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Thoughts on the Brain,

A NEURO-LOGICO-MATHEMATICAL ESSAY

E.Engeler

Abstract

The mathematical model introduced in this paper attempzptain how complex scripts
of behavior and conceptual contents can reside in, combichédéeract on large networks
of interconnected basic actors.

The approach is exemplified by modeling the neural struancedynamics of the con-
nectome of a brain. The neurological hypothesis attribfitestions of the brain to sets
of firing neurons, dynamically to sets of cascades of suchgfi typically visualized
by imaging technologies. Such sets are represented aseimemis of what we call a
neural algebra, and their interaction as its basic operatkor convenience, we name
specific represented objects, and particularly kinds oéabj using the vocabulary of
mental functions for its richness and suggestivenessgusames such as "thoughts”,
"concepts”, "memories”, "scripts”, and use logical termiogy for naming some of the
combinations of these objects.

The main thrust of this paper develops from the fact thatadtaristic properties of these
suggestive notions can be cast in the form of equations afi¢kieal algebra. Analyzing
the solutions leads to a complete description of the nepessaicture of their neural
correlates. In particular we analyze the representatiqgreageption in the form of "con-
cepts” and of control in its various forms, distributed rarehical and especially reflexive

control, the latter modelling a conception of "consciolssie



1 Introduction: About Thinking

Neuroscience has demonstrated that mental objects suatiaslual con-
cepts and memories are locatable in the brain as specifimasiss of neu-
rons (and their connections). Encoded in living mattery éu@ not static,
but participate in interacting processes as part of "tlmgki So, even if
we know to identify some selected individual concepts asctiires in the

brain, the challenge is to understand them dynamicallyeir ihteraction.

Thinking means applying thoughts to thought. If the thoughs$ applied
to the thoughtB, then the resuld - B is again a thought: A theory of
thinking inherently has this algebraic aspect. But theiti@dof Logic re-
duces the operational aspect to linguistic categoriesghato operations
on propositions such as "and”, "or”, etc, or to modularitsegh as "nec-
essarily”. While this leads, since Aristotle, to very riamdafruitful logical
theories it also impoverishes logic as a basis for a theoth®mind. In
contrast, we hold that an algebra of thoughts should be bdisectly on
an analysis of what it means to apply a thought to a thought.

Such an approach is detailed in the following section. ltltes as we
shall see, in an algebraic system for formally represertingght objects
and their mutual interactions. This algebraic framewotéves to distin-
guish types of thoughts by their algebraic properties, ggag as it were.
For example, conceptual thoughts, concepts, are chawsrteas retrac-
tion operations. More generally, perceiving, acting orutjiats, thinking
about other peoples thoughts are captured by sets of egaaiiowing to
discuss various hypotheses on the functioning of the brairita connec-

tional structure. Problem solving, that major aspect ofireagenerally, is
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thus captured as solving equations for unknown brain meshnn

This implied relation between our formal model and biolagreality is to
be understood suggestively. The the names we choose folbgmate are
simply names and may be substituted by names chosen fromletetyp
different contexts that deal with intercommunicating astoBut we do
attempt, in the Discussion at the end, to relate these dewedot to (our
appreciation of) current neuroscience. The discussioefesrned to by

section-numbers; references to the literature are listebt

2 Patterns of Thought

THE BRAIN MODEL A

The conceptually simplest model of a brain represents gectivity, the
connectomed, as a directed graph whose nodes, called neurons, fire at
discrete time instancgse 7Z. The global activity of the brain, the firing
history of these neurons, is represented byfitiireg function f (a, t) which
takes the valué if the neuronu fires at timet and0 otherwise. Modelling

a brain is accomplished by imposing restrictions on thetions f by spe-
cific afiring law inherited from abstracting neurological findings. A firing
law specifies the condition under which the firing of neurens. ., a; at
timesty, ..., t; causes the firing of a neuran,, at some later time; , ,
assuming the former are connected to it by directed edges.

For example: In artificial neural nets a rudimentary firing ia based on
assigning weights to the individual directed edges of tlaplr: If sum

of weights the incoming edges (synapses) exceeds a giveshibid, then



the firing of the corresponding source neurons at tirt@uses the firing of
the target neuron at time+ 1. Positive weights correspond to excitatory,
negative weights to inhibitory synapses.

Remark:To view living neurons as purely reacting entities is todnietve

in my opinion. As the result of a very long line of descent framcellular
ancestors, it seems reasonable to suspect that they retagnnsechanisms
of memory, optimization, goal functions, etc. These coudazivably be

modeled in the fashion of our brain models, indeed subsum#édm.

The directed graphl together with the firing functiorf and the firing law
constitute our brain model; it describes a full history of the modeled
brain.

Taking a causal point of view of the sequences of individuaids, we
are able to distinguish cascades of firings: Starting withesarbitrarily
selected firings at some time instancesaacadeas a branched sequence
of firings of neurons which causally follow from these origliactivations
during a finite time interval. Airing patternis simply a set of such cas-
cades.

