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1 PAC Learning

1.1 Learning Models

Definition 1.1. A statistical learning problem is a tuple (H,Z,D , l), where

� H is a class of functions h∶X→ Y called hypothesis class (and h is called a prediction
rule, hypothesis or classifier);

� Z ∶= X × Y is the domain, where

– X is the state space of the observations;

– Y is the label space of the observations;

� D is a probability distribution on Z = X × Y and

� l is a (measurable) loss function l∶H × Z→ R.

The learner has to find a predictor h ∈H which minimizes the true loss (risk)

LD(h) ∶= E(x,y)∼D[l(h, (x, y))] = Ez∼D[l(h, z)].

As D is not known to the learner, he cannot compute the true risk LD(h) and hence not
its minimizer. He therefore has to find an algorithm A ∶ ⋃n∈N(X × Y)n →H, which, given
a sample S ∶= {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n of i.i.d. (according to D) observations,
returns an estimator hS ∶= A (S). One frequently used method to approximate the true
risk is to use the empirical loss (risk)

LS(h) ∶=
1

n

n

∑
i=1

l(h, (xi, yi)).

A straightforward learning algorithm is the empirical risk minimization (ERM) paradigm
which sets

hS = A (S)∶ ∈ argmin
h∈H

LS(h).

Remark 1.2. Usually, X = Rd for some d > 0. If the label space is finite, i.e. Y = {1, . . . , k},
k ∈ N, then the task is (binary for k = 2) classification, for Y = Rq, q ∈ N, the task is
regression. It is common for binary classification to use the labels −1,1 instead of 0,1.
In some cases, there exists a labelling function f ∶X→ Y such that D = Dx ⊗Dy∣x, where
Dy∣x = δf(x) is the Dirac measure in f(x). Common loss functions are

� 0-1-loss, used for classification:

l0−1(h, z) ∶= l0−1(h, (x, y)) ∶= 1{h(x)≠y}.

Then, for h ∈H, holds

LD(h) = P(x,y)∼D(h(x) ≠ y) = E(x,y)∼D[1{h(x)≠y}] and LS(h) =
1

n

n

∑
i=1

1{h(xi)≠yi}
;
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� squared loss, used for regression:

lsq(h, z) ∶= lsq(h, (x, y)) ∶= (h(x) − y)2.

Here, for h ∈H, holds

LD(h) = E(x,y)∼D[(h(x) − y)2] and LS(h) =
1

n

n

∑
i=1

(h(xi) − yi)
2
.

Example 1.3. Consider the following examples:

� Multiclass classification: Consider the problem of classifying some document into
one of the following categories: “sports”, “health”, “mathematics”. The domain
would change to X = Np0 with p ∈ N if x ∈ X is a vector storing counts of some
specific key words. The label space becomes Y = {1, . . . , k} with k ≥ 2 some integer
(k = 3 in this example). A training set is given as S = {(x1, y1), . . . , (xn, yn)}. A
prediction rule hS is the output of the learning algorithm. For a new document with
associated feature vector x ∈ X, it yields the predicted class hS(x) =∶ y ∈ {1, . . . , k}.

� Regression: In learning problems with regression, the goal is to find a relationship
between some response y ∈ Y = Rd and covariates x ∈ X = Rp, d, p ∈ N. A linear
regression model assumes that E[y ∣ x] = β⊺0x, where β0 is some unknown regression
vector in Rp. In this case, the hypothesis space is given by

H = {h∶X→ Y ∣ ∃β ∈ Rp h(x) = β⊺x}.

The true error (risk) in regression for a predictor h ∈H takes the form

LD(h) = E(x,y)∼D[(h(x) − y)2]

and is also referred to as mean squared error (MSE). Note that in this case we
assume a fixed (i.e. non-random) h ∈H.

Remark 1.4. Why do we choose to restrict ourselves to the hypothesis class H? One
reason for that is that the ERM paradigm might produce an estimator that overfits on
the training data. This will be reflected by a small ratio of LS(h)/LD(h). Another reason
is that large hypothesis classes are hard or even impossible to learn, see Theorem 1.23.
Restricting the set of possible classifiers introduces an inductive bias.

1.2 Finite Classes

1.2.1 Realizability Assumption

For this subsection, we assume that there exists a labelling function f ∶X→ Y such that
D = Dx ⊗ δf(x), otherwise the following assumption can never be true.

Definition 1.5. The realizability assumption assumes that

∃h∗ ∈H LD(h∗) = 0. (1)

4
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Remark 1.6. The realizability assumption (1) implies that LS(h∗) = 0. We can see this

by noting that (1) implies that D ({h∗(x) = y}) = 1 and as the sample S is i.i.d. from D ,

this leads to LS(h∗) = 0. Trivially, any ERM rule hERM then satisfies with probability 1

0 = LS(h∗) ≥ LS (hERM) ≥ 0,

hence LS(hERM) = 0 with probability 1.

Definition 1.7. A hypothesis class H is probably approximately correct (PAC) learn-
able with respect to some domain Z and a loss function l if there exists a function
nH∶ (0, 1)2 → N and a learning algorithm A ∶ ⋃n∈NZn →H such that for all (ε, δ) ∈ (0, 1)2,
all distributions D on Z and all samples S of size n ≥ nH(ε, δ), hS ∶= A (S) ∈H satisfies

PS∼Dn(LD(hS) ≤ ε) ≥ 1 − δ. (2)

Remark 1.8. Note that nH(ε, δ) from Definition 1.7 is viewed as the smallest sample
size for which the learning guarantee (2) is satisfied and is called sample complexity.

Theorem 1.9. Given that the realizability assumption (1) holds, any finite hypothesis
class is PAC learnable using the ERM paradigm with sample complexity

nH(ε, δ) ≤
⎡⎢⎢⎢⎢⎢

log (∣H∣/δ)
ε

⎤⎥⎥⎥⎥⎥
.

Proof. Fix n ∈ N and let HB be the set of “bad” hypotheses

HB ∶= {h ∈H ∣LD(h) > ε}

and M be the set of “misleading” samples

M ∶= {S ∈ Zn ∣ ∃h ∈HB LS(h) = 0} = ⋃
h∈HB

{S ∈ Zn ∣LS(h) = 0}.

Since the realizability assumption (1) holds, we know that LS(hS) = 0 with probability 1.
Consequently,

{S ∈ Zn ∣LD(hS) > ε} ⊂M

and by the union bound we find

Dn ({S ∈ Zn ∣LD(hS) > ε}) ≤ ∑
h∈HB

Dn ({S ∈ Zn ∣LS(h) = 0})

= ∑
h∈HB

Dn ({S ∈ Zn ∣ ∀ i = 1, . . . , n h(xi) = f(xi)})

= ∑
h∈HB

n

∏
i=1

D ({(x, y) ∈ Z ∣ h(x) = y}) .
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Furthermore, for all h ∈HB holds

D ({(x, y) ∈ Z ∣ h(x) = y}) = 1 −D ({(x, y) ∈ Z ∣ h(x) ≠ y}) = 1 −LD(h) ≤ 1 − ε.

Consequently,

Dn ({S ∈ Zn ∣LD(hS) > ε}) ≤ ∣HB ∣(1 − ε)n ≤ ∣HB ∣exp{−nε} ≤ ∣H∣exp{−nε} .

Then

Dn ({S ∈ Zn ∣LD(hS) ≤ ε}) ≥ 1 − ∣H∣exp{−nε} .

Choosing n ≥ log (∣H∣/δ) /ε then yields Dn ({S ∈ Zn ∣LD(hS) ≤ ε}) ≥ 1 − δ.

1.2.2 Bayes Classifier

The following result proves a lower bound for the performance of any learning algorithm
on binary classification. Note that it is also valid if there does not exist a labelling
function.

Theorem 1.10. Consider the binary classification task, in this case we use labels 0 and
1, i.e. Y = {0,1}. Let H be the set of all measurable functions X → Y and consider the
Bayes classifier

ϕ∶X→ Y, x↦ 1(Dy∣x ({y = 1 ∣ x}) > 1

2
) ,

where we decompose the joint distribution into its X-marginal and conditional probability
according to D = Dx ⊗Dy∣x. Then

ϕ = argmin
h∈H

LD(h).

Proof. Consider any other estimator h and let η(x) ∶= Dy∣x ({y = 1 ∣ x}). Then

LD(h) = D(h(x) ≠ y) = Ex∼Dx[Ey∼Dy∣x[1 (h(x) ≠ y) ∣ x]]

= Ex∼Dx[η(x)1 (h(x) = 0) + (1 − η(x))1 (h(x) = 1)]

= Ex∼Dx[1 (h(x) = 0) (2η(x) − 1) + 1 − η(x)].

Note that

1 (h(X) = 0) (2η(X) − 1) + 1 − η(X) =
⎧⎪⎪⎨⎪⎪⎩

η(X) if 1 (h(X) = 0) = 1,

1 − η(X) if 1 (h(X) = 0) = 0.

Hence LD(h) is minimal if and only if h ≡ ϕ. Note that the proof allows for arbitrary
assignment if η(x) = 1/2.

Remark 1.11. Note that the Bayes classifier is a likelihood-ratio classifier.
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1.2.3 Uniform convergence

Motivation. We now aim to waive the realizability assumption (1). Given a hypothesis
class, we do not assume anymore that

∃h∗ ∈H LD(h∗) = E(x,y)∼D[l(h∗, (x, y))] = 0.

This leads to another type of learning, the so-called agnostic PAC learning.

Definition 1.12. A hypothesis class H is agnostic PAC learnable with respect to some
domain Z and a loss function l if there exists a function nH∶ (0,1)2 → N and a learning
algorithm A ∶ ⋃n∈NZn →H such that for all (ε, δ) ∈ (0,1)2, all distributions D on Z and
all samples S of size n ≥ nH(ε, δ), hS ∶= A (S) ∈H satisfies

PS∼Dn(LD(hS) ≤ min
h∈H

LD(h) + ε) ≥ 1 − δ. (3)

Remark 1.13. Note that, as in Remark 1.8, nH(ε, δ) from Definition 1.12 is viewed as
the smallest sample size for which the agnostic learning guarantee (3) is satisfied and is
called sample complexity. Furthermore, if the realizability assumption (1) holds, then
minh∈HLD(h) = 0 and hence agnostic PAC learning gives the same guarantee as PAC
learning.

Motivation. We know that under the realizability assumption (1), finite classes are
PAC learnable. How can we show that finite classes are agnostic PAC learnable? And
what conditions on the loss functions do we need? The tool to answer these question is
the uniform convergence property.

Definition 1.14. A training set S is called ε-representative with respect to a domain Z,
a hypothesis class H, a loss function l and a distribution D if

∀h ∈H ∣LS(h) −LD(h)∣ ≤ ε.

Lemma 1.15. Assume that a training set S is ε/2-representative with respect to (Z,H, l,D).
Then, for any ERM predictor hS, i.e. hS ∈ argminh∈HLS(h), we have that

LD(hS) ≤ min
h∈H

LD(h) + ε.

Proof. Since S is ε/2-representative, we have for all h ∈H by the ERM rule

LD(hS) ≤ LS(hS) +
ε

2
≤ LS(h) +

ε

2
≤ LD(h) + ε

2
+ ε

2
= LD(h) + ε.

Definition 1.16. We say that a hypothesis class H has the uniform convergence property
with respect to (Z, l), if we can find a function nuc

H ∶ (0,1)2 → N such that for all (ε, δ) ∈
(0,1)2, all distributions D and all samples S of size n ≥ nuc

H (ε, δ) drawn i.i.d. from D
holds

PS∼Dn(S is ε-representative) def= PS∼Dn(∀h ∈H ∣LS(h) −LD(h)∣ ≤ ε) ≥ 1 − δ.

7
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Remark 1.17. Recall that we aim to find a learning algorithm A that, given a sample S,
minimizes the error LD(A (S)). However, as D is unknown, our only proxy for LD(A (S))
is the empirical risk LS(A (S)). The uniform convergence property gives a guarantee
that (probably) empirical and true risk are close, i.e. “bad” samples with misleading
empirical risk are unlikely.

Theorem 1.18. If a hypothesis class H has the uniform convergence property with
respect to (Z, l) with a function nucH , then this class is agnostic PAC learnable with sample
complexity nH(ε, δ) ≤ nucH (ε/2, δ). Furthermore, the ERM paradigm is an agnostic PAC
learner for H.

Proof. We know from Lemma 1.15 that for all samples S of size n ≥ nuc
H (ε/2, δ)

{∀h ∈H ∣LS(h) −LD(h)∣ ≤ ε
2
} ⊂ {LD(hS) ≤ min

h∈H
LD(h) + ε},

where hS ∈ argminh∈HLS(h). Hence,

PS∼Dn(LD(hS) ≤ min
h∈H

LD(h) + ε) ≥ PS∼Dn(∀h ∈H ∣LS(h) −LD(h)∣ ≤ ε
2
) ≥ 1 − δ,

where the last inequality holds for all n ≥ nuc
H (ε/2, δ), implying that nH(ε, δ) ≤ nuc

H (ε/2, δ).

We now proceed to prove that finite classes are agnostic PAC learnable. For this we need
the following inequality:

Lemma 1.19 (Hoeffding’s inequality). Let θ1, . . . , θn be i.i.d. random variables such that
E[θ1] = µ ∈ R and P(a ≤ θ1 ≤ b) = 1 for some a < b ∈ R. Then, for all ε > 0, it holds with
S̄n ∶= ∑ni=1 θi/n that

P(∣S̄n − µ∣ > ε) ≤ 2exp

⎧⎪⎪⎨⎪⎪⎩
− 2nε2

(b − a)2

⎫⎪⎪⎬⎪⎪⎭
.

In order to prove Hoeffing’s inequality, we need the following auxiliary result:

Lemma 1.20. Let X be a centered random variable with P(X ∈ [a, b]) = 1 for a < b ∈ R.
Then, for any λ > 0, we have

E[exp{λx}] ≤ exp

⎧⎪⎪⎨⎪⎪⎩

λ2(b − a)2

8

⎫⎪⎪⎬⎪⎪⎭
.

Proof. Set f(x) ∶= exp{λx} for x ∈ R and λ > 0 fixed. f is convex on R, hence

f(x) ≤ b − x
b − af(a) +

x − a
b − a f(b)

8
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for x ∈ [a, b]. Consequently, as X is supported in [a, b] and has mean 0,

E[exp{λx}] ≤ b −E[X]
b − a exp{λa}+ E[X] − a

b − a exp{λb} = b

b − aexp{λa}− a

b − aexp{λb} .

Set h ∶= λ(b − a) and p ∶= −a/(b − a). Also, define the function

L∶ [0,∞) → R, h↦ −hp + log (1 − p + pexp{h}) .

We then have that

E[exp{λx}] = b

b − aexp{λa} − a

b − aexp{λb}

= exp{λa}(1 − p + pexp{λ(b − a)})

= exp{−hp} (1 − p + pexp{h})
= exp{L(h)} .

