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Thoughts on the Brain,

A NEURO-LOGICO-MATHEMATICAL ESSAY

E.Engeler

Abstract

The mathematical model introduced in this paper attempts toexplain how complex scripts

of behavior and conceptual contents can reside in, combine and interact on large networks

of interconnected basic actors.

The approach is exemplified by modeling the neural structureand dynamics of the con-

nectome of a brain. The neurological hypothesis attributesfunctions of the brain to sets

of firing neurons, dynamically to sets of cascades of such firings, typically visualized

by imaging technologies. Such sets are represented as the elements of what we call a

neural algebra, and their interaction as its basic operation. For convenience, we name

specific represented objects, and particularly kinds of objects, using the vocabulary of

mental functions for its richness and suggestiveness, using names such as ”thoughts”,

”concepts”, ”memories”, ”scripts”, and use logical terminology for naming some of the

combinations of these objects.

The main thrust of this paper develops from the fact that characteristic properties of these

suggestive notions can be cast in the form of equations of theneural algebra. Analyzing

the solutions leads to a complete description of the necessary structure of their neural

correlates. In particular we analyze the representation ofperception in the form of ”con-

cepts” and of control in its various forms, distributed, hierarchical and especially reflexive

control, the latter modelling a conception of ”consciousness”.
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1 Introduction: About Thinking

Neuroscience has demonstrated that mental objects such as individual con-

cepts and memories are locatable in the brain as specific assemblies of neu-

rons (and their connections). Encoded in living matter, they are not static,

but participate in interacting processes as part of ”thinking”. So, even if

we know to identify some selected individual concepts as structures in the

brain, the challenge is to understand them dynamically in their interaction.

Thinking means applying thoughts to thought. If the thoughtA is applied

to the thoughtB, then the resultA · B is again a thought: A theory of

thinking inherently has this algebraic aspect. But the tradition of Logic re-

duces the operational aspect to linguistic categories, namely to operations

on propositions such as ”and”, ”or”, etc, or to modularitiessuch as ”nec-

essarily”. While this leads, since Aristotle, to very rich and fruitful logical

theories it also impoverishes logic as a basis for a theory ofthe mind. In

contrast, we hold that an algebra of thoughts should be baseddirectly on

an analysis of what it means to apply a thought to a thought.

Such an approach is detailed in the following section. It results, as we

shall see, in an algebraic system for formally representingthought objects

and their mutual interactions. This algebraic framework allows to distin-

guish types of thoughts by their algebraic properties, equations as it were.

For example, conceptual thoughts, concepts, are characterized as retrac-

tion operations. More generally, perceiving, acting on thoughts, thinking

about other peoples thoughts are captured by sets of equations allowing to

discuss various hypotheses on the functioning of the brain and its connec-

tional structure. Problem solving, that major aspect of nature generally, is
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thus captured as solving equations for unknown brain mechanisms.

This implied relation between our formal model and biological reality is to

be understood suggestively. The the names we choose for our objects are

simply names and may be substituted by names chosen from completely

different contexts that deal with intercommunicating actors. But we do

attempt, in the Discussion at the end, to relate these development to (our

appreciation of) current neuroscience. The discussion is referred to by

section-numbers; references to the literature are listed there

,

2 Patterns of Thought

THE BRAIN MODEL A

The conceptually simplest model of a brain represents its connectivity, the

connectomeA, as a directed graph whose nodes, called neurons, fire at

discrete time instancest ∈ Z. The global activity of the brain, the firing

history of these neurons, is represented by thefiring functionf(a, t) which

takes the value1 if the neurona fires at timet and0 otherwise. Modelling

a brain is accomplished by imposing restrictions on the functionsf by spe-

cific afiring law inherited from abstracting neurological findings. A firing

law specifies the condition under which the firing of neuronsa1, . . . , ak at

timest1, . . . , tk causes the firing of a neuronak+1 at some later timetk+1 ,

assuming the former are connected to it by directed edges.

For example: In artificial neural nets a rudimentary firing law is based on

assigning weights to the individual directed edges of the graphA: If sum

of weights the incoming edges (synapses) exceeds a given threshold, then
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the firing of the corresponding source neurons at timet causes the firing of

the target neuron at timet + 1. Positive weights correspond to excitatory,

negative weights to inhibitory synapses.

Remark:To view living neurons as purely reacting entities is too restrictive

in my opinion. As the result of a very long line of descent fromunicellular

ancestors, it seems reasonable to suspect that they retain some mechanisms

of memory, optimization, goal functions, etc. These could conceivably be

modeled in the fashion of our brain models, indeed subsumed in them.

The directed graphA together with the firing functionf and the firing law

constitute our brain modelA; it describes a full history of the modeled

brain.

Taking a causal point of view of the sequences of individual firings, we

are able to distinguish cascades of firings: Starting with some arbitrarily

selected firings at some time instances, acascadeis a branched sequence

of firings of neurons which causally follow from these original activations

during a finite time interval. Afiring pattern is simply a set of such cas-

cades.

