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Part 1. Introduction and some fundamentals

1. Posing the problem

Let X : (Ω,A,P)→ (χ,B) be a random variable, (Ω,A,P) a probability space, (χ,B) a measurable space.
Result: X induces the probability measure PX on (χ,B) given by PX(B) = P(X ∈ B) for all B ∈ B.
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2 ON HYPOTHESIS TESTING

Example: Suppose X ∼ N(θ, 1) with θ ∈ R. Then

PX(B) =

∫
B

1
√

2π
exp

(
−1/2(x − θ)2

)
dx, ∀B ∈ B.

We are going to assume that PX belongs to some parametric family, that is, that there exists some parameter space
Θ such that PX ∈ {Pθ : θ ∈ Θ}. Here, for all θ ∈ Θ, Pθ is a probability measure on (χ,B). In the previous example,
Θ = R.

Example: X ∼ Pois(θ), θ ∈ (0,+∞). Then

PX(B) =
∑
x∈B

exp(θ)x
x!

, ∀θ ∈ 2N

the ensemble of all subsets of N.
Problem: Let Θ0 and Θ1 be two subsets of Θ such that Θ0 ∩ Θ1 = ∅.
Goal: We want, based on observed realisation of X1, be able to decide between Θ0 and Θ1. This is a testing problem

which can be formalized as follows:
H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1,

where H0 denotes the null- and H1 denotes the alternative hypothesis.

Definition 1.1. critical function We call a critical function any function Φ such that Φ(x) ∈ [0, 1] for all x ∈ χ.

Definition 1.2. test function A test function is a critical function Φ such that for all x ∈ χ we either accept H0 with
probability 1 − Φ(x) or we reject H0 with probability Φ(x).

Definition 1.3. type-I error, power, type-II error
(i) for θ ∈ Θ0, the function θ 7→ Eθ [Φ(X)] is called Type-I error.

(ii) for θ ∈ Θ1, the same function is called power (usually denoted by β(θ))
(iii) 1 − β(θ) is called type-II error.

Truth \Decision Accept Reject
Θ0 X Type-I error
Θ1 Type-II error X

The goal is to find a test function Φ such that

supθ∈Θ0
Eθ(Φ(X)) ≤ α for some given α ∈ (0, 1)

β(θ) is maximal ∀θ ∈ Θ1.

Goal: Find a function Φ such that Type-I error is controlled if and only if supθ∈Θ0
Eθ [Φ(x)] ≤ α (for some given

α ∈ (0, 1)).
The power of Φ is the largest among all other testing functions Φ?(x) satisfying supθ∈Θ0

Eθ [Φ(x)] ≤ α if and only if
for all θ ∈ Θ1, β(θ) = Eθ(Φ(x)) ≥ Eθ(Φ?(x)) = β?(θ).

Definition 1.4. We say that H0 or H1 is
(i) simple if Θ0 = {θ0} or Θ1 = {θ1}.

(ii) composite if card(Θ0) > 1 or card(Θ1) > 1.

Example: H0 : θ = θ0 vs. H1 : θ = θ1

θ0 , θ1

then we are testing a simple hypothesis against a simple hypothesis.

H0 : θ ≤ θ0 vs. H1 : θ ≥ θ1

2. The fundamental lemma on hypothesis testing

Definition 2.1. UMP A test Φ is is said to be uniformly most powerful of level α (UMP of level α) if supθ∈Θ0
Eθ [Φ(X)] ≤

α and for any other test Φ? such that supθ∈Θ0
Eθ

[
Φ?(X)

]
≤ α we have

Eθ

[
Φ?(X)

]
≤ Eθ [Φ(X)]

for all θ ∈ Θ1.
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Theorem 2.2. Neyman-Pearson-Lemma Let P0 and P1 be two probability measures on (χ,B) such that P0 and P1
admit densities p0 and p1 with respect to someσ−finite measure µ. Let α ∈ (0, 1) and consider the problem H0 : p = p0
vs. H1 : p = p1.

(i) There exists kα ∈ (0,∞) such that the test

Φ(x) :=

1 if p1(x) > kαp0(x)
0 if p1(x) < kαp0(x)

(1)

satisfies Ep0 [Φ(x)] = α and Φ is UMP of level α (existence).
(ii) If Φ is a UMP test of level α (for the same problem), then it must be given by (1) µ-a.e. (uniqueness).

Lemma 2.3. Let f be some measurable function on (χ,B) such that f (x) > 0 for all x ∈ S (s is a set ∈ B). Also let µ
be some σ-finite measure on (χ,B). Then

∫
S f dµ = 0⇒ µ(S ) = 0.

Proof. Define S n := {x ∈ S : f (x) ≥ 1/n}, n > 0. By definition of S ( f (x) > 0 for all x ∈ S ), we have S ⊂ ∪n>0S n.
But, using the properties of measures we see that µ(S ) ≤

∑
n>0 µ(S n). But µ(S n) ≤ n

∫
S n

f dµ because f ≥ 1
n mS n which

implies
∫

S n
f dµ ≥ 1

nµ(S ). So

S n ⊂ S ⇒
∫

S n

f dµ ≤
∫

S
f dµ = 0

by assumption. We conclude that µ(S ) ≤ 0 if and only if µ(S ) = 0. �

Proof. We first show i) (existence) Consider the random variable Y =
p1(x)
p0(x) which, under H0 is almost surely defined

and we have P0(p0(x) = 0) =
∫
χ
1{p0(x)=0}p0(x)dµ(x). Let F0 be the cdf of Y under H0 : p = p0 and let kα = inf{y :

F0(y) ≥ 1 − α} be the (1 − α) quantile of F0. Let us consider the following test function

Φ(x) :=


1 if p1(x)

p0(x) > kα
γα if p1(x)

p0(x) = kα
0 if p1(x)

p0(x) < kα

such that γα satisfies Ep0 [Φ(x)] = α. This means that

1 · Pp0

(
p1(x)
p0(x)

> kα

)
+ γα · Pp0

(
p1(x)
p0(x)

= kα

)
+ 0 · Pp0

(
p1(x)
p0(x)

< kα

)
= α

or equivalently
1 − F0(kα) + γα (F0(kα) − F0(kα−)) = α.

Now define

γα :=

 α−(1−F0(kα))
F0(kα)−F0(kα−) if F0(kα) > F0(kα−)
0 if F0 is continuous in kα.

Now we show that Φ is UMP among all tests of level α. Take another test Φ? such that Ep0

[
Φ?(x)

]
≤ α. The goal is

to show that Ep1 [Φ(x)] ≥ Ep1

[
Φ?(x)

]
.∫
χ

(
Φ(x) − Φ?(x)

)
(p1(x) − kαp0(x))dµ(x) =

=

∫
L

(
Φ(x) − Φ?(x)

)
(p1(x) − kαp0(x))dµ(x) +

∫
M

(
Φ(x) − Φ?(x)

)
(p1(x) − kαp0(x))dµ(x)

=

∫
L

(
1 − Φ?(x)

)︸        ︷︷        ︸
≥0

(p1(x) − kαp0(x))︸                ︷︷                ︸
>0

dµ(x) +

∫
M

(
−Φ?(x)

)
(p1(x) − kαp0(x))︸                             ︷︷                             ︸
≥0

dµ(x) ≥ 0,

where L := {x : p1(x) > kαp0(x)} and M := {x : p1(x) < kαp0(x)}. Hence,
∫
χ

(
Φ(x) − Φ?(x)

)
(p1(x)−kαp0(x))dµ(x) ≥ 0

and thus we have

Ep1 [Φ(x)] − Ep1

[
Φ?(x)

]
≥ kα

(
Ep0 [Φ(x)] − Ep0

[
Φ?(x)

])
= kα(α − Ep0

[
Φ?(x)

]︸              ︷︷              ︸
≥0

).

Therefore Ep1 [Φ(x)] ≥ Ep1 [Φ?(x)].
We now show ii) (uniqueness). Take another test Φ? of level α (Ep0 [Φ?(x)] ≤ α) and such that Φ? is UMP among all
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tests of level α. Let us consider the following set S =
{
x ∈ χ : Φ?(x) , Φ(x)

}
∩ {x ∈ χ : p1(x) , kαp0(x)}. We want to

show that µ(S ) = 0. Assume µ(S ) > 0. Consider f (x) = (Φ(x) − Φ?(x))(p1(x) − kαp0(x)), x ∈ χ. Note that f (x) > 0
for all x ∈ S . Using lemma we conclude that

∫
S f (x)dµ(x) > 0. Now,∫

χ

f (x)dµ(x) =

∫
S

f (x)dµ(x) +

∫
S c

f (x)dµ(x)

where f (x) = 0 on S c. This implies that

0 <
∫
χ

f (x)dµ(x) =

∫
χ

(
Φ(x) − Φ?(x)

)
(p1(x) − kαp0(x))dµ(x)

=
(
Ep1 [Φ(x)] − Ep1 [Φ?(x)]

)
− kα

(
α − Ep0 [Φ?(x)]

)
which means that Ep1 [Φ(x)] − Ep1 [Φ?(x)] > kα(α − Ep0 [Φ?(x)) ≥ 0 It follows that Ep1 [Φ(x)] > Ep1 [Φ?(x)] but this is
impossible since by assumption Φ? is UMP. We conclude that µ(S ) = 0 and that µ−a.e.

Φ?(x) =

1 if p1(x)
p0(x) > kα

0 if p1(x)
p0(x) < kα.

�

Corollary 2.4. Let α ∈ (0, 1) and β = Ep1 [Φ(x)], the power of the Neyman-Pearson test of level α. Then α ≤ β (we
say that Φ is unbiased).

Proof. Consider the constant test Φ?(x) = α for all x ∈ χ. Φ? is a test of level α and hence

β = Ep1 [Φ(x)] ≥ Ep1 [Φ?(x)] = α⇔ α ≤ β.

�

Remark: We can even show that α < β (Φ is strictly unbiased).
Remark: The arguments used to prove the Neyman-Pearson lemma can be used to show that for any pair (k, γ) ∈

(0,∞) × [0, 1], the test

Φ(x) =


1 if p1(x)

p0(x) > k

γ if p1(x)
p0(x) = k

0 if p1(x)
p0(x) < k

(2)

is UMP of level Ep0 [Φ(x)] = Pp0

(
p1(x)
p0(x) > k

)
+ γPp0

(
p1(x)
p0(x) = k

)
.

Example: (Quality control) We have a batch of items whose (unknown) proportion of defectiveness is θ ∈ (0, 1). To
perform a quality control, n items are sampled from this batch to check whether they are defective or not. We want to
test H0 : θ = θ0 vs. H1 : θ = θ1, (θ1 > θ0) at some level α ∈ (0, 1). For i ∈ {1, . . . , n} define the random variable

Xi :=

1 if the i-th sampled item is defective
0 otherwise.

