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Probability Theory

The Concept of Probability

The set of all possible outcomes is called the sample space and is usually denoted by Ω. An element

ω ∈ Ω is called an elementary outcome.

Examples 0.1. Different experiments require different choices of Ω, where Ω can be any set. Here we

list a few first examples.

• The experiment of tossing a coin can be modeled by Ω := {Head,Tails}. One could also take

Ω̃ := {H,T}, so the choice of a sample space is all but unique.

• Drawing one of six balls can be modeled by Ω := {1, 2, . . . , 6}.

• Assume we want to model the motion of a small particle in a fluid. Such a motion can be

interpreted as a continuous function f : R+ → R3, hence we choose Ω := C(R+,R3).

• To model the random number of emails received during a weekday we may choose Ω := N0.

Let us now consider A = “the set of all observable events”. For now, we take A = 2Ω (which denotes

the powerset of Ω). For an A ∈ A we say that A occurs if the element ω belongs to A, so if we have

ω ∈ A.

Example 0.2. Consider the experiment of throwing a die, so Ω := {1, 2, . . . , 6} is a suitable choice.

Let us consider the event A := {the number is < 5} = {1, 2, 3, 4} ∈ A . In this case, if the die falls on

1, 2, 3 or 4, we say that the event A occurs.

After choosing (Ω,A), we will define a map P : A → [0, 1] which, if it fulfills certain properties, is be

called a probability measure and P(A) is called the probability with which the event A occurs. The

triplet (Ω,A,P) is then called a probability space.

4



Probability & Statistics

Fadoua Balabdaoui

1 Discrete Probability Spaces

1.1 Introduction

In this section, we will put ourselves in the case where Ω is either finite or infinitely countable and

always consider A := 2Ω. We will assume that to each ω ∈ Ω we can assign a weight p(ω) ∈ [0, 1] such

that ∑
ω∈Ω

p(ω) = 1.

For an event A ∈ A = 2Ω we then set

P(A) :=
∑
ω∈A

p(ω).

Note that P : A → [0, 1] is now completely determined and we have the following properties:

• ∀Ω ∈ Ω : P({ω}) = p(ω).

• P(Ω) = 1.
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• For any sequence (Ak)k∈N ⊆ A of pairwise disjoint events we have

P
(⊔

k

Ak

)
=
∑
k

P(Ak).

Indeed, observe that

P
(⊔

k

Ak

)
=

∑
ω∈

⊔
k Ak

p(ω) =
∑
k

∑
ω∈Ak

p(ω) =
∑
k

P(Ai)

holds.

This construction motivates the following definition.

Definition 1.1. A set function P : A → [0, 1] is called a probability measure if

• P(∅) = 0, P(Ω) = 1,

• for any sequence (Ak)k∈N ⊆ A of pairwise disjoint events we have

P
(⊔

k

Ak

)
=
∑
k

P(Ak), (1.1)

called sigma additivity of P.

In this case, the triplet (Ω,A,P) is called a probability space.

Proposition 1.2. Let (Ω,A,P) be a probability space and A,B ∈ A arbitrary. Then

• P(Ac) = 1− P(A),

• P(A ∪B) = P(A) + P(B)− P(A ∩B),

• if A ⊆ B then P(A) ≤ P(B), called monotonicity of P.

Proof.

• By sigma additivity (1.1) we immediately get

P(A) + P(Ac) = P(A ⊔Ac) = P(Ω) = 1

which proves P(Ac) = 1− P(A).

• Observe that we have A ∪B = A ⊔ (B ∖A). Hence again by (1.1) it we get

P(A ∪B) = P(A) + P(B ∖A).

On the other hand, we have B = (A ∩B) ⊔ (B ∖A), so again by (1.1)

P(B) = P(A ∩B) + P(B ∖A),
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so we arrive at

P(A ∪B) = P(A) + P(B ∖A)

= P(A) + P(B)− P(A ∩B).

• Assume A ⊆ B and thus A ∩B = A. Then again by (1.1) we have

P(B) = P((A ∩B) ⊔ (B ∖A))

= P(A) + P(B ∖A)︸ ︷︷ ︸
≥0

≥ P(A),

which concludes the proof.

Remark 1.3. Note that the second identity of Proposition 1.2 can be generalized to any subsets

A1, . . . , Ak ∈ A by

P
( k⋃

i=1

Ai

)
=

k∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤k

P(Ai1 ∩ . . . ∩Aij ).

Examples 1.4.

• A coin is tossed. Let p ∈ (0, 1) be the probability that the coin falls on heads. Set Ω = {0, 1}
and p(1) = p, so p(0) = 1−p(1) = 1−p. If P is the associated probability measure, then we have

P(A) =


p if A = {1}

1− p if A = {0}

1 if A = Ω

0 if A = ∅.

for any A ∈ A = 2Ω. The triplet (Ω,A,P) is then called a Bernoulli-model.

• Consider the same coin but now toss it n times. We denote by ω the number of Heads obtained

by drawing this n tosses, so Ω = {1, 2, . . . , n}. Under an additional assumption, we can then

show that

p(ω) =

(
n

ω

)
pω(1− p)n−ω

are the ”right” weights for ω ∈ Ω, where
(
n
ω

)
= n!

ω!(n−ω)! . The associated s probability measure

is given by

P(A) =
∑
ω∈A

(
n

ω

)
pω(1− p)n−ω

for any A ∈ 2Ω. The triplet (Ω,A,P) is then called Binomial-model with success probability p

and number of trials n.
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• Let ω be the number of calls an SBB employee receives between 8:00 and 10:00, so Ω = N0. For

ω ∈ Ω consider

p(ω) :=
e−λλω

ω!

for a fixed λ > 0 called intensity/rate. Then

P(A) =
∑
ω∈A

e−λλω

ω!

and (Ω,A,P) is called a Poisson-model with intensity λ. In this case, for

A = {“At least one call received”}

we have

P(A) = 1− P({0}) = 1− e−λ.

1.2 Random Variables

Definition 1.5. Any map X : Ω → R is called a random variable.

Remark 1.6. If Ω is finite, then X(Ω) is also finite and if Ω is infinitely countable then X(Ω) is at

most also infinitely countable.

Examples 1.7.

• Consider the experiment of tossing a coin twice. Put ω = (ω1, ω2) with ωi = “the face of the i-th

toss”. Then

Ω = {1, 2, . . . , 6}2.

Set X(ω) := ω1 + ω2 and Y (ω) := ω1ω2 for ω ∈ Ω. Then X and Y are both random variables.

• Let ω be the random number of emails received on a day. Set Ω = N0 and X(ω) = 1{ω=0}. Then

X is a Bernoulli random variable.

Now let X be any random variable on a sample space Ω and for x ∈ X(Ω) consider the event

{X = x} := {ω ∈ Ω | X(ω) = x}.

We will also write

P(X = x) := P({ω ∈ Ω | X(ω) = x})

The values P(X = x), as values in X(Ω), induce a new probability measure on 2X(Ω). We denote this

new probability measure by PX . Then for any B ∈ 2X(Ω) we have

PX(B) =
∑
x∈B

P(X = x).

The probability measure PX is called the distribution of X.
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Example 1.8. Let Ω = N0 and p(ω) = e−1

ω! for ω ∈ Ω and put X(ω) := ω2. Then we have

P(X ≥ 3) = PX([3,∞)) = P({ω ∈ Ω | X(ω) ≥ 3}

= P({ω ∈ Ω | ω ≥
√
3}) = P({ω ∈ Ω | ω ≥ 2})

= 1− P({0})− P({1}) = 1− 2e−1 ≈ 0.26.

1.3 Expectations

We start with the case where X is a non-negative random variable.

Definition 1.9. Let X ≥ 0 be a random variable defined on Ω with given probability weights p(ω)

for ω ∈ Ω. Then the expectation of X is defined by

E[X] :=
∑
ω∈Ω

X(ω)p(ω) ∈ [0,∞].

Now for any function f : Ω → R set f+ := max(f, 0) and f− = max(−f, 0). Then we have f = f+−f−
and |f | = f+ + f− with f+, f− ≥ 0.

Definition 1.10. Let X be any random variable on Ω. If min(E[X+],E[X−]) <∞ then we define the

expectation of X by

E[X] = E[X+]− E[X−] ∈ [−∞,∞]

say that X is integrable.

Proposition 1.11. If X is a non-negative or integrable random variable then we have

E[X] =
∑

x∈X(Ω)

x · P(X = x).

Proof. In both cases, we have

E[X] =
∑
ω∈Ω

X(ω)p(ω) =
∑

x∈X(Ω)

∑
ω:X(ω)=x

X(ω)︸ ︷︷ ︸
=x

p(ω)

=
∑

x∈X(Ω)

x ·
( ∑

ω:X(ω)=x

p(ω)
)

=
∑

x∈X(Ω)

x · P({ω ∈ Ω | X(ω) = x}

=
∑

x∈X(Ω)

x · P(X = x)

which proves the claim.
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Examples 1.12.

• For any A ∈ 2Ω we have

E[1A] = 0 · P(1A = 0) + 1 · P(1A = 1)

= P(1A = 1) = P(A).

• Let Ω = N0 and X(ω) = ω with the weights p(ω) = e−λλω

ω! for ω ∈ Ω and a fixed λ > 0. Then

we have

E[X] =
∑
ω∈N

ω · p(ω) =
∞∑

ω=1

ω
e−λλω

ω!

=

∞∑
ω=1

e−λλω

(ω − 1)!
= λe−λ

∞∑
ω=0

λω

ω!︸ ︷︷ ︸
=eλ

= λ.

• Let Ω = {1, 2, . . . , n} with weights p(ω) =
(
n
ω

)
pω(1− p)n−ω and set X(ω) := ω. Then we have

E[X] =

n∑
ω=0

ωp(ω) =

n∑
n=1

ω

(
n

ω

)
pω(1− p)n−ω

=

n∑
ω=1

n!

(ω − 1)!(n− ω)!
pω(1− p)n−ω

= np

n∑
ω=1

(n− 1)!

(ω − 1)!(n− ω)!
pω−1(1− p)n−ω

= np

n−1∑
ω=0

(
n− 1

ω

)
pω(1− p)n−1−ω

= np(p+ 1− p)n−1 = np.

Proposition 1.13. Let X,Y be two integrable random variables.

(i) If X ≤ Y holds then we have E[X] ≤ E[Y ].

(ii) We have |E[X]| ≤ E[|X|].

(iii) For any α, β ∈ R we have E[αX + βY ] = αE[X] + βE[Y ].

Example 1.14. Consider the experiment of tossing a coin n times with p = “probability of obtaining

heads”. We are interested in the expectation of the number of times the coin falls on heads. The

outcome of each experiment can be written as

ω = (ω1, . . . , ωn)
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where

ωi =

1 if we obtain heads in toss i

0 if we obtain heads in tails i.

with Ω = {0, 1}n. Now set

X(ω) :=

n∑
i=1

ωi.

Then X(Ω) = {1, 2, . . . , n} and X represents the number of times we obtained heads. Furthermore,

set

Xi(ω) := ωi

for each i ∈ {1, 2, . . . , n} which represents the outcome of the i-th toss. Then we have

E[Xi] = P(Xi = 1) = p

and
∑n

i=1Xi = X. Hence by using linearity of the expectation we get

E[X] = E
[ n∑

i=1

Xi

]
=

n∑
i=1

E[Xi]︸ ︷︷ ︸
=p

= np.

Lemma 1.15. Let X be a N-valued random variable. Then we have

E[X] =

∞∑
n=0

P(X > n).

Proof. Observe that we have

{X > n} =

∞⊔
k=n+1

{X = k}

for all n ∈ N. Thus using sigma additivity of P we get

P(X > n) =

∞∑
k=n+1

P(X = k) =

∞∑
k=0

1{n≤k−1}P(X = k).

Now by using Fubini’s theorem we have
∞∑

n=0

P(X > n) =

∞∑
n=0

∞∑
k=0

1{n≤k−1}P(X = k)

=

∞∑
k=0

P(X = k)

∞∑
n=0

1{n≤k−1}︸ ︷︷ ︸
=k

=

∞∑
k=0

k · P(X = k) = E[X]

which concludes the proof.
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Example 1.16. Let X be a geometric random variable with success probability p ∈ (0, 1), that is

P(X = k) = p(1− p)k

for k ∈ N0. Intuitively, X represents the “random waiting time” before a success which may happen

with probability p. Using Lemma 1.15 we get

E[X] =

∞∑
n=0

P(X > n) =

∞∑
n=0

∞∑
k=n+1

p(1− p)k

=

∞∑
n=0

p(1− p)n+1
∞∑
k=0

(1− p)k︸ ︷︷ ︸
= 1

p

= (1− p)

∞∑
n=0

(1− p)n =
1− p

p
=

1

p
− 1.

Note that for a coin with success probability p = 1
2 we get E[X] = 1.

1.4 Laplace Models

A Laplace model assumes that all elementary events ω ∈ Ω have the same probability to occur. This

model only “makes sense” if Ω is finite. In this case, we have

p(ω) =
1

|Ω|

for all ω ∈ Ω and

P(A) =
|A|
|Ω|

for all events A ∈ A. P is also called the (discrete) uniform probability measure on (Ω,A).

Examples 1.17.

(1) Throw a fair die. All faces have probability p = 1
6 to occur. Let

A := {the received number is odd} = {1, 3, 5}.

Then we have P(A) = |A|
|Ω| =

1
2 .

(2) Consider an urn with N balls numbered from 1 to N and K of them are red, N −K are white.

Experiment. We draw n ≤ N balls from the urn with replacement.

Let k ∈ {1, . . . , n} and consider the event

Rk := {exactly k red balls were drawn}.

12



Probability & Statistics

Fadoua Balabdaoui

Question. What is P(Rk) under the assumption of a Laplace model?

−→ Here we have

Ω = {ω = (ω1, . . . , ωn) | 1 ≤ ωi ≤ N} = {1, . . . , N}n

and thus |Ω| = Nn. Hence under a Laplace model we have

P(Rk) =
|Rk|
|Ω|

=
|Rk|
Nn

.

Now WLOG we may assume that all red balls are numbered from 1 to K. Then we have

ω ∈ Rk ⇐⇒ ∃1 ≤ i1 < . . . < ik ≤ n such that ωi ∈

{1, . . . ,K} if i ∈ {i1, . . . , ik}

{K + 1, . . . , N} else,

which shows that

|Rk| =
(
n

k

)
Kk(N −K)n−k

and thus

P(Rk) =

(
n
k

)
Kk(N −K)n−k

Nn
=

(
n
k

)
Kk(N −K)n−k

NkNn−k

=

(
n

k

)(
K

N

)k (
1− K

N

)n−k

=

(
n

k

)
pk(1− p)n−k

for p := K
N . Hence we obtain a Binomial model with success probability p and number of trials

n.

1.5 Conditional Probabilities

Let Ω be a finite or infinitely countable sample space and A = 2Ω. Consider an event B ∈ A such that

P(B) > 0. We are now interested in the case where B occured.

Question. What is the probability of A ∈ A given that B already occured?

Definition 1.18. The conditional probability of A given B is defined by

P(A | B) :=
P(A ∩B)

P(B)
.

Intuition. Consider P to be a finite distribution on a finite Ω. We know that then

P(A) =
|A|
|Ω|

holds for all events A. Now if it is known that B occurred, it is as if the whole Ω is replaces by B.

Thus we arrive at

P(A | B) =
|A ∩B|
|Ω ∩B|

=
|A ∩B|/|Ω|
|B|/|Ω|

=
P(A ∩B)

P(B)
.
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Remark 1.19. If Ω is finite and P is the uniform distribution on (Ω, 2Ω) then the probability measure

2Ω → [0, 1], A 7→ P(A | B)

is again uniform on (B, 2B). In fact, for all ω ∈ B we have

P({ω} | B) =
P({ω} ∩B)

P(B)
=

P({ω})
P(B)

=
1/|Ω|
|B|/|Ω|

=
1

|B|
.

Examples 1.20.

(1) Consider a fair die, so Ω = {1, . . . , 6} and P({ω}) = 1
6 . Let A := {1, 2, . . . , 5} and B := {2, 4, 6}.

Then

P(A | B) =
P(A ∩B)

P(B)
=

|A ∩B|
|B|

=
2

3
.

(2) Let X be a geometric random variable with success probability p ∈ (0, 1). For r ∈ N0 consider

the event

Wr := {X ≥ r} = {ω ∈ Ω | X(ω) ≥ r}.

For any s > r let us compute

P(Ws |Wr) =
P(Ws ∩Wr)

P(Wr)
=

P(Ws)

P(Wr)
,

where

P(Wr) = P(X ≥ r) =

∞∑
k=r

p(1− p)k

= p(1− p)r
∞∑
k=0

(1− p)k︸ ︷︷ ︸
= 1

p

= (1− p)r.

Hence we get

P(Ws |Wr) =
(1− p)s

(1− p)r
= (1− p)s−r.

Observe that this conditional probability depends only on the elapsed time s− r. This property

is called the memoryless property.

Theorem 1.21 (Law of total probability). Let (Bi)i∈I be a partition of Ω, that is Ω =
⊔

i∈I Bi. Then

for any A ∈ A we have

P(A) =
∑

i: P(Bi)>0

P(A | Bi)P(Bi).
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Proof. Since (Bi)i is a partition of Ω, we have

A =
⊔
i∈I

(A ∩Bi)

and since all A ∩Bi are pairwise disjoint, using sigma additivity we get

P(A) =
∑
i∈I

P(A ∩Bi) =
∑

i: P(Bi)>0

P(A ∩Bi) +
∑

i: P(Bi)=0

≤P(Bi)=0︷ ︸︸ ︷
P(A ∩Bi)︸ ︷︷ ︸
=0

=
∑

i: P(Bi)>0

P(A | Bi)P(Bi),

which concludes the proof.

Examples 1.22.

(1) Assume that the participation rate in the vote for a new mayor depends conditionally on the age

of the voters as follows:

• 1
4 if age ∈ [18, 30],

• 1
2 if age ∈ (30, 50],

• 2
3 if age ∈ (50,∞).

Furthermore, we know that the proportion of the voters

• whose age ∈ [18, 30] is 20%,

• whose age ∈ (30, 50] is 35%,

• whose age ∈ (50,∞) is 45%.

Question. What is the global participation rate?

−→ We have Ω = “Population of voters” = {ω1, . . . , ωN} and the experiment is selecting an

individual of Ω at random (meaning that P is the discrete uniform probability measure). Consider

the events

A1 := {the person selected has age ∈ [18, 30]},

A2 := {the person selected has age ∈ (30, 50]},

A3 := {the person selected has age ∈ (50,∞)},

V := {the selected person participates in the vote}.
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Then we have

P(A1) = 0.2, P(V | A1) = 0.25,

P(A2) = 0.35, P(V | A2) = 0.5,

P(A3) = 0.45, P(V | A3) =
2

3

and we want to compute P(V ). Now by applying the Law of total probability 1.21 we get

P(V ) =

3∑
i=1

P(V | Ai)P(Ai) = 0.525.

(2) We have two urns:

• In urn 1 there are 2 white balls and 1 black ball.

• In urn 2 there are 3 white balls and 3 black balls.

Experiment. First, we select one urn at random where urn 1 is selected with probability p.

Secondly, we select one ball from the selected urn uniformly at random.

Question. What is the probability of selecting a black ball?

−→ Put

B := {the selected ball is black}, Ai := {urn i is selected}

for i ∈ {1, 2}. Using the Law of total probability 1.21 we have that

P(B) = P(B | A1)P(A1) + P(B | A2)P(A2)

=
1

3
p+

1

2
(1− p) =

1

2
− p

6
.

In the following, we are going to also provide a more detailed solution to the problem. An

elementary outcome of this experiment is given by a pair (urn, ball) with urn ∈ {U1, U2} and

ball ∈ {W1,W2, B1,W
′
1,W

′
2,W

′
3, B

′
1, B

′
2, B

′
3} such that

Ω = {(U1,W1), (U2,W2), (U1, B1), (U2,W
′
1), . . . (U2, B

′
3)} =: {ω1, . . . , ω9}.

Furthermore, for the weights p(ω) := P({ω}) we have

• p(ω1) = p(ω2) = p(ω3),

• p(ω4) = . . . = p(ω9)

and

P(A1) = p(ω1) + p(ω2) + p(ω3) = 3p(ω1)
!
= p
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which now implies

p(ω1) = p(ω2) = p(ω3) =
p

3
.

Similarly, we also get

p(ω4) = . . . = p(ω9) =
1− p

6

and thus we can now compute

P(B) = p(ω3) + p(ω7) + p(ω8) + p(ω9) =
1

2
− p

6
.

Theorem 1.23. For any events A1, . . . , An ∈ A such that P(A1 ∩ . . . ∩An) > 0 we have

P(A1 ∩ . . . ∩An) = P(A1)P(A2 | A1)P(A3 | A1 ∩A2) · · ·P(An | A1 ∩ . . . ∩An−1).

Proof. First, note that since A1 ∩ . . . ∩Aj ⊆
⋂n

i=1Ai holds, we have

P(A1 ∩ . . . ∩Aj) ≥ P(A1 ∩ . . . ∩An) > 0

by assumption for every j ∈ {1, . . . , n}. Furthermore, by definition we have

P(A1 ∩A2) = P(A1)P(A2 | A1)

and thus by induction we get

P(A1 ∩ . . . ∩An) = P(A1 ∩ . . . ∩An−1)P(An | A1 ∩ . . . ∩An−1)

= P(A1)P(A2 | A1)P(A3 | A1 ∩A2) · · ·P(An | A1 ∩ . . . ∩An−1)

which concludes the proof.

Example 1.24 (Birthday paradox). Consider a group of n people.

Question. What is the provability that 2 people share their birthday?

−→ For simplicity, we assume that

• every year has 365 days,

• all days have the same probability to be a birthday.

Put

E := {at least 2 people have the same birthday}.

Note that if n > 365 then P(E) = 1. Hence we assume that n ≤ 365 holds. We have

Ec = {all n people have different birthdays}
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and

Ω = {ω = (ω1, . . . , ωn) | 1 ≤ ωi ≤ 365} = {1, 2, . . . , 365}n,

so

Ec = {ω ∈ Ω | ∀i ̸= j : ωi ̸= ωj} ⊆ Ω. (1)

Now consider the following events:

• A1 := {person 1 has birthday on some date ∈ {1, . . . , 365}},

• A2 := {person 2 has birthday that is different from person 1},

• A2 := {person 3 has birthday that is different from person 1 and 2},

• . . .

• An := {person n has birthday that is different from person 1, 2, . . . , n− 1}.

Note that then Ec = A1 ∩ . . . ∩An and thus by Theorem 1.23 we get

P(Ec) = P(A1)P(A2 | A1) · · ·P(An | A1 ∩ . . . ∩An−1)

= 1 · 364
365

· 363
365

· · · 366− n

365

which implies

P(E) = 1−
n−1∏
i=1

365− i

365
.

