of the
projection to (Gf ∩ Lt)/Z for t ∈ {T, ss}.
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µE
xa0

= µE
xa0. It follows that for any a ∈ Ass, we have a.e. an equality

of entropies

hµE
x
(a) = hµE

xa0
(a),

hence by ergodicity of µ and using the fact that entropy is an affine
function on the measure, i.e. hµ(a) =

∫

hµE
x
(a) dµ(x), we have that for

any a ∈ Ass

hµE
x
(a) = hµ(a) µ-a.e. (2.4)

As a function of a, for any Ass-invariant measure ν on X , the entropy
hν(a) is continuous

5, hence there is a x0 ∈ supp µ so that x0A is dense
in supp µ and for which (2.4) holds for all a ∈ Ass.
Decomposing L as an almost direct product of groups H(i) as in §2.2

(with L taking the role of G), and by applying the reduction in that

section to µE
x0
, we obtain measure (̃µE

x0
)
(j)

on Γ̃(i)\H̃(i)(QS), that are

not supported on orbits of smaller reductive algebraic groups over Q
— for if one of them would be supported on an orbit of a smaller
reductive algebraic group, this and x0A = suppµ would contradict our
assumption that L was already choosen minimally.

If this measure (̃µE
x0
)
(j)

on the quotient Γ̃(i)\H̃(i)(QS) does not satisfy

the second or third assumption to Theorem 1.3 it satisfies Theorem 1.1
trivially (by setting one of the group in (R) or (Z) equal to H(i)).
Assuming Theorem 1.3 has already been established, applying it to
µE
x0

we get groups L̃T , L̃I , L̃R, L̃Z . Using (2.4) it is easy to verify that

LT · L̃T , L̃I , L̃R, L̃Z satisfy Theorem 1.1 for µ.

2.4. Proof of Corollary 1.2. Corollary 1.2 follows from Theorem 1.1
using very similar arguments to the arguments that were used above
in the reduction of Theorem 1.1 to Theorem 1.3.
To begin with, it is clear that without loss of generality we may

assume that p = e and L = G in both Corollary 1.2 and Theorem 1.1.
Let Ă be as in (D) of Theorem 1.1. Since [A : Ă] <∞ we may write µ
as

µ =
1

[A : Ă]

∑

a∈A/Ă

µ′a

with µ′ an Ă-ergodic and invariant measure. Define for t ∈ {T, I, R, Z}
the discrete group Γt = Lt(Q)∩Γ; as in Section 2.2 it is possible to lift

5This is not an abstract property of entropy of individual element in a commu-
tative group, but is a well-known consequence of the relation between entropy and
dimension of leafwise measures, a connection explained in §4.



14 M. EINSIEDLER AND E. LINDENSTRAUSS

µ′ to an Ă-invariant and ergodic measure µ′′ on
∏

t∈{T,I,R,Z}

(Γt\Lt(QS)) .

Since Ă =
∏

t∈{T,I,R,Z}At is a product group acting ergodically on a

product space it follows that µ′′ is a product of At-invariant and ergodic
measure µ′′

t on Γt\Lt(QS) where t ∈ {T, I, R, Z}.
The quotient ΓT\LT (QS) is a finite dimensional compact abelian

group, and an AT invariant and ergodic measure has to be the peri-
odic measure on a single periodic orbit of a closed (but not necessarily
algebraic) subgroup of LT (QS). Since every a ∈ AZ acts with zero
entropy on µ, hence on µ′, hence on µ′′, the measure µ′′

Z has entropy
zero with respect to every a ∈ AZ . Regarding µ′′

I we already know it
is invariant under a finite index subgroup LI < LI(QS); since AI ∩ LI

is of finite index in AI we can find a finite index subgroup L′
I < LI

normalized by AI and then µ′′
I will be invariant under the group AI ·L

′
I .

By AI-ergodicity of µ′′
I , the measure µ′′

I is supported on a single orbit of
this group. This decomposition we have established for µ′′ is equivalent
to the statement of the corollary (where in order to avoid passing to
a finite index subgroup of Γ ∩ L(Q) the structure on µ was given in
terms of its lift µ̃ to L(QS)).

2.5. Some variations. The reader may wonder why we insist on work-
ing over the minimal local fields R or Qp (and not over C or finite field
extensions of Qp). The following example shows that Theorem 1.1 and
Corollary 1.2 as stated do not hold over larger local fields; indeed, es-
sentially the best way to understand the action of these bigger tori is
by reducing to the R or Qp case.

Example 2.2. Let X = SL(k,Z[i])\ SL(k,C), let T be the group of
diagonal matrices, and let A ⊂ T be the subgroup of real diagonal
matrices. Let ν be the Haar measure of XR = SL(k,Z)\ SL(k,R).
We view XR as a subset of X , so that ν is a measure on X . Let
M ⊂ T be the maximal compact subgroup that consists of all diagonal
matrices with entries of absolute values one along the diagonal. Then
µ =

∫

M
νh dmM (h) is a T -invariant and ergodic measure. Note that

SL(k,R)M is not a subgroup of SL(k,C).

Of course, this situation is not drastically different than that of
Corollary 1.2. Instead of the finite average we had to take in that
corollary, in Example 2.2 one takes an average over a compact group
that commute with the R-split torus A.
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The analysis of this seemingly more general scenario is easily achieved
by restriction of scalars: simply treating e.g. in this particular case the
group SL(k,C) as an algebraic group over R. Then T becomes the
group of R-points of a maximal torus in SL(k,C) defined over R and A
becomes the group of R-points of a maximal R-split subtorus. In this
formulation the above example also shows why we restrict ourselves to
the maximal R-split subtorus.
We conclude that the classification of A-invariant and T -invariant

measures are essentially equivalent: Any A-invariant and ergodic mea-
sure gives rise to a T -invariant and ergodic measure just as in the
example, and any T -invariant and ergodic measure can be decomposed
into A-invariant and ergodic measures, and a relatively straightforward
analysis shows that these ergodic components fit together into a mea-
sure of a type similar to that presented in Example 2.2.

3. Semi-simple linear algebraic groups and their roots

3.1. Semi-simple linear algebraic groups. We recall some basic
properties of algebraic groups, and refer the reader to [36]. We use this
theory as a natural framework that makes no distinction between the
real and p-adic numbers.
Let Q∞ = R and let σ be ∞ or a prime p so that Qσ is either R or

Qp. Let | · |σ denote the absolute value if σ = ∞ or the p-adic norm if
σ = p.
Let Gσ = G(Qσ) be the Qσ-points of a semi-simple linear algebraic

group G defined over Qσ and let Aσ ⊂ Gσ be the subgroup of Qσ-
points of a maximal Qσ-split torus in G. Then Aσ

∼= (Q×
σ )

k were k is
the Qσ-rank of G and the group of rational characters χ : Aσ → Q×

σ

is isomorphic to Zk. A subgroup U < Gσ is unipotent if for every
g ∈ U , g − e is a nilpotent matrix, i.e. for some n, (g − e)n = 0
where e is identity. A subgroup H is said to be normalized by g ∈ Gσ

if gHg−1 = H ; H is normalized by L < Gσ if it is normalized by
every g ∈ L; and the normalizer NGσ

(H) of H is the group of all
g ∈ Gσ normalizing it. Furthermore, N1

Gσ
(H) denotes the subgroup

of the normalizer that in addition also preserves the Haar measure on
H . Similarly, g centralizes H if gh = hg for every h ∈ H , and we
set CGσ

(H), the centralizer of H in Gσ, to be the group of all g ∈ Gσ

centralizing H .
Let g be the Lie algebra of Gσ and let

Adg : g → g for g ∈ Gσ

be the adjoint representation of Gσ on g. Let Φ denote the set of
restricted roots, i.e. all non-trivial characters α : Aσ → Q×

σ such that
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there exists a nontrivial (restricted) root space uα ⊂ g with

Ada(u) = α(a)u for u ∈ uα and a ∈ Aσ.

We write g0 for the Lie algebra of the centralizer of Aσ, so that

g = g0 ⊕
⊕

α∈Φ

uα.