Our aim is to view firing patterns as functions, brain funeioln analogy
to the usual set-theoretic definition of functions, the wdlial cascades
need to be understood as tuples of input / output cascades. isTac-
complished by choosing the firing of a specific neuron as tygket of
causality: the parts of the cascade that are its temporatadénts are un-
derstood as inputs; a cascade that follows it is understeodtput. — This
analysis of cascades is formalized below by representioly sascades as

track expressiondNote that the input- and output-cascades should reason-



ably also be represented as track expressions, thus stngctbe whole
cascade. This leads to the formal recursive definition aktexpressions

in the next section.

FIRING TRACKS AND FIRING PATTERNS

Let A be a given brain model. Track expressions are defined reelysis
follows:

The basic track expressiaiit) denotes the activation of a single neuron
at an integer time instance

Compositdrack expressions are based on paths of directed edgkama
the firing functionf, i.e. on cascades of firings. They all have the form
z.(t) for some neurorm, the key neurorof z.(¢), and time instancé. In
particular, the key neuron af(t) is a, thus this expression may also be
written x,(t).

The antecedent neurons, . . . a, are connect to neurohalong paths of
one or more edges iAd, which in turn connects by such a path to neuron

a,+1. By defining

(1) = {za (1), 20, (t)} = T, (bus),
where

[ AT A} EZ,tl,...tn <t <tpy1,

we recursively compose the track expressiops. . . z,,,,. The neurorb

is called thekey neurorof z;(t), anday, . .., a,,1 are the key neurons of
the track expressions,,, . .., z,, . ,. Each such track expression, by timing
of the key neurons, describes a firing of the neurons ocaumint. This

leads to:



{{al3),b(3)) if e(T), eali) } :|- ({e(T)} %n- ({f(D), g(9)} ]T[* b(12))),

{en(8)) =~ ey(9)

Figure 1: A neural net, a cascade and two causal tracks esxpnss



Definition 1 (Causal Track Expressions)The track expressiom,(t) =
a(t) is causalif f(a,t) = 1;

The composite track expression

2y(t) = {@a (1), - T, (t0)} = T, (bus1)

is causal, iff(a;,t;)) = 1,i=1,...n+1and f(b,t) = 1, and the firing of
ay, . . .a, Suffice according to the firing law for the activationioés well
as for all neurons on the paths from, . . . a,, to b and fromb to a,,, | at the

times given in the expression.

Note that the same neuron may occur repeatedly in a traclessipn, re-
flecting the fact that activations may be cyclic.

Fig.1 shows a tiny example of a neural net in which we may olestre
cascade figured below it. In this cascade two causal trackiseaxtracted,
one of them the cycléry, ¢s, ¢3). The corresponding track expressions are
supplied, using the time indices from the given scale. Neurs the key
neuron of the first expression. — One should realize thaf ca¢sades (and
track expressions) of size larger by several orders of ntages should be
envisioned.

As special cases we admit initial and terminal track expo@sswvith empty

antecedentd) % z,,., (1), respectively empty consequents

Hze, (t1)}, . Axe, () }} % 1, where” 17 stands for the missing con-

sequent.

Each composite causal track expression is divided by itsnieeiyon into
argument track expressions and a value track expressijmesenting the

causality. (What is different from the classical functiase is that these



arguments and values could again be, necessarily causd gxpressions;

this is a central aspect of the model.)

Definition 2 (Firing Patterns) Any set of track expressions which are causal

with respect to the firing law is called a firing pattern.

3 Neural Algebras

Firing patters are the basic objects of our theory. Theywaateally meant

to embody brain functions.

The challenge is to identify those firing patterns on whicbasonabléhe-

ory of the mindmay be based. These brain functions, firing patterns, are
guite complex infinite sets, a fact to which we have becomeqblivi-

ous in the case of analysis. The development of analysisingkes out

its realm by adding additional structure: We can add, miyltigifferen-
tiate and integrate functions. With this in mind, our goalasievelop a

corresponding operability with firing patters.

COMPOSITION

Firing patterns are related by acting on each other as detednby the
structure of the net and the firing function. We untangle¢hageractions
by basing them on the conceptaybplyinga firing pattern to another. Re-
call that in each causal track expression the part to theofefihe main
arrow represents the cascades that prompt the key neuroe.td fie cas-
cade denoted by the expression on the right denotes what negsfthis
firing produces. The same is true for sets of causal trackesspns, i.e.

for firing patterns.



This observation motivates the following definition of camsfion of such

sets:

A firing patternM composeavith a firing patternV applies the causation,

represented by causal track expression&/inon /N as follows:

M-N ={ 2,1(tnr1) : there exists{z1(t1), ..., zn(ty)} % 2 (tns)

in M such that{zy(t1),...,z,(t,)} € N}.

Definition 3 (Neural Algebras) Given A = (A, f), a firing law and the
operation of composition, the sB of subsets of the set of causal firing
tracks, closed under this operation, defines an algebraucsire, theneu-
ral algebraV, = (B, -).

