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Part 1. Introduction and some fundamentals

1. POSING THE PROBLEM

Let X : (Q,A,P) — (v, B) be a random variable, (Q, A, P) a probability space, (v, B) a measurable space.
Result: X induces the probability measure Px on (y, B) given by Px(B) = P(X € B) forall B € 8.
1
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Example: Suppose X ~ N(6, 1) with 6 € R. Then

Px(B) = f \/12_ exp(-1/2(x-0))dx,  VBe B
B T

We are going to assume that Py belongs to some parametric family, that is, that there exists some parameter space
® such that Px € {Py : 8 € ©}. Here, for all § € @, Py is a probability measure on (y, B). In the previous example,
®=R.

Example: X ~ Pois(6), 8 € (0, +00). Then

0
Py(B) =y —exi(, X ygeot

xeB

the ensemble of all subsets of N.

Problem: Let ®; and ©; be two subsets of ® such that @, N ®; = (.

Goal: We want, based on observed realisation of X, be able to decide between ®¢ and ®,. This is a testing problem
which can be formalized as follows:

Hy:0€0®, vs. H|:0€0,

where Hj denotes the null- and H; denotes the alternative hypothesis.
Definition 1.1. critical function We call a critical function any function ® such that ®(x) € [0, 1] for all x € y.

Definition 1.2. fest function A test function is a critical function ® such that for all x € y we either accept Hy with
probability 1 — ®(x) or we reject Hy with probability O(x).

Definition 1.3. type-I error, power, type-II error

(i) for 8 € Oy, the function 8 — Ey [D(X)] is called Type-I error.
(ii) for 8 € Oy, the same function is called power (usually denoted by 3(8))
(iii) 1 —B(0) is called type-II error.

Truth \Decision | Accept Reject
(N v Type-1 error
0, Type-II error | v/

Supgeg, Eo(P(X)) < a for some given a € (0, 1)
B(0) is maximal V6 € Q.

Goal: Find a function ® such that Type-I error is controlled if and only if supy.e, E¢ [P(x)] < a (for some given
a € (0,1)).
The power of @ is the largest among all other testing functions ®*(x) satisfying sup,ee, £¢ [P(x)] < a if and only if
for all € O, B(0) = Ey(D(x)) = Eo(DP*(x)) = B*(6).

The goal is to find a test function @ such that

Definition 1.4. We say that Hy or H; is
(i) simple if ®y = {6} or @1 = {6;}.
(ii) composite if card(®g) > 1 or card(®;) > 1.

Example: Hy: 6 =6y vs. H;:60=06
Oy # 0,
then we are testing a simple hypothesis against a simple hypothesis.

Hy:0<6y vs. H :0>6;

2. THE FUNDAMENTAL LEMMA ON HYPOTHESIS TESTING

Definition 2.1. UMP A test @ is is said to be uniformly most powerful of level « (UMP of level @) if supyeg, Eq [P(X)] <
@ and for any other test ®* such that sup,eg, Eg [®*(X)] < @ we have

Ey[@*(X)] < Ey[0(X)]
forall 6 € ©,.
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Theorem 2.2. Neyman-Pearson-Lemma Let Py and Py be two probability measures on (y, B) such that Py and P
admit densities po and p| with respect to some o—finite measure u. Let « € (0, 1) and consider the problem Hy : p = po
vs. Hy : p = py.

(i) There exists k, € (0, 00) such that the test

D) = 1 l:fpl(x) > ko po(X)
0 ifp1(x) < kepo(x)

satisfies E,, [P(x)] = a and © is UMP of level a (existence).
(ii) If ® is a UMP test of level « (for the same problem), then it must be given by (1)) u-a.e. (uniqueness).

(1)

Lemma 2.3. Let f be some measurable function on (y,B) such that f(x) > 0 forall x € S (s is a set € B). Also let u
be some o-finite measure on (y, B). Then fs fdu=0=u(§)=0.

Proof. Define S, :={xeS : f(x) > 1/n}, n > 0. By definition of § (f(x) > O for all x € S), we have § C U,59S .
But, using the properties of measures we see that u(S) < 3,0 u(S,). Butu(S,) <n fs fdu because f > %mS » Which

implies fs fdu > %u(S). So
SnCS=>f fdusffduzo
Sa s

by assumption. We conclude that u(S) < 0 if and only if u(S) = 0. O

Proof. We first show i) (existence) Consider the random variable Y = p (X) ) which, under Hj is almost surely defined
and we have Py(po(x) = 0) = f)( 1y 0=0;Po(x)du(x). Let Fy be the cdf of Y under Hy : p = py and let k, = inf{y
Fo(y) = 1 — a} be the (1 — @) quantile of Fy. Let us consider the following test function

1if 2 > g,

P()E’f;
— pilx
D(x) =4y, if pogxg =kq
P
0 if e < ko

such that vy, satisfies E,,, [®(x)] = a. This means that
p1(x) ) (Pl(x) ) (Pl(x) )
1-P >k, v Pp|—— =k, | +0-P ko|=a
”( o) e po) 7\ po@)

or equivalently
1 = Fo(ka) + o (Fo(ka) — Folke—)) = a.
Now define

Fo(ke)=Fo(ka—)

_ | Farras i Fotk) > Fo(ke—)
Yoo= 0 if F is continuous in k.

Now we show that @ is UMP among all tests of level @. Take another test ®* such that E,,, [®*(x)] < . The goal is
to show that E,, [D(x)] > E,, [D*(x)].

f O(x) - q)*(x) (Pl(X) kapo(x))dpu(x) =
X

(@) = @* (%)) (P1(x) = kapo(x)dpu(x) + f (@) = @* (%)) (P1(x) = kaPo(X)dpu(x)

P%

M
f (1= %) (1 () = kapo()) dua(x) + f (-0*(0) (1 (x) = kapo(x)) du(x) > 0,
L >0 >0 M >0

where L := {x : p1(x) > kopo(x)} and M := {x : p1(x) < kopo(x)}. Hence, fX (D(x) — P*(x)) (p1(X)—kqo po(x))du(x) > 0
and thus we have
Ep, [0(0)] - Ep, [@* ()] 2 ko (Ep, [0(0)] = Ep, [0*(1)]) = kale — Ep, [@*(0)]).
>0

Therefore E,, [D(x)] > E,, [®*(x)].
We now show ii) (uniqueness). Take another test ®* of level a (E,,[®*(x)] < @) and such that ®* is UMP among all
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tests of level a. Let us consider the following set S = {x € y : ®*(x) # ®(x)} N {x € y : p1(x) # ko po(x)}. We want to
show that u(S) = 0. Assume u(S) > 0. Consider f(x) = (®(x) — ©*(x))(p1(x) — ko po(x)), x € x. Note that f(x) > 0
for all x € §. Using lemma we conclude that fs f()du(x) > 0. Now,

f J)du(x) = fs J)du(x) + fs J)du(x)
8 .

where f(x) = 0 on S¢. This implies that

0< f J()du(x) = f (@(x) = ©*()) (p1(x) = ko po(0)ddu(x)
X X

= (Ep, [®(x)] - E, [0*(0)]) = ko (@ = Ep, [0*(1)])

which means that E, [®(x)] — E,,, [P*(x)] > ko(@ — E, [@*(x)) > 0 It follows that E,, [®(x)] > E,, [®*(x)] but this is
impossible since by assumption ®* is UMP. We conclude that u(S) = 0 and that u—a.e.

1 if 2% s g
cb*(x>={0 R

po(x)

< k.

]

Corollary 2.4. Let « € (0,1) and g = E, [D(x)], the power of the Neyman-Pearson test of level a. Then a < B (we
say that @ is unbiased).

Proof. Consider the constant test ®*(x) = « for all x € y. ®* is a test of level & and hence

B = Ep[0@)] > E, [0* ()] = a & a <p.

Remark: We can even show that @ < 8 (® is strictly unbiased).
Remark: The arguments used to prove the Neyman-Pearson lemma can be used to show that for any pair (k,y) €
(0, ) x [0, 1], the test

1if 29 >k
i
O(x) =y if 2D =k )
0 if 2% <k
Ppo(x)

. 1(x) (x)
is UMP of level E,, [®(x)] = Py, (25 > k) + yPp, (23 = k).

