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CHAPTER 1

Preface

These are the notes of the course Analysis III for D-MAVT and D-MATL taught
at ETH over the the course of several years. The notes are NOT meant as a sub-
stitute of the textbook, the book ”Advanced Engineering Mathematics”, By E.
Kreyszig, where the students can find more information, in more details and in a
more general context. This said, some parts of the notes (specifically the chapter on
the Laplace transform) are taken from the book by N. Hungerbühler ”Einführung in
partielle Differentialgleichungen” and the discussion of the normal form of a PDE is
taken from the book ”Advanced Engineering Mathematics”, by C. Ray Wylie and
L. Barrett.
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CHAPTER 2

The Laplace Transform

2.1. Introduction

The Laplace transform is one of the most powerful methods in operational calcu-
lus, a series of methods that transform differential problems into algebraic problems.

algebraic equations

L

Linv

or

BVP

IVP

Typically these methods are integral transforms of which the Laplace transform
and the Fourier transform are examples that we will see.

There are several advantages in using integral transforms in general, and the
Laplace transform in particular:

(1) Often algebraic equations are easier to solve;
(2) The data of an IVP or a BVP are all encoded in the algebra equation and

the solution is hence found at once without the need of finding the general
solution and then the particular solution;

(3) It is particularly useful to solve differential equations with input that are
not continuous, for example with short impulses. The way to deal with
these issues is to introduce the Heaviside function and the Dirac delta (see
§ 2.6).

2.2. Definitions and examples

Definition 2.1. Let f : [0,∞]→ R be a function. Its Laplace transform is defined
as

Lf(s) :=

∫ ∞
0

e−stf(t) dt .(2.1)

Notation. (1) There are several ways of denoting the Laplace transform. Among
the most common are L(f) (and hence L(f)(s) when applied explicitly to
a variable s) or F (s).

3



4 2. THE LAPLACE TRANSFORM

(2) It is customary to denote by t the variable for the original function f (e.g.
f(t) and g(t)) and by s the variable of the Laplace transform (e.g. L(f)(s)
or F (s) and L(g)(s) or G(s)).

Definition 2.2. The function f in (2.1) is the inverse Laplace transform of the
function F (s) and is often denoted by f := L−1(F ).

Remark 2.3. The inverse Laplace transform is “essentially” uniquely defined, that
is

F1 = F2 ⇒ f1 = f2 .

“Essentially” here means that if two functions (both defined on R≥0 have the same
Laplace transform, then they cannot differ on an interval of positive length, but
they might differ at single points.

Example 2.4. We want to compute L(fn), where fn(t) = tn, for n ≥ 0.

n = 0 If s > 0, then

L(f0)(s) =

∫ ∞
0

e−st dt = lim
T→∞

(∫ T

0

e−st dt

)
= lim

T→∞

(
−1

s
(e−sT − 1)

)
=

1

s
.

n ≥ 1

L(fn)(s) =

∫ ∞
0

e−sttn dt = lim
T→∞

(∫ T

0

e−sttn dt

)
= lim

T→∞

(
tn
(
−1

s

)
e−st

∣∣T
0

+
1

s

∫ T

0

ntn−1e−st dt

)
=
n

s

∫ ∞
0

e−sttn−1 dt =
n

s
L(fn−1(s)

=
n(n− 1)

s2
L(fn−2)(s) = · · · = n(n− 1) · · · 2 · 1

sn
L(f0)(s) =

n!

sn+1
.

Example 2.5. We compute the Laplace transform of f(t) := eat, where a ∈ R.

L(eat)(s) =

∫ ∞
0

e−steat dt =

∫ ∞
0

e−(s−a)t dt

=

{
∞ if s = a
−1
s−a limT→∞(e−(s−a)T − 1) if s 6= a

=

{
∞ if s ≤ a

1
s−a if s > a .

Remark 2.6. (1) The Laplace transform L(f) is defined exactly for the values
of s for which the integral exists. For example if
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(a) f is piecewise continuous1 and
(b) there exist M,k ∈ R with M,k > 0 such that

|f(t)| ≤Mekt(2.2)

for all t ≥ 0, then L(f)(s) exists on the interval (k,∞). In fact, if (2.2)
holds, then if s > k

|L(f)(s)| ≤
∫ ∞

0

e−st|f(t)| dt ≤M

∫ ∞
0

e−(s−k)t dt <
1

s− k
<∞ .

Note that the piecewise continuity gives the integrability on finite intervals
and the condition (2.2) in (b) insures the finiteness of L(f). The inequality
(2.2) is called growth restriction.

(2) Let us assume that f is a “good” function, that is a function for which the
Laplace transform exists. Then:
(a) lims→∞ L(f)(s) = 0.
(b) sL(f)(s) is bounded as s→∞.
(c) L(f) is continuous for all s ∈ R such that α ≤ s ≤ β, where k < α.
(d) ∫ β

α

(∫ ∞
0

e−stf(t) dt

)
ds =

∫ ∞
0

(∫ β

α

e−stf(t) ds

)
dt .

2.3. First properties and applications

2.3.1. Linearity.

Property 1. Let f and g be functions for which the Laplace transform exist. Then
for all α, β ∈ R

L(αf + βg) = αL(f) + βL(g) .