Since Qσ is not algebraically closed, it may happen, as for instance for
the algebraic group SU(n, 1) over R with n ≥ 2, that α, 2α ∈ Φ are
roots, see also [36, 15.3.9]. We say a root α is indivisible if 1

2
α is not

a root. For any indivisible root α there exists an algebraic unipotent
subgroup Uα whose Lie algebra is the sum of the root spaces uα ⊕ u2α

(where u2α = {0} is allowed), see [36, 15.4].
By embedding the group of characters into a real vector space V

of dimension k as a lattice, we can identify the roots with elements
of V . Furthermore, we equip V with an inner product (·, ·) such that
the natural action of the Weyl group W = W (Gσ, Aσ) of Gσ and Aσ

leaves (·, ·) invariant. We need a few more fundamental properties of
the Weyl group W . The Weyl group W acts naturally on Aσ, which
induces an action on the characters of Aσ (the action on V is the linear
extension of this action). The set Φ of roots is invariant. For every
root α there is an associated element sα ∈ W , its action on V is an
orthogonal reflection defined by

sα(v) = v − 2(α, α)−1(α, v)α for v ∈ V. (3.1)

For α 6= β ∈ Φ with (α, β) > 0 the number m = 2(α, α)−1(α, β) is
an integer and β, β − α, . . . , β −mα = sα(β) ∈ Φ are all roots. As is
known (and we will recall below), every root comes naturally with a
subtorus of Aσ of which we will use one element as described in the
next lemma, which will be proved in §3.3.

Lemma 3.1. For every root α ∈ Φ there exists an element aα ∈ Aσ

with log |β(aα)|σ = cα(α, β) (for some constant cα > 0). In fact, one
can find a homomorphism φ from SL2 into G defined over Qσ so that
a given element of uα is the image of an upper nilpotent element of sl2
and so that aα ∈ Aσ is the image of a diagonal element

(

t 0
0 t−1

)

∈ SL2(Qσ)

with the first eigenvalue t satisfying |t|σ > 1.
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3.2. The Lie algebra and the exponential map. In this section we
recall standard facts and notations from [19] (which as phrased below
also holds for p-adic Lie groups). Let

[·, ·] : g2 → g

be the Qσ-bilinear Lie bracket satisfying

Adg([u, v]) = [Adg u,Adg v] (3.2)

for all g ∈ Gσ and u, v ∈ g. Since Qσ is a local field of characteristic
zero, the exponential map exp(·) is a local homeomorphism between
the Lie algebra g and Gσ such that

g exp(u)g−1 = exp(Adg(u)) (3.3)

whenever both sides are defined. Write log(·) for the locally defined
inverse map. Furthermore, we define adu(v) = [u, v] for any u, v ∈ g.
Then

Adexpu = exp(adu) (3.4)

whenever both sides are defined, here the exponential map on the right
is defined for sufficiently small endomorphisms of g.
Recall that

[uα, uβ] ⊂ uα+β (3.5)

for any roots α, β (which follows easily from (3.2)). If α ∈ Φ is a root,
then the exponential map is actually a polynomial map and so can be
uniquely extended to the whole of uα ⊕ u2α such that (3.3) and (3.4)
still hold. The image Uα = exp(uα ⊕ u2α) is the unipotent subgroup
mentioned earlier. More generally, let Ψ ⊂ Φ be a set of roots such
that (Ψ + Ψ) ∩ Φ ⊂ Ψ and |α(a)|σ > 1 for all α ∈ Ψ and some fixed
a ∈ Aσ. Then

uΨ =
∑

α∈Ψ

uα

is a Lie algebra, exp(·) can be uniquely extended to uΨ such that (3.3)
holds, and UΨ = exp uΨ is a unipotent subgroup (that is generated
by the subgroups Uα for α ∈ Ψ). We say that a subgroup U ′ ⊂
UΨ is connected if there exists a Lie subalgebra u′ ⊂ uΨ such that
U ′ = exp(u′). Note that in the real case this notion agrees with the
subgroup being connected with respect to the Hausdorff topology and
that in general it is equivalent to U ′ being Zariski closed (and Zariski
connected).
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3.3. The image of iterates of adv for v ∈ uα. We now formulate
and prove a corollary of the structure of semi-simple groups and their
maximal Qσ-split subtori. This will be the most important use of the
assumption that Aσ is maximal — the structure provided by this result
is crucial to our approach. For any subset R ⊂ V we define

uR =
⊕

α∈R

uα ⊂ g,

where uα = {0} if α /∈ Φ.

Proposition 3.2. Let Aσ ⊂ Gσ be the subgroup of Qσ-points of a max-
imal Qσ-split torus in a semi-simple linear algebraic group G defined
over a local field Qσ of characteristic zero. Let α be a root, and let
v ∈ uα \ {0}. Then for any root β with (β, α) > 0 and sα(β) = β−mα
the restriction of adm

v to usα(β) is bijective.

Proof of Lemma 3.1 and Proposition 3.2. Let v ∈ uα be nonzero. As v
is a nonzero nilpotent element in the semi-simple part of the Lie algebra
of G, the Jacobson-Morozov theorem (see e.g. [13, III, Lemma 7 and
Theorem 17]) implies that v must be one element of an sl2-triple. More
precisely, there exists some h and w so that [h, v] = 2v, [h, w] = −2w,
and [v, w] = h (which implies that the Lie algebra generated by v, h, w
is isomorphic to sl2). We claim that we may assume that h belongs to
the Lie algebra of Aσ.
To see the claim, let h = h0 + h1 be a decomposition of h into an

element h0 ∈ g0 and an element h1 which belongs to the sum of the
root spaces. By assumption [h, v] = 2v, so that 2v = [h0, v] + [h1, v].
However, by (3.5) this implies that [h1, v] = 0. We also have that
h = [v, w] = h0 + h1 ∈ Im(ad(v)). By (3.5) we see that the image
Im(ad(v)) is invariant under the adjoint action of Aσ, which implies
that h0 ∈ Im(ad(v)). However, this implies again by the Jacobson-
Morozov theorem [13, III, Lemma 7] that there exists some w′ such
that (v, h0, w

′) is an sl2-triple. If w′ /∈ u−α, then we can split w′ into
two components w−α + w′′, with w−α ∈ u−α and w′′ belonging to the
remaining weight spaces. Since

[h0, w
′] = −2w′ = [h0, w

−α + w′′] = −2(w−α + w′′)

we get by comparing components from different weight spaces [h0, w
−α] =

−2w−α. Moreover, [v, w′] = h0 = [v, w−α + w′′] which by comparing
components also implies [v, w−α] = h0. Therefore, (v, h0, w

−α) is an
sl2-triple (and now one can show that actually w′ = w−α).
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From the existence of the above sl2-triple it follows that there exists
an algebraic subgroup L defined over Qσ (defined e.g. by the Zariski-
closure of the image of a neighborhood of 0 in the span of the sl2-triple
under exp) with the span of the sl2-triple as its Lie algebra. The
subgroup L contains the split torus T = L∩CG(Aσ) whose Lie algebra
is spanned by the element h0. However, as T commutes with Aσ and
is split, this implies that T(Qσ) ⊆ Aσ. To summarize and to simplify
the notation, we have shown that there exists an sl2-triple (v, h, w) for
which h belongs to the Lie algebra of Aσ and w ∈ u−α.
If now β ∈ Φ is a root and m ≥ 0 for which β +α, β− (m+1)α /∈ Φ

but β − α, . . . , β − mα ∈ Φ, then u{β,...,β−mα} is a finite-dimensional
representation for L (resp. its Lie algebra). Hence uβ is an eigenspace
for adh with eigenvalue k for some k and uβ−mα an eigenspace of eigen-
value −k, which must then equal k− 2m. By the discussion preceding
Lemma 3.1

k = m = 2
(α, β)

(α, α)
.

Since α is fixed, we may also phrase this by saying that the eigenvalue
of adh on uβ equals the multiple of (α, β) by the constant cα = 2

(α,α)
.

This clearly extends also to all roots β ′ = β − ℓα, and hence holds for
all roots β ∈ Φ. Thus we have established the proposition.
In order to establish Lemma 3.1 we note that if a ∈ T(Qσ) is the

image of

(

t 0
0 t−1

)

∈ SL2(Qσ) under the map induced by the sl2-triple

then Ada has the eigenvalue tcα(α,β) on uβ. In particular, if we take
|t|σ > 1, then this element will satisfy the claim in Lemma 3.1. �

3.4. The S-algebraic group G and the locally homogeneous
spaces X. Recall from the introduction and from Section 2 that we
may assume G is a Q-almost simple algebraic Q-group. Let S be a
finite set of places (finite primes and the symbol ∞), and define for ev-
ery σ ∈ S the group Gσ = G(Qσ). If G(R) is not compact, we require
that ∞ ∈ S. We also define G = G(QS) =

∏

σ∈S Gσ, and suppose
that Γ < G is an arithmetic lattice, i.e. a lattice commensurable with
G(OS) as in the introduction.
The quotient X = Γ\G is a locally homogeneous space; let d(·, ·) be

a left invariant metric on GS, and denote the induced metric on X also
by d(·, ·). The group G acts on X by right translations, i.e. g.x = xg−1

for g ∈ G, x ∈ X .
For every σ ∈ S we can write the algebraic group G considered as

an algebraic group over Qσ as an almost direct product of Qσ-almost
simple groups

∏

f∈Fσ
Gf . We define F =

⊔

σ∈S Fσ, and if f ∈ Fσ we
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shall say that σ is the place attached to f ; often, when it is clear which
f we discuss, σ will be implicitly assumed to be the attached place
to f . We also write gf for the Lie algebra of Gf .
Let F ′ ⊂ F and fix for every f ∈ F ′ a maximal Qσ-split torus Af .