Now we are going to also present a solution with Ω and the assumption of a Laplace model. Under

this assumption, by using (1) we get

P(E) = 1− P(Ec) = 1− |Ec|
|Ω|

= 1−
∏n−1

i=0 (365− i)

365n

= 1−
∏n−1

i=1 (365− i)

365n−1
= 1−

n−1∏
i=1

365− i

365
.

18



Probability & Statistics

Fadoua Balabdaoui

1.6 Bayes Rule

Let A and B be two events with P(A),P(B) > 0. Then we have

P(B | A) = P(A | B)P(B)

P(A)

which is called Bayes rule and directly follows from the definition of conditional probability (Definition

1.18). Now we can combine Bayes rule with the Law of total probability 1.21 as follows: If we have

0 < P(B) < 1 then

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc)

and thus

P(B | A) = P(A | B)P(B)

P(A | B)P(B) + P(A | Bc)P(Bc)
.
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Example 1.25 (false positive / false negative). In a certain population, the probability that and

individual is affected by an illness K is p = 1
100 . It is possible to get tested but the test is not perfect.

This means that if we set

B := {person has illness K}, T := {test is positive},

then we have P(T | B) = 0.96 and P(T c | Bc) = 0.94, so with 4% we get a false negative and with 6%

a false positive.

Question. What is the probability that a person is ill, given that he tested positive?

−→ Using Bayes rule, we get

P(B | T ) = P(T | B)P(B)

P(T | B)P(B) + P(T | Bc)P(Bc)
≈ 0.14.

Theorem 1.26. Let (Bi)i∈I be a countable partition of Ω such that P(Bi) > 0 for all i ∈ I. Then for

every event A ∈ A with P(A) > 0 we have

P(Bi | A) =
P(A | Bi)P(Bi)∑
j∈I P(A | Bj)P(Bj)

.

1.7 Independence

Definition 1.27. A collection of events (Ai)i∈I is said to be independent if

∀J ⊆ I with |J | <∞ we have P
( ⋂

j∈J

Aj

)
=
∏
j∈J

P(Aj).

In this case, we also say that the events (Ai)i∈I are mutually independent.

Remarks 1.28.

• Note that in Definition 1.27 the indexing set I can be arbitrary.

• For any event A ∈ A the collections {A,Ω} and {A, ∅} are independent.

• For any events A,B ∈ A with P(A),P(B) > 0 we have that A and B are independent if and only

if P(A | B) = P(A) or P(B | A) = P(B) holds.

• In Definition 1.27 the requirement “∀J ⊆ I with |J | <∞” cannot be relaxed in general as shown

in the following example.

Example 1.29. Consider the experiment of tossing a fair coin twice and the events

A := {the first toss results in heads},

B := {the second toss results in heads},

C := {the tosses result in different outcomes}.
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Then Ω = {0, 1}2 and under the assumption of a Laplace model, we have P({ω}) = 1
4 for all ω ∈ Ω.

Furthermore, we have

P(A) =
1

2
,P(B) =

1

2
,P(C) =

1

2

and

P(A ∩B) =
1

4
= P(A)P(B),

P(A ∩ C) = 1

4
= P(A)P(C),

P(B ∩B) =
1

4
= P(B)P(B),

which means that the events A,B,C are pairwise independent. But we have

P(A ∩B ∩ C) = P(∅) = 0 ̸= 1

8
= P(A)P(B)P(C)

and thus the evens A,B,C are not mutually independent.

Lemma 1.30. Let (Ai)i∈I be an independent collection of events. If we set Bi := Ai or Bi := Ac
i for

all i ∈ I then the new collection (Bi)i∈I is again independent.

Definition 1.31. A collection of random variables (Xi)i∈I defined on the same probability space Ω

is said to be independent if the events {Xi = xi}i∈I are independent for every choice of xi ∈ Xi(Ω).

Notation. In probability theory, when we have two functions X : Ω → R and g : R → R we often

write g(X) := g ◦X to denote their composition.

Proposition 1.32. Let X1, . . . , Xn be independent random variables. Then for any functions gi :

Xi(Ω) → R for 1 ≤ i ≤ n such that E[|gi(Xi)|] <∞ we have

E

[
n∏

i=1

gi(Xi)

]
=

n∏
i=1

E[gi(Xi)].

To prove this result, we need the following lemma.

Lemma 1.33. Let X : Ω → Rd be a random vector of dimension d, which means that all its components

Xi : Ω → R are random variables. If g : X(Ω) → R is any function with g ≥ 0 or E[|g(X)|] <∞ then

E[g(X)] =
∑

x∈X(Ω)

g(x)P(X = x).
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Proof. In both cases, we have

E[g(X)] =
∑
ω∈Ω

g(X(ω))p(ω)

=
∑

x∈X(Ω)

∑
ω:X(ω)=x

g(X(ω))p(ω)

=
∑

x∈X(Ω)

g(x)
∑

ω:X(ω)=x

p(ω)

=
∑

x∈X(Ω)

g(x)P(X = x), (1)

where p(ω) := P({ω}) and at (1) we used σ-additivity of P.

Proof of Proposition 1.32. Put X := (X1, . . . , Xn) and consider the function

h : X(Ω) → R, (x1, . . . , xn) 7→
n∏

i=1

|g(xi)|.

Then h ≥ 0 and thus by Lemma 1.33 we can write

E

[
n∏

i=1

|gi(Xi)|

]
= E[h(X)] =

∑
x∈X(Ω)

h(x)P(X = x).

Now note that by independence of X1, . . . , Xn we have

P(X = x) = P(X1 = x1, . . . , Xn = xn)

=

n∏
i=1

P(Xi = xi).

Hence we get

E[h(X)] =
∑

(x1,...,xn)∈X(Ω)

( n∏
i=1

|gi(xi)|
)
·
( n∏

i=1

P(Xi = xi)
)

=
∑
xn

∑
xn−1

· · ·
∑
x1

n∏
i=1

|gi(xi)|P(Xi = xi)

=

n∏
i=1

∑
xi

|gi(xi)|P(Xi = xi)

=

n∏
i=1

E[|gi(Xi)|] <∞

because we have E[|gi(Xi)|] < ∞ for all 1 ≤ i ≤ n by assumption. Hence E[
∏n

i=1 gi(Xi)] is finite as

well and by replacing h by h(x) =
∏n

i=1 gi(xi) we can conclude.
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Example 1.34 (false positive / false negative). Recall the setting of Example 1.25. Let

T1 := {1st test is positive}, T2 := {2nd test is positive}

and assume that

• P(T1 ∩ T2 | B) = P(T1 | B)P(T2 | B),

• P(T1 ∩ T2 | Bc) = P(T1 | Bc)P(T2 | Bc),

• P(T1 | B)P(T2 | B) = 0.96,

• P(T1 | Bc)P(T2 | Bc) = 0.06.

Then we have

P(B | T1 ∩ T2) =
P(T1 ∩ T2 | B)P(B)

P(T1 ∩ T2 | B)P(B) + P(T1 ∩ T2 | Bc)P(Bc)
= 0.72.

by Bayes rule.

Example 1.35. Consider n independent tosses of a p-coin, so Ω = {0, 1}n. For 1 ≤ i ≤ n define

Xi : Ω → {0, 1}, ω 7→ ωi,

so Xi represents the (random) outcome of the i-th toss. Let P be the probability measure on A := 2Ω

such that

(1) P(Xi = 1) = p,

(2) X1, . . . , Xn are independent.

Question. What is P?
−→ Note that (1) is equivalent to

∀x ∈ {0, 1} : P(Xi = x) = px(1− p)1−x.

Now let ω = (ω1, . . . , ωn) ∈ Ω. Then

P({ω}) = P(X1 = ω1, . . . , Xn = ωn) =

n∏
i=1

P(Xi = ωi), (3)

=

n∏
i=1

pωi(1− p)1−ωi = p
∑n

i=1 ωi(1− p)n−
∑n

i=1 ωi

= pk(1− p)k,

for k :=
∑n

i=1 ωi = |{i | ωi = 1}| where at (3) we used independence. Hence P is uniquely given by

P({ω}) = pk(1− p)1−k.

23



Probability & Statistics

Fadoua Balabdaoui

Now put

Sn :=

n∑
i=1

Xi = “the number of Heads obtained in n-tosses”,

so Sn(Ω) = {0, 1, . . . , n}. For k ∈ Sn(Ω) we have

P(Sn = k) = P
( n∑

i=1

Xi = k
)

=
∑

1≤i1<...<ik≤n

P(Xi1 = 1, . . . , Xik = 1, Xi = 0,∀i ̸∈ {i1, . . . , ik})

=

(
n

k

)
pk(1− p)n−k.

Furthermore, we have

E[Sn] = E
[ n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] = np

and

E[S2
n] =

n∑
k=0

k2P(Sn = k)

=

n∑
k=0

k2
(
n

k

)
pk(1− p)n−k = . . .

by Lemma 1.33. Note that this will result in an involved computation. A simpler way to compute

E[S2
n] is the following :

E[S2
n] = E

[( n∑
i=1

Xi

)2]
= E

[ n∑
i=1

X2
i︸︷︷︸

=Xi

+
∑

1≤i ̸=j≤n

XiXj

]

= E[Sn] + E
[ ∑
1≤i ̸=j≤n

XiXj

]
= np+

∑
1≤i̸=j≤n

E[XiXj ]︸ ︷︷ ︸
=E[Xi]E[Xj ]=p2

= np+
∑

1≤i̸=j≤n

p2

= np+ (n2 − n)p2 = np+ n2p2 − np2

= np(1− p) + E[Sn]
2

and thus

E[S2
n]− E[Sn]

2 = np(1− p)

which is the variance of Sn.
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1.8 Conditional Expectation

Let Ω be countable, A = 2Ω and P the probability measure associated with given weights {p(ω) | ω ∈
Ω}.

Definition 1.36. Let B ∈ A with P(B) > 0. For a random variable X with E[|X|] < ∞ we define

the conditional expectation of X given B by

E[X | B] :=
E[X1B ]

P(B)
.

Remarks 1.37.

• We have E[X | Ω] = E[X].

• We have

E[X | B] =

∑
ω∈ΩX(ω)1B(ω)p(ω)

P(B)
=
∑
ω∈Ω

X(ω)
p(ω)1B(ω)

P(B)
.

• The map A → [0, 1], A 7→ P(A | B) is σ-additive In fact, if (Ai)i∈N ⊆ A is a collection of pairwise

disjoint sets, then

P
(⊔

i

Ai | B
)
=

P(
⊔

iAi ∩B)

P(B)

=
P(
⊔

i(Ai ∩B))

P(B)

=

∑
i P(Ai ∩B)

P(B)

=
∑
i

P(Ai | B).

Using this, we get

E[X | B] =
∑

x∈X(Ω)

P(X = x | B).

Definition 1.38. Let B = (Bi)i be a partition of Ω with P(Bi) > 0 and let X be a random variable

on Ω with E[|X|] <∞. Then we define

E[X | B] : Ω → R, ω 7→
∑
i

E[X | Bi]1Bi(ω),

called the conditional expectation map of X given B.

Convention. Note that in Definition 1.36 we assumed P(B) > 0. For the following definition, we use

the convention E[X | B] = 0 if P(B) = 0.
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Definition 1.39. Let X and Y be two random variables on Ω such that E[|X|] <∞ and let {yi}i =
Y (Ω). Then the conditional expectation of X given Y is defined to be the random variable

E[X | Y ] := E[X | {Y = yi}i] =
∑
i

E[X | Y = yi]1{Y=yi}.

Proposition 1.40. Let X,X ′ and Y be random variables on Ω such that E[|X|],E[|X ′|] <∞.

(i) The conditional expectation map is linear, so for all α ∈ R we have

E[αX +X ′ | Y ] = αE[X | Y ] + E[X ′ | Y ].

(ii) Let g : X(Ω) → R be a map with E[|g(X)|] <∞. Then we have

E[g(X) | X] = g(X).

(iii) If X and Y are independent then E[X | Y ] = E[X].

(iv) We always have E[E[X | Y ]] = E[X], called the tower rule.

Proof.

(i) Follows from linearity of the expectation.

(ii) Set X(Ω) = (xi)i. Then by definition we have

E[g(X) | X] =
∑
i

E[g(X) | X = xi]1{X=xi}.

Now, for P(X = xi) > 0, compute

E[g(X) | X = xi] =
E[g(X)1{X=xi}]

P(X = xi)

=
E[g(xi)1{X=xi}]

P(X = xi)

= g(xi)
E[1{X=xi}]

P(X = xi)

= g(xi)
P(X = xi)

P(X = xi)
= g(xi).

Hence we get

E[g(X) | X] =
∑
i

g(xi)1{X=xi} = g(X).
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(iii) Write Y (Ω) = {yi}i and observe that

E[X | Y ] =
∑
i

E[X | Y = yi]1{Y=yi}

=
∑
i

∑
x∈X(Ω)

xP(X = x | Y = yi)1{Y=yi}

=
∑
i

∑
x∈X(Ω)

xP(X = x)1{Y=yi} (1)

= E[X],

where at (1) we used independence of X,Y .

(iv) By definition, we have

E[X | Y ] =
∑
i

E[X | Y = yi]1{Y=yi}

and thus

E[E[X | Y ]] = E
[∑

i

E[X | Y = yi]1{Y=yi}

]
.

Now using the triangular inequality, we get

E[|E[X | Y ]|] ≤ E
[∑

i

|E[X | Y = yi]|1{Y=yi}

]
=
∑
i

|E[X | Y = yi]|E[1Y=yi
] (2)

=
∑
i

|E[X | Y = yi]|P(Y = yi) (2)

=
∑
i

∣∣∣ ∑
x∈X(Ω)

xP(X = x | Y = yi)
∣∣∣P(Y = yi) (2)

≤
∑
i

∑
x∈X(Ω)

|x|P(X = x | Y = yi)P(Y = yi)

=
∑

x∈X(Ω)

|x|
∑
i

P(X = x, Y = yi)

=
∑

x∈X(Ω)

|x|P(X = x) = E[|X|] <∞.

where at (2) we used linearity. A similar computation now shows that

E[E[X | Y ]] = E[X]

holds.
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Proposition 1.41 (Jensen’s inequality). Let X be a random variable with E[X2] <∞. Then we have

E[|X|] ≤
√

E[X2]

and thus E[|X|] <∞.

Proof. Observe that we have

E[|X|] =
∑

x∈X(Ω)

|x|P(X = x)

=
∑

x∈X(Ω)

|x|
√
P(X = x)

√
P(X = x)

≤

√√√√ ∑
x∈X(Ω)

x2P(X = x)

√√√√ ∑
x∈X(Ω)

P(X = x)

︸ ︷︷ ︸
=1

(1)

=
√
E[X2] <∞,

where at (1) we used the Cauchy-Schwarz inequality.

Now consider the function

ψ(c) := E[(X − c)2].

Question. What is the value of argminc∈R ψ(c)?

Observe that we have

ψ(c) = E[X2 − 2Xc+ c2] = E[X2]− 2cE[X] + c2

and thus

ψ′(c) = −2E[X] + 2c = 2(c− E[X])
!
= 0. ⇐⇒ c = E[X]

Hence c∗ := E[X] is the unique stationary point of ψ, which is a strictly convex function, so

argmin
c∈R

E[(X − c)2] = E[X].

Theorem 1.42. Let X be a random variable on Ω such that E[X2] <∞. If B = (Bi)i ias a partition

of Ω such that P(Bi) > 0 then

E[(X − E[X | B])2] = argmin
ci:

∑
i c

2
iP(Bi)<∞

E
[(
X −

∑
i

ci1Bi

)2]
.
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Corollary 1.43. Let X and Y be two random variables on Ω such that E[|X|] <∞. Then

E[X | Y ] = argmin
g:Y (Ω)→R
E[g(Y )2]<∞

E[(X − g(Y ))2].

We omit the proof of Theorem 1.42.

Proof of Corollary 1.43. By definition we have

E[X | Y ] = E[X | B]

for B := (Bi)i with Bi = {Y = yi} if we write Y (Ω) = {yi}i. By Theorem 1.42 we thus know that

E[X | Y ] = argmin
ci:

∑
i c

2
iP(Y=yi)<∞

E
[(
X −

∑
i

ci1{Y=yi}

)2]
.

Now for any given (ci)i there exists a function

g : Y (Ω) → R

such that g(Y ) =
∑

i ci1{Y=yi}. Conversely, let g : Y (Ω) → R be any function and define ci := g(yi).

Then again g(Y ) =
∑

i ci1{Y=yi} holds. Now observe that then∑
i

c2iP(Y = yi) =
∑
i

g(yi)
2P(Y = yi) = E[g(Y )2]

which concludes the proof.

Examples 1.44.

(1) Let X,Y be two random variables defined on Ω with

X(Ω) = Y (Ω) = {0, 1},

p ∈ (0, 1) and

P(X = Y = 0) =
p

2
,

P(X = 0, Y = 1) =
1− p

2
,

P(X = 1, Y = 0) =
1− p

2
,

P(X = Y = 1) =
p

2
.
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Then

E[X | Y ] =
∑

y∈Y (Ω)

E[X | Y = y]1{Y=y}

= E[X | Y = 0]1{Y=0} + E[X | Y = 1]1{Y=1}

= P(X = 1 | Y = 0)1{Y=0} + P(X = 1 | Y = 1)1{Y=1}

= (1− p)1{Y=0} + p1{Y=1}.

Similarly, we get

E[Y | X] = (1− p)1X=0 + p1X=1.

(2) Consider random variables X,Y on Ω such that Y ∼ Pois(λ) for λ > 0 and conditionally on

Y = k, X has a binomial distribution with success probability p ∈ (0, 1) and k number of trials.

Then

P(Y = k) =
e−λλk

k!

and

P(X = j | Y = k) =

0 if j > k(
k
j

)
pj(1− p)k−j if j ≤ k.

Question. What are E[X | Y ] and E[X]?

−→ Here we can use that fact that if S ∼ Binomial(n, p) then E[S] = np. Hence we have

E[X | Y = k] = kp

and thus

E[X | Y ] =
∑
k≥0

kp1{Y=k}

= p
∑
k≥0

k1{Y=k} = pY.

Now using the tower rule, we get

E[X] = E[E[X | Y ]] = E[pY ] = pE[Y ] = pλ.

(3) Let X and Y be two independent random variables such that

X ∼ Pois(λ1), Y ∼ Pois(λ2)
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for λ1, λ2 > 0 and put S := Y1 + Y2 ∼ Pois(λ1 + λ2).

Question. What is E[X | S]?

−→ To determine this, we need to compute P(X = x | S = s) for all x, s ∈ N0. Observe that

P(X = x | S = s) =
P(X = x, S = s)

P(S = s)

=
P(X = x, S = s)∑
x′ P(X = x′, S = s)

.

We have

{X = x, S = s} = {X = x,X + Y = s} = {X = x, Y = s− x}

and thus

P(X = x, S = s) =

0 if x > s

P(X = x)P(Y = s− x) =
e−λ1λx

1

x!
e−λ2λs−x

2

(s−x)! if x ≤ s.

Hence ∑
x′

P(X = x′, S = s) =

s∑
x′=0

P(X = x′, Y = s− x′)

=

s∑
x′=0

e−λ1λx
′

1

x′!

e−λ2λs−x′

2

(s− x′)!

=
e−λ1−λ2

s!

s∑
x′=0

(
s

x′

)
λx

′

1 λ
s−x′

2

=
e−λ1−λ2

s!
(λ1 + λ2)

s

= P(S = s).

Now we get

P(X = x | S = s) =
s!

x!(s− x)!

λx1λ
s−x
2

(λ1 + λ2)s

=

(
s

x

)(
λ1

λ1 + λ2

)x(
1− λ1

λ1 + λ2

)s−x

and thus

X | S = s ∼ Binomial

(
λ1

λ1 + λ2
, s

)
,

where X | S = s denotes the random variable X given the event S = s. Hence

E[X | S = s] =
λ1

λ1 + λ2
s
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and thus

E[X | S] =
∑
s≥0

E[X | S = s]1{S=s}

=
∑
s≥0

λ1
λ1 + λ2

s1{S=s} =
λ1

λ1 + λ2
S.

In particular, if λ1 = λ2 then E[X | S] = S
2 .

Note that in the case of λ1 = λ2 there is a quicker method to compute E[X | S]. Observe that

in this case

E[X | S] = E[X + Y − Y | S]

= E[S | S]− E[Y | S]

= S − E[X | S]

since X and Y “play the same role” and thus E[X | S] = S
2 .
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2 Random Walks

2.1 Introduction

Let N ∈ N and consider the sample space Ω := {−1, 1}N with the uniform probability measure on

A = 2Ω, that is

P(A) =
|A|
|Ω|

=
|A|
2N

for all A ∈ A.

Definition 2.1. Set S0(ω) := 0 and for 1 ≤ n ≤ N

Sn(ω) :=

n∑
k=1

ωi

for ω = (ω1, . . . , ωN ) ∈ Ω. Then the sequence (Sn)n≥0 is called a random walk with N steps starting

at 0.

0 5 10 15 20

−
4

−
2

0
2

4

3 independent realizations of RW with 20 steps

Time

S
n

Figure 1: Three random walks starting at 0 with N = 20.
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0 20 40 60 80 100

−
10

−
5

0
5

10

3 independent realizations of RW with 100 steps

Time

S
n

Figure 2: Three random walks starting at 0 with N = 100.

For k ∈ {1, . . . , N} set Xk(ω) := ωi, so we have

Sn =

n∑
k=1

Xk.

Now observe that

|{Xk = 1}| = |{ω ∈ Ω | Xk(ω) = 1}| = 2N−1

and thus P(Xk = 1) = 1
2 . Now fix integers 1 ≤ k1 < . . . < kl ≤ N and xk1

, . . . , xkl
∈ {−1, 1}. Then

we have

|{Xk1
= xk1

, . . . , Xkl
= xkl

}| = 2N−l

and thus

P(Xk1
= xk1

, . . . , Xkl
= xkl

) =
1

2l
.

But this means that

P
( l⋂

j=1

{Xkj = xkj}
)
=

1

2l
=

l∏
j=1

P(Xkj = xkj )︸ ︷︷ ︸
= 1

2
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0 200 400 600 800 1000

−
20

0
20

40
60

3 independent realizations of RW with 1000 steps

Time

S
n

Figure 3: Three random walks starting at 0 with N = 1000.

which proves that X1, . . . , XN are independent.

Remarks 2.2.

• For a given Ω, the graph of the points (n, Sn(ω))0≤n≤N is called the trajectory of the random

walk.

• For k ∈ {1, . . . , N} we have

E[Xk] = 0.

We can even say that Xk = 2Uk − 1 holds for Uk := 1{Xk=1} and U1, . . . , UN
i.i.d.∼ Bernoulli( 12 ),

so U1, . . . , UN can be viewed as the outcome of tossing a fair coin N times.