Example: (Quality control) We have a batch of items whose (unknown) proportion of defectiveness is 6 € (0, 1). To
perform a quality control, n items are sampled from this batch to check whether they are defective or not. We want to
test Hy : 6 =6y vs. H;:6=0(06, >68)atsome level € (0,1). Fori € {1,...,n} define the random variable

1 if the i-th sampled item is defective

Xi = .
0 otherwise.

We have a random sample (Xi,...,X,) of iid Ber(0), i.e. y = {0,1}" = {0,1} x --- x {0, 1}. We want to apply the
Neyman-Pearson lemma to this testing problem. The joint density of (Xi,..., X)) is

pPo(X1,. .., x,) = l_lgxf(l _ 6)1”“
i=1

— 927:] (] — 9)"—2?:] X
Under Hy we have

p@o(xh ceXy) = 9(%?:] Xi(l - 90)”72?:l N

2"- Xi
60 i=1
= 1-60)",
(1 — 90) (1=60)
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and under H, we have

Doy (X1, - ) = 075 (1 = 0y Eh

Dy Xi
6 i=1
= ( : ) (1-61".

1-6

By applying the Neyman-Pearson lemma we know that the test @ given by

1 if [9,(1700)]22’:1 xi (ﬂ)" >k,

B0 1 _, -6,

R(x1, ) 1= Sy, F [ |5 (Y g
Such that vy, satisfies Eq [P(Xi,...,X,)] = a. Note that % > 1 implies % > 1 which means that the function
t— (%)t (%)n is strictly increasing and continuous. Then the test @ can also be rewritten as

1 i Y x>t
DX,y X0) = YVe X X =ty
0 ifYl, xi<t,

where t, is the (1 — a)-quantile of }7, X; under Hy and v, satisfies Eg [®(x)] = @. Note that 3} | X; ~ Bin(n, 6))
under Hy. Let Fy, be the cdf of Bin(n, 6)):

0 ify <0

(1 - 6)" ifo0<y<l1

(1= 60)" +nbo(1 — 6y~ if1<y<2
F@o(y):z : .

2175 (1)05 (1 = 8oy ifn—1<y<n

1 ify>n.

o~ Ptk =(-0)
“ Fgo(kw) - Fgo(ka_)

2 (e -y - -
(¢ )t =goy—e

Graphical illustration:

A numerical illustration: y = 0.2 and 8, = 0.4

a n=10|n=20|n=30|n=40 | n=50
0.05 | 4 7 10 12 15
0.01 |5 8 11 14 17

Values of ¢, as a function of @ and n.
Hy:0=02vs. H :6=04
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a n=10|n=20|n=30|n=40|n=>50
0.05 | 0.41 0.63 0.78 0.88 0.93
0.01 | 0.19 0.40 0.57 0.70 0.80

Power of @ as a function of n and @. Ey, [D(X|, ..., X,)] = Py, (Z?:l X; > ta) + Yo Py, (Z;’Zl X; = ta).

3. COMPOSITE HYPOTHESE FOR TESTING H), : 6 < 6y VERsus H; : 6 > 6,

3.1. Karlin-Rubin Theorem. We will start this section with two examples.
Example 1: (Number of e-mails) The total number of e-mails that I received over a period of two weeks is

1,0,10,11,7,8,2,0,3,7,9,13,6,5,0.

Let X; denote the number of daily e-mails received at day i, and denote by 6 = E[X]. Is it true that 8 > 5?

Example 2: (Airplane noise) The law requires that the noise caused by airplanes take-off should not exceed a certain
threshold wy. From a sample of size n the noise intensity of airplanes was recorded. We want to test Hy : u < ug versus
H, : u > up, where u is the true expectation of noise intensity.

Definition 3.1. MLR Consider the parametric model {py : 6 € O} and let ® C R be a parametric family of densities
defined on (y, B). This family is said to have a monotone likelihood ratio (MLR) if there exists a statistic T, and for
any parameters 0 < 0, there exists a continuous and strictly increasing function g such that Z: 8 = g(T(x)) for all
Do, (X)

po, (x)

X € y such that

€ (0, +00).

Remark: Note that g can depend on 6, or 6.
Example: (Quality Control with one sample) Let X ~ Bin(n,6), 8 € ® = (0, 1). For 6, < 6,, we have

pe,(x) _ Co5(1 —6)""
po,(x)  Croy(1 — 0"

(600 -6\ (1-6,)"
\ed-6)) \1-6

t
forxey={1,...,n}. Put T(x) = xand g(¢¥) = (ng:gii) (}:—Zf)n . Note that g(#) is continuous strictly increasing since

6(1-61)
oy > L

Example: (Airplane noise with one sample) Suppose X ~ N (/1,0'%), 0'(2) known and ¢ € ® = R. We know that

P9 = i exp (=5 = 02 Let s <o :

P (%) 1
m = exp {—27_(2) ((x - )’ = (x —/11)2)}

1
exp {_F (x2 - 2uox + ,u% — X%+ 2xuy — /1%)}
0

1
exp {_ZTH (ZX(M — ) + 5 - ﬂ%)}

0

)
=exp{x<ﬂ2 M) M ﬂ]}

2 2
Ty 20'0

2.2
Put T'(x) = x and g(r) = exp (’("ZT;Z”‘) - ’%) Note that g(#) is continuous and strictly increasing.
0 0

Theorem 3.2. Karlin-Rubin Consider the testing problem Hy : 6 < 0y versus Hy : 0 > 6y and fix a € (0, 1). Suppose
that {py : 6 € O} admits the MLR property and let us denote by Fy, the cdf of T (x) under 6 = 6,.
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1 T >t,
(i) Then the test @ given by ®(x) =<7y, ifT(x)=1t,
0 ifT(x) <ty
whereas t, is the (1 — a)— quantile of Fy, and vy, satisfies
Eg, [O(X)] = Py (T(X) > 1) + Yo P (T(X) = 15)) + 0P (T(X) < 1) = @
is UMP of level a.
(ii) The function 6 — E¢[®(X)] is non-decreasing.
(iii) For all &', the same test ® is UMP for testing H) : 0 < 6’ versus H| : 6 > ¢ at level o' = E¢[D(X)].
(iv) For any 0 < 0y, the same test ® minimizes E¢[®(X)] among all tests ®* satisfying Eq)[DP*(X)] = a.
Proof. i) and ii) Consider first the testing problem H : 8 = 6, versus K : 8 = 6; with 6, > 6,. By the Neyman-Pearson
lemma, we know that the test
I Ay

ne
- e Po )
q)(x) - 7’(1 pHOEx; - M
.o Do (x
0 if oNE < kg,

Po(x) _

where k, is the (1 — @) quantile of Z:‘—g; under 6y and y, is such that Eg [®(X)] = «, is UMP of level «. But 2 =
0 0

g(T(x)) is continuous and strictly increasing. Hence @ can be rewritten as

1 ifT(x)>t,
O(x) == 1%e HT(X) =14

0 ifTKx)<t,
with ¢, = g7 !(k,), which is the (1 — a@)—quantile of T'(x) under 6, and v, satisfies Eg,[®(X)] = a. Since ® does not
involve 6;, we conclude that ® must be UMP of level « for testing Hy : 6 = 6, versus H; : 6 > 6.
Let us now show ii). Pick arbitrary 6" and 6" such that & < 6”. The test @ is the test you get for the hypothesis
H : 0 = ¢ versus H' : 8§ = 6" by applying the Neyman-Pearson lemma and thus 7) ”9((;)) = 2(T(x)) where g is
continuous and strictly increasing (and may depend 6" and 6”). This implies that

ce por (X)
1 if e s g

o)
— e Por(X) _ 1s
D(x) =9y, if o ((X)) =k,
if L) /
0 if o < k.,

Furthermore, using the remark after the proof of the Neyman-Pearson lemma, we conclude that ® must be UMP of
level @’ = E¢[®(X)]. Using Corollary 2.1, we have that

a' < Eg[0(X)] © Eg[P(X)] < Egr [P(X)]