We have a random sample (X1, . . . , Xn) of iid Ber(θ), i.e. χ = {0, 1}n = {0, 1} × · · · × {0, 1}. We want to apply the
Neyman-Pearson lemma to this testing problem. The joint density of (X1, . . . , Xn) is

pθ(x1, . . . , xn) =

n∏
i=1

θxi (1 − θ)1−xi

= θ
∑n

i=1 xi (1 − θ)n−
∑n

i=1 xi .

Under H0 we have

pθ0 (x1, . . . , xn) = θ
∑n

i=1 xi

0 (1 − θ0)n−
∑n

i=1 xi

=

(
θ0

1 − θ0

)∑n
i=1 xi

(1 − θ0)n,
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and under H1 we have

pθ1 (x1, . . . , xn) = θ
∑n

i=1 xi

1 (1 − θ1)n−
∑n

i=1 xi

=

(
θ1

1 − θ1

)∑n
i=1 xi

(1 − θ1)n.

By applying the Neyman-Pearson lemma we know that the test Φ given by

Φ(x1, . . . , xn) :=


1 if

[
θ1(1−θ0)
θ0(1−θ1)

]∑n
i=1 xi

(
1−θ1
1−θ0

)n
> kα

γα if
[
θ1(1−θ0)
θ0(1−θ1)

]∑n
i=1 xi

(
1−θ1
1−θ0

)n
= kα

0 if
[
θ1(1−θ0)
θ0(1−θ1)

]∑n
i=1 xi

(
1−θ1
1−θ0

)n
< kα.

Such that γα satisfies Eθ0 [Φ(X1, . . . , Xn)] = α. Note that θ1
θ0
> 1 implies θ1(1−θ0)

θ0(1−θ1) > 1 which means that the function

t 7→
(
θ1(1−θ0)
θ0(1−θ1)

)t ( 1−θ0
1−θ1

)n
is strictly increasing and continuous. Then the test Φ can also be rewritten as

Φ(x1, . . . , xn) :=


1 if

∑n
i=1 xi > tα

γα if
∑n

i=1 xi = tα
0 if

∑n
i=1 xi < tα

where tα is the (1 − α)-quantile of
∑n

i=1 Xi under H0 and γα satisfies Eθ0 [Φ(x)] = α. Note that
∑n

i=1 Xi ∼ Bin(n, θ0)
under H0. Let Fθ0 be the cdf of Bin(n, θ0):

Fθ0 (y) :=



0 if y < 0
(1 − θ0)n if 0 ≤ y < 1
(1 − θ0)n + nθ0(1 − θ0)n−1 if 1 ≤ y < 2
...

...∑n−1
j=0

(
n
j

)
θ

j
0(1 − θ0)n− j if n − 1 ≤ y < n

1 if y ≥ n.

γα =
Fθ0 (kα) − (1 − α)

Fθ0 (kα) − Fθ0 (kα−)

=

∑kα
j=0

(
n
j

)
θ

j
0(1 − θ0)n− j − (1 − α)(

n
kα

)
θkα

0 (1 − θ0)n−kα
.

Graphical illustration:

A numerical illustration: θ0 = 0.2 and θ1 = 0.4

α n = 10 n = 20 n = 30 n = 40 n = 50
0.05 4 7 10 12 15
0.01 5 8 11 14 17

Values of tα as a function of α and n.
H0 : θ = 0.2 vs. H1 : θ = 0.4
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α n = 10 n = 20 n = 30 n = 40 n = 50
0.05 0.41 0.63 0.78 0.88 0.93
0.01 0.19 0.40 0.57 0.70 0.80

Power of Φ as a function of n and α. Eθ1 [Φ(X1, . . . , Xn)] = Pθ1

(∑n
i=1 Xi > tα

)
+ γαPθ1

(∑n
i=1 Xi = tα

)
.

3. Composite hypothese for testing H0 : θ ≤ θ0 versus H1 : θ > θ0

3.1. Karlin-Rubin Theorem. We will start this section with two examples.
Example 1: (Number of e-mails) The total number of e-mails that I received over a period of two weeks is

1, 0, 10, 11, 7, 8, 2, 0, 3, 7, 9, 13, 6, 5, 0.

Let Xi denote the number of daily e-mails received at day i, and denote by θ = E[X]. Is it true that θ > 5?
Example 2: (Airplane noise) The law requires that the noise caused by airplanes take-off should not exceed a certain

threshold µ0. From a sample of size n the noise intensity of airplanes was recorded. We want to test H0 : µ ≤ µ0 versus
H1 : µ > µ0, where µ is the true expectation of noise intensity.

Definition 3.1. MLR Consider the parametric model {pθ : θ ∈ Θ} and let Θ ⊆ R be a parametric family of densities
defined on (χ,B). This family is said to have a monotone likelihood ratio (MLR) if there exists a statistic T, and for
any parameters θ1 < θ2 there exists a continuous and strictly increasing function g such that

pθ2 (x)
pθ1 (x) = g(T (x)) for all

x ∈ χ such that
pθ2 (x)
pθ1 (x) ∈ (0,+∞).

Remark: Note that g can depend on θ1 or θ2.
Example: (Quality Control with one sample) Let X ∼ Bin(n, θ), θ ∈ Θ = (0, 1). For θ1 < θ2, we have

pθ2 (x)
pθ1 (x)

=
Cx

nθ
x
2(1 − θ2)n−x

Cx
nθ

x
1(1 − θ1)n−x

=

(
θ2(1 − θ1)
θ1(1 − θ2)

)x (
1 − θ2

1 − θ1

)n

for x ∈ χ = {1, . . . , n}. Put T (x) = x and g(t) =
(
θ2(1−θ1)
θ1(1−θ2)

)t ( 1−θ2
1−θ1

)n
. Note that g(t) is continuous strictly increasing since

θ2(1−θ1)
θ1(1−θ2) > 1.

Example: (Airplane noise with one sample) Suppose X ∼ N(µ, σ2
0), σ2

0 known and µ ∈ Θ = R. We know that

pµ(x) = 1
√

2πσ0
exp

(
− 1

2σ2
0
(x − µ)2

)
. Let µ1 ≤ µ2 :

pµ2 (x)
pµ1 (x)

= exp

− 1
2σ2

0

(
(x − µ2)2 − (x − µ1)2

)
= exp

− 1
2σ2

0

(
x2 − 2µ2x + µ2

2 − x2 + 2xµ1 − µ
2
1

)
= exp

− 1
2σ2

0

(
2x(µ1 − µ2) + µ2

2 − µ
2
1

)
= exp

 x(µ2 − µ1)
σ2

0

−
µ2

2 − µ
2
1

2σ2
0


Put T (x) = x and g(t) = exp

(
t(µ2−µ1)
σ2

0
−

µ2
2−µ

2
1

2σ2
0

)
. Note that g(t) is continuous and strictly increasing.

Theorem 3.2. Karlin-Rubin Consider the testing problem H0 : θ ≤ θ0 versus H1 : θ > θ0 and fix α ∈ (0, 1). Suppose
that {pθ : θ ∈ Θ} admits the MLR property and let us denote by Fθ0 the cdf of T (x) under θ = θ0.
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(i) Then the test Φ given by Φ(x) =


1 if T (x) > tα
γα if T (x) = tα
0 if T (x) < tα,

whereas tα is the (1 − α)− quantile of Fθ0 and γα satisfies

Eθ0 [Φ(X)] = Pθ0 (T (X) > tα) + γαPθ0 (T (X) = tα)) + 0Pθ0 (T (X) < tα) = α

is UMP of level α.
(ii) The function θ 7→ Eθ[Φ(X)] is non-decreasing.

(iii) For all θ′, the same test Φ is UMP for testing H′0 : θ ≤ θ′ versus H′1 : θ > θ′ at level α′ = Eθ′ [Φ(X)].
(iv) For any θ < θ0, the same test Φ minimizes Eθ[Φ(X)] among all tests Φ? satisfying Eθ0 [Φ?(X)] = α.

Proof. i) and ii) Consider first the testing problem H : θ = θ0 versus K : θ = θ1 with θ1 > θ0. By the Neyman-Pearson
lemma, we know that the test

Φ(x) :=


1 if

pθ1 (x)
pθ0 (x) > kα

γα if
pθ1 (x)
pθ0 (x) = kα

0 if
pθ1 (x)
pθ0 (x) < kα,

where kα is the (1 − α) quantile of
pθ1 (x)
pθ0 (x) under θ0 and γα is such that Eθ0 [Φ(X)] = α, is UMP of level α. But

pθ1 (x)
pθ0 (x) =

g(T (x)) is continuous and strictly increasing. Hence Φ can be rewritten as

Φ(x) :=


1 if T (x) > tα
γα if T (x) = tα
0 if T (x) < tα

with tα = g−1(kα), which is the (1 − α)−quantile of T (x) under θ0, and γα satisfies Eθ0 [Φ(X)] = α. Since Φ does not
involve θ1, we conclude that Φ must be UMP of level α for testing H0 : θ = θ0 versus H1 : θ > θ0.
Let us now show ii). Pick arbitrary θ′ and θ′′ such that θ′ < θ′′. The test Φ is the test you get for the hypothesis
H′ : θ = θ′ versus H′′ : θ = θ′′ by applying the Neyman-Pearson lemma and thus pθ′′ (x)

pθ′ (x) = g̃(T (x)) where g̃ is
continuous and strictly increasing (and may depend θ′ and θ′′). This implies that

Φ(x) :=


1 if pθ′′ (x)

pθ′ (x) > k′α
γα if pθ′′ (x)

pθ′ (x) = k′α
0 if pθ′′ (x)

pθ′ (x) < k′α,

Furthermore, using the remark after the proof of the Neyman-Pearson lemma, we conclude that Φ must be UMP of
level α′ = Eθ′ [Φ(X)]. Using Corollary 2.1, we have that

α′ ≤ Eθ′ [Φ(X)]⇔ Eθ′ [Φ(X)] ≤ Eθ′′ [Φ(X)]

(we say that Φ is unbiased). Since θ′ and θ′′ were chosen arbitrarily it follows that θ 7→ Eθ[Φ(X)] is non-decreasing.
This in turn implies that the supremum is admitted at θ0 i.e. supθ≤θ0

Eθ[Φ(X)] = Eθ0 [Φ(X)] = α (recall that the level of
a test Φ for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 is supθ∈Θ0

Eθ[Φ(X)]). This concludes the proof that Φ is UMP of
level α for testing H0 : θ ≤ θ0 versus H1 : θ ≥ θ0.
iv) Fix θ < θ0. By the MLR property, we know that there exists a strictly increasing and continuous function g such
that

pθ0 (x)
pθ(x) = g(T (x)). Thus the Karlin-Rubin test can be also given by

Φ(x) :=


1 if

pθ0 (x)
pθ(x) > kα

γα if
pθ0 (x)
pθ(x) = kα

0 if
pθ0 (x)
pθ(x) < kα,

where kα is linked to tα through kα = g(tα). Now∫ (
Φ(x) − Φ?(x)

) (
pθ0 (x) − kαpθ(x)

)
dµ(x) ≥ 0

for any test Φ?. Thus, Eθ0 (Φ(X)) − Eθ0 (Φ?(X)) ≥ kα
(
Eθ(Φ(X)) − Eθ(Φ?(X))

)
and Eθ0 (Φ(X)) − Eθ0 (Φ?(X)) = 0 if

Eθ0 (Φ?(X)) = 0. Thus Eθ(Φ(X)) ≤ Eθ(Φ?(X))). �
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Corollary 3.3. application to exponential families Suppose that pθ(x) = c(θ)h(x) exp(Q(θ)T (x)) with θ ∈ Θ ⊆ R (one
dimensional parameter space). If θ 7→ Q(θ) is continuous and strictly increasing, then {pθ : θ ∈ Θ} admits the MLR
property.