Our aim is to view firing patterns as functions, brain functions. In analogy

to the usual set-theoretic definition of functions, the individual cascades

need to be understood as tuples of input / output cascades. This is ac-

complished by choosing the firing of a specific neuron as the key point of

causality: the parts of the cascade that are its temporal antecedents are un-

derstood as inputs; a cascade that follows it is understood as output. – This

analysis of cascades is formalized below by representing such cascades as

track expressions. Note that the input- and output-cascades should reason-
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ably also be represented as track expressions, thus structuring the whole

cascade. This leads to the formal recursive definition of track expressions

in the next section.

FIRING TRACKS AND FIRING PATTERNS

LetA be a given brain model. Track expressions are defined recursively as

follows:

The basic track expressiona(t) denotes the activation of a single neurona

at an integer time instancet.

Compositetrack expressions are based on paths of directed edges inA and

the firing functionf , i.e. on cascades of firings. They all have the form

xc(t) for some neuronc, thekey neuronof xc(t), and time instancet. In

particular, the key neuron ofa(t) is a, thus this expression may also be

writtenxa(t).

The antecedent neuronsa1 . . . an are connect to neuronb along paths of

one or more edges inA, which in turn connects by such a path to neuron

an+1. By defining

xb(t) = {xa1(t1), . . . xan(tn)}
t
−→
b
xan+1

(tn+1),

where

t, t1, . . . tn+1 ∈ Z, t1, . . . tn < t < tn+1,

we recursively compose the track expressionsxa1, . . . xan+1
. The neuronb

is called thekey neuronof xb(t), anda1, . . . , an+1 are the key neurons of

the track expressionsxa1, . . . , xan+1
. Each such track expression, by timing

of the key neurons, describes a firing of the neurons occurring in it. This

leads to:
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Figure 1: A neural net, a cascade and two causal tracks expressions.
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Definition 1 (Causal Track Expressions)The track expressionxa(t) =

a(t) is causal, if f(a, t) = 1;

The composite track expression

xb(t) = {xa1(t1), . . . xan(tn)}
t
−→
b
xan+1

(tn+1)

is causal, iff(ai, ti) = 1, i = 1, . . . n+ 1 andf(b, t) = 1, and the firing of

a1, . . . an suffice according to the firing law for the activation ofb as well

as for all neurons on the paths froma1, . . . an to b and fromb to an+1 at the

times given in the expression.

Note that the same neuron may occur repeatedly in a track expression, re-

flecting the fact that activations may be cyclic.

Fig.1 shows a tiny example of a neural net in which we may observe the

cascade figured below it. In this cascade two causal tracks can be extracted,

one of them the cycle(c1, c2, c3). The corresponding track expressions are

supplied, using the time indices from the given scale. Neuron e is the key

neuron of the first expression. – One should realize that nets, cascades (and

track expressions) of size larger by several orders of magnitudes should be

envisioned.

As special cases we admit initial and terminal track expressions with empty

antecedents,∅
t
−→
b
xan+1

(t′), respectively empty consequents

{{xa1(t1)}, . . .{xan(tn)}}
t
−→
b

⊥ , where”⊥” stands for the missing con-

sequent.

Each composite causal track expression is divided by its keyneuron into

argument track expressions and a value track expression, representing the

causality. (What is different from the classical function case is that these
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arguments and values could again be, necessarily causal, track expressions;

this is a central aspect of the model.)

Definition 2 (Firing Patterns) Any set of track expressions which are causal

with respect to the firing law is called a firing pattern.

3 Neural Algebras

Firing patters are the basic objects of our theory. They are eventually meant

to embody brain functions.

The challenge is to identify those firing patterns on which a reasonablethe-

ory of the mindmay be based. These brain functions, firing patterns, are

quite complex infinite sets, a fact to which we have become quite oblivi-

ous in the case of analysis. The development of analysis has singled out

its realm by adding additional structure: We can add, multiply, differen-

tiate and integrate functions. With this in mind, our goal isto develop a

corresponding operability with firing patters.

COMPOSITION

Firing patterns are related by acting on each other as determined by the

structure of the net and the firing function. We untangle these interactions

by basing them on the concept ofapplyinga firing pattern to another. Re-

call that in each causal track expression the part to the leftof the main

arrow represents the cascades that prompt the key neuron to fire. The cas-

cade denoted by the expression on the right denotes what new firings this

firing produces. The same is true for sets of causal track expressions, i.e.

for firing patterns.
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This observation motivates the following definition of composition of such

sets:

A firing patternM composedwith a firing patternN applies the causation,

represented by causal track expressions inM , onN as follows:

M ·N = { xn+1(tn+1) : there exists{x1(t1), . . . , xn(tn)}
t
−→
b
x(tn+1)

in M such that{x1(t1), . . . , xn(tn)} ⊆ N} .

Definition 3 (Neural Algebras) GivenA = (A, f), a firing law and the

operation of composition, the setB of subsets of the set of causal firing

tracks, closed under this operation, defines an algebraic structure, theneu-

ral algebraNA = 〈B, ·〉.

Neural algebrasNA are our candidates for an algebra of thoughts as en-

visioned in the introduction. The elements of a neural algebra are sets

of track expressions describing activities of neural assemblies, ”thoughts”

among them. The algebraic operations correspond to basic acts of thinking

and equations serve to describe the interoperation of thoughts, concepts,

memories and scripts for actions.