If we can now show that L(h) ≤ h2/8, then we would have

E[exp{λx}] ≤ exp

⎧⎪⎪⎨⎪⎪⎩

λ2(b − a)2

8

⎫⎪⎪⎬⎪⎪⎭
,

which would conclude the proof. In order to show that L(h) ≤ h2/8 note that L(0) = 0.
Also, L′(h) = −p+ pexp{h} /(1− p+ pexp{h}) and hence L′(0) = −p+ p = 0. Furthermore,

L′′(h) − 1

4
= p(1 − p)exp{h}

(1 − p + pexp{h})2
− 1

4
= 4p(1 − p)exp{h} − (1 − p + pexp{h})2

4(1 − p + pexp{h})2

= 4p(1 − p)exp{h} − (1 − p)2 − 2p(1 − p)exp{h} − p2exp{2h}
4(1 − p + pexp{h})2

= −(1 − p)2 + 2p(1 − p)exp{h} − p2exp{2h}
4(1 − p + pexp{h})2

=
−(1 − p − pexp{h})2

4(1 − p + pexp{h})2
≤ 0.

Hence, for all h ∈ (0,∞) holds L′′(h) ≤ 1/4.
Using a Taylor expansion of L up to the second order, we can write for h∗ ∈ [0, h]

L(h) = L(0) + hL′(0) + h
2

2
L′′(h∗) ≤ h

2

8
.

Proof of Lemma 1.19. Let Xi ∶= θi − µ, where µ = E[θ1] and X̄ = ∑ni=1Xi/n. Then
X1, . . . ,Xn are also i.i.d. and Xi ∈ [a − µ, b − µ]. Using monotonicity of x↦ exp{λx} for
λ > 0 fixed and the Markov inequality, it follows that

P(X̄ > ε) = P(exp{λX̄} > exp{λε}) ≤ E[exp{λX̄}]exp{−λε} .

9
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Furthermore,

E[exp{λX̄}] = E

⎡⎢⎢⎢⎢⎣
exp

⎧⎪⎪⎨⎪⎪⎩

λ

n

n

∑
i=1

Xi

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
= E

⎡⎢⎢⎢⎢⎣

n

∏
i=1

exp{λ
n
Xi}

⎤⎥⎥⎥⎥⎦
=

n

∏
i=1

E
⎡⎢⎢⎢⎣
exp{λ

n
X1}

⎤⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎣
exp{λ

n
X1}

⎤⎥⎥⎥⎦

n

.

By Lemma 1.20, we have

E
⎡⎢⎢⎢⎣
exp{λ

n
X1}

⎤⎥⎥⎥⎦
≤ exp

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
(λ
n
)

2 (b − a)2

8

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

Hence, for all λ > 0 holds P(X̄ > ε) ≤ exp{λ2(b − a)2/(8n) − λε}, which implies

P(X̄ > ε) ≤ inf
λ>0

exp

⎧⎪⎪⎨⎪⎪⎩

λ2(b − a)2

8n
− λε

⎫⎪⎪⎬⎪⎪⎭
= inf
λ>0

exp{Ψ(λ)}

for Ψ(λ) = λ2(b − a)2/(8n) − λε. Note that

Ψ′(λ) = λ(b − a)
2

4n
− ε = 0 ⇐⇒ λ = λ∗ ∶= 4εn

(b − a)2
> 0.

Since Ψ is strictly convex on R, (λ∗,Ψ(λ∗)) is the global minimum of Ψ on R. Since
λ∗ > 0, infλ>0 Ψ(λ) = Ψ(λ∗). Hence

P(X̄ > ε) ≤ exp{Ψ(λ∗)} = exp

⎧⎪⎪⎨⎪⎪⎩

(λ∗)2(b − a)2

8n
− λ∗ε

⎫⎪⎪⎬⎪⎪⎭
= exp

⎧⎪⎪⎨⎪⎪⎩
− 2nε2

(b − a)2

⎫⎪⎪⎬⎪⎪⎭
for all ε > 0. The same arguments can be applied to −Xi to show that

P(−X̄ > ε) ≤ exp

⎧⎪⎪⎨⎪⎪⎩
− 2nε2

(b − a)2

⎫⎪⎪⎬⎪⎪⎭
.

Hence

P(∣X̄ ∣ > ε) ≤ 2exp

⎧⎪⎪⎨⎪⎪⎩
− 2nε2

(b − a)2

⎫⎪⎪⎬⎪⎪⎭
.

We are now ready to state the Theorem about agnostic PAC learnability of finite
hypothesis classes:

Theorem 1.21. Let H be a finite hypothesis class, Z a domain and l∶H ×Z→ [0,1] be
a loss function. Then H satisfies the uniform convergence property with

nucH (ε, δ) ≤
⎡⎢⎢⎢⎢

1

2ε2
log(2∣H∣

δ
)
⎤⎥⎥⎥⎥
. (4)

10
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Furthermore, H is agnostic PAC learnable with the ERM paradigm. The sample complexity
satisfies

nH(ε, δ) ≤ nucH (ε
2
, δ) ≤

⎡⎢⎢⎢⎢
2

ε2
log(2∣H∣

δ
)
⎤⎥⎥⎥⎥
.

Proof. Fix n ∈ N and h ∈H and set θi ∶= l(h, (xi, yi)), i = 1, . . . , n. Then θi, i = 1, . . . , n,
are i.i.d. and LS(h) = ∑ni=1 θi/n has expected value LD(h). By Hoeffding’s inequality
(Lemma 1.19), it holds that

Dn ({∣LS(h) −LD(h)∣ > ε}) ≤ 2exp{−2nε2} .

Applying the union bound, we can conclude that

Dn ({∃h ∈H ∣LS(h) −LD(h)∣ > ε}) ≤ ∑
h∈H

Dn ({∣LS(h) −LD(h)∣ > ε})

≤ ∣H∣2exp{−2nε2} .

Hence we have shown that H has the uniform convergence property by choosing n ≥
nuc
H (ε, δ) as in (4). Theorem 1.18 yields the second claim.

Remark 1.22. Theorem 1.21 shows that finite hypothesis classes with bounded loss
functons are agnostic PAC learnable. What happens if the hypothesis class H is infinite?
Sections 1.4 and 1.5 give a comprehensive answer to this question using the concept of
Vapnik–Chervonenkis (VC) dimension. Here, we will give another possible answer using
the discretization trick :
As an example, consider X = R and Y = {−1,1}. Let H = {hθ ∣ θ ∈ R}, where hθ(x) =
sign(x − θ) for x ∈ R. Then ∣H∣ = ∞. However, using floating point arithmetic with 64
bits, we can “approximate” H by H̃ with ∣H̃∣ = 264. Since we are in the setting of binary
classification, the loss function is given by the 0-1-loss

l(h, z) = l(h, (x, y)) ∶= 1{hθ(x)≠y}
∈ [0,1].

By Theorem 1.21, H̃ is agnostic PAC learnable and the sample complexity satisfies

n
H̃
(ε, δ) ≤

⎡⎢⎢⎢⎢⎢

2

ε2
log

⎛
⎝

2 ⋅ 264

δ

⎞
⎠

⎤⎥⎥⎥⎥⎥
=
⎡⎢⎢⎢⎢⎢

2

ε2

⎛
⎝

log(2

δ
) + 64 log (2)

⎞
⎠

⎤⎥⎥⎥⎥⎥
≤
⎡⎢⎢⎢⎢⎢

2 log (2
δ
) + 128

ε2

⎤⎥⎥⎥⎥⎥
,

where we used that log (2) < 1.

1.3 No-free-lunch Theorem and Error decomposition

We proceed to analyze the question whether there can exist some “super learner” A ∶S↦
hS = A (S) that always minimizes the loss LD(hS). The answer is no, as the following
Theorem shows.

11
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Theorem 1.23 (No free lunch). Let A be any learning algorithm for the task of binary
classification with respect to some domain X and the 0-1-loss function l. Let n < ∣X∣/2 be
the training set size.
Then there exists a distribution D on X × {0,1} such that

1) ∃ f ∶X→ {0,1} LD(f) = 0, but

2) PS∼Dn(LD(A (S)) ≥ 1/8) ≥ 1/7.

Proof. Consider a subset C ⊂ X with ∣C∣ = 2n. Then there are T ∶= 2∣C∣ = 22n possible
functions C → {−1,1}. Let us denote these functions by f1, . . . , fT and fix some i ∈
{1, . . . , T}. Let Di be the distribution defined on C × {−1,1} by

Di ({(x, y)}) ∶=
⎧⎪⎪⎨⎪⎪⎩

1/∣C∣ if y = fi(x),
0 otherwise.

Hence Di draws from C uniformly (with the same probability 1/(2n)) and conditionally
on x assigns fi(x) to y with probability 1. Clearly,

LDi(fi)
def= P(x,y)∼Di

(fi(x) ≠ y) = 0.

We are going to show for any learning algorithm A which receives a training set S of n
samples and outputs a classifier A (S)∶C→ {−1,1} it holds that

max
i=1,...,T

ES∼Dn
i
[LDi(A (S))] ≥ 1

4
. (5)

If (5) holds, then there exists a distribution D on C × {−1,1} such that there exists a
classifier f ∶C→ {−1,1} such that LD(f) = 0 and

ES∼Dn[LD(A (S))] ≥ 1

4
.

It then follows that

PS∼Dn(LD(A (S)) ≥ 1

8
) ≥ 1

7
.

Let us now prove (5). For i ∈ {1, . . . , T}, consider a training set S of n i.i.d. samples
distributed according to Di. Such a training set looks like

S = {(x1, f(x1)), . . . , (xn, f(xn))}.

(x1, . . . , xn) is a random draw with ∣C∣n = (2n)n possible outcomes, which are all occurring
with the same probability 1/∣C∣n. Set k ∶= ∣C∣n and let us list all possible training sets of
n examples S ∼ Di as Si1, . . . ,S

i
k. Note that

max
i=1,...,T

ES∼Dn
i
[LDi(A (S))] ≥ 1

T

T

∑
i=1

ES∼Dn
i
[LDi(A (S))]

12
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= 1

k

k

∑
j=1

1

T

T

∑
i=1

LDi(A (Sij))

≥ min
j=1,...,k

1

T

T

∑
i=1

LDi(A (Sij)). (6)

Now, fix j ∈ {1, . . . , k}, then a training set S
j
i is of the form

Sij = {(xj1, fi(x
j
1)), . . . , (x

j
n, fi(xjn))}.

Let {v1, . . . , vp} ∶= C ∖ {xj1, . . . , x
j
n} and note that by ∣C∣ = 2n, p ≥ n. Consider some

h∶C→ {−1,1} and denote by Dx
i the x-marginal of Di, then

LDi(h) = P(x,y)∼Di
(h(x) ≠ y) = Px∼Dx

i
(h(x) ≠ fi(x))

= 1

2n
∑
c∈C

1 (h(c) ≠ fi(c)) ≥
1

2n

p

∑
r=1

1 (h(vr) ≠ fi(vr))

≥ 1

2p

p

∑
r=1

1 (h(vr) ≠ fi(vr)) .

Replace h by A (Sji ), then we obtain

1

T

T

∑
i=1

LDi(A (Sji )) ≥
1

T

T

∑
i=1

1

2p

p

∑
r=1

1 (A (Sji )(vr) ≠ fi(vr))

≥ 1

2
min
r=1,...,p

1

T

T

∑
i=1

1 (A (Sji )(vr) ≠ fi(vr)) . (7)

For r ∈ {1, . . . , p}, the functions fi, i = 1, . . . , T , can be partitioned into T /2 disjoint pairs

where for a pair (f̃
(0)
i , f̃

(1)
i ) we have that:

1) f̃
(0)
i (c) = f̃ (1)

i (c) ∀c ∈ C ∖ {vr},

2) f̃
(0)
i (vr) = 0, f̃

(1)
i (vr) = 1.

Then, using the fact that vr ∉ {xj1, . . . , x
j
n}

{(xj1, f̃
(0)
i (xj1)) , . . . ,(x

j
n, f̃

(0)
i (xjn))} = {(xj1, f̃

(1)
i (xj1)) , . . . ,(x

j
n, f̃

(1)
i (xjn))} = Sij .

Consequently,

T

∑
i=1

1 (A (Sij)(vr) ≠ fi(vr)) =
T /2

∑
l=1

[1(A (Slj)(vr) ≠ f̃
(0)
l (vr) = 0)+

+1(A (Slj)(vr) ≠ f̃
(1)
l (vr) = 1)]

13
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= T /2.

Together with (6) and (7) it now follows that

max
i=1,...,T

ES∼Dn[LDi(A (S))] ≥ 1

2
min
j=1,...,k

min
r=1,...,p

1

T

T

2
= 1

4
,

which completes the proof.

Remark 1.24. Theorem 1.23 shows that if we allow H = {0,1}X in the binary classifi-
cation setup, then we are bound to fail PAC learning. This indicates that we need to
restrict the “complexity” of the hypothesis class. We will make this precise in subsections
1.4 and 1.5.

Remark 1.25 (Error decomposition and bias-complexity trade-off). Given a sample S,
assume that the predictor hS was obtained by the ERM rule, i.e. hS ∈ argminh∈HLS(h).
Then we can decompose the true error

LD(hS) = min
h∈H

LD(h)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

approximation error

+LD(hS) −min
h∈H

LD(h)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

estimation error

.

The approximation error is not connected to any probabilistic arguments. If H is large,
we expect that this error will be small (if the realizability assumption holds, it will be 0).
The approximation error corresponds to the bias we introduce with our hypothesis class.
The estimation error is the result from replacing the unknown distribution by a training
set (empirical measure). If H is big, then we need many examples in the training set, e.g.
if H is finite, we know that the sample complexity nH(ε, δ) is of order 2 log (2∣H∣/δ) /ε2

by the Theorems 1.9 and 1.21.
The interplay between approximation and estimation error is called bias-complexity
trade-off.

1.4 Vapnik–Chervonenkis (VC) dimension

In this subsection we will develop a theory for PAC learnability of infinite hypothesis
classes.

Example 1.26. Consider the class of all thresholds over R:

H ∶= {ha ∣ a ∈ R}, ha( ⋅ ) ∶= 1 ( ⋅ < a) .

Note that H is an infinite class. However we claim that H is PAC learnable with any
ERM rule given the realizability assumption (1). Furthermore, its sample complexity is

nH(ε, δ) ≤
⎡⎢⎢⎢⎢

2

ε
log(2

δ
)
⎤⎥⎥⎥⎥

for (ε, δ) ∈ (0,1)2.

14
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To see this, let a∗ be such that ha∗ is a perfect classifier, that is

LD(ha∗) = P(x,y)∼D(ha∗(x) ≠ y) = 0.