Furthermore, we choose for every f ∈ F ′ a finite index subgroup Af

of the group of Qσ-points of this torus. As in the introduction we
set A =

∏

f∈F ′ Af .
For a root α of Gf0 for f0 ∈ F ′ we define an associated Lyapunov

root to be the group homomorphism A→ R+ given by

a = ((af)f∈F ′) 7→ log |α(af0)|σ0 ,

where σ0 is the place corresponding to f0 and the absolute value is
taken in Qσ0 . We write Φf0 for the set of Lyapunov roots of Gf0.
We denote by Φ′ =

⋃

f∈F ′ Φf the set of all Lyapunov roots obtained
in this way and will continue to use Greek letters to denote Lyapunov
roots – in fact we will not distinguish between the root and its associ-
ated Lyapunov root. As discussed in Section 3.1 for every f ∈ F ′ the
Lyapunov roots for Gf span a vector space Vf over R with a natural
Euclidean inner product which is preserved by the Weyl group; we de-
fine the inner product on the product of these Euclidean spaces so that
the individual subspaces Vf for f ∈ F ′ are orthogonal. The orthogonal
reflections sα for α ∈ Φ′ are naturally extended to all of V , acting as
the identity on the orthogonal complement of the subspace where sα
was originally defined.
For a Lyapunov root α ∈ Φf we will write U

α and uα for the subgroup
of Gf resp. the Lie subalgebra of gf corresponding to the root as in
Section 3.1. Furthermore, we define g0 =

∑

f∈F ′ g0f+
∑

f∈F\F ′ gf (which

has the structure of an additive group, but for |S| ≥ 2 is no longer a
Lie algebra in the usual sense).
Finally we say a subgroup U < GS is unipotent and connected if U is

a direct product of unipotent (Zariski) connected subgroups Uσ < Gσ

for σ ∈ S. For instance we can define for the subset Ψ = {α ∈ Φ′ :
α(a) < 0} the connected unipotent Zariski-closed subgroup

UΨ =
∏

f∈F ′

UΨ∩Φf ,

where UΨ∩Φf < Gf is the unipotent subgroup over Qσ associated to all
roots that are contracted by af . It will also be convenient to notice the
following simple fact:

Lemma 3.3. Any A-normalized closed subgroup U < UΨ is a product
of Zariski-closed Zariski-connected unipotent subgroups Uf for f ∈ F ′.
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This lemma can be deduced from the argument in the proof of [4,
Prop. 6.2]; for completeness we provide a proof below.

Proof. Let u = (uf)f∈F ′ ∈ U < UΨ. For any fixed f ′ ∈ F ′ we can find
some a ∈ A which acts trivially in the factor corresponding to f ′ and
contracts UΨ∩Gf for all f ∈ F ′\{f ′}. Conjugating u by an and taking
the limit we see that the element u′ with u′f = e for all f ∈ F ′ \ {f ′}
and u′f ′ = uf ′ also belongs to U . Therefore, U =

∏

f∈F (U ∩ Gf) is a
direct product.
Hence it remains to study the case where U < UΨ∩Gf for some f ∈

F ′. Suppose first that Gf is a real Lie group (i.e. σ(f) = ∞) and u is
the Lie algebra of the connected component of U . Choose some a ∈ Af

that contracts UΨ and only has positive eigenvalues. Using that U is
normalized by a we see that u =

∑J
j=1 u ∩ gj where Ada acts on gj

with eigenvalue λj and 1 > λ1 > λ2 > · · · > λJ > 0. Let now u ∈ U
be arbitrary and consider v = log u =

∑

j vj where vj ∈ gj. Sup-

pose v1 = . . . = vk−1 = 0 but vk 6= 0. Considering mAdn
a(v) ∈ logU

for m ∈ Z and n → ∞ we may conclude that vk ∈ u. Replacing u
by u exp(−vk) we obtain a new element in the same connected com-
ponent as the original element (with an increased value of k). By
induction it follows that u ∈ exp u and since u ∈ U was arbitrary we
see that U is connected. Since exp is a polynomial map on the Lie
algebra of the unipotent group UΨ it follows that U is a Zariski closed
and Zariski connected subgroup of UΨ.
Suppose now that Gf is a p-adic Lie group (i.e. σ(f) = p). Note

that for any u ∈ U we automatically have exp(t log(u)) ∈ U for all t ∈
Z and so also for all t ∈ Zp. Let us write uΨ for the Lie algebra
of UΨ and define the Lie sub-algebra u = {v ∈ uΨ : exp(Qpv) ⊂
U}. Choose some a ∈ A for which uΨ is expanded under Ada and all
eigenvalues are positive powers of λp ∈ Qp with |λp|p > 1. Hence we get

a decomposition uΨ =
∑J

j=1 gj such that Ada restricted to gj equals

multiplication by λjp for all j = 1, . . . , J . Let u ∈ U be arbitrary and

let v = log u ∈ uΨ =
∑J

j=1 vj with vj ∈ gj for all j ≥ 1. Suppose vk 6= 0
but vk+1 = vk+2 = · · · = 0. We now consider the elements

tAdn
a(v) =

k
∑

j=1

tλnjp vj ∈ logU

for t ∈ Zp and n ≥ 1. Letting n→ ∞ and choosing t = sλ−nk
p for some

arbitrary s ∈ Qp gives vk ∈ u.

Setting up an induction, we assume that v = log u =
∑J

j=1 vj for
some u ∈ U and vj ∈ gj for j = 1, . . . , J implies vj ∈ u for all j =
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k, . . . , J . Note that the case k = J follows at once from the above. As
in the real case we may now consider the element u exp(−vk) ∈ U . By
the Campbell-Baker-Hausdorff Formula, this element can be written as

log(u exp(−vk)) =
k−1
∑

j=1

vj +
J
∑

j=k+1

v′j

where we must allow for v′j ∈ gj being nonzero for j > k. However,
by the inductive assumption we can deduce that v′k+1 ∈ u and may
consider u exp(−vk) exp(−v

′
k+1), and so on. Thus we obtain that

exp

(

k−1
∑

j=1

vj

)

∈ U

and hence by the preceding paragraph we have that vk−1 ∈ u, complet-
ing the induction. As u ∈ U was arbitrary we see that U = exp(u),
hence the group U is once more the image under a polynomial map of
the Lie sub-algebra u, from which we may conclude it is Zariski closed
and Zariski connected. �

4. Leaf-wise measures and entropy

Leafwise measures (which are also referred to as conditional measures
on leaves of a foliation) were used in this context the first time by Ka-
tok and Spatzier in their pioneering work [17], though implicitly they
can also be found hidden in the arguments Rudolph’s original paper
on the subject [35]. A fairly general construction of leafwise measures
is presented in [20, Sect. 3]. A self-contained and comprehensive con-
struction of these measures (though somewhat less general, as it only
treats the case of foliations whose leaves are given by orbits of groups)
as well as the relation of these leafwise measures to entropy is given
in [9]. Here we only summarize without proofs the main properties of
these leafwise measures.

4.1. Basic properties. We will be working with connected subgroups
of UΨ for Ψ ⊂ Φ′ with (Ψ + Ψ) ∩ Φ′ ⊂ Ψ and α(a) < 0 for some
fixed a ∈ A and all Lyapunov roots α ∈ Ψ. These subgroups are
automatically unipotent. If U < GS is normalized by A then for every
x ∈ X and a ∈ A, a.(U.x) = xUa−1 = xa−1U = U.(a.x), so that the
foliation of X into U -orbits is invariant under the action of A. We will
say that a ∈ A expands (contracts) the U -leaves, or simply U , if the
absolute values of all eigenvalues of Ada restricted to the Lie algebra
of U are greater (smaller) than one.



MEASURES INVARIANT UNDER TORI 23

For any locally compact metric space Y let M∞(Y ) denote the space
of Radon measures on Y equipped with the weak∗ topology, i.e. all lo-
cally finite Borel measures on Y with the coarsest topology for which
ρ 7→

∫

Y
f(y) dρ(y) is continuous for every compactly supported contin-

uous f . For two Radon measures ν1 and ν2 on Y we write

ν1 ∝ ν2 if ν1 = Cν2 for some C > 0

and say that ν1 and ν2 are proportional.
We let BY

ǫ (y) (or Bǫ(y) if Y is understood) denote the ball of radius
ǫ around y ∈ Y ; if H is a group we set BH

ǫ = BH
ǫ (e); and if H acts on

X and x ∈ X we let BH
ǫ (x) = BH

ǫ .x.
Let µ be anA-invariant probability measure onX . For any unipotent

subgroup U < UΨ < GS normalized by A, one has a system
{

µU
x

}

x∈X

of Radon measures on U and a co-null set X ′ ⊂ X with the following
properties:

(1) The map x 7→ µU
x is measurable.