Remark:NA is essentially a submodel of a Plotkin-Scott-Engeler graph

model of the untypedλ-calculus, (see [13, 14, 15]).

4 Episodes of Mental Activities

The neurological hypothesis posits that all mental activities are embodied

in the brain as patterns of firing neurons. Such patterns typically involve a
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great number of neurons, linked over considerable distances and active for

considerable time relative to the time scale of the individual neuron. In-

deed, any mental concept and activity is episodic in character, in particular

in the way in which it is activated and used.

It may be argued that in reality the brain does not work on a time scale

from minus to plus infinity, that isZ, but during a finite lifetime. In the

same vein, a set of track expressionsR makes only sense as a mental ac-

tivity if its firing is sustainedfor a time interval[t0, t1]. Such a sustention

is called appreciable ift1− t0 > ν for some arbitrarily fixed numberν, say

105. Given a time interval[t0, t1] and track expressionsxa1(t), . . . xan(t)

we denote byR = {xa1(t), . . . xan(t)}
t1
t0

firing pattern of their sustained

firing during that interval. This means that the set of firing times of the key

neurons ofR cover the given time interval, thesustaining intervalof R.

The composition of sustained firing patterns may not be sustained.

Notation: If x(t) is a track expression, thenx(t′) is the result of substi-

tuting t′ for t everywhere inx(t), including of course all instances of the

dependent firing times, modified according to their place in the track ex-

pression.

Two sustained firing patternsX andY areapproximateif their sustaining

intervals overlap for an appreciable subinterval. We writeX ≈ Y in this

case.

There are two ways by which we are able to realize sustention of a firing

pattern in our brain brain model: We may assume a source of signals at one

or more neurons which continue to activate the input neuronsof R during

a given time interval, conceivably by biochemical messaging. Or we may

have an autonomous sustention in form of one or more causal cycles in
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the connectome. Such a cycle could be the base of a cyclicallyrepeated

firing track as in some of the connectomes that we introduce later. In fact,

external sustention may be mimicked by cycling a source track expression

upon itself.

Familiar mental activities are typically based on sustained firing patterns,

having anepisodic character, and can be described as thoughts, scripts

or as memories:Thoughtsare general mental activities, conscious or not,

Scriptsact situationally and are templates for procedures, projects, pro-

cesses, etc.,Memoriesare invoked by triggers and store auditory and vi-

sual perceptions, thoughts, emotions, etc.

Any sustained firing pattern is called an episode. Instead of”episode” we

may use some other suggestive term, e.g. ”reaction pattern”, ”perception”,

or more generally ”distinct brain function”, depending on the kind of ob-

jects we wish to identify in applications of the model.

Even for small brains the set of firing patterns is enormous and seems to

defy structuring. Neuroscience is concerned with identifying the embodi-

ments of specified functions of the brain. Such functions aredistinguished

by giving them well accepted names if they have proved to be stable and

express the gist of the matter.

Fleeing upon being threatened, (Fig.2), may serve here as a simple exam-

ple of a script; it is based on the embodiment of an instinctive reaction

pattern, consisting of the mental episodes of perceptionT of threat, the

perceptionD of danger,L of the lack of cover, andF the reaction of flight.

For example:

T = {{u1(t
′), v(t′′)}

t
−→
a1

s(t′′′), {u2(t
′)}

t
−→
a2

s(t′′′)}t1t0
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Figure 2: Fleeing on a Threat.

It is composed of the track expressionsu1 ”it is hot”, u2 ”it is big”, v ”it

moves fast towards me”, with the key neuronsa1, a2 naming the threat, and

s ”I’m scared”. Correspondingly forD andL with key neuronss, resp.l.

The script of this instinct, is simplyF = {r(t′), s(t′′), l(t′′′)}
t
−→
c
f(t′′′′)}t1t0.

Figure 2 highlights the cascade which correspond to the track expression

of F , the reaction upon a threat.

5 Perception, Concepts and Control

The above example of flight-upon-threat is, of course, more conceptional

than realistic. There are two considerations:

First, it is not plausible that a real brain has individual neurons that com-
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pletely and exclusively correspond to terms such as ”big”, ”fast approach-

ing” and their combinations into ”threat” and ”danger”. There would sim-

ply have to be too many neurons in a realistic brain to embody all the con-

cepts necessary for its functioning in the world. Indeed, itis reasonable to

embody these concepts by larger functional objects in the brain, by con-

nectomes that support the brain function corresponding to the perception

of these individual concepts. Then we have am exponentiallylarger choice

of representations; concepts are represented by elements of NA.– Instead

of ”fleshing out” the above example, we shall turn to the problem of what

it means abstractly for an element ofNA to perceive a concept. Observe

that perceptions are commonly expressed as predicates, something being

called ”big” or ”threatening”, etc. Thus the problem comes down to char-

acterize perceptions and concepts as types of objects in theneural algebra.

A solution to this problem is proposed in the following section.

Second,control. In the example, the control of the reflexive behaviour of

”flight” is embodied in a single neuron. This also is far from being neuro-

logically plausible. Again, we do not propose here to ”flesh out” the neural

control mechanism for this example but concentrate on an analysis on how

the abstract notion of control can be represented in a neuralalgebra by one

or more objects ofNA, followed by an attempt of some structuring of the

notion of neurological control.