Moreover

L−1(αF + βG) = αL−1(F ) + βL−1(G) .

Example 2.7. Compute L(cosh at) and L(sinh at) for s > |a|.

L(cosh at) =L
(
eat + e−at

2

)
=

1

2
L(eat) +

1

2
L(e−at)

=
1

2

1

s− a
+

1

2

1

s+ a
=

s

s2 − a2
,

where we have applied Example 2.5 to f(x) = eat and to f(x) = e−at.

1f is piecewise continuous on I ⊂ R if there exists a subdivision of I into finitely many intervals
on which f is continuous and has finite limits at both endpoints of each interval.
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The calculation of L(sinh at) is analogous, namely:

L(sinh at) =L
(
eat − e−at

2

)
=

1

2
L(eat)− 1

2
L(e−at)

=
1

2

1

s− a
− 1

2

1

s+ a
=

a

s2 − a2
,

where, as before, we have applied Example 2.5 to f(x) = eat and to f(x) = e−at.
Since d

dt
cosh t = sinh t, the same formula for L(sinh at) could have been obtained

using Property 3 below. �

2.3.2. Shifting Theorem (s-shifting).

Property 2. Let us assume that the function f has a Laplace transform L(f)(s)
for all s > k for some k. Then

L(eatf(t))(s) = F (s− a) .(2.3)

Verification.

L(eatf(t))(s) =

∫ ∞
0

e−(s−a)tf(t) dt = F (s− a) . �

Example 2.8. Assume that we have shown (see Example 2.9) that

L(cosωt) =
s

s2 + ω2
and L(sinωt) =

ω

s2 + ω2
.(2.4)

We use these formulas to find the inverse Laplace transform of F (s) := 2s−3
s2+2s+26

. It
follows in fact from the Shifting Theorem that

L(eat cosωt) =
s− a

(s− a)2 + ω2
and L(eat sinωt) =

ω

(s− a)2 + ω2
.

Since we can write

F (s) =
2s− 3

s2 + 2s+ 26
=

2(s+ 1)− 5

(s+ 1)2 + 52
=

2(s+ 1)

(s+ 1)2 + 52
− 5

(s+ 1)2 + 52
,

then

f(t) = L−1(F ) =2L−1

(
s+ 1

s2 + 2s+ 26

)
− 5L−1

(
1

s2 + 2s+ 26

)
=2e−t cos 5t− e−t sin 5t = e−t(2 cos 5t− sin 5t) .

Note that f is a function that describes damped vibrations.



2.3. FIRST PROPERTIES AND APPLICATIONS 7

2.3.3. Differentiation.

Property 3. Let f, f ′, . . . , f (n−1) be continuous functions for all t ≥ 0 and let us
assume that they satisfy the growth condition (2.2). Assume that f (n) is piecewise
continuous on every finite subinterval in [0,∞). Then

L(f (n))(s) = snL(f)−
n−1∑
j=0

sn−1−jf (j)(0), for every n ≥ 1(2.5)

For n = 1 and n = 2 (2.5) reads as follows:

L(f ′)(s) = sL(f)− f(0)

L(f ′′)(s) = s2L(f)− sf(0)− f ′(0)
(2.6)

Verification. We assume that f and f ′ are piecewise continuous and f satisfies
the growth restriction (2.2). To verify the first of the two equations in (2.6), observe
that

L(f ′)(s) =

∫ ∞
0

e−stf ′(t) dt = lim
T→∞

(
e−stf(t)|T0 + s

∫ T

0

e−stf(t) dt

)
(2.7)

If (2.2) is satisfied, that is if for some k,M > 0, f satisfies the inequality |f(t)| ≤
Mekt, then ∣∣e−sTf(T )

∣∣ ≤Me−(s−k)T → 0 as T →∞ for s > k .

Then (2.7) becomes

L(f ′) = lim
T→∞

e−sTf(T )− f(0) + s

∫ ∞
0

e−stf(t) dt = −f(0) + sL(f) .

To verify the second of the equations in (2.6), we use the first equation applied first
to f ′ then again to f . Then

L(f ′′) = sL(f ′)− f ′(0) = s(sL(f)− f(0))− f ′(0) = s2L(f)− sf(0)− f ′(0) .

The formula (2.5) for any n can be proven by induction. �

Example 2.9. We compute now L(cosωt) and L(sinωt). To this purpose, set f(t) =
cosωt. Then

f ′(t) = −ω sinωt and hence f ′′(t) = −ω2 cosωt .

From

L(f ′′) = s2L(f)− sf(0)− f ′(0)

and since f(0) = 1 and f ′(0) = 0, we obtain, using the linearity of the Laplace
transform

−ω2L(cosωt) = s2L(cosωt)− s ,
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that is

L(cosωt) =
s

s2 + ω2
.

The computation of L(sinωt) can be performed analogously. �

Example 2.10 (First application to solving an ODE). We want to find y = y(t)
that satisfies the differential equation

y′′ − y = t ,

with initial values

y(0) = 1 and y′(0) = 1 .

Applying the Laplace transform to the equation y′′ − y = t, and using the linearity
property and Example 2.4, we obtain

L(y′′ − y) = L(t)⇐⇒

s2L(y)− sy(0)− y′(0)− L(y) =
1

s2
⇐⇒

(s2 − 1)L(y) =
1

s2
+ s+ 1⇐⇒

L(y) =
1

s2 − 1

(
1

s2
+ s+ 1

)
.