Neural algebrasV 4 are our candidates for an algebra of thoughts as en-
visioned in the introduction. The elements of a neural algedre sets

of track expressions describing activities of neural asdies, "thoughts”
among them. The algebraic operations correspond to basio&hinking

and equations serve to describe the interoperation of titeugoncepts,
memories and scripts for actions.

Remark: N4 is essentially a submodel of a Plotkin-Scott-Engeler graph

model of the untyped-calculus, (see [13, 14, 15]).
4  Episodes of Mental Activities

The neurological hypothesis posits that all mental aatisiare embodied

in the brain as patterns of firing neurons. Such patternsajlgiinvolve a
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great number of neurons, linked over considerable distaad active for
considerable time relative to the time scale of the indigidweuron. In-
deed, any mental concept and activity is episodic in charaict particular
in the way in which it is activated and used.

It may be argued that in reality the brain does not work on a tgoale
from minus to plus infinity, that i, but during a finite lifetime. In the
same vein, a set of track expressidisnakes only sense as a mental ac-
tivity if its firing is sustainedor a time interval(t, ¢1]. Such a sustention
Is called appreciable tf — ¢ty > v for some arbitrarily fixed number, say
10°. Given a time intervalty, ;] and track expressions, (1), ...z, (1)
we denote byR = {z,(t),...2,,(t)}; firing pattern of their sustained
firing during that interval. This means that the set of firimges of the key
neurons ofRR cover the given time interval, th&ustaining intervabf R.
The composition of sustained firing patterns may not be sweda
Notation: If z(t) is a track expression, thes(t’) is the result of substi-
tuting ¢’ for ¢t everywhere inz(¢), including of course all instances of the
dependent firing times, modified according to their placehettack ex-
pression.

Two sustained firing patterns andY areapproximataf their sustaining
intervals overlap for an appreciable subinterval. We wiitex Y in this
case.

There are two ways by which we are able to realize sustenfiarfiong
pattern in our brain brain model: We may assume a source mdlsi@t one
or more neurons which continue to activate the input neuobrds during
a given time interval, conceivably by biochemical messggi@r we may

have an autonomous sustention in form of one or more caus®scin
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the connectome. Such a cycle could be the base of a cyclieglgated
firing track as in some of the connectomes that we introduee. I fact,
external sustention may be mimicked by cycling a sourc&teapression
upon itself.

Familiar mental activities are typically based on sustdifieng patterns,
having anepisodic characterand can be described as thoughts, scripts
or as memoriesThoughtsare general mental activities, conscious or not,
Scriptsact situationally and are templates for procedures, pi®jgoo-
cesses, etcMemoriesare invoked by triggers and store auditory and vi-
sual perceptions, thoughts, emotions, etc.

Any sustained firing pattern is called an episode. Insteddmfode” we
may use some other suggestive term, e.g. "reaction pattgrefception”,

or more generally "distinct brain function”, depending ¢ kind of ob-
jects we wish to identify in applications of the model.

Even for small brains the set of firing patterns is enormoukssaems to
defy structuring. Neuroscience is concerned with idemmtgythe embodi-
ments of specified functions of the brain. Such functiongigsenguished

by giving them well accepted names if they have proved to dlelstand

express the gist of the matter.

Fleeing upon being threateng(Fig.2), may serve here as a simple exam-
ple of a script; it is based on the embodiment of an instiect®action
pattern, consisting of the mental episodes of percepftiaf threat, the
perceptionD of danger,L of the lack of cover, and’ the reaction of flight.
For example:

T = {{us(t), v(t")} = s(t"), {us(t)} — s(t")}}}

ai a2
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Visual Inputs

no cover

C
decide

f
flee!
Figure 2: Fleeing on a Threat.

It is composed of the track expressians”it is hot”, u, "it is big”, v "it
moves fast towards me”, with the key neuransa, haming the threat, and
s "I'm scared”. Correspondingly foD and L with key neurons;, respl.
The script of this instinct, is simply” = {r(¢'), s(t"), 1(t")} < f(¢") i
Figure 2 highlights the cascade which correspond to thd;keapression

of I, the reaction upon a threat.
5 Perception, Concepts and Control

The above example of flight-upon-threat is, of course, moreeptional
than realistic. There are two considerations:

First, it is not plausible that a real brain has individualires that com-
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pletely and exclusively correspond to terms such as "bifgist'approach-
ing” and their combinations into "threat” and "danger”. Taavould sim-
ply have to be too many neurons in a realistic brain to embddiiecon-
cepts necessary for its functioning in the world. Indee, ieasonable to
embody these concepts by larger functional objects in ta@apby con-
nectomes that support the brain function correspondineqerception
of these individual concepts. Then we have am exponentaler choice
of representations; concepts are represented by elemfents.e Instead
of "fleshing out” the above example, we shall turn to the peabbf what

it means abstractly for an element.df; to perceive a concept. Observe
that perceptions are commonly expressed as predicategtisag being
called "big” or "threatening”, etc. Thus the problem comesvd to char-
acterize perceptions and concepts as types of objects metlral algebra.
A solution to this problem is proposed in the following seanti
Secondgontrol. In the example, the control of the reflexive behaviour of
"flight” is embodied in a single neuron. This also is far froeirfg neuro-
logically plausible. Again, we do not propose here to "fleali the neural
control mechanism for this example but concentrate on alysisan how
the abstract notion of control can be represented in a nelgaibra by one
or more objects of\4, followed by an attempt of some structuring of the
notion of neurological control.