(2) For every ǫ > 0 and x ∈ X ′ it holds that µU
x (B

U
ǫ ) > 0.

(3) For every x ∈ X ′ and u ∈ U with u.x ∈ X ′, we have that
µx,U ∝ (µU

u.x)u, where (µU
u.x)u denotes the push forward of the

measure µU
u.x under the map v 7→ vu for all v ∈ U .

(4) For every a ∈ A, and x, a.x ∈ X ′, µU
a.x ∝ (θa)∗(µ

U
x ), where the

latter is the push forward of the leafwise measure under the
conjugation map θa(u) = aua−1.

In general, there is no canonical way to normalize the leafwise measures
µU
x ; we fix a specific normalization by requiring that µx,U(B

U
1 ) = 1 for

every x ∈ X ′. This implies the next crucial property.

(5) If U ⊂ C(a) = {g ∈ GS : ga = ag} is centralized by a ∈ A,
then µU

a(x) = µU
x whenever x, a(x) ∈ X ′.

(6) µ is U -invariant if, and only if, µU
x is a Haar measure on U a.e.

(see [20, Prop. 4.3]).

The other extreme to invariance as above is where µU
x is atomic. If

µ is A-invariant then outside some set of measure zero if µU
x is atomic

then it is supported on the single point e ∈ U , in which case we say
that µU

x is trivial. The leafwise measures for the unipotent subgroup
Uα associated to a Lyapunov root α ∈ Φ′ we denote by µα

x , and more
generally we write µΨ

x for the leafwise measures on UΨ when Ψ ⊂ Φ′ is
a set of Lyapunov roots such that UΨ is a unipotent subgroup.
Fundamental to us is the following characterization of positive en-

tropy for the action of an element a ∈ A on an A-invariant and ergodic
probability measure µ
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(7) Let Ψ = {α ∈ Φ′ : α(a) < 0} so that UΨ is the horospherical
stable subgroup defined by a. Then the measure theoretic en-
tropy hµ(a) is positive if and only if the leafwise measures µΨ

x

are nonatomic a.e.

Hence positive entropy implies that certain leafwise measures are non-
trivial a.e.

4.2. Entropy contribution. In this section we refine property (7)
from above to a more quantitative statement, for more details see [24,
Sect. 9], [4, Sect. 9] or [9, Sect. 7].
Let U be a connected subgroup normalized by A such that a ∈ A

contracts U . We let

θa(g) = aga−1

be the inner automorphism defined by a. Then for any a-invariant
probability measure µ on X the limit

volµ(a, U, x) = − lim
n→+∞

logµU
x

(

θna (B
U
1 )
)

n
(4.1)

exists for a.e. x ∈ X by [4, Lemma 9.1]. If furthermore, µU
x is supported

by a subgroup P ⊆ U that is connected and normalized by A, then

volµ(a, U, x) ≤ mod(a, P ) =
∑

α∈Φ′

α(a)− dimQσ(α)

(

p∩ uα
)

(4.2)

for a.e. x ∈ X by [9, Thm. 7.9]. Here we write r− = max(0,−r), p for
the Lie algebra of P and Qσ(α) for the field over which the Lyapunov
root α ∈ Φ′ is defined. Note that p is a direct sum of its subspaces p∩uα,
since P is normalized by A. In fact, mod(a, P ) is the negative logarithm
of the module of the restriction of θa to P . Using property (4) of the
leafwise measures it is easy to check that volµ(a, U, ·) is A-invariant,
and so constant for an A-ergodic measure. We define

hµ(a, U) =

∫

X

volµ(a, U, x)dµ(x)

and will refer to hµ(a, U) as the entropy contribution of U .
In the case where U = Uα < Gf for α ∈ Φf as in Section 3.2, the

map a 7→ volµ(a, U, x) restricted to the half space α(a) ≤ 0 can be
extended to a homomorphism of groups from A to the additive group
on R. To see this, note first that θna (B

U
1 ) only depends on the value

of nα(a) since a, a′ ∈ A and m,n ∈ Z with nα(a) < mα(a′) < 0
implies θna (B

U
1 ) ⊂ θma′ (B

U
1 ). Therefore, there exists δαµ ≥ 0 with

hµ(a, U
α) = δαµα(a)

− for all a ∈ A with α(a) ≤ 0, (4.3)
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we refer to δαµ as the dimension of µ along Uα. Now (4.2) is equivalent
to

δαµ ≤ dimQσ

(

p∩ uα
)

+ 2dimQσ

(

p∩ u2α
)

, (4.4)

where we agree to set the second term to zero if 2α is not a root.
A σ-algebra A of Borel subsets of X is subordinate to U if A is

countably generated, for every x ∈ X the atom [x]A of x with respect
to A is contained in the leaf Ux, and for a.e. x

BU
ǫ x ⊆ [x]A ⊆ BU

ρ x for some ǫ > 0 and ρ > 0.

A σ-algebra A is a-decreasing if a−1A ⊆ A. By [4, Lemma 9.3] we have

Hµ(A|a−1A) =

∫

volµ(a, U, x) dµ.

whenever A is an a-decreasing σ-algebra that is subordinate to U .
It has been shown in [24, Prop. 9.3] that there exists an a-decreasing

σ-algebra A subordinate to U provided µ is a-ergodic. Moreover, if
U is the horospherical stable subgroup defined by a, then hµ(a) =
Hµ(A|a−1A) by [24, Prop. 9.3(iii)]. This can be used to show that
the entropy equals the entropy contribution of the horospherical stable
subgroup

hµ(a) = hµ(a, U) (4.5)

even if µ in not a-ergodic, see [4, Prop. 9.4].

4.3. The structure of leafwise measures for the horospherical
subgroup. We recall and slightly simplify [4, Thm. 8.4–8.5], which
describe the structure of the leafwise measure µU

x for the horospherical
stable subgroup U defined by a. Under the assumption that µ is an A-
ergodic and invariant probability measure onX these theorems simplify
to the following statements due to the fact that the adjoint action
restricted to A has its eigenvalues in Qσ.
Let Ψ = {α ∈ Φ′ : Uα ⊂ U and α is indivisible}. Fix some order

of the elements of Ψ = {α1, . . . , αℓ} and define φ :
∏ℓ

i=1 U
αi → U by

φ(u1, . . . , uℓ) = u1 · · ·uℓ for any (u1, . . . , uℓ) ∈
∏ℓ

i=1 U
αi . Here Uα =

exp(uα⊕u2α); in the terminology of [4, Sect. 4.4] these are precisely the
coarse Lyapunov subgroups of the action of A. Therefore, [4, Thm. 8.4]
gives

µU
x ∝ φ∗

(

µα1
x × · · · × µαℓ

x

)

a.e. (4.6)

This, (4.5) and (4.1) readily implies that the entropy

hµ(a) =

ℓ
∑

i=1

hµ(a, U
αi) (4.7)
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is the sum over all entropy contributions of Uα ⊂ U . In particular, pos-
itive entropy implies that there exists an indivisible root α so that the
leafwise measure µα

x is nontrivial a.e. — indeed, so that the dimension
δαµ of µ along Uα is positive.
The following is a version of the high entropy theorem which is ba-

sically contained in [4] and generalizes [3]; see also [9, Sect. 9] for a
simplified derivation of this result:

Theorem 4.1. Let µ be an A-invariant and ergodic probability measure
on X = Γ\GS. Let a ∈ A with stable horosperical subgroup U = Ua.
Then there exist two connected A-normalized subgroups H < P < U
such that

(1) µU
x is supported by P a.e.

(2) µU
x is left- and right-invariant under multiplication with ele-

ments of H a.e.
(3) H is a normal subgroup of P . Moreover, setting P αs = P ∩

Uαs for any root αs, we have that for any two distinct roots αr

and αs, for any elements g ∈ P αr and h ∈ P αs, the cosets gH
and hH commute with each other in P/H.

(4) µαi
x is left- and right-invariant under multiplication with ele-

ments of H ∩ Uαi for i = 1, . . . , ℓ a.e.