• We have

E[Sn] = E
[ N∑
k=1

Xk

]
=

N∑
k=1

E[Xk] = 0.

Theorem 2.3. Let n ∈ {1, . . . , N}. Then we have

Sn(Ω) = {2k − n | 0 ≤ k ≤ n}.
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Moreover, for k ∈ {0, . . . , n} we have

P(Sn = 2k − n) =

(
n

k

)
2−n.

Proof. By Remarks 2.2 we know that

Xk = 2Uk − 1

for 1 ≤ k ≤ N where U1, . . . , UN
i.i.d.∼ Bernoulli( 12 ). Then by definition of Sn we get

Sn = 2

n∑
k=1

Uk − n

where
∑n

k=1 Uk ∼ Binomail(n, 12 ). Hence we have

Sn(Ω) = {2k − n | 0 ≤ k ≤ n}

and

P(Sn = 2k − 1) = P
( n∑

j=1

Uj = k
)

=

(
n

k

)(
1

2

)k (
1− 1

2

)n−k

=

(
n

k

)
2−n

which concludes the proof.

Lemma 2.4. Let (Sn)1≤n≤N be a random walk with N steps starting at 0. Then for all n ∈ {1, . . . , N}
we have

max
x∈Sn(Ω)

P(Sn = x) =

P(Sn = 0) if n is even

P(Sn = 1) = P(Sn − 1) if n is odd.

Proof. For k ∈ {0, . . . , n} we have

C :=
P(Sn = 2k − n)

P(Sn = 2(k − 1)− n)
=

(
n
k

)
2−n(

n
k−1

)
2−n

=
(k − 1)!(n− k + 1)!

k!(n− k)!
=
n− k + 1

k
≥ 1

⇐⇒ n− k + 1 ≥ k ⇐⇒ n+ 1 ≥ 2k

⇐⇒ k ≤ n+ 1

2
.
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This means that if n is even, then C ≥ 1 if and only if k ∈ {0, . . . , n2 }. In this case, the function

k 7→ P(Sn = 2k − n) is increasing on {0, . . . , n2 } and decreasing on {n
2 , . . . , n}. Hence P(Sn = 2k − n)

is maximal for k = n
2 , so

max
0≤k≤n

P(Sn = 2k − n) = P(Sn = 0).

A similar analysis proves the other case where n is odd.

Remark 2.5. With the help of Stirling’s formula

n! ∼
n→∞

√
2πn

(n
e

)n
we can show that

P(Sn = 0) ∼
n→∞

1√
π n

2

holds if n is even. The same holds for P(Sn = ±1) if n is odd.

2.2 The Reflection Principle

Let (Sn)1≤n≤N be a random walk starting at 0.

For a given c ∈
⋃N

n=0 Sn(Ω) = {−N, . . . , N} define

Tc(ω) := min({1 ≤ n ≤ N | Sn(ω) = c} ∪ {N + 1}).

Lemma 2.6 (Reflection principle). For a > 0 and b ≥ −a we have

P(T−a ≤ n, Sn = b) = P(Sn = −2a− b).

Theorem 2.7. For a > 0 we have

P(T−a ≤ n) = 2P(Sn < −a) + P(Sn = −a)

= P(Sn ̸∈ (−a, a]).

Proof. Observe that we have

{T−a ≤ n} =

∞⊔
b=−∞

{T−a ≤ n, Sn = b}.

Hence by σ-additivity we get

P(T−a ≤ n) =

∞∑
b=−∞

P(T−a ≤ n, Sn = b)

=

−a−1∑
b=−∞

P(T−a ≤ n, Sn = b)︸ ︷︷ ︸
=:C1

+

∞∑
b=−a

P(T−a ≤ n, Sn = b)︸ ︷︷ ︸
=:C2

.
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The reflection principle

Figure 4: A random walk with N = 100 reflected at −a = −2.

Now using the Reflection principle 2.6, we can write

C2 =

∞∑
b=−a

P(Sn = −2a− b)

=

−a∑
t=−∞

P(Sn = t) = P(Sn ≤ −a).

Furthermore, we have

C1 =
−a−1∑
b=−∞

P(T−a ≤ n, Sn = b)

=

−a−1∑
b=−∞

P(Sn = b)

= P(Sn ≤ −a− 1) = P(Sn < −a).

Hence

P(T−a ≤ n) = P(Sn < −a) + P(Sn ≤ −a)

= 2P(Sn < −a) + P(Sn = −a).
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Now we show that P(T−a ≤ n) = P(Sn ̸∈ (−a, a]). Observe that we have

P(Sn < −a) =
∑
t<−a

P(Sn = t)

=
∑
t<−a

P(Sn = −t)

=
∑
z>a

P(Sn = z) = P(Sn > a).

Hence

P(T−a ≤ n) = 2P(Sn < −a) + P(Sn = −a)

= P(Sn < −a) + P(Sn < −a) + P(Sn = −a)

= P(Sn > a) + P(Sn ≤ −a)

= P({Sn > a} ⊔ {Sn ≤ −a})

= P(Sn ̸∈ (−a, a])

which concludes the proof.

Corollary 2.8. For a ̸= 0 we have

• P(Ta > N) ↘ 0 as N → ∞,

• E[Ta] ↗ ∞ as N → ∞.

Proof. Observe that we have

P(Ta > N) = P(Sn ∈ (−a, a])

=

a∑
k=−a+1

P(SN = k)

≤ 2a ·

P(SN = 0) if N is even

P(SN = 1) if N is odd

∼
n→∞

2a
1√
π n

2

n→∞−−−−→ 0.

Now by Lemma 1.15 we have

E[Ta] =
∞∑

n=0

P(Ta > n).

39



Probability & Statistics

Fadoua Balabdaoui

0 1000 2000 3000 4000 5000

50
10

0
15

0
20

0

Mean of Ta for a = 1

N

Figure 5: E[Ta] for a = 1 as N grows.

Note that {Ta > n} = ∅ for n ≥ N + 1 and thus

E[Ta] =
N∑

n=0

P(Ta > n)

=

N∑
n=0

P(Sn ∈ (−a, a])

≥
N∑

n=0

P(Sn = 0)

≥


∑N

2

k=0 P(S2k = 0) if N is even∑N−1
2

k=0 P(S2k = 0) if N is odd.

But we also have P(S2k = 0) ∼
n→∞

1√
πk

and since∑
k≥1

1

π
√
k
= ∞

we can conclude that

E[Ta]
N→∞−−−−→ ∞
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Figure 6: E[Ta] for a = 2 as N grows.

holds.

Theorem 2.9. For N ∈ N and 2n ≤ N it holds that

P(T0 > 2n) = P(S2n = 0).

Example 2.10. Take N ≥ 3 and n = 1. We want to check that Theorem 2.9 holds, i.e. that we have

P(T0 > 2) = P(S2 = 0),

without using it. Observe that we have

P(T0 > 2) = 1− P(T0 ≤ 2)

= 1− P(T0 = 2) (1)

= 1− P(S2 = 0)

= 1− 1

2
=

1

2
= P(S2 = 0)

where at (1) we used the fact that T0 > 0 holds by definition and T0 is always even.
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Example 2.11. Take N ≥ 5 and n = 2. We again want to check that

P(T0 > 4) = P(S4 = 0)

holds. Compute

P(S4 = 0) = 6 ·
(
1

4

)4

=
3

8

and observe that

P(T0 > 4) = 1− P(T0 ≤ 4)

= 1− P(T0 = 2)− P(T0 = 4)

= 1− 1

2
− 1

8
=

3

8

= P(S4 = 0).

Remark 2.12. Recall that by Remark 2.5 we have

P(S2n = 0) ∼
n→∞

1√
πn

and thus by Theorem 2.9 we get

lim
n→∞

P(T0 > 2n) = lim
n→∞

P(S2n = 0) = 0.

Hence we have

lim
n→∞

P(T0 ≤ 2n) = 1,

which means that the random walk is recurrent.

2.3 The arcsin Law

Let N ∈ N and consider a random walk (Sn)0≤n≤2N starting at 0. Set

L(ω) := max{0 ≤ n ≤ 2N | Sn(ω) = 0}

to be the last visit at 0 of the random walk.

Theorem 2.13. For n ≤ N we have

P(L = 2n) = P(S2n = 0)P(S2(N−n) = 0)

=
1

22N

(
2n

n

)(
2(N − n)

N − n

)
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Proof. Define

A := {L = 2n} = {ω ∈ Ω | L(ω) = 2n}

= {ω ∈ Ω | S2n(ω) = 0 and Sk(ω) ̸= 0 for k > 2n}.

Now observe that we have

A =
{
(x1, . . . , x2N ) ∈ {−1, 1}2N

∣∣ 2n∑
i=1

xi = 0, ∀k > 2n :

k∑
i=2n+1

xi ̸= 0
}

=
{
(x1, . . . , x2n, y1, . . . , y2N−2n) ∈ {1,−1}2N

∣∣ 2n∑
i=1

xi = 0, ∀1 ≤ j ≤ 2(N − n) :

j∑
i=1

yi ̸= 0
}
.

Now set

B1 :=
{
(x1, . . . , x2n) ∈ {−1, 1}2n

∣∣ 2n∑
i=1

xi = 0
}
,

B2 :=
{
(y1, . . . , y2(N−n)) ∈ {−1, 1}2(N−n)

∣∣ ∀1 ≤ j ≤ 2(N − n) :

j∑
i=1

yi ̸= 0
}

and observe that then we have

A = B1 ×B2.

This implies

|A| = |B1| · |B2|.

Note that we have

{S2n = 0} =
{
(x1, . . . , x2N ) ∈ {−1, 1}2N |

2n∑
i=1

xi = 0
}

and thus

|{S2n = 0}| = |B1| · 22(N−n)

which implies

P(S2n = 0) =
|{S2n = 0}|

|Ω|
=

|B1| · 22(N−n)

22N
=

|B1|
22n

.

Furthermore, we have

{T0 > 2(N − n)} = {ω ∈ Ω | S1(ω) ̸= 0, . . . , S2(N−n) ̸= 0}

=
{
(x1, . . . , x2N ) ∈ {−1, 1}2N

∣∣ ∀1 ≤ j ≤ 2(N − n) :

j∑
i=1

xi ̸= 0
}
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which implies

P(T0 > 2(N − n)) =
|{T0 > 2(N − n)}|

22N

=
|B2| · 22n

22N
=

|B2|
22(N−n)

.

Now by applying Theorem 2.9 we get

P(T0 > 2(N − n)) = P(S2(N−n) = 0)

and thus, putting everything together, we have

P(A) =
|A|
22N

=
|B1| · |B2|

22n · 22(N−n)

= P(S2n = 0)P(S2(N−n) = 0)

=
1

22N

(
2n

n

)(
2(N − n)

N − n

)
which concludes the proof.

Now Theorem 2.13 implies the following interesting result.

The arcsin law 2.14. We have P(S2n = 0) ≈ 1√
πn

and thus

P(L = 2n) ≈ 1

π
√
n(N − n)

=
1

N
f
( n
N

)
for f(x) := 1

π
√

x(1−x)
. Hence we have

P
(
L

2N
≤ z

)
≈

∑
n: n

N ≤z

1

N
f
( n
N

)
≈
∫ z

0

f(x) dx =
2

π
arcsin

√
z.
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Figure 7: Histogram of L
2N for N = 5000 and the function 2

π arcsin
√
z in blue.
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3 General Models

3.1 Introduction

Definition 3.1. A triplet (Ω,A,P) is said to be a probability space if the following hold.

(a) A is a σ-algebra, that is

• Ω ∈ A,

• A ∈ A =⇒ Ac ∈ A,

• (Ai)i ⊆ A =⇒
⋃

iAi ∈ A.

(b) P is a probability measure, that is

• P(Ω) = 1,

• P is σ-additive, so if (Ai)i ⊆ A are pairwise disjoint then P(
⊔

iAi) =
∑

i P(Ai) holds.

Examples 3.2.

• Let Ω be countable, A = 2Ω and let {p(ω) ∈ [0, 1] | ω ∈ Ω} be given weights with
∑

ω∈Ω p(ω) = 1.

Then

P : A → [0, 1], A 7→
∑
ω∈A

p(ω)

is a probability measure.

• Let Ω = [0, 1] and let A = B([0, 1]) be the Borel σ-algebra, i.e. the smallest σ-algebra containing

all closed intervals [a, b] ⊆ [0, 1]. Then it can be shown that there exists a unique probability

measure P on A such that

P([a, b]) = b− a

holds for all such intervals. This measure P is also called the uniform distribution on [a, b].

Remarks 3.3.

• For (Ai)i ⊆ A we have
⋂

iAi ∈ A.

• For (Ai)i ⊆ A we define

A∞ := “infinitely many Ai occur”.

Then

A∞ = {∀n ∈ N ∃k ≥ n : Ak occurs} =
⋂
n≥1

⋃
k≥n

Ak.
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• Instead of σ-additivity, we may also define a weaker version called additivity by the following

property: If A1, . . . , An ∈ A are pairwise disjoint, then

P
( n⊔

i=1

Ai

)
=

n∑
i=1

P(Ai).

Theorem 3.4. Let P : A → [0, 1] be an additive measure. Then the following are equivalent.

(a) P is σ-additive.

(b) If A1 ⊆ A2 ⊆ . . . are all in A then

P
(⋃

n

An

)
= lim

n→∞
P(An),

which is called continuity from below.

(c) If A1 ⊇ A2 ⊇ . . . are all in A then

P
(⋂

n

An

)
= lim

n→∞
P(An),

which is called continuity from above.

Proof. (a) =⇒ (b). Take A1 ⊆ A2 ⊆ . . . all in A and define

B1 := A1, Bn := An ∖An−1

for n ≥ 2. Then (Bn)n≥1 are pairwise disjoint with⋃
k

Ak =
⊔
k

Bk

and

An =

n⊔
k=1

Bk.

Now using σ-additivity, we get

P
(⋃

k

Ak

)
= P

(⊔
k

Bk

)
=

∞∑
k=1

P(Bk)

= lim
n→∞

n∑
k=1

P(Bk)
(1)
= lim

n→∞
P
( n⊔

k=1

Bn

)
= lim

n→∞
P(An),

where at (1) we used additivity of P.
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(b) =⇒ (a). Let (Ak)k ⊆ A be pairwise disjoint. Define

B1 := A1, Bn := An ∪Bn−1.

Then we have B1 ⊆ B2 ⊆ . . . and all are in A. Hence by (b) we get

P
(⊔

k

Ak

)
= P

(⋃
k

Bk

)
= lim

n→∞
P(Bn)

(1)
= lim

n→∞

n∑
k=1

P(Ak) =

∞∑
k=1

P(Ak),

where at (1) we again used additivity of P.

(b) ⇐⇒ (c). Follows by using the property A ∈ A =⇒ Ac ∈ A.

Corollary 3.5. For any (Ak)k ⊆ A we have

P
(⋃

k

Ak

)
≤
∑
k

P(Ak)

if P is σ-additive.
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Lemma 3.6 (Borel-Cantelli lemma). Let (Ak)k ⊆ A and A∞ =
⋂

n≥1

⋃
k≥nAk.

(a) If
∑

k P(Ak) <∞ then P(A∞) = 0.

(b) Under the additional condition that (Ak)k are (mutually) independent, it holds that∑
k

P(Ak) = ∞ =⇒ P(A∞) = 1.

Proof. (a) Consider the sets Bn :=
⋃

k≥nAk. Then (Bn)n is monotone decreasing and thus we have

P
(⋂

n

Bn

)
= lim

n→∞
P(Bn)

which implies

P(A∞) = lim
n→∞

P
( ⋃

k≥n

Ak

)
≤ lim

n→∞

∞∑
k=n

P(Ak) = 0

where the last equality follows since
∑

k P(Ak) <∞ is assumed.

(b) Fix n ≥ 1 and consider Bm :=
⋂m

k=nA
c
k for all m ≥ n. Then (Bm)m is monotone decreasing and

hence we have

P
( ⋂

m≥n

Bm

)
= lim

m→∞
P(Bm).

Furthermore ⋂
m≥n

Bm =
⋂
k≥n

Ac
k

and thus

P
( ⋂

k≥n

Ac
k

)
= lim

m→∞
P
( m⋂

k=n

Ac
k

)
.

Now since (Ak)k are assumed to be independent, we get

P
( ⋂

k≥n

Ac
k

)
= lim

m→∞

m∏
k=n

P(Ac
k) = lim

m→∞

m∏
k=n

(1− P(Ak)).

Now note that 1− x ≤ e−x holds for all x ≥ 0. Hence

m∏
k=n

(1− P(Ak)) ≤
m∏

k=n

e−P(Ak) = exp
(
−

m∑
k=n

P(Ak)
)

and recall that by assumption
∑

k≥1 P(Ak) = ∞. Since n is fixed, this implies
∑

k≥n P(Ak) = ∞
and thus we can conclude that

P
( ⋂

k≥n

Ac
k

)
≤ lim

m→∞
exp
(
−

m∑
k=n

P(Ak)
)
= 0
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holds for all n ∈ N fixed. Now note that the sequence (
⋂

k≥nA
c
k)n is monotone increasing and

thus

P(Ac
∞) = P

( ⋃
n≥1

⋂
k≥n

Ac
k

)
= lim

n→∞
P
( ⋂

k≥n

Ac
k

)
= 0,

so

P(A∞) = 1

and we can conclude.

Example 3.7. Let X1, X2, . . . be independent outcomes of throwing p1, p2, . . . coins with pi ∈ (0, 1).

Applying the Borel-Cantelli lemma to Ak := {Xk = 1} implies the following results.

• If
∑

k≥1 pi <∞ then P(Xk = 1 infinitely often) = 0.

• If
∑

k≥1 pi = ∞ then P(Xk = 1 infinitely often) = 1.

3.2 Transformations of Probability Spaces

Let (Ω,A,P) be a measure space, Ω̃ ̸= ∅ and Ã a σ-algebra on Ω̃.

Definition 3.8. An application Φ : (Ω,A) → (Ω̃, Ã) is said to be measurable if for all B ∈ Ã we have

Φ−1(B) ∈ A.

Remarks 3.9.

• We can generate a σ-algebra with a given collection of subsets of Ω as follows: Given a collection

C ⊆ 2Ω, the σ-algebra generated by C is defined by

σ(C) :=
⋂
D⊇C

D σ-algebra

D.

• If Ã = σ(C̃) with C̃ ⊆ 2Ω̃ then the application Φ : Ω → Ω̃ is measurable if and only if

∀C̃ ∈ C̃ : Φ−1(C̃) ∈ A.

Theorem 3.10. Let Φ : Ω → Ω̃ be a measurable application and define

P̃ : Ã → [0, 1], A 7→ P(Φ−1(A)).

Then P̃ is a probability measure on Ã and P̃ is called the image of P under Φ or the distribution of Φ

under P or the induced probability measure by Φ.
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Proof. We need to check that P̃ is σ-additive and that P̃(Ω̃) = 1 holds. By definition, we have

P̃(Ω̃) = P(Φ−1(Ω̃)) = P(Ω) = 1.

Now let (Ak)k ⊆ Ã be pairwise disjoint. Then we have

P̃
(⊔

k

Ak

)
= P

(
Φ−1

(⊔
k

Ak

))
= P

(⊔
k

Φ−1(Ak)
)

=
∑
k

P(Φ−1(Ak)) =
∑
k

P̃(Ak)

which concludes the proof.

3.3 Real Random Variables

Let C := {(−∞, b] | b ∈ R}, denote by B := σ(C) the the Borel σ-algebra and set Ω̃ := R, Ã := B.

Definition 3.11. Let (Ω,A,P) be a probability space. A random variable is a measurable application

X : Ω → Ω̃ = R. The distribution of X, denoted by µX , is equal to the image of P under X, so

∀B ∈ B : µX(B) = P(X−1(B)) =: P(X ∈ B).

Examples 3.12.

• Consider X : (Ω,A) → (R,B) such that

µX(B) = P(X ∈ B) =

∫
B

1√
2π
e

−x2

2 dx

holds for all B ∈ B. Then X is said to be a Gaussian or Normal random variable. In this case,

we write X ∼ N (0, 1) and we have

E[X] = 0, Var(X) = 1.

In particular,

µX((−∞, a]) = P(X ≤ a) =

∫ a

−∞

1√
2π
e

−x2

2 dx.

• Consider X : (Ω,A) → (R,B) to be a random variable such that

µX(B) =
∑

j∈{0,1,...,n}∩B

(
n

j

)
pj(1− p)n−j

for p ∈ (0, 1) and n ∈ N. Here we recognize a Binomial random variable with success probability p

and number of trials n. Note that in this case, we can replace (R,B) by (Ω̃, 2Ω̃) for Ω̃ = {1, . . . , n}.
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3.4 Distribution Functions

Definition 3.13. Let X : Ω → R be a real random variable. The application

FX : R → [0, 1], b 7→ µX((−∞, b]) = P(X ≤ b)

is called the (cumulative) distribution function of X or CDF in short.

Proposition 3.14. Let µ be the distribution of X and F the CDF of X.

• For a ≤ b we have µ((a, b]) = P(X ∈ (a, b]) = F (b)− F (a).

• For a ∈ R we have µ({a}) = F (a)− F (a−), where F (a−) := limx↑a F (a).

Theorem 3.15. For any distribution function FX , we have the following properties:

• monotonicity: ∀x ≤ y : FX(x) ≤ FX(y),

• right-continuity: FX(x) = limh↓0 FX(x+ h),

• limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

Moreover, any function F with the properties above is the distribution function of some random vari-

able.

Lemma 3.16. Let F be a distribution function and define

F−1(t) := inf{x ∈ R | F (x) ≥ t}

for all t ∈ (0, 1). Then

• F−1 is monotone increasing,

• F−1 is left-continuous,

• ∀x ∈ R : F−1(F (x)) ≤ x,

• ∀t ∈ (0, 1) : t ≤ F (F−1(t)).

Definition 3.17. For t ∈ (0, 1), the value F−1(t) is called the t-quantile of F. If t = 1
2 then F−1(t) is

called the median of F.

Definition 3.18. Let A be a σ-algebra of subsets of Ω.

• µ is called a measure if µ : A → [0,∞] such that µ(∅) = 0 holds and µ is σ-additive. Then

(Ω,A, µ) is called a measure space.

• A measure µ is called finite if µ(Ω) <∞.

52



Probability & Statistics

Fadoua Balabdaoui

• A measure µ is called σ-finite if there exists a partition {Fk}k≥1 of Ω such that µ(Fk) <∞ holds

for all k ≥ 1.

• Let µ1 and µ2 be two measures on A. Then µ2 is said to be dominated by µ1 if

µ1(A) = 0 =⇒ µ2(A) = 0

holds for all A ∈ A. In this case, we also say that µ2 is absolutely continuous with respect to µ1

and write µ2 ≪ µ1.