Using (2.4), Example 2.4, Example 2.5 and Example 2.7, it follows that

L(y) =
1

s2(s2 − 1)
+

1

s− 1
=

1

s2 − 1
− 1

s2
+

1

s− 1

=L(sinh t)− L(t) + L(et)

=L(sinh t− t+ et) ,

from which we obtain y(t) = sinh t− t+ et.

2.4. The Heaviside function and t-shifting

We want to consider now the vibrations of a mass m on an elastic spring and we
denote by y(t) the displacement. We want to consider the case in which there is a
damping force and an external force r(t), so that the differential equation satisfied
by the displacement is

my′′ + cy′ + ky = r(t) ,(2.8)

where c and k are respectively the damping and the spring constants, and where
r(t) is the external force.

The interesting case we want to discuss is when the external force is applied only
on one interval of time. To do this, we need to introduce the Heaviside function (or
unit step function), so defined:
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u(t) :=

{
1 if t > 0

0 if t < 0 .

0

In fact, the Heaviside function will be most useful in the following form:

If a ≥ 0, u(t− a) :=

{
1 if t > a

0 if t < a .

a

In the following examples we see how we can use the Heaviside function to express
some discontinuous functions.

Example 2.11. The function

f(t) :=

{
1 a < t < b

0 t < a or t > b

a b

can be written as f(t) = u(t− a)− u(t− b).

Example 2.12. The function

f(t) :=


1 a < t < b

−1 b < t < c

0 t < a or t > c

a b c

can be written as f(t) = u(t− a)− 2u(t− b) + u(t− c).

Example 2.13. If f(t) has graph
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a

then u(t− a)f(t) has graph

a

but u(t− a)f(t− a) has graph

a

2.4.1. Second shifting theorem (t-shifting).

Property 4. Let f be a function with Laplace transform L(f) and let u be the
Heaviside function. Then

L(u(t− a)f(t− a)) = e−asL(f) ,(2.9)

and

u(t− a)f(t− a) = L−1(e−asL(f)) ,

Verification. We have

L(u(t− a)f(t− a))(s) =

∫ ∞
0

e−stu(t− a)f(t− a) dt .
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Setting t := t− a, we obtain

L(u(t− a)f(t− a))(s) =

∫ ∞
0

e−stu(t− a)f(t− a) dt

=

∫ ∞
−a

es(t+a)u(t)f(t)d t

=

∫ ∞
0

e−ste−saf(t)d t

= e−saL(f) . �

Example 2.14. We now look at the mass-spring system in (2.8) with damping
constant c = 3 and external force the square wave u(t − 1) − u(t − 2). That is we
want to solve the initial value problem

y′′ + 3y′ + 2y = u(t− 1)− u(t− 2) , y(0) = 0 , y′(0) = 0 .(2.10)

Solution. We apply the Laplace transform to the left hand side of the ODE
in (2.10). Using the convention Y = L(y) and using (2.6) we obtain

L(y′′ + 3y′ + 2y)

= s2Y − sy(0)− y′(0) + 3sY − 3y(0) + 2Y

= s2Y + 3sY + 2Y .

Applying now the Laplace transform to the right hand side of (2.10) and using the
t-shifting, we obtain

L(u(t− 1)− u(t− 2)) =
1

s
(e−s − e−2s) .
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Setting the two equations above equal to each other, and solving for Y , we obtain,
with the help of (2.9) and of Examples 2.4 and 2.5,

Y (s) =
1

(s2 + 3s+ 2)s
(e−s − e−2s)

=
1

s(s+ 1)(s+ 2)
(e−s − e−2s)

=

(
1

2s
− 1

s+ 1
+

1

2(s+ 2)

)
(e−s − e−2s)

= L
(

1

2
− e−t +

1

2
e−2t

)
(e−s − e−2s)

= L
(

1

2
− e−t +

1

2
e−2t

)
e−s − L

(
1

2
− e−t +

1

2
e−2t

)
e−2s

= L
((

1

2
− e−(t−1) +

1

2
e−2(t−1)

)
u(t− 1)

)
− L

((
1

2
− e−(t−2) +

1

2
e−2(t−2)

)
u(t− 2)

)
= L

((
1

2
− e−(t−1) +

1

2
e−2(t−1)

)
u(t− 1)−

(
1

2
− e−(t−2) +

1

2
e−2(t−2)

)
u(t− 2)

)
.

It follows that

y(t) =

(
1

2
− e−(t−1) +

1

2
e−2(t−1)

)
u(t− 1)−

(
1

2
− e−(t−2) +

1

2
e−2(t−2)

)
u(t− 2)

=


0 t < 1
1
2
− e−(t−1) + 1

2
e−2(t−1) 1 < t < 2

e−(t−2) − e−(t−1) + 1
2
e−2(t−1) − 1

2
e−2(t−2) t > 2 .