To understand how an elementA of NA could be said to have control over

firing patterns, consider the connectome of Fig.3 on which the controlling

objectA is assumed to be based. The key neurons ofA, the ”controlling

neurons”, are emphasized in black. Control is effected by applyingA to an

inputB resulting in the controlled outputC.
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Figure 3: Connectome of Feedback Control.

A · B = C

Looking at the connectome, it is clear that bothB andC are based on con-

nectomes that are parts of the connectome ofA. The key neurons ofB and

C are colored red and green respectively. Observe that some ofthese key

neurons are both red and green: control may include feedbackof course.

In a sense, control with more than one controlling neuron maybe con-

sidereddistributed control. This could be expressed by splittingA into

A = A′ ∪ A′′ ∪ A′′ according to the different controlling neurons.

coupled controlarises if two controlling objectsA1 andA2 act in a coupled

manner, e.g.
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A1 ·B = C,A2 · C = B;

a situation encountered in neurology (e.g. hand-eye movement) just as in

mechanics (e.g. coupled pendulum).

The two above forms of distributed control are represented by first-order

equations. Higher-order equations representhierarchical control: the con-

trolling objectA1 is itself controlled by a separate controlling objectA2.

For example

A1 = A2 · B,A1 · C = D

is an example of second-order control. Again, neurologicalexamples are

easily imagined.

On a still higher conceptual level of control is what could becalledreflexive

control to which we return in a later section.

Altogether, this shows the richness of forms of control and,conversely,

the challenge to recognize, localize and describe natural control mecha-

nisms in the brain, concretely in the brain modelNA. The result may per-

haps be of help in structuring the exploration and representation of struc-

ture/function relations in neuroscience.

Control of activation in a neural net may be seen as residing in specific

neurons, control neurons. These may be distinguished and obtained by

a mathematical analysis of the connectome, (e.g. [30]), an approach that
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may nicely complement the present one.

6 Predicates, Concepts and their Structure

To arrive at the notion of concept, we look at a special type offiring pat-

terns, corresponding to the mental action of predication and go from there

to look for the kind of patterns that may be identified as concepts and thus

have chance to be relevant for a theory of thoughts in the brain.

PREDICATION

Predicating about the snow that it is white means to apply thethought

[whiteness] of being white to the thought of the snow. InNA this is rep-

resented as [whiteness]· [snow]. Generally, the composed thoughtR ·X

denotes the extent to which the predicationR applies to the thoughtX;

here: to what extent does [whiteness] apply to [snow].

Language also aims to describe composition of thoughts, such as pred-

icating about a predication or about the result of a predication, e.g. by

qualifying it. There may be confusion: To say thatD is a philosopher king

can be understood as expressing quite different thoughts. IsD a king who

is also a philosopher, a philosopher who is also a king, or, remembering

Plato, is he an example of the best way to govern the state ? By specifying

the mode of applications of thoughts to thoughts this translates into: Is it

[philosopher]· ([king] · D), or [king] · ([philosopher]· D), or ([philoso-

pher]· [king]) · D, or ([king] · [philosopher])· D ?

Indeed, many of the conundrums of communication, in fact many of the

traditional sophisms, are based on language lacking (or notusing, or abus-
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ing) precision in expressing the exact structure of the application of thoughts

to thoughts. In particular, thoughts are not associative.

Another type of qualification is context. In the context of politics [blue-

ness]·R for a personR callsR a democrat, while in a medical context it

expresses an emergency. This underlines the insight that [blueness] as any

other predication, is extensive, persistent and broadly applicable.

If a predication is to be conceptually relevant (and a stablecomponent of

the activities of the brain), the main requirement is that itshould be general,

or abstract, enough not to depend on accidental, extraneous, conditions on

the objects to which it is to be applied. This corresponds to the traditional

notion of a concept. Since Aristotle, concepts are arrived at by abstraction:

by taking a thought and eliminating all extraneous elements, theacciden-

tia, its accidental or irrelevant aspects.

We base abstract concepts inNA on corresponding predications, consid-

ered as abstraction operations: IfR is a concept applied to a thoughtX

which belongs to the conceptual field ofR, thenR · X removes fromX

all aspects that are irrelevant with respect to the predication R. Thus, if

applyingR again returns the same result, this is the pure abstract, theR

-conceptual content ofX.

Accordingly, we define:

Definition 4 ( Concepts)A predicationR is a concept if all sustained in-

putsX for which bothR·X andR·(R·X) are sustained satisfyR·(R·X) ≈

R ·X.

A given brain modelNA may or may not admit firing patterns that are con-

ceptual. The immediate question is therefore: What are the connectome

17



structures corresponding to concepts ?

An important aspect of the usual notion of ”concept” is the fact that it can

be called by a name. This aspect is realized in our model by choosing a

characteristic neuronr for a given predicationP which we wish to identify

as a concept. Thisr namesthe concept.

To simplify notation, let lower case greek letters denote finite sets of causal

track expressions, the involved time instances for its members are tacitly

understood.