(we say that @ is unbiased). Since 8’ and 6” were chosen arbitrarily it follows that § — E»[®(X)] is non-decreasing.
This in turn implies that the supremum is admitted at 6 i.e. Supyg, EalP(X)] = Eg,[P(X)] = @ (recall that the level of
a test @ for testing Hy : 0 € ©g versus H; : 6 € Oy is supgeq, Eg[@(X)]). This concludes the proof that @ is UMP of
level « for testing Hy : 6 < 6y versus H; : 6 > 6.

iv) Fix 6 < 6. By the MLR property, we know that there exists a strictly increasing and continuous function g such

that ppg ;((;C)) = g(T'(x)). Thus the Karlin-Rubin test can be also given by
. (x)
1 if ’,’;;( (x")) >k,
. X
O(x) :=4y, if Zj;( ) = ko
- Po
0 if p:;)(x) < kg,

where k, is linked to 7, through k, = g(z,). Now

f (@) — ©*(x)) (P4, (¥) = kapo(x)) du(x) > 0

for any test ®*. Thus, Eg (®(X)) — Eg(D*(X)) > ko (Eo(D(X)) — Eg(®*(X))) and Eg (O(X)) — Eg(®*(X)) = 0 if
Eg,(®*(X)) = 0. Thus Eg(®(X)) < Eo(D*(X))). o
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Corollary 3.3. application to exponential families Suppose that py(x) = c(6)h(x) exp(Q(6)T (x)) with 6 € ® C R (one
dimensional parameter space). If 0 — Q(0) is continuous and strictly increasing, then {py : 6 € O} admits the MLR
property.

We now go back to the introductory examples.

Example 1: (Number of e-mails) We want to test Ho 10 < 5versus Hy : 8 > 5. Here we assume that X1, ..., X, iid

x € {1,2,...}. The joint density of (X,...,X,)is

Pois(6) with n = 15. Hence we have density pg(x) = &

x”

—nf
Z?’:] Xi— =
]_[ po(xi) = H" Tt H" ; exp [log(e> Zl x,] O, .. %) exp(QOT (x1,.. %))

with () = log(0), 6 € ® and T(xy,...x,) = )., x;. Hence at a given level «

T
O(x):i=qye If XL xi =14
0 if 2;;1 X <y,

with #, being the (1 — @)—quantile of }}?_, x; under 6 = 6y = 5 and y, such that Ey [D(x)] = @, is UMP at level . We

know that if X, ..., X, ™ Pois(6). then ¥, X; 2 Pois(nfy). 1, is the (I — &)—quantile of Pois(nfp) "~ "="~"* 9.
= L) =(1-0) ~_ 0.960076-0.95 0.98.
Yo = b G Xmn) T 00102
1 if Zl 1 X >90
D(xy,...,x15):=410.98 if Zl 1 Xi =90
0 if 21 x < 90,
We have that Zil:sl X; = 82 and thus we accept Hp : 6 < 5.
Example 2: (Take-off noise) If we assume that the noise intensity follows N (u, a'g), oo > 0 known, then
( )ﬁlexp(1< )2]
PulX1s...5,Xp) = ——xi—u
g ’ =i V2rog 20
1 1
=T SXp Tog2 Z(xi —ﬂ)z]
(27r0'3> 90 =1
1 1 n 2 n 2
= ———75 &Xp ay in —2,uZx,»+n/J
(27r0'(2)) o \imi i=1
1 LY ou X nu®
= n/zexp— Py +—22xi >
(2710'%) o 90 = o5
1 i Six
= TP —F) exp (— = exp(Q)T (x1, ..., Xn))
(27r ) T )
—,———
) h(X] s Xp)
with T(x1,...,x,) = 20, X, Q) = :—2 continuous and strictly increasing. A UMP test of level « for testing Hy : u <
0
Mo versus Hy : > pg is given by
1 if Y0 x>t
Olxr,.x) =L Y
0 if YL, x<t,

with E,, [®(X{, ... X,)] = a if and only if P (Zl | Xi > ta) =a.
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Py, (ZXi > tw) =ae P, ()T,, > ta/n) =«
i=1
& Py (Xo = po > ta/n— o) =
}Tn_ ta -
o P, Mo ta/n—po|_
1/o’%/n 1/0'(2)/n

t —_
oplzs m=to|_

where Z ~ N(0, 1). Hence W = {, the (1 — a@)—quantile of N (0, 1).

. Xn—Ho)
1o ) 5
0 otherwise.

DO(xq, ..., Xp) :{

Now chose a = 0.05 then (you can compute with software) {, ~ 1.64. Let n = 100,09 = 7 and uo = 78. Then, again
using software, we compute p + %ga ~ 79.15. We observe x, = 82 > 79.15 and hence decide to reject Hy.

Remark:

As n — oo, the power of @ increases to 1 for any fixed alternative. Indeed let u € ®; = (ug, +0)

ﬁ(l’l) = E}l[q)(Xh e 3Xil)]
— oo
= P,u(Xn > Mo + _nfa)

R
() ) )

(o)) (o))
=P(Z> Vn(uo — ) +§a)
oo
=1—P(Z§—\/ﬁ 0_“)+§a)
o0
=1_FZ(_M+@)_
oo

But since lim,—, e —w + ¢, = —oo we conclude that lim,_,., 1 — F (—w + 4,) = 1. We say that the test © is
consistent.

4. P-VALUES

Suppose we have an observation 6 and want to make a decision whether 6 € ®, or 6 € ®,. To do so we use a
statistical procedure (a test) which we either accept or reject. Let us revisit Example 2 and suppose that we observed a
mean X,, = 100. This would not change our initial decision of rejecting Hy but this somehow looks *more convincing’
or may seem like we have more’ evidence against Hy : u < po. This leads to the notion of p-values. Assume we are
in a simple setting: Hy : 6 = 6 against H; : 8 € ®; (which may be composite but 6 ¢ ®,). Consider a test function
1 ifT(x)>t, i

D(x) = ) where £, denotes the (1 — @)-quantile of 7(X) under Hy : 6 = 6y. Assume that Fy,, the cdf of
0 otherwise,

T(X) under 6 = 6,, is continuous and strictly increasing, that is bijective.

Definition 4.1. p-value Let R, = {x’ € y : T(x") > t,} be a rejection region for some fixed a. We define the p-value of
an observation x € y with respect to ®© by pe(x) = inf{a : x € R,}.

Lemma 4.2. For the test ® given above, it holds that pe(x) = Pg,(T(X) > T(x)).
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1 ifT() > 1,

. witht, = F ;1 (1 — @) (we have assumed that Fy, is bijective).
0 otherwise 0

Proof. Recall that ®(x) = {

po(x) = inf{a : x € R,}

infla : T(x) > Fp'(1 - o)}
inf{a : Fg,(T(x)) > (1 - @)}
infla : @ > 1 = Fy,(T(x))}
= inf{(1 — Fg,(T(x)), +c0)}
=1-Fy(T(x)

= Po,(T(X) > T(x))

R

R

whereas the last equality holds because Fy, is the cdf of 7'(X) under 6 = 6. O
Lemma 4.3. po(X) ~ U([0, 1]) under Hy : 6 = 6,.

Proof. We know that pe(X) = 1 — Fy,(T(X)). Recall that if Y is some random variable with cdf equal to F, and F is
bijective, then U = F(Y) ~ U([0, 1]). Indeed, since F(Y) < u if and only if ¥ < F~!(u), we see that the cdf of U is

0 ifu<O

P(U<u)=3u if0<u<1,becauseu = F(F~'(u)) = P(Y < F~'(u)) and thus F(Y) ~ U([0, 1]). Thus Fo,(T(X)) ~
1 ifux>1

U([0, 1]) and therefore 1 — Fy (T(X)) ~ U([O, 1]). m]

Recall that we have considered a simple setting. P-values can also be defined through the following definition

Definition 4.4. proper p-value Consider testing Hy : 6 € @g versus Hy : 6 € Oy such that ®y N O; = 0. A p-value
p(X) is said to be valid (or proper) if for all § € Oy and for all t € [0, 1] we have Py(p(X) < t) < t. This means that
p(X) is a valid p-value if it is stochastically larger than U ~ U([0, 1]) under any 6 € ©,.