Theorem 3.19 (Radon-Nikodym). Let (Ω̃, Ã, µ) be a measure space such that µ is σ-finite. Let ν be

another measure on Ã such that ν is absolutely continuous with respect to µ, so ν ≪ µ. Then there

exists a measurable function f such that

• f ≥ 0,

• ∀A ∈ A : ν(A) =
∫
A
f dµ.

The function f is called the Radon-Nikodym derivative / density of ν with respect to µ and we write

f = dν
dµ . If ν is a probability measure, i.e. ν(Ω̃) = 1, then∫

Ω̃

f dµ = 1

holds.

Examples 3.20.

• Consider X : (Ω,A,P) → (X , 2X , µ) with X := X(Ω) assumed to be countable and let µ be the

counting measure, so µ(B) = |B|. Write X = {xi}i∈N. Then µ is σ-finite and µ(B) = 0 if and

only if B = ∅. Hence we have

∀B ∈ 2X : µ(B) = 0 =⇒ µX(B) = 0,

so µX ≪ µ. Then by the Radon-Nikodym theorem there exists a measurable function fX ≥ 0

such that

P(X ∈ B) = µX(B) =

∫
B

fX dµ =
∑
y∈B

fX(y)

holds for all B ∈ Ã := 2X . If B = {x} then

P(X = x) = fX(x)

for any x ∈ X . Hence we find that the Radon-Nikodym density of the distribution of X (in this

discrete case) is given by the probability mass function P(X = x).
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• Now consider X : (Ω,A,P) → (R,B, λ) such that µX ≪ λ where λ is the Lebesgue measure, so

λ is σ-finite. Hence by the Radon-Nikodym theorem there exists a measurable function fX ≥ 0

such that

P(X ∈ B) = µX(B) =

∫
B

fX dλ =

∫
B

fX(x) dx

(1)⇐⇒ ∀b ∈ R : P(X ≤ b) = FX(b) =

∫ b

−∞
fX(x) dx

for all B ∈ B where FX is the distribution function of X. Note that (1) is a non-trivial fact that

has to be shown. In this case, fX also called the probability density function or pdf in short.

3.5 Standard Types of Distributions

3.5.1 Discrete Distributions

Let X be a random variable such that X(Ω) = {xk}k∈N is countable with fX(x) = P(X = x). Then

FX(x) = P(X ≤ x) =
∑

k: xk≤x

fX(xk)

holds for all x ∈ R :

Examples 3.21.

• X has a Dirac distribution at a, written X ∼ Dirac(a), if

X : Ω → R, ω 7→ a

holds with P(X = a) = 1.

• X has a Bernoulli distribution with success probability p ∈ (0, 1), written X ∼ Bernoulli(p), if

we have X(Ω) = {0, 1} with

P(X = 1) = 1− P(X = 0) = p.

• X has a Binomial distribution with success probability p and number of trials n ∈ N, written
X ∼ Binomial(n, p), if we have X(Ω) = {1, . . . , n} with

P(X = x) =

(
n

x

)
px(1− p)n−x

for all x ∈ X(Ω).

• X has a Poisson distribution with rate λ ∈ (0,∞), written X ∼ Pois(λ), if we have X(Ω) = N0

with

P(X = x) = e−λλ
x

x!
for all x ∈ X(Ω).
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• X has a Geometric distribution with success probability p ∈ (0, 1), written X ∼ Geo(p), if we

have X(Ω) = N with

P(X = x) = p(1− p)x

for all x ∈ X(Ω).

3.5.2 Absolutely Continuous Distributions

A real random variable X : (Ω,A) → (R,B) is said to have an absolutely continuous distribution if

there exists a measurable function fX ≥ 0 such that

µX(B) =

∫
B

fX(x) dx

for all B ∈ B and
∫
R fX(x) dx = 1 holds.

Remarks 3.22.

(1) The CDF FX is always continuous if X is absolutely continuous.

(2) If fX is continuous at some x0 ∈ R then FX is differentiable at x0 with F ′
X(x0) = fX(x0).

(3) A density fX is defined up to a set of measure 0.

(4) F ′
X = fX holds almost everywhere.

Proof. (of 1) Let x0 ∈ R and h > 0. Then

FX(x0 + h)− FX(x0) = P(X ∈ (x0, x0 + h])

=

∫ x0+h

x0

fX(t) dt =

∫
R
1(x0,x0+h](t)fX(t) dt.

Now note that 0 ≤ 1(x0,x0+h]fX ≤ fX holds and fX is integrable, so by the dominated convergence

theorem we have

lim
h→0

(FX(x0 + h)− FX(x0)) = lim
h→0

∫
R
1(x0,x0+h](t)fX(t) dt

=

∫
R
lim
h→0

1(x0,x0+h](t)fX(t) dt = 0.

Hence FX is continuous.

Examples 3.23.

• X has a Uniform distribution on [a, b] for a < b, written X ∼ U([a, b]), if

fX(x) =
1

b− a
1[a,b](x)
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holds with CDF

FX(x) =


0 if x < a

x−a
b−a if a ≤ x ≤ b

1 if x > b.

• X has an Exponential distribution with intensity/rate λ > 0, written X ∼ Exp(λ), if

fX(x) = λe−λx1[0,∞)(x)

holds with CDF

FX(x) =

0 if x < 0

1− e−λx if x ≥ 0.

• X has a Gamma distribution with shape parameter α > 0 and rate λ > 0, written X ∼ Γ(α, λ),

if

fX(x) =
λα

Γ(α)
xα−1e−λx1[0,∞)(x),

where

Γ(α) =

∫ ∞

0

tα−1e−t dt.

Note that in this case there is no closed form for the CDF.

• X has a Normal/Gaussian distribution with parameters µ ∈ R, σ2 > 0, written X ∼ N (µ, σ2),

if

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2

for x ∈ R. Again there is no closed form for the CDF.

3.5.3 Transformations of Random Variables

Let X : (Ω,A) → (R,B) be a random variable and g : R → R a measurable function. Then

Y = g(X) = g ◦X

is again a random variable with distribution

µY (B) = µX(g−1(B)).

Example 3.24. Let X ∼ N (0, 1) and Y = X2. Then

fX(x) =
1√
2π
e−

x2

2
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is symmetric around 0. Hence

fY (y) =
1
√
y

1√
2π
e−

y
2 1[0,∞)(y)

=

(
1
2

) 1
2

√
π
y

1
2−1e−

y
2 1[0,∞)(y)

=
λα√
π
yα−1e−λy1[0,∞)(y)

for α = λ = 1
2 . Then

√
π = Γ

(
1
2

)
and thus Y ∼ Γ

(
1
2 ,

1
2

)
. The distribution of Y is better known under

the name of Chi-square distribution with one degree of freedom and in this case we write Y ∼ χ2
(1).

Consider again a real random variable and let

g : U → V

be bijective in C1 and non-zero on U, where U ⊆ R is open. Now if P(X ∈ U) = 1 then Y = g ◦X is

a random variable which has an absolutely continuous distribution with density

fY =
1

|g′ ◦ g−1|
fX ◦ g−1.

Examples 3.25.

• Let

g : R → R, x 7→ ax+ b

for a ̸= 0, b ∈ R. Then g ∈ C1(R) and g′(x) = a ̸= 0 and g is bijective with

g−1(y) =
y − b

a
.

If X admits a density fX then Y = g ◦X admits the density

fY (y) =
1

|a|
fX

(
y − b

a

)
for y ∈ R.

• Let X ∼ U(0, 1) with fX = 1[0,1] and

g : (0,∞) → R, x 7→ − log x.

Then again g ∈ C1((0,∞)), g is bijective and g′(x) ̸= 0 for all x ∈ (0,∞). Hence Y = g ◦ X
admits the density

fY (y) = e−y1(0,∞)(y)

and thus Y ∼ Exp(1).
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3.6 Expectation (revisited)

Definition 3.26. Let X : (Ω,A,P) → (R,B) be a real random variable such that X ≥ 0. Then we

define

E[X] :=

∫
Ω

X(ω) dP(ω) (1)
=

∫
R
x dµX(x)

where µX is the induced probability measure by X given by µX(B) = P(X−1(B)) = P(X ∈ B). Note

that (1) needs to be proven (was done in Analysis III).

Definition 3.27. For an arbitrary random variable X, we define

E[X] := E[X+]− E[X−]

if E[X−] and E[X+] are not both infinite. In this case we still have

E[X] =

∫
Ω

X(ω) dP(ω) =
∫
R
x dµX(x).

Recall 3.28. We defined X+ = max(X, 0) and X− = max(−X, 0).

Note 3.29. In the discrete case, we have∫
R
x dµX(x) =

∑
i∈I

xiP(X = xi)

where {xi}i = X(Ω). In the absolute continuous case, we have∫
R
x dµX(x) =

∫
R
xfX(x) dx

where fX is the density of the distribution of X with respect to the Lebesque measure.

For g : (R,B) → (R,B) a measurable function such that Y = g(X) = g ◦X is integrable, that is

E(|Y |) <∞ ⇐⇒ E(Y ) <∞,

we have

E[Y ] =

∫
Ω

g(X(ω)) dP(ω)

=

∫
R
g(x) dµX(x)

=


∑

i g(xi)P(X = xi) in the discrete case∫
R g(x)fX(x) dx in the absolute continuous case.

Definition 3.30 (Moments of random variable). Let X be a random variable. Then we define
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• for k ∈ N the k-th moment of X by E[Xk].

• for k ∈ (0,∞) the k-th absolute moment of X by E[|X|k].

• for k ∈ N the k-th centered moment of X by E[(X − E[X])k].

• for k ∈ (0,∞) the k-th absolute centered moment of X by E[|X − E[X]|k].

For k = 2 we call

Var(X) := V(X) := E[(X − E[X])2] = E(|X − E[X]|2)

the variance of X.

Definition 3.31 (Standard deviation). For a random variable X we define the standard deviation of

X by σ(X) :=
√
V(X)

Proposition 3.32 (Properties of the variance). Let X be a random variable. Then

(1) V(X) = E[X2]− E[X]2.

(2) E[X2] ≥ E[X]2.

(3) V(aX + b) = a2V(X) (V is translation invariant!).

(4) σ(aX + b) = |a|σ(X).

(5) Let X1 and X2 be two independent random variables such that V(X1),V(X2) <∞. Then

V(X1 +X2) = V(X1) + V(X2)

holds.

Proof idea.

(1) Use linearity of E and that the expectation of a constant is the constant itself.

(2) Follows from (a) since V(X) ≥ 0 always holds.

(3) Use definition of V and linearity of E.

(4) Follows from the definition of standard diviation using (c).

(5) Compute

V(X1 +X2) = E[(X1 +X2)
2]− E[X1 +X2]

2

= E[X2
1 + 2X1X2 +X2

2 ]− (E[X1]
2 + 2E[X1]E[X2] + E[X2]

2)

= E[X2
1 ] +�����E[2X1X2] + E[X2

2 ]− E[X1]
2 −((((((2E[X1]E[X2]− E[X2]

2 (a)

= E[X2
1 ]− E[X1]

2 + E[X2
2 ]− E[X2]

2

= V(X1) + V(X2).

where at (a) we used the independence of X1 and X2. ::
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Examples 3.33.

• Let X ∼ Bernoulli(p), p ∈ (0, 1). Then we know that E[X] = p. Hence

V(X) = E[(X − p)2] = p(1− p)2 + (1− p)(0− p)2

= p(1− p)2 + (1− p)p2 = p(1− p)(1− p+ p)

= p(1− p).

Alternatively, we see that

V(X) = E[X2]− E[X]2
(1)
= E[X]− E[X]2 = p− p2 = p(1− p),

where at (1) we used the fact that X(ω) ∈ {0, 1}.

• Let X ∼ Bin(n, p) with n ∈ N and p ∈ (0, 1). Then E[X] = np and thus

V(X) = E[X2]− E[X]2 = E[X2]− n2p2

and

E[X2] =
∑
i

g(xi)P(X = xi) =

n∑
k=0

k2
(
n

k

)
pk(1− p)n−k

= . . . (gets complicated)

where X(Ω) = {0, 1, . . . , n} and P(X = k) =
(
n
k

)
pk(1− p)n−k. But note that in this case we also

have X = X1 + . . .+Xn with X1, . . . , Xn are independent outcomes of tossing a p-coin n times,

so X1, . . . , Xn are i.i.d. (independent identically distributed) ∼ Bernoulli(p). Hence

V(X) =

n∑
i=1

V(Xi) = npV(X1) = np(1− p).

• Let X ∼ Pois(λ) with λ ∈ (0,∞), so E[X] = λ. Then

E[X2] =

∞∑
k=1

k2
e−λλk

k!
=

∞∑
k=1

ke−λλk

(k − 1)!

=

∞∑
k=0

(k + 1)e−λλk+1

k!
=

∞∑
k=0

ke−λλk+1

k!

= λ

∞∑
k=0

ke−λλk

k!
+ λ

∞∑
k=0

e−λλk

k!︸ ︷︷ ︸
1

= λE[X] + λ = λ2 + λ.

Hence we have V(X) = λ2 + λ− λ2 = λ.
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• Let X ∼ U(0, 1), so fX(x) = 1[0,1](x) and

E[X] =

∫
R
xfX(x) dx =

∫ 1

0

x dx =
1

2
.

Furthermore

E[X2] =

∫
R
g(x)fX(x) dx =

∫ 1

0

x2 dx =
1

3

and thus

V(X) = E[X2]− E[X]2 =
1

3
− 1

4
=

1

12
.

In general consider Y ∼ U(a, b). Then X := Y−a
b−a ∼ U(0, 1) and thus

E
[
Y − a

b− a

]
=

1

2
=⇒ E[Y ] = a+

1

2
(b− a) =

a+ b

2

and

1

12
= V(X) = V

(
Y − a

b− a

)
= V

(
Y

b− a
− a

b− a

)
= V

(
Y

b− a

)
=

1

(b− a)2
V(Y )

=⇒ V(Y ) =
(b− a)2

12
.

• Let X ∼ N (0, 1), so fX(x) = 1√
2π
e−x2/2 and

E[X] =

∫
R
xfX(x) dx =

∫
R
x 1
2
√
π
e−x2/2︸ ︷︷ ︸

odd

dx = 0.

Furthermore,

E[X2] =

∫
R
x2fX(x) dx =

∫
R
x2 1

2
√
π
e−x2/2 dx

= 1
2
√
π

∫
R
x · xe−x2/2 dx = 1

2
√
π

[−xe−x2/2]∞−∞︸ ︷︷ ︸
0

+

∫
R
e−x2/2 dx


= 1

2
√
π

∫
R
e−x2/2 dx = 1

and thus

V(X) = E[X2]− E[X]2 = 1.

In general, for X ∼ N (m,σ2) we have

E[X] = m

E[X2] = σ2 +m2

V(X) = σ2.
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3.7 Inequalities

Theorem 3.34 (Jensen’s inequality). Let X be an integrable random variable and g : R → R be a

convex function such that g(X) = g ◦X is integrable. Then

E[g(X)] ≥ g(E[X])

holds and is called Jensen’s inequality.

Proof idea. Since g is convex, taking the tangent l(x) of the graph of g at any point x ∈ R gives the

inequality

g(x) ≥ l(x) = g(E[X]) + α(x− E[X]),

where α is the slope of the tangent, i.e. α = g′(E[X]). Then

E[g(X)] ≥ E[l(X)] = g(E[X]). ::

Remark 3.35. To remember the direction of Jensen’s inequality, replace g(x) by x2 and recall that

E[X2] ≥ E[X]2

always holds.

Theorem 3.36 (Generalized Tchebychev’s inequality). Let g : R → R be a real measurable function

such that

g ≥ 0

and g is non-decreasing on R. Then for any c ∈ R such that g(c) > 0 we have that

P(X ≥ c) ≤ E[g(X)]

g(c)

holds. This is called the generalized Tchebychev inequality.

Proof. Let c ∈ R such that g(c) > 0. Then

1[c,∞)(x) ≤
g(x)

g(c)

holds for all x ∈ R since g is non-decreasing. Hence

E[1[c,∞)] ≤ E
[
g(X)

g(c)

]
=

E[g(X)]

g(c)

⇐⇒ P(X ≥ c) ≤ E[g(X)]

g(c)

which concludes the proof.
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Example 3.37 (Markov’s inequality). Let g(x) = max(x, 0) = x+. Replace the random variable X

by |X| to obtain

P(|X| > c) ≤ E[g(X)]

g(c)
=

E[|X|]
c

for all c > 0, which is called Markov’s inequality. If X admits a finite variance V(X) <∞, then

P(|X − E[X]| > c) = P((X − E[X])2 > c2)

≤ E[(X − E[X])2]

c2

=
V(X)

c2

holds for all c > 0. For example, if X ∼ N (µ, σ2) we obtain

P(|X − µ| > 3σ) ≤ σ2

9σ2
=

1

9

since we have E[X] = µ and V(X) = σ2.

3.8 Several Random Variables: Random Vectors

Definition 3.38 (Random vector). Let X1, . . . , Xn be n real random variables defined on the same

probability space (Ω,A,P). Consider

X := (X1, . . . , Xn) : (Ω,A,P) → (Rn,Bn),

where

Bn = σ

({
n∏

i=1

(ai, bi] | −∞ < ai < bi <∞

})
(1)
= σ({A1 × . . .×An | Ai ∈ B})

is the Borel σ-algebra on Rn and (1) can be shown. Then X is a random vector, meaning that it is

measurable with respect to A and Bn. We can also define µX to be the image of P under X, that is

the probability measure (Rn,Bn) induced by X. Hence

∀B ∈ Bn : µX(B) = P(X ∈ B) = P((X1, . . . , Xn) ∈ B).

Furthermore, the (comulative) distribution function of X is given by

FX(x1, . . . , xn) = P

(
X ∈

n∏
i=1

(−∞, xi]

)
= P(X1 ≤ x1, . . . , Xn ≤ xn).
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Discrete case. Let X(Ω) = X1(Ω)× . . .×Xn(Ω) with Xi(Ω) being coutable. Then µX has density

with respect to the counting measure, so

µX(B) =
∑

(x1,...,xn)∈B

P(X1 = x1, . . . , Xn = xn).

Absolutely continuous case. Then µX has density fX with respect to the Lebesgue measure λ

on Rn, so

µX(B) =

∫
B

fX(x1, . . . , xn) d(x1, . . . , xn)

is a measurable function from (Rn,Bn) to (R,B) and∫
Rn

fX(x1, . . . , xn) d(x1, . . . , xn) = 1

holds. Marginal distributions. ”Individual” distribution of the components X1, . . . , Xn. Fix i ∈

{1, . . . , n}.
Question #1. How can we deduce the distribution of the component Xi from the (joint) distribution

of X?

−→ For B ∈ B we have µXi
(B) = P(Xi ∈ B) by definition. Now, note that

{Xi ∈ B} = {X1 ∈ R, . . . , Xi−1 ∈ R, Xi ∈ B,Xi+1 ∈ R, . . . , Xn ∈ R}

and thus

µXi(B) = µX(Ri−1 ×B × Rn−i).

Question #2. If X has density fX w.r.t. the Lebesgue measure on Rn, is the distribution of Xi

absolutely continuous w.r.t. the Lebesgue measure on R and if yes, what is its density?

−→ We have that

µXi(B) =

∫
Ri−1×B×Rn−i

fX(x1, . . . , xn) d(x1, . . . , xn)

=

∫
B

∫
Ri−1×Rn−i

fX(x1, . . . , xn) d(x1, . . . , xi−1, xi+1, . . . , xn)︸ ︷︷ ︸
density of the distribution of Xi

dxi (1)

where at (1) we used Fubini’s theorem. So the answer is yes and to obtain the density of Xi, wone

needs to integrate the (joint) density fX over the remaining components.

Remark 3.39. A similar result holds for discrete distributions:

P(Xi = xi) =
∑

xj∈Xj(Ω)
j∈{1,...,n}∖{i}

P(X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn).
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Example 3.40. Consider the random pair Z = (X,Y ) with density

fZ(x, y) = ye−x1{x>y>0}.

We now want to compute the marginal densities fX and fY . Let’s check that fZ is a density. We have∫
R2

fZ d(x, y) =

∫
R

∫
R
ye−x 1{x>y>0}︸ ︷︷ ︸

1{y>0}·1{x>y}

dx dy

=

∫ ∞

0

∫ ∞

y

ye−x dx dy =

∫ ∞

0

y

∫ ∞

y

e−x dx dy

=

∫ ∞

0

y[−e−x]∞y dy =

∫ ∞

0

ye−y dy
(1)
= 1,

where at (1) we used integration by parts. Hence

fX(x) =

∫
R
fZ(x, y) dy =

∫
R
ye−x1{x>y>0} dy

= e−x · 1{x>0}

∫ x

0

y dy =
x2

2
e−x1{x>0}

=
13

Γ(3)
x3−1e−x1{x>0}

and thus X ∼ Γ(3, 1) holds. Similarly we have

fY (y) =

∫
R
fZ(x, y) dx

=

∫
R
ye−x1{x>y>0} dx =

∫ ∞

y

ye−x dx · 1{y>0}

= y · 1{y>0}

∫ ∞

y

e−x dx = ye−y1{y>0}

=
12

Γ(2)
y2−1e−y1{y>0}

and thus Y ∼ Γ(2, 1).

Definition 3.41 (Independence). Let X1, . . . , Xn be real random variables defined on (Ω,A,P). Then
X1, . . . , Xn are said to be independent if

∀A1, . . . , An ∈ B : P(X1 ∈ A1, . . . , Xn ∈ An) =

n∏
i=1

P(Xi ∈ Ai)

holds.

Theorem 3.42. Let X1, . . . , Xn be independent random variables such that for all i ∈ {1, . . . , n} the

distribution of Xi admits a density fXi w.r.t. the Lebesgue measure on R. Then the distribution of
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X = (X1, . . . , Xn) is absolutely continuous w.r.t. the Lebesgue measure on Rn with density

fX(x1, . . . , xn) =

n∏
i=1

fXi
(xi).

Conversely, if X admits a density fX of the form

fX(x1, . . . , xn) = g1(x1) · · · gn(xn)

for all x1, . . . , xn ∈ R with measurable gi ≥ 0, then X1, . . . , Xn are independent with

fXi
(xi) =

gi(xi)∫
R gi(x) dx

for all xi ∈ R and i ∈ {1, . . . , n}.

Example 3.43. Let X = (X1, . . . , Xn) be a random vector with density

fX(x1, . . . , xn) =
1

(2π)n/2
e−

1
2
∑n

i=1 x2
i .

We have that

fX(x1, . . . , xn) =

n∏
i=1

1√
2π
e−

x2
i

2

and thus X1, . . . , Xn are independent and we have Xi ∼ N (0, 1) for all i ∈ {1, . . . , n}. In this case X is

called a Gaussian/Normal vector with expectation (0, . . . , 0) and covariance matrix Σ = In×n ∈ Rn×n.