To understand how an elemefitof V4 could be said to have control over
firing patterns, consider the connectome of Fig.3 on whiehctintrolling
object A is assumed to be based. The key neurong,ahe "controlling
neurons”, are emphasized in black. Control is effected Ipjyapg A to an

input B resulting in the controlled output.
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Figure 3. Connectome of Feedback Control.

A-B=C

Looking at the connectome, it is clear that béttandC' are based on con-
nectomes that are parts of the connectomé.ofhe key neurons aB and
C are colored red and green respectively. Observe that sothesd key
neurons are both red and green: control may include feedifacurse.

In a sense, control with more than one controlling neuron im&yon-
sidereddistributed control This could be expressed by splitting into
A= A"UA"U A" according to the different controlling neurons.
coupled controhrises if two controlling objectd; and A, actin a coupled

manner, e.g.
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A -B=C,Ay-C = B;

a situation encountered in neurology (e.g. hand-eye mongmest as in
mechanics (e.g. coupled pendulum).

The two above forms of distributed control are representetirst-order
equations. Higher-order equations represaatarchical control the con-
trolling object A, is itself controlled by a separate controlling objett

For example

A1:A2'B,A1'C:D

Is an example of second-order control. Again, neurologezalmples are
easily imagined.
On a still higher conceptual level of control is what couldcb#éedreflexive

controlto which we return in a later section.

Altogether, this shows the richness of forms of control acwhversely,
the challenge to recognize, localize and describe natwrtral mecha-
nisms in the brain, concretely in the brain modé&l. The result may per-
haps be of help in structuring the exploration and represiemt of struc-

ture/function relations in neuroscience.

Control of activation in a neural net may be seen as residingpecific
neurons, control neurons. These may be distinguished ataihed by

a mathematical analysis of the connectome, (e.g. [30]) p@ncach that
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may nicely complement the present one.

6 Predicates, Concepts and their Structure

To arrive at the notion of concept, we look at a special typérinfg pat-
terns, corresponding to the mental action of predicatiahgmfrom there
to look for the kind of patterns that may be identified as cptsand thus

have chance to be relevant for a theory of thoughts in thebrai

PREDICATION

Predicating about the snow that it is white means to applyttloaght
[whiteness] of being white to the thought of the snow. A this is rep-
resented as [whiteness|snow]. Generally, the composed thought X
denotes the extent to which the predicatiBrapplies to the thoughk;
here: to what extent does [whiteness] apply to [snow].

Language also aims to describe composition of thoughtd) ascpred-
icating about a predication or about the result of a predinate.g. by
qgualifying it. There may be confusion: To say tlais a philosopher king
can be understood as expressing quite different thoughi2.al king who
Is also a philosopher, a philosopher who is also a king, onerabering
Plato, is he an example of the best way to govern the state p&yfging
the mode of applications of thoughts to thoughts this teteslinto: Is it
[philosopher]- ([king] - D), or [king] - ([philosopher]- D), or ([philoso-
pher]- [king]) - D, or ([kKing] - [philosopher]) D ?

Indeed, many of the conundrums of communication, in factyrarthe

traditional sophisms, are based on language lacking (ausing, or abus-
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Ing) precision in expressing the exact structure of theiaeaipbn of thoughts
to thoughts. In particular, thoughts are not associative.

Another type of qualification is context. In the context ofipos [blue-
ness]-R for a personk calls R a democrat, while in a medical context it
expresses an emergency. This underlines the insight thjéss] as any
other predication, is extensive, persistent and broadhicable.

If a predication is to be conceptually relevant (and a stablaponent of
the activities of the brain), the main requirement is thahiuld be general,
or abstract, enough not to depend on accidental, extraneonditions on
the objects to which it is to be applied. This correspond$¢ottaditional
notion of a concept. Since Aristotle, concepts are arrivdxyy abstraction:
by taking a thought and eliminating all extraneous elemehtsacciden-
tia, its accidental or irrelevant aspects.

We base abstract concepts/Afn, on corresponding predications, consid-
ered as abstraction operations:Hfis a concept applied to a thought
which belongs to the conceptual field 8f then R - X removes fromX

all aspects that are irrelevant with respect to the preidicak. Thus, if
applying R again returns the same result, this is the pure abstractf} the
-conceptual content ot .

Accordingly, we define:

Definition 4 ( Concepts) A predicationR is a concept if all sustained in-
putsX for which bothR- X andR-(R-X) are sustained satistf-(R-X) ~
R-X.