Proof. By [4, Thm. 8.5] there exist for a.e. x ∈ X two subgroups
Hx < Px < U with properties (1)–(4) of the theorem at the point
x. Additionally, these subgroups are connected and their Lie algebras
are direct sums of subspaces of root spaces uα – in the notation of [4,
Thm. 8.5] this is the same as Hx and Px allowing a weight decom-
position. However, in our case this implies that these subgroups are
normalized by A (this would not necessarily be so if we were working
over field extensions of Qσ). This together with Property (4) of §4.1
shows that for a.e. x ∈ X the subgroups Hx < Px also satisfies Prop-
erties (1)–(4) at a.x for any a ∈ A. Using ergodicity of µ it is not
difficult to find subgroups H and P as in the theorem, see for instance
[6, Lemma 3.5] where this has been done for P . �

For the Lie algebras h ⊂ p ⊂ u of H < P < U we get the following
corollary. This actually appears in the proof of [4, Thm. 8.5], but is
also immediate from Theorem 4.1.(3) and (3.5).

Corollary 4.2. For any two linearly independent roots α, β with uα, uβ <
U we have [p ∩ uα, p ∩ uβ] ⊂ h ∩ uα+β.

While the subgroup P gives an upper bound for the entropy contri-
bution as we have seen in (4.2), the subgroup H gives a lower bound
as follows.
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Lemma 4.3. Let H < U be connected subgroups normalized by A such
that a ∈ A contracts U . If µ is invariant under H, then

hµ(a, U) ≥
∑

α∈Ψ

α(a)− dimQσ

(

h∩ uα
)

,

where h is the Lie algebra of H and Ψ is the set of roots with α(a) < 0.

The lemma follows from the following two observations that only
rely on the definitions: If H < U then hµ(a,H) ≤ hµ(a, U). If µ is H-
invariant, then µH

x is the Haar measure of H for a.e. x and hµ(a,H) =
mod(a,H) is the negative logarithm of the module of conjugation by a
restricted to H .

5. The high entropy roots

It will be convenient to divide the indivisible roots in Φ′ into three
classes depending on the measure µ:

(1) the roots with no attached entropy, i.e. for which δαµ = 0

(2) the roots α ∈ Φ′ for which δαµ > 0 but δβµ = 0 for every indivis-
ible root β 6= ±α with (α, β) 6= 0

(3) the roots α ∈ Φ′ for which δαµ > 0 and also δβµ > 0 for some
indivisible β 6= ±α with (α, β) 6= 0.

In the second case we say that α is a root of low entropy, and in the
third α is a root of high entropy.
In this section we deal with the high entropy roots, and show in par-

ticular that if α is a root of high entropy then µ is invariant under a
subgroup generated by unipotent elements. We also establish a sym-
metric property of the δαµ , namely that δαµ is positive if and only if δ−α

µ

is.

Theorem 5.1. Let µ be an A-invariant and ergodic probability measure
on X = Γ\G. Then the dimensions of µ along the subgroups associated
to the roots are symmetric, i.e. δαµ = δ−α

µ for any indivisible α ∈ Φ.
Moreover, if α is a high entropy root for µ, then µ is invariant under
a nontrivial subgroup of Uα; in fact, under the unipotent group P α as
in Theorem 4.1, which is nontrivial as δαµ > 0.

Proof. We first prove δαµ ≤ δ−α
µ for an arbitrary indivisible Lyapunov

root α ∈ Φ′, which implies the symmetry. If δαµ = 0 this is trivial. So
suppose δαµ > 0 and choose aα ∈ A as in Lemma 3.1 so that β(aα) =
c(α, β) for all Lyapunov roots β ∈ Φ′ and some c > 0. By (4.7) and
(4.3) we can express the entropy of aα as

hµ(aα) = c
∑

β:(α,β)<0

δβµ(α, β)
−. (5.1)
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Since hµ(aα) = hµ(a
−1
α ) we also have

hµ(aα) = c
∑

β:(α,β)>0

δβµ(α, β).

However, sα : Φ′ → Φ′ maps all the roots β appearing in (5.1) to those
appearing in the second sum without changing the absolute value of
the inner products, and so the last formula can also be written as

hµ(aα) = c
∑

β:(α,β)<0

δsα(β)µ (α, β)−. (5.2)

We claim that δβµ ≤ δ
sα(β)
µ for any indivisible root β 6∈ 〈α〉 with (α, β) <

0. Assuming the claim, all terms in the sum in (5.1) are smaller or equal
than the corresponding terms in (5.2) except for the term corresponding
to β = −α. However, as the sums equal this exceptional term must
satisfy the opposite inequality δαµ ≤ δ−α

µ .
For the proof of the claim fix an indivisible Lyapunov root β and

choose a ∈ A such that

α(a), β(a) < 0,

which is possible since α, β are linearly independent and correspond
to characters on Aσ < A. Let U be the stable horospherical sub-
group defined by a so that Uα, Uβ < U . Recall that a.e. µU

x is the
product measure of all the leafwise measures associated to indivisible
roots whose subgroups are contained in U . Now let H < P < U be
as in Theorem 4.1 so that P supports µU

x a.e. and both subgroups
are normalized by A. Then P ∩ Uα supports µα

x a.e. Since δαµ > 0
these leafwise measures are nontrivial a.e. and there exists a nonzero
v ∈ p∩ uα

′

where α′ is either α or 2α. Note that sα′ = sα. Let m be
such that sα′(β) = β +mα′. Define W = p∩ uβ, then Proposition 3.2
shows that adm

v maps W to a subspace of usα(β) of the same dimension.
By Corollary 4.2 we have adm

v (W ) ⊂ h∩ usα(β), hence

dimQσ
p∩ uβ ≤ dimQσ

h∩ usα(β) . (5.3)

The same argument also shows that

dimQσ
p∩ u2β ≤ dimQσ

h∩ u2sα(β) .

Lemma 4.3 and (4.4) now imply for an indivisible root β 6= α with
(α, β) < 0 that

δsα(β)µ ≥ dimQσ
p∩ uβ +2dimQσ

p∩ u2β ≥ δβµ

as claimed. This implies the symmetry of the dimensions δαµ = δ−α
µ for

all indivisible roots α.
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Suppose now β is a high entropy root and α ∈ Φ′ a distinct indivisible
root with (α, β) 6= 0 and δαµ > 0. We claim that

h ∩ (uβ ⊕ u2β) = p ∩ (uβ ⊕ u2β) (5.4)

from which it follows that Hβ = P β i.e. µ is P β-invariant. By the
symmetry properties of δαµ , if β is a high entropy root so is −β, hence

µ will also be P−β-invariant and the theorem follows.
It remains to establish (5.4). By symmetry of the dimensions we

may assume that (α, β) < 0. Then (5.3) implies

dimQσ
h ∩ usα(β) ≥ dimQσ

p ∩ uβ ≥ dimQσ
h ∩ uβ,

and similary for 2β. Also by symmetry we may apply the above to
−α, β to get

dimQσ
h ∩ uβ ≥ dimQσ

p ∩ usα(β) ≥ dimQσ
h ∩ usα(β),

and similarly for 2β. Together these imply (5.4). �

6. The low entropy roots

To deal with the low entropy root, we need to apply the main theorem
of [8]. In order to state this theorem, we first need to introduce some
terminology.
Let X be a locally compact metric space with a Borel probability

measure µ, let a : X → X be a measure preserving transformation of
(X, µ), let H be a locally compact metric group acting continuously
and locally free on X . We denote the action by h.x for h ∈ H and
x ∈ X . Let F : X → Y be a measurable map to a Borel space Y . We
say µ is (F,H)-transient if there exists a set X ′ ⊂ X of full measure
such that there are no two different x, y ∈ X ′ on the same H-orbit
H.x = H.y with F (x) = F (y). We say µ is (F,H)-exceptional if for
every ǫ > 0 and compact neighborhood O of the identity in H there
exists B ⊂ X with µ(B) > 1 − ǫ and some δ > 0 such that x, y ∈ B
with distance d(x, y) < δ and F (x) = F (y) implies that y = h.x for
some h ∈ O.
We fix some semi-simple a ∈ G that is diagonalizable over the ground

field R resp. Qp. More precisely, we require that the adjoint represen-
tation is diagonalizable over the ground field and that there are no two
distinct eigenvalues for Ada with the same absolute value, and in par-
ticular that 1 is the only eigenvalue of absolute value one. We assume
that a contracts the leaves of the foliation defined by the U -orbits of
some nontrivial closed unipotent subgroup U < G. In other words that
a normalizes U and anua−n → e for n → ∞ and all u ∈ U . We also
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assume that U is a direct product of Zariski closed unipotent subgroups
Uσ of Gσ for σ ∈ S.
To be able to apply the results of [8] we will consider the leafwise

measures as a map F (x) = [µU
x ] for x ∈ X , where the equivalence is

taken up to proportionality. This map F defines a factor map with
respect to the action of A and U , where A acts by push forward by
conjugation (see property (4) of §4.1) and U acts by push forward
by right multiplication (see property (3) of §4.1). These equivalence
classes of leafwise measures can be considered as elements of a Borel
space Y . In fact, the leafwise measures are Radon measures with some
mild control on the growth of the measures of balls (e.g. because of the
analogue of (4.1) for n → +∞) which allows us to find a continuous
function ρ(u) > 0 with

∫

ρ(u) dµU
x (u) < ∞ for a.e. x ∈ X . We now

let Y = {ν | ν is a locally finite measure with
∫

ρ dν ≤ 1} equipped with
the Borel structure arising from the weak∗-topology and identify [µU

x ]

with F (x) =
(∫

ρ dµU
x

)−1
µU
x ∈ Y .