2.5. Integration

Property 5. Let f be a piecewise continuous function for t ≥ 0 that satisfies the
growth condition (2.2). Then for s > k, s > 0, and t > 0

L
(∫ t

0

f(x) dx

)
=

1

s
F (s) .(2.11)

and ∫ t

0

f(x) dx = L−1

(
1

s
F (s)

)
.(2.12)

Verification. Let g(t) :=
∫ t

0
f(x) dx and let us verify first that if f satisfies

the growth condition, so does g. In fact,

|g(t)| ≤
∫ t

0

|f(x)| dx ≤M

∫ t

0

ekx dx =
M

k
(ekt − 1) ≤ M

k
ekt .
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Moreover g′(t) = f(t) and g(0) = 0, hence from (2.6) we have

L(g′) = sL(g)− g(0) = sL(g) ,

which implies that

L
(∫ t

0

f(x) dx

)
= L(g(t)) =

1

s
L(g′) =

1

s
L(f) . �

Example 2.15. Compute L−1
(

1
s(s2+ω2)

)
and L−1

(
1

s2(s2+ω2)

)
.

Solution. We know that L(sinωt) = ω
s2+ω2 . Since ω is a constant, by linearity

of the Laplace transform we obtain

L
(

sinωt

ω

)
=

1

s2 + ω2
,

and multiplying by 1
s

1

s
L
(

sinωt

ω

)
=

1

s

(
1

s2 + ω2

)
.

Taking the inverse Laplace transform on both sides, and using (2.12), we obtain

L−1

(
1

s

(
1

s2 + ω2

))
= L−1

(
1

s
L
(

sinωt

ω

))
=

∫ t

0

sinωx

ω
dx

=
1

ω2
(− cosωx)|t0

=
1

ω2
(1− cosωt) .

To compute L−1
(

1
s2(s2+ω2)

)
we iterate the above calculation. We know that

L
(

1

ω2
(1− cosωt)

)
=

1

ω2

(
1

s
− s

s2 + ω2

)
=

1

s(s2 + ω2)
,

from which it follows, again using (2.12), that

L−1

(
1

s2(s2 + ω2)

)
= L−1

(
1

s
L
(

1

ω2
(1− cosωt)

))
=

1

ω2

∫ t

0

(1− cosωx) dx

=
1

ω2

(
t− 1

ω
sinωt

)
.
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Example 2.16 ([?, Example 6, page 232]). Solve

y′′ + y = 2t , y
(π

4

)
= π/2 , y′

(π
4

)
= 2−

√
2 .(2.13)

Solution. We set t := t − π/4, from which t = t + π/4. With respect to this
new variable we have

y(t) = y(t) , y′(t) = y′(t) , y′′(t) = y′′(t) ,

and hence (2.13) becomes

y′′ + y = 2
(
t+

π

4

)
, y(0) =

π

2
, y′(0) = 2−

√
2 .

Applying the Laplace transform to the ODE we obtain

s2L(y)− sy(0)− y′(0) + L(y) = 2L(t) +
π

2
L(1) ,

from which it follows that

(s2 + 1)Y − π

2
s− 2 +

√
2 =

2

s2
+
π

2s
.

Solving for Y , and using the result of both computations in Example 2.15, we obtain

Y =
2

s2(s2 + 1)
+
π

2

1

s(s2 + 1)
+

2−
√

2

s2 + 1
+
π

2

s

s2 + 1

= 2L(t− sin t) +
π

2
L(1− cos t) + (2−

√
2)L(sin t) +

π

2
L(cos t)

= L(2t+
π

2
−
√

2 sin t) .

Hence

y(t) = 2t+
π

2
−
√

2 sin t ,

and substituting back to obtain the original variable t we obtain

y(t) = 2
(
t− π

4

)
+
π

2
−
√

2 sin
(
t− π

4

)
= 2t−

√
2

1√
2

(sin t− cos t)

= 2t− sin t+ cos t .

2.6. Dirac’s delta function

We are going to look for solutions of the differential equationmy′′+cy′+ky = r(t),
where r(t) is a force over a very short interval of time, almost instantaneously.
Phenomena of this impulsive nature are common and can be dealt with using Dirac’s
delta.
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We saw already how to deal with forces applied on an interval [a, a+ h] and we
assume now that the magnitude of the force is 1/h, so that the impulse of the force
is one. Namely if

fh(t− a) :=

{
1/h a ≤ t ≤ a+ h

0 otherwise ,

then

Ih :=

∫ ∞
0

fh(t− a) dt =

∫ a+h

a

1

h
dt = 1 .

Definition 2.17. The Dirac delta is the limit

δ(t− a) := lim
h→0

fh(t) =

{
∞ t = a

0 t 6= a ,

and

∫ ∞
0

δ(t− a) dt = 1 .(2.14)

Remark 2.18. The Dirac delta function is not a function, but a generalised function
or a distribution.

The following properties are important and should be shown using the definition
of distribution:

Property 6. (1) (Sifting property)

∫ ∞
0

g(t)δ(t− a) dt = g(a) ,(2.15)

(2) L(δ(t− a)) = e−as .