Let Dx be the x-marginal, which is assumed to be continuous. Take a0 and a1 such that

Px∼Dx(x ∈ (a0, a
∗]) = Px∼Dx(x ∈ (a∗, a1]) =

ε

2
.

Let S = {(x1, y1), . . . , (xn, yn)} be some training set with i.i.d. examples and write

b0 ∶= max{xi ∣ (xi,1) ∈ S} and b1 ∶= min{xi ∣ (xi,0) ∈ S}

(we assume that both b0 and b1 are well-defined). Note that b0 and b1 depend on the
sample S. Let bS be the threshold of the ERM rule hbS ∈ argmina∈RLS(ha). Recall that
LS(hS) = 0 with probability 1 (Remark 1.6). By construction, it follows that b0 < bS ≤ b1.
We will now show that

{S ∣ b0 ≥ a0 ∧ b1 ≤ a1} ⊂ {S ∣LD(hS) ≤ ε}. (8)

Assume the event on the left of (8). Then

LD(hS) = Px∼Dx(1 (x < bS) ≠ 1 (x < a∗))

= Px∼Dx(x < bS ∧ x ≥ a∗) +Px∼Dx(x ≥ bS ∧ x < a∗)
≤ Px∼Dx(a∗ ≤ x < b1) +Px∼Dx(b0 < x < a∗)
≤ Px∼Dx(a∗ ≤ x < a1) +Px∼Dx(a0 < x < a∗)
≤ ε.

This shows (8). Consequently,

PS∼Dn(LS(hS) > ε) ≤ PS∼Dn(b0 < a0 ∨ b1 > a1) ≤ PS∼Dn(b0 < a0) +PS∼Dn(b1 > a1).

Note that

PS∼Dn(b0 < a0) = 1 −PS∼Dn(b0 ≥ a0) = 1 −PS∼Dn(∃ i ∈ {1, . . . , n} xi ∈ [a0, a
∗))

= 1 − (1 −PS∼Dn(∀ i = 1, . . . , n xi ∉ [a0, a
∗)))

= (Px∼Dx(x ∉ [a0, a
∗)))

n
= (1 −Px∼Dx(x ∈ [a0, a

∗)))
n

= (1 − ε
2
)
n

.

Similarly, we can show that

PS∼Dn(b1 > a1) = PS∼Dn(∀ i = 1, . . . , n xi ∉ [a∗, a1)) = (Px∼Dx(x ∉ [a∗, a1)))
n

= (1 − ε
2
)
n

.

15
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Therefore,

PS∼Dn(LD(hS) > ε) ≤ 2(1 − ε
2
)
n

≤ 2exp{−mε

2
}

!
≤ δ,

which yields nH(ε, δ) ≤ ⌈2 log (2/δ) /ε⌉, as claimed.

Hence we have seen that there are infinite hypothesis classes that are PAC learnable,
but Theorem 1.23 also shows that too “complex” infinite classes are not PAC learn-
able. The measure of complexity of a hypothesis class that is most convenient is the
Vapnik–Chervonenkis (VC) dimension.

Definition 1.27. Let H be a hypothesis class of functions X → {−1,1}. Let C =
{c1, . . . , cs} ⊂ X, s ∈ N. The restriction of H to C is the set of functions C→ {−1,1} that
can be derived from H, i.e.

HC ∶= {(h(c1), . . . , h(cs)) ∣ h ∈H}.

Definition 1.28. A hypothesis class H shatters a finite set C ⊂ X if

∣HC∣ = 2∣C∣.

Remark 1.29. In other words, H shatters C if HC is the set of all possible classifiers
that can be defined on C.

Definition 1.30. The Vapnik–Chervonenkis (VC) dimension of a hypothesis class H,
denoted by VCdim(H), is the maximal size of a set C ⊂ X that can be shattered by H.
If H can shatter subsets of any size, then we say that H has infinite VC dimension.

Remark 1.31. Note that if H shatters a subset C, then it shatters any subset C′ ⊂ C.
Hence, to show that VCdim(H) ≤ d, we need to show that H does not shatter any subset
C of size d+ 1. To show that VCdim(H) ≥ d, it is enough to find a subset C of size d that
is shattered by H. Consequently, in order to prove that VCdim(H) = d, we need to show
that

1) ∃C ⊂ X of size d that is shattered by H;

2) ∀C ⊂ X of size d + 1 holds that H does not shatter C.

Remark 1.32. If H is finite the following estimate is non-trivial: For any C ⊂ X we
have ∣HC∣ ≤ ∣H∣. If C is such that ∣H∣ < 2∣C∣, then ∣HC∣ < 2∣C∣, which implies that H cannot
shatter C. Since this is true for any C ⊂ X with ∣C∣ > log2(∣H∣), this implies that

VCdim(H) ≤ log2 (∣H∣) .

What if H is very large or even infinite but X is finite? Then we can reduce H to have
size 2∣X∣ and consequently

VCdim(H) ≤ log2 (2∣X∣) = ∣X∣.

16
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Consequently, it holds that

VCdim(H) ≤ min{∣X∣, log2 (∣H∣)}.

However, the difference min(∣X∣, log2(∣H∣)) −VCdim(H) can be quite large, for example
for the class of thresholds on X = {1, . . . , k}. There, VCdim(H) = 1, but log2(∣H∣) = ∣X∣ =
k →∞.

Example 1.33. Consider again the class of thresholds

H ∶= {x↦ 1 (x < a) ∣ a ∈ R}.

Let C = {c} for some fixed c ∈ R. There are 2 classifiers on C: f0(c) = 0 and f1(c) = 1.
Furthermore, HC = {0,1}, as 0 is obtained by a = c − 1 and 1 by a = c + 1. Hence H

shatters C.
Consider now C = {c1, c2} for c1 < c2 ∈ R. There are 4 possible classifiers, but HC =
{(0,0), (1,0), (1,1)}. Hence H does not shatters any subset C ⊂ X of size 2.
Together, this implies that H has VC dimension 1.

Example 1.34. Consider X = R and the class of intervals

H = {x↦ 1 (x ∈ (a, b)) ∣ a < b ∈ R}.

Then H shatters any subset of size 2, but not C = {c1, c2, c3} with c1 < c2 < c3, as
ha,b(c1) = ha,b(c3) = 1 implies ha,b(c2). Hence VCdim(H) = 2.

Corollary 1.35. Let H be some hypothesis class and n be the size of a training set S.
Assume that there exists a subset C ⊂ X such that ∣C∣ = 2n and C is shattered by H. Then,
for any learning algorithm A , we can find a distribution D on X × {−1,1} such that

1) There exists a classifier f ∶X→ Y with LD(f) = 0 and

2) PS∼Dn(LD(A (S)) ≥ 1/8) ≥ 1/7.

Proof. This immediately follows from the proof of Theorem 1.23, as the shattering allows
us to construct any possible classifier f .

Theorem 1.36. Let H be some hypothesis class with infinite VC dimension. Then H is
not PAC-learnable.

Proof. If H has infinite VC dimension, then for any n ∈ N we can find a set C ⊂ X such
that ∣C∣ = n and that C is shattered by H. Then the claim follows by Corollary 1.35.

17
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1.5 The Fundamental Theorem of PAC Learning

Motivation. We have seen that infinite VC dimension implies non-PAC-learnability
(Theorem 1.36). Theorem 1.41 will show us that finite VC dimension is indeed also
sufficient for PAC learnability. For its proof, we need the following concept.

Definition 1.37. Let H be a hypothesis class. The growth function of H, denoted
τH∶N→ N, is defined as

τH(n) ∶= max
C⊂X∶∣C∣=n

∣HC∣.

Remark 1.38. In words, τH(n) is the number of different functions from a subset C of
size n to {−1,1}, that can be obtained by restricting H to C. Obviously, if VCdim(H) = d
then for any n ≤ d we have τH(n) = 2n. In such cases, H induces all possible functions
from C to {−1,1}.

Lemma 1.39 (Sauer’s Lemma). Let H be a hypothesis class with VCdim(H) ≤ d < ∞.
Then, for all n ∈ N, holds

τH(n) ≤
d

∑
i=0

(n
i
).

In particular, if n ≥ d, then τH(n) ≤ (en/d)d.

Proof. We will prove the lemma by showing the stronger claim: for C ∶= {c1, . . . , cn} we
have

∀H ∣HC∣ ≤ ∣{B ⊂ C ∣H shatters B}∣. (9)

(9) is sufficient to prove the lemma because if VCdim(H) ≤ d, then no set with size > d is
shattered by H and therefore

∣{B ⊂ C ∣H shatters B}∣ ≤
d

∑
i=0

(n
i
).

If n ≥ d, then we can further bound

d

∑
i=0

(n
i
) ≤ (en

d
)
d

,

as

(d
n
)
d d

∑
i=0

(n
i
) ≤

d

∑
i=0

(n
i
)(d

n
)
i

≤
n

∑
i=0

(n
i
)(d

n
)
i

= (1 + d
n
)
n

≤ exp{d} .

Hence we only need to show (9), which will be done by induction over n. For n = 1, (9)
is trivially fulfilled, as for any H, both sides are either equal to one or two (as the empty
set is always shattered by H).
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Assume (9) holds for sets of size k < n and let us prove it for sets of size n. To this end,
fix H and C ∶= {c1, . . . , cm}. Denote C′ ∶= {c2, . . . , cm} and define

Y0 ∶= {(y2, . . . , yn) ∣ (0, y2, . . . , yn) ∈HC ∨ (1, y2, . . . , yn) ∈HC},
Y1 ∶= {(y2, . . . , yn) ∣ (0, y2, . . . , yn) ∈HC ∧ (1, y2, . . . , yn) ∈HC}.

Clearly, ∣HC∣ = ∣Y0∣ + ∣Y1∣ and, since Y0 =HC′ , using the induction assumption (applied on
H and C′) implies

∣Y0∣ = ∣HC′ ∣ ≤ ∣{B ⊂ C ∣H shatters B}∣ = ∣{B ⊂ C ∣ c1 ∉ B ∧H shatters B}∣.

Next, let

H′ ∶= {h ∈H ∣ ∃h′ ∈H (1 − h′(c1), h′(c2), . . . , h′(cn) = (h(c1), . . . , h(cn)} ⊂H.

H′ contains pairs of hypotheses that agree in C′ and differ in c1. Consequently, if H′

shatters a subset B ⊂ C, then it also shatters B ∪ {c1} and vice versa. Using Y1 = H′
C′

and applying the inductive assumption on H′ and C′, we obtain

∣Y1∣ = ∣H′
C′ ∣ ≤ ∣{B ⊂ C′ ∣H′ shatters B}∣ = ∣{B ⊂ C′ ∣H′ shatters B ∪ {c1}}∣

= ∣{B ⊂ C ∣ c1 ∈ B ∧H′ shatters B}∣ ≤ ∣{B ⊂ C ∣ c1 ∈ B ∧H shatters B}∣.

Hence we have shown that

∣HC∣ = ∣Y0∣ + ∣Y1∣
≤ ∣{B ⊂ C ∣ c1 ∉ B ∧H shatters B}∣ + ∣{B ⊂ C ∣ c1 ∈ B ∧H shatters B}∣
= ∣{B ⊂ C ∣H shatters B}∣,

which concludes the proof.

Theorem 1.40. Let H be some hypothesis class with growth function τH. Also, suppose
that l maps to [0,1]. Then for all δ > 0 holds

PS∼Dn

⎛
⎜⎜
⎝

sup
h∈H

∣LD(h) −LS(h)∣ ≤
4 +

√
log (2τH(2n))
δ
√

2n

⎞
⎟⎟
⎠
≥ 1 − δ.

Theorem 1.41 (Fundamental Theorem of PAC learning). Let H be some hypothesis
class of functions X→ {−1,1} and let the loss function be the 0-1-loss. Then, the following
assertions are equivalent:

1) H has the uniform convergence property;

2) any ERM rule is a successful agnostic PAC learner for H;

3) H is agnostic PAC learnable;
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4) VCdim(H) < ∞.

If, additionally, the realizability assumption (1) holds, then all the previous assertions
are equivalent to

5) H is PAC learnable;

6) any ERM rule is a successful PAC learner for H;

Proof. Let us first summarize the results that we have already proven in Figure 1. We
can see that we are only left to prove that finite VC dimension implies the uniform
convergence property.

1) 2)

4) 3) 5)

6)
Theorem 1.18

clear

Theorem 1.36

T
o

d
o

clear

realizability

clear

realizability

Figure 1: Logical structure for the proof the Theorem 1.41

To see this, note that from Sauer’s lemma (Lemma 1.39) it follows that for all n ≥ d/2
holds τH ≤ (en/d)d. Combining this with Theorem 1.40 yields

∀ δ > 0 PS∼Dn

⎛
⎜⎜
⎝

sup
h∈H

∣LD(h) −LS(h)∣ ≤
4 +

√
d log (2en/d)
δ
√

2n

⎞
⎟⎟
⎠
≥ 1 − δ.

If n is large enough such that
√
d log (2en/d) ≥ 4, then

∀ δ > 0 PS∼Dn

⎛
⎜⎜
⎝

sup
h∈H

∣LD(h) −LS(h)∣ ≤
2
√
d log (2en/d)
δ
√

2n

⎞
⎟⎟
⎠
≥ 1 − δ.

Note that

2
√
d log (2en/d)
δ
√

2n
≤ ε ⇐⇒ n ≥ 2d

(εδ)2
log (n) +

2d log (2e/d)
(εδ)2

.
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Recall that for all α,x > 0 holds log (x) ≤ αx−log (α)−1 (by convexity, x↦ αx−log (α)−1
is the tangent to x↦ log (x) at x = 1/α). Then

2d

(εδ)2
log (n) ≤ 2d

(εδ)2

⎛
⎜
⎝
(εδ)2

4d
n − log

⎛
⎝
(εδ)2

4d

⎞
⎠
− 1

⎞
⎟
⎠
= n

2
− 2d

(εδ)2
log

⎛
⎝
(εδ)2

4d

⎞
⎠
− 2d

(εδ)2
.

Consequently, it suffices to take n large enough such that

n

2
≥ − 2d

(εδ)2
log

⎛
⎝
(εδ)2

4d

⎞
⎠
− 2d

(εδ)2
+

2d log (2e/d)
(εδ)2

and thus choose

n ≥
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4
(εδ)2

log ( 4
(εδ)2

) + 4(log(2e)−1)

(εδ)2
if d = 1,

4
(εδ)2

log ( 4
(εδ)2

) if d ≥ 2.

Hence H has the uniform property.

Remark 1.42. The proof of Theorem 1.41 implies that the sample complexity satisfies

nuc
H ≍ log (1/(εδ) /(εδ)2.