We are going to use the following abbreviations for the stable respec-
tively unstable horospherical subgroup

G− = {g ∈ G : anga−n → e for n→ ∞},

G+ = {g ∈ G : anga−n → e for n→ −∞},

and the central subgroup

G0 = {g ∈ G : ag = ga}.

Recall that recurrence of U with respect to µ is equivalent to µU
x (U) =

∞ by [20, Prop. 4.1]. We say µ is faithfully U-recurrent if for almost
every x there does not exist a Zariski closed proper subgroup U ′ < U
such that µU

x is supported on U ′ (in other words we have P = U for
the subgroup P as in Theorem 4.1).
In [8] we have shown the following dichotomy for µ holds in the low

entropy case6:

Theorem 6.1. Suppose X = Γ\G, a ∈ G, and U < G are as above,
with G as in Section 3.4. Assume that

6In fact, the main result of [8] is slightly more general than what is quoted above.
Note also that in Theorem 6.1 no assumptions are made regarding the characteristic
of the global field K; we plan to explore positive characteristic analogues of our main
theorem elsewhere.
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• for every σ ∈ S with aσ 6= e there is a homomorphism φσ :

SL2(Kσ) → Gσ such that aσ = φσ

((

t
t−1

))

for some t ∈ K×
σ

with ‖t‖σ < 1 and φσ

((

1 ∗
1

))

⊂ Uσ.

Then any a-invariant and faithfully U-recurrent probability measure µ
on X satisfies at least one of the following conditions:

(1) µ is not (µU
x , CG(U) ∩G

−)-transient.
(2) µ is (µU

x , CG(U))-exceptional.

In the context of the proof of Theorem 1.1 the above gives us the
following corollary.

Corollary 6.2. Let X = Γ\G, A, and µ be as in Theorem 1.1. Suppose
µ has low entropy for some indivisible Lyapunov root α ∈ Φ′. Let
P α ⊂ Uα (P−α ⊂ U−α) be the minimal connected subgroup for which
µα
x is supported on P α (µ−α

x is supported on P−α) for a.e. x. Then one
of the following conditions must hold:

(1) (Invariance) µ is invariant under a nontrivial Zariski connected
subgroupHα ⊂ P α or under a nontrivial connected subgroup H−α ⊂
P−α.

(2) (Exceptional) µ-a.e. ergodic component µE
x for the action of A′ =

{a′ ∈ A|α(a′) = 0} is concentrated on a single orbit of CG(P
α) ∩

CG(P
−α) ⊂ CG(aα) where aα is as in Lemma 3.1.

Here E equals the σ-algebra that consists of A′-invariant sets. With
this definition the conditional measures µE

x give indeed the A′-ergodic
components of µ. We say that a probability measure ν is concentrated
on a set B ⊂ X if ν(B) = 1. With some more effort, it is possible
to deduce that if (2) does not hold, both Hα and H−α are non-trivial
(cf. [5, Sect. 4.1]), though for our purposes the weaker conclusion given
above suffice.
We shall make use of the following definition (cf. [24]):

Definition 6.3. We say that an element a ∈ A is of class A if a ∈ Gσ

for some σ ∈ S and all eigenvalues of aσ are powers of some t ∈ Qσ

with |t| 6= 1.

The significance of this condition is that if a is of class A then for
any algebraic representation ρ of Gσ on any Qσ-vector space V and any
vector v ∈ V , the sequence ρ(an)v converges in the projective sense to
an eigendirection of ρ(a).

Proof of Corollary 6.2. Let α ∈ Φ′ be as in the corollary. By Theo-
rem 5.1 it follows that δαµ = δ−α

µ > 0. Essentially by construction,
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the subgroup P α = P ∩ Uα, with P as in Theorem 4.1, satisfies that
µ is faithfully P α-recurrent. Indeed, suppose that on a set of posi-
tive measure there would exist smaller subgroups on which µPα

x = µα
x

is supported. Let P α
x denote the smallest Zariski connected subgroup

of U that supports µα
x . Let a1, . . . , ak ∈ A be elements of class A such

that the group generated by them is Zariski dense in A. We claim
first that P α

x is A-normalized a.e. If this also does not hold, then there
is a set Z of positive measure and some ai from the above list such
that P α

x is not normalized by ai. Applying (4) from Section 4.1 shows
now that Pani .x

= ani P
α
x a

−n
i a.e. If x ∈ Z then ani P

α
x a

−n
i converges

to an ai-invariant subgroup, but this contradicts Poincaré recurrence.
Therefore, P α

x is A-normalized a.e. so that P α
a.x = P α

x a.e. By ergodicity
of A this implies that P α

x is constant. Hence we have P α = P α
x a.e. and

µ is faithfully P α-recurrent.
By Lemma 3.1 and the above discussion it follows that the elements

a = a±α and corresponding unipotent group U = P∓α satisfies the
assumption in Theorem 6.1. Therefore, Theorem 6.1 applies and we
obtain one of two possible outcomes:

Case (1) in Theorem 6.1 holds for at least one choice of a = a±α

and U = P∓α. Suppose (1) of Theorem 6.1 holds for a = a−α, U =
P α. Recall that by assumption on α (i.e. that it is a low entropy
root), by (4.6) applied to G−, and by assumption on P α (i.e. that it
supports µPα

x ) we have that the measure µG−

x is also supported on P α

a.e. Therefore, (3) from Section 4.1 shows that there exists some set
X ′ ⊂ X of full measure so that x, h.x ∈ X ′ with h ∈ G− implies
h ∈ P α. By assumption µ is not (µPα

x , CG(P
α) ∩G−)-transient, which

together implies now that for every set of full measure X ′′ ⊂ X there
exists some x ∈ X ′′ and u ∈ CPα(P α) so that both x, u.x ∈ X ′′ and
µPα

x = µPα

u.x. However, by (3) from Section 4.1 again, this shows that
for any set of full measure there exists some x in that set and some
nontrivial u ∈ CPα(P α) with µPα

x ∝ µPα

x u = uµPα

x (where the later
equality holds since u centralizes P α). This actually implies, almost
surely, that in fact µPα

x = uµPα

x . There are two ways to show this: if
µPα

x = cuµPα

x for c > 1 then for every n, µPα

a.x = caua−1µPα

a.x which can
be shown to contradict Poincaré recurrence for a as anua−n → e (see
[4, Lemma 5.10] for details). Alternatively, µPα

x = cuµPα

x for c > 1
implies that the µPα

x -measure of a ball of radius t around e ∈ P α grows
exponentially in t which contradicts [9, Thm. 6.29].
Moreover, having found some nontrivial u ∈ P α preserving µPα

x

from both sides, we claim that, almost surely, µPα

x is invariant under
left multiplication by a nontrivial connected A-normalized subgroup
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Hx ⊂ CPα(P α). In fact this follows from [4, Prop. 6.2] (which once
more only relies on Poincaré recurrence) together with the fact that
the eigenvalues of the adjoint action of elements of A belong to Qσ.
For the same reason, Hx is normalized by A so that µPα

a.x is also invari-
ant under left multiplication by elements of Hx. Using ergodicity of A,
it follows that µPα

y is invariant under left multiplication by elements
of a nontrivial connected A-normalized subgroup Hα ⊂ CPα(P α) for
a.e. y. We have shown statement (1) of the corollary for a subgroup
Hα ⊂ P α. If (1) in Theorem 6.1 holds for the root −α, then this
gives as above invariance of µ under a nontrivial connected subgroup
H−α ⊂ P−α which implies (1) of the corollary once more.

Case (2) holds in Theorem 6.1 both for aα and for a−1
α . In other

words µ is (µPα

x , CG(P
α))-exceptional and (µP−α

x , CG(P
−α))-exceptional.