Verification. (1) This is consistent with (2.14) in the case in which g(t) ≡ 1.
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(2) We use here properties of the Dirac delta and of the Laplace transform. Because
the Laplace transform has good convergence properties, we can write

L(δ(t− a)) = L(lim
h→0

fh(t− a))

= lim
h→0
L(fh(t− a))

= lim
h→0

1

h
L(u(t− a)− u(t− (a+ h)))

= lim
h→0

1

hs
(e−as − e−(a+h)s)

= lim
h→0

e−as
1− e−hs

hs

= e−as lim
h→0

1− e−hs

hs

(∗)
= e−as lim

h→0

se−hs

s
= e−as ,

where in (∗) we used either the fact that

lim
h→0

1− e−hs

hs
= lim

hs→0

1− e−hs

hs
= lim

`→0

1− e−`

`
= − d

d`
e−`
∣∣∣∣
`=0

= e−`|`=0 = 1 .

or l’Hôpital rule.
Another possibility would have been to apply (2.15) with g(t) = e−at. Having

done the direct calculation provides instead further evidence for (2.15). �

Example 2.19. (Hammerblow response of a mass-spring system) We want to solve
the IVP

y′′ + 3y′ + 2y = δ(t− 1) , y(0) = 0 , y′(0) = 0 .

Solution. We apply the Laplace transform to both sides of the ODE

L(y′′ + 3y′ + 2y) = L(δ(t− 1))

and, using the calculation in Example 2.14 we obtain that

s2Y + 3sY + 2Y = e−s ,

or, equivalently,

Y =
1

(s+ 1)(s+ 2)
e−s =

(
1

s+ 1
− 1

s+ 2

)
e−s .(2.16)

We apply now the second Shifting theorem (Property 4) with L(e−at) = 1
s+a

and
a = 1, 2, that is

1
s+1

e−s = L(e−t)e−s = L(u(t− 1)e−(t−1))(2.17)

1
s+2

e−s = L(e−2t)e−s = L(u(t− 1)e−2(t−1)) .(2.18)
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Plugging in the result of the two equations in (2.17) into (2.16) we obtain

Y = L(u(t− 1)(e−(t−1) − e−2(t−1))) ,

that is

y = u(t− 1)(e−(t−1) − e−2(t−1))

�

2.7. Convolution and integral equations

While the Laplace transform is linear and satisfies the property L(f+g) = L(f)+
L(g), the same cannot be said about the product of two functions. In other words
L(f ·g) 6= L(f)L(g). However one can define a different “product”, called convolution
and denoted by ∗, that has the desired property that L(f ∗ g) = L(f)L(g).

Definition 2.20. The convolution f ∗ g of two functions f and g is defined as

f ∗ g(t) :=

∫ t

0

f(t′)g(t− t′) dt′ .

Properties. Let f, g and h be functions. Then:

(1) f ∗ g = g ∗ f ;
(2) f ∗ (g + h) = f ∗ g + f ∗ h;
(3) f ∗ (g ∗ h) = (f ∗ g) ∗ h;
(4) f ∗ 0 = 0 ∗ f = 0;
(5) f ∗ 1 6= f ;
(6) f ∗ f is not always non-negative.

The verification of these properties is straightforward and is similar to the ver-
ification of the Property 7 that we will do later. An example that illustrates (5)
is f(t) = t, since f ∗ 1 = 1

2
t2. On the other hand, taking f(t) = sin t, shows that

f ∗ f = 1
2

cos t+ 1
2

sin t can take also negative values.

Property 7. If f, g are two functions, then

L(f ∗ g) = L(f)L(g) .

Verification. By definition we have

L(f ∗ g)(s) =

∫ ∞
0

e−st(f ∗ g)(t) dt

=

∫ ∞
0

e−st
(∫ t

0

f(t′)g(t− t′) dt′
)
dt

(2.19)

Since

{(t, t′) : 0 < t′ < t, 0 < t <∞} = {(t, t′) : t′ < t <∞, 0 < t′ <∞} ,
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t

t′

t

t′

we can exchange the order on integration in the right hand side of (2.19) to obtain

L(f ∗ g)(s) =

∫ ∞
0

e−st
(∫ t

0

f(t′)g(t− t′) dt′
)
dt

=

∫ ∞
0

(∫ ∞
t′

e−stg(t− t′) dt
)
f(t′) dt′

α:=t−t′
=

∫ ∞
0

(∫ ∞
0

e−s(α+t′)g(α) dα

)
f(t′) dt′

=

∫ ∞
0

e−st
′
(∫ ∞

0

e−sαg(α) dα

)
f(t′) dt′

=

(∫ ∞
0

e−st
′
f(t′) dt′

)(∫ ∞
0

e−sαg(α)α

)
= L(f)L(g) .

�

Example 2.21. This is Example 2.14 revisited. In other words, we will solve again
the IVP in (2.10)

y′′ + 3y′ + 2y = u(t− 1)− u(t− 2) , y(0) = 0 , y′(0) = 0 ,

but this time we will use the convolution. By applying the Laplace transform on
both sides of the differential equation we obtain

(s2 + 3s+ 2)Y = L(u(t− 1)− u(t− 2)) ,

and, solving for Y ,

Y =
1

s2 + 3s+ 2
L(u(t− 1)− u(t− 2))

=

(
1

s+ 1
− 1

s+ 2

)
L(u(t− 1)− u(t− 2))

= L(e−t − e−2t)L(u(t− 1)− u(t− 2))

= L((e−t − e−2t) ∗ (u(t− 1)− u(t− 2))) .
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It follows that

y(t) = (e−t − e−2t) ∗ (u(t− 1)− u(t− 2))

= (u(t− 1)− u(t− 2)) ∗ (e−t − e−2t)

=

∫ t

0

(u(t′ − 1)− u(t′ − 2))(e−(t−t′) − e−2(t−t′)) dt′
(2.20)

Since ∫
e−a(t−t′) dt′ =

1

a
e−a(t−t′) + C ,

then ∫
(e−(t−t′) − e−2(t−t′)) dt′ = e−(t−t′) − 1

2
e−2(t−t′) + C .