However, it is possible to obtain sharper bounds (Theorem 6.8 on p.48):

Theorem 1.43 (Fundamental Theorem of PAC learning – quantitative version). Let H
be a hypothesis for binary classification and let the loss function be the 0-1-loss. Assume
that VCdim(H) ≤ d < ∞. Then, there exists constants C1,C2 > 0 such that

1. H has the uniform convergence property with sample complexity

C1

d + log (1/δ)
ε2

≤ nucH ≤ C2

d + log (1/δ)
ε2

; (10)

2. H is agnostic PAC learnable with sample complexity

C1

d + log (1/δ)
ε2

≤ nH ≤ C2

d + log (1/δ)
ε2

; (11)

3. If the realizability assumption (1) holds, then H is PAC learnable with sample
complexity

C1

d + log (1/δ)
ε

≤ nucH ≤ C2

d log (1/ε) + log (1/δ)
ε

. (12)

Remark 1.44. It is important to note the following:
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1) The Theorems characterising PAC-learnability of infinite classes (Theorems 1.41 and
1.43) only hold for the 0-1-loss function. They can be easily extended to arbitrary
bounded loss functions, however no statement was made for unbounded loss functions.
In contrast, the Theorems for finite classes (Theorems 1.9 and 1.21) hold for arbitrary
loss functions.

2) Additionally, we can see that the sample complexity under the realizability assumption
(1) scales as ε−1 (Theorem 1.9 for finite classes and Theorem 1.43 statement (12) for
infinite classes), whereas without the realizability assumption, the sample complexity
scales as ε−2 (Theorem 1.21 for finite classes and Theorem 1.43 statement (11) for
infinite classes). This means that in order the half the error ε, we need to double the
sample size if the realizability assumption holds true, and to quadruple it otherwise.

Both points origin in the use of Hoeffding’s inequality (Lemma 1.19) for infinite hypothesis
classes.

2 Linear Predictors

Motivation. Consider the following class

Ld ∶= {hw,b ∣w ∈ Rd, b ∈ R}, hw,b ∶=
⎧⎪⎪⎨⎪⎪⎩

Rd → R,
x↦ ⟨w,x⟩ + b.

We call w the vector of weights and b the bias. Given a function ϕ∶R→ Y, we can consider
the class

ϕ ○Ld ∶= {ϕ ○ hw,b ∣ hw,b ∈ Ld}.

Example 2.1. Let X = Rd, Y = {−1,1} and ϕ(t) = sign(t). The corresponding class is

HSd ∶= sign ○Ld ∶= {sign (⟨w,x⟩ + b) ∣w ∈ Rd, b ∈ R}

and is often used in binary classification. It can be shown that HSd has VC dimension d+1
and hence is agnostic PAC learnable using the ERM paradigm with sample complexity
of order (d + log(1/δ))/ε2 by (11).

Remark 2.2. The bias b can be incorporated into the weight vector by setting

w′ ∶= (b,w1, . . . ,wd)⊺ and x′ ∶= (1, x1, . . . , xd)⊺

to obtain the homogeneous representation.
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2.1 Classification

Let us first consider the task of binary classification, i.e. Y = {−1,1}. In the first part of
this subsection we will assume that there exists a labelling function f ∶Rd = X→ Y = {−1,1}
with f(x) = sign (⟨w∗, x⟩) for some w∗ ∈ Rd. This is called the separable case and implies
that the realizability assumption (1) is satisfied. Recall that this implies that any ERM
predictor hS satisfies LS(hS) = 0 (Remark 1.6). In the following, we will discuss three
independent methods for finding the ERM predictor hS given a sample S of size n. The
first two (Linear Programming and the Perceptron, 2.1.1 and 2.1.2) apply only to the
separable case, whereas the third (Logistic Regression, 2.1.3) is more general. In the case
of non-separability also other methods like support vector machines should be considered.

2.1.1 Linear Programming

Here, we will be using the concept of linear programming in order to find an ERM given
linearly separable data S = {(x1, y1), . . . , (xn, yn)} ∈ (Rd × {−1,1})n.

Definition 2.3. A linear program (LP) aims at solving the optimization problem

max
w∈Rd

⟨u,w⟩ s.t. Aw ≥ v,

where u ∈ Rd, v ∈ Rm and A ∈ Rm×d are given.

Lemma 2.4. Given linearly separable data S = {(x1, y1), . . . , (xn, yn)} ∈ (Rd × {−1,1})n,
the linear program

max
w∈Rd

⟨0,w⟩ s.t. Aw ≥ v (13)

with v = (1, . . . ,1)⊺ ∈ Rn and

A ∶= y ⊙ [x1 . . . xn]
⊺ =

⎛
⎜⎜
⎝

y1(x1)1 . . . y1(x1)d
⋮ ⋱ ⋮

yn(xn)1 . . . yn(xn)d

⎞
⎟⎟
⎠
∈ Rn×d,

where ⊙ denotes the componentwise or Hadamard product and y ∶= (y1, . . . , yn)⊺ has a
solution w̄ which separates the data according to

∀ i = 1, . . . , n yi⟨w̄, xi⟩ ≥ 1. (14)

Proof. As any solution to (13) satisfies (14) and vice versa, it suffices to show the existence
of a solution to (14).
We proceed as follows: Set γ ∶= mini=1,...,n yi⟨w∗, xi⟩ and w̄ ∶= w∗/γ, where w∗ denotes
the true data separator which exists as the data is separable but is unknown to us. Then,
for all i = 1, . . . , n holds

yi⟨w̄, xi⟩ =
1

γ
yi⟨w,xi⟩ ≥ 1.
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2.1.2 Perceptron

The Perceptron algorithm is an iterative method that produces a finite sequence of vectors
w(1), . . . ,w(T ), whose last element yields a perfect (recall that we are in the separable
case) separation of the training data.
The algorithm runs as follows:

Algorithm 1 Perceptron Algorithm

1: Set t ∶= 1 and w(1) ∶= 0 ∈ Rd;
2: while w(t) is not a perfect classifier do
3: Find i ∈ {1, . . . , n} such that (xi, yi) is mislabeled, i.e. yi⟨w(t), xi⟩ ≤ 0;
4: Update w(t+1) = w(t) + yixi;
5: Update t = t + 1.
6: end while
7: return w(t).

Note that the update of the perceptron algorithm guides the sequence towards a more
correct labelling:

yi⟨w(t+1), xi⟩ = yi⟨w(t), xi⟩ + ∥xi∥2 ≥ yi⟨w(t), xi⟩.

Theorem 2.5. Assume separability with weight vector w∗ and let

B ∶= min{∥w∥ ∣ ∀ i = 1, . . . , n yi⟨w,xi⟩ ≥ 1} and R ∶= max
i=1,...,n

∥xi∥.

Then, the perceptron algorithm stops after ⌈(RB)2⌉ iterations at a perfect classifier.

Proof. For t ∈ N, we will show that if at iteration t, w(t) mislabels some example (xi, yi),
then we must have

⟨w∗,w(t+1)⟩
∥w∗∥∥w(t+1)∥

≥
√
t

RB
. (15)

First assume that (15) holds. Then, by Cauchy-Schwarz,

1 ≥
⟨w∗,w(t+1)⟩
∥w∗∥∥w(t+1)∥

≥
√
t

RB

and consequently t ≤ (RB)2, which would conclude the proof.
It therefore only remains to show (15). To this end, recall that w(1) = 0 ∈ Rd and
w(2) = w(1) + yixi for some mislabelled pair (xi, yi). Suppose that for t ≥ 3 we have
⟨w∗,w(t)⟩ ≥ t − 1 and let i ∈ {1, . . . , n} be such that (xi, yi) is mislabelled, then

⟨w∗,w(t+1)⟩ = ⟨w∗,w(t) + yixi⟩ ≥ t − 1 + 1 = t.
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Therefore, it follows by induction that if w(t) is not a perfect classifier, then ⟨w∗,w(t)⟩ ≥ t.
Furthermore,

∥w(t+1)∥
2
= ∥w(t) + yixi∥

2
= ∥w(t)∥

2
+ 2⟨w(t), yixi⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤0

+∥xi∥2 ≤ ∥w(t)∥
2
+R2

and hence for all t < T holds

∥w(t+1)∥2 =
t

∑
j=1

(∥w(j+1)∥2 − ∥w(j)∥2) ≤ R2t.

Therefore,

⟨w∗,w(t+1)⟩
∥w∗∥∥w(t+1)∥

≥ t

BR
√
t
=

√
t

BR
.

Remark 2.6. The constants B and R from Theorem 2.5 have the following intuitive
interpretations:

� R = maxi=1,...,n∥xi∥ is a measure of the compactness of the sample data. The idea is
that spread out data tend to be harder to separate than compact data. R is known
to the observer.

� B = min{∥w∥ ∣ ∀ i = 1, . . . , n yi⟨w,xi⟩ ≥ 1} describes the margin that can be achieved

by a perfect classifier. To see this, note that for w ∈ Rd and i = 1, . . . , n the distance
between xi and the hyperplane defined by w⊺x = 0 is given by

dist(w,xi) =
⟨w,xi⟩
∥w∥ .

Hence ⟨w,xi⟩ ≥ 1 for all i is equivalent to dist(w,xi) ≥ 1/∥w∥ and consequently the
margin M(w,{x1, . . . , xn}) of the perfect separator given by w⊺x = 0 and the data
satisfies

M(w,{x1, . . . , xn}) ∶= min
i=1,...,n

dist(w,xi) ≥
1

∥w∥ .

Hence, we can conclude that

B = 1

M(w,{x1, . . . , xn})
,

i.e. B is the inverse of the margin and hence a measure of how difficult the separation
of the data is. However, note that B is unknown to the observer.

Remark 2.7. Note that introducing a learning rate η > 0 to the perceptron only changes
the length of the solution vector w and hence neither has an effect on the convergence
speed, nor on the final predictions.
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2.1.3 Logistic regression

A natural modification in order to deal with predictions that are not −1 or 1 using a
linear model is to use the logistic function

ϕ∶R→ [0,1], x↦ 1

1 + exp{−x}

and interpret the result ϕ(⟨w,x⟩) as probability of class 1 to be true given x. Hence the
hypothesis class is given by

Hsig ∶=
⎧⎪⎪⎨⎪⎪⎩
hw∶ x↦

1

1 + exp{−⟨w,x⟩}

RRRRRRRRRRRR
w ∈ Rd

⎫⎪⎪⎬⎪⎪⎭
.

Our loss function should penalize misclassifications, i.e. small values of yi⟨w,xi⟩ and
should therefore be increasing in yi⟨w,xi⟩. A possible choice is the logistic loss

l(hw, z) ∶= l(hw, (x, y)) ∶= log (1 + exp{−y⟨w,x⟩}) .

The ERM rule then requires us, given a sample S of size n, to find an estimator hS ∈Hsig

satisfying

hS ∈ argmin
h∈Hsig

LS(hS),

which can be done by taking hS = hw∗ for

w∗ ∈ argmin
w∈Rd

1

n

n

∑
i=1

log (1 + exp{−yi⟨w,xi⟩}) .

Remark 2.8. Note that for w ∈ Rd

exp{−⟨w,x⟩} = 1

hw(x)
− 1 = 1 − hw(x)

hw(x)

are the odds of class 1. Equivalently,

−⟨w,x⟩ = log(1 − hw(x)
hw(x)

) =∶ logit (hw(x))

are the log-odds. Hence

l(hw, (x, y)) =
⎧⎪⎪⎨⎪⎪⎩

log (1/hw(x)) if y = 1,

log (1/(1 − hw(x))) if y = −1.
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2.2 Linear Regression

In the case of linear regression we have X = Rr,Y = Rq and we assume

Yi =Xiβ + εi ∈ Rq, i = 1, . . . , n,

for β ∈ Rd,Xi ∈ Rq×d of maximal rank min{q, d}, r, q, d ∈ N and ε ∼ N(0,Σ) i.i.d.
and Σ ∈ Rq×q positive definite. Often Xi ∶= Ψ(xi) for some fixed, known feature map
Ψ∶Rr → Rq×d. The hypothesis space is given by

H ∶= {x↦ Ψ(x)β ∣ Ψ∶X→ Rq×d, β ∈ Rd}.

It is very convenient to directly work in the feature space Ψ(X). Note that the log-
likelihood given an i.i.d. sample S = {(X1, Y1), . . . , (Xn, Yn)} is given by

L(β∣S) =
n

∑
i=1

log ((2π)q/2∣Σ∣−1/2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=const

−1

2
∥Σ−1/2 (Yi −Xiβ)∥

2
.

Hence, maximizing the log-likelihood is equivalent to minimizing the squared error:

βMLE = argmin
β∈Rd

n

∑
i=1

∥Σ−1/2 (Yi −Xiβ)∥
2
. (16)

Note that changing the distribution of the residuals εi would yield a different loss function.
For example, for exponentially distributed εi we would minimize the mean absolute error.
We now solve (16) by means of standard vector calculus:

∇β
⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

∥Σ−1/2 (Yi −Xiβ)∥
2
⎫⎪⎪⎬⎪⎪⎭
=

n

∑
i=1

(−2X⊺
i Σ−1Yi + 2X⊺

i Σ−1Xiβ) ;

∇2
β

⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

∥Σ−1/2 (Yi −Xiβ)∥
2
⎫⎪⎪⎬⎪⎪⎭
= 2

n

∑
i=1

X⊺
i Σ−1Xi.

Note that as Xi has full rank and Σ−1 is positive definite, X⊺
i Σ−1Xi is positive definite

and consequently

βMSE = βMLE ∶=
⎛
⎝
n

∑
i=1

X⊺
i Σ−1Xi

⎞
⎠

−1

⎛
⎝
n

∑
i=1

X⊺
i Σ−1Yi

⎞
⎠

(17)

is the unique solution to (16).

Remark 2.9. If q = 1, then it is convenient to use the model

Y =Xβ + ε ∈ Rn, where X ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

X1

⋮
Xn

⎤⎥⎥⎥⎥⎥⎥⎦

∈ Rn×d and Y ∶= (Y1, . . . , Yn)⊺.
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This approach allows to replace the independence assumption on the samples by a joint
normal distribution by assuming ε ∼ N(0,Σ), Σ ∈ Rn×n positive definite. The least
squares / maximum likelihood solution to optimal weights β is then given by

βMLE = (X⊺Σ−1X)−1X⊺Σ−1Y. (18)

Example 2.10. If q = 1 and Σ = σ2I, then (17) reduces to

βMLE =
⎛
⎝

1

σ2

n

∑
i=1

X⊺
i Xi

⎞
⎠

−1

⎛
⎝

1

σ2

n

∑
i=1

X⊺
i Yi

⎞
⎠
=
⎛
⎝
n

∑
i=1

X⊺
i Xi

⎞
⎠

−1

⎛
⎝
n

∑
i=1

X⊺
i Yi

⎞
⎠
. (19)

How does this compare to (18)? First of all, this comparison is only meaningful if Σ = σ2I
in (18). Furthermore, note that X and Y from (18) satisfy

X⊺X = [X⊺
1 . . . X⊺

n]

⎡⎢⎢⎢⎢⎢⎢⎣

X1

⋮
Xn

⎤⎥⎥⎥⎥⎥⎥⎦

=
n

∑
i=1

X⊺
i Xi and

X⊺Y = [X⊺
1 . . . X⊺

n]Y =
n

∑
i=1

X⊺
i Yi

and hence we arrive at the same equations as in (19).
If also d = 1, then we arrive at

βMLE = σ
2∑ni=1XiYi
σ2∑ni=1X

2
i

= ∑
n
i=1XiYi

∑ni=1X
2
i

.