Remark: Note that Definition (in the simple setting) gives a p-value that is stochastically equal to U ~ U([0, 1]).
Example: Let T be some statistic used for testing Hy : 6 € @ versus H, : 6 € O;. Define p(x) = supyeq, Po(T(X) =
T(x)). We want to check that this defines a valid p-value. For that, we will need the following result.

Lemma 4.5. Let Z be any random variable with distribution function F (not necessarily continuous or strictly increas-
ing). Then U = F(Z) satisfies P(U < u) < u forall u € [0, 1].
Proof. We either have
FO<us (<l
or
FO<ue <l

P(Z <L) ﬁF@»=u_{F@»=u

P(F(Z) <u) = {P(Z <) ifFG)>u  |F-)<u

In any case we arrive at P(F(Z) < u) = P(U < u) < u. ]
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Remark: This is saying for any distribution function F, F(z) is stochastically larger than U ~ U([0, 1]) with Z ~ F.
Now let us return to p(x) = supgeg, Po(T(X) = T (x)). We will check that this defines a valid p-value.

Proof. Fix 8 € ®y and denote by Fy the cdf of —T(X). Define

po(x) = Py (T(X) = T(x))
= Py(-T(X) < ~T(x)) = Fy(~T()).

Using Lemma we know that py(X) is stochastically larger than ([0, 1]).
For 6 € ©y:

P;(p(X) <) =Py (:ug Fo(-T(X)) < t)

=P;(V0 e ®y Fy(-T(X)) <1)
< Py (Fi(-T(X)) < 1)
=P (pé(X) < l) <t

In conclusion: Yz € [0, 1], Y6 € ©: Py (p(X) < 1) <t & supyee, Po(p(X) < 1) < ¢ which means that p(X) is indeed a
valid p-value. O

What is the link between a valid p-value and testing? Given any valid p-value, we can construct the following test
@ at a given level @: ®(x) = 1 if and only if p(x) < a.
Type-1 error supyeg, Eg[P(xX)] = supgeg, Po(P(x) = 1) = supyee, Po(p(x) < @) < a.

5. BRIEF LOOK AT MULTIPLE TESTING

Consider multiple hypothesis that we want to test at the same time. Call these (null) hypotheses H(()l) , H(()z), ey H(()m)
for some integer m > 2. Suppose foralli € {1,2,...,m} we have a test ®; for testing H(()’) versus H i') (some alternative).

Consider the combined test @ which rejects/accepts H(()i) if @; does. Let us suppose ®; has level @ and that these tests
are independent.

= HD A H® o)
Hy=H"nHPN...nH

The Type-I error of
® = Py, (rejecting at least one H(()i) for some i€ {1,...,m})
= 1 — Py, (accepting H(()l) and Héz) and ... and Hg"))

=1- l_[ Py, (accepting Hp)

i=1

=1- 1_[ P, (®jaccepts Hg))
i=1

m
=1- 1_[ P, o(®;accepts H(()i))
0
i=1

=1-(1-a)"

Numerical illustration:

m=10 a=0.05 Type-Ierror = 0.4

m=50 a=0.01 Type-Ierror =0.39

This means that we need to be more strict when choosing the levels of the individual tests.
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5.1. Bonferroni’s correction. gives a solution to this problem. Here we are not going to assume that tests ®; are
independent.

Py, (rejecting at least Hg) for some i € {1,... ,m}) = Py, (Hi ef{l,...,m}: @ rejects H(()i))

= Py, (Ui<icm{D rejects H(()i)})

< i Py, (CD rejects H(()i))

= Zm: Py, (d)i rejects H(()i))

PHS’) ((I) rejects H(()i))

If we chose the level of each test @; to be -, then the Type-I error of ® < m+ = . Alternatively, we can require in
this correction to have «; (the level of @) satisfy >, | @; < a (this will imply that the Type-Ierror of ® < 3.7, @; < ).

Part 2. Further methods for constructing tests
1. LikeLiHoop Ratio TESTS

Definition 1.1. likelihood Let X, ... X, be iid random variables admitting a density assumed to belong to the para-
metric family {py, 0 € O}
e We call likelihood the function
0 — [0, o)

0 L0 = [ | poxd
i=1

o We call log-likelihood the function
®->R

0+ 1,(0) = log (L.(0))

Definition 1.2. MLE The maximum likelihood estimator (MLE) is any 6, satisfying L,(,) = SUPyeq Ln(0) and since
the logarithm is continuous and increasing 1,(8,) = SUPyee 1n(0)

Remarks:

e The MLE does not have to exist.
o [f the MLE exists it is not necessarily unique.
e For any subset ® C ® we can define the restricted MLE which maximises 6 — L,(6) (or 6 — [,(8)) over ®'.

Definition 1.3. likelihood ratio statistic Let ®y and ©®; be two subsets of ® such that @ N O = 0 (Qy U O = ®) and

consider the testing problem Hy : 6 € ®g versus H; : 6 € @ The likelihood ratio statistic is defined as \,, = %.
o 0e©q —n

Definition 1.4. LRT The likelihood ratio test for a given level « is given by

1 ifAL > A,
O(Xy,...,X,) = Ya ifAn:ﬂa
0 ifA <4,

where vy, and A, are such that supgeq Eg[®(X1, ..., X,)] < a.

SUPgeq, Ln(0) .

Remark: The idea behind the definition of LRT is to reject Hy : 6 € @y when e L@ 18 large. (see exercise)
_— cop Ln
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2. GAUSSIAN VECTORS AND RELATED DISTRIBUTIONS

2.1. Multivariate Gaussian distribution.

o LetX =(Xy,...,X,) € RE. We say that X is Gaussian if any linear combination of components, X; 1 < j < d,
has a Gaussian distribution: For all a; € R for j € {1,...,d} Zil a;X;is a normal random variable.

e Two Gaussian vectors X = (Xy,...,Xy) and Y = (Y},...,Y,,) are independent if and only if Cov(X;,Y;) = 0
forall (i, j) e {1,...,d} x{1,...,m}.

o If X ~ N(u,XZ) with g € R? and £ € Mat(RY x RY) then for any matrix A € R™ (m > 1) we have
AX ~ N(Au, AXAT)

o If X ~ N(u,X) and X is invertible, then X admits density fx(x) = W exp (—%(x -7 (x - u)).

2.2. Gamma-function. The gamma function is defined for all complex numbers except the non-positive integers. For
complex numbers with a positive real part, it is defined via a convergent improper integral I'(z) = fooo x*~le*dx. Note
thatifn € Z,g thenT'(n) = (n — DL, T'(1) =1 and nI'(n) =T'(n + 1).

2.3. )((zk): Chi-square distribution with k degrees of freedom. We say that ¥ ~ ,\/(zk) ifwecanfind X = (Xy,...,Xp) ~
N, 1) such that Y = ZI;':1 ij. =X ||% (the square of the euclidean norm of X). Y admits a density

ﬂ@zimﬁyﬁw%%wewmuw. 3)

We recognize that Y ~ Gamma (’5‘ %) Moreover if X ~ N(u,X) and X is invertible then (x — p)TZ 7! (x — p) ~ X(zk) (see
exercise).

2.4. Distribution of Student(t-) of k degrees of freedom. We say that T follows a r—distribution with k degrees of

freedom if we can find independent random variables X and ¥ with X ~ N(0,1) and Y ~ )((zk) such that T = %/k We

write T ~ 7. T admits density given by

Jr@) = teR. )

2
k 1 2\(k+1)/2°

VAT ($)T(5) (1+2)

Note that 77y is the Cauchy distribution.