A given brain modelNV 4 may or may not admit firing patterns that are con-

ceptual. The immediate question is therefore: What are dn@ectome
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structures corresponding to concepts ?

An important aspect of the usual notion of "concept” is thet that it can
be called by a name. This aspect is realized in our model bgsithg a
characteristic neuronfor a given predicatio® which we wish to identify

as a concept. Thisnameghe concept.

To simplify notation, let lower case greek letters denotedigets of causal
track expressions, the involved time instances for its nemare tacitly

understood.

Theorem 1 (Connectomes of Conceptstvery concept?, named byr,
can be presented in the form

{o i> Tai(t) : o, () € i C {wg(t) - j € I},0 € T},

and realized by a connectome centered at one common newsath all

paths returning to it.

Proof: Let R = {«; AN To,(t;) 11 € I}ﬁ; be a conceptiz € B. From the
defining equatiorr - (TR - X) ~ R- X itfollows at once thai? mapsR - X
onto itself for any sustained. ThereforeM = R-X C {z,,(t) : i € I}}..
Note thate; C R - X for all sustainedX: Assumeo; = {z4(t), y(t)}1.,
with z,(t) € M andy,(t) ¢ M. ThenR - {z,(t), yo(t) }it = {za(t) i; and
R-(R-{z.(t),y(t)}; = 0. Hencea; must be a subset dff.

Conversely, ifS' is of the above form, then it is obviously a retraction and
therefore a concept.

Fig.4 shows the schematic view of the very rudimentary cphége the

constituting tracks are highlighted:
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Figure 4. Connectome of a Concept.

R = {{za(t), 2(t")} = zat"), {m} = m}.

CONCEPTUALIZATION

To turn a predicaté’ into a concepfz means to specify those aspectdof
which constitute its abstract, non-accidental, compmdret P = {; Si>
xq,(') : i € I};} and choose a subs&tC {z,,(t) : i € I};! of the rigr;t-
hand side ofP and a key neuron. Then we may seR = {{z,,(t')} %
xq,(t") : x,, € S}i;, which is obviously a concept. B contains all of the
second elements df the we would callR the full abstract concepof P,
otherwiseR constitutes some indications or marks about the perception
chosen by specifying.

If, instead of choosing from the second element#db construct a con-
cept, we may use some of its antecedents® form A C {q; Si> 1L:ie€
I}, By settingR = {{«; — 1} % (0; — L) : (@ — L) € A}, we
obtain a conceptual object \;vhich we coulél cqﬂra-conc;eptlt embodies,
depending on the choice of, the "causes” ,’traits” or "clues” that con-

tribute to the predicatio.
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Concepts themselves do not constitute a subalgebra of thalredgebra:
Consider two concept® and.S and composé? - S = {z : I(« - r) €
R, C S}. Observer € « by theorem 1, hence € S. Therefore
R-SC Sandx =8 — yin R- S for somes andy. According to theo-
rem 1 we would neeﬂsg R - S 'which is not guaranteed (as it would be if
£ were a singleton, as is the case for the composition of atistoamcepts

and pre-concepts.)

It is straightforward to construct concepts that act onmgiwencepts (that
Is second order and higher order concepts), such as othelegamncepts;
planning reaction patterns and the like.

A simple example of a second order concept is the congegsithe causal
concatenation of two concep$s and.S; : "upon S; follows S, ”, e.g. one

script follows another.

The concatenatiof§ of these concepts is established by a neuramich

links the reference neuronsandb of these two concepts:

S = {{za(t")} 5 2(t"), 74 € S1, 7 € So}1.

for some time intervalty, t;] of sustension. We might call andb the

reference or conceptual neurons of order ona, order two.
7 Self-Reference and Reflexive Control iV 4

FIXPOINTS IN N4
Among the equations that are important for the understgnafithe inter-

actions of brain activities, fixpoint equations, as so oftekey places in
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mathematics, play an important role. Consider arbitragynents of the
neural algebraV4 and a variableX, and combine them by the operations
of composition and of union into an expressioX ) . Thenyp(X) = X

Is a fixpoint equation.

Theorem 2 (Fixpoint Theorem) In A4 all fixpoint equations have a ap-
proximate solution; the solutions form a lattice by inclusi If o(X,) O

X, then there is a solution which includ&s, .

Proof : Because composition and union are monotonic operationnesith
spect to set inclusion’ O X impliesp(X') D ¢(X). Also, if D is a set

of sustained elements &f 4, directed by inclusion, then

o(lJ D)= o).

XeD
From this follows, that the fixpoint equatior{ X ) = X has a least solution

e ),
wherep’(X) = X andy™ (X)) = ¢(¢"(X)):

el e (X0) = [ " (X0) = ¢"(X0).

n+1
In the same way, ifr(Xy) O X, then

Je"(X0)

IS the least fixpoint including(y,.

SELF-REFERENTIAL CONCEPTS
Many of the famous sophisms may be considered as being basssifo

reference. This is not the place to dwell on the history obdaxes and
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sophisms linked to self-reference.