3.9 Transformation of random vectors

Let X : (Ω,A,P) → (Rn,Bn) be a random vector and g : (Rn,Bn) → (Rm,Bm) be a measurable

function. Then

Y := g(X) = g ◦X

is again a random vector with distribution given by

µY = µX ◦ g−1.

Theorem 3.44. Let

g : (Rn,Bn) → (Rn,Bn), x 7→ m+ Sx

with m ∈ Rn and S ∈ GLn(R) fixed. If X is a random vector admitting a density fX, then Y =

g(X) = m+ SX admits the density

fY(y) =
1

|det(S)|
fX(S

−1(y −m))

for all y ∈ Rn.
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Exercise 3.45. Let X1 and X2 be two independent random variables with densities fX1 anf fX2

respectively and let Z = X1 + X2, called the convolution of X1 and X2. Show that Z admits the

density

fZ(z) =

∫
R
fX1(x)fX2(z − x) dx.

Hint. Note that

Y =

(
Z

X1

)
=

(
1 1

1 0

)(
X1

X2

)
+

(
0

0

)
holds.

3.10 Covariance and Correlation

Definition 3.46 (Covariance). LetX1 andX2 be two random variables defined on the same probability

space (Ω,A,P) satisfying

E[|X1X2|] <∞,

E[|X1|], E[|X2|] <∞.

Then, the covariance of X1 and X2 is defined by

cov(X1, X2) := E[(X1 − E[X1])(X2 − E[X2])].

Remark 3.47. Let X1, X2 be random variables as in the definition of covariance. Then

(1) cov(X1, X2) = E[X1X2]− E[X1]E[X2],

(2) |cov(X1, X2)| ≤
√
E[X1 − E[X1]]2

√
E[X2 − E[X2]]

Def.
=
√
V(X1)

√
V(X2).

Hence if V(X1),V(X2) > 0, then we get

|cov(X1, X2)|√
V(X1)

√
V(X2)

∈ [0, 1].

Proof idea.

(1) Direct computation using linearity of E.

(2) Follows from the Cauchy-Schwarz inequality. ::

Theorem 3.48. Let X1, X2, X3 be random variables as in the definition of covariance. Then

(a) cov(X,X) = V(X).

(b) cov(X1, X2) = cov(X2, X1).

(c) cov(X1, αX2 + β) = αcov(X1, X2) for all α, β ∈ R.

67



Probability & Statistics

Fadoua Balabdaoui

(d) cov(X1, X2 +X3) = cov(X1, X2) + cov(X1, X3).

(e) V(X1 +X2) = V(X1) + V(X2) + 2cov(X1, X2).

(f) If X1 and X2 are independent, then cov(X1, X2) = 0 holds.

Proof idea.

(a)-(d) Clear.

(e) We have

V(X1 +X2)
(a)
= cov(X1 +X2, X1 +X2)

= cov(X1, X1) + cov(X1, X2) + cov(X2, X1) + cov(X2, X2)

= V(X1) + 2cov(X1, X2) + V(X2).

In general, it holds that

V
( n∑

i=1

aiXi

)
=

n∑
i=1

n∑
j=1

aiaj · cov(Xi, Xj)

=

n∑
i=1

a2iV(Xi) +
∑

1≤i̸=j≤n

aiaj · cov(Xi, Xj)

=

n∑
i=1

a2iV(Xi) + 2
∑

1≤i<j≤n

aiaj · cov(Xi, Xj)

for all a1, . . . , an ∈ R.

(f) If X1 and X2 are independent, then

E[X1X2] = E[X1]E[X2]
by Def.
=⇒ cov(X1, X2) = 0

holds. ::

Definition 3.49 (Correlation). Let X1 and X2 be two random variables defined on the same prob-

ability space such that V(X1),V(X2) ∈ (0,∞) holds. Then the correlation of X1 and X2 is defined

by

ρ(X1, X2) :=
cov(X1, X2)√
V(X1)

√
V(X2)

.

Remark 3.50. Let X1, X2 be as in the definition of correlation. Then

(a) |ρ(X1, X2)| ≤ 1 (Cauchy-Schwarz inequality).
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(b) We have ρ(X1, X2) = 1 if any only if there exists a α > 0 with

P(X2 − E[X2]) = α(X1 − E[X1]) = 1.

In the same way ρ(X1, X2) = −1 holds if any only if there exists a α > 0 with

P(X1 − E[X1]) = α(X2 − E[X2]) = 1.

This means that correlation is a measure of linear dependence.

3.11 Limit Theorems

Definition 3.51 (Modes of convergence). Let (Zn)n and Z be random variables defined on the same

probability space.

(a) We say that the sequence (Zn)n converges in probability to Z if

∀ε > 0 : lim
n→∞

P(|Zn − Z| > ε) = 0

holds and we denote it by Zn
P−→ Z.

(b) We say that (Zn)n converges to Z almost surely (in short a.s.) if

P( lim
n→∞

Zn = Z) = 1

holds and we denote it by Zn
a.s.−−→ Z.

Lemma 3.52. We have Zn
a.s.−−→ Z if any only if

∀ε > 0 : lim
n→∞

P(|Zk − Z| ≤ ε, ∀k ≥ n) = 1

holds.

Proof. First set

An,ε := {|Zk − Z| ≤ ε | k ≥ n}

and note that

Zn
a.s.−−→ Z ⇐⇒ P(∀ε > 0 ∃n ≥ 1 ∀k ≥ n : |Zk − Z| ≤ ε) = 1

⇐⇒ P
( ⋂

ε>0

⋃
n≥1

An,ε

)
= 1.

Note that the sequence (
⋃

n≥1An,ε)ε is decreasing when ε is decreasing. Indeed, if ε2 < ε1 then⋃
n≥1

An,ε2 = {∃n ≥ 1 ∀k ≥ n : |Zk − Z| ≤ ε2}

⊆ {∃n ≥ 1 ∀k ≥ n : |Zk − Z| ≤ ε1}

=
⋃
n≥1

An,ε1 .
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Hence we get

P
( ⋂

ε>0

⋃
n≥1

An,ε

)
= lim

ε→0
P
( ⋃

n≥1

An,ε

)
.

Claim. Now we have

P
( ⋂

ε>0

⋃
n≥1

An,ε

)
= 1 ⇐⇒ ∀ε > 0 : P

( ⋃
n≥1

An,ε

)
= 1.

“ =⇒ ”. Observe that ⋃
n≥1

An,ε ⊇
⋂
ε>0

⋃
n≥1

An,ε

=⇒ P
( ⋃

n≥1

An,ε

)
≥ P

( ⋂
ε>0

⋃
n≥1

An,ε

)
= 1

=⇒ ∀ε > 0 : P
( ⋃

n≥1

An,ε

)
= 1.

“ ⇐= ”. If ε > 0 P(
⋃

n≥1An,ε) = 1, then we have

lim
ε→0

P
( ⋃

n≥1

An,ε

)
= 1 =⇒ P

( ⋂
ε>0

⋃
n≥1

An,ε

)
= 1.

This proves the ‘Claim‘. Now, note that the sequence (An,ε)n is increasing and hence

P
( ⋃

n≥1

An,ε

)
= lim

n→∞
P(An,ε).

Therefore, we can conclude that

Zn
a.s.−−→ Z ⇐⇒ ∀ε > 0 : lim

n→∞
P(An,ε) + 1

⇐⇒ ∀ε > 0 : lim
n→∞

P(|Zn − Z| ≤ ε,∀k ≥ n) = 1

holds. □

Theorem 3.53.

(i) Almost sure convergence implies convergence in probability.

(ii) If we have

∀ε > 0 :

∞∑
n=1

P(|Zn − Z| > ε) <∞

then

Zn
a.s.−−→ Z

holds.
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Proof.

(i) We have that

{|Zk − Z| ≤ ε, ∀k ≥ n} ⊆ {|Zn − Z| ≤ ε}.

Now, form Lemma 3.52 it follows that

Zn
a.s.−−→ Z ⇐⇒ ∀ε > 0 : lim

n→∞
P(|Zn − Z| ≤ ε, ∀k ≥ n) = 1

=⇒ ∀ε > 0 : lim
n→∞

P(|Zn − Z| ≤ ε) = 1 (1)

⇐⇒ ∀ε > 0 : lim
n→∞

P(|Zn − Z| > ε) = 0

⇐⇒ Zn
P−→ Z,

where at (1) we used that

P(|Zn − Z| ≤ ε) ≥ P(|Zn − Z| ≤ ε,∀k ≥ n)

holds.

(ii) For a fixed ε > 0 define

Bn,ε := {|Zn − Z| > ε}.

By the first statement of the Borel-Cantelli lemma, we have∑
n≥1

P(Bn,ε) <∞ =⇒ P(B∞,ε) = 0,

where

B∞,ε :=
⋂
n≥1

⋃
k≥n

Bk,ε ( = {Bk,ε infinitely often}).

Hence we have

P(Bc
∞,ε) = 1 ⇐⇒ P

( ⋃
n≥1

⋂
k≥n

Bc
k,ε︸ ︷︷ ︸

=An,ε

)
= 1

=⇒ lim
n→∞

P
( ⋃

n≥1

An,ε

)
= 1

⇐⇒ lim
n→∞

P(An,ε) = 1

⇐⇒ lim
n→∞

P(|Zk − Z| ≤ ε,∀k ≥ n)

and thus again using Lemma 3.52 we can conclude that

Zn
a.s.−−→ Z

holds since ε > 0 was arbitrary.
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Example 3.54. Note that convergence in probability does not imply convergence almost surely. In

fact, consider (Xn)n to be independent Bernoulli random variables such that

P(Xi = 1) = 1− P(Xi = 0) =
1

i

holds for all i ≥ 1. For ε > 0 we have

P(|Xn − 0| > ε) = P(Xn > ε) =

P(Xn = 1) = 1
n if ε ∈ (0, 1)

0 if ε ≥ 1.

Hence

∀ε > 0 : lim
n→∞

P(|Xn − 0| > ε) = 0

and thus Xn
P−→ 0 holds. Now observe that∑

n≥1

P(Xn = 1) =
∑
n≥1

1

n
= ∞

also holds and since (Xn)n are independent, it follows from the second statement of the Borel-Cantelli

lemma that

P
( ⋂

n≥1

⋃
k≥n

{Xk = 1}
)
= 1.

Since (
⋃

k≥n{Xk = 1})n is decreasing, we have that

P
( ⋂

n≥1

⋃
k≥n

{Xk = 1}
)
= lim

n→∞
P
( ⋃

k≥n

{Xk = 1}
)

and thus

lim
n→∞

P(Xi = 1 for some k ≥ n) = 1. (1)

Suppose for a contradiction that Xn
a.s.−−→ 0 holds. Then

∀ε > 0 : lim
n→∞

P(Xk ≤ ε, ∀k ≥ n) = 1

must holds. For ε ∈ (0, 1) this means

lim
n→∞

P(Xk = 0,∀k ≥ n) = 1 ⇐⇒ lim
n→∞

P(Xk = 1 for some k ≥ n) = 0

which contradicts (1). Hence (Xn)n does not converges almost surely to 0.
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3.12 Weak Law of Large Numbers (W.L.L.N.)

Proposition 3.55 (W.L.L.N.). Let X1, X2, . . . , Xn be random variables defined on the same probability

space. Assume that

∀i ∈ {1, . . . , n} : V(Xi) <∞,

∀1 ≤ i ̸= j ≤ n : cov(Xi, Xj) = 0,

∀i ∈ {1, . . . , n} : E[Xi] = m ∈ R,
n∑

i=1

V(Xi) = o(n2) as n→ ∞,

hold. Then we have

Xn
P−→ m

with

Xn :=
1

n

n∑
i=1

Xi

which is called the sample mean or empirical mean.

Proof. We have

E[Xn] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi]︸ ︷︷ ︸
n·m

= m

and

V(Xn) = V

(
1

n

n∑
i=1

Xi

)
=

1

n2
V

(
n∑

i=1

Xi

)

=
1

n2

 n∑
i=1

V(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj)︸ ︷︷ ︸
=0


=

1

n2

n∑
i=1

V(Xi).

By Theorem 3.36 we have

P(|Xn − E[Xn]| > ε) ≤ V(Xn)

ε2

⇐⇒ P(|Xn −m| > ε) ≤ 1

n2

n∑
i=1

V(Xi)︸ ︷︷ ︸
=nV(X1)

1

ε2
= o(1)

1

ε2
= o(1)
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as n→ ∞ and thus

∀ε > 0 : lim
n→∞

P(|Xn −m| > ε) = 0 ⇐⇒ Xn
P−→ m

which concludes the proof.

Special Case. Let X1, . . . , Xn be i.i.d. random variables such that E[Xi] = m and V(Xi) = σ2 holds

for every i ∈ {1, . . . , n}. Then cov(Xi, Xj) = 0 holds for i ̸= j and we have

n∑
i=1

V(Xi) = nσ2 = o(n2)

as n→ ∞. In this case, we have

Xn
P−→ m.

Theorem 3.56 (S.L.L.N.). Let X1, . . . , Xn be i.i.d. random vairbales such that

E[X2
i ] = E[X2

1 ] <∞.

Then Xn
a.s.−−→ E[X1] = m holds as n→ ∞.

Remark 3.57. We have

(a) E[X2
1 ] <∞ =⇒ V(X1) <∞.

(b) The assumption that E[X2
1 ] <∞ should hold is “too strong”. Indeed, the SLLN holds under the

weaker condition that E[|X1|] <∞ holds but the proof for this will be more involved.

(c) Note that S.L.L.N. =⇒ W.L.L.N. holds since convergence a.s. implies convergence in probability.

Proof. (of (a)) By Jensen’s inequality 3.34 we have

E[|X1|] ≤
√
E[X2

1 ] <∞

which implies

V(X1) = E[X2
1 ]− E[X1]

2 <∞.

3.13 Weak Convergence (Convergence in Law / Distribution)

Definition 3.58.

• Let µn for n ≥ 1 and µ be probability measures on (R,B). We say that the sequence (µn)n

converges weakly to µ if ∫
f dµn

n→∞−−−−→
∫
f dµ

holds for all continuous and bounded functions f.
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• Let Zn for n ≥ 1 and Z be random variables (not necessarily defined on the same probability

space). We say that the sequence (Zn)n converges weakly or in law/distribution to Z if (µZn)n

converges weakly to µZ , where µZn
and µZ are the distributions of Zn and Z respectively. This

means ∫
f dµZn

n→∞−−−−→
∫
f dµZ

or equivalently E[f(Zn)]
n→∞−−−−→ E[f(Z)]

should hold for all continuous and bounded functions f on R. We denote this by

µn
d−→ µ, Zn

d−→ Z

or µn
L−→ µ, Zn

L−→ Z.

Lemma 3.59. Let µn and µ be probability measures on (R,B) with (commulative) distribution func-

tions Fn and F respectively, that is Fn(x) = µn((−∞, x]) and F (x) = µ((−∞, x]) for x ∈ R. Then the

following statements are equivalent:

• µn
d−→ µ.

• Fn(x)
n→∞−−−−→ F (x) holds for any continuity point x of F.

•
∫
f dµn

n→∞−−−−→
∫
f dµ for any f ∈ C3

b (R), where

C3
b (R) := {f ∈ C3(R) | ∃M > 0 : sup

j∈{0,1,2,3}
|f (j)(x)| < M}.

Theorem 3.60 (Lévy’s continuity theorem). Let Zn and Z be random variables and define

φZn(t) := E[eitZn ]

φZ(t) := E[eitZ ]

for t ∈ R, which are called characteristic functions of Zn and Z. Then

Zn
d−→ Z ⇐⇒ ∀t ∈ R : φZn

(t)
n→∞−−−−→ φZ(t)

holds.

Example 3.61. Let Xn ∼ Bin
(
n, λn

)
for λ ∈ (0,∞) and n ∈ N such that n > λ. Then Xn

d−→ X ∼
Pois(λ) holds.
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Proof. We have

φXn(t) = E[eitXn ] =

n∑
k=0

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

eitk

=

n∑
k=0

(
n

k

)(
λ

n
eit
)k (

1− λ

n

)n−k

=

(
λ

n
eit + 1− λ

n

)n

=

(
1 +

λ(eit − 1)

n

)n
n→∞−−−−→ eλ(e

it−1)

where in the last step we used limn→∞

(
1 + ξ

n

)n
= eξ holds for ξ ∈ C. Similarly, we have

φX(t) = E[eitx] =
∞∑
k=0

e−λλk

k!
eitk

= e−λ
∞∑
k=0

(eitλ)k

k!︸ ︷︷ ︸
=eλeit

= eλ(e
it−1)

which proves the example by using Theorem 3.60.

3.14 The Central Limit Theorem (C.L.T.)

Theorem 3.62 (CLT). Let X1, . . . , Xn be i.i.d. random variables with E[Xi] = m ∈ R and V(Xi) =

σ2 ∈ (0,∞) for any i ∈ {1, . . . , n}. Then
√
n(Xn −m)

σ

d−→ Z ∼ N (0, 1)

holds, where again Xn := 1
n

∑n
i=1Xi as usual. (This means that

P
(√

n(Xn −m)

σ
≤ ξ

)
n→∞−−−−→

∫ ξ

−∞

1√
2π
e−

x2

2 dx

holds for any ξ ∈ R.)

Example 3.63. Let X1, . . . , Xn
i.i.d.∼ Bernoulli(p) with p ∈ (0, 1). Then E[Xi] = p and V(Xi) =

p(1− p) ∈ (0,∞) hold and thus by Theorem 3.62 we have

√
n(Xn − p)√
p(1− p)

d−→ N (0, 1)

or equivalently √
n(Xn − p)

d−→ N (0, p(1− p)).
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Example 3.64. Suppose a load of 49 boxes is to be transported by an elevator. The weight of the

boxes have expected value m = 92 kg and standard deviation σ = 6 kg.

Question. What is the probability that the 49 boxes can be transported if we know that the maximal

weight should not exeed 4410 kg?

−→ Answer. Let p = “the probability that the 49 boxes can be transported”. Let X1, . . . , Xn with

n = 49 be the weights of the boxes. Then by the assumptions we have

p = P(
49∑
i=1

Xi ≤ 4410) = P
(
X49 ≤ 4410

49

)

= P

(√
49(X49 −m)

σ
≤

√
49

σ

(
4410

49
−m

))

= P


√
49(X49 −m)

σ
≤ 7

6
(90− 92)︸ ︷︷ ︸
≈−2.333


≈ P(Z ≤ −2.333) = 0.0098

where Z ∼ N (0, 1) by using Theorem 3.62.
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Statistics

4 Introduction to Statistics

4.1 Notation

Notation. Let X be a random variable X : (Ω,A,P) → (R,B).

• We know that X induces a probability measure, denoted by µX , that is

∀B ∈ B : µX(B) = P(X ∈ B).

Here, we will denote µX by P.

• We will write X ∼ P to mean that X has distribution equal to P.

Problem. In statistical applications, the distribution P is unknown.

−→ Solution. We will estimate P based on i.i.d. “copies” of X, so X1, . . . , Xn.

• We write X := X(Ω) = “the sample space (to which the values of X belong)” and

Xn := (X1, . . . , Xn) ∈ Xn = “the random sample of size n”.

4.2 (Parametric) Statistical Models

Definition 4.1. A (parametric) statistical model stipulates that

P ∈ P := {Pθ | θ ∈ Θ},

where Θ ⊆ Rd for some d ∈ N is a parametric space and Pθ is a probability measure on (R,B) for all
θ ∈ Θ. In particular, if X ∼ P = Pθ for some θ ∈ Θ and if X admits a finite expectation, we will write

Eθ[X] := E[X]. Also, if X admits a finite variance, then we will write Varθ(X) := V(X).

Example 4.2. Let X ∼ Pois(θ) for some θ ∈ (0,∞). This means that

P ∈ {Pθ | θ ∈ (0,∞)︸ ︷︷ ︸
=Θ

}

with

Pθ(B) =
∑
k∈B

e−λλk

k!

for all B ∈ B. Suppose that X ∼ N (µ, σ2) and put θ = (µ, σ2). Then

P ∈ P = {Pθ | θ ∈ R× (0,∞)}

and

∀B ∈ B : Pθ(B) =

∫
B

1√
2π
e−

(x−µ)2

2σ2 dx.
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4.3 Parametric of Interest and Estimators

Let P = {Pθ | θ ∈ Θ} be some (parametric) statistical model.

Definition 4.3. A parameter of interest is γ = Q(P ), where Q : P → Γ ⊆ Rk is some given map for

k ∈ N. For θ ∈ Θ we will write g(θ) = Q(Pθ) where g : Θ → Γ.

Examples 4.4.

• Consider again X ∼ N (µ, σ2) and let

γ = Q(P ) =

∫
R
x dP (x)

be the parameter of interest. Then for θ = (µ, σ2) we have

g(θ) =

∫
R
x dPθ(x) = Eθ[X] = µ.

• Let X ∼ Exp(λ) for λ ∈ (0,∞), so θ = λ and Θ = (0,∞). Set g(λ) = λ, which means that we

are “interested” in the rate λ. Now compute

Eλ[X] =

∫ ∞

0

xλe−λx dx = [−xe−λx]∞0︸ ︷︷ ︸
=0

+

∫ ∞

0

e−λx dx

=
1

λ

∫ ∞

0

λe−λx dx︸ ︷︷ ︸
=1

=
1

λ
.

But this is equivalent to

λ =
1

Eλ[X]
=

(∫
R
x dPλ(x)

)−1

and thus

Q(P ) =

(∫
R
x dP (x)

)−1

holds.

We consider a random sample Xn = (X1, . . . , Xn) ∈ Xn = X(Ω)n.

Definition 4.5 (Estimator). An estimator T is a measurable map T : Xn → Γ. We will also call the

value T (X1, . . . , Xn) an estimator or a statistic.

Examples 4.6.

• Suppose we observe X1, . . . , Xn
i.i.d.∼ N (µ, σ2). Then consider

T1(X1, . . . , Xn) := X1
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and

T2(X1, . . . , Xn) := Xn =
1

n

n∑
i=1

Xi.

Question. Which estimator is “better”?

• Let X1, . . . , Xn
i.i.d.∼ U(0, θ) with θ ∈ (0,∞) =: Θ and consider the estimators

T1(X1, . . . , Xn) := 2Xn

T2(X1, . . . , Xn) := max
1≤i≤n

Xi

T3(X1, . . . , Xn) :=
n+ 1

n
max
1≤i≤n

Xi

Question. Which estimator is “best”?

4.4 The L.L.N. and Constructing Estimators

Note. Recall that if X1, . . . , Xn are i.i.d. random variables such that E[|X1|] < ∞, then by the

W.L.L.N. (Proposition 3.55) we have

Xn
P−→ m := E[X1] = E[Xi]

for all 1 ≤ i ≤ n. If we are interested in µ (= γ) =
∫
R x dP (x), then a sensible estimator is Xn (at least

for n large enough).