2.5. F-distribution. We say that Y admits an F-distribution with (p, ¢) degrees of freedom if we can find two random
variables U and V such that U and V are independent, U ~ X(Zp), vV~ )(fq) and Y ~ L‘;T/Z We will write ¥ ~ F,, .. ¥
admits density given by

i )—i g YN s
"= T’ 1 G pyrr

3. ExampLE FOR LRT

3.1. Example a. Let X;,..., X, i N@, 0'0) where 6 € R and 09 > 0 is known. We want to test

Hy:0=0yversus H| : 0 # 0.
Hence we have ®j = {6} (a simple hypothesis) and ®; = R\ {fy} (a composite hypothesis) such as @ = @y U ®; = R.

_ SUpgeg La(0) _ SUPuer Ln(9)
Recall that A, = o @ = L)

u@=ﬂmm>

—]_[\/_ exp(——(X 0)2)

1
el )

Ozl

1,(0) = log(L,(#)) = constant — 2— Z(X - 0)?
O i=1
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We want to show that argmaxyL,(6) = X,. Our goal is to maximize § +— exp (—# 2 (X = 9)2) over R or
0

equivalently maximize — 315 Y7, (X; — 6)* over R.
0

d
do

1 n ) n _
—27(2);(&-9)]:—2;(xi—9)=0<:>ezx,, (6)
and

d? IS
— |- Xi—0)*|=2n>0
de? [ 207 ;( ) ] "
which means that the function is convex on R and hence X,, gives the global maximum of L,.

A, = L)
L)

exp (~ 5 iy - %2

y)
207

exp (—ﬁ 2 (Xi = 90)2)

B 1 = 1 2
= exp ('F 2 X=Xt o= ) (Xi=60) ]

0 i=1 0 =1

Recall that the event {A,, = A,} happens with probability equal to zero and hence the LRT is given by ®(X;, ..., X,) =

1 if A, > A, )
{ 0 l FA <1 almost surely and we are going to find 4, such that E4 (P(X;, ..., X,)) = a. Note that
1 n = g

A, is ’large’ & Z(Xi —00)% - Z(X" —X,)? is ’large’

i=1 i=1
o Z(X,- — X, + X, —60)* — Z(X,. —X,)% is ’large’
i=1

i= i=1

& Y (X =X,)?+2 (Z(X,» - Y,,)] L (X = 09) +n(X, — 60)* = > (X; = X,,)? is "large’

i=1 i=1 i=1

=4 n(fn - 90)2 is ’large’
n(X, — 6)*
@ —_—

2
0

o VX, -6l
oo

is ’large’

is ’large’

1 lf \/min_@(ﬂ G \/ﬁli 60| )
O(Xy,...,X,) = a0 such that Eq (P(X1, ..., X,)) = Py, (U— > qa) = a. We need to determine
0 otherwise 0
the quantile g,. Recall Xi,...,X, 4 N (6o, o2) under Hy which means that X, ~ N(fy,02/n) & @ 47~

N(Q,1).

P ‘/ﬁp—(n - 90 |

> QG] = P(|Z| > CI(v)
= PZ > go) + PZ < ~qa)
=P(Z>q(,)+P(—Z>q(,)
=2P(Z > q,)
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by symmetry around zero of the Z distribution. Hence,

a = Py, (D rejects Hy)
=2P(Z > q,)
o P(Z>q,) =a/2
© Fz(q0) =1-0a/2

1 \/E\Yr‘) |
1 if 0_—00 > éll—a/Z

] where {i_42 = qo = (1 — a/2)-quantile of N(0,1) and Fz({) =
0 otherwise

therefore ®(X,...,X,) = {

¢ 122
Lm N dx.

3.2. Cochrans Theorem.

Theorem 3.1. Cochran Let (X;,...,X;) = X ~ Ny(0,1) be a Gaussian vector. Let Ay, . ..,A; be d X d matricies such
that Y.\, rank(A;) < d and for all i € {1,..., J}

(i) A;is symmetric and Al.2 = A,
(ll) AiAJ' = AJ'A,' = Ofor alli # ]

Then,

(i) AiX ~N(Q,A) forallie{l,...J}and A\X,...,A;X are mutually independent.

(ii) The random variables ||A;X|* ~ )(%[mk( A and they are mutually independent.

Proof. i) We know that X ~ N(u, %) implies AX ~ N(Au, AXAT). Thus A; X ~ N(0,A;A]) 4 N(0, A;). Then, showing
mutual independence of A;X,...A,;X is equivalent to showing Cov (AiX, A jX) = 0foralli # j. Let E[X] = u and
recall that

Cov (AX, BX) = E [A(X — u)(B(X — ))7]
= E[AX - )(X —)TBT]
= AE[(X — (X - )7] BT
= AXBT.

Hence in our case fori # j € {1,...,J} we have

COV(AiX,AjX) = AZILA;
= AAT
J
= AA;
=0

by assumption.

ii) A1 X, ...,A;X mutually independent implies f(A;X),..., f(A;X) mutually independent for some measurable func-
tion f. In particular, this is true for f(a) = llal? (@ € RY) continuous on R? and hence measurable. We now show that
A X|I> ~ X(zrank( A)) A; is symmetric. We can orthogonalize A; in an orthonormal basis. There exists an orthogonal

A 0 ... O

matrix P so that we can decompose A; = PT 0 - : P where Ay, ...,4, denote the eigenvalues of A;.
: o0
o ... 0 A4

Using the assumption Ai2 = A;, we conclude that 4, ..., 4, € {0, 1}. Further we can decompose Ai2 in the following
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way
40 ... 0 40 ... 0
ar=pr|® Slepr| 0 P
: o0 : 0
0 ... 0 0 0 A
2 0 0
= pPT O - : P =A;
: .0
0 ... 0 A

which means that /liz = JA; forall i € {1,...,d} and hence there are only two solutions. We can also write A; =

pT (]é 8) P. Then 1 has size equal to the rank of A;.

IAXI? = (A X)T AX

= XTATAX

= XTA?X
1 0

— T T

=XTP (O 0)PX
1 0

— T

= (PX) (O O)PX

1 0
— T
=Y (0 o)Y
rank(A;)
= y?

J=1

On the other hand, ¥ = PX ~ N(0, P1PT). Hence ||A;X|* = the norm of a squared vector ~ N (0, L4, ; in other
words Y1, ..., Yenka,) are XN, 1). |
3.3. Example b. Let X;,..., X, iid N(6,0%) with 6 € R and o € (0, o) both unknown. Here o is acting as a nuisance
parameter. We want to test
Hy:0 =46y versus H| : 0 # 6y

whereas @y = {(6p, o) : 0 € (0,0)} = {6y} X (0,00) and ® = {(0,0) : 6 € R and o € (0, 0)} = R X (0, 00). Since o is
unknown, we have

_ SuPpep La(0)

SUPgeo, L,(6)

and

1 1< 5
Ln(g,O') = (271-)”70_”CXI)[—ET._2 Z(X, —9) ]
i=1

We need to maximize (6, 0) — L,(6,0) over ®. This is equivalent to maximizing

1,6, 0) = —n/2log(2n) — nlog(cr) — 1/(20%) Z(X,» - 0.

i=1

3.3.1. Maximisation via profiling: Let us fix o € (0, c0) and define the function g,(6) = -5+ X/, (X; — 6)* which we
are going to maximize over R. Since —# is a constant here. We can use previous calculations from example a). To
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show that the minimum is attained at 6 = X,,. Supyeg Ln(0,0) = L,(X,, o) for any fixed o € (0, o). Now, we go back
to the log-likelihood and plug in X,,: define the function

h(o) = 1,(X,, o) = —n/2log(27) — nlog(cr) — %._2 Z(X” ~X,)>
i=1

which we want to maximize over (0, co).
(@) = -njo+1/c* Y (X - X,)* =0
i=1
sal=1/n Z(X,- - X,)>
i=1

u 12
R 1 <
So=6= [; ;(X,- - Xn)z} @)

and

W (o) = njo? -3/ Z(x,- ~X,)?
i=1

=n/o? - 3/0*no?

3no?
o

=n/ot(0” - 367).