Theorem 1 (Connectomes of Concepts)Every conceptR, named byr,

can be presented in the form

{αi
t
−→
r

xai(ti) : xai(ti) ∈ αi ⊆ {xaj(tj) : j ∈ I}, i ∈ I}t1t0,

and realized by a connectome centered at one common neuronr with all

paths returning to it.

Proof: Let R = {αi
t
−→
r

xai(ti) : i ∈ I}t1t0 be a concept,R ∈ B. From the

defining equationR · (R ·X) ≈ R ·X it follows at once thatR mapsR ·X

onto itself for any sustainedX. ThereforeM = R ·X ⊆ {xai(t) : i ∈ I}t1t0.

Note thatαi ⊆ R · X for all sustainedX: Assumeαi = {xa(t), yb(t)}
t1
t0

,

with xa(t) ∈ M andyb(t) /∈ M . ThenR · {xa(t), yb(t)}
t1
t0
= {xa(t)}

t′1
t′
0

and

R · (R · {xa(t), yb(t)}
t1
t0
= ∅. Henceαi must be a subset ofM .

Conversely, ifS is of the above form, then it is obviously a retraction and

therefore a concept.

Fig.4 shows the schematic view of the very rudimentary concept R; the

constituting tracks are highlighted:
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Figure 4: Connectome of a Concept.

R = {{xa(t
′), xb(t

′′)}
t
−→
r

xa(t
′′), {xb}

t
−→
r

xb}
t1
t0
.

CONCEPTUALIZATION

To turn a predicateP into a conceptR means to specify those aspects ofP

which constitute its abstract, non-accidental, components. LetP = {αi
t
−→
si

xai(t
′) : i ∈ I}t1t0 and choose a subsetS ⊆ {xai(t) : i ∈ I}t1t0 of the right-

hand side ofP and a key neuronr. Then we may setR = {{xai(t
′)}

t
−→
r

xai(t
′′) : xai ∈ S}t1t0, which is obviously a concept. IfS contains all of the

second elements ofP the we would callR the full abstract conceptof P ,

otherwiseR constitutes some indications or marks about the perceptionP

chosen by specifyingS.

If, instead of choosing from the second elements ofP to construct a con-

cept, we may use some of its antecedentsαi to formA ⊆ {αi
t
−→
si

⊥ : i ∈

I}t1t0. By settingR = {{αi −→
si

⊥}
t
−→
r

(αi −→
si

⊥) : (αi −→
si

⊥) ∈ A}, we

obtain a conceptual object which we could call apre-concept. It embodies,

depending on the choice ofA, the ”causes” ,”traits” or ”clues” that con-

tribute to the predicationP .
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Concepts themselves do not constitute a subalgebra of the neural algebra:

Consider two conceptsR andS and composeR · S = {x : ∃(α −→
r

x) ∈

R, α ⊆ S}. Observex ∈ α by theorem 1, hencex ∈ S. Therefore

R · S ⊆ S andx = β −→
s

y in R · S for someβ andy. According to theo-

rem 1 we would needβ ⊆ R · S which is not guaranteed (as it would be if

β were a singleton, as is the case for the composition of abstract concepts

and pre-concepts.)

It is straightforward to construct concepts that act on given concepts (that

is second order and higher order concepts), such as other peoples concepts;

planning reaction patterns and the like.

A simple example of a second order concept is the conceptR of the causal

concatenation of two conceptsS1 andS2 : ”uponS1 follows S2 ”, e.g. one

script follows another.

The concatenationS of these concepts is established by a neurons which

links the reference neuronsa andb of these two concepts:

S = {{xa(t
′)}

t
−→
s
xb(t

′′), xa ∈ S1, xb ∈ S2}
t1
t0
.

for some time interval[t0, t1] of sustension. We might calla and b the

reference or conceptual neurons of order one,s of order two.

7 Self-Reference and Reflexive Control inNA

FIXPOINTS IN NA

Among the equations that are important for the understanding of the inter-

actions of brain activities, fixpoint equations, as so oftenin key places in
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mathematics, play an important role. Consider arbitrary elements of the

neural algebraNA and a variableX, and combine them by the operations

of composition and of union into an expressionϕ(X) . Thenϕ(X) = X

is a fixpoint equation.

Theorem 2 (Fixpoint Theorem) In NA all fixpoint equations have a ap-

proximate solution; the solutions form a lattice by inclusion. If ϕ(X0) ⊇

X0 then there is a solution which includesX0 .

Proof : Because composition and union are monotonic operation withre-

spect to set inclusion,X ′ ⊇ X impliesϕ(X ′) ⊇ ϕ(X). Also, if D is a set

of sustained elements ofNA, directed by inclusion, then

ϕ(
⋃

D) =
⋃

X∈D

ϕ(X).

From this follows, that the fixpoint equationϕ(X) = X has a least solution
⋃

n

ϕn(∅),

whereϕ0(X) = X andϕn+1(X) = ϕ(ϕn(X)):

ϕ(
⋃

n

ϕn(X0)) ≈
⋃

n+1

ϕn(X0) =
⋃

n

ϕn(X0).

In the same way, ifϕ(X0) ⊇ X0, then
⋃

n

ϕn(X0)

is the least fixpoint includingX0.

SELF-REFERENTIAL CONCEPTS

Many of the famous sophisms may be considered as being based on self-

reference. This is not the place to dwell on the history of paradoxes and
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sophisms linked to self-reference.