The following example shows the power of using a non-trivial feature mapping Ψ:

Example 2.11 (Polynomial regression). Consider the case of Y = X = R and a given
sample S = {(x1, y1), . . . , (xn, yn)}. Define the feature mapping

Ψ∶R→ Rd, x↦ (1, x, x2, . . . , xd)
⊺

, d ∈ N.

We can then build a feature matrix

X ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

Ψ(x1)⊺
⋮

Ψ(xn)⊺

⎤⎥⎥⎥⎥⎥⎥⎦

∈ Rn×d.

The hypothesis class is consequently

Hpol =
⎧⎪⎪⎨⎪⎪⎩
x↦

d

∑
k=0

βkx
k

RRRRRRRRRRRR
β0, . . . , βd ∈ R

⎫⎪⎪⎬⎪⎪⎭
.

(19) or (18) then yield the ERM weight vector.
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3 Model selection and validation

Motivation. In this section, we will explore methods on how to obtain a good estimate
of the true risk LD(h) for an estimator h ∈ H, H some hypothesis class. Recall from
Theorem 1.43 with sharp bound (10), any hypothesis class with VCdim(H) = d < ∞ has
the uniform convergence property with sample complexity

nuc
H ≤ C2

d + log (1/δ)
ε2

for some C2 > 0. Hence, for any n ≥ C2(d + log (1/δ))/ε2 we have

PS∼Dn(sup
h∈H

∣LD(h) −LS(h)∣ ≤ ε) ≥ 1 − δ.

W.l.o.g. assume that C2(d + log (1/δ))/ε2 ≥ 1. If

n =
⎢⎢⎢⎢⎢⎣
2C2

d + log (1/δ)
ε2

⎥⎥⎥⎥⎥⎦
,

then

C2

d + log (1/δ)
ε2

≤ n ≤ 2C2

d + log (1/δ)
ε2

.

With C ∶= 2C2, it follows that

PS∼Dn

⎛
⎜⎜
⎝

sup
h∈H

∣LD(h) −LS(h)∣ ≤

¿
ÁÁÀ

C
d + log (1/δ)

n

⎞
⎟⎟
⎠
≥ 1 − δ,

which gives a concentration result for using the empirical risk LS(h) as an estimator for
the true risk LD(h).
A very popular method of estimating the true error LD(h) is to use another set of data
V = {(xv1, yv1), . . . , (xvnv , yvnv)}, the validation set, which is independent of S. The idea is
to estimate LD(h) via LV(h), the empirical risk on the validation set.

Theorem 3.1. Let h = hS be a data-driven estimator and assume that the loss function
is bounded in [0,1]. Then, for all δ ∈ (0,1), we have

PV∼Dnv

⎛
⎜⎜
⎝
∣LV(hS) −LD(hS)∣ ≤

¿
ÁÁÀ log (2/δ)

2nv

RRRRRRRRRRRRRRR
S

⎞
⎟⎟
⎠
≥ 1 − δ Dn-a.s.

Furthermore,

P(V,S)∼Dnv+n

⎛
⎜⎜
⎝
∣LV(hS) −LD(hS)∣ ≤

¿
ÁÁÀ log (2/δ)

2nv

⎞
⎟⎟
⎠
≥ 1 − δ.
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Proof. Recall that for two independent random variables X,Y with distributions Dx and
Dy and ψ ∈ L(X,Y ) holds

E(X,Y )∼Dx⊗Dy[ψ(X,Y ) ∣ Y ] = EX∼Dx[ψ(X,y)]∣
y=Y

=∶ g(Y ).

Furthermore, by the tower property of conditional expectations holds

E(X,Y )∼Dx⊗Dy[ψ(X,Y )] = EY ∼Dy[g(Y )].

Now replace X and Y by S and V and set ψ(S,V) ∶= 1 (∣LD(hS) −LV(hS)∣ ≥ t) for some

t > 0, then

Dn-a.s. PV∼Dnv (∣LV(hS) −LD(hS)∣ ≥ t ∣ S = s) = PV∼Dnv (∣LV(hs) −LD(hs)∣ ≥ t)

and

P(S,V)∼Dn⊗Dnv (∣LV(hS) −LD(hS)∣ ≥ t ∣ S = s)

= ∫ PV∼Dnv (∣LV(hs) −LD(hs)∣ ≥ t)dDn(s).

Since

LD(hS) = E(x,y)∼D[l(hS, (x, y))] and LV(hS) =
1

nv

nv

∑
i=1

l (hS, (xi, yi)) ,

we can apply Hoeffing’s inequality (Lemma 1.19) to obtain

PV∼Dnv

⎛
⎜⎜
⎝
∣LV(hS) −LD(hS)∣ ≥

¿
ÁÁÀ log (2/δ)

2nv

RRRRRRRRRRRRRRR
S

⎞
⎟⎟
⎠
≤ 2exp

⎧⎪⎪⎨⎪⎪⎩
−2nv

log (2/δ)
2nv

⎫⎪⎪⎬⎪⎪⎭
= δ.

Remark 3.2. Note that we would get a sharper bound, i.e. a smaller error, than in
Theorem 3.1 by choosing nv such that

log (2/δ)
2nv

< C
d + log (1/δ)

n
⇐⇒ nv ≥ n

log (2/δ)
2C (d + log (1/δ))

.

For example, it is enough to take nv ≥ n/(2C), since we have log (2) + log (1/δ) <
d + log (1/δ).

Remark 3.3. Note that in order to apply Theorem 3.1, we need an extra sample V,
which is independent of the sample S that was used for training the model. In order
to obtain those two sets, it is common to divide the original data into training (S) and
validation (V) set. We then call V hold-out set.
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Remark 3.4. To solve the model selection task of choosing the “best” predictor h∗ ∈
{hS,1, . . . , hS,k}, k ∈ N, out of a class of predictors trained on S, we simply choose

h∗∶ ∈ argmin
h∈{hS,1,...,hS,k}

LV(h).

Theorem 3.5. Let H = {h1, . . . , hk} be an arbitrary set of predictors (based on a training
set S) and assume that the loss function l is bounded in [0,1]. Assume that a validation
set V of size nv is sampled independently of S. Then,

Dn-a.s. PV∼Dnv

⎛
⎜⎜
⎝

sup
h∈H

∣LD(h) −LV(h)∣ ≤

¿
ÁÁÀ log (2k/δ)

2nv

RRRRRRRRRRRRRRR
S

⎞
⎟⎟
⎠
≥ 1 − δ

and

P(S,V)∼Dn⊗Dnv

⎛
⎜⎜
⎝

sup
h∈H

∣LD(h) −LV(h)∣ ≤

¿
ÁÁÀ log (2k/δ)

2nv

⎞
⎟⎟
⎠
≥ 1 − δ.

Remark 3.6. Note that if k = ∣H∣ in Theorem 3.5 is not too large, then the bound on
the maximal deviation between the true risk and the validation error of any h is sharp.

Remark 3.7. Another idea to generate validation data is to use the same training set
for both training and validation. Let A ∶S↦ hS be our learning algorithm. The k-cross
validation method works the following way:

1) Partition S into k different subsets (folds) of size ≈ n/k: S = ⋃ki=1 Si;

2) For each i ∈ {1, . . . , k}, train A on S ∖ Si, this gives an estimator h
(−i)
S

;

3) Evaluate the error by computing LSi(h
(−i)
S

);

4) Use as predictor for LD(hS) the average

L
(k)
S

(hS) ∶=
1

k

k

∑
i=1

LSi (h
(−i)
S

) .

If k = n, this method is also called leave-one-out (LOO) procedure.

Note that L
(k)
S

(hS) is in general a biased estimator of LD(hS): Assume, for simplicity,
that all folds Si, i = 1, . . . , k, have size m = n/k ∈ N. Then, by i.i.d. nature of S,

EDn[L(k)
S

(hS)] =
1

k

k

∑
i=1

EDn[LSi (h
(−i)
S

)] = 1

k

n

∑
i=1

EDn

⎡⎢⎢⎢⎢⎢⎣
EDn

⎡⎢⎢⎢⎢⎣

1

m
∑
z∈Si

l(h(−i)
S

, z)
RRRRRRRRRRRR
Si

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦

= 1

k

k

∑
i=1

EDn[LD (h(−i)
S

)] = EDm−n[LD(A (n −m))],
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where A (n −m) denotes the output of the learning algorithm when trained on an i.i.d.
sample of size n−m according to Dn−m. We can see that we have a systematic tendency to
underfit. Note that the bias becomes smaller when k increases, as this leads to decreasing
m.
In order to apply this for model selection, assume that we are given r ∈ N hypothesis

classes {H1, . . . ,Hr}. Let {h(1)
S
, . . . , h

(r)
S

} be the output of our learning algorithm given
data S in the respective hypothesis classes. Then we would choose

hminCV
S ∶ ∈ argmin

j=1,...,r
L

(k)
S

(h(j)
S

) .

There are settings under which the k-cross validation works, but a general theory is hard
to establish, as we can see in the following counterexample:

Example 3.8. Consider the setup of binary classification, in this case Y = {0,1} with
0-1-loss l. Assume that the distribution D on Z = X × Y satisfies Dy∣x = Ber(1/2), i.e. the
labels are independent of the features and both labels have the same probability. Given
a sample S of size n, take the estimator

hS(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

0, if ∑ni=1 yi is odd,

1, if ∑ni=1 yi is even.

We consider the case where n is even only, the case n being odd follows analogously.
Then

LD(hS) = P(x,y)∼D(hS(x) ≠ y) = P(x,y)∼D(y ≠ 0) = 1

2
.

However, the leave-one-out cross validation estimate L
(n)
S

(hS) produces 1 on each fold Si:

� If ∑j≠i yj is odd, then yi = 1 and hence h
(−i)
S

= 0 ≠ 1 = y;

� If ∑j≠i yj is even, then yi = 0 and hence h
(−i)
S

= 1 ≠ 0 = y.

Hence L
(n)
S

(hS) = 1 but LD(hS) = 1/2.

Remark 3.9. Let us decompose the true error of a predictor hS using the validation
error:

LD(hS) = LD(hS) −LV(hS)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bounded by Theorem 3.1

+LV(hS) −LS(hS) +LS(hS).

Then we have the following cases:

1) LS(hS) small but LV(hS) − LS(hS) large: This corresponds to overfitting, i.e. the
hypothesis class is too rich;
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2) LS(hS) big: This corresponds to underfitting, i.e. the hypothesis class is not rich
enough.

In order to see 2), decompose LS(hS) using h∗∶ ∈ argminh∈HLD(h):

LS(hS) = LS(hS) −LS(h∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤0

+ LS(h∗) −LD(h∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bounded by Theorem 1.41

+ LD(h∗).
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

approximation error

If now LS(hS) is big, then so is LD(h∗), which means that the hypothesis class is too
small.

Remark 3.10. We have seen in Remark 3.9 that small LS(hS) can either imply a very
good fit of our model, or indicates overfitting. A way of determining which of these is
the case is to use learning curve:

� Compute the training errors LS(h(k)
S

) occurring when we train the algorithm on
kη∣S∣ samples from S, η ∈ (0,1), k = 1, . . . , ⌊1/η⌋;

� compute the validation errors LV(h(k)
S

) with some validation set V independent of
S for k = 1, . . . , ⌊1/η⌋.

If the validation error does not drop with the increasing training sizes, we found an
indication that the approximation error is not 0. Hence we need to enlarge the hypothesis
class.
If the validation error declines with the increasing training sizes but stays nevertheless
large, then it is an indication that the size ∣S∣ is not enough and we need to obtain more
examples.
If the training and validation error are spread apart a lot at the beginning and have
different asymptotes, then this is evidence for overfitting.
An example for learning curves can be seen in Figure 2.

4 Optimization methods

4.1 Convex Learning Problems

Motivation. We will see in Corollaries 4.45, 4.47 and 4.58, that so-called convex learning
problems are particularly efficient to solve.

Definition 4.1. A subset C in a vector space X is convex if for any two vectors u, v ∈ C,
the line segment between u and v is contained in C, i.e.

∀α ∈ [0,1], u, v ∈ C αu + (1 − α)v ∈ C.

Definition 4.2. Let C be a convex set. A function f ∶C→ R is convex if

∀α ∈ [0,1], u, v ∈ C f(αu + (1 − α)v) ≤ αf(u) + (1 − α)f(v).
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(a) Too small hypothesis class: Underfitting
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(b) Correct hypothesis class
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(c) Too large hypothesis class: Overfitting

Figure 2: Learning curves for Dx = U([0,1]) and Dy∣x = (δ5+2x−x2−3x3 +U([−1,1]))/2, H
the set of polynomials of given maximal degree, n = 100, nv = 500.

Remark 4.3. Note that a function f ∶C→ R is convex if and only if

epigraph(f) ∶= {(x, y) ⊂ X ×R ∣ y ≥ f(x)}

is a convex set in X ×R.

Example 4.4. Linear regression with q = 1 (cf. 2.2) and quadratic loss l(hw, z) =
(hw(x) − y)2 with hw(x) = ⟨w,x⟩ is a convex learning problem, as well as Logistic
regression (cf. 2.1.3) with the loss exponential loss

l(hw, (x, y)) = log (1 + exp{−yhw(xi)}) .

However, classification with respect to the 0-1-loss is non-convex.
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Definition 4.5. We denote with Br(y) for r > 0 and y ∈ Rd the closed Euclidean ball
around y with radius r:

Br(x) ∶= {x ∈ Rd ∣ ∥x − y∥ ≤ r} ⊂ Rd.

Lemma 4.6. If f ∶C→ R on a convex set C is convex, then every local minimum is also
a global minimum.

Proof. Let u be a local minimum of C. Then, there exists r > 0 such that for all
v ∈ Br(u) ∩ C, we have f(v) ≥ f(u). Let w ∈ C, then we can find α ∈ (0,1] such that
u + α(w − u) ∈ Br(u) ∩ C. Therefore, by convexity

f(u) ≤ f(u + α(w − u)) = f((1 − α)u + αw) ≤ (1 − α)f(u) + αf(w).

Hence α > 0 implies f(u) ≤ f(w) for all w ∈ C.

Lemma 4.7. Assume f ∶C ⊂ Rd → R is differentiable with gradient ∇f( ⋅ ). Then f is
convex if and only if

∀u,w ∈ C f(u) ≥ f(w) + ⟨∇f(w), u −w⟩, (20)

i.e. f stays above the tangent at w.