=n/0'2—

The function & has a local maximum at (7). But, since / has a unique critical point, the function cannot go up to
a larger value (> h(0)) because otherwise / has to go down to reach another critical point. Therefore, (7) must
be the global maximizer of & over (0,c0). We need to compute sup, ,\ce, Ln(0, ) = SUP,¢(0 o) Ln(6o, o). Using

similar arguments as for showing that (]ZD is the global maximizer of the function o +— 1,(X,, o) we can show that
Supo’E(O,oo) LI’L(GQ’ 0-) = LH(GO’ 6-0) Wlth

n 172
1
&0 = (; D Xi- 90)2] : ®)
i=1

_ SUPg o L,(6,0)
" Supg. e, Ln(6: )
LV! (Yn’ OA_)

L,(60,60)

g 3 &% (— g T (X - X))
Wﬁo €xXp (_Tlrg Zglzl(xi - 90)2)
# exp(-n/2)

LO exp (-n/2)

N A2 \N/2
Fo\ Y9
g b2 '
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We reject when A, is ’large’ but
: 55 .
Ay is’large’ & — is "large’
o
1nyl (Xi=60)? | |
= —— is ’large

Un 3L, (X; = X)?

L1(X; = X)* + n(X, — 60)°

— is "large’
:?:I(Xi - Xn)2
X, — 6p)*
o1+ Z("—O_) is "large’
Zizl(Xi - X,,)2
X, -6 .
& M is ’large’
2 (X = X)?
X, — 6 .
= i\ o is ’large’.
o i (X — X)?
We can find the distribution of 7, := \/% under Hy : 8 = 6y using Cochrans theorem. If (Xi,...,X,) =
n-1 Li=1\ i~ An
1 ... 1
X ~ N,(6y, 1) then (’“{r—;‘*"‘”—fﬂ) =Y ~ N,(0,1). Define A; = 1 and A, = 1 — A;. We have to
1 ... 1
check that A and A, fulfil the assumptions of Cochrans theorem.
11...11...11n nll...l
A2 =_—|: AN == =21 =A
1 2l : : : 2l . nl: . 1
1 ... 1)\ ... 1 n ... n 1 ... 1

andA, =1 -A1A(1-A) =A —A% =0=(1-1)A; rank(A) = 1 and rank(A;,) = n — 1. Therefore, by Cochrans
theorem, we know that A,Y is independent of A>Y and [|A>Y ()3 ~ X%;H)

X1 -6,
ooy
AJ:l _ Xn=b
S CORTIRE Y | E=% R
oo
X1—6p 1 X1 =X,
[ox) <~ g0
X, -6
AY=(1-ADY =Y-AY=| : |-22=2]:(=| :
Xu=ty 70 X=X,
(o)) oo

so that A Y| = L 37 (X — X,)% ... Now A1Y LAY =AY LAY & M Ly G- X,)?

VX, —6) 1 < -
=20 ) — Y (X - X,
o 0'2;( )

~N(0,1)

~v2
Xn-1)

and using @)

V(X =60)
a

=
Vi S (X - X,

~ 7_(,1_1) under H().
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W(Yn—sm

[ sn GiEa?
n-1 ZI 1

P(T,| > CI(Y) =a e 2PT,>q,) =«
o P(T, > qq) = a/2
SPT,<qy)=1-a/2

1 if|T,| > qo
0 otherwise

Note that the obtained statistic T,, = Thus, the LRT is given by ®(X;, ..., X,) = { where

whereas g, = #,-1,1-0/2 the (1 — a/2)-quantile of 7,_y).

3.4. Example c. Let X,..., X, iid N (6, %) with 8y € R known and o € (0, c0) unknown. We want to test

Hy:o0=o0¢versus H; : o # 0y

whereas ®¢ = {0} and ® = (0, +00).
Supo‘e(O,oo) Ln(g(), O—)

Ln(HOs 0—0)

n=

Ly(60,0) = s P (— 552 2y (Xi — 60)?) then

1 n
160, ) = ~n/2log(2m) ~ nlog(e) = 5— ;(x,« — 60)%.

d n n
5 ({00, 0)) = —nfo + 1/a° ;og -6 =00’ = 1/n;<x,- - 60)*

which implies that there exists a unique critical point
1 & 1/2
b= [; Z(Xi - 90)2)
i=1

d* a
o7 (0, 0)) = njo? —3/o" ;(xi — )

and ) )
d . 3nd 2n
F(ln(eo’o-))h)':ﬁ' =n/d - S mm < 0

which means that & is a local maximizer and hence a global maximizer because otherwise the function o — [,,(6y, o)
will have another critical point. Note that this obtained 4 is equal to (??).

Ln(GOs 6-)

L (90, 00)

(277)”/7 (r" ( t1r~ Zz 1(X - 90) )
(Zﬂ)n/z n exp ( 2o 2 Z 1(X _90)2)

1 A
57, exp (—gﬂﬂ' )

A, =

= L exp (——no-z)

g
= —Sexp(-n/2+n/2- 67|03
g

_ 1 nl{ 6\ ]
= Grer o5 |) -

with g(r) = 1/t" exp (n/2(* = 1)) for t € (0, +00).

h(t) = log(g(1))
= —nlog(r) + n/2(* - 1)



20 ON HYPOTHESIS TESTING

-1
W{)=-njt+nt=n

s

But we know that, by definition, A,, > 1 and hence A, = g(%) which implies o € [1,+c0). Since g is strictly
increasing on [1, +00),

A

. g .
A, is’large’ & — is ’large’

go
6-2 : b 9
& — is large
9
1/nYl (Xi—60)* ., ,
= 5 is ’large
9%
n 2
X; — 6,
& Z % is ’large’.
=1 %0

. - 0n)2
Lif 37, G > g

(TO

@ X6
with P, ( e > qw) =a.
0 otherwise o\ %o

The LRT is given by ®(X,...,X,) = {

XiT_OeO, e, X';T_Oe" w N(0, 1) under Hy : o = o which implies 7, % ~ X(zn) and ¢, the (1 — @)-quantile of)((zn).
3.5. Exampled. Let X;,...,X, id N, c?) with 8 € R and o € (0, o) both unknown. Here 6 is acting as a nuisance

parameter and we want to test
Hy : 0 is something, oo = 0 versus H; : 0 is something, o # 07

whereas © = {(0,09) : € R} and ® = R X (0, +0).

SUP(p.0)c0 L,(0,5)

B Supyer Ln(6, 00)
1 1 < 5
L,(6,0) = GryPon exp (—F le(xi -0 )

— — 12
We already know from example b that sup ,ycq = Lu(Xy, 0) with 6 = (% (X = Xn)z) / and also

L 1 7 \2
Gy 5 exp(_z_@.z 2 (Xi = X)) )

A, = —
W(}gexp (_253 ?:1(Xi _Xn)z)
1/6’" R
= o exp(—n/2+n/2-0'2/0'(2))

—

A, = g(£) where g is the same function as before. Using similar arguments we show that A, is ’large’ if and only if
oo

X X2 .
> (X‘a%(”) is "large’. X1, e ) X(Z,H) as a result of Cochran’s theorem. The LRT is given by ®(X1,...,X,) =

i=1 2
9

Y )2
{1 if B, e >

7 * with g, = (1 — @)-quantile of )((zn,l).
0 otherwise

4. F-TESTS AND APPLICATION IN LINEAR REGRESSION

4.1. Regression model. A regression model aims at explaining the random behaviour of the response given the ex-
planatory variables also called covariates/predictors. More specifically, a regression model assumes that Y = f(6, x)+¢€
whereas Y is the response, f and 6 are unknown x are the covariate(s) and € is the noise/error.

There are two settings:

(1) Random design: the covariate is random and the analysis is done conditionally on X but in the end randomness
is taken into account.
(2) Fixed design: We observe a realisation x of X and we do the analysis conditionally on X = x.

In this course we will place ourselves in the fixed design.
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4.2. Linear Regression. When f(6,x) = 67x with 0,x € R4, then we talk about linear regression. The model is
Y =60"x+ e with E(e) =0. If 9y, ..., 6, are the components of § and x1, ..., x; are the components of x then

Y=x10+...+60;x;+¢€.