We claim that this implies property (2) of the corollary.
Let ǫ > 0. Now choose O to be a sufficiently small compact neighbor-

hood of the identity in G so that the natural map O → O.x is injective
for x belonging to a set of measure bigger than 1−ǫ/3. We also assume
that O is sufficiently small so that O ∩ (CG(P

α) ∩ CG(P
−α)) = O ∩ L

where we set L = (CG(P
α) ∩ CG(P

−α))◦(QS).
Then by definition of exceptional, there exists δ > 0 and a set B ⊂ X

of measure > 1− ǫ/3 so that µPα

x = µPα

y with x, y ∈ B and d(x, y) < δ
implies y ∈ (O ∩ CG(P

α)).x. Replacing B by an appropriately chosen
subset of measure > 1 − ǫ, we may assume that the same holds simi-
larly for µP−α

x and CG(P
−α), and moreover that the map O → O.x is

injective for all x ∈ B.
Assume now z is such that µE

z (B) > 0, and z ∈ B ∩ supp(µE
z |B). Let

V = BX
δ/2(z). Then for µE

z -a.e. y ∈ V ∩B there exists a sequence a′n ∈ A′

with a′n.y ∈ V ∩B and a′n.y → x as n→ ∞. By property (5) of Section
4.1 this implies almost surely that µPα

y = µPα

a′n.y
and µP−α

y = µP−α

a′n.y
.

However, this implies that a′n.y = cn.y for some

cn ∈ O ∩ CG(P
α) ∩ CG(P

−α) = O ∩ L.

As a′n.y → x as n → ∞, and since O is compact, we may choose a
subsequence so that cn → c ∈ L. As P α ⊂ Uα we have A′ ⊂ CG(P

α)
and similarly A′ ⊂ CG(P

−α) and so A′ ⊂ L. Therefore, µE
z -a.e. y ∈

V ∩B belong to L.x. This shows that the orbit L.x is an A′-invariant
set of positive µE

z -measure. Hence µE
z is concentrated on the orbit L.x.

Letting ǫ go to zero, we obtain that µ-a.e. ergodic component w.r.t. A′

is concentrated on a single L-orbit.
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Finally, note that by Proposition 3.2 the Lie algebra of CG(P
α) is

contained in g0 ⊕
∑

(β,α)≥0 u
β so the Lie algebra of L is contained in

g0 ⊕
∑

(β,α)=0 u
β. It follows that L is centralized by aα. �

7. The exceptional case and rank-one factors

In this section we will prove the following step towards Theorem 1.3.

Proposition 7.1. In the setting of Theorem 1.3 we have that (2) of
Corollary 6.2 cannot hold.

Note that the assumption rank(A) ≥ 2 of Theorem 1.3 is essential
here, for otherwise the group A′ considered in Corollary 6 is the trivial
group and (2) of this corollary is satisfied in a degenerate way.
We will need the following lemmas.

Lemma 7.2. Let G be a Qσ-almost simple algebraic group. Let A be
a maximal Qσ-split subtorus of G and let α be a Lyapunov root. Let
L < G be an algebraic subgroup that is A-normalized and contains
both a one-parameter subgroup of Uα and a one-parameter subgroup of
U−α. Then L also contains a power of the element aα as in Lemma 3.1.
Moreover, conjugation by aα preserves Haar measure on L.

Proof. As L is A-normalized we may assume that the one-parameter
subgroups of L∩U±α are also A-normalized, i.e. that they are uniquely
defined by some element v+ of uα

′

with α′ ∈ {1, 2}α, resp. v− of u−α′′

with α′′ ∈ {1, 2}α. Let l be the Lie algebra of L and let Hα be the
algebraic subgroup generated by Uα and U−α.
By Proposition 3.2 we know that for every β with (β, α) > 0 and

sα(β) = β − mα′ the map adm
v+ restricted to usα(β) is injective. Note

that by definition sα = sα′ = sα′′ are all one and the same involution.
It follows from the above injectivity of adm

v+ that for any root β with
(β, α) > 0,

dim(l ∩ usα(β)) ≤ dim(l ∩ uβ). (7.1)

Applying this same to v− we obtain the opposite inequality, hence
equality holds in (7.1).
In particular, dim(l ∩ uα) = dim(l ∩ u−α), and if α is a double root

the same also holds for 2α. Moreover, ad2
v+ restricted to l∩u−α′

gives a
bijection between this space and l∩uα

′

, hence there exists w− ∈ l∩u−α′

with ad2
v+(w

−) = v+. It follows that we can choose the sl2-triple as in
the proof of Lemma 3.1 and Proposition 3.2 within l.
However, since Hα is semi-simple with Qσ-rank one (which follows

since A is maximal), we see that the split element [v+, w] ∈ g0 must
be in the Lie algebra of the torus generated by powers of aα. This
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implies that a power of aα belongs to L as claimed. The symmetry in
dimensions given by (7.1) (with equality replacing the ≤) implies that
aα preserves the Haar measure on L. �

Lemma 7.3. Let G, S, F ′ ⊂ F,A,Γ, µ be as in Theorem 1.1. Suppose
µ is concentrated on the orbit ΓLp where L = L(QS) for some Q-group
L and Γp ∈ supp µ. Then there is a reductive Q-subgroup L′ ⊆ L with
Q-anisotropic center so that µ is supported on the orbit ΓL′p, where
L′ = L′(QS).

Note that we do not assume ΓLp is closed; it follows however from
L′ having no Q-characters that ΓL′p will be closed of finite volume.

Proof. Conjugating A if necessary and replacing µ by µp−1 we may
as well assume that p = e. Applying Lemma 2.1, by passing to a
normal subgroup of L if necessary, we may assume that L has no Q-
characters, so that ΓL is closed of finite volume, and supports µ. It
remains, however, to show that L can be taken to be reductive.
Suppose L has a unipotent radical U, which is automatically defined

over Q. As A < L(QS), we know that A normalizes U(QS) and its
(generalized) Lie algebra. For a given σ ∈ S this implies that U(Qσ)
must be a direct product of the subgroups U(Qσ)∩Gf with f ∈ F ′∩Fσ

and a subgroup U ′ ⊂
∏

f∈Fσ\F ′ Gf . Indeed the Lie algebra f of U
(considered over Qσ) is Af -normalized for all f ∈ F ′ ∩ Fσ. Therefore,

f =
∑

α

f ∩ uα + f ∩ g0.

However, f ∩ g0 projected to
∑

f∈F ′ g0f must be trivial as the latter

cannot contain the Lie algebra of a unipotent subgroup. Hence f ∩ g0

belongs to
∑

f∈Fσ\F ′ gf .

We claim that f∩uα is trivial for all α ∈ Φ′. Suppose this were false.
Then the Lie algebra h = f∩gf is Af -normalized and the determinant of
the adjoint representation of Af on f must be one (as this determinant
is a Q-character of L which is assumed to be trivial). However, this
enables us to use the same arguments as in the proof of Theorem 5.1
(which relies on Proposition 3.2) to show that the dimensions of the
intersections f ∩ uα are symmetric. Indeed if v ∈ f ∩ uα, β ∈ Φ′ and m
satisfy (β, α) > 0 and sα(β) = β − mα, then by Proposition 3.2 we
have

adm
v (f ∩ usα(β)) ⊂ f ∩ uβ

and so

dim f ∩ uβ ≥ dim f ∩ usα(β). (7.2)
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As aα expands all root spaces uβ with (α, β) > 0 (including β = α) and
resp. contracts usα(β) by the inverse factor the fact that the determinant
of the adjoint representation of Af on f is one implies equality must
hold in (7.2), and so in particular f ∩ u−α has to be nontrivial. In
view of Proposition 3.2, this implies that [f ∩ uα, f ∩ u−α] is nontrivial.
However, as this is a subset of f ∩ g0 ∩ gf , we get a contradiction to
f ∩ g0 ⊂

∑

f ′∈Fσ\F ′ gf ′ .

It follows from the claim we have just established that U(Qσ) ∩ Gf

must be trivial for f ∈ F ′ ∩ Fσ and all σ ∈ S, hence U(Qσ) commutes
with A. Let now L′ < L be a Q-Levy subgroup of L and L′ = L(QS).
Since L′ is unique up to conjugation by U and A commutes with U we
see that any choice gives that L′ contains A. Since ΓL′ is closed and
A-invariant, and since we assumed that Γe ∈ suppµ, it follows from
ergodicity of A that µ is supported on ΓL′. �

Proof of Proposition 7.1. Let H = CG(P
α) ∩ CG(P

−α) ⊂ CG(aα) be
as in case (2) of Corollary 6.2. Let x = Γg be a point for which the
conclusion of the corollary holds. We define Λg = Γ∩(gHg−1), take Mg

to be the connected component of its Zariski closure, i.e. Mg = (Λ̄g)
◦,

and finally define

Lg = [CG(Mg)
◦, CG(Mg)

◦] < CG(Mg).