Let me mention just one, theorem 66 in Dedekind’s importantfamous
"Was sind und was sollen die Zahlen”, where he proved theenie of
the infinity of natural numbers by considering "the totaldlobjects of
thought” as follows: The thought that | am thinking is itsaff object of
thought. Taking any thought objedf,, e.g. the thought "I am thinking
of a number”. Reflecting i the thought of this object is agairohject of
thought, etc, yielding an infinity of objects of thought. Afis the men-
tal operation of reflecting on a thought, the Dedekind’s tmmasion step
is Nix1 = N;UR- N;,i = 0,1,.... Collecting up yieldsN = (J, N;
which solves the recursioN = N - N with initial condition Vy. ! Real-
ize, however, that the objeét, because of the restricted sustensions, only
approximates the desired object. The infinity of the natauamhber, while
non-contradictory, is here something like an illusion. Borvincing to the
finite brain.

Compare this with the familiar conundrum of "the paintingttshows the
painter executing this painting”.This work of art, eventiekisted some-

where, can only be approximately thought of.

REFLEXIVE CONTROL IN N4
The notion of reflexive control is derived here by an analg$ishat is ex-
perienced as consciousness. Whether the result is indestia artificial

consciousness operating in the model brain is of coursetaelea

Dedekind’s conception was criticized by the co-editor Emidogether of his collected works (Braun-

schweig, 1932) as being based on the contradictory notitimeabtality of thought objects, see p.391.
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For the purposes of this analysis let us understaodsciousness as the
ability of a ” brain” to consciously observe itself as beingrtscious and

as consciously planning and actinghis definition, at first sight, appears
circular. Interpreted itV 4 It is simply self-referential:

The modelNV4 = (B, -) comprises firing patters corresponding to observ-
ing, acting, planning, moving, etc. Lét be the prospective firing pattern
of "consciousness”. Let thierain B of the model be the set of all its causal
firing tracks. ThenB - C'is the result of observing, acting, etc. as depen-
dent on consciousness, a6d- B represents the action of consciousness
on such activities. To these objects, includifigtself, consciousness is
again applied; as in: "observing itself ...” above, i.e.exriflely.

This characterization of consciousness transforms integaational defi-

nition as follows:

Definition 5 (Reflexive Control) A sustained set’ of track expressions
in the brain B represents a reflexive control mechanism if it satisfies the
equation

C-cuCc-(B-C)uC-(C-B)=C.

The question arises how to characterize firing patterns lagid tonnec-
tional correlates corresponding to solutions of the abaweagon. For
this we need the notion of eausal cycle This is asustainedsequence
{20, (to), w2, (t1), ... x(,_,(t,_1)} of causal track expressions of the form
o i—> Te,,, Withz,, | € o fori =0,1,...n — 1, where the indices are of

course understood moduto

Theorem 3 (Structure Theorem) A neural algebra admits nontrivial re-

flexive control if and only if it contains at least one causgatle.
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Proof:

By the fixpoint theorem, the reflexive control equation hastic so-
lutions in A4 forming a lattice; certainly the empty s@tis a solution.
Assume now that there is a nonempty sustained soludti@nd consider
track expressions.(t) = « % y(t") in C. By the equation(' being a
left factor,y(¢') is an element of and is therefore also of this form. For
T =« % y define thanput structures(x) as the set consisting of the key
neuron ofr and the key neurons of the elementsaof ThenC' contains
a nonfinite sequence, (o), z.,(t1), . . . of causal track expressions of the
form «; Z—> Te,,, With z., , € «o; fori = 0,1,.... The corresponding
sequencé of input structures is eventually cyclic, (the @hbeing finite).
By disregarding a non-cyclic initial segment of this seqeesrwe assume
that it repeats after. (¢,_1). Thus,C contains a causal cycle.
Conversely, assume thaty = {{z.,(ty), zc,(t1),.. . zc,_ (ta_1)}l is @

causal cycle. By recursion construct
t; . .
Cit1=C; U{w = Te;p, (Lig1,=0,1,...i—1 mod n,

Tep | € Q, T, s Ty Tepy € O},
resulting in
c=Jc;
j
From the structure of C we conclude
C-C=C,B-CCB,C-BCC,C-(B-C)CC,
and therefor&’ is a nontrivial solution of the consciousness equation
c.-cucC-(B-C)uC-(C-B)=C,
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Figure 5: Connectome for States of Reflexive Control.

based on”,,. Correspondingly, any set of causal cycles generates such a
solution.— Note that each causal cycle represents a corce@C - (C -
X) ~ C'for all X by the above.

Fig. 5 shows a very rudimentary scheme of reflexive contrctivation,
triggered by some of the links shown, may migrate from ondefdossi-
ble cycles to another. Again, one should envision conneesolarger by
several orders of magnitude.