If follows from (2.20) that, if 1 < t < 2,

y(t) =

∫ t

1

(u(t′ − 1)− u(t′ − 2))(e−(t−t′) − e−2(t−t′)) dt′

=

∫ t

1

(e−(t−t′) − e−2(t−t′)) dt′

= (e−(t−t′) − 1

2
e−2(t−t′))

∣∣t
1

=
1

2
− e−(t−1) +

1

2
e−2(t−1) .

On the other hand, if t > 2, (2.20) becomes

y(t) =

∫ 2

1

(u(t′ − 1)− u(t′ − 2))(e−(t−t′) − e−2(t−t′)) dt′

=

∫ 2

1

(e−(t−t′) − e−2(t−t′)) dt′

= (e−(t−t′) − 1

2
e−2(t−t′))

∣∣2
1

= e−(t−2) − 1

2
e−2(t−2) − e−(t−1) +

1

2
e−2(t−1) ,

which is consistent with the result obtained in Exercise 2.14.

Example 2.22. Solve the integral equation

y(t)−
∫ t

0

y(t′) sin(t− t′) dt′ = t .

Solution. Since
∫ t

0
y(t′) sin(t− t′) = y(t) ∗ sin t, by applying the Laplace trans-

form to the equation

y − y ∗ sin t = t
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we obtain

Y − Y 1

s2 + 1
=

1

s2
.

Solving for Y we get

Y =
s2 + 1

s4
=

1

s2
+

1

s4
= L

(
t+

1

6
t3
)
,

from which we gather that y(t) = t+ 1
6
t3. �

2.8. Last properties: differentiation and integration of transforms

We saw already how the Laplace transform of the derivative or of the integral
of a function is related to the Laplace transform of the function (Properties 3 and
4). Here we see the effect of taking the derivative or the integral of the Laplace
transform.

Property 8. Let f be a piecewise continuous function that satisfies the growth
condition (2.2). Then

(1) L′(f) = −L(tf(t)).

(2) If in addition limt→0+
f(t)
t

exists, then
∫∞
s
L(f)(s′) ds′ = L

(
f(t)
t

)
.

Verification. (1) The continuity properties of the Laplace transform allow us
to write

d

ds

∫ ∞
0

e−stf(t) dt =

∫ ∞
0

−te−stf(t) dt .

The right hand side of the above equality equals −L(tf(t)), from which the first
assertion follows.

(2) The same continuity properties of the Laplace transform used in (1) allow us to
write ∫ ∞

s

(∫ ∞
0

e−ts
′
f(t) dt

)
ds′ =

∫ ∞
0

(∫ ∞
s

e−ts
′
ds′
)
f(t) dt .(2.21)

The right hand side of (2.21) equals∫ ∞
0

(
−1

t
e−ts

′
∣∣∣∣∞
s

)
f(t) dt =

∫ ∞
0

e−st
1

t
f(t) dt = L

(
1

t
f(t)

)
,

which shows the second assertion. �

Remark 2.23. Let f : R→ R be a function that is piecewise continuous, satisfies the
growth condition (2.2) with constants M and k and has the property that f(t) = 0
if t < 0. Then the Laplace transform of f exists for all complex numbers z ∈ C with
real part <z > k. Considering the Laplace transform as a function of a complex
variable has for example the advantage that there exists a formula for the inverse
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Laplace transform. However the knowledge needed to use this formula is beyond
the scope of this course and is therefore not treated here.





CHAPTER 3

Fourier Analysis

Fourier series are an instrument to decompose periodic phenomena, such as the
behaviour of a rotating part in a machine, into simpler functions such as sines
and cosines. We will see that Fourier integrals give a way of extending a similar
decomposition to the case of non-periodic phenomena.

3.1. Fundamentals

Definition 3.1. A function f(x) is called periodic if it is defined for “most” x ∈ R
and if there is a positive real number p ∈ R, p > 0 such that f(x) = f(x+ p) for all
x.

Example 3.2. f(x) = sinx and f(x) = cos x are periodic of period p = 2π.

Remark 3.3. The period p is not necessarily the smallest real number for which
f(x) = f(x + p). In fact, if p is a period, then any multiple of p is also a period.
This is important in the following examples:

Example 3.4. (1) f(x) = sinnx and f(x) = cosnx are periodic of period 2π/n
but also periodic of period p = 2π: we will consider them as periodic of
period 2π.

(2) sin
(
nπ
L
x
)

and cos
(
nπ
L
x
)

are periodic of period 2L/n but we will consider
them in the following as functions of period 2L.

(3) f(x) = tanx is periodic of period π. This is the typical example of a
function that is defined for “most” x, as it is defined for all x 6= ±(2k+1)π

2
,

for k = 0, 1, 2, . . . .
(4) The function f : (0, L)→ R defined as

f(x) :=

{
1 x ∈

(
0, L

2

]
0 x ∈

(
L
2
, L
)
.