Note that both Mg and Lg are Zariksi connected algebraic groups de-
fined over Q.
By definition we have that gP αg−1, gP−αg−1 are subgroups of the

Qσ-points of CG(Mg)
◦ with σ ∈ S the place corresponding to the

root α, which implies that a power of gaαg
−1 belongs to CG(Mg)

◦ by
Lemma 7.2. Therefore, gP αg−1, gP−αg−1 < Lg(Qσ) and (again by
Lemma 7.2) the same power of gaαg

−1 also belongs to Lg(Qσ).
Let us study how these Q-groups vary: Since A normalizes P α

and P−α it follows that A also normalizes H . Therefore, gHg−1 =
(ga)H(ga)−1 for any a ∈ A. From this we get that Λg = Λga for any
g ∈ G and hence the same holds for the groups Mg and Lg that are
determined by Λg.
Choose in some measurable way a representative gx ∈ G for every

x ∈ X so that x = Γgx. Since G has only countably many Q-subgroups,
there is a subset Z ⊂ X of positive µ-measure on which Mgx ,Lgx are
constant, say Lgx = L and Mgx = M. By ergodicity, for µ a.e. x ∈ X
there is some a ∈ A for which xa ∈ Z, hence we see that in fact almost
every point x can be written as x = Γg for some g for which M = Mg

and L = Lg.
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Set A′ = kerα < A. We claim that gA′g−1 < M(QS) almost surely.
Indeed, assume that the A′-ergodic component of µ at x = Γg is concen-
trated on the single H-orbit xH = ΓgH as in case (2) in Corollary 6.2
— currently we don’t know whether this orbit is closed. Let a ∈ A′∩Gσ

be an element of class A, and let x ∈ supp µ satisfy Poincaré recurrence
applied to a and neighborhoods of x within the H-orbit (this condi-
tion holds for µ-a.e. x ∈ X by the above assumption on A′-ergodic
components). Then there exists a sequence γkga

nk = ghk as k → ∞
with γk ∈ Γ, hk ∈ H , and hk → e as k → ∞. As a ∈ A′ < H
we get γk ∈ Λg = Γ ∩ gHg−1. By Chevalley’s theorem there ex-
ists an algebraic representation ρ of G over Qσ and a vector v that
together define the Zariski closure of Λg as the stabilizer of the line
generated by v. Notice that ρ(ga−nkg−1)v converges projectively to
an eigendirection since a is of class A. As hk converges to the iden-
tity, we also get that ρ(ghka

−nkg−1)v = ρ(γk)v converges projectively
to an eigendirection of ρ(gag−1). However, as ρ(γk)v ∈ Qσv for all
k this shows that v is an eigenvector of ρ(gag−1) and that gag−1 be-
longs to the Zariski closure of Λg as claimed. As this holds for all
a ∈ A′ that are of class A, we get gA′g−1 < M(QS). It follows that
g−1CG(M)(QS)g < CG(QS)(A

′), and hence all Lyapunov roots appear-
ing in the Lie algebra of g−1CG(M)(QS)g must be proportional to α.
As L = [CG(M)◦, CG(M)◦]◦, we see that A′ ∩ g−1L(QS)g is finite.
Since the group L is defined over Q, so is its unit normalizer N =

N1
G(L). In fact, by its very definition, N fixes a vector in a Q-repre-

sentation of G (namely the vector corresponding to the Lie algebra of
L in an appropriate wedge product of the Lie algebra of G). Since
Γ is commensurable with G(OS), it follows that ΓN(QS) is closed in
X . Moreover we have seen that gA′g−1 commutes with L(QS) (since
it is contained in M) hence gA′g−1 < N(QS). We have already noted
that gaℓαg

−1 ∈ L(QS) for some ℓ, and it follows from Lemma 7.2 that
conjugating by this element preserves Haar measure on L(QS), hence
gaℓαg

−1 ∈ N(QS). Thus a cocompact subgroup of gAg−1 is contained
in N(QS), which implies that gAg−1 < N(QS).
Since µ is A-ergodic, we may choose Γg ∈ supp µ such that the A-

oribt of Γg is dense in supp µ while gAg−1 < N(QS), which implies that
ΓgA is contained in the closed homogeneous set ΓN(QS)g. Therefore,
we may conclude that µ is supported on ΓN(QS)g. By Lemma 7.3 and
the minimality assumption on G in Theorem 1.3, we may conclude that
N = G. But L is a nontrivial normal subgroup of N (it is not equal to
N since it does not contain A′), which contradicts the assumption in
Theorem 1.3 that G is almost simple. �
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8. Unipotent invariance

In this section we will finish the proof of Theorem 1.3. By Propo-
sition 7.1 we know that case (2) of Corollary 6.2 never takes place.
Knowing that µ is invariant under a unipotent subgroup we are going
to use the classification of measures that are invariant under unipotent
one-parameter subgroups as proven by Ratner [30, 31] and extended
by Ratner [33] and Margulis and Tomanov [24]. In fact, it will be
convenient to use a refined version of these results by Tomanov [37]
that is more adapted to the arithmetic case (i.e., when the lattice Γ is
commensurable to G(QS)).

Proof of Theorem 1.3. In the case of a high entropy root α we have
seen in Theorem 5.1 that µ is invariant under a nontrivial subgroup of
Uα. In the case of a low entropy root α by Proposition 7.1 we know
that the first possibility (invariance) in Corollary 6.2 holds, which says
that µ is invariant either under a nontrivial subgroup of Uα or of U−α.
Let now Hu be the subgroup of G generated by all Zariski connected

subgroups of Uα for any α ∈ Φ′ that preserve µ. As Hu is generated by
unipotent one-parameter subgroups we wish to apply the S-algebraic
version of Ratner’s measure classification theorem. However, we do not
know whether µ is ergodic under the Hu-action, so we have to apply
the classification to the Hu-ergodic components µE

x where E is the σ-
algebra of Hu-invariant Borel subsets of X and analyze how this affects
the measure µ (a similar, more general, analysis can be found in [25];
however, for completeness we include the argument here).
Let x = Γg be such that the conditional measure µE

x is an Hu-
invariant and ergodic probability measure. By [33] or [24] µE

x is the
normalized Lx-invariant volume measure on a periodic orbit xLx of a
closed subgroup Lx < G and [37] gives us the additional information
that there exists a connected Q-group Lg so that Lx is a finite index
subgroup of g−1Lg(QS)g containing Hu. Note that the group Lx may
not be unique as e.g. a finite index subgroup would have the same
property, but that its (generalized) Lie algebra lx is well defined.
Let us analyze the dependence of the above groups on the base

points. Since Hu is A-normalized we see that the σ-algebra E is in-
variant under A and so the conditional measure µE

x is mapped a.s.
under a to µE

a.x. This implies that aLxa
−1 is commensurable with La.x

and that Ada(lx) = la.x. Now choose a ∈ A to be of class A and
apply Poincaré recurrence. It follows that along some subsequence
lank .x should converge to lx, but since a is of class A any limit point
of lan.x = Adan(lx) has to be normalized by a. Since A is generated
by its elements of class A, we see that lx is constant along the A-orbit
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and by ergodicity constant µ-a.e. Let us denote the common value by
l0. This implies that every point x ∈ X has a representative gx ∈ G
so that x = Γgx and such that the Lie algebra of g−1

x Lgx(QS)gx equals
l0; and it is moreover clear that we can make such a choice so that
the map x 7→ gx is measurable. Since there are only countably many
Q-subgroups of G there is some subset Z ⊂ X of positive µ measure
and a connected Q-subgroup L < G so that Lgx = L for every x ∈ Z.
However by definition of gx the Lie algebra of g−1

x L(QS)gx equals l0 for
every x ∈ Z. Set M = NG(L). Since the Lie algebra determines the
group (for connected algebraic groups), it follows that gx ∈ M(QS)gx′

for every x, x′ ∈ Z.
Since l0 is normalized by A, we have that gxAg

−1
x <M(QS) for x ∈ Z

hence fixing some x0 ∈ Z we conclude that ΓMgx0 is an A-invariant set
of positive µ measure (it contains Z), so by ergodicity µ is concentrated
on this set.
Applying Lemma 7.3, and using the minimality condition on G in

the statement of Theorem 1.3, the only possibility that remains is G =
M. Since G is Q-almost simple and L is a nontrivial Q-group with
L⊳M = G we must have that L = G.
We conclude that each Hu-ergodic component µE

x is invariant under
a finite index subgroup Lx of G(QS). Set

L̃ =
⋂

a∈A/(A∩Lx)

aLxa
−1;

note that the intersection is finite since A ∩ Lx is of finite index in A.
Then L̃ is also a finite index subgroup of G(QS) and for every a ∈ A
we have that µE

a.x is L̃-invariant, hence by ergodicity µ is L̃ invariant.

Since µ is also A-invariant, µ is L = L̃A-invariant. By ergodicity, µ is
supported on a single L-orbit. �
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