Proof. Assume f is convex and let u,w ∈ C. Then for all λ > 0 holds

f(λu + (1 − λw)) ≤ λf(u) + (1 − λ)f(w)
⇐⇒ f(λu + (1 − λw)) − f(w) ≤ λ(f(u) − f(w))

⇐⇒ 1

λ
(f(λu + (1 − λw)) − f(w))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→⟨∇f(w),u−w⟩ as λ↘0

≤ f(u) − f(w).

Assume now that (20) holds and let u,w ∈ C and v ∶= λu + (1 − λ)w. Then

f(u) ≥ f(v) + ⟨∇f(v), u − v⟩ and f(w) ≥ f(v) + ⟨∇f(v),w − v⟩.

Hence

λf(u)+ (1−λ)f(w) ≥ f(v)+ ⟨∇f(v), λu + (1 − λ)w − v⟩ = f(v) = f(λu+(1−λw)).

Lemma 4.8. Let f ∶R → R be twice differentiable. Then the following assertions are
equivalent:

1) f is convex;

2) f ′ is non-decreasing;

3) f ′′ > 0.
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Lemma 4.9. Let g∶R→ R be convex. Then also

f ∶
⎧⎪⎪⎨⎪⎪⎩

Rd → R,
w ↦ g(⟨w,x⟩ + y)

for x ∈ Rd, y ∈ R, is convex.

Proof. For α ∈ [0,1] and v,w ∈ Rd we have

f(αv + (1 − α)w) = g (α⟨v, x⟩ + (1 − α)⟨w,x⟩ + y)

= g (α (⟨v, x⟩ + y) + (1 − α) (⟨w,x⟩ + y))

≤ αg (⟨v, x⟩ + y) + (1 − α)g (⟨w,x⟩ + y)
= αf(v) + (1 − α)f(w).

Example 4.10. Lemmata 4.8 and 4.9 show that the functions

f ∶
⎧⎪⎪⎨⎪⎪⎩

Rd → R,
w ↦ (⟨w,x⟩ − y)2

and g∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rd → R,
log (1 + exp{−y⟨w,x⟩})

are convex, as

d2

da2
(a − y)2 = d

da
2(a − y) = 2 > 0 and

d2

da2
log (1 + exp{a}) = d

da

exp{a}
1 + exp{a} = exp{a}

(1 + exp{a})2
> 0

for all a ∈ R.

Lemma 4.11. For i = 1, . . . , r, r ∈ N, let gi∶Rd → R be a convex function. Then also

� maxi=1,...,r gi( ⋅ ) and

� ∑ri=1wigi( ⋅ ) for wi ≥ 0, i = 1, . . . , r,

are convex.

Definition 4.12. A function f ∶Rd → Rq, p, q ∈ N is called (ρ-)Lipschitz, if

∃ρ > 0∀x, y ∈ Rd ∥f(x) − f(y)∥ ≤ ρ∥x − y∥.

Theorem 4.13. A differentiable function f ∶Rd → R is ρ-Lipschitz if and only if
∥∇f(x)∥ ≤ ρ for all x ∈ Rd.

Proof. Assume that f is ρ-Lipschitz, then for all x,w ∈ Rd holds

∣⟨∇f(x),w⟩∣ = lim
h→0

∣f(x + hw) − f(x)∣
∣h∣ ≤ lim

h→0

ρ∣h∣∥w∥
∣h∣ = ρ∥w∥.
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Choosing w = ∇f(x) yields ∥∇f(x)∥2 ≤ ρ∥∇f(x)∥ and hence ∥∇f(x)∥ ≤ ρ.
Assume now that ∥∇f(x)∥ ≤ ρ for all x ∈ Rd. Then by Taylor’s Theorem, for all x,w ∈ Rd
holds for some ξ between x and w that

∥f(x) − f(w)∥ = ∥⟨∇f(ξ), x −w⟩∥ ≤ ∥∇f(ξ)∥∥x −w∥ ≤ ρ∥x −w∥,

which implies that f is ρ-Lipschitz.

Example 4.14. The following functions are 1-Lipschitz:

� Rd ∋ x↦ ∥x∥;

� R ∋ x↦ log (1 + exp{x}).

R ∋ x ↦ x2 is not Lipschitz, it can be made Lipschitz by restricting to domain to a
bounded subset C ⊂ R.
Note also that f ∶Rd → R, w ↦ ⟨w,x⟩ + b, where x ∈ Rd, b ∈ R, is ∥x∥-Lipschitz because

∀w1,w2 ∈ Rd ∣f(w1) − f(w2)∣ = ∣⟨w1 −w2, x⟩∣ ≤ ∥x∥∥w1 −w2∥.

Lemma 4.15. Let f(⋅) ∶= g1(g2(⋅)), where g1∶Rq → Rr is ρ1-Lipschitz and g2 ∶= Rd → Rq
is ρ2-Lipschitz. Then, f is (ρ1ρ2)-Lipschitz. In particular, if g2(w) = ⟨w, v⟩+ b for v ∈ Rd,
b ∈ R, then f is (ρ1∥v∥)-Lipschitz.

Proof. Note that for all v,w ∈ Rd holds

∥f(v) − f(w)∥ = ∥g1(g2(v)) − g1(g2(w))∥ ≤ ρ1∥g2(v) − g2(w)∥
≤ ρ1ρ2∥v −w∥.

Definition 4.16. A differentiable function f ∶Rd → R is called β-smooth for β > 0 if
∇f( ⋅ ) is β-Lipschitz, i.e.

∀ v,w ∈ Rd ∥∇f(v) − ∇f(w)∥ ≤ β∥v −w∥.

Lemma 4.17. If f ∶Rd → R is β-smooth, then

∀ v,w ∈ Rd f(v) ≤ f(w) + ⟨∇f(w), v −w⟩ + β
2
∥v −w∥2.

Proof. Let h(t)∶ [0,1] ∋ t↦ f(tv + (1 − t)w) ∈ R, then h is differentiable and

h′(t) = ⟨∇f(w + t(v −w)), v −w⟩, t ∈ (0,1).

Then

f(v) − f(w) = h(1) − h(0) = ∫
1

0
h′(t)dt = ∫

1

0
⟨∇f(w + t(v −w)), v −w⟩dt.
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It follows with the Cauchy-Schwarz inequality that

f(v) − f(w) − ⟨∇f(w), v −w⟩ = ∫
1

0
⟨∇f(w + t(v −w)) − f(w), v −w⟩dt

≤ ∫
1

0
∥∇f(w + t(v −w)) − ∇f(w)∥∥v −w∥dt

≤ ∥v −w∥∫
1

0
βt∥v −w∥dt

= β
2
∥v −w∥2,

which completes the proof.

Remark 4.18. Note that if f ∶Rd → R is convex and β-smooth, then by Lemmata 4.7
and 4.17, we have the bounds

∀ v,w ∈ Rd f(w) + ⟨∇f(w),w − v⟩ ≤ f(v) ≤ f(w) + ⟨∇f(w),w − v⟩ + β
2
∥v −w∥2.

If v = w −∇f(w)/β, then v −w = −∇f(w)/β and hence

1

2β
∥∇f(w)∥2 ≤ f(w) − f(v).

If, additionally, f ≥ 0, then

∥∇f(w)2∥ ≤ 2βf(w)

and we call f self-bounded.

Lemma 4.19. Let g∶R→ R be β-smooth. Then for some fixed x ∈ Rd, b ∈ R,

f ∶
⎧⎪⎪⎨⎪⎪⎩

Rd → R,
w ↦ g(⟨w,x⟩ + b)

is β∥x∥2-smooth.

Proof. This follows from

∥∇f(v) − ∇f(w)∥ = ∥(g′(⟨w,x⟩ + b) − g′(⟨v, x⟩ + b))x∥ ≤ β∥⟨w − v, x⟩∥∥x∥

≤ β∥x∥2∥w − v∥

for all v,w ∈ Rd, where we used the Cauchy-Schwarz inequality.

Example 4.20. Consider the function g∶R ∋ x↦ log (1 + exp{−yx}) ∈ R, for some fixed
y ∈ {−1,1}. Then

∣g′′(x)∣ = exp{−xy}
(1 + exp{−xy})2

≤ 1

4
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and hence g′( ⋅ ) is 1/4-Lipschitz. Thus, the function

f ∶Rd → R, w ↦ log ((1 + exp{−y⟨w,x⟩})

is ∥x∥2/4-smooth.

Motivation. Recall that a learning problem needs a hypothesis class H, a domain
Z = X × Y, and a loss function l∶H × Z → [0,∞). Up to now, the elements in H were
functions h∶X→ Y. Here, we will assume that each hypothesis function h can be identified
with a real d-dimensional vector w ∈ Rd.

Definition 4.21. A learning problem (H,Z, l) is called convex if H is a convex set and
the function w ↦ f(w) ∶= l(w, z) is convex for any fixed z ∈ Z.

Example 4.22. Consider a regression problem with q = 1, where the hypothesis class
H can be identified with Rd (since h(x) = ⟨hw, x⟩ for some w ∈ Rd) and the quadratic
loss function l(w, (x, y)) = (⟨hw, x⟩ − y)2. By Lemma 4.9, this yields a convex learning
problem.

Lemma 4.23. If l is a convex loss function and H is convex, then the ERMH problem (of
minimizing the empirical loss over H) is a convex optimization problem, as it corresponds
to the problem of minimizing a convex function over a convex set.

Proof. Let S = {(x1, y1), . . . , (xn, yn)} be some training set. Then, when applying the
ERM paradigm, we aim at minimizing

w ↦ LS(w) ∶= 1

n

n

∑
i=1

l(w, (xi, yi)),

which is a convex function.

Remark 4.24. Note that convexity is not sufficient for a problem to be PAC learnable.
It can be shown that for linear regression with d = q = 1 and H = R with quadratic loss l,
for any sample S of size n ∈ N and any learning algorithm A we can find (ε0, δ0) ∈ (0,1)
and a distribution D on R2 such that

PS∼Dn(LD(A (S)) ≥ min
w∈R

LD(w) + ε0) ≥ δ0.

Definition 4.25. A learning problem (H,Z, l) is called convex-Lipschitz-bounded with
parameters ρ,B > 0, if the class H is a convex set H ⊂ BB(0) (that is ∀w ∈H ∶ ∥w∥ ≤ B)
and for all z ∈ Z, w ↦ l(w, z) is convex and ρ-Lipschitz.

Example 4.26. Consider the setting of X = Bρ(0) ⊂ Rd, Y = R, H = BB(0) and
l(w, (x, y)) = ∣⟨w,x⟩ − y∣. By Lemma 4.15, l is ∥x∥-Lipschitz.

Definition 4.27. A learning problem (H,Z, l) is called convex-smooth-bounded with
parameters β,B > 0, if H is a convex set with H ⊂ BB(0) and for all z ∈ Z, w ↦ l(w, z)
is convex and β-smooth.
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Example 4.28. Consider the setting of X = B√
β/2

(0), Y = R, H = BB(0) and

l(w, (x, y)) = (⟨w,x⟩ − y)2.

By Lemma 4.19, w ↦ (⟨hw, x⟩ − y)2 is 2∥x∥2-smooth, and 2∥x∥2 ≤ β. Hence the loss
function is β-smooth.

Remark 4.29 (Surrogate loss function). Consider the classification problem with half-
spaces with domain Z = Rd × {−1, 1} and loss function l0−1(w, (x, y)) = 1(y = sign(⟨w,x⟩)
for w ∈ Rd. The function w ↦ l0−1(w, (x, y)) is not convex and it can be shown that
finding the ERM rule in the non-separable case is NP-hard. In order to make the
minimization problem easier, one solution is to upper bound the non-convex function (to
be minimized) by a convex surrogate function. For example, consider

lhinge(w, (x, y)) = max(0,1 − y⟨w,x⟩).

For all w ∈ R and (x, y) ∈ Z we have that l0−1(w, (x, y)) ≤ lhinge(w, (x, y)): Indeed,
y ≠ sign(⟨w,x⟩) holds if and only if y⟨w,x⟩ ≤ 0, and hence

l0−1(w, (x, y)) = 1 Ô⇒ lhinge(w, (x, y)) = 1 − y⟨w,x⟩ ≥ 1 = l0−1(w, (x, y)).

Also, w ↦ lhinge(w, (x, y)) is convex by Lemma 4.11.
Let A be a learning algorithm which can learn w using the hinge loss. We aim to achieve

Lhinge
D (A (S)) ≤ min

w∈H
Lhinge

D (w) + ε

for some small estimation error ε > 0, where for Lhinge
D we replace l in LD with lhinge. We

thus have

LD(A(S)) ≤ Lhinge
D (A(S)) ≤ min

w∈H
Lhinge

D (w) + ε

≤ min
w∈H

LD(w)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

approximation error

+min
w∈H

Lhinge
D (w) −min

w∈H
LD(w)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
optimization error

+ ε.®
estimation error

The optimization error depends on the unknown distribution D (and also on our choice
for the surrogate function).

4.2 Stochastic Gradient Descend (SGD)

Motivation. We consider again the setting where H can be identified with some convex
subset of Rd and the loss function w ↦ l(w, z) is convex for any z ∈ Z. In this subsection,
we will study the properties of a new learning method, namely the Stochastic Gradient
Descent (SGD). We start with the simpler version called Gradient Descent (GD) and
analyze its convergence.
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Definition 4.30. The Gradient Descent (GD) algorithm with T ∈ N steps and step size
(learning rate) η > 0 for minimizing a differentiable function f ∶Rd → R works as follows:

Algorithm 2 Gradient Descent (GD)

1: Set w(1) ∶= 0 ∈ Rd;
2: for t = 1, . . . , T − 1 do
3: Update w(t+1) ∶= w(t) − η∇f(w(t));
4: end for
5: return w̄ ∶= ∑Tt=1w

(t)/T .

Remark 4.31. Gradient descent implements the following idea: If f is a differentiable
function on Rd with gradient ∇f(w), then ∇f(w) points in the direction of the greatest
rate of increase of f around w. If f admits a minimum at w∗, then we “hunt” for this
minimizer by iteratively updating

w(t+1) ∶= w(t) − η∇f (w(t)) .

Starting from w(1) = 0, it can be shown that under some conditions, the output w̄
converges to the minimum w∗:

w̄ ∶= 1

T

T

∑
t=1

w(t) T→∞ÐÐÐ→ w∗.

Suppose that f is convex. Then, the starting point of the analysis is to note that

f(w̄)−f(w∗) = f
⎛
⎝

1

T

T

∑
t=1

w(t)⎞
⎠
−f(w∗) ≤ 1

T

T

∑
t=1

f (w(t))−f(w∗) = 1

T

T

∑
t=1

[f (w(t)) − f(w∗)] .