We now go back to the introductory examples.
Example 1: (Number of e-mails) We want to test H0 : θ ≤ 5 versus H1 : θ > 5. Here we assume that X1, . . . , Xn

iid
∼

Pois(θ) with n = 15. Hence we have density pθ(x) = e−θθx

x! , x ∈ {1, 2, . . .}. The joint density of (X1, . . . , Xn) is

n∏
i=1

pθ(xi) =
e−nθ∏n
i=1 xi!

θ
∑n

i=1 xi =
e−nθ∏n
i=1 xi!

exp

log(θ)
n∑

i=1

xi

 = c(θ)h(x1, . . . , xn) exp(Q(θ)T (x1, . . . xn))

with Q(θ) = log(θ), θ ∈ Θ and T (x1, . . . xn) =
∑n

i=1 xi. Hence at a given level α

Φ(x) :=


1 if

∑n
i=1 xi > tα

γα if
∑n

i=1 xi = tα
0 if

∑n
i=1 xi < tα,

with tα being the (1 − α)−quantile of
∑n

i=1 xi under θ = θ0 = 5 and γα such that Eθ0 [Φ(x)] = α, is UMP at level α. We

know that if X1, . . . , Xn
iid
∼ Pois(θ0), then

∑n
i=1 Xi

iid
∼ Pois(nθ0). tα is the (1 − α)−quantile of Pois(nθ0)

n=15,θ0=5,α=0.05
= 90.

γα =
Fnθ0 (tα)−(1−α)

Pnθ0 (∑15
i=1 Xi=tα) = 0.960076−0.95

0.0102 ≈ 0.98.

Φ(x1, . . . , x15) :=


1 if

∑15
i=1 xi > 90

0.98 if
∑15

i=1 xi = 90
0 if

∑15
i=1 xi < 90,

We have that
∑15

i=1 Xi = 82 and thus we accept H0 : θ ≤ 5.
Example 2: (Take-off noise) If we assume that the noise intensity follows N(µ, σ2

0), σ0 > 0 known, then

pµ(x1, . . . , xn) =

n∏
i=1

1
√

2πσ0
exp

− 1
2σ2

0

(xi − µ)2


=
1(

2πσ2
0

)n/2 exp

− 1
2σ2

0

n∑
i=1

(xi − µ)2


=

1(
2πσ2

0

)n/2 exp

− 1
2σ2

0

 n∑
i=1

x2
i − 2µ

n∑
i=1

xi + nµ2


=

1(
2πσ2

0

)n/2 exp

−∑n
i=1 x2

i

2σ2
0

+
µ

σ2
0

n∑
i=1

xi −
nµ2

2σ2
0


=

1(
2πσ2

0

)n/2 exp
− nµ2

2σ2
0

︸                       ︷︷                       ︸
c(µ)

exp
−∑n

i=1 x2
i

2σ2
0

︸             ︷︷             ︸
h(x1,...,xn)

exp(Q(µ)T (x1, . . . , xn))

with T (x1, . . . , xn) =
∑n

i=1 xi, Q(µ) =
µ

σ2
0

continuous and strictly increasing. A UMP test of level α for testing H0 : µ ≤
µ0 versus H1 : µ > µ0 is given by

Φ(x1, . . . , xn) =

1 if
∑n

i=1 xi > tα
0 if

∑n
i=1 xi ≤ tα

with Eµ0 [Φ(X1, . . . Xn)] = α if and only if Pµ0

(∑n
i=1 Xi > tα

)
= α.
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Pµ0

 n∑
i=1

Xi > tα

 = α⇔ Pµ0

(
Xn > tα/n

)
= α

⇔ Pµ0

(
Xn − µ0 > tα/n − µ0

)
= α

⇔ Pµ0

Xn − µ0√
σ2

0/n
>

tα/n − µ0√
σ2

0/n

 = α

⇔ P

Z >
tα/n − µ0√

σ2
0/n

 = α

where Z ∼ N(0, 1). Hence
√

n(tα/n−µ0)
σ0

= ζα the (1 − α)−quantile of N(0, 1).

Φ(x1, . . . , xn) =

1 if
√

n(xn−µ0)
σ0

> ζα

0 otherwise.

Now chose α = 0.05 then (you can compute with software) ζα ≈ 1.64. Let n = 100, σ0 = 7 and µ0 = 78. Then, again
using software, we compute µ0 +

σ0√
nζα ≈ 79.15. We observe xn = 82 > 79.15 and hence decide to reject H0.

Remark:
As n→ ∞, the power of Φ increases to 1 for any fixed alternative. Indeed let µ ∈ Θ1 = (µ0,+∞)

β(µ) = Eµ[Φ(X1, . . . , Xn)]

= Pµ(Xn > µ0 +
σ0
√

n
ζα)

= Pµ

 √n(Xn − µ)
σ0

>

√
n(µ0 − µ)
σ0

+ ζα


= P

(
Z >

√
n(µ0 − µ)
σ0

+ ζα

)
= 1 − P

(
Z ≤

√
n(µ0 − µ)
σ0

+ ζα

)
= 1 − FZ

(
−

√
n(µ − µ0)
σ0

+ ζα

)
.

But since limn→∞ −
√

n(µ−µ0)
σ0

+ ζα = −∞ we conclude that limn→∞ 1− FZ

(
−
√

n(µ−µ0)
σ0

+ ζα

)
= 1. We say that the test Φ is

consistent.

4. P-Values

Suppose we have an observation θ and want to make a decision whether θ ∈ Θ0 or θ ∈ Θ1. To do so we use a
statistical procedure (a test) which we either accept or reject. Let us revisit Example 2 and suppose that we observed a
mean xn = 100. This would not change our initial decision of rejecting H0 but this somehow looks ’more convincing’
or may seem like we have ’more’ evidence against H0 : µ ≤ µ0. This leads to the notion of p-values. Assume we are
in a simple setting: H0 : θ = θ0 against H1 : θ ∈ Θ1 (which may be composite but θ0 < Θ1). Consider a test function

Φ(x) =

1 if T (x) > tα
0 otherwise,

where tα denotes the (1 − α)-quantile of T (X) under H0 : θ = θ0. Assume that Fθ0 , the cdf of

T (X) under θ = θ0, is continuous and strictly increasing, that is bijective.

Definition 4.1. p-value Let Rα = {x′ ∈ χ : T (x′) > tα} be a rejection region for some fixed α. We define the p-value of
an observation x ∈ χ with respect to Φ by pΦ(x) = inf{α : x ∈ Rα}.

Lemma 4.2. For the test Φ given above, it holds that pΦ(x) = Pθ0 (T (X) ≥ T (x)).
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Proof. Recall that Φ(x) =

1 if T (x) ≥ tα
0 otherwise

with tα = F−1
θ0

(1 − α) (we have assumed that Fθ0 is bijective).

pΦ(x) = inf{α : x ∈ Rα}

= inf{α : T (x) > F−1
θ0

(1 − α)}
= inf{α : Fθ0 (T (x)) > (1 − α)}
= inf{α : α > 1 − Fθ0 (T (x))}
= inf{(1 − Fθ0 (T (x)),+∞)}
= 1 − Fθ0 (T (x))
= Pθ0 (T (X) > T (x))

whereas the last equality holds because Fθ0 is the cdf of T (X) under θ = θ0. �

Lemma 4.3. pΦ(X) ∼ U([0, 1]) under H0 : θ = θ0.

Proof. We know that pΦ(X) = 1 − Fθ0 (T (X)). Recall that if Y is some random variable with cdf equal to F, and F is
bijective, then U = F(Y) ∼ U([0, 1]). Indeed, since F(Y) ≤ u if and only if Y ≤ F−1(u), we see that the cdf of U is

P(U ≤ u) =


0 if u < 0
u if 0 ≤ u < 1
1 if u ≥ 1

, because u = F(F−1(u)) = P(Y ≤ F−1(u)) and thus F(Y) ∼ U([0, 1]). Thus Fθ0 (T (X)) ∼

U([0, 1]) and therefore 1 − Fθ0 (T (X)) ∼ U([0, 1]). �

Recall that we have considered a simple setting. P-values can also be defined through the following definition

Definition 4.4. proper p-value Consider testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 such that Θ0 ∩ Θ1 = ∅. A p-value
p(X) is said to be valid (or proper) if for all θ ∈ Θ0 and for all t ∈ [0, 1] we have Pθ(p(X) ≤ t) ≤ t. This means that
p(X) is a valid p-value if it is stochastically larger than U ∼ U([0, 1]) under any θ ∈ Θ0.

Remark: Note that Definition (in the simple setting) gives a p-value that is stochastically equal to U ∼ U([0, 1]).
Example: Let T be some statistic used for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1. Define p(x) = supθ∈Θ0

Pθ(T (X) ≥
T (x)). We want to check that this defines a valid p-value. For that, we will need the following result.

Lemma 4.5. Let Z be any random variable with distribution function F (not necessarily continuous or strictly increas-
ing). Then U = F(Z) satisfies P(U ≤ u) ≤ u for all u ∈ [0, 1].

Proof. We either have
F(ζ) ≤ u⇔ ζ ≤ ζu

or
F(ζ) ≤ u⇔ ζ < ζu.