Let me mention just one, theorem 66 in Dedekind’s important and famous

”Was sind und was sollen die Zahlen”, where he proved the existence of

the infinity of natural numbers by considering ”the totalityof objects of

thought” as follows: The thought that I am thinking is itselfan object of

thought. Taking any thought objectN0, e.g. the thought ”I am thinking

of a number”. Reflecting i the thought of this object is again an object of

thought, etc, yielding an infinity of objects of thought. IfR is the men-

tal operation of reflecting on a thought, the Dedekind’s construction step

is Ni+1 = Ni ∪ R · Ni, i = 0, 1, . . . . Collecting up yieldsN =
⋃

iNi

which solves the recursionN = N · N with initial conditionN0. 1 Real-

ize, however, that the objectZ, because of the restricted sustensions, only

approximates the desired object. The infinity of the naturalnumber, while

non-contradictory, is here something like an illusion. Butconvincing to the

finite brain.

Compare this with the familiar conundrum of ”the painting that shows the

painter executing this painting”.This work of art, even if it existed some-

where, can only be approximately thought of.

REFLEXIVE CONTROL IN NA

The notion of reflexive control is derived here by an analysisof what is ex-

perienced as consciousness. Whether the result is indeed a sort of artificial

consciousness operating in the model brain is of course debatable.

1Dedekind’s conception was criticized by the co-editor EmmyNoether of his collected works (Braun-

schweig, 1932) as being based on the contradictory notion ofthe totality of thought objects, see p.391.
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For the purposes of this analysis let us understandconsciousness as the

ability of a ” brain” to consciously observe itself as being conscious and

as consciously planning and acting. This definition, at first sight, appears

circular. Interpreted inNA It is simply self-referential:

The modelNA = 〈B, ·〉 comprises firing patters corresponding to observ-

ing, acting, planning, moving, etc. LetC be the prospective firing pattern

of ”consciousness”. Let thebrainB of the model be the set of all its causal

firing tracks. ThenB · C is the result of observing, acting, etc. as depen-

dent on consciousness, andC · B represents the action of consciousness

on such activities. To these objects, includingC itself, consciousnessC is

again applied; as in: ”observing itself ...” above, i.e. reflexively.

This characterization of consciousness transforms into anequational defi-

nition as follows:

Definition 5 (Reflexive Control) A sustained setC of track expressions

in the brainB represents a reflexive control mechanism if it satisfies the

equation

C · C ∪ C · (B · C) ∪ C · (C · B) ≈ C.

The question arises how to characterize firing patterns and their connec-

tional correlates corresponding to solutions of the above equation. For

this we need the notion of acausal cycle. This is asustainedsequence

{xc0(t0), xc1(t1), . . . xcn−1
(tn−1)}t

′′

t′ of causal track expressions of the form

αi
ti−→
ci

xci+1
with xci−1

∈ αi for i = 0, 1, . . . n− 1 , where the indices are of

course understood modulon.

Theorem 3 (Structure Theorem) A neural algebra admits nontrivial re-

flexive control if and only if it contains at least one causal cycle.
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Proof:

By the fixpoint theorem, the reflexive control equation has a set of so-

lutions in NA forming a lattice; certainly the empty set∅ is a solution.

Assume now that there is a nonempty sustained solutionC and consider

track expressionsxc(t) = α
t
−→
c

y(t′) in C. By the equation,C being a

left factor,y(t′) is an element ofC and is therefore also of this form. For

x = α
t
−→
c
y define theinput structureσ(x) as the set consisting of the key

neuron ofx and the key neurons of the elements ofα. ThenC contains

a nonfinite sequencexc0(t0), xc1(t1), . . . of causal track expressions of the

form αi
ti−→
ci

xci+1
with xci−1

∈ αi for i = 0, 1, . . . . The corresponding

sequence of input structures is eventually cyclic, (the model being finite).

By disregarding a non-cyclic initial segment of this sequence, we assume

that it repeats afterxcn−1
(tn−1). Thus,C contains a causal cycle.

Conversely, assume thatC0 = {{xc0(t0), xc1(t1), . . . xcn−1
(tn−1)}

t′′

t′ is a

causal cycle. By recursion construct

Cj+1 = Cj ∪ {αi
ti−→
ci

xci+1
(ti+1, i = 0, 1, . . . i− 1 mod n,

xci−1
∈ α, xci−1

, xci, xci+1
∈ Cj},

resulting in

C =
⋃

j

Cj.

From the structure of C we conclude

C · C ≈ C,B · C ⊆ B,C ·B ⊆ C,C · (B · C) ⊆ C,

and thereforeC is a nontrivial solution of the consciousness equation

C · C ∪ C · (B · C) ∪ C · (C · B) ≈ C,
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Figure 5: Connectome for States of Reflexive Control.

based onC0. Correspondingly, any set of causal cycles generates such a

solution.– Note that each causal cycle represents a conceptsinceC · (C ·

X) ≈ C for all X by the above.

Fig. 5 shows a very rudimentary scheme of reflexive control; activation,

triggered by some of the links shown, may migrate from one of the possi-

ble cycles to another. Again, one should envision connectomes larger by

several orders of magnitude.