The main goal is to estimate the unknown regression vector 6 based on a random sample. We observe independent

responses Y1, ..., Y, and corresponding covariates xp, ..., x, € R, Let
Yl‘ = QT)CZ‘ + €
X11 X12 e X1d
Xi1 Y €1
. Xi2 ‘ Y, 5] : : .
withx; =| . |forie{l,...,n},Y=| . |eR'ande=| . |eR'andputD=|x;; ... ... xiq|€R™ Theith
Xin Yn €n
Xn1l . . Xnd
row of D = xl.T = (xi1,...,Xig). D is called the design-matrix. We can write the linear regression as
Y=D0+e “
4.3. Least Squares Estimator.
Definition 4.1. LSE Consider the quadratic criterion
n
0u(t) = Y (¥; = 17x)? (10)
i=1

forteRe 6§, = argmin,z.Q,(?) is called (provided it exists) the least squares estimator if it minimizes Q, over RY.

The rational behind 6, is that we can take some random variable Z with u = E(Z) < co and 0> = Var(Z) < oo then
u = argmin,, E[(Z — a)*]. Indeed

E[(Z-a)’]l = E((Z - p+p—a)]
= EWZ ~ ) + 2Z — p)(u = @) + (u = a)’]
=02 +2(u— a)E[Z — ul + (u — a)*
=0+ (u—-a).
Since argmin, (u — a)* = p it follows that u = argmin,E[(Z — a)*]. Let us go back to the regression problem and let us

also assume that Var(Y;) < oo fori € {1,...,n}. Since E(¢;) = 0 fori € {1,...,n}, this means that E(Y;) = 07x; = w,.
‘We can also show as above that

n n
WUty )T = Z E[(Y; — a;)*] = 6 = argmin, . Z E[(Y; — t7x;)%].
i=1 i=1
Since we only observe Yy, ..., Y, and xi, ..., x, we replace this criterion by (T0).
Proposition 4.2. Assume that D7D is invertible. Then, 9,, exists and is unique. Furthermore
0, =(D™D)"'DTY. (11)
Proof. Recall that for v = (vy,...,v,) € R" the euclidean norm is defined as || /},\_, vill and [IVI[> = vTv. Hence

0u(t) = Y (Y= 17x)
i=1

= ||Y - Dr|?

=X -Dn)"(Y - Dr)

=Y'Y-Y"Dt—tTD"Y + 7DDt

=YY -2tTD"Y + "D Dt
We look now for a stationary point of Q,, : VQ,(t) = —2D7Y + 2D7Dt. Recall that for any differentiable function g
defined on R? we have

gt +h) = g(1) + h™ v g(2) + o(l|Al).
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Therefore
v0.()=0& DDt =DTY
o r=D'D)'DY.
The hessian of Q,(#) is 2DT D, which is positive definite because for a € R4
a’D"Da = (Da)"Da
= IDal* = 0
and
a™D™Da =0 & ||Dal* =0
© Da=0
= D'Da=0
=a=0.

It follows that 6, = (DTD)~'D7Y is the unique minimizer of (the strictly convex function) Q,,. ]
4.4. Properties of the LSE. In what follows we assume E[e€"] = 01,. In other words E[e’] = Var(g;) = o for
i€fl,...,n}and E[ge€;] =0Vi# je{l,...,n}.

Proposition 4.3. Assume that D7D is invertible. Then,

(i) E[6,] =0 and
(ii) E[(B, - 6)@, —0)T] = c*(DTD)".

Proof. (i) Use () to see that
8, =(D'D)"'DY
= (D'D)"'DT(DO + ¢€)
=(D'D)"'D'DO+ (D'D) 'DTe
=0+ (D'D)"'DTe (12)
Since E[e] = 0 (i) follows.
(i1) Use (T2) to see that
E[®, - 0)®, - 0)| = E[(D"D)"' D" ee’ D(DT D)™ |
= (D'D)"'D"E[ee"|ID(D"D)!
=(D'D)"'D'¢*1,D(D"D)”!
=oXD'D)'D'D(DTD)!
=o*(D'D)”!

Proposition 4.4. Let us assume that € ~ N (0, o*1,). Then,
(i) 6, ~ N(6,7*(DTD)™").
(ii) Y — DB, and D(B, — 0) are independent Gaussian vectors.
—D0, || NI
(iii) L=DAE X2,y and D@0 2y

Proof. (i) Recall that D is the design matrix and ¥ = D6 + €. Then,
0, =(D'D)"'DTY = (D'D)"'DT (DO + ¢€)
=0+ (D'D)"'DTe
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whereas (DTD)~' DT is a matrix and € is a gaussian vector. This means that 6, is also a gaussian vector with £ [8,] =
6 + 0 = 6 and covariance matrix E[(8, — 6)(8, — 6)T] = c2(DTD)~" hence 8, ~ N(6,7*(DTD)™").
(if) We want to show that ¥ — D8, 1L D(8, — 6) whereas Y — D, denotes the estimated residuals.

D@, - 6)=D((D"D)"' DY - 9))
= D((D"D)"'DT(DO + €) - 6)
= Ae
Note that AT = A and
A% =D(D'D)'DTD(D™D)"' DT
= D(D'D)"'DT
=A
On the other hand
Y - DB, =D0+¢e—DD'D)"'D(DO + ¢€)
=e—-DD'D)'DTe
=1 -Ae.

1 — A is symmetric and satisfies (1 — A =1 -A)1A-A4) =1-A-A+A> =1 - A. Furthermore, (1 — A)A =
A—A%=0=A(1 - A) and rank(A) = d because D7D is invertible (see in the notes on linear algebra) which implies
that rank(1 — A) = n — d. Using Cochran’s theorem, it follows that ¥ — DO, 1 D, — 6) and

A 2
DO =" _ | €lP - .2 a2
o2 TP ol T Acankay T X@
A2
Y — D&,l| e -
Tn =@ = A2~ Xn-ay
which is also proof for (i)} m]

Proposition 4.5. Consider the linear regression model Y = DO + € with € ~ N(0,0°1,). Consider also the testing
problem

Hy:0=0y versus H;:0+ 0. (13)

If o = 0 is known then a test of level « for this problem is given by

) 2
1 i IPG. 6l
f 100

> qa1-
O(Xy,....X,) = dia (14)
0 otherwise
where q,1—q is the (1 — @) quantile of )((zd).
5 2 5 2
Proof. Under Hy, we know from ((i1))) that W = /\((2 4 SO that P(“D(eg_—;g")” > qd,l_(,) =a. O
0 0

Proposition 4.6. Let Y = DO + € with € ~ N(0,021,) and consider the problem (13). Suppose o is known. Then a
test of level « for this problem is given by

o _ID@,~00)l/d
F iy Diprm-ay > Qn-d.1-

<D(X1,...,X,,):{

0 otherwise
where qqp-a1-a s the (1 — @) quantile of the F-distribution (3) of d and n — d degrees of freedom.

I IUOf
D(6,—00)I?
I1D( 20)|| /i s
Y—D8, | i
1Y=D%I" 3 I /(}’l - d)

under Hy because||D(8, — 60)I1> 1L ||IY — D8,|I, (D) and (D). o
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4.5. x*- and F-tests for variable selection. The question we want to answer is: Which of the covariates are significant
(have a non-trivial effect on the response). More formally, the question can be put in the context of testing. We want a
test where @ is of the form (6,,...,60,-,,0,...,0)7. Even more formally, we want to test

Hy:GO=0 versus H; :GO+#0

0 01 O 0
) . . ) 0
where G = | 0 ’ " "land @ = : |. Note that H; means that there exists j € {d —m + 1,...,d}
: : 0 4
0 0 0 0
6; # 0 and
o ... 01 0 ... 0 6, O4—ms1 0
) - ) ) ) )
gd—m
GH = = =
Od—m+1
o ... 00 ... 0 1 04 6, 0

4.5.1. LRT for variable selection. Let us assume that € ~ N (0, 0'(2)]1,,) where o-% is known.

O ={0eR!:GO=0}={0 Ry i1 =... =05 =0}

®=R?

L,(0) =

0

1 T : L v o
m ( Z(Y 07 x;) ] (o )n/z P( 20_2||Y DQH)

1,(6) = —n/21og(2m) = nlog(oo) = 1/Qoo)llY — DI,

Maximizing 6 ~ [,(6) over RY is equivalent to minimizing 6 > ||Y — D@||*> over R¢. We know that the solution is the
LSE (??). Hence sup,.q L,(0) = supyepe L, (0) = L, (6,).