P(F(Z) ≤ u) =

P(Z ≤ ζu) if F(ζu) = u
P(Z < ζu) if F(ζu) > u

=

F(ζu) = u
F(ζu−) ≤ u

In any case we arrive at P(F(Z) ≤ u) = P(U ≤ u) ≤ u. �
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Remark: This is saying for any distribution function F, F(z) is stochastically larger than U ∼ U([0, 1]) with Z ∼ F.
Now let us return to p(x) = supθ∈Θ0

Pθ(T (X) ≥ T (x)). We will check that this defines a valid p-value.

Proof. Fix θ ∈ Θ0 and denote by Fθ the cdf of −T (X). Define

pθ(x) = Pθ (T (X) ≥ T (x))

= Pθ (−T (X) ≤ −T (x)) = Fθ(−T (x)).

Using Lemma we know that pθ(X) is stochastically larger thanU([0, 1]).
For θ̃ ∈ Θ0:

Pθ̃ (p(X) ≤ t) = Pθ̃

(
sup
θ∈Θ0

Fθ(−T (X)) ≤ t
)

= Pθ̃ (∀θ ∈ Θ0 Fθ(−T (X)) ≤ t)

≤ Pθ̃

(
Fθ̃(−T (X)) ≤ t

)
= Pθ̃

(
pθ̃(X) ≤ t

)
≤ t.

In conclusion: ∀t ∈ [0, 1],∀θ̃ ∈ Θ0: Pθ̃ (p(X) ≤ t) ≤ t ⇔ supθ∈Θ0
Pθ(p(X) ≤ t) ≤ t which means that p(X) is indeed a

valid p-value. �

What is the link between a valid p-value and testing? Given any valid p-value, we can construct the following test
Φ at a given level α: Φ(x) = 1 if and only if p(x) ≤ α.

Type-1 error supθ∈Θ0
Eθ[Φ(x)] = supθ∈Θ0

Pθ(Φ(x) = 1) = supθ∈Θ0
Pθ(p(x) ≤ α) ≤ α.

5. Brief look at multiple testing

Consider multiple hypothesis that we want to test at the same time. Call these (null) hypotheses H(1)
0 ,H(2)

0 , . . . ,H(m)
0

for some integer m ≥ 2. Suppose for all i ∈ {1, 2, . . . ,m}we have a test Φi for testing H(i)
0 versus H(i)

1 (some alternative).
Consider the combined test Φ which rejects/accepts H(i)

0 if Φi does. Let us suppose Φi has level α and that these tests
are independent.

H0 = H(1)
0 ∩ H(2)

0 ∩ . . . ∩ H(m)
0

The Type-I error of

Φ = PH0 (rejecting at least one H(i)
0 for some i ∈ {1, . . . ,m})

= 1 − PH0 (accepting H(1)
0 and H(2)

0 and . . . and H(m)
0 )

= 1 −
m∏

i=1

PH0 (accepting H0)

= 1 −
m∏

i=1

PH0 (Φiaccepts H(i)
0 )

= 1 −
m∏

i=1

PH(i)
0

(Φiaccepts H(i)
0 )

= 1 − (1 − α)m

Numerical illustration:

m = 10 α = 0.05 Type-I error = 0.4

m = 50 α = 0.01 Type-I error = 0.39

This means that we need to be more strict when choosing the levels of the individual tests.
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5.1. Bonferroni’s correction. gives a solution to this problem. Here we are not going to assume that tests Φi are
independent.

PH0

(
rejecting at least H(i)

0 for some i ∈ {1, . . . ,m}
)

= PH0

(
∃i ∈ {1, . . . ,m} : Φ rejects H(i)

0

)
= PH0

(
∪1≤i≤m{Φ rejects H(i)

0 }
)

≤

m∑
i=1

PH0

(
Φ rejects H(i)

0

)
=

m∑
i=1

PH0

(
Φi rejects H(i)

0

)
=

m∑
i=1

PH(i)
0

(
Φ rejects H(i)

0

)

If we chose the level of each test Φi to be α
m , then the Type-I error of Φ ≤ m α

m = α. Alternatively, we can require in
this correction to have αi (the level of Φi) satisfy

∑m
i=1 αi ≤ α (this will imply that the Type-I error of Φ ≤

∑m
i=1 αi ≤ α).

Part 2. Further methods for constructing tests

1. Likelihood Ratio Tests

Definition 1.1. likelihood Let X1, . . . Xn be iid random variables admitting a density assumed to belong to the para-
metric family {pθ, θ ∈ Θ}

• We call likelihood the function
Θ→ [0,∞)

θ 7→ Ln(θ) =

n∏
i=1

pθ(Xi)

• We call log-likelihood the function
Θ→ R

θ 7→ ln(θ) = log (Ln(θ))

Definition 1.2. MLE The maximum likelihood estimator (MLE) is any θ̂n satisfying Ln(θ̂n) = supθ∈Θ Ln(θ) and since
the logarithm is continuous and increasing ln(θ̂n) = supθ∈Θ ln(θ)

Remarks:

• The MLE does not have to exist.
• If the MLE exists it is not necessarily unique.
• For any subset Θ′ ⊂ Θ we can define the restricted MLE which maximises θ 7→ Ln(θ) (or θ 7→ ln(θ)) over Θ′.

Definition 1.3. likelihood ratio statistic Let Θ0 and Θ1 be two subsets of Θ such that Θ0 ∩Θ1 = ∅ (Θ0 ∪Θ1 = Θ) and
consider the testing problem H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 The likelihood ratio statistic is defined as Λn =

supθ∈Θ Ln(θ)
supθ∈Θ0

Ln(θ) .

Definition 1.4. LRT The likelihood ratio test for a given level α is given by

Φ(X1, . . . , Xn) =


1 if Λn > λα

γα if Λn = λα

0 if Λn < λα

where γα and λα are such that supθ∈Θ Eθ[Φ(X1, . . . , Xn)] ≤ α.

Remark: The idea behind the definition of LRT is to reject H0 : θ ∈ Θ0 when
supθ∈Θ1

Ln(θ)
supθ∈Θ0

Ln(θ) is large. (see exercise)
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2. Gaussian vectors and related distributions

2.1. Multivariate Gaussian distribution.
• Let X = (X1, . . . , Xd) ∈ Rd. We say that X is Gaussian if any linear combination of components, X j 1 ≤ j ≤ d,

has a Gaussian distribution: For all a j ∈ R for j ∈ {1, . . . , d}
∑d

i=1 a jX j is a normal random variable.
• Two Gaussian vectors X = (X1, . . . , Xd) and Y = (Y1, . . . ,Ym) are independent if and only if Cov(Xi,Y j) = 0

for all (i, j) ∈ {1, . . . , d} × {1, . . . ,m}.
• If X ∼ N(µ,Σ) with µ ∈ Rd and Σ ∈ Mat(Rd × Rd) then for any matrix A ∈ Rm×d (m ≥ 1) we have

AX ∼ N(Aµ, AΣAᵀ)
• If X ∼ N(µ,Σ) and Σ is invertible, then X admits density fX(x) = 1

(2π)d/2 |Σ|1/2
exp

(
− 1

2 (x − µ)ᵀΣ−1(x − µ)
)
.

2.2. Gamma-function. The gamma function is defined for all complex numbers except the non-positive integers. For
complex numbers with a positive real part, it is defined via a convergent improper integral Γ(z) =

∫ ∞
0 xz−1e−xdx. Note

that if n ∈ Z>0 then Γ(n) = (n − 1)!, Γ(1) = 1 and nΓ(n) = Γ(n + 1).

2.3. χ2
(k): Chi-square distribution with k degrees of freedom. We say that Y ∼ χ2

(k) if we can find X = (X1, . . . , Xk) ∼
N(0,1k) such that Y =

∑k
j=1 X2

j = ||X||22 (the square of the euclidean norm of X). Y admits a density

fY (y) =
1

2k/2Γ(k/2)
yk/2−1 exp (−y/2)1y>0. (3)

We recognize that Y ∼ Gamma
(

k
2 ,

1
2

)
. Moreover if X ∼ N(µ,Σ) and Σ is invertible then (x − µ)ᵀΣ−1(x − µ) ∼ χ2

(k) (see
exercise).

2.4. Distribution of Student(t-) of k degrees of freedom. We say that T follows a t−distribution with k degrees of
freedom if we can find independent random variables X and Y with X ∼ N(0, 1) and Y ∼ χ2

(k) such that T = X
√

Y/k
. We

write T ∼ T(k). T admits density given by

fT (t) =
Γ
(

k+1
2

)
√

kΓ
(

k
2

)
Γ
(

1
2

) 1(
1 + t2

k

)(k+1)/2 , t ∈ R. (4)

Note that T(1) is the Cauchy distribution.

2.5. F-distribution. We say that Y admits an F-distribution with (p, q) degrees of freedom if we can find two random
variables U and V such that U and V are independent, U ∼ χ2

(p), V ∼ χ2
(q) and Y ∼ U/p

V/q . We will write Y ∼ Fp,q. Y
admits density given by

fY (y) =
Γ( p+q

2 )
Γ(p/2)Γ(q/2)

p1/2q1/2 y1/2−1

(q + py)(p+q)/21y>0. (5)

3. Example for LRT

3.1. Example a. Let X1, . . . , Xn
iid
∼ N(θ, σ2

0), where θ ∈ R and σ0 > 0 is known. We want to test

H0 : θ = θ0 versus H1 : θ , θ0.

Hence we have Θ0 = {θ0} (a simple hypothesis) and Θ1 = R \ {θ0} (a composite hypothesis) such as Θ = Θ0 ∪Θ1 = R.
Recall that Λn =

supθ∈Θ Ln(θ)
supθ∈Θ0

Ln(θ) =
supµ∈R Ln(θ)

Ln(θ0) .

Ln(θ) =

n∏
i=1

pθ(Xi)

=

n∏
i=1

1
√

2πσ0
exp

− 1
2σ2

0

(X − θ)2


=
1

(2π)n/2σn
0

exp

− 1
2σ2

0

n∑
i=1

(X − θ)2

 .
ln(θ) = log(Ln(θ)) = constant −

1
2σ2

0

n∑
i=1

(Xi − θ)2
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We want to show that argmaxθ∈RLn(θ) = Xn. Our goal is to maximize θ 7→ exp
(
− 1

2σ2
0

∑n
i=1(Xi − θ)2

)
over R or

equivalently maximize − 1
2σ2

0

∑n
i=1(Xi − θ)2 over R.

d
dθ

− 1
2σ2

0

n∑
i=1

(Xi − θ)2

 = −2
n∑

i=1

(Xi − θ) = 0⇔ θ = Xn (6)

and
d2

dθ2

− 1
2σ2

0

n∑
i=1

(Xi − θ)2

 = 2n > 0

which means that the function is convex on R and hence Xn gives the global maximum of Ln.