L
2

L

23
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can be extended to the whole real axis as a periodic function. There are at
least three ways to do this, one as a function of period L

L
2

L

and two as a function of period 2L

L
2

L L
2

L

We will see that the possibility of extending a function defined on a bounded
interval to be periodic is very important.

(5) If f, g are functions periodic of period p, and α, β ∈ R, then αf + βg is
periodic of period p.

The functions sin
(
nπ
L
x
)

and cos
(
nπ
L
x
)

are particularly important periodic func-
tions and the collection{

sin
(nπ
L
x
)
, cos

(nπ
L
x
)

: n ∈ Z, n ≥ 0
}

is called trigonometric system.

Properties (Orthogonality of the trigonometric system). Let n,m be non-negative
integers. Then

(1)

∫ L

−L
cos
(nπ
L
x
)

cos
(mπ
L
x
)
dx =


0 n 6= m

L n = m 6= 0

2L n = m = 0 .

(2) ∫ L

−L
sin
(nπ
L
x
)

sin
(mπ
L
x
)
dx =

{
0 n 6= m

L n = m 6= 0 .
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(3) ∫ L

−L
cos
(nπ
L
x
)

sin
(mπ
L
x
)
dx = 0, for every n,m .

Verification. To simplify the calculation we consider the case in which 2L =
2π. Observe first of all that if n = m = 0, then∫ π

−π
cosnx cosmxdx =

∫ π

−π
dx = 2π .

Using the following trigonometric formulas

cosnx cosmx =
1

2
cos(n+m)x+

1

2
cos(n−m)x

sinnx sinmx =
1

2
cos(n−m)x− 1

2
cos(n+m)x

sinnx cosmx =
1

2
sin(n+m)x+

1

2
sin(n−m)x ,

we obtain∫ π

−π
cosnx cosmxdx =

1

2

∫ π

−π
cos(n+m)x dx+

1

2

∫ π

−π
cos(n−m)x dx

=

{
1
2
0 + 1

2
0 = 0 n 6= m

π n = m 6= 0
,

∫ π

−π
sinnx sinmxdx =

1

2

∫ π

−π
cos(n−m)x dx+

1

2

∫ π

−π
cos(n+m)x dx

=

{
1
2
0 + 1

2
0 = 0 n 6= m

π n = m 6= 0
,

and finally∫ π

−π
cosnx sinmxdx =

1

2

∫ π

−π
sin(n+m)x dx+

1

2

∫ π

−π
sin(n−m)x dx

=
1

2
0 +

1

2
0 = 0 .

�

Definition 3.5. (1) A trigonometric polynomial is a function of the kind

a0 +
N∑
n=1

(
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
))

,

while
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(2) a trigonometric series is a function of the kind

a0 +
∞∑
n=1

(
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
))

,

where the an, bn are constants called the coefficients.

Since the functions in the trigonometric system are periodic of period 2L and
since a trigonometric series is the sum of functions in the trigonometric system, if
the series converges it will converge to a periodic function of period 2L. Suppose
this is the case and let f(x) be a function whose sum is a trigonometric series, that
is

f(x) = a0 +
∞∑
n=1

(
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
))

.(3.1)

The natural question is what is the relation between f(x) and the coefficients an, bn.
By multiplying both sides of (3.1) by cos

(
mπ
L
x
)

and integrating the result over the
interval [−L,L], we obtain∫ L

−L
f(x) cos

(mπ
L
x
)
dx

= a0

∫ L

−L
cos
(mπ
L
x
)
dx+

∞∑
n=1

(
an

∫ L

−L
cos
(nπ
L
x
)

cos
(mπ
L
x
)
dx

+ bn

∫ L

−L
sin
(nπ
L
x
)

cos
(mπ
L
x
)
dx︸ ︷︷ ︸

=0

)
.

Using the orthogonality properties of the trigonometric system (in particular (1)
and (3) for m fixed and n varying between 1 and ∞) we obtain∫ L

−L
f(x) cos

(mπ
L
x
)
dx =

{
a02L m = 0

amL m > 0 ,

from which it follows that

a0 =
1

2L

∫ L

−L
f(x) dx ,

am =
1

L

∫ L

−L
f(x) cos

(mπ
L
x
)
dx , if m > 0 .

(3.2)
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Likewise, multiplying both sides of (3.1) by sin
(
mπ
L
x
)

and integrating the result
over the interval [−L,L], we obtain

∫ L

−L
f(x) sin

(mπ
L
x
)
dx

= a0

∫ L

−L
sin
(mπ
L
x
)
dx︸ ︷︷ ︸

=0

+
∞∑
n=1

(
an

∫ L

−L
cos
(nπ
L
x
)

sin
(mπ
L
x
)
dx︸ ︷︷ ︸

=0

+ bn

∫ L

−L
sin
(nπ
L
x
)

sin
(mπ
L
x
)
dx

)
.