Now, we need to maximize 6 — [,(0) over . But this is equivalent to minimize 6 — ||Y — D6||> over ®,. Under Hy
we have

X11 . X1d 91
6,
Do = d—m
Xi1 “en Xid 0
Xpt -.. Xpa/\U 0O
01
X1 .- Xi(d-m) .
=Xt - Xi(d-m)
Xnl v Xnd-m) Oa-m
= Do. (15)
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This problem is equivalent to minimizing & — ||Y — D@||>. We only need to check that D7D is invertible. Note that
D = DG with G = (1d_m) . Let a € R, We want to show that DTDa = 0 implies a = 0.

D'Da=0=aD'D=0
& (Da)™Da = ||Dal* = 0

o Da=0
o DGa=0
o Db=0

because D7D is invertible if and only if rank(D) = d. Hence Ga = 0 if and only if @ = 0. D7D is invertible and

therefore we are in the same setting as in the least squares problem. Hence the minimizer of § — ||Y — D@|? is given
Y . N DT DY 1T

by (DTD)~'D7Y if and only if the minimizer of 6 + [|Y — D6||> under Hy is given by 69 = ((D D(; D Y). 0 1,(0)

is maximized by #° under Hy and

_ SUpgee Ln(6)
" Supgee, Ln(6)

1 _ 1 Y BRIV
o exp (5= 11Y - DAIP)

1 — 1Yy = D&°)12
b x5 1Y - DERIR)

1 A R
exp [F (Ily = D& =1y - De,,||2)} :
0

We reject if A, is ’large’ which means that if ||Y — D@SH2 —IY = DB,|I* is large.
IY = DERIP = 1Y - DB, + D@, — I
= |Y = DG,I* + 2(Y - D8,)" D@, - 8)) + D@, - ).

Now we show that 2(Y —D@n)TD(é,,—ég) = 0. We know that 8, is a zero of the gradient of the function Q,(¢) = Y —Drl?,
t € R?. In other words

DD, -D'Y =0 D(DF,-Y)=0
e (Y -Db,)'D=0
& (Y -D,)TDv=0
for all v € RY. In particular this holds true for v = 8, — 6°. A, is "large’ if and only if ||D(8, — 80)|1? is ’large’. What is
the distribution of ||D(8, — 6°)||> under Hy?

4.5.2. The LRT for variable selection. o = o is known.
A, ’is large’ & ||D(8, — 80)|1* *is large’
ID@, = DI,

2
99

is large’

where 8, = (D™D)'DTY and @2 =(D™D)y"'Dy

Question: What is the distribution of M under Hy : GO = 0?

0

D@, - 8) = D@, - 6) - D@, - 0)

=|D(D"D)'DT—-DMDTD) DT |e
=:A =:B
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whereas Y = D6 + € = D + € under Hy and € ~ N(0, 01,). Recall[15]and observe that
AB=DD'D)'D"D(D"D)' DT
=D(D'D)"'D'DG(DTD)"' DT
=DGD™D) ' DT
=D D) ' DT
=B
and
BA = D(D™D)"'D"D(DTD)"' DT
=D(D'D)'G'D'D(D™D)' DT
=D(D"D)'G™DT
=DM D)'Dr.
=B

Le. BA = AB if and only if A and B commute (AT = A and BT = B). Furthermore, the matrices are projections
meaning A? = A and B> = B. Hence, we can find an orthogonal matrix P such that

1, 0 1, m O
= T = T
A=P (0 O)PandB—P( 0 O)P

because rank(A) = rank(DTD) = d and rank(B) = rank(DT D) (see notes on linear algebra). Moreover
0 0 O
A-B=PT|0 1, O|P
0 0 O
5 2
which implies rank(A — B) = m. Hence we can write w =|l(A - B)ioll2 with io ~ N(0,1,). Using Cochran’s
(TO (o (ox 5 ~ B
@'D)"'D]_,

m

(2GR

theorem, it follows that ||(A — B)ill2 ~X that is under H, p
0

fank(A—B)’ ~X (Zm) with 6 = ( ) The LRT

of level @ can be given by
-¢ ID@=BI
1 if B2l ~
q:)(Yl’ ey Yn) = ! 0'(2) dm,1-a
0 otherwise

with g.1-o = (1 — @)-quantile of X(zm)-
o is unknown

The likelihood is
1
n = ————exp|—-=—||Y - DO|?
20 o eXP( 2Uzll I )
with
O = {6, 0) € R? X (0, +00)} = R? x (0, +00)
and

®y ={(0,0) : GO =0and o € (0, +c0)}
={0eR: Oppss = - =05 = 0} x (0, +c0).
The log-likelihood is
1,(6) = —n/2log(2n) — nlog(c) — 1/Qa2)||Y — D6
To maximize (6, o) — [,(6, o) over ® we can use the profiling approach:

e Fix o € (0, +o0) and maximize 6 — 1,(8, o) over RZ. Tt is clear, for a fixed o, the solution 9,1 is the one
minimizing 6 > ||Y — D@||* on R, that is (TT) the LSE.
e We plug the obtained solution 8, and maximize the function

o 1,0, 0) = —n/2log(2n) — nlog(c) — 1/2a)||Y — DO
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d . R
—1y By ) = —nfo + 1/(THIY = DG,I* =0
do

o o? = 1/n||Y - D6,|)?

& o= 1/VnllY - DI

whereas o is the unique critical point of o - ln(@n, o).

2

d N n n A
7O Doz, = -n/&* = 3/6Y|Y - D8,

= —n/6? - 3/6*n6?

Using the same arguments as for example b (for testing the mean of a Gaussian with unknown variance) we can show
that &, gives the global maximum and also that

sup 1,(0,0) = 1,(0,,6) & sup L,(0,0) = Ly(6,,5,).
(6,0)e® (0,0)€®

Now we need to find sup, \ce, Ln(07, 6). Similar arguments can be used to show that sup, g e, Ln(0", 0) = L,(8°,5%

DT DT .
with 0 = ((D bripry ) and &%) = L|1Y - DY
_ SUD( o L,(0,0)
SUP(g,0)c0, L,(0,0)
_ La(8n, 6
L,(&.6%)

o b (~ gy - D)

e gty o - - o)

~ n
G

2
50
()
52
O-n

1/n|lY - DEP ..
o —1
1/n|lY — D8,|I?

A, ’is large’ & ’is large’

)

large’.

1Y — DI = |Y — D,IP* +2(Y — DB,)" D@, — 6°) +ID(@, — 8)|I?

=0
Y — D&Y
Ay ’islarge’ © 1+ M ’is large’
Y - Do,|1?
Y -DooIP ..
——— ’is large’.
Y — Db,||?

We know that D(8, — °) = (A — B)e. Also Y — Db, = DO + € — D(DTD)"'DT(D8 + €) = (1,, — A)e.
(A-B)Y(1,-A)=A-B-(A-BJA
=A-B-(A-B)=0
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and similarly (1, — A)(A — B) = 0. Also
(A-B?=(A-B)(A-B)
=A’>-AB-BA+ B
—A-B-B+B=A-B
and
(L, = A)° = (1, ~ AL, ~ A)
=1,-A-A+A?
=1,-A.
moreover we know rank(A — B) = m from previous calculations and rank(1 —A) = n—rank(A) = n—d. Using Cochran’s
theorem we have D(§, — 8°) 1L Y — D@, and
ID@, — 1P
o2

2, Y- Db, 2

€ €
~ -~ 0 B2 <, - a2
a (oa g

2
~ X(n-dy:
Hence, under Hy o
ID®, - ODI?
1Y = D8, |1
with m and n — d degrees of freedom. The LRT of level « is given by

- 1D,
USSR > dmnmd -

~ F(m,n—d)

OYy,....Y,) ={

0 otherwise,

whereas gy, n—d,1-a 15 the (1 — @)-quantile of F, ,—q).
Email address: damark@math.uzh.ch
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