Λn =
Ln(Xn)
Ln(θ0)

=

exp
(
− 1

2σ2
0

∑n
i=1(Xi − Xn)2

)
exp

(
− 1

2σ2
0

∑n
i=1(Xi − θ0)2

)
= exp

− 1
2σ2

0

n∑
i=1

(Xi − Xn)2 +
1

2σ2
0

n∑
i=1

(Xi − θ0)2


Recall that the event {Λn = λα} happens with probability equal to zero and hence the LRT is given by Φ(X1, . . . , Xn) =1 if Λn > λα

0 if Λn ≤ λα
almost surely and we are going to find λα such that Eθ0 (Φ(X1, . . . , Xn)) = α. Note that

Λn is ’large’⇔
n∑

i=1

(Xi − θ0)2 −

n∑
i=1

(Xi − Xn)2 is ’large’

⇔

n∑
i=1

(Xi − Xn + Xn − θ0)2 −

n∑
i=1

(Xi − Xn)2 is ’large’

⇔

n∑
i=1

(Xi − Xn)2 + 2

 n∑
i=1

(Xi − Xn)

 · (Xi − θ0) + n(Xn − θ0)2 −

n∑
i=1

(Xi − Xn)2 is ’large’

⇔ n(Xn − θ0)2 is ’large’

⇔
n(Xn − θ0)2

σ2
0

is ’large’

⇔

√
n|Xn − θ0|

σ0
is ’large’

Φ(X1, . . . , Xn) =

1 if
√

n|Xn−θ0 |

σ0
> qα

0 otherwise
such that Eθ0 (Φ(X1, . . . , Xn)) = Pθ0

( √
n|Xn−θ0 |

σ0
> qα

)
= α. We need to determine

the quantile qα. Recall X1, . . . , Xn
iid
∼ N(θ0, σ

2
0) under H0 which means that Xn ∼ N(θ0, σ

2
0/n) ⇔

√
n(Xn−θ0)
σ0

d
= Z ∼

N(0, 1).

Pθ0

 √n|Xn − θ0|

σ0
> qα

 = P(|Z| > qα)

= P(Z > qα) + P(Z < −qα)
= P(Z > qα) + P(−Z > qα)
= 2P(Z > qα)
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by symmetry around zero of the Z distribution. Hence,

α = Pθ0 (Φ rejects H0)
= 2P(Z > qα)
⇔ P(Z > qα) = α/2
⇔ FZ(qα) = 1 − α/2

therefore Φ(X1, . . . , Xn) =

1 if
√

n|Xn−θ0 |

σ0
> ζ1−α/2

0 otherwise
where ζ1−α/2 = qα = (1 − α/2)-quantile of N(0, 1) and FZ(ζ) =∫ ζ

−∞

1
√

2π
e−x2/2dx.

3.2. Cochrans Theorem.

Theorem 3.1. Cochran Let (X1, . . . , Xd) = X ∼ Nd(0,1) be a Gaussian vector. Let A1, . . . , AJ be d× d matricies such
that

∑J
i=1 rank(Ai) ≤ d and for all i ∈ {1, . . . , J}

(i) Ai is symmetric and A2
i = Ai.

(ii) AiA j = A jAi = 0 for all i , j.

Then,

(i) AiX ∼ N(0, Ai) for all i ∈ {1, . . . J} and A1X, . . . , AJ X are mutually independent.
(ii) The random variables ‖AiX‖2 ∼ χ2

rank(Ai)
and they are mutually independent.

Proof. i) We know that X ∼ N(µ,Σ) implies AX ∼ N(Aµ, AΣAᵀ). Thus AiX ∼ N(0, AiA
ᵀ
i ) d

= N(0, Ai). Then, showing
mutual independence of AiX, . . . AJ X is equivalent to showing Cov

(
AiX, A jX

)
= 0 for all i , j. Let E[X] = µ and

recall that

Cov (AX, BX) = E
[
A(X − µ)(B(X − µ))ᵀ

]
= E

[
A(X − µ)(X − µ)ᵀBᵀ

]
= AE

[
(X − µ)(X − µ)ᵀ

]
Bᵀ

= AΣBᵀ.

Hence in our case for i , j ∈ {1, . . . , J} we have

Cov(AiX, A jX) = Ai1Aᵀj
= AiA

ᵀ
j

= AiA j

= 0

by assumption.
ii) A1X, . . . , AJ X mutually independent implies f (A1X), . . . , f (AJ X) mutually independent for some measurable func-
tion f . In particular, this is true for f (a) = ‖a‖2 (a ∈ Rd) continuous on Rd and hence measurable. We now show that
‖AiX‖2 ∼ χ2

(rank(Ai))
. Ai is symmetric. We can orthogonalize Ai in an orthonormal basis. There exists an orthogonal

matrix P so that we can decompose Ai = Pᵀ


λ1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 λd

 P where λ1, . . . , λd denote the eigenvalues of Ai.

Using the assumption A2
i = Ai, we conclude that λ1, . . . , λd ∈ {0, 1}. Further we can decompose A2

i in the following
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way

A2
i = Pᵀ


λ1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 λd

 PPᵀ


λ1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 λd

 P

= Pᵀ


λ2

1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 λ2

d

 P = Ai

which means that λ2
i = λi for all i ∈ {1, . . . , d} and hence there are only two solutions. We can also write Ai =

Pᵀ
(
1 0
0 0

)
P. Then 1 has size equal to the rank of Ai.

‖AiX‖2 = (AiX)ᵀ AiX

= XᵀAᵀi AiX

= XᵀA2
i X

= XᵀPᵀ
(
1 0
0 0

)
PX

= (PX)ᵀ
(
1 0
0 0

)
PX

= Yᵀ
(
1 0
0 0

)
Y

=

rank(Ai)∑
j=1

Y2
j .

On the other hand, Y = PX ∼ N(0, P1Pᵀ). Hence ‖AiX‖2 = the norm of a squared vector ∼ N
(
0,1rank(Ai)

)
; in other

words Y1, . . . ,Yrank(Ai) are iid
∼ N(0, 1). �

3.3. Example b. Let X1, . . . , Xn
iid
∼ N(θ, σ2) with θ ∈ R and σ ∈ (0,∞) both unknown. Here σ is acting as a nuisance

parameter. We want to test

H0 : θ = θ0 versus H1 : θ , θ0

whereas Θ0 = {(θ0, σ) : σ ∈ (0,∞)} = {θ0} × (0,∞) and Θ = {(θ, σ) : θ ∈ R and σ ∈ (0,∞)} = R × (0,∞). Since σ is
unknown, we have

Λn =
supθ∈Θ Ln(θ)
supθ∈Θ0

Ln(θ)

and

Ln(θ, σ) =
1

(2π)n/2σn exp

− 1
2σ2

n∑
i=1

(Xi − θ)2

 .
We need to maximize (θ, σ) 7→ Ln(θ, σ) over Θ. This is equivalent to maximizing

ln(θ, σ) = −n/2 log(2π) − n log(σ) − 1/(2σ2)
n∑

i=1

(Xi − θ)2.

3.3.1. Maximisation via profiling: Let us fix σ ∈ (0,∞) and define the function gσ(θ) = − 1
2σ2

∑n
i=1(Xi − θ)2 which we

are going to maximize over R. Since − 1
2σ2 is a constant here. We can use previous calculations from example a). To
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show that the minimum is attained at θ = Xn. supθ∈R Ln(θ, σ) = Ln(Xn, σ) for any fixed σ ∈ (0,∞). Now, we go back
to the log-likelihood and plug in Xn: define the function

h(σ) = ln(Xn, σ) = −n/2 log(2π) − n log(σ) −
1

2σ2

n∑
i=1

(Xn − Xn)2

which we want to maximize over (0,∞).

h′(σ) = −n/σ + 1/σ3
n∑

i=1

(Xi − Xn)2 = 0

⇔ σ2 = 1/n
n∑

i=1

(Xi − Xn)2

⇔ σ = σ̂ =

1
n

n∑
i=1

(Xi − Xn)2

1/2

(7)

and

h′′(σ) = n/σ2 − 3/σ4
n∑

i=1

(Xi − Xn)2

= n/σ2 − 3/σ4nσ̂2

= n/σ2 −
3nσ̂2

σ4

= n/σ4(σ2 − 3σ̂2).

The function h has a local maximum at (7). But, since h has a unique critical point, the function cannot go up to
a larger value (> h(σ̂)) because otherwise h has to go down to reach another critical point. Therefore, (7) must
be the global maximizer of h over (0,∞). We need to compute sup(θ,σ)∈Θ0

Ln(θ, σ) = supσ∈(0,∞) Ln(θ0, σ). Using
similar arguments as for showing that (7) is the global maximizer of the function σ 7→ ln(Xn, σ) we can show that
supσ∈(0,∞) Ln(θ0, σ) = Ln(θ0, σ̂0) with

σ̂0 =

1
n

n∑
i=1

(Xi − θ0)2

1/2

. (8)

Λn =
sup(θ,σ)∈Θ Ln(θ, σ)

sup(θ,σ)∈Θ0
Ln(θ, σ)

=
Ln(Xn, σ̂)
Ln(θ0, σ̂0)

=

1
(2π)n/2

1
σ̂n exp

(
− 1

2σ̂2

∑n
i=1(Xi − Xn)2

)
1

(2π)n/2
1
σ̂n

0
exp

(
− 1

2σ̂2
0

∑n
i=1(Xi − θ0)2

)
=

1
σ̂n exp (−n/2)
1
σ̂n

0
exp (−n/2)

=

(
σ̂0

σ̂

)n

=

 σ̂2
0

σ̂2

n/2

.
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We reject when Λn is ’large’ but

Λn is ’large’ ⇔
σ̂2

0

σ̂2 is ’large’

⇔
1/n

∑n
i=1(Xi − θ0)2

1/n
∑n

i=1(Xi − Xn)2
is ’large’

⇔

∑n
i=1(Xi − Xn)2 + n(Xn − θ0)2∑n

i=1(Xi − Xn)2
is ’large’

⇔ 1 +
n(Xn − θ0)2∑n
i=1(Xi − Xn)2

is ’large’

⇔

√
n|Xn − θ0|√∑n
i=1(Xi − Xn)2

is ’large’

⇔

√
n|Xn − θ0|√

1
n−1

∑n
i=1(Xi − Xn)2

is ’large’.

We can find the distribution of Tn :=
√

n(Xn−θ0)
√

1
n−1

∑n
i=1(Xi−Xn)2

under H0 : θ = θ0 using Cochrans theorem. If (X1, . . . , Xn) =

X ∼ Nn(θ0, σ
21) then ( X1−θ0

σ0
, . . . , Xn−θ0

σ0
) = Y ∼ Nn(0,1). Define A1 = 1

n


1 . . . 1
...