Theorem 4.7 (Continuous mapping theorem). Let f be a real function with Cf = {points of continuity of f}.
For a random variable Z such that P(Z ∈ Cf ) = 1, it holds that

Zn
P−→ Z =⇒ f(Zn)

P−→ f(Z),

Zn
a.s.−−→ Z =⇒ f(Zn)

a.s.−−→ f(Z).

This means that if the parameter of interest g(θ) = Q(Pθ) takes the form g(θ) = f(Eθ[X]) with X a

random variable having the same distribution as X1, . . . , Xn and f is a continuous function, then

T (X1, . . . , Xn) = f(Xn)

is a sensible estimator of g(θ). We have

f(Xn)
a.s./P−−−→ f(Eθ[X]).

Example 4.8. Consider again X,X1, . . . , Xn
i.i.d.∼ Exp(λ) with λ ∈ (0,∞) = Θ and g(λ) = λ. We

have already shown that

g(λ) =
1

Eλ[X]
= f(Eλ[X])
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holds for f(x) = x−1 continuous on Θ. Then by the Continuous mapping theorem 4.7 we know that

T (X1, . . . , Xn) =
1

Xn

= f(Xn)

is a good estimator of g(λ) = λ since

f(Xn)
a.s./P−−−→ λ

holds. On the other hand, suppose that the parameter of interest g(θ) takes the form Eθ[k(X)] with

k such that Eθ[|k(X)|] <∞. Then, by the L.L.N., a sensible estimator would be

T (X1, . . . , Xn) =
1

n

n∑
i=1

k(Xi).

Examples 4.9.

• Consider X1, . . . , Xn
i.i.d.∼ N (µ, σ2). We are interested in estimating σ2, where θ = (µ, σ2) ∈ Θ =

R× (0,∞). We have

σ2 = Varθ(X) = Eθ[X
2]− Eθ[X]2.

Now consider the estimator

T (x1, . . . , xn) =
1

n

n∑
i=1

X2
i −X

2

n

=
1

n

n∑
i=1

(Xi −Xn)
2. (−→ sample/empirical variance)

In fact. We have

1

n

n∑
i=1

(Xi −Xi)
2 =

1

n

n∑
i=1

(X2
i − 2XiXn +X

2

n)

=
1

n

n∑
i=1

X2
i − 2Xn

1

n

n∑
i=1

Xi︸ ︷︷ ︸
=Xn

+X
2

n

=
1

n

n∑
i=1

X2
i − 2Xn +X

2

n

=
1

n

n∑
i=1

X2
i −X

2

n.

• Suppose that based on i.i.d. random variables X,X1, . . . , Xn we are interested in estimating the

(common) comulative distribution function

FX1(t) = P(X1 ≤ t) = FX(t) = P(X ≤ t)
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for t ∈ R. Then

FX(t) =

∫
Ω

1{X(ω)≤t} dP(ω)

=

∫
R
1{x≤t} dP (x)

= EP [1{X≤t}︸ ︷︷ ︸
=:k(X)

]

with P = µX = the distribition of X. A sensible estimator is

F̂n(t) := Fn(t) :=
1

n

n∑
i=1

1{Xi≤t}

where F̂n = Fn is called the empirical/sample cumulative distribution function. By the L.L.N.

we have

F̂n(t)
a.s./P−−−→ FX(t)

for every t ∈ R and by the CLT 3.62 we also have

√
n

F̂n(t)− FX(t)√
FX(t)(1− FX(t))

d−→ N (0, 1).

for t ∈ R such that F (t) ∈ (0, 1). We also get

sup
t∈R

|F̂n(t)− FX(t)| a.s.−−→ 0,

which is called the Glivenko-Cantelli theorem.

4.5 Mean Squared Error

Definition 4.10. The mean squared error (MSE ) of some estimator T of g(θ) is the quantity

MSEθ(T ) := Eθ[(T − g(θ))2]

= Eθ[(T (X1, . . . , Xn)− g(θ))2].

The bias of T is the quantity

biasθ(T ) := Eθ[T ]− g(θ) = Eθ[T (X1, . . . , Xn)]− g(θ).

The estimator T is said to be unbiased if

∀θ ∈ Θ : Eθ[T ] = g(θ)

holds, which is equivalent to biasθ(T ) = 0 for every θ ∈ Θ.
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Lemma 4.11. We always have

MSEθ(T ) = biasθ(T )
2 +Varθ(T ).

Proof. We have

MSEθ(T ) = Eθ[(T − g(θ))2]

= Eθ[((T − Eθ[T ])− (g(θ)− Eθ[T ]))
2]

= Eθ[(T − Eθ[T ])
2 − 2(T − Eθ[T ])(g(θ)− Eθ[(T )]) + (g(θ)− Eθ[T ])

2]

= Eθ[(T − Eθ[T ])
2]− 2Eθ[(T − Eθ[(T )])]︸ ︷︷ ︸

=Eθ[T ]−Eθ[T ]=0

(g(θ)− Eθ[T ]) + (g(θ)− Eθ[T ])
2

= Varθ(T ) + biasθ(T )
2

which proves the lemma.

Examples 4.12.

• Let X,X1, . . . , Xn be i.i.d. random variables with finite expectation µ and finite variance σ2.
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Then we have

E[Xn] = E

[
1

n

n∑
i=1

Xi

]

=
1

n

n∑
i=1

E[Xi] =
1

n
nµ = µ

and thus Xn is an unbiased estimator of µ for every µ ∈ R. We also have

MSEµ(Xn) = biasµ(Xn)
2︸ ︷︷ ︸

=0

+Varµ(Xn)

= Varµ

(
1

n

n∑
i=1

Xi

)
=

1

n2
Varµ

( n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Varµ(Xi) =
1

n2
nσ2 =

σ2

n
.

Now let T1(X1, . . . , Xn) := X1 as in a previous example. Then we have

MSEµ(T1) = MSEµ(X1) = Varµ(X1) = σ2

and thus Xn is strictly better that T1 in the sense of the MSE for all n ≥ 2.

• Consider the same setting as above but now we are interested in estimating σ2. For this, consider

the estimator

S2
n :=

1

n− 1

n∑
i=1

(Xi −Xn)
2

for n ≥ 2. We show here that S2
n is unbiased as follows.

n∑
i=1

(Xi −Xn)
2 =

n∑
i=1

(Xi − µ− (Xn − µ))2

=

n∑
i=1

[(Xi − µ)2 − 2(Xi − µ)(Xn − µ) + (Xn − µ)2]

=

n∑
i=1

(Xi − µ)2 − 2(Xn − µ) ·
n∑

i=1

(Xi − µ)︸ ︷︷ ︸
=n(Xn−µ)

+n(Xn − µ)2.
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Thus we have

Eθ[S
2
n] =

1

n− 1
Eθ[

n∑
i=1

(Xi − µ)2 − n(Xn − µ)2]

=
1

n− 1
(

n∑
i=1

Eθ[(Xi − µ)2]︸ ︷︷ ︸
=Varθ(Xi)=σ2

−nEθ[(Xn − µ)2])

=
1

n− 1

(
nσ2 − n

1

n
σ2

)
=

1

n− 1
(n− 1)σ2 = σ2

and thus the estimator is unbiased. Note that this means that the sample variance

σ̂2
n =

1

n

n∑
i=1

(Xi −Xn)
2

is a biased estimator of σ2. Indeed, we have

σ̂2
n =

(n− 1)S2
n

n

=⇒ E[σ̂2
n] =

n− 1

n
Eθ[S

2
n] =

n− 1

n
σ2

= σ2 − σ2

n

and thus

biasθ(σ̂
2
n) = Eθ[σ̂

2
n]− σ2 = −σ

2

n

n→∞−−−−→ 0

but σ̂2
n is always biased. Note that by the W.L.L.N 3.55 we have

1

n

n∑
i=1

(Xi − µ)2
P−→ E[(X1 − µ)2] = σ2 = Var(X1)

and

Xn
P−→ µ.

With the function f(x) = (x− µ)2 we have, by the Continuous mapping theorem 4.7, that

(Xn − µ)2 = f(Xn)
P−→ f(µ) = 0

and thus

σ̂2
n

P−→ σ2 − 0 = σ2.

We also have S2
n = n

n−1 σ̂
2
n and thus

S2
n

P−→ σ2

also follows. Now take h(x) =
√
x and conclude that

σ̂n = h(σ̂2
n)

P−→ h(σ2) = σ

again by the Continuous mapping theorem 4.7 and similarly Sn
P−→ σ.
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4.6 The C.L.T. and Building Confidence Intervals

Recall that if X1, . . . , Xn are i.i.d. random variables such that E[Xi] = µ ∈ R and Var(Xi) = σ2 ∈
(0,∞) for every i ∈ {1, . . . , n}, then

√
n(Xn − µ)

σ

d−→ N (0, 1).

Slutskey’s Theorem 4.13. If Zn
d−→ Z and An

P−→ a ∈ R, then AnZn
d−→ aZ holds. Note that here

the number a is not random.

−→ Consequence. By the CLT 3.62 and Slutskey’s Theorem 4.13 we have

√
n(Xn − µ)

σ̃n

d−→ N (0, 1)

for any estimator σ̃n such that σ̃n
P−→ σ holds.

In fact. Consider the function f(x) = σ
x for x ∈ (0,∞). By the CLT 3.62, we have that

f(σ̃n)
P−→ 1

and thus
√
n(Xn − µ)

σ̃n
=

√
n(Xn − µ)

σ

σ

σ̃n

d−→ N (0, 1)

holds.

4.6.1 Application: Confidence Interval for the Expectation µ

For a < b we have

P
(
a <

√
n(Xn − µ)

σ̃n
≤ b

)
n→∞−−−−→ P(a < Z ≤ b) (1)

with Z ∼ N (0, 1) as a consequence of Lemma 3.59 and CLT 3.62. Indeed, we have

P
(√

n(Xn − µ)

σ̃n
≤ b

)
n→∞−−−−→ P(Z ≤ b)

and

P
(√

n(Xn − µ)

σ̃n
≤ a

)
n→∞−−−−→ P(Z ≤ a).

Now taking the difference shows (1). Note that (1) is also equivalent to saying

P
(
Xn − bσ̃n√

n
≤ µ < Xn − aσ̃n√

n

)
n→∞−−−−→ P(a < Z ≤ b) = P(Z ≤ b)− P(Z ≤ a)

= Φ(b)− Φ(a),
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where Φ(ξ) = 1√
2π

∫ ξ

−∞ e−
t2

2 dt for ξ ∈ R. We can now take a and b such that Φ(b) − Φ(a) = 1 − α

with α ∈ (0, 1) small.

For example, we can take a = Φ−1
(
α
2

)
the α

2 -quantile of Φ of Z and b = Φ−1
(
1− α

2

)
the

(
1− α

2

)
-

quantile of Φ. We will write a = ζα
2
and b = ζ1−α

2
. It turns out that a = −b in this case. To show this,

it is enough to show that

Φ
(
−ζ1−α

2

)
=
α

2
.

Let ζ ∈ R. Then

Φ(−ζ) =
∫ −ζ

−∞

1√
2π
e−

t2

2 dt =

∫ ζ

∞

1√
2π
e−

(−t)2

2 (−1) dt

= 1−
∫ ζ

−∞

1√
2π
e−

t2

2 dt = 1− Φ(ζ).

Therefore, we have

Φ
(
−ζ1−α

2

)
= 1− Φ

(
ζ1−α

2

)
= 1−

(
1− α

2

)
=
α

2
.

Hence, with this choice of a and b, we have that

Pµ

(
Xn −

ζ1−α
2√
n
σ̃n ≤ µ < Xn +

ζ1−α
2√
n
σ̃n

)
n→∞−−−−→ 1− α

⇐⇒ Pµ

(
µ ∈ [Xn −

ζ1−α
2
σ̃n√
n

,Xn +
ζ1−α

2√
n
σ̃n)

)
n→∞−−−−→ 1− α.

Under some additional assumption, we can even show that

Pµ

(
µ ∈ [Xn −

ζ1−α
2
σ̃n√
n

,Xn +
ζ1−α

2√
n
σ̃n]

)
n→∞−−−−→ 1− α

holds. Hence when n is large enough, we have

Pµ

(
µ ∈ [Xn −

ζ1−α
2
σ̃n√
n

,Xn +
ζ1−α

2√
n
σ̃n]︸ ︷︷ ︸

=: Iα,n

)
≈ 1− α,

where Iα,n is called a two-sided symmetric confidence interval for µ with asymptotic level 1− α, so

Pµ(µ ∈ Iα,n) ≈ 1− α

for large n.

Example 4.14. Suppose that X1, . . . , Xn
i.i.d.∼ Pois(λ) for λ ∈ (0,∞). Then we have

√
n(Xn − λ)

σ̃n

d−→ N (0, 1)
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with

σ̃n
P−→ σ =

√
λ

and λ = Eλ[X1] = Varλ(X1). We can either take

σ̃n =

σ̂n or

Sn

or we can also take σ̃n =
√
Xn. Indeed, by W.L.L.N 3.55 we have

Xn
P−→ λ

=⇒
√
Xn

P−→
√
λ

by considering f(x) =
√
x which is continuous on (0,∞). Hence for a confidence interval for λ we can

take either of one of the following

I1 :=

[
Xn −

ζ1−α/2σ̂n√
n

,Xn +
ζ1−α/2σ̂n√

n

]
,

I2 :=

[
Xn −

ζ1−α/2Sn√
n

,Xn +
ζ1−α/2Sn√

n

]
,

I3 :=

[
Xn −

ζ1−α/2

√
Xn√

n
,Xn +

ζ1−α/2

√
Xn√

n

]
.

89



Probability & Statistics

Fadoua Balabdaoui

5 Estimators

5.1 The Method of Moments and the Maximum Likelihood Estimators

Let k ∈ N and recall that the k-th moment of a random variable X is given by E[Xk] provided that

Xk is integrable, meaning that E[|Xk|] <∞ holds. A usual notation for the k-th moment is

µk := E[Xk].

If the distribution of X is Pθ0 for some θ0 ∈ Θ, then we can also write

µk(θ0) := Eθ0 [X
k] =

∫
R
xk dPθ0(x).

Definition 5.1. The k-th sample or (empirical) moment is defined by

µ̂k :=
1

n

n∑
i=1

Xk
i

with X1, . . . , Xn
i.i.d.∼ Pθ0 . Note that µ̂1 = Xn holds.

In the following definition, we assume that Θ ⊆ Rd for a d ∈ N.

Definition 5.2. The moment estimator θ̂ is a solution to the system of equations

µk(θ) = µ̂k for k ∈ {1, . . . , d}

subject to existence.

Question. Why will this be a good estimator?

−→ By the W.L.L.N 3.55, we have

µ̂k
P−→ Eθ0 [X

k] = µk(θ0)

for k ∈ {1, . . . , d} for a random variable X ∼ Pθ0 . Assume that µ̂k = µk(θ̂), then

µk(θ̂)
P−→ µk(θ0)

and one expects that θ̂ is close to θ0 as n grows.

Examples 5.3.

• Let X1, . . . , Xn
i.i.d.∼ N (m0, σ

2
0) for θ0 = (m0, σ

2
0) ∈ Θ = R × (0,∞) ⊆ R2. For X ∼ Pθ for

θ = (m,σ2), we have

µ1(θ) = µ1(m,σ
2) = Eθ[X] = m

µ2(θ) = µ2(m,σ
2) = Eθ[X

2] = σ2 +m2.
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To obtain the moment estimator θ̂, we need to solveµ1(θ) = µ̂1 = Xn

µ2(θ) = µ̂2 = 1
n

∑n
i=1X

2
i ,

so we arrive at m = Xn

σ2 +m2 = 1
n

∑n
i=1X

2
i .

Hence by using

1

n

n∑
i=1

X2
i −X

2

n =
1

n

n∑
i=1

(Xi −Xn)
2 = σ̂2

n,

we see that a solution is given by

θ̂ = (Xn, σ̂
2
n)

a.s./P−−−→ (m0, σ
2
0) = θ0.

• Let X1, . . . , Xn
i.i.d.∼ Γ(α0, β0) for α0, β0 > 0. The statistical model in this case is

P = {Pθ | θ ∈ (0,∞)2}

with

Pθ(B) =

∫
B

fθ(x) dx

for

fθ(x) =
βα

Γ(α)
xα−1e−βx1{x>0}.

We are interested in estimating α and β. For that, we compute the 2 first moments, µ1(θ) and

µ2(θ) for some θ = (α, β) ∈ (0,∞)2. We have

µ1(θ) =

∫
R
xfθ(x) dx =

∫ ∞

0

x
βα

Γ(α)
xα−1e−βx dx

=
βα

Γ(α)

∫ ∞

0

xα+1−1e−βx dx

=
βα

Γ(α)

Γ(α+ 1)

βα+1

∫ ∞

0

βα+1

Γ(α+ 1)
xα+1−1e−βx dx︸ ︷︷ ︸
=1

=
α

β

and

µ2(θ) =

∫
R
x2fθ(x) dx =

βα

Γ(α)

∫ ∞

0

xα+2−1e−βx dx

=
βα

Γ(α)

Γ(α+ 2)

βα+2

∫ ∞

0

βα+2

Γ(α+ 2)
xα+2−1e−βx dx︸ ︷︷ ︸
=1

=
α(α+ 1)

β2
.
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Now the moment estimator θ̂ = (α̂, β̂) solves the following systemµ1(θ) =
α
β = Xn

µ2(θ) =
α(α+1)

β2 = 1
n

∑n
i=1X

2
i

⇐⇒

α
β = Xn

α(α+1)
β2 = 1

n

∑n
i=1X

2
i −X

2

n = 1
n

∑n
i=1(Xi −Xn)

2 = σ̂2
n.

Hance we get

β̂ =
Xn

σ̂2
n

and

α̂ =
X

2

n

σ̂2
n

as a solution of the system and thus the moment estimator is given by θ̂ = (α̂, β̂).

Remark 5.4. The moment estimator can be viewed as a “plug-in” estimator. This means that we

raplace a theoretical quantity by its sample/empirical/observed couterpart.

5.2 Maximum Likelihood Estimator (MLE)

Assume we observe i.i.d. random variables X1, . . . , Xn ∼ Pθ0 where θ0 ∈ Θ. We also assume that for

all θ ∈ Θ, Pθ admits a density pθ with respect to a σ-finite dominating measure µ.

• In the discrete case, µ is the counting measure and pθ(x) = Pθ({x}).

• In the absolutely continuous case, µ is Lebesgue measure and Pθ(B) =
∫
B
pθ(x) dx for B ∈ B.

If f is some real function defined on a domain Z, we will denote by argmaxz∈Z f(z) the location of a

maximum of f (provided that it exists).

Definition 5.5. The likelihood function is given by

LX : Θ → R, θ 7→
n∏

i=1

pθ(Xi)

where X = (X1, . . . , Xn) ∈ Xn. The maximum likelihood estimator (MLE ) of θ0 based on X1, . . . , Xn

is defined by

θ̂ := argmax
θ∈Θ

LX(θ),

subject to existence and uniqueness.
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Remark 5.6. The function x 7→ log x is strictly increasing on (0,∞). Hence

θ̂ = argmax
θ∈Θ

log(LX(θ))

= argmax
θ∈Θ

n∑
i=1

log(pθ(Xi)).

The function

ℓX(θ) :=

n∑
i=1

log(pθ(Xi))

is called the log-likelihood function. To find the MLE of θ̂, we resort often to finding the solution(s) of

the equation

∂θ

( n∑
i=1

log(pθ(Xi))
)
= 0,

where sθ(x) := ∂θ log(pθ(x)) is called the score function.

Question. Why does the MLE work? The hope is that the MLE θ̂ ≈ θ0 as n→ ∞. Note that

θ̂ = argmax
θ∈Θ

1

n

n∑
i=1

log(pθ(Xi))

looks like the “average (sample mean)” of log(pθ(X1)), . . . , log(pθ(Xn)). This makes us think that

θ0
?
= argmax

θ∈Θ
Eθ0 [log(pθ(X))]

with X ∼ Pθ0 . The function x 7→ − log x is convex on (0,∞). Then, by Jensen’s inequality 3.34, we

have for any random variable Y ≥ 0 such that E[| log(Y )|] <∞ we have

E[− log Y ] ≥ − logE[Y ]

⇐⇒ E[log Y ] ≤ logE[Y ].

Suppose that for any θ ∈ Θ we have Eθ0 [| log(pθ(X))|] <∞ with X ∼ Pθ0 . Then

Eθ0 [log(pθ(X))]− Eθ0 [log(pθ0(X))] = Eθ0

[
log

(
pθ(X)

pθ0(X)

)
︸ ︷︷ ︸

=:Y

]

≤ log(Eθ0 [Y ]) = log

(
Eθ0

[
pθ(X)

pθ0(X)

])
,

where

Eθ0

[
pθ(X)

pθ0(X)

]
=

∫
pθ(x)

pθ0(x)
pθ0(x) dµ(x)

=

∫
pθ(x) dµ(x) = 1.
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This implies that for all θ ∈ Θ we have

Eθ0 [log(pθ(X))] ≤ Eθ0 [log(pθ0(X))]

and thus we get

θ0 = argmax
θ∈Θ

Eθ0 [log(pθ(X))].

Examples 5.7.

• Let X1, . . . , Xn
i.i.d.∼ N (µ0, σ

2
0) with µ0 unknown and suppose that σ0 is known, so the parameter

of interest is µ0. We want to compute the MLE of µ0. We have P = {Pµ | µ ∈ R} and Pµ admits

the density with respect to Lebesgue measure

pµ(x) =
1√
2πσ0

e
− (x−µ)2

2σ2
0 .

The likelihood function is

LX(µ) =

n∏
i=1

pµ(Xi)

for µ ∈ R = Θ. Then

LX(µ) =

n∏
i=1

1√
2πσ0

e
− 1

2σ2
0
(Xi−µ)2

=
1

(2π)n/2σn
0

e
− 1

2σ2
0

∑n
i=1(Xi−µ)2

take the log
=⇒ ℓX(µ) = −n

2
log(2π)− n log(σ0)−

1

2σ2
0

n∑
i=1

(Xi − µ)2,

ℓ′X(µ) =
1

σ2
0

n∑
i=1

(Xi − n) =
n

σ2
0

(Xn − µ)
!
= 0

⇐⇒ µ = Xn

and thus µ = Xn is the unique stationary/critical point of ℓX. Furthermore, we have

ℓ′′X(µ) = − n

σ2
0

< 0

and thus ℓX is strictly concave on R, so
µ̂ = Xn

is the MLE.

• Let X1, . . . , Xn
i.i.d.∼ Exp(λ0) for some unknown λ0 ∈ Θ = (0,∞). Recall that

pλ(x) = λe−λx1{x>0}
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for x ∈ R. Then

LX(λ) =

n∏
i=1

pλ(Xi) =

n∏
i=1

λe−λXi1{Xi>0}

= λne−λ
∑n

i=1 Xi

n∏
i=1

1{Xi>0}︸ ︷︷ ︸
=1{X1>0,...,Xn>0}

.