Using convexity, we have that f(w(t)) ≤ f(w∗) + ⟨w(t) −w∗,∇f(w(t))⟩ and hence

f(w̄) − f(w∗) ≤ 1

T

T

∑
t=1

⟨w(t) −w∗,∇f(w(t))⟩

and the goal now is to upper bound the term on the right side.

Lemma 4.32. Let v1, . . . , vT be an arbitrary sequence of vectors in Rd. Any algorithm
with an initialization w(1) = 0 and an update rule of the form

w(t+1) = w(t) − ηvt

for some η > 0 satisfies for any w∗ ∈ Rd

T

∑
t=1

⟨w(t) −w∗, vt⟩ ≤
1

2η
∥w∗∥2 + η

2

T

∑
t=1

∥vt∥2.
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In particular, for all B > 0, ρ > 0, if we have ∥vt∥ ≤ ρ and if η =
√
B2/(ρ2T ), then for any

w∗ with ∥w∗∥ ≤ B we have

1

T

T

∑
t=1

⟨w(t) −w∗, vt⟩ ≤
Bρ√
T

Proof. Note that

⟨w(t) −w∗, vt⟩ =
1

η
⟨w(t) −w∗, ηvt⟩

= 1

2η
(−∥w(t) −w∗ − ηvt∥

2
+ ∥w(t) −w∗∥

2
+ η2∥vt∥2)

= 1

2η
(−∥w(t+1) −w∗∥

2
+ ∥w(t) −w∗∥

2
) + η

2
∥vt∥2

by definition of w(t+1). Summing over t = 1, . . . , T yields

T

∑
t=1

⟨w(t) −w∗, vt⟩ =
1

2η
(−∥w(T+1) −w∗∥

2
+ ∥w(1) −w∗∥

2
) + η

2

T

∑
t=1

∥vt∥2

≤ 1

2η
∥w(1) −w∗∥

2
+ η

2

T

∑
t=1

∥vt∥2

= 1

2η
∥w∗∥2 + η

2

T

∑
t=1

∥vt∥2,

since w(1) = 0.

Corollary 4.33. Let f ∶Rd → R be convex, ρ-Lipschitz and differentiable and let w∗ ∈
argminw∈BB(0) f(w) for some B > 0. If the gradient descent algorithm is run for T steps

with η =
√
B2/(ρ2T ), then

f(w̄) − f(w∗) ≤ Bρ√
T
.

Thus, in order to have f(w̄) − f(w∗) ≤ ε for some ε > 0, it suffices to take T ≥ B2ρ2/ε2.

Proof. Since f is ρ-Lipschitz and differentiable, we have that ∥∇f(w(t)∥ ≤ ρ by Theorem
4.13. Apply Lemma 4.32 with vt ∶= ∇f(w(t)).

Motivation. We can generalize the Gradient Descent algorithm to convex non-differen-
tiable functions, using the concept of subgradients. Recall that if f ∶Rd → R is a convex
differentiable function, then for all u ∈ Rd holds

f(u) ≥ f(w) + ⟨u −w,∇f(w)⟩

by 4.7. This property can be strengthened by the following result:
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Lemma 4.34. Let C be an open convex subset of Rd. A function f ∶C→ R is convex if
and only if

∀w ∈ C∃ v ∈ Rd∀u ∈ C f(u) ≥ f(w) + ⟨u −w, v⟩. (21)

Definition 4.35. A vector v ∈ Rd that satisfies (21) is called a subgradient of f at w ∈ C.
The set of all subgradients of f at w is called the differential set of f at w ∈ C and is
denoted by ∂f(w).

Remark 4.36. If f ∶Rd → R is differentiable, then ∂f(w) = {∇f(w)}.

Example 4.37. Consider f ∶R ∋ x ↦ ∣x∣ ∈ R. Then f is differentiable for all x ≠ 0 and
consequently ∂f(x) = {−1} for x < 0 and ∂f(x) = {1} for x > 0. For x = 0 note that
f(t) ≥ f(0) + a(t − 0), t ∈ R, holds if and only if ∣t∣ ≥ at, i.e. if a ≤ 1 or a ≥ 1. Hence

∂f(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{−1} if x < 0,

[−1,1] if x = 0,

{1} if x > 0.

Lemma 4.38. Let g1, . . . , gr be r ∈ N convex differentiable functions Rd → R and g ∶=
maxi=1,...,r gi. For a given w ∈ Rd, let j ∈ {1, . . . , r} be such that g(w) = gj(w). Then,
∇gj(w) ∈ ∂g(w).

Proof. Convexity of gj implies that for all u ∈ Rd holds

gj(u) ≥ gj(w) + ⟨u −w,∇gj(w)⟩

by Lemma 4.7. Since g(w) = gj(w) and g(u) ≥ gj(u), it follows that

g(u) ≥ g(w) + ⟨u −w,∇gj(w)⟩.

Example 4.39. Consider the hinge loss function f ∶Rd ∋ w ↦max(0, 1 − y⟨w,x⟩) ∈ R for
some vector x ∈ Rd and y ∈ {−1,1}. Then, for a given w ∈ Rd, the vector

v ∶=
⎧⎪⎪⎨⎪⎪⎩

0 if 1 − y⟨w,x⟩ ≤ 0,

−yx otherwise,

is a subgradient of f at w.

Lemma 4.40. Let C ⊂ Rd be a convex open set and let f ∶C → R be a convex function.
Then f is ρ-Lipschitz on C if and only if ∀w ∈ C, v ∈ ∂f(w), we have that ∥v∥ ≤ ρ.

Proof. Suppose that any v ∈ ∂f(w) satisfies ∥v∥ ≤ ρ. By definition of ∂f(w), we have
that f(w) − f(u) ≤ ⟨v,w − u⟩. Applying the Cauchy-Schwarz inequality, we arrive at

f(w) − f(u) ≤ ∥v∥∥w − u∥ ≤ ρ∥w − u∥.
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A similar argument can be applied to show that f(u) − f(w) ≤ ρ∥u −w∥. Hence, f is
ρ-Lipschitz.
Suppose now that f is ρ-Lipschitz, and let w ∈ C and v ∈ ∂f(w). If v = 0, then nothing is
left to show. Suppose now that v ≠ 0. Since C is open, we can find a small ε > 0 such
that u = w + εv/∥v∥ ∈ C. Then, ⟨u −w, v⟩ = ε∥v∥, and ∥u −w∥ = ε. From the definition of
the subgradient (21) and ρ-Lipschitzness, we have that

ρε = ρ∥u −w∥ ≥ f(u) − f(w) ≥ ⟨u −w, v⟩ = ε∥v∥,

implying that ∥v∥ ≤ ρ.

Definition 4.41. The Subgradient Descent (SubGD) algorithm with T ∈ N steps and
step size (learning rate) η > 0 for minimizing a convex and ρ-Lipschitz function f ∶Rd → R
works as follows:

Algorithm 3 Subgradient Descent (SubGD)

1: Set w(1) ∶= 0 ∈ Rd;
2: for t = 1, . . . , T − 1 do
3: compute vt ∈ ∂f(w(t));
4: update w(t+1) ∶= w(t) − ηvt;
5: end for
6: return w̄ ∶= ∑Tt=1w

(t)/T .

Motivation. Note that the function f we want to minimize is the loss function w ↦
LD(w) and is unknown to us. Thus, the gradient or sub-gradient at any vector w is also
unknown. What should we do?
At iteration t, we can replace the unknown gradient or subgradient by a random vector
vt such that

E[vt ∣ w(t)] ∈ ∂f(w(t)).

This idea leads to the stochastic gradient descent.

Definition 4.42 (Stochastic Gradient Descend Version 1). The Stochastic Gradient
Descent (SGD) algorithm with T ∈ N steps and step size (learning rate) η > 0 for
minimizing a convex and ρ-Lipschitz function f ∶Rd → R works as follows:

Algorithm 4 Stochastic Gradient Descent (SGD) for general minimization

1: Set w(1) ∶= 0 ∈ Rd;
2: for t = 1, . . . , T − 1 do

3: Generate vt from a distribution such that E[vt ∣ w(t)] ∈ ∂f(w(t));
4: Update w(t+1) ∶= w(t) − ηvt;
5: end for
6: return w̄ ∶= ∑Tt=1w

(t)/T .
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Theorem 4.43 (Convergence of the SGD). Let B > 0 and ρ > 0 and let f be a convex
function with w∗ ∶= argminw∶∥w∥≤B f(w). Assume that the SGD algorithm (as described

in Definition 4.42) is run for T iterations with learning rate η =
√
B2/(ρ2T ). Assume

further that vt satisfies ∥vt∥ ≤ ρ with probability 1 for all t ∈ {1, . . . , T}. Then,

E[f (w̄)] − f (w∗) ≤ Bρ√
T
.

Proof. Omitted.

Motivation. We now want to study learning with SGD for risk minimization. Recall
that the main goal is to minimize the (true) risk function LD( ⋅ ), where

LD(w) ∶= Ez∼D[l(w, z)].

We will analyze the convergence of the SGD for convex and ρ-Lipschitz loss functions:
Assume that w ↦ l(w, z) is convex, ρ-Lipschitz and differentiable for all z ∈ Z.
Then, by the Dominated Convergence Theorem, the function w ↦ LD(w) is differentiable
if there exists a function z ↦ k(z) such that k ≥ 0 and Ez∼D[k(z)] < ∞ and ∥∇l(w, z)∥ ≤
k(z) for all w, z. Furthermore, we have that

∇LD(w) = Ez∼D[∇l(w, z)].

Note that if w ↦ l(w, z) is ρ-Lipschitz and differentiable (our working assumptions), then

∀w ∈ Rd, z ∈ Z ∥∇l(w, z)∥ ≤ ρ.

Hence we can choose k(z) = ρ for the Dominated Convergence Theorem. Define vt ∶=
∇l(w(t), z), where z ∼ D independent of w(t). We know that ∥vt∥ ≤ ρ. Let us compute

Ez∼D[vt ∣ w(t)]:

Ez∼D[vt ∣ w(t)] = Ez∼D[∇l (w(t), z) ∣ w(t)] = Ez∼D[∇l (w(t), z)]

= ∇Ez∼D[l (w(t), z)] = ∇LD (w(t)) ,

which is the only element in ∂LD(w(t)).
Now, assume that w ↦ l(w, z) is still convex and ρ-Lipschitz, but not necessarily
differentiable anymore. Define vt ∈ ∂l(w(t), z) with z ∼ D independent of w(t). We have
again that ∥vt∥ ≤ ρ, as we are still applying the properties of a sub-gradient vector for a
ρ-Lipschitz function. By the properties of sub-gradients, we have that

∀u ∈ Rd l(u, z) ≥ l (w(t), z) + ⟨u −w(t), vt⟩.

Consequently,

Ez∼D[l(u, z) ∣ w(t)] ≥ Ez∼D[l (w(t), z) ∣ w(t)] +Ez∼D[⟨u −w(t), vt⟩ ∣ w(t)].
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But this is equivalent to

Ez∼D[l(u, z)] ≥ Ez∼D[l (w(t), z)] + ⟨u −w(t),E[vt ∣ w(t)]⟩

and to

LD(w) ≥ LD (w(t)) + ⟨u −w(t),E[vt ∣ w(t)]⟩.

The previous inequality holds for all u and hence E[vt ∣ w(t)] ∈ ∂LD(w(t)).

Definition 4.44 (Stochastic Gradient Descent, Version 2). Consider the learning problem
(H,Z, l) with Z = Rd × R and l∶H × Z → R convex and ρ-Lipschitz. The Stochastic
Gradient Descent (SGD) algorithm with T ∈ N steps and step size (learning rate) η > 0
for minimizing a differentiable loss function l∶H × Z→ R works as follows:

Algorithm 5 Stochastic Subgradient Descent (SGD) for loss minimization

1: Set w(1) ∶= 0 ∈ Rd;
2: for t = 1, . . . , T − 1 do
3: Generate z ∼ D independently from w(t);
4: Choose vt ∈ ∂l(w(t), z);
5: Update w(t+1) ∶= w(t) − ηvt;
6: end for
7: return w̄ ∶= ∑Tt=1w

(t)/T .

Corollary 4.45. Consider a convex, Lipschitz and bounded learning problem with pa-
rameters ρ > 0 and B > 0, i.e. H ⊂ {w ∈ Rd ∣ ∥w∥ ≤ B} and w ↦ l(w, z) is convex and
ρ-Lipschitz. For any ε > 0, if we run the SGD algorithm for minimizing w ↦ LD(w) over
H with

T ≥ B
2ρ2

ε2
and η =

√
B2

ρ2T
,

then

E[LD(w̄)] ≤ min
w∈H

LD(w) + ε.

Proof. Follows from Theorem 4.43.

Motivation. We now proceed to analyze the SGD for convex and smooth loss functions.

Theorem 4.46. Assume that for all z, w ↦ l(w, z) is convex and β-smooth for some
β > 0. Then, if we run the SGD algorithm with η < 1/β, we have for all w∗ ∈ Rd that

E[LD (w̄)] ≤ 1

1 − ηβ
⎛
⎝
LD (w∗) + ∥w∗∥2

2ηT

⎞
⎠
.
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Proof. Recall that if f is a β-smooth and non-negative function, then ∥∇f(w)∥2 ≤ 2βf(w).
For t ∈ {1, . . . , T}, let us denote zt ∶= z ∼ D at iteration t such that zt is independent of
w(t) and write ft(w) ∶= l(w, zt). As we are in the differentiable case, vt = ∇ft(w(t)). By
convexity of ft, Lemma 4.7 implies

ft (w(t)) ≤ ft (w∗) + ⟨w(t) −w∗, vt⟩.

Summing over t = 1, . . . , T yields

T

∑
t=1

ft (w(t)) ≤
T

∑
t=1

ft (w∗) +
T

∑
t=1

⟨w(t) −w∗, vt⟩ ≤
T

∑
t=1

ft (w∗) + ∥w∗∥2

2η
+ η

2

T

∑
t=1

∥vt∥2.

by Lemma 4.32. Using self-boundedness of ft, it follows that

T

∑
t=1

∥vt∥2 ≤ 2β
T

∑
t=1

ft (w(t)) .

Hence,

1

T

T

∑
t=1

ft (w(t)) ≤ 1

T

T

∑
t=1

ft (w∗) + ∥w∗∥2

2ηT
+ ηβ
T

T

∑
t=1

ft (w(t)) ,

which is equivalent to

1 − ηβ
T

T

∑
t=1

ft (w(t)) ≤ 1

T

T

∑
t=1

ft (w∗) + ∥w∗∥2

2ηT

⇐⇒ 1

T

T

∑
t=1

ft (w(t)) ≤ 1

1 − ηβ
⎛
⎝

1

T

T

∑
t=1

ft (w∗) + ∥w∗∥2

2ηT

⎞
⎠

Ô⇒ 1

T

T

∑
t=1

E[ft (w(t))] ≤ 1

1 − ηβ
⎛
⎝

1

T

T

∑
t=1

E[ft (w∗)] + ∥w∗∥2

2ηT

⎞
⎠

Now, for all t = 1, . . . , T holds

E[ft (w∗)] = Ezt∼D[l (w∗, zt)] = LD (w∗)

independently of t. Consequently,

LD (w∗) = 1

T

T

∑
t=1

E[ft (w∗)].