...
1 . . . 1

 and A2 = 1 − A1. We have to

check that A1 and A2 fulfil the assumptions of Cochrans theorem.

A2
1 =

1
n2


1 . . . 1
...

...
1 . . . 1

 ·

1 . . . 1
...

...
1 . . . 1

 =
1
n2


n . . . n
...

...
n . . . n

 =
1
n


1 . . . 1
...

...
1 . . . 1

 = A1

and A2 = 1 − A1 A1(1 − A1) = A1 − A2
1 = 0 = (1 − 1)A1 rank(A1) = 1 and rank(A2) = n − 1. Therefore, by Cochrans

theorem, we know that A1Y is independent of A2Y and ‖A2Y‖22 ∼ χ
2
(n−1)

A1Y =
1
n


1 . . . 1
...

...
1 . . . 1




X1−θ0
σ0
...

Xn−θ0
σ0

 =
Xn − θ0

σ0


1
...
1



A2Y = (1 − A1)Y = Y − A1Y =


X1−θ0
σ0
...

Xn−θ0
σ0

 − Xn − θ0

σ0


1
...
1

 =


X1−Xn
σ0
...

Xn−Xn
σ0


so that ‖A2Y‖2 = 1

σ2

∑n
i=1(Xi − Xn)2. .... Now A1Y y A2Y ⇒ A1Y y ‖A2Y‖2 ⇔ Xn−θ0

σ
y 1

σ2

∑n
i=1(Xi − Xn)2

⇒

√
n(Xn − θ0)

σ︸          ︷︷          ︸
∼N(0,1)

y
1
σ2

n∑
i=1

(Xi − Xn)2

︸                ︷︷                ︸
∼χ2

(n−1)

and using (4)

⇒

√
n(Xn−θ0)
σ√

1
n−1

1
σ2

∑n
i=1(Xi − Xn)2

∼ T(n−1) under H0.
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Note that the obtained statistic Tn =

√
n(Xn−θ0)

σ√
1

n−1
∑n

i=1
(Xi−Xn )2

σ2

Thus, the LRT is given by Φ(X1, . . . , Xn) =

1 if |Tn| > qα
0 otherwise

where

P(|Tn| > qα) = α⇔ 2P(Tn > qα) = α

⇔ P(Tn > qα) = α/2
⇔ P(Tn ≤ qα) = 1 − α/2

whereas qα = tn−1,1−α/2 the (1 − α/2)-quantile of T(n−1).

3.4. Example c. Let X1, . . . , Xn
iid
∼ N(θ0, σ

2) with θ0 ∈ R known and σ ∈ (0,∞) unknown. We want to test

H0 : σ = σ0 versus H1 : σ , σ0

whereas Θ0 = {σ0} and Θ = (0,+∞).

Λn =
supσ∈(0,∞) Ln(θ0, σ)

Ln(θ0, σ0)
Ln(θ0, σ) = 1

(2π)n/2σn exp
(
− 1

2σ2

∑n
i=1(Xi − θ0)2

)
then

ln(θ0, σ) = −n/2 log(2π) − n log(σ) −
1

2σ2

n∑
i=1

(Xi − θ0)2.

d
dσ

(ln(θ0, σ)) = −n/σ + 1/σ3
n∑

i=1

(Xi − θ0)2 = 0⇔ σ2 = 1/n
n∑

i=1

(Xi − θ0)2

which implies that there exists a unique critical point

σ̂ =

1
n

n∑
i=1

(Xi − θ0)2

1/2

d2

dσ2 (ln(θ0, σ)) = n/σ2 − 3/σ4
n∑

i=1

(Xi − θ0)2

and
d2

dσ2 (ln(θ0, σ))|σ=σ̂ = n/σ̂ −
3nσ̂2

σ̂4 =
2n
σ̂2 < 0

which means that σ̂ is a local maximizer and hence a global maximizer because otherwise the function σ 7→ ln(θ0, σ)
will have another critical point. Note that this obtained σ̂ is equal to (??).

Λn =
Ln(θ0, σ̂)
Ln(θ0, σ0)

=

1
(2π)n/2

1
σ̂n exp

(
− 1

2σ̂2

∑n
i=1(Xi − θ0)2

)
1

(2π)n/2
1
σn

0
exp

(
− 1

2σ2
0

∑n
i=1(Xi − θ0)2

)
=

1
σ̂n exp

(
− 1

2σ̂2 nσ̂2
)

1
σn

0
exp

(
− 1

2σ2
0
nσ̂2

)
=
σn

0

σ̂n exp
(
−n/2 + n/2 · σ̂2/σ2

0

)
=

1
(σ̂/σ0)n exp

−n
2

( σ̂σ0

)2

− 1


= g

(
σ̂

σ0

)
with g(t) = 1/tn exp

(
n/2(t2 − 1)

)
for t ∈ (0,+∞).

h(t) = log(g(t))

= −n log(t) + n/2(t2 − 1)
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h′(t) = −n/t + nt = n
t2 − 1

t
But we know that, by definition, Λn ≥ 1 and hence Λn = g

(
σ̂
σ0

)
which implies σ̂

σ0
∈ [1,+∞). Since g is strictly

increasing on [1,+∞),

Λn is ’large’ ⇔
σ̂

σ0
is ’large’

⇔
σ̂2

σ2
0

is ’large’

⇔
1/n

∑n
i=1(Xi − θ0)2

σ2
0

is ’large’

⇔

n∑
i=1

(Xi − θ0)2

σ2
0

is ’large’.

The LRT is given by Φ(X1, . . . , Xn) =

1 if
∑n

i=1
(Xi−θ0)2

σ2
0

> qα

0 otherwise
with Pσ0

(∑n
i=1

(Xi−θ0)2

σ2
0

> qα
)

= α.

X1−θ0
σ0

, . . . , Xn−θ0
σ0

iid
∼ N(0, 1) under H0 : σ = σ0 which implies

∑n
i=1

(Xi−θ0)2

σ2
0
∼ χ2

(n) and qα the (1 − α)-quantile of χ2
(n).

3.5. Example d. Let X1, . . . , Xn
iid
∼ N(θ, σ2) with θ ∈ R and σ ∈ (0,∞) both unknown. Here θ is acting as a nuisance

parameter and we want to test

H0 : θ is something, σ = σ0 versus H1 : θ is something, σ , σ0

whereas Θ0 = {(θ, σ0) : θ ∈ R} and Θ = R × (0,+∞).

Λn =
sup(θ,σ)∈Θ Ln(θ, σ̂)

supθ∈R Ln(θ, σ0)

Ln(θ, σ) =
1

(2π)n/2σn exp

− 1
2σ2

n∑
i=1

(Xi − θ)2


We already know from example b that sup(θ,σ)∈Θ = Ln(Xn, σ̂) with σ̂ =

(
1
n
∑n

i=1(Xi − Xn)2
)1/2

and also

Λn =

1
(2π)n/2

1
σ̂n exp

(
− 1

2σ̂2

∑n
i=1(Xi − Xn)2

)
1

(2π)n/2
1
σn

0
exp

(
− 1

2σ2
0

∑n
i=1(Xi − Xn)2

)
=

1/σ̂n

σ̂n
0

exp
(
−n/2 + n/2 · σ̂2/σ2

0

)
Λn = g

(
σ̂
σ0

)
where g is the same function as before. Using similar arguments we show that Λn is ’large’ if and only if∑n

i=1
(Xi−Xn)2

σ2
0

is ’large’.
∑n

i=1
(Xi−Xn)2

σ2
0
∼ χ2

(n−1) as a result of Cochran’s theorem. The LRT is given by Φ(X1, . . . , Xn) =1 if
∑n

i=1
(Xi−Xn)2

σ2
0

> qα

0 otherwise
with qα = (1 − α)-quantile of χ2

(n−1).

4. F-tests and application in linear regression

4.1. Regression model. A regression model aims at explaining the random behaviour of the response given the ex-
planatory variables also called covariates/predictors. More specifically, a regression model assumes that Y = f (θ, x)+ε
whereas Y is the response, f and θ are unknown x are the covariate(s) and ε is the noise/error.

There are two settings:

(1) Random design: the covariate is random and the analysis is done conditionally on X but in the end randomness
is taken into account.

(2) Fixed design: We observe a realisation x of X and we do the analysis conditionally on X = x.
In this course we will place ourselves in the fixed design.
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4.2. Linear Regression. When f (θ, x) = θᵀx with θ, x ∈ Rd, then we talk about linear regression. The model is
Y = θᵀx + ε with E(ε) = 0. If θ1, . . . , θd are the components of θ and x1, . . . , xd are the components of x then

Y = x1θ1 + . . . + θd xd + ε.

The main goal is to estimate the unknown regression vector θ based on a random sample. We observe independent
responses Y1, . . . ,Yn and corresponding covariates x1, . . . , xn ∈ R

d. Let

Yi = θᵀxi + εi

with xi =


xi1
xi2
...

xin

 for i ∈ {1, . . . , n}, Y =


Y1
Y2
...

Yn

 ∈ Rn and ε =


ε1
ε2
...
εn

 ∈ Rn and put D =



x11 x12 . . . x1d
...

...
xi1 . . . . . . xid
...

...
xn1 . . . . . . xnd


∈ Rn×d. The ith

row of D = xᵀi = (xi1, . . . , xid). D is called the design-matrix. We can write the linear regression as

Y = Dθ + ε. (9)

4.3. Least Squares Estimator.

Definition 4.1. LSE Consider the quadratic criterion

Qn(t) =

n∑
i=1

(Yi − tᵀxi)2 (10)

for t ∈ Rd. θ̂n = argmint∈Rd Qn(t) is called (provided it exists) the least squares estimator if it minimizes Qn over Rd.

The rational behind θ̂n is that we can take some random variable Z with µ = E(Z) < ∞ and σ2 = Var(Z) < ∞ then
µ = argmina∈RE[(Z − a)2]. Indeed

E[(Z − a)2] = E[(Z − µ + µ − a)2]

= E[(Z − µ)2 + 2(Z − µ)(µ − a) + (µ − a)2]

= σ2 + 2(µ − a)E[Z − µ] + (µ − a)2

= σ2 + (µ − a)2.

Since argmina(µ − a)2 = µ it follows that µ = argminaE[(Z − a)2]. Let us go back to the regression problem and let us
also assume that Var(Yi) < ∞ for i ∈ {1, . . . , n}. Since E(εi) = 0 for i ∈ {1, . . . , n}, this means that E(Yi) = θᵀxi = µi.
We can also show as above that

(µ1, . . . , µn)ᵀ =

n∑
i=1

E[(Yi − ai)2]⇒ θ = argmint∈Rd

n∑
i=1

E[(Yi − tᵀxi)2].