Note that because of independence, we have

P(X1 > 0, . . . , Xn > 0) =

n∏
i=1

P(Xi > 0) = P(X1 > 0)n = 1,

because

P(X1 > 0) =

∫
R
1{x>0} fX1

(x)︸ ︷︷ ︸
=pλ0

(x)

dx

=

∫ ∞

0

λ0e
−λ0x dx = 1.

with fX1
is the density of the distribution of X1. This implies that

LX(λ) = λne−λ
∑n

i=1 Xi

holds a.s. Furthermore, we have

ℓX(λ) = n log(λ)− λ

n∑
i=1

Xi,

ℓ′X(λ) = 0 ⇐⇒ n

λ
−

n∑
i=1

Xi = 0

⇐⇒ λ =
n∑n

i=1Xi
=

1

Xn

ℓ′′X(λ) = − n

λ2
< 0

and thus ℓX is strictly concave on (0,∞), so the MLE is given by

λ̂ =
1

Xn

.

• Let X1, . . . , Xn
i.i.d.∼ N (µ0, σ

2
0), where µ0 and σ0 are both unknown. This means that

P = {Pθ | θ = (µ, σ2) ∈ R× (0,∞)}
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and Pθ has density

pθ(x) =
1√
2πσ

e−
1

2σ2 (x−µ)2 .

Then

LX(θ) =

n∏
i=1

pθ(Xi) =

n∏
i=1

1√
2πσ

e−
1

2σ2 (Xi−µ)2

=
1

(2π)n/2σn
e−

1
2σ2

∑n
i=1(Xi−µ)2 ,

ℓX(θ) = −n
2
log(2π)− n log(σ)− 1

2σ2

n∑
i=1

(Xi − µ)2.

The goal is to find the maximizer of ℓX on Θ = R × (0,∞). For this, let us fix σ ∈ (0,∞) and

consider the function

fσ(µ) = ℓX(µ, σ)

and let us maximize fσ over R. Since σ is fixed, we have

f ′σ(µ) =
1

σ2

n∑
i=1

(Xi − µ) =
n

σ2
(Xn − µ)

!
= 0

⇐⇒ µ = Xn.

and since again f ′′σ < 0, we see that Xn is the maximizer of fσ over R. We conclude that

ℓX(µ, σ
2) ≤ ℓX(Xn, σ

2)

for any σ ∈ (0,∞). Now put

g(σ) = ℓX(Xn, σ) = −n
2
log(2π)− n log(σ)− 1

2σ2

n∑
i=1

(Xi −Xn)
2

and let us maximize g on (0,∞). We have

g′(σ) = −n
σ
+

1

σ3

n∑
i=1

(Xi −Xn)
2

and recall that

σ̂2
n =

1

n

n∑
i=1

(Xi −Xn)
2
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was the sample variance. Hence

g′(σ) = −n
σ
+
nσ̂2

n

σ3

=
n

σ3
(σ̂2

n − σ2)
!
= 0

⇐⇒ σ2 = σ̂2
n

⇐⇒ σ = σ̂n =

√√√√ 1

n

n∑
i=1

(Xi −Xn)2.

Furthermore,

g′′(σ) =
n

σ2
− 3n

σ4
σ̂2
n =

n

σ4
(σ2 − 3σ̂2

n)

and

g′′(σ̂n) =
n

σ̂4
n

(σ̂2
n − 3σ̂2

n) = −2n

σ̂2
n

< 0.

Hence σ̂n is a local maximizer of g. But since σ̂n was the only (unique) stationary point we find,

this implies that σ̂n has to be a global maximizer of g. Hence we conclude that

g(σ) ≤ g(σ̂n)

holds for any σ ∈ (0,∞) and thus in total we get

ℓX(µ, σ
2) ≤ ℓX(Xn, σ̂

2
n)

for all (µ, σ2) ∈ Θ. Thus the MLE is given by

θ̂ = (Xn, σ̂
2
n).
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6 Hypothesis Testing

Let X1, . . . , Xn be i.i.d. random variables with distribution Pθ, for some unknown θ ∈ Θ. To simplify

the notation, we will write X to denote (X1, . . . , Xn) = X = Xn.

Problem. Let Θ0 and Θ1 be subsets of Θ with Θ0 ∩ Θ1 = ∅. We want to decide between the two

statements

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

based on the observation X. This is called a testing problem.

• “θ ∈ Θ0” is called the null hypothesis H0.

• “θ ∈ Θ1” is called the alternative hypothesis H1.

Example 6.1. Suppose that X ∼ Bin(20, θ) is the observed data for θ ∈ (0, 1). Consider the testing

problem

H0 : θ =
1

2
versus H1 : θ =

3

4
.

Suppose that X = 14 holds. Then we have

PH0(X = 14) = P1/2(X = 14) =

(
20

14

)
2−20 ≈ 0.036

PH1(X = 14) = P3/4(X = 14) =

(
20

14

)(
3

4

)14(
1

4

)20−14

≈ 0.168.

We now look at the ratio
PH1(X = 14)

PH0(X = 14)
≈ 4.56.

Question. Is 4.56 “big enough” to decide for H1?

Definition 6.2. In any testing problem, we can describe the situation as follows:

• Error of Type I : The error of rejecting H0 while it is true.
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• Error of Type II : The error of accepting H0 while H1 is true.

Definition 6.3. Consider the testing problem

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

A (non-randomized) statistical test at some given level α ∈ (0, 1) is a measurable map

Φ : Xn → {0, 1}

such that

Φ(x) =

1 means that H0 is rejected

0 means that H0 is accepted

and

sup
θ0∈Θ0

Pθ0(Φ(X) = 1) ≤ α.

For θ1 ∈ Θ1 the quantity β(θ1) := Pθ1(Φ(X) = 1) is called the power of the test Φ at θ1.

Remark 6.4. Notice that

1− β(θ1) = 1− Pθ1(Φ(X) = 1)

= Pθ1(Φ(X) = 0)

= Error of the 2nd kind at θ1.

Example 6.5 (Statistical test). Let X ∼ Bin(20, θ) with θ ∈ Θ = (0, 1) and consider the testing

problem

H0 : θ ≤ 1

2
versus H1 : θ >

1

2
,

so here we have Θ0 = (0, 12 ] and Θ1 = ( 12 , 1). Set α := 0.05 and consider the non-randomized test

Φ(X) :=

1 if X > c

0 if X ≤ c

for some c ∈ R satisfying

sup
θ0≤1/2

Pθ0(Φ(X) = 1) ≤ α

⇐⇒ sup
θ≤1/2

Pθ0(X > c) ≤ α. (1)

We can show that the function

θ 7→ Pθ(X > c) =

20∑
k=c+1

(
20

k

)
θk(1− θ)n−k
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is non-decreasing on Θ. This then implies that

sup
θ0≤1/2

Pθ0(X > c) = Pθ0=1/2(X > c)

and thus c must satisfy

Pθ0=1/2(X > c) ≤ α ⇐⇒
20∑

k=c+1

(
20

k

)(
1

2

)20

≤ α

⇐⇒ Pθ0=1/2(X ≤ c) ≥ 1− α

⇐⇒ Fθ0=1/2(c) ≥ 1− α = 0.95,

where Fθ0=1/2 is the CDF of X ∼ Bin(20, 12 ). We have

Fθ0=1/2(13) ≈ 0.942 < 0.95 < 0.979 ≈ Fθ0=1/2(14)

and thus c = 14 is the first c such that (1) holds. Note that c = 14 is the 0.95-quantile of the

distribution of Bin(20, 12 ). So the test is given by Φ(X) = 1{X>14} and we have

sup
θ≤1/2

Pθ0(X > 14︸ ︷︷ ︸
reject H0

) = Pθ0=1/2(X > 14) = 1− Fθ0=1/2(14) ≈ 0.02 < 0.05.

We can compute following values:

θ1 0.6 0.75 0.85

β(θ1) 0.125 0.617 0.932

6.1 Randomized Tests

We still consider the testing problem

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Definition 6.6. A randomized statistical test at level α ∈ (0, 1) is a measurable map

Φ : Xn → [0, 1]

with

Φ(X) =


1 means that H0 is rejected

q means that H0 is rejected with probability q

0 means that H0 is accepted

and

sup
θ0∈Θ0

Eθ0 [Φ(X)] ≤ α.

For θ1 ∈ Θ1 the quantity β(θ1) := Eθ1 [Φ(X)] is called the power of Φ at θ1.
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Remarks 6.7.

• Note that Φ(X) is always equal to the probability of rejecting H0.

• If Φ(X) = q, then this means that we toss a q-coin to decide whether we reject H0 or not.

Examples 6.8 (Randomized statistical test). Consider again X ∼ Bin(20, θ) and the testing problem

H0 : θ ≤ 1

2
versus H1 : θ >

1

2
.

We have seen Pθ0=1/2(X > 14) ≈ 0.02 < 0.05, which means that there is room for the test to be less

conservative. This motivates us to consider the randomized test

Φ(X) =


1 if X > 14

q if X = 14

0 if X < 14

with q ∈ [0, 1] such that

sup
θ0≤1/2

Eθ0 [Φ(X)] = α.

We are going to admit that

sup
θ0≤1/2

Eθ0 [Φ(X)] = Eθ0=1/2[Φ(X)].
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Then, q must satisfy

Eθ0 [Φ(X)] = 1 · Pθ0=1/2(Φ(X) = 1) + q · Pθ0=1/2(Φ(X) = q)

+ 0 · Pθ0=1/2(Φ(X) = 0)

= Pθ0=1/2(X > 14) + qPθ0=1/2(X = 14) = 0.5.

This means that

q =
0.05− Pθ0=1/2(X > 14)

Pθ0=1/2(X = 14)
≈ 0.79

and thus the randomized test is given by

Φ(X) =


1 if X > 14

0.79 if X = 14

0 if X < 14

and the error of type I is exactly equal to α. We can compute the following values:

θ1 0.6 0.75 0.85

β(θ1) 0.224 0.75 0.968

Observe that this test is now “more powerful” than the test in Example 6.5.

6.2 The Neyman-Pearson Test

Definition 6.9. A hypothesisH0 is said to be simple, if the corresponding parameter subspace contains

only one element, i.e. Θ0 = {θ0}. If |Θ0| > 1, then H0 is said to be composite.

In the following, we will consider testing a simple H0 versus a simple alternative H1. In general, if

p is the (unknown) density of X ∈ Xn with respect to some σ-finite dominating measure µ and if

p ∈ {p0, p1} for some known densities p0 and p1, we can consider the testing problem

H0 : p = p0 versus H1 : p = p1. (1)

This formulation can be put in the previous context by writing

p = (1− θ)p0 + θp1

for θ ∈ {0, 1}, Θ0 = {0} and Θ1 = {1}. Then (1) is equivalent to

H0 : θ = 0 versus H1 : θ = 1. (2)
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Definition 6.10. A Neyman-Pearson test at level α ∈ (0, 1) for the testing problem (1) is a randomized

test of the form

ΦNP(X) =


1 if p1(X)

p0(X) > kα

qα if p1(X)
p0(X) = kα

0 if p1(X)
p0(X) < kα

with kα > 0 and qα ∈ [0, 1] such that

Ep0
[ΦNP(X)] = α.

NP-lemma 6.11. Let α ∈ (0, 1) and kα, qα be such that

Ep0
[ΦNP(X)] = α

holds. Then for any other test Φ̃ such that

Ep0 [Φ̃(X)] ≤ α

we have

Ep1 [ΦNP(X)] ≥ Ep1 [Φ̃(X)].

Remark 6.12. We say that ΦNP is uniformly most powerful (in short UMP).

Proof. We first show that

I :=

∫
Xn

(ΦNP(x)− Φ̃(x))(p1(x)− kαp0(x))︸ ︷︷ ︸
=:f(x)

dµ(x) ≥ 0

holds, where µ is the σ-finite dominating measure of the problem (i.e. either the counting measure or

Lebesgue measure). Observe that

I =

∫
{x | p1(x)>kαp0(x)}

f(x) dµ(x) +

∫
{x | p1(x)<kαp0(x)}

f(x) dµ(x)

+

∫
{x | p1(x)=kαp0(x)}

f(x)︸︷︷︸
=0

dµ(x) ≥ 0.

=

∫
{x | p1(x)>kαp0(x)}

(1− Φ̃(x))︸ ︷︷ ︸
≥0

(p1(x)− kαp0(x))︸ ︷︷ ︸
>0

dµ(x)

+

∫
{x | p1(x)<kαp0(x)}

(0− Φ̃(x))︸ ︷︷ ︸
≤0

(p1(x)− kαp0(x))︸ ︷︷ ︸
<0

dµ(x) ≥ 0
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This means that∫
Xn

(ΦNP(x)− Φ̃(x))p1(x) dµ(x) ≥ kα

∫
Xn

(ΦNP(x)− Φ̃(x))p0(x) dµ(x)

⇐⇒ Ep1
[ΦNP(x)− Φ̃(x)] ≥ kαEp0

[ΦNP(x)− Φ̃(x)]

⇐⇒ Ep1
[ΦNP(x)]− Ep1

[Φ̃(x)] ≥ kα(Ep0
[ΦNP(x)]− Ep0

[Φ̃(x)])

= kα︸︷︷︸
>0

(α− Ep0
[Φ̃(x)]︸ ︷︷ ︸

≥0

) ≥ 0

and thus we get

Ep1 [ΦNP(x)] ≥ Ep1 [Φ̃(x)]

as claimed.

Remark 6.13. What are kα and qα?

−→ It can be shown that kα can be always taken to be equal to the (1−α)-quantile of the distribution
of Y = p1(X)

p0(X) under H0 (so p = p0). This means that if we denote by F0 the CDF of Y under X ∼ p0

then

kα = inf{y ∈ R | F0(y) ≥ 1− α}

holds. On the other hand, we know that qα satisfies

Pp0
(Y > kα) + qαPp0

(Y = kα) = α

⇐⇒ 1− F0(kα) + qα(F0(kα)− F0(kα−)) = α,

where F0(kα−) = limy→kα− F0(y). Hence

qα =


α−(1−F0(kα))

F0(kα)−F0(kα−) if F0(kα) > F0(kα−)

0 if F0(kα) = F0(kα−),

so the value of qα depends on whether F0 is continuous at kα or has a jump.

Example 6.14. Let X ∼ Bin(n, θ) with n ∈ N and θ ∈ (0, 1). We want to test

H0 : θ = θ0 versus H1 : θ = θ1

for θ1 > θ0 using the NP-test. Note that

pθ(x) =

(
n

x

)
θx(1− θ)n−x

is the density of X ∼ Bin(n, θ) with respect to the counting measure and define p0 = pθ0 and p1 := pθ1 .

Then

p1(x)

p0(x)
=
θx1 (1− θ1)

n−x

θx0 (1− θ0)n−x
=
( θ1(1− θ0)

θ0(1− θ1)︸ ︷︷ ︸
>1

)x(1− θ1
1− θ0

)n
=: g(x)
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and g is strictly increasing and bijective. This means that the NP-test can be rewritten as

ΦNP(X) =


1 if X > cα

qα if X = cα

0 if X < cα

where cα is the (1 − α)-quantile of the distribution of X under H0, so cα is the (1 − α) quantile of

Bin(n, θ0) and qα as in the remark.

Example 6.15. Let X = (X1, . . . , Xn) ∈ Rn (so X = R) where X1, . . . , Xn
i.i.d.∼ N (µ, σ2

0) with µ ∈ R
unknown and σ0 > 0 is known. Consider the testing problem

H0 : µ = µ0 versus H1 : µ = µ1

with µ0 ̸= µ1. We want to determine the NP-test of level α. For µ ∈ R, we have

pµ(x1, . . . , xn) =

n∏
i=1

1√
2πσ0

exp

(
− 1

2σ2
0

(xi − µ)2
)

=
1

√
2π

n
σn
0

exp

(
− 1

2σ2
0

n∑
i=1

(xi − µ)2

)

and thus

p1(x1, . . . , xn)

p0(x1, . . . , xn)
= exp

(
1

2σ2
0

( n∑
i=1

(xi − µ0)
2 −

n∑
i=1

(xi − µ1)
2
))

(1)
= exp

(
n(µ1 − µ0)

σ2
0

(xn − µ0)−
n(µ1 − µ0)

n

2σ2
0

)
where (1) follows by inserting −µ0 + µ0 into the second sum and computing it. Hence

p1(x1, . . . , xn)

p0(x1, . . . , xn)
> “something”

⇐⇒ (µ1 − µ0)(xn − µ0) > “something”.

For the right-sided testing problem µ1 > µ0 this means that

xn − µ0 > “something” ⇐⇒ xn > “something”

since here µ1 − µ0 > 0. Then, the NP-test is given by

ΦNP(X1, . . . , Xn) =


1 if Xn > cα

qα if Xn = cα

0 if Xn < cα
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with cα ∈ R and qα ∈ [0, 1] such that

Eµ0
[ΦNP(X1, . . . , Xn)] = α.

In the following, we will use the fact that if X1, . . . , Xn are independent random variables such that

Xi ∼ N (µi, σ
2
i ) then

n∑
i=1

aiXi ∼ N (

n∑
i=1

aiµi,

n∑
i=1

a2iσ
2
i )

holds for every ai ∈ R. In particular, if X1, . . . , Xn
i.i.d.∼ N (µ, σ2

0) then

Xn =
1

n

n∑
i=1

Xi ∼ N
(
µ,

σ2
0

n

)
holds which implies that

Pµ0
(Xn = c

α
) = 0

because of the continuity of the normal distribution. Hence

ΦNP(X1, . . . , Xn) =

1 if Xn > cα

0 otherwise

where cα is the (1− α)-quantile of the distribution of Xn under H0. Note that by using

Xn > cα ⇐⇒ Xn − µ0√
σ2
0/n︸ ︷︷ ︸

∼N (0,1)

>
cα − µ0√
σ2
0/n

we get

Pµ0
(Xn > cα) = α

⇐⇒ Pµ0

(
Xn−µ0√

σ2
0/n

> cα−µ0√
σ2
0/n

)
= α

⇐⇒ P
(
Z > cα−µ0√

σ2
0/n

)
= α

⇐⇒ 1− P
(
Z ≤ cα−µ0√

σ2
0/n

)
= 1− α

where Z ∼ N (0, 1), so cα−µ0√
σ2
0/n

= ζ1−α is the (1− α)-quantile of N (0, 1). Using this approach, we also

get

ΦNP(X1, . . . , Xn) =

1 if
√
n(Xn−µ0)

σ0
> ζ1−α

0 otherwise.
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For the left-sided testing problem, we assume that µ0 > µ1. Recall that the NP-test is based on the

ratio

pµ1
(x1, . . . , xn)

pµ0(x1, . . . , xn)
= exp

(
n(µ1 − µ0)

σ2
0

(xn − µ0)

)
exp

(
−n
2σ2

0

(µ1 − µ0)
2

)
> “something”

⇐⇒ xn < “something”.

Using similar arguments as for the right-sided problem, we can show that the NP-test of level α is

given by

ΦNP(X1, . . . , Xn) =

1 if
√
n(Xn−µ0)

σ0
< ζα

0 otherwise.

Now consider the two-sided testing problem

H0 : µ = µ0 versus H1 : µ ̸= µ0,

so Θ1 = R∖ {µ0} which gives rise to the name. Note that here we cannot apply the NP-test, because

H1 is not simple. However, we can show that the following test

Φ(X1, . . . , Xn) =

1 if
√
n|Xn−µ0|

σ0
> ζ1−α/2

0 otherwise

has good properties and is of level α. Let us show that it is indeed of level α.

Proof. We need to show that

Eµ0
[Φ(X1, . . . , Xn)] ≤ α

holds or equivalently

Pµ0

(√
n
|Xn − µ0|

σ0
> ζ1−α/2

)
≤ α

under H0, so Xn ∼ N (µ0, σ
2
0) and we also have

√
n(Xn − µ0)

σ0
∼ N (0, 1).

Thus we get

Pµ0

(√
n
|Xn − µ0|

σ0
> ζ1−α/2

)
= P(|Z| > ζ1−α/2)

= P(Z > ζ1−α/2 or Z < −ζ1−α/2)

= P(Z > ζ1−α/2) + P(Z < −ζ1−α/2)

= 2P(Z > ζ1−α/2)

= 2(1− (1− α
2 )) = α

for Z ∼ N (0, 1) by using the symmetry of the normal distribution.
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7 One Sample Tests

Setting. We observe i.i.d. random variables X1, . . . , Xn whose distribution results from shifting some

“baseline” distribution by some amount θ ∈ Θ. This θ is called the shift or location parameter.

Examples 7.1.

• Let X1, . . . , Xn
i.i.d.∼ N (θ, σ2) for θ ∈ R and σ ∈ (0,∞), where σ can be known or unknown. The

“baseline” distribution is N (0, σ2) and the location parameter is

θ = Eθ[X1]︸ ︷︷ ︸
expectation

= F−1
θ ( 12 )︸ ︷︷ ︸
median

with Fθ the CDF of N (θ, σ2). Note that here the expectation and the median are equal because

N (θ, σ2) is symmetric around θ (generally this does not hold).

• Let X1, . . . , Xn
i.i.d.∼ U(θ, θ+1). The “baseline” distribution is U(0, 1) and the location parameter

θ is

θ = Eθ[X1]− 1
2 = F−1

θ ( 12 )−
1
2 .

We can consider the following testing problems:

• Right-sided given by

H0 : θ = θ0 versus H1 : θ > θ0

or H0 : θ ≤ θ0 versus H1 : θ > θ0.

• Left-sided given by

H0 : θ = θ0 versus H1 : θ < θ0

or H0 : θ ≥ θ0 versus H1 : θ < θ0.

• Two-sided given by

H0 : θ = θ0 versus H1 : θ ̸= θ0.

7.1 The Student’s Test

We assume that X1, . . . , Xn
i.i.d.∼ N (θ, σ2). For γ ∈ (0, 1) set

ζγ = γ-quantile of N (0, 1)

and let us first assume that σ = σ0 is known.
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• Consider the (simplified) right-sided testing problem

H0 : θ = θ0 versus H1 : θ = θ1

with θ1 > θ0. We know that the NP-test

ΦNP(X1, . . . , Xn) = 1
{
√
n(Xn−θ0)

σ0
>ζ1−α}

is UMP of level α by the NP-lemma 6.11.

• For the (simplified) right-sided testing problem

H0 : θ = θ0 versus H1 : θ = θ1

with θ0 > θ1 we know that the NP-test

ΦNP(X1, . . . , Xn) = 1
{
√
n(Xn−θ0)

σ0
<ζα}

is UMP of level α, again by the NP-lemma 6.11.

• For the two-sided testing problem

H0 : θ = θ0 versus H1 : θ ̸= θ0

the test

Φ(X1, . . . , Xn) = 1
{
√
n|Xn−θ0|

σ0
>ζ1−α/2}

is of level α and has some “good” properties.