If we allow ourselves to speak here loosely of "conscioushdke above
equations could be called the "consciousness equatiorg.|dttice struc-
ture of the set of solutions then reflects the phases or stht@mnscious-
ness, and their contextual movement depends on the inofeg@usion
of the various cycles, concepts, available from presenéstaln other
words: consciousness expands/contracts by attachieggialy connec-
tions to perceptions, memories etc. according to the firiisgphy, con-
stituting what one might reasonably call theural mind The sustained
thoughts{z, }¥/ constitutingC' are the "content” of consciousness. Only if
their sustentiorjt’, t"] exceeds the length of the cycle considerably, con-

sciousness is "aware” of them.
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Example:In Fig.2 (Fleeing on a Threat ), the cascadédimeading to the
flight decision (neurom) is a possible content of the consciousnéssf
the individual, assuming that the neurois on the cycle. The objedt - C

Is the conscious reaction of flight.

7 Thinking about Episodes in a Scenarios

EXPLANATIONS

A scenario is what happens in the brain. It consists of a cidle of
thoughts, memories, ongoing experiences and activitiedes of con-
sciousness, etc., in short of objectsAfy. To explain how such an ob-
ject is present in the history of this brain, we rely on deafi@ns}= P of
acceptance oP and on insights about causality’. directly explaing() if

() C P, afactdenoted by | Q.

An explanationis a tree-like structure, reminiscent of formal proofs in
logic. Starting with some accepted declarations sugk &3 we use rules
with which to proceed, such as: frof = @ and= P conclude= @, and
P-REQ-R,etc.

LOGICAL THOUGHTS

Explanations are of essence when dealing with composieethjcompos-
ite thoughts. By dealing with operations on "thoughts” we iwading the
realm of logic. In the following we only deal with a small aspenamely
propositional logic.

Since the predicat® - X describe the extent to which the predicatiBn
applies to the "thought’X, propositions — which are either true or false

— would be predicates with valug3- X = X (for "true”), respectively
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P - X = () (for "completely false”) . Logical combinations of though®
and( such as conjunctio®& () and disjunction” Vv () may be realized
by convenient combinations of the connectomes that re&liaad().
Negation ofP of P means to detail the grounds for rejectionfoby listing
choices of rejecting specific track expressiongirand introducing "op-
posing” track expressions. Thus, negation relates predisaand their
possible opposites. We may also construct contradictayghts such as
P&P. Far from exploding thoughtX (in the sense of "ex contradictio
quodlibet”), (P&P) - X resolves the contradiction by rescuing the com-
mon aspects of the predicatiofsand P, reminiscent of dialectics. This
embedding of logic into the study of predications would berdgeresting

(unwritten) chapter.

To experiment with the above notion of explanation, the eeaday be
amused by following the logic of the superior brain of HeecBloirot in
analyzing the closing scenario of a detective story, e.ggatha Christie’s
"Five Little Pigs”. Considering objects that represeni@ts, motivations,
observations and conclusions by diverse people, and th®wjlpeople
about other people’s thoughts, Poirot explains why Elsat ineishe mur-
deress.

Neuroscientists, rather than in fiction, are interestedcenarios happen-
ing in the brain, in specified functions and structures. Tiseipline of
expressing these notions as objects in a neural algebranaestigating

them using equations among the, would be illuminating, leexp

PROBABLE THOUGHTS

Starting from his work on pattern recognition, U.Grenan@ai investi-
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gates the association of probabilities to patterns of nentavations, i.e.
the probability of one pattern to relate to another. It wob&linterest-
ing to identify Grenander’s patterns with elements of a akalgebra. As
observed above\/, is essentially a submodel of a Plotkin-Scott-Engeler
graph model of the untypextcalculus. Hence the recent proposal by Dana
Scott (personal communication) of stochagticalculi would lend itself to

a promising refinement of this approach.

9 Apologia

Retired people, emeriti, love to travel to new places. | doe Triendly na-
tives take pleasure to show the impressive sights and amaosiosities of
the country and listen with tolerance to the strange, maé#tieal, accents
of their visitor when he describes his perception of whay gtew him. In
telling this story as a piece of mathematics, | could haveensoberly, and
perhaps more wisely, have chosen a more neutral terminologgctive
nets” for "brain”, "net-functions” for "thoughts”, "retretive functions” for
"concepts” and "auto-reflecting” functions for "conscimess”. But an au-
thor does have the liberty of naming dramatis personas. AgyWweally
did think about brains.

10 Discussion

1

"How does the brain work?” Asked by Colbert in his show to aesthis
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in five words or less, Steve Pinker rose to the challenge anted@rain
cells fire in patterns”, (1). This encapsulates the directibresearch that
Is on the point of turning into Big Science (2) - (6) by the AllEounda-
tion, the European Union and NIH and others with impressiveling and
many laboratories and collaborators involved. The chghkealso goes to
mathematics and computer science: How, and to what purfposddswe
model the brain and its activities?

There is abundant reason to be sceptic, especially whemigsdo higher
cognitive functions (7), or confronted with perceived dueibility of the
mental to the physical (8), or with the innate complexity addels faced
with enormous growth of observational and experimentah d8). The
discussion is far from closed and interesting new mathealatodels are
constantly being proposed (10).