Since we only observe Y1, . . . ,Yn and x1, . . . , xn we replace this criterion by (10).

Proposition 4.2. Assume that DᵀD is invertible. Then, θ̂n exists and is unique. Furthermore

θ̂n = (DᵀD)−1DᵀY. (11)

Proof. Recall that for v = (v1, . . . , vn) ∈ Rn the euclidean norm is defined as ‖
√∑n

i=1 vi‖ and ‖v‖2 = vᵀv. Hence

Qn(t) =

n∑
i=1

(Yi − tᵀxi)2

= ‖Y − Dt‖2

= (Y − Dt)ᵀ(Y − Dt)
= YᵀY − YᵀDt − tᵀDᵀY + tᵀDᵀDt

= YᵀY − 2tᵀDᵀY + tᵀDᵀDt

We look now for a stationary point of Qn : 5Qn(t) = −2DᵀY + 2DᵀDt. Recall that for any differentiable function g
defined on Rd we have

g(t + h) = g(t) + hᵀ 5 g(t) + o(‖h‖).
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Therefore

5Qn(t) = 0⇔ DᵀDt = DᵀY

⇔ t = (DᵀD)−1DᵀY.

The hessian of Qn(t) is 2DᵀD, which is positive definite because for a ∈ Rd

aᵀDᵀDa = (Da)ᵀDa

= ‖Da‖2 ≥ 0

and

aᵀDᵀDa = 0⇔ ‖Da‖2 = 0
⇔ Da = 0
⇒ DᵀDa = 0
⇒ a = 0.

It follows that θ̂n = (DᵀD)−1DᵀY is the unique minimizer of (the strictly convex function) Qn. �

4.4. Properties of the LSE. In what follows we assume E[εεᵀ] = σ21n. In other words E[ε2
i ] = Var(εi) = σ2 for

i ∈ {1, . . . , n} and E[εiε j] = 0∀i , j ∈ {1, . . . , n}.

Proposition 4.3. Assume that DᵀD is invertible. Then,

(i) E[θ̂n] = θ and
(ii) E[(θ̂n − θ)(θ̂n − θ)ᵀ] = σ2(DᵀD)−1.

Proof. (i) Use (9) to see that

θ̂n = (DᵀD)−1DᵀY

= (DᵀD)−1Dᵀ(Dθ + ε)

= (DᵀD)−1DᵀDθ + (DᵀD)−1Dᵀε

= θ + (DᵀD)−1Dᵀε (12)

Since E[ε] = 0 (i) follows.
(ii) Use (12) to see that

E
[
(θ̂n − θ)(θ̂n − θ)ᵀ

]
= E

[
(DᵀD)−1DᵀεεᵀD(DᵀD)−1

]
= (DᵀD)−1DᵀE[εεᵀ]D(DᵀD)−1

= (DᵀD)−1Dᵀσ21nD(DᵀD)−1

= σ2(DᵀD)−1DᵀD(DᵀD)−1

= σ2(DᵀD)−1

�

Proposition 4.4. Let us assume that ε ∼ N(0, σ21n). Then,

(i) θ̂n ∼ N
(
θ, σ2(DᵀD)−1).

(ii) Y − Dθ̂n and D(θ̂n − θ) are independent Gaussian vectors.
(iii) ‖Y−Dθ̂n‖

2

σ2 ∼ χ2
(n−d) and ‖D(θ̂n−θ)‖2

σ2 ∼ χ2
(d).

Proof. (i) Recall that D is the design matrix and Y = Dθ + ε. Then,

θ̂n = (DᵀD)−1DᵀY = (DᵀD)−1Dᵀ(Dθ + ε)

= θ + (DᵀD)−1Dᵀε
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whereas (DᵀD)−1Dᵀ is a matrix and ε is a gaussian vector. This means that θ̂n is also a gaussian vector with E[θ̂n] =

θ + 0 = θ and covariance matrix E[(θ̂n − θ)(θ̂n − θ)ᵀ] = σ2(DᵀD)−1 hence θ̂n ∼ N
(
θ, σ2(DᵀD)−1).

(ii) We want to show that Y − Dθ̂n y D(θ̂n − θ) whereas Y − Dθ̂n denotes the estimated residuals.

D(θ̂n − θ) = D
(
(DᵀD)−1DᵀY − θ)

)
= D

(
(DᵀD)−1Dᵀ(Dθ + ε) − θ

)
= Aε

Note that Aᵀ = A and

A2 = D(DᵀD)−1DᵀD(DᵀD)−1Dᵀ

= D(DᵀD)−1Dᵀ

= A

On the other hand

Y − Dθ̂n = Dθ + ε − D(DᵀD)−1Dᵀ(Dθ + ε)

= ε − D(DᵀD)−1Dᵀε

= (1 − A)ε.

1 − A is symmetric and satisfies (1 − A)2 = (1 − A)(1 − A) = 1 − A − A + A2 = 1 − A. Furthermore, (1 − A)A =

A − A2 = 0 = A(1 − A) and rank(A) = d because DᵀD is invertible (see in the notes on linear algebra) which implies
that rank(1 − A) = n − d. Using Cochran’s theorem, it follows that Y − Dθ̂n y D(θ̂n − θ) and

‖D(θ̂n − θ)‖
σ2

2

=

∥∥∥∥∥A
ε

σ

∥∥∥∥∥2
∼ χ2

(rank(A))
d
= χ2

(d)

‖Y − Dθ̂n‖

σ2

2

=

∥∥∥∥∥(1n − A)
ε

σ

∥∥∥∥∥2
∼ χ2

(n−d),

which is also proof for (iii). �

Proposition 4.5. Consider the linear regression model Y = Dθ + ε with ε ∼ N(0, σ21n). Consider also the testing
problem

H0 : θ = θ0 versus H1 : θ , θ0. (13)

If σ = σ0 is known then a test of level α for this problem is given by

Φ(X1, . . . , Xn) =

1 if ‖D(θ̂n−θ0)‖
σ2

0

2
> qd,1−α

0 otherwise
(14)

where qd,1−α is the (1 − α) quantile of χ2
(d).

Proof. Under H0, we know from ((ii)) that ‖D(θ̂n−θ0)‖
σ2

0

2
= χ2

(d) so that P
(
‖D(θ̂n−θ0)‖

σ2
0

2
> qd,1−α

)
= α. �

Proposition 4.6. Let Y = Dθ + ε with ε ∼ N(0, σ21n) and consider the problem (13). Suppose σ is known. Then a
test of level α for this problem is given by

Φ(X1, . . . , Xn) =

1 if ‖D(θ̂n−θ0)‖/d
‖Y−Dθ̂n‖

2/(n−d)
> qd,n−d,1−α

0 otherwise

where qd,n−d,1−α is the (1 − α) quantile of the F-distribution (5) of d and n − d degrees of freedom.

Proof.
‖D(θ̂n−θ0)‖2

σ2 /d
‖Y−Dθ̂n‖

2

σ2 /(n − d)
∼ F(d,n−d)

under H0 because‖D(θ̂n − θ0)‖2 y ‖Y − Dθ̂n‖
2, ((ii)) and ((iii)). �
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4.5. χ2- and F-tests for variable selection. The question we want to answer is: Which of the covariates are significant
(have a non-trivial effect on the response). More formally, the question can be put in the context of testing. We want a
test where θ is of the form (θ1, . . . , θd−m, 0, . . . , 0)ᵀ. Even more formally, we want to test

H0 : Gθ = 0 versus H1 : Gθ , 0

where G =


0 . . . 0 1 0 . . . 0
...

... 0
. . .

. . .
...

...
...

...
. . .

. . . 0
0 . . . 0 0 . . . 0 1

 and θ =


θ1
...
θd

. Note that H1 means that there exists j ∈ {d − m + 1, . . . , d}

θ j , 0 and

Gθ =



0 . . . 0 1 0 . . . 0
...

... 0
. . .

. . .
...

...
...

...
. . .

. . . 0
0 . . . 0 0 . . . 0 1





θ1
...

θd−m

θd−m+1
...
θd


=



θd−m+1
...

...
θd


=



0
...

...
0


.

4.5.1. LRT for variable selection. Let us assume that ε ∼ N(0, σ2
01n) where σ2

0 is known.

Θ0 = {θ ∈ Rd : Gθ = 0} = {θ ∈ Rdθd−m+1 = . . . = θd = 0}

Θ = Rd

Ln(θ) =
1

(2π)n/2 σn
0

exp

− 1
2σ2

0

n∑
i=1

(Yi − θ
ᵀxi)2

 =
1

(2π)n/2 σn
0

exp
− 1

2σ2
0

‖Y − Dθ‖2


ln(θ) = −n/2 log(2π) − n log(σ0) − 1/(2σ0)‖Y − Dθ‖2.

Maximizing θ 7→ ln(θ) over Rd is equivalent to minimizing θ 7→ ‖Y − Dθ‖2 over Rd. We know that the solution is the
LSE (??). Hence supθ∈Θ Ln(θ) = supθ∈Rd Ln(θ) = Ln(θ̂n).
Now, we need to maximize θ 7→ ln(θ) over Θ0. But this is equivalent to minimize θ 7→ ‖Y − Dθ‖2 over Θ0. Under H0
we have

Dθ =



x11 . . . x1d

...
...

xi1 . . . xid
...

...
xn1 . . . xnd





θ1
...

θd−m

0
...
0



=



x11 . . . x1(d−m)
...

...
xi1 . . . xi(d−m)
...

...
xn1 . . . xn(d−m)





θ1
...
...
...

θd−m


= D̃θ̃. (15)
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This problem is equivalent to minimizing θ̃ 7→ ‖Y − D̃θ̃‖2. We only need to check that D̃ᵀD̃ is invertible. Note that

D̃ = DG̃ with G̃ =

(
1d−m

0m

)
. Let a ∈ Rd−m. We want to show that D̃ᵀD̃a = 0 implies a = 0.