Furthermore,

E[ft (w(t))] = E[l (w(t), zt)] = E[LD (w(t))].
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Hence,

1

T

T

∑
t=1

E[ft (w(t))] = 1

T

T

∑
t=1

E[LD (w(t))] = E

⎡⎢⎢⎢⎢⎣

1

T

T

∑
t=1

LD (w(t))
⎤⎥⎥⎥⎥⎦
.

The function w ↦ LD(w) = Ez∼D[l(w, z)] is convex (by convexity of w ↦ l(w, z) uniformly
over z). Hence,

1

T

T

∑
t=1

LD (w(t)) ≥ LD
⎛
⎝

1

T

T

∑
t=1

w(t)⎞
⎠

by Jensen’s inequality. We conclude that

E[LD (w̄)] ≤ 1

1 − ηβ
⎛
⎝
LD (w∗) + ∥w∗∥2

2ηT

⎞
⎠
,

as claimed.

Corollary 4.47. Consider a convex, smooth, bounded learning problem with parameters
β > 0 and B > 0. Assume in addition that l(0, z) ≤ 1 for all z ∈ Z. For all ε ∈ (0,1], set
η ∶= 1/(β(1 + 3/ε)). Then, running the SGD algorithm with T ≥ 12B2β/ε2 yields

E[LD (w̄)] ≤ min
w∈H

LD(w) + ε

for H = {w ∈ Rd ∣ ∥w∥ ≤ B}.

Proof. Note that

1 − ηβ = 3

ε + 3
⇐⇒ 1

1 − ηβ = ε + 3

3
= 1 + ε

3
.

By Theorem 4.46, we know that with w∗ = argminw∈HLD(w)

E[LD (w̄)] ≤ (1 + ε
3
)
⎛
⎝
LD (w∗) + B2

2ηT

⎞
⎠

≤ (1 + ε
3
)LD (w∗) + (1 + ε

3
) ε

2 + 3ε

24

= LD (w∗) + ε
3
LD (w∗) + (1 + ε

3
) ε + 3

24
ε

≤ LD (w∗) + ε
3
+ (1 + 1

3
) 4

24
ε

= LD (w∗) + ε5

9

≤ LD (w∗) + ε,

where we also used that

LD (w∗) ≤ LD(0) = Ez∼D[l(0, z)] ≤ 1.
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4.3 Regularization and stability

4.3.1 Regularized loss minimization (RLM)

Definition 4.48. Regularized loss minimization (RLM) is a learning rule which minimizes
the criterion

w ↦ LS(w) +R(w)

for a given regularization function R. If

R(w) = λ∥w∥2 = λ
d

∑
i=1

w2
i

for some λ > 0, then we talk about Tikhonov regularization.

Example 4.49 (Ridge Regression). When applying Tikhonov regularization to linear
regression with lsq(w) = (⟨w,x⟩ − y)2, we obtain the learning rule

ŵ∶ ∈ argmin
w∈Rd

⎛
⎝
λ∥w∥2 + 1

2n

n

∑
i=1

(⟨w,xi⟩ − yi)
2⎞
⎠
= argmin

w∈Rd
g(w)

for

g(w) ∶= λ∥w∥2 + 1

2n

n

∑
i=1

(⟨w,xi⟩ − yi)
2 = λw⊺w + 1

2n

n

∑
i=1

(x⊺iw − yi)
2
.

Note that

∇g(w) = 2λw + 1

n

n

∑
i=1

xi (x⊺iw − yi)

and setting ∇g(w) = 0 yields

ŵ = (A + 2nλI)−1
⎛
⎝
n

∑
i=1

yixi
⎞
⎠

for A ∶=
n

∑
i=1

xix
⊺
i . (22)

Note that A is positive semidefinite, as for all a ∈ Rd holds

a⊺Aa = a⊺
n

∑
i=1

xix
⊺
i a =

n

∑
i=1

a⊺xix
⊺
i a =

n

∑
i=1

(x⊺i a)
2 ≥ 0.

As A is also symmetric, there exists λ1, . . . , λd ≥ 0 and Ω ∈ Rd×d orthogonal such that

A = Ω⊺ diag(λ1, . . . , λd)Ω.

Consequently,

A + 2nλI = Ω⊺ diag(λ1 + 2nλ, . . . , λd + 2nλ)Ω.

Since λi+2nλ > 0 for all i = 1, . . . , d, the matrix A+2nλI is invertible and ŵ is well-defined
by (22).
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Motivation (Stable rules do not overfit). Let A be a learning algorithm and S =
{z1, . . . , zn} be some training set with n i.i.d. examples from the unknown distribution
D . In order to assess stability of A , we look at the influence of replacing one example zi
by some z′ ∼ D . Given S and an additional example z′ ∼ D independent of S, let

S(i) ∶= {z1, . . . , zi−1, z
′, zi+1, . . . , zn}.

We investigate the difference

l(A (S(i)), zi) − l(A (S), zi)

of the loss with respect to zi between the algorithm trained with versus without zi.

Theorem 4.50. Let D be some distribution on Z and S = {z1, . . . , zn} be a training set
where z1, . . . , zn are i.i.d. according to D and z′ ∼ D independent of S. Then, for any
learning algorithm A , we have that

ES∼Dn[LD(A (S)) −LS(A (S))] = E(S,z′,i)∼Dn+1⊗U[n][l(A (S(i)), zi) − l(A (S), zi)], (23)

where [n] = {1, . . . , n}.

Proof. Note that by independence,

ES∼Dn[LD(A (S))] = ES∼Dn[Ez′∼D[l (A (S), z′)]]

= E(S,z′)∼Dn+1[l (A (S), z′)]

= E(S,z′)∼Dn+1[l (A (z1, . . . , zi−1, z
′, zi+1, . . . , zn) , zi)]

= E(S,z′)∼Dn+1[l(A (S(i)), zi)],

since zi and z′ are exchangable. As the last expectation does not depend on the index i,
it follows that

E(S,z′)∼Dn+1[l(A (S(i)), zi)] = E(S,z′,i)∼Dn+1⊗U[n][l(A (S(i)), zi)]. (24)

On the other hand, we have that

ES∼Dn[LS(A (S))] = ES∼Dn

⎡⎢⎢⎢⎢⎣

1

n

n

∑
i=1

l(A (S), zi)
⎤⎥⎥⎥⎥⎦
= E(S,i)∼Dn⊗U[n][l(A (S), zi)]

by the definition of the training error / risk. Since the last expectation does not depend
on z′, it follows that

E(S,i)∼Dn⊗U[n][l(A (S), zi)] = E(S,z′,i)∼Dn+1⊗U[n][l(A (S), zi)]. (25)

Taking the difference of (24) and (25) completes the proof.
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Remark 4.51. When the right term of (23) is small, this is an indication that replacing
zi by “something else” does not influence the algorithm “too much”. In other words, we
say that the learning algorithm is stable (a change in a single example does not result in
a big change on average).

Definition 4.52. Let ε∶N→ R be a decreasing function. We say that a learning algorithm
A is on-average-replace-one-stable with rate ε(n), if

∀D distribution∀S ∼ Dn∶ E(S,z′,i)∼Dn+1⊗U[n][l(A (S(i)), zi) − l(A (S), zi)] ≤ ε(n). (26)

Remark 4.53. In view of Theorem 4.50, when (26) holds, then for all distribution D ,
we have that

ES∼Dn[LD(A (S)) −LS(A (S))] ≤ ε(n).

This means that A does not overfit. Hence a “good” learning algorithm should balance
between fitting and staying stable.

4.3.2 Tikhonov regularisation as a stabiliser

In the following, we are going to apply Tikhonov regularisation to a convex and ρ-Lipschitz
loss function l.

Definition 4.54. A function f ∶Rd → R is said to be λ-strongly convex for λ > 0 if

∀u,w ∈ Rd, α ∈ [0,1] f(αw + (1−α)u) ≤ αf(w) + (1−α)f(u) − λ
2
α(1−α)∥w − u∥2.

Lemma 4.55. The following assertions hold:

1) The function f ∶Rd → R, w ↦ λ∥w∥2 is (2λ)-strongly convex;

2) If f ∶Rd → R is λ-strongly convex and g∶Rd → R is convex, then f + g is λ-strongly
convex ;

3) If f ∶Rd → R is λ-strongly convex and u ∈ Rd is a minimizer of f , then

∀w ∈ Rd f(w) − f(u) ≥ λ
2
∥w − u∥2.

Proof.

1) Note that for all u,w ∈ Rd holds 2⟨u,w⟩ = ∥u∥2 + ∥w∥2 − ∥u −w∥2. Then for α ∈ [0,1]
holds

f(αw + (1 − α)u) = λ∥αw + (1 − α)u∥2

= λα2∥w∥2 + λ(1 − α)2∥u∥2 + 2λα(1 − α)⟨w,u⟩
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= λα2∥w∥2 + λ(1 − α)2∥u∥2 + λα(1 − α)∥w∥+
+ λα(1 − α)∥u∥ − λα(1 − α)∥w − u∥2

= λα∥w∥2 + λ(1 − α)∥u∥2 − λα(1 − α)∥w − u∥2

= αf(w) + (1 − α)f(u) − 2λ

2
α(1 − α)∥w − u∥2.

2) Note that for all u,w ∈ Rd and α ∈ [0,1] holds

f(αw+(1−α)u)+g(αw+(1−α)u) ≤ α(f(w)+g(w))+(1−α)(f(u)+g(u))+λ
2
∥w − u∥2.

3) Note that for all α ∈ (0,1] holds

f(u +α(w − u)) = f(αw + (1 −α)u) ≤ αf(w) + (1 −α)f(u) − λ
2
α(1 −α)∥w − u∥2,

which is equivalent to

1

α
(f(u + α(w − u)) − f(u)) ≤ f(w) − f(u) − λ

2
(1 − α)∥w − u∥2.

Since f(u) = minv∈Rd f(v), it holds f(u + α(w − u)) ≥ f(u) and consequently

0 ≤ f(w) − f(u) − λ
2
(1 − α)∥w − u∥2,

which is equivalent to

f(w) ≥ f(u) + λ
2
(1 − α)∥w − u∥2

for all α ∈ (0,1]. Taking α↘ 0, we obtain the claim.

Corollary 4.56. If the loss function is convex and ρ-Lipschitz, then the Tikhonov RLM
rule is on-average-replace-one-stable with rate ε(n) = 2ρ2/(λn). We have

ES∼Dn[LD(A (S)) −LS(A (S))] ≤ 2ρ2

nλ
.

Proof. For a training set S = {z1, . . . , zn}, consider the Tikhonov RLM

A (S)∶ ∈ argmin
w∈Rd

(LS(w) + λ∥w∥2) .

Let us write fS(w) ∶= LS(w) + λ∥w∥2. Under convexity of w ↦ l(w, z) uniformly over Z

and using Lemma 4.55, we see that fS is (2λ)-strongly convex. Also by Lemma 4.55, we
have for all v ∈ Rd that

fS(v) − fS(A (S)) ≥ λ∥A (S) − v∥2
.
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For any u, v ∈ Rd and index i ∈ {1, . . . , n}, it holds that

fS(v) − fS(u) = LS(v) + λ∥v∥2 −LS(u) − λ∥u∥2

= LS(i)(v) −
1

n
l(v, z′) + 1

n
l(v, zi) + λ∥v∥2+

− (LS(i)(u) −
1

n
l(u, z′) + 1

n
l(u, zi) + λ∥u∥2)

= LS(i)(v) + λ∥v∥
2 − (LS(i)(u) + λ∥u∥

2)+

+ l(v, zi) − l(v, z
′)

n
− l(u, zi) − l(u, z

′)
n

.

Now take u = A (S) and v = A (S(i)). Since v minimizes w ↦ LS(i)(w) + λ∥w∥2, it follows
that

λ∥A (S(i)) −A (S)∥
2
≤ fS(A (S(i))) − fS(A (S))

≤ l(A (S(i)), zi) − l(A (S), zi)
n

+ l(A (S), z′) −A (S(i)), z′))
n

.

If the loss function is ρ-Lipschitz (in addition to convexity), then

λ∥A (S(i)) −A (S)∥
2
≤ 2ρ

n
∥A (S(i)) −A (S)∥.

Therefore, we obtain

∥A (S(i)) −A (S)∥ ≤ 2ρ

nλ
.

This also implies by ρ-Lipschitzness that for all S, i, z′ with z′ independent of S,

l(A (S(i)), zi) − l(A (S), zi) ≤ ∣l(A (S(i)), zi) − l(A (S), zi)∣ ≤
2ρ2

nλ
.

Theorem 4.50 then yields the claim.

4.3.3 Controlling the fitting-stability trade-off

Corollary 4.57. If the loss function is convex and ρ-Lipschitz, then the Tikhonov RLM
rule A satisfies

∀w∗ ∈ Rd ES∼Dn[LD(A (S))] ≤ LD(w∗) + λ∥w∗∥2 + 2ρ2

nλ
.

Proof. For any learning algorithm A we have

ES∼Dn[LD(A (S))] = ES∼Dn[LS(A (S))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fit

+ES∼Dn[LD(A (S) −LS(A (S))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

stability

.
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Let

A (S)∶ ∈ argmin
w∈Rd

(LS(w) + λ∥w∥2)

be the Tikhonov RLM. Then we have for all w∗ ∈ Rd that

LS(A (S)) ≤ LS(A (S)) + λ∥A (S)∥2 ≤ LS(w∗) + λ∥w∗∥2
.

Note that ES∼Dn[LS(w∗)] = LD(w∗) and hence

ES∼Dn[LS(A (S))] ≤ LD(w∗) + λ∥w∗∥2
.

This implies that

ES∼Dn[LD(A (S))] ≤ LD(w∗) + λ∥w∗∥2 +ES∼Dn[LD(A (S)) −LS(A (S))].

Corollary 4.56 then yields the claim.

We will take w∗∶ ∈ argminw∈BB(0)⊂Rd LD(w) to arrive at:

Corollary 4.58. Let (H,Z, l) for H = BB(0) ⊂ Rd be a convex, Lipschitz and bounded
learning problem with parameters ρ,B > 0. Also, set λ ∶=

√
2ρ2/(nB2). Then, the

Tikhonov RLM rule satisfies

ES∼Dn[LD(A (S))] ≤ min
w∈H

LD(w) + ρB
√

8

n
.

Proof. Follows from Corollary 4.57.
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