If we allow ourselves to speak here loosely of ”consciousness”, the above

equations could be called the ”consciousness equation”. The lattice struc-

ture of the set of solutions then reflects the phases or statesof conscious-

ness, and their contextual movement depends on the inclusion/exclusion

of the various cycles, concepts, available from present states. In other

words: consciousness expands/contracts by attaching/releasing connec-

tions to perceptions, memories etc. according to the firing history, con-

stituting what one might reasonably call theneural mind. The sustained

thoughts{x
i
}t

′′

t′ constitutingC are the ”content” of consciousness. Only if

their sustention[t′, t′′] exceeds the length of the cycle considerably, con-

sciousness is ”aware” of them.
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Example:In Fig.2 (Fleeing on a Threat ), the cascade inF leading to the

flight decision (neuronc) is a possible content of the consciousnessC of

the individual, assuming that the neuronc is on the cycle. The objectF ·C

is the conscious reaction of flight.

7 Thinking about Episodes in a Scenarios

EXPLANATIONS

A scenario is what happens in the brain. It consists of a collection of

thoughts, memories, ongoing experiences and activities, states of con-

sciousness, etc., in short of objects inNA. To explain how such an ob-

ject is present in the history of this brain, we rely on declarations|= P of

acceptance ofP and on insights about causality:P directly explainsQ if

Q ⊆ P , a fact denoted byP |= Q.

An explanationis a tree-like structure, reminiscent of formal proofs in

logic. Starting with some accepted declarations such as|= P , we use rules

with which to proceed, such as: fromP |= Q and|= P conclude|= Q, and

P · R |= Q · R, etc.

LOGICAL THOUGHTS

Explanations are of essence when dealing with composite objects, compos-

ite thoughts. By dealing with operations on ”thoughts” we are invading the

realm of logic. In the following we only deal with a small aspect, namely

propositional logic.

Since the predicateP · X describe the extent to which the predicationP

applies to the ”thought”X, propositions — which are either true or false

— would be predicates with valuesP · X = X (for ”true”), respectively
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P ·X = ∅ (for ”completely false”) . Logical combinations of thoughtsP

andQ such as conjunctionP&Q and disjunctionP ∨ Q may be realized

by convenient combinations of the connectomes that realizeP andQ.

Negation ofP̄ of P means to detail the grounds for rejection ofP by listing

choices of rejecting specific track expressions inP and introducing ”op-

posing” track expressions. Thus, negation relates predications and their

possible opposites. We may also construct contradictory thoughts such as

P&P̄ . Far from exploding thoughtsX (in the sense of ”ex contradictio

quodlibet”), (P&P̄ ) · X resolves the contradiction by rescuing the com-

mon aspects of the predicationsP andP̄ , reminiscent of dialectics. This

embedding of logic into the study of predications would be aninteresting

(unwritten) chapter.

To experiment with the above notion of explanation, the reader may be

amused by following the logic of the superior brain of Hercule Poirot in

analyzing the closing scenario of a detective story, e.g. inAgatha Christie’s

”Five Little Pigs”. Considering objects that represent actions, motivations,

observations and conclusions by diverse people, and thoughts of people

about other people’s thoughts, Poirot explains why Elsa must be the mur-

deress.

Neuroscientists, rather than in fiction, are interested in scenarios happen-

ing in the brain, in specified functions and structures. The discipline of

expressing these notions as objects in a neural algebra, andinvestigating

them using equations among the, would be illuminating, I expect.

PROBABLE THOUGHTS

Starting from his work on pattern recognition, U.Grenander[25] investi-
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gates the association of probabilities to patterns of neural activations, i.e.

the probability of one pattern to relate to another. It wouldbe interest-

ing to identify Grenander’s patterns with elements of a neural algebra. As

observed above,NA is essentially a submodel of a Plotkin-Scott-Engeler

graph model of the untypedλ-calculus. Hence the recent proposal by Dana

Scott (personal communication) of stochasticλ-calculi would lend itself to

a promising refinement of this approach.

9 Apologia

Retired people, emeriti, love to travel to new places. I do. The friendly na-

tives take pleasure to show the impressive sights and amusing curiosities of

the country and listen with tolerance to the strange, mathematical, accents

of their visitor when he describes his perception of what they show him. In

telling this story as a piece of mathematics, I could have more soberly, and

perhaps more wisely, have chosen a more neutral terminology: ”reactive

nets” for ”brain”, ”net-functions” for ”thoughts”, ”retractive functions” for

”concepts” and ”auto-reflecting” functions for ”consciousness”. But an au-

thor does have the liberty of naming dramatis personas. Anyway, I really

did think about brains.

10 Discussion

1

”How does the brain work?” Asked by Colbert in his show to answer this
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in five words or less, Steve Pinker rose to the challenge and quote ”Brain

cells fire in patterns”, (1). This encapsulates the direction of research that

is on the point of turning into Big Science (2) - (6) by the Allen Founda-

tion, the European Union and NIH and others with impressive funding and

many laboratories and collaborators involved. The challenge also goes to

mathematics and computer science: How, and to what purpose should we

model the brain and its activities?