D̃ᵀD̃a = 0⇒ aᵀD̃ᵀD̃ = 0

⇔ (D̃a)ᵀD̃a = ‖D̃a‖2 = 0

⇔ D̃a = 0

⇔ DG̃a = 0
⇔ Db = 0

because DᵀD is invertible if and only if rank(D) = d. Hence G̃a = 0 if and only if a = 0. D̃ᵀD̃ is invertible and
therefore we are in the same setting as in the least squares problem. Hence the minimizer of θ̃ 7→ ‖Y − D̃θ̃‖2 is given

by (D̃ᵀD̃)−1D̃ᵀY if and only if the minimizer of θ 7→ ‖Y − Dθ‖2 under H0 is given by θ̂0
n =

(
(D̃ᵀD̃)−1D̃ᵀY

0m

)
. θ 7→ ln(θ)

is maximized by θ̂0
n under H0 and

Λn =
supθ∈Θ Ln(θ)
supθ∈Θ0

Ln(θ)

=

1
(2π)n/2σn

0
exp

(
− 1

2σ2
0
‖Y − Dθ̂n‖

2
)

1
(2π)n/2σn

0
exp

(
− 1

2σ2
0
‖Y − Dθ̂0

n‖
2
)

= exp
 1
2σ2

0

(
‖Y − Dθ̂0

n‖
2 − ‖Y − Dθ̂n‖

2
) .

We reject if Λn is ’large’ which means that if ‖Y − Dθ̂0
n‖

2 − ‖Y − Dθ̂n‖
2 is large.

‖Y − Dθ̂0
n‖

2 = ‖Y − Dθ̂n + D(θ̂n − θ̂
0
n)‖2

= ‖Y − Dθ̂n‖
2 + 2(Y − Dθ̂n)ᵀD(θ̂n − θ̂

0
n) + ‖D(θ̂n − θ̂

0
n)‖2.

Now we show that 2(Y−Dθ̂n)ᵀD(θ̂n−θ̂
0
n) = 0. We know that θ̂n is a zero of the gradient of the function Qn(t) = ‖Y−Dt‖2,

t ∈ Rd. In other words

DᵀDθ̂n − DᵀY = 0⇔ Dᵀ(Dθ̂n − Y) = 0

⇔ (Y − Dθ̂n)ᵀD = 0

⇔ (Y − Dθ̂n)ᵀDv = 0

for all v ∈ Rd. In particular this holds true for v = θ̂n − θ̂
0
n. Λn is ’large’ if and only if ‖D(θ̂n − θ̂

0
n)‖2 is ’large’. What is

the distribution of ‖D(θ̂n − θ̂
0
n)‖2 under H0?

4.5.2. The LRT for variable selection. σ = σ0 is known.

Λn ’is large’ ⇔ ‖D(θ̂n − θ̂
0
n)‖2 ’is large’

⇔
‖D(θ̂n − θ̂

0
n)‖2

σ2
0

’is large’

where θ̂n = (DᵀD)−1DᵀY and θ̂0
n = (D̃ᵀD̃)−1D̃ᵀY

Question: What is the distribution of ‖D(θ̂n−θ̂
0
n)‖2

σ2
0

under H0 : Gθ = 0?

D(θ̂n − θ̂
0
n) = D(θ̂n − θ) − D(θ̂0

n − θ)

=

D(DᵀD)−1Dᵀ︸           ︷︷           ︸
=:A

− D̃(D̃ᵀD̃)−1D̃ᵀ︸           ︷︷           ︸
=:B

 ε
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whereas Y = Dθ + ε = D̃θ̃ + ε under H0 and ε ∼ N(0, σ01n). Recall 15 and observe that

AB = D(DᵀD)−1DᵀD̃(D̃ᵀD̃)−1D̃ᵀ

= D(DᵀD)−1DᵀDG̃(D̃ᵀD̃)−1D̃ᵀ

= DG̃(D̃ᵀD̃)−1D̃ᵀ

= D̃(D̃ᵀD̃)−1D̃ᵀ

= B

and

BA = D̃(D̃ᵀD̃)−1D̃ᵀD(DᵀD)−1Dᵀ

= D̃(D̃ᵀD̃)−1G̃ᵀDᵀD(DᵀD)−1Dᵀ

= D̃(D̃ᵀD̃)−1G̃ᵀDᵀ

= D̃(D̃ᵀD̃)−1D̃ᵀ.

= B

I.e. BA = AB if and only if A and B commute (Aᵀ = A and Bᵀ = B). Furthermore, the matrices are projections
meaning A2 = A and B2 = B. Hence, we can find an orthogonal matrix P such that

A = Pᵀ
(
1d 0
0 0

)
P and B = Pᵀ

(
1d−m 0

0 0

)
P

because rank(A) = rank(DᵀD) = d and rank(B) = rank(D̃ᵀD̃) (see notes on linear algebra). Moreover

A − B = Pᵀ

0 0 0
0 1m 0
0 0 0

 P

which implies rank(A − B) = m. Hence we can write ‖D(θ̂n−θ0)‖
σ2

0

2
= ‖(A − B) ε

σ0
‖2 with ε

σ0
∼ N(0,1n). Using Cochran’s

theorem, it follows that ‖(A − B) ε
σ0
‖2 ∼ χ2

rank(A−B), that is under H0
‖D(θ̂n−θ̂

0
n)‖

σ2
0
∼ χ2

(m) with θ̂0
n =

(
(θ̃ᵀD̃)−1D̃ᵀd−n

0m

)
The LRT

of level α can be given by

Φ(Y1, . . . ,Yn) =

1 if ‖D(θ̂n−θ̂
0
n)‖

σ2
0

> qm,1−α

0 otherwise

with qm,1−α = (1 − α)-quantile of χ2
(m).

σ is unknown
The likelihood is

Ln =
1

(2π)n/2 σn
exp

(
−

1
2σ2 ‖Y − Dθ‖2

)
with

Θ = {(θ, σ) ∈ Rd × (0,+∞)} = Rd × (0,+∞)

and

Θ0 = {(θ, σ) : Gθ = 0 and σ ∈ (0,+∞)}

= {θ ∈ Rd : θd−m+1 = · · · = θd = 0} × (0,+∞).

The log-likelihood is
ln(θ) = −n/2 log(2π) − n log(σ) − 1/(2σ2)‖Y − Dθ‖2.

To maximize (θ, σ) 7→ ln(θ, σ) over Θ we can use the profiling approach:
• Fix σ ∈ (0,+∞) and maximize θ 7→ ln(θ, σ) over Rd. It is clear, for a fixed σ, the solution θ̂n is the one

minimizing θ 7→ ‖Y − Dθ‖2 on Rd, that is (11) the LSE.
• We plug the obtained solution θ̂n and maximize the function

σ 7→ ln(θ̂n, σ) = −n/2 log(2π) − n log(σ) − 1/(2σ2)‖Y − Dθ̂‖2
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d
dσ

ln(θ̂n, σ) = −n/σ + 1/(σ3)‖Y − Dθ̂n‖
2 = 0

⇔ σ2 = 1/n‖Y − Dθ̂n‖
2

⇔ σ = 1/
√

n‖Y − Dθ̂n‖
2

whereas σ is the unique critical point of σ 7→ ln(θ̂n, σ).

d2

dσ2 ln(θ̂n, σ)|σ=σ̂n = −n/σ̂2 − 3/σ̂4‖Y − Dθ̂n‖
2

= −n/σ̂2 − 3/σ̂4nσ̂2
n

= −
2n
σ̂2

n
< 0.

Using the same arguments as for example b (for testing the mean of a Gaussian with unknown variance) we can show
that σ̂n gives the global maximum and also that

sup
(θ,σ)∈Θ

ln(θ, σ) = ln(θ̂n, σ̂n)⇔ sup
(θ,σ)∈Θ

Ln(θ, σ) = Ln(θ̂n, σ̂n).

Now we need to find sup(σ,θ)∈Θ0
Ln(σ, θ). Similar arguments can be used to show that sup(σ,θ)∈Θ0

Ln(σ, θ) = Ln(θ̂0
n, σ̂

0
n)

with σ0
n =

(
(D̃ᵀD̃)−1D̃ᵀY

0m

)
and σ̂0

n = 1
√

n ‖Y − Dθ̂0
n‖.

Λn =
sup(θ,σ)∈Θ Ln(θ, σ)

sup(θ,σ)∈Θ0
Ln(θ, σ)

=
Ln(θ̂n, σ̂n)
Ln(θ̂0

n, σ̂
0
n)

=

1
(2π)n/2σ̂n exp

(
− 1

2σ̂2 ‖Y − Dθ̂n‖
)

1
(2π)n/2

1
(σ̂0

n)n exp
(
− 1

2(σ̂0
n)‖Y − Dθ̂0

n‖

)
=

(
σ̂0

n

σ̂n

)n

=


(
σ̂0

n

)2

σ̂2
n


n/2

Λn ’is large’ ⇔

(
σ̂0

n

)2

σ̂2
n

’is large’

⇔
1/n‖Y − Dθ̂0

n‖
2

1/n‖Y − Dθ̂n‖
2

’is large’.

‖Y − Dθ̂0
n‖

2 = ‖Y − Dθ̂n‖
2 + 2 (Y − Dθ̂n)ᵀD(θ̂n − θ̂

0
n)︸                      ︷︷                      ︸

=0

+‖D(θ̂n − θ̂
0
n)‖2

Λn ’is large’ ⇔ 1 +
‖Y − Dθ̂0

n‖
2

‖Y − Dθ̂n‖
2

’is large’

⇔
‖Y − Dθ̂0

n‖
2

‖Y − Dθ̂n‖
2

’is large’.

We know that D(θ̂n − θ̂
0
n) = (A − B)ε. Also Y − Dθ̂n = Dθ + ε − D(DᵀD)−1Dᵀ(Dθ + ε) = (1n − A)ε.

(A − B)(1n − A) = A − B − (A − B)A
= A − B − (A − B) = 0
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and similarly (1n − A)(A − B) = 0. Also

(A − B)2 = (A − B)(A − B)

= A2 − AB − BA + B2

= A − B − B + B = A − B

and

(1n − A)2 = (1n − A)(1n − A)

= 1n − A − A + A2

= 1n − A.

moreover we know rank(A−B) = m from previous calculations and rank(1−A) = n−rank(A) = n−d.Using Cochran’s
theorem we have D(θ̂n − θ̂

0
n) y Y − Dθ̂n and

‖D(θ̂n − θ̂
0
n)‖2

σ2 =

∥∥∥∥∥(A − B)
ε

σ

∥∥∥∥∥2
∼ χ2

(n) y
‖Y − Dθ̂n‖

2

σ2 =

∥∥∥∥∥(1n − A)
ε

σ

∥∥∥∥∥2
∼ χ2

(n−d).

Hence, under H0
‖D(θ̂n − θ̂

0
n)‖2

‖Y − Dθ̂n‖
2
∼ F(m,n−d)

with m and n − d degrees of freedom. The LRT of level α is given by

Φ(Y1, . . . ,Yn) =

1 if ‖D(θ̂n−θ̂
0
n)‖2

‖Y−Dθ̂n‖
2 > qm,n−d,1−α

0 otherwise,

whereas qm,n−d,1−α is the (1 − α)-quantile of F(m,n−d).
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