Note that if σ is unknown, the previous tests cannot be used. In a way, we need to estimate σ. In this

case, σ is called a “nuisance parameter”.

Definition 7.2 (The student distribution). A random variable Y is said to have a Student distribution

if

Y =
Z√
X/m

with Z ∼ N (0, 1) and X ∼ χ2
(m) = “Chi-square distribution with m degrees of freedom”, that is

X = X2
1 +X2

2 + . . .+X2
m,

where X1, . . . , Xm
i.i.d.∼ N (0, 1) and Z and X are independent. The Student distribution is also called

the t-distribution and denoted by

Y ∼ T(m).
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Remark 7.3. It can be shown that the Student distribution with m degrees of freedom is absolutely

continuous with density

f(x) =
Γ(m+1

2 )
√
πmΓ(m)

1

(1 + x2

m )
m+1
2

for x ∈ R. Note that f is symmetric around 0. If m = 1, then

T(1) = Cauchy distribution.

Theorem 7.4. Let X1, . . . , Xn
i.i.d.∼ N (θ, σ2). Then we have

√
n(Xn − θ)

Sn
∼ T(n−1),

where

S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)
2.

The Student’s test. Let X1, . . . , Xn
i.i.d.∼ N (θ, σ2) and for simplicity, consider the (simpler) testing

problem

H0 : θ = θ0 versus H1 : θ = θ1

with θ1 > θ0 and σ is unknown. Consider the following test

Φ(X1, . . . , Xn) =

1 if
√
n(Xn−θ0)

Sn
> tn−1,1−α

0 otherwise,

where

tn−1,1−α := (1− α)-quantile of T(n−1).

The test defined above is of level α. Indeed, we have

Eθ0 [Φ(X1, . . . , Xn)] = Pθ0

(√
n(Xn−θ0)

Sn
> tn−1,1−α

)
= P(Tn−1 > tn−1,1−α) = 1− (1− α) = α

by Theorem 7.4 for Tn−1 ∼ T(n−1).

Since the test Φ does not involve the particular value of θ1, it can be used again for testing

H0 : θ = θ0 versus H1 : θ > θ0.
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Now let θ < θ0 and compute

Eθ[Φ(X1, . . . , Xn)] = Pθ

(√
n(Xn − θ0)

Sn
> tn−1,1−α

)
= Pθ

(√
n(Xn − θ + θ − θ0)

Sn
> tn−1,1−α

)

= Pθ


√
n(Xn − θ)

Sn
−

√
n(θ0 − θ)

Sn︸ ︷︷ ︸
≥0

> tn−1,1−α


≤ Pθ

(√
n(Xn − θ)

Sn
> tn−1,1−α

)
.

This means that

Pθ

(√
n(Xn − θ0)

Sn
> tn−1,1−α

)
≤ 1− Pθ

( √
n(Xn − θ)

Sn︸ ︷︷ ︸
∼T(n−1)

≤ tn−1,1−α

)

= 1− (1− α) = α

and the calculation holds for every θ ≤ θ0. Hence we get

sup
θ≤θ0

Pθ

(√
n(Xn−θ0)

Sn
> tn−1,1−α

)
= sup

θ∈Θ0

Eθ[Φ(X1, . . . , Xn)] ≤ α

with Θ0 = (−∞, θ0], so Φ has level α for the testing problem

H0 : θ ≤ θ0 versus H1 : θ > θ0.

For the analoguous left-sided testing problem

H0 : θ ≥ θ0 versus H1 : θ < θ0

we can show that the test

Φ(X1, . . . , Xn) =

1 if
√
n(Xn−θ0)

Sn
< tn−1,α

0 otherwise

is of level α, meaning that

sup
θ≥θ0

Eθ[Φ(X1, . . . , Xn)] ≤ α,

where

tn−1,α := α-quantile of T(n−1).
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Now consider the two-sided testing problem

H0 : θ = θ0 versus H1 : θ ̸= θ0.

Here, the test

Φ(X1, . . . , Xn) =

1 if
√
n|Xn−θ0|

Sn
> tn−1,1−α/2

0 otherwise

is of level α. Indeed, put

Tn−1 :=

√
n(Xn − θ0)

Sn

under H0∼ T(n−1)

and compute

Pθ0(|Tn−1| > tn−1,1−α/2)
(1)
= P(|Tn−1| > tn−1,1−α/2)

= P(Tn−1 > tn−1,1−α/2) + P(Tn−1 < −tn−1,1−α/2)

= 2 · P(Tn−1 > tn−1,1−α/2)

(2)
= 2(1− (1− α

2 )) = α.

where (1) works because T(n−1) does not depend on θ0 and at (2) we used the symmetry of the student’s

distribution.

Example 7.5. We observe the following values sampled from five i.i.d. random variables with distri-

bution N (θ, σ2) :

0.926, 0.513, 1.272, 1.359, −0.038

We want to know whether θ = 0 is a plausible assumption. Formally, we want to test

H0 : θ = 0 versus H1 : θ ̸= 0.

Since σ is unknown, we may use the two-sided student test in this case for n = 5. We take α = 0.05,

put

T4 :=

√
5 X5

S5

and we know that

t4,0.975 = 2.776

is the 0.975-quantile of T(4). Using this, we find that

X5 = 0.806, S5 = 0.577

=⇒ |T4| = T4 = 3.121 > t4,0.975

and thus we reject H0 at the level α = 0.05. Let us now take α = 0.01. The only thing that changes

in the test is the quantile of T(4), so we compute

t4,0.995 = 4.604 > T4.

Hence at this level we cannot reject H0.
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7.2 The Sign Test

Let X1, . . . , Xn be i.i.d. random variables from an unknown distribution. Let m denote the (unknown)

median of distribution, so

m = F−1( 12 )

where F is the CDF of the distribution. Consider the testing problem

H0 : m = m0 versus H1 : m ̸= m0

for some fixed value m0. We assume that the CDF F is continuous at m. This means that

P(Xi < m) = P(Xi ≤ m)︸ ︷︷ ︸
=F (m)

=
1

2

holds for every i ∈ {1, . . . , n}. Consider the statistic

Tn = |{i | Xi > m0}| =
n∑

i=1

1{Xi>m0}
under H0∼ Bin(n, 12 ).

We want to reject H0 if |Tn − n
2 | is “too big”. Consider the test

Φ(X1, . . . , Xn) =

1 if |Tn − n
2 | > cα

0 otherwise,

where cα is chosen such that

Em0
[Φ(X1, . . . , Xn)] = Pm0

(|Tn − n
2 | > cα) ≤ α.

Now using

{|Tn − n
2 | > cα} = {Tn > n

2 + cα} ⊔ {Tn < n
2 − cα}

we get

Pm0
(|Tn − n

2 | > cα) = Pm0
(Tn >

n
2 + cα) + Pm0

(Tn <
n
2 − cα)

= Pm0
(Tn >

n
2 + cα) + Pm0

(n− Tn >
n
2 + cα).

Now observe that

n− Tn = n−
n∑

i=1

1{Xi>m0} =

n∑
i=1

(1− 1{Xi>m0})

=

n∑
i=1

1{Xi≤m0}
under H0∼ Bin(n, 12 ).
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This implies that

Pm0
(|Tn − n

2 | > cα) = 2 · Pm0
(Tn >

n
2 + cα) ≤ α

⇐⇒ Pm0
(Tn >

n
2 + cα) ≤ α

2

and thus we take cα such that

n
2 + cα = (1− α

2 )-quantile of Bin(n, 12 ).

Example 7.6. Let X1, . . . , Xn
i.i.d.∼ N (θ, σ2). We want to test

H0 : θ = 0 versus H1 : θ ̸= 0.

Note that here θ is the expectation and also the median. This means that we can use one of the

following tests:

• The Student test

Φ1(X1, . . . , Xn) =

1 if
√
n |Xn|
Sn

> tn−1,1−α/2

0 otherwise.

• The sign test

Φ2(X1, . . . , Xn) =

1 if |Tn − n
2 | > cα

0 otherwise,

where Tn and cα are as above.

Note that the Student test uses some knowledge about the distribution while the sign test does not,

so we may expect the first test to be better (i.e. to have a higher power).

7.3 Two Sample Tests

Setting. We observe X1, . . . , Xn
i.i.d.∼ N (θ1, σ

2) and Y1, . . . , Yn
i.i.d.∼ N (θ2, σ

2) for θ1, θ2 ∈ R and

σ ∈ (0,∞) such that (X1, . . . , Xn) and (Y1, . . . , Yn) are independent. We want to test

H0 : θ1 = θ2 versus H1 : θ1 ̸= θ2.

Remark 7.7 (Some facts about the Gaussian distribution).

(1) For any random variable Z we have Z ∼ N (θ, σ2) if any only if for all t ∈ R we have E[eitZ ] =
eitθ−

1
2 t

2σ2

. Here E[eitz] is called the characteristic function.

(2) Z = (Z1, . . . , Zk)
T ∈ Rk for some k ∈ N is a Gaussian vector with expectation θθθ and covariance

matrix Σ, so Z ∼ N (θ,Σ), if and only if

E[eit
TZ] = eit

T θ− 1
2 t

TΣt
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holds for all t ∈ Rk. Here θ = (θ1, . . . , θk)
T with θi = E[Zi] and

Σij = cov(Zi, Zj) = E[(Zi − θi)(Zj − θj)] = E[ZiZj ]− θiθj .

(3) If Z1, . . . , Zk are independent random variables such that Zi ∼ N (θi, σ
2
i ) for i ∈ {1, . . . , k},

then Z = (Z1, . . . , Zk)
T is a Gaussian vector with parameters θ = (θ1, . . . , θk) and Σ =

diag(σ2
1 , . . . , σ

2
k) ∈ Rk×k. Let t = (t1, . . . , tk) ∈ Rk. Then we have

E[eit
TZ] = E[ei

∑k
j=1 tjZj ] = E

 k∏
j=1

eitjZj


(1)
=

k∏
j=1

E[eitjZj ] =

k∏
j=1

eitjθj−
1
2 t

2
jσ

2
j

= ei
∑k

j=1 tjθj−
1
2
∑k

j=1 t2jσ
2
j

= eit
T θ− 1

2 t
TΣt,

where at (1) we used independence.

(4) If Z ∼ N (0, Ik) ∈ Rn, then for any θ ∈ Rk and A ∈ Rk×n we have

Y := θ +AZ︸ ︷︷ ︸
∈Rk

∼ N (θ,AAT ).

(5) Any linear combination of the components of a Gaussian vector is a Gaussian random variable.

Indeed, let Z = (Z1, . . . , Zk)
T ∼ N (θ,Σ) and a1, . . . , ak ∈ R. Put X :=

∑k
j=1 ajZj and a =

(a1, . . . , ak)
T , then

X = aTZ

holds. For t ∈ R put α := ta and observe that

E[eitX ] = E[eita
TZ] = E[eiα

TZ]

= eiα
T θ− 1

2α
TΣα

= eia
T θt− 1

2a
TΣat2 ,

so X ∼ N (aT θ, aTΣa).

(6) If Z = (Z1, . . . , Zk)
T is a Gaussian vector, then Z1, . . . , Zk are independent if any only if

cov(Zi, Zj) = 0 (1)

holds for all 1 ≤ i < j ≤ k. Indeed, observe the following.
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“=⇒”. If Z1, . . . , Zk are independent, then Zi and Zj are independent for any fixed 1 ≤ i < j ≤ k

and thus (1) holds.

“⇐=”. Suppose that Σij = cov(Zi, Zj) = 0 holds for all 1 ≤ i < j ≤ k. Then we have

Σ = diag(σ2
1 , . . . , σ

2
k)

with σ2
i = cov(Zi, Zi) = var(Zi). Let θ = E[Z] and t ∈ Rk. Then

E[eit
TZ] = eit

T θ− 1
2 t

TΣt = ei
∑k

j=1 tjθj−
1
2
∑k

j=1 t2jσ
2
j

=

k∏
j=1

eitjθj−
1
2 t

2
jσ

2
j =

k∏
j=1

E[eitjZj ]

which is equivalent to

E

 k∏
j=1

eitjZj

 =

k∏
j=1

E[eitjZj ],

so Z1, . . . , Zk are independent.

(7) If Z = (Z1, . . . , Zk)
T and W = (W1, . . . ,Wm)T are such that (Z,W)T is a Gaussian vectors,

then Z and W are independent if any only if

cov(Zi,Wj) = 0

holds for all 1 ≤ j ≤ k and 1 ≤ j ≤ m.

Remark 7.8. Recall that if X1, . . . , Xn
i.i.d.∼ N (θ, σ2) then we have

√
n(Xn − θ)

Sn
∼ T(n−1).

Now note that

√
n(Xn − θ)

Sn
=

√
nXn−θ

σ
Sn

σ

=

√
nXn−θ

σ√
1

n−1

∑n
i=1

(
Xi−Xn

σ

)2 .

Then
√
n(Xn−θ)

σ ∼ N (0, 1) is independent of 1
n−1

∑n
i=1

(
Xi−Xn

σ

)2
and

∑n
i=1(

Xi−Xn

σ )2 ∼ χ2
(n−1) holds.

Proof.

• We already know that X1, . . . , Xn
i.i.d.∼ N (θ, σ2). From above we also know:

– Fact 3: X = (X1, . . . , Xn)
T is a Gaussian vector.
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– Fact 5: We know that Xn is a Gaussian random variable with Xn ∼ N (E[Xn],Var(Xn))

which implies that
Xn − θ√

σ2

n

∼ N (0, 1).

• We now show that
√
n(Xn−θ)

σ is independent of 1
n−1

∑n
i=1

(
Xi−Xn

σ

)2
. To show this, we show that

Xn is independent of (X1 −Xn, . . . , Xn −Xn)
T . We have that (Xn, X1 −Xn, . . . , Xn −Xn)

T

is a Gaussian vector since it is a linear transformation of (X1, . . . , Xn)
T (see fact 4 above). We

also have

cov(Xn, Xi −Xn) = cov(Xn, Xi)− cov(Xn, Xn)

= cov(Xn, Xi)− var(Xn)

= cov

 1

n

n∑
j=1

Xj , Xi

− σ2

n

=
1

n
cov(Xi, Xi)−

σ2

n

=
1

n
var(Xi)−

σ2

n
= 0

which concludes the proof.

Back to the testing problem. Recall the testing problem

H0 : θ1 = θ2 versus H1 : θ1 ̸= θ2.

The vector Z = (X1, . . . , Xn, Y1, . . . , Ym)T ∈ Rn+m is a Gaussian vector with expectation

θ = (θ1, . . . , θ1︸ ︷︷ ︸
n

, θ2, . . . , θ2︸ ︷︷ ︸
m

)T ∈ Rn+m

and covariance Σ = diag(σ2, . . . , σ2) = σ2In+m. Then Xn − Y m is a Gaussian random vector because

it is a linear combination of Z. Its parameters are

E[Xn − Y m] = E[Xn]− E[Y m] = θ1 − θ2

and

Var(Xn − Y m) = var(Xn) + var(Y m) =
σ2

n
+
σ2

m
=
n+m

nm
σ2,

hence Xn − Y m ∼ N
(
θ1 − θ2,

n+m
nm σ2

)
and Xn − Y m

under H0∼ N
(
0, n+m

nm σ2
)
.

The idea. If |Xn − Y m| is “too big”, then we reject H0. But what is “too big”?
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Case 1. σ = σ0 is known. Then under H0 we have

Xn − Y m ∼ N
(
0,
n+m

nm
σ2
0

)
⇐⇒

√
nm

n+m

Xn − Y m

σ0
∼ N (0, 1).

The test of level α is given by

Φ(X1, . . . , Xn, Y1, . . . , Ym) =

1 if
√

nm
n+m

|Xn−Y m|
σ0

> ζ1−α/2

0 otherwise,

where ζ1−α/2 is the (1− α
2 )-quantile of N (0, 1).

Case 2. σ is unknown. It is a “nuisance” parameter which needs to be estimated. Consider

S2
n,m =

1

n+m− 2

 n∑
i=1

(Xi −Xn)
2 +

m∑
j=1

(Yj − Y m)2


and

Tn,m =

√
nm

n+m
· Xn − Y m

Sn,m
.

It can be shown that under H0 we have

Tn,m ∼ T(n+m−2).

In this case, the test of level α is given by

Φ(X1, . . . , Xn, Y1, . . . , Ym) =

1 if |Tn,m| > tn+m−2,1−α/2

0 otherwise,

where tn+m−2,1−α/2 is the
(
1− α

2

)
-quantile of T(n+m−2).
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Appendix

A Convergence Results for Random Variables

Definition A.1. Let p ≥ 1 and let (Xn)n be a sequence of real-valued random variables. We say that

Xn converges in Lp to a random variable X, denoted by Xn
Lp

−−→ X, if

E[|Xn −X|p] n→∞−−−−→ 0

holds.

Definition A.2. A family (Xi)i∈I of real-valued random variables is said to be uniformly integrable,

or UI in short, if

sup
i∈I

E[|Xi|1|Xi|≥K ]
K→∞−−−−→ 0

holds.

If not indicated otherwise, the following implications hold for any sequence of random variables and
E−→

denotes convergence of the mean,
CDF−−−→ denotes pointwise convergence of the CDF’s at the continuity

points and
CF−−→ denotes pointwise convergence of the characteristic functions.

Lr

−−→ Lp

−−→

L1

−−→ E−→ CDF−−−→

a.s.−−→ P−→ (d)−−→

CF−−→

r≥p≥1

DCT

UI

up to subsequence assuming limit
is constant

UI
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B Summary of Distributions

Definition B.1. For a random variable X : Ω → R the support of X is defined to be the smallest

closed set RX ⊆ R with P(X ∈ RX) = 1.

Definition B.2. For any random variable X : Ω → R we define its skewness by

γX :=
E[(X − E[X])3]

σ3
X

=
E[(X − E[X])3]

E[(X − E[X])2]3/2
.

Definition B.3. For t, c > 0 we define the gamma function by

Γ(t) :=

∫ ∞

0

xt−1e−x dx

and the lower incomplete gamma function by

G(t, c) :=
∫ c

0

xt−1e−x dx.

B.1 Discrete Distributions

Random Variable X Uniform ∼ U(E) Bernoulli Binomial Geometric Poisson Negative Binomial

Parameters E p ∈ [0, 1] n ∈ N, p ∈ [0, 1] p ∈ (0, 1] λ > 0 γ > 0, p ∈ [0, 1]

Support RX finite set E ⊆ R {0, 1} {0, 1, . . . , n} {0, 1, 2, . . .} {0, 1, 2, . . .} {0, 1, 2, . . .}

PMF P(X = k), k ∈ RX
1
n (1− p)1k=0 + p1k=1

(
n
k

)
pk(1− p)n−k (1− p)kp e−λ λk

k!

(
k+γ−1

k

)
pk(1− p)γ

CDF P(X ≤ t), t ∈ RX
|(−∞,t]∩E|

n (1− p)1t≥0 + p1t≥1 I1−p(n− t, 1 + t) 1− (1− p)⌊t⌋+1 Γ(⌊t+1⌋,λ)
⌊t⌋! I1−p(γ, k + 1)

Characteristic function φX(t)
eiat−ei(b+1)t

(b−a+1)(1−eit) ,

for E = {a, . . . , b}
1− p+ peit (1− p+ peit)n p

1−(1−p)eit exp{λ(eit − 1)}
(

1−p
1−peit

)γ
Expectation 1

n

∑
x∈E x p np 1−p

p λ γp
1−p

Variance
(b−a+1)2−1

12 ,

for E = {a, . . . , b}
p(1− p) np(1− p) 1−p

p2 λ γp
(1−p)2

Skewness 0 1−2p√
p(1−p)

1−2p√
np(1−p)

2−p√
1−p

1√
λ

1+p√
pγ
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B.2 Continuous Distributions

Random Variable X Uniform Exponential Gaussian Beta Gamma χ2
k

Parameters [a, b] λ > 0 µ ∈ R, σ2 > 0 α, β > 0 γ, c > 0 k ∈ N

Support RX [a, b] ⊆ R [0,∞) R [0, 1] [0,∞) [0,∞)

Density fX(x), x ∈ RX
1

b−a λe−λx 1√
2πσ

e−
(x−µ)2

2σ2 xα−1(1−x)β−1

Γ(α)Γ(β)
Γ(α+β)

cγ

Γ(γ)x
γ−1e−cx 1

2k/2Γ(k/2)
xk/2−1e−x/2

CDF P(X ≤ t), t ∈ RX
x−a
b−a1x∈[a,b] + 1x>b 1− e−λt Φ

(
t−µ
σ

)
It(α, β)

G(γ,ct)
Γ(γ)

G(k/2,t/2)
Γ(k/2)

Characteristic function φX(t)
eitb−eita

t(b−a) , for t ̸= 0

1, for t = 0
λ

λ−it exp
{
µit− σ2t2

2

}
F1(α;α+ β; it)

(
c

c−it

)γ
(1− 2it)−k/2

Expectation a+b
2

1
λ µ α

α+β
γ
c k

Variance (b−a)2

12
1
λ2 σ2 αβ

(α+β)2(α+β+1)
γ
c2 2k

Skewness 0 2 0 2(β−α)
√
α+β+1

(α+β+2)
√
αβ

2√
γ

√
8
k
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[1] H. Föllmer and H. Künsch, Wahrscheinlichkeitsrechnung und Statistik, Lecture notes, (2013).

[2] S. van de Geer, Statistics for Mathematics (Stat4Math), Lecture notes, (2021).

123


	Discrete Probability Spaces
	Introduction
	Random Variables
	Expectations
	Laplace Models
	Conditional Probabilities
	Bayes Rule
	Independence
	Conditional Expectation

	Random Walks
	Introduction
	The Reflection Principle
	The arcsin Law

	General Models
	Introduction
	Transformations of Probability Spaces
	Real Random Variables
	Distribution Functions
	Standard Types of Distributions
	Discrete Distributions
	Absolutely Continuous Distributions
	Transformations of Random Variables

	Expectation (revisited)
	Inequalities
	Several Random Variables: Random Vectors
	Transformation of random vectors
	Covariance and Correlation
	Limit Theorems
	Weak Law of Large Numbers (W.L.L.N.)
	Weak Convergence (Convergence in Law / Distribution)
	The Central Limit Theorem (C.L.T.)

	Introduction to Statistics
	Notation
	(Parametric) Statistical Models
	Parametric of Interest and Estimators
	The L.L.N. and Constructing Estimators
	Mean Squared Error
	The C.L.T. and Building Confidence Intervals
	Application: Confidence Interval for the Expectation 


	Estimators
	The Method of Moments and the Maximum Likelihood Estimators
	Maximum Likelihood Estimator (MLE)

	Hypothesis Testing
	Randomized Tests
	The Neyman-Pearson Test

	One Sample Tests
	The Student's Test
	The Sign Test
	Two Sample Tests

	Convergence Results for Random Variables
	Summary of Distributions
	Discrete Distributions
	Continuous Distributions