There is abundant reason to be sceptic, especially when it comes to higher

cognitive functions (7), or confronted with perceived irreducibility of the

mental to the physical (8), or with the innate complexity of models faced

with enormous growth of observational and experimental data (9). The

discussion is far from closed and interesting new mathematical models are

constantly being proposed (10).

This author’s contribution to modeling, neural algebra, was first introduced

at lecture in 2005 in answer to a challenge by my friend K.Hepp, published

in provisional form in (11, 12), based on the author’s version of the Plotkin-

Scott-Engeler graph model of theλ-calculus (13, 14, 15).

2

Understanding consciousness has been termed ”the most challenging task

confronting science”, and what has been a philosophical mainstay has

turned into a legitimate question of ”hard science” (16), (17). Motivated

by its depth and range, some rich, beautiful and touchingly personal books

came to be written by some of the pioneers (18) - (23).

And, not surprisingly, we observe an enormous production ofpapers on

brain and consciousness in neuroscience alone: about six papers per day,
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( 2101 titles in 2010 according to a citation search.) There have also been

some notable attempts at theoretical synthesis, under different viewpoints,

proposing mathematical approaches, ranging from dynamical systems (24)

to quantum mechanics (25), geometry (26), information theory (27) and

statistics (28), and relating them to neurological facts and psychological

experiments.

Consciousness may be perceived as an internal mechanism of the brain

which seeks a balance between processes that are caused by outside sources

and by diverse internal processes, conscious and unconscious. This home-

ostatic behavior was first described by Wiener (29) as one of the major

applications of hiscybernetics. Our consciousness equation formulates

the self-referential character of consciousness, an aspect that has been

formulated and investigated throughout the history of the concept, from

Descartes’ ”cogito ergo sum” to ”I am a Strange Loop” (30).

3

For NA the notions of thought, concept and consciousness are modeled

on neural nets whose level of abstraction from the psychophysical brain

is relatively modest; it starts with the individual neuronsand bases overall

organization on these. Much of present neuroscience is in fact concerned

with such higher levels of organization (31), (32): One considers neurons,

and more generally brain areas, that have been identified as being involved

in specific functions, and investigates their connectivities and functional

dependencies (33, 34). This is exactly what Neural Algebra attempts to

provide a mathematical model for.

The concept oflearning(35) would merit more than the following few re-
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marks. Our model tacitly subsumes learning in thefiring history of A:

First, the neural netA of the brain model comprises the totality of all

neurons that are ever considered. Second, the firing function f permits

periods where different subsets ofA are involved or dismissed from activ-

ity. This leaves out Hebbian learning, effected by changes in the weights

of synapses over time, thereby affecting the definition of legality for fir-

ing functions. One possible solution is to make the weights of synapses

dependent on some of the previous firing history.

4

The consciousness of animalsis a much debated concept. A technical ap-

proach may conceivably start with the knowledge, obtained laboriously, of

the actual neural net of some species. The famous nematodecaenorhab-

ditis eleganshad its complete neural network mapped with all its synapses

(36); much additional information has been obtained, approximating total

neural modeling (37). In principle, we could eventually askfor the con-

sciousness of that animal. In other words: ”How does it feel to be a worm

?” This remains to be done, and not only for worms. But, judging from a

possible lower bound on the number of neurons required for consciousness

to be initiated and sustained, c. elegans may not qualify.

Social consciousness, in a technical sense, would consist of understanding

individuals (people or ants etc.) as nodes in a (social) net,their interactions

as edges in the net and the strength of these interactions as the weights of

these edges (38).

Artificial consciousnessmay be an utopian goal (39), (40), although it has

been studied in the context of artificial intelligence, not least in the hope of

31



modeling the perceived advantage of ”conscious” beings over ”mechanis-

tic” robots (41), including swarms of robots (42). Even plants may have a

sort of consciousness (43).

More generally, it would appear that the neural algebra approach could

contribute to computer science in providing templates for the realization of

memory structures and of interacting highly parallel processes. One may

speculate about correspondingfuture architecturesfor interlaced memo-

ries and distributed programs.

5

Taking the risk to throw glances over the fence, I find some reassurance for

the present model, hoping that others would perhaps share it. They may

wish to consider the following instances:

Single neurons have been identified as the key torecognize a face, (44).

Such ”grandmother cells” appear to act as codes for concepts. This is

reflected in our characterization of ”concept” in Theorem 1,by introduc-

ing corresponding key neurons. Similarly formirror neurons, called upon

when a concept, e.g. a feeling, needs to be associated to a concept perti-

nent to it, (45).

Recruiting new neurons and synapses to create new abilitieshas been iden-

tified, and shown to be involved in the learning of bird songs (46) – (51),

and in reading (52). Again, like in the formation of concepts, in our model

this corresponds to the introduction of key neurons.

Our characterization of ”consciousness” as based on linkedcycles of par-

tial consciousness and concepts, (Theorem 3), also has someparallels: Re-
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current or reentrant connectivities in the brain have been recognized to be

involved in conscious activities, e.g. in the visual cortex(53), and more

generally in linked circuits (54) and so-called convergence–divergence–

zones and regions, (55) and (21, chapt.6).

6

The present author, fascinated by the challenges of neuroscience, is greatly

intimidated by the enormous literature of which he encountered the follow-

ing.
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