This author’s contribution to modeling, neural algebrasWest introduced
at lecture in 2005 in answer to a challenge by my friend K.H@piplished
in provisional formin (11, 12), based on the author’s varsibthe Plotkin-
Scott-Engeler graph model of thecalculus (13, 14, 15).

2

Understanding consciousness has been termed "the molrgiag task
confronting science”, and what has been a philosophicahstay has
turned into a legitimate question of "hard science” (16);)(1Motivated
by its depth and range, some rich, beautiful and touchingig@nal books
came to be written by some of the pioneers (18) - (23).

And, not surprisingly, we observe an enormous productiopagfers on

brain and consciousness in neuroscience alone: aboutgetrpper day,

29



(2101 titles in 2010 according to a citation search.) Theneshalso been
some notable attempts at theoretical synthesis, underelit viewpoints,
proposing mathematical approaches, ranging from dyndsystems (24)
to quantum mechanics (25), geometry (26), information mhéa7) and
statistics (28), and relating them to neurological factd psychological
experiments.

Consciousness may be perceived as an internal mechanidne @frain
which seeks a balance between processes that are causddidg saurces
and by diverse internal processes, conscious and uncassdibis home-
ostatic behavior was first described by Wiener (29) as onéefntajor
applications of hiscybernetics Our consciousness equation formulates
the self-referential character of consciousness, an aspat has been
formulated and investigated throughout the history of tbecept, from

Descartes’ "cogito ergo sum” to "I am a Strange Loop” (30).

3

For N4 the notions of thought, concept and consciousness are gtbdel
on neural nets whose level of abstraction from the psychsipalbrain

IS relatively modest; it starts with the individual neur@rsl bases overall
organization on these. Much of present neuroscience iscirctancerned
with such higher levels of organization (31), (32): One ¢dess neurons,
and more generally brain areas, that have been identifiediag imvolved

in specific functions, and investigates their connectgitand functional
dependencies (33, 34). This is exactly what Neural Algeliergts to
provide a mathematical model for.

The concept ofearning (35) would merit more than the following few re-
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marks. Our model tacitly subsumes learning in fineg history of A:
First, the neural netd of the brain model comprises the totality of all
neurons that are ever considered. Second, the firing fungtipermits
periods where different subsets.éfare involved or dismissed from activ-
ity. This leaves out Hebbian learning, effected by changdke weights
of synapses over time, thereby affecting the definition gélgy for fir-
ing functions. One possible solution is to make the weiglitsynapses

dependent on some of the previous firing history.

4
The consciousness of anim&sa much debated concept. A technical ap-
proach may conceivably start with the knowledge, obtaiaédiiously, of

the actual neural net of some species. The famous nemeasm®rhab-
ditis eleganshad its complete neural network mapped with all its synapses
(36); much additional information has been obtained, axprating total
neural modeling (37). In principle, we could eventually &skthe con-
sciousness of that animal. In other words: "How does it feddd a worm

?” This remains to be done, and not only for worms. But, juggnom a
possible lower bound on the number of neurons required fas@ousness

to be initiated and sustained, c. elegans may not qualify.

Social consciousnes® a technical sense, would consist of understanding
individuals (people or ants etc.) as nodes in a (socialXhet; interactions

as edges in the net and the strength of these interactiohe ageights of
these edges (38).

Artificial consciousnessiay be an utopian goal (39), (40), although it has

been studied in the context of artificial intelligence, reatdt in the hope of
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modeling the perceived advantage of "conscious” beings ‘tmechanis-

tic” robots (41), including swarms of robots (42). Even pfamay have a
sort of consciousness (43).

More generally, it would appear that the neural algebra @gogir could

contribute to computer science in providing templatesHerrealization of

memory structures and of interacting highly parallel pesgs. One may
speculate about correspondifgure architecturegor interlaced memo-

ries and distributed programs.

5

Taking the risk to throw glances over the fence, | find somese&ance for
the present model, hoping that others would perhaps shaiédéy may
wish to consider the following instances:

Single neurons have been identified as the keyetmgnize a face(44).
Such "grandmother cells” appear to act as codes for concepiss is
reflected in our characterization of "concept” in Theorent\ introduc-
ing corresponding key neurons. Similarly foirror neurons called upon
when a concept, e.g. a feeling, needs to be associated taceptquerti-
nent to it, (45).

Recruiting new neurons and synapses to create new ablilaebeen iden-
tified, and shown to be involved in the learning of bird sog) - (51),
and in reading (52). Again, like in the formation of concetsour model
this corresponds to the introduction of key neurons.

Our characterization of "consciousness” as based on liclelds of par-

tial consciousness and concepts, (Theorem 3), also hasgraiiels: Re-
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current or reentrant connectivities in the brain have beeongnized to be
involved in conscious activities, e.g. in the visual cor(é8), and more
generally in linked circuits (54) and so-called convergesivergence—

zones and regions, (55) and (21, chapt.6).

6
The present author, fascinated by the challenges of naemus; is greatly

intimidated by the enormous literature of which he encoattéhe follow-

ing.
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