Again using the orthogonality properties of the trigonometric system we deduce

bm =
1

L

∫ L

−L
f(x) sin

(mπ
L
x
)
dx , if m > 0 .(3.3)

Example 3.6. We compute the Fourier series of the function

f(x) :=

{
−k −2 < x < 0

k 0 < x < 2 ,

extended by periodicity so as to have f(x) = f(x + 4). In this case 2L = 4, that is
L = 2. It follows that

a0 =
1

4

∫ 2

−2

f(x) dx =
1

4
(−k(0− (−2)) + k(2− 0) = 0 .
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and

am =
1

L

∫ L

−L
f(x) cos

(mπ
L
x
)
dx

=
k

2

(
−
∫ 0

−2

cos
(mπ

2
x
)
dx+

∫ 2

0

cos
(mπ

2
x
))

dx

=
k

�2

�2

mπ

(
− sin

(mπ
2
x
) ∣∣0
−2

+ sin
(mπ

2
x
) ∣∣2

0

)
=

k

mπ

(
sin
(mπ
�2

(−�2)
)

+ sin
(mπ
�2
�2
))

= 0 .

Analogously

bm =
1

L

∫ L

−L
f(x) sin

(mπ
L
x
)
dx

=
k

2

(
−
∫ 0

−2

sin
(mπ

2
x
)
dx+

∫ 2

0

sin
(mπ

2
x
))

dx

=
k

�2

�2

mπ

(
cos
(mπ

2
x
) ∣∣0
−2
− cos

(mπ
2
x
) ∣∣2

0

)
=

k

mπ
(1− cos(−mπ)− cos(mπ) + 1)

=
2k

mπ
(1− cosmπ)

=

{
4k
mπ

m = 1, 3, 5, . . .

0 m = 2, 4, 6, . . . .

Thus f(x) can be represented by a Fourier series as follows

f(x) =
4k

π

∞∑
n=0

1

2n+ 1
sin

(
(2n+ 1)π

2
x

)
.
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�

Remark 3.7. In order to be able to find a formula for the Fourier coefficients, we
assumed that the function f could be represented as a Fourier series. This means
not only that the Fourier series of the given function converges, but also that the
sum of the Fourier series of f at the point x equals the value of the function f at x.

If f is periodic of period 2L and piecewise continuous and if f has left and right
derivative at each point in a given interval of length 2L, then the Fourier series of
f with the coefficients determined above converges to f(x) in all points where f is
continuous and it converges to 1

2
(f(x−0 )+f(x+

0 )) in the points of discontinuity. Here
we use the notation

f(x±0 ) = lim
x→x±0

f(x) = lim
ε→0

f(x0 ± ε) .

In particular this means that if f is continuous and its Fourier series converges, then
the sum of the Fourier series at x equals f(x).
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3.2. Even and odd functions, half-range expansion

Definition 3.8. A function f is

(1) even if f(x) = f(−x)
(2) odd if f(x) = −f(−x)

for all x in the domain.

Remark 3.9. The graph of an even function (such as cos x) is symmetric with
respect to the y-axis, while the graph of an odd function (such as sinx) is symmetric
with respect to the origin.

Properties. (1) The product of two even functions or of two odd functions is
even, while the product of an odd function with an even one is odd.

(2) If g is even, then
∫ L
−L g(x) dx = 2

∫ L
0
g(x) dx.

(3) If g is odd, then
∫ L
−L g(x) dx = 0.

3.2.1. Simplified form of the Fourier series for even and for odd func-
tions.

Theorem 3.10. Let f be a function of period 2L representable by its Fourier series.

(1) If f is even then

f(x) = a0 +
∞∑
n=1

an cos
(nπ
L
x
)
,

where

a0 =
1

L

∫ L

0

f(x) dx

an =
2

L

∫ L

0

f(x) cos
(nπ
L
x
)
dx , if n > 0 .

(2) If f is odd then

f(x) =
∞∑
n=1

bn sin
(nπ
L
x
)
,

where

bn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx .

Example 3.11. We will find the Fourier series of the function f(x) defined as f(x) =
x + π, for −π < x < π and extended to be 2π periodic f(x) = f(x + 2π). To do
so, we write f(x) = f1(x) + f2(x), where f1(x) = x and f2(x) = π. Because of the
linearity of the integrals, the Fourier coefficients of f are the sum of the Fourier
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coefficients of f1 and of f2. The coefficients bn of f2 vanish since f2 is even: since
also if n ≥ 1

an =
2

π

∫ π

0

π cos
(nπ
π
x
)
dx =

∫ π

0

cos(nx) dx =
1

n
sin(nx)

∣∣π
0

= 0 ,

the coefficients of f2 are all zero, except for a0 = π; that is f2(x) = π is its own
Fourier series.

Since f1 is odd, the only nonzero coefficients are the bn. From (3.3), and using
integration by parts, we have

bn =
2

π

∫ π

0

x sinnx dx

=
2

π

(
−x
n

cosnx
∣∣π
0

+
1

n

∫ π

0

cosnx dx

)
=

2

πn

(
−π cosnπ +

1

n
sinnx

∣∣π
0

)
= − 2

n
cosnπ

= (−1)n−1 2

n
,

from which it follows that

f(x) = π + 2
∞∑
n=1

(−1)n−1

n
sinnx .
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3.2.2. The half-range expansion. We saw in Example 3.4(4) that a function
f defined on the interval (0, L) can be extended periodically with period L and in
this case its Fourier series will contain both coefficients an and bn. Sometimes it is
however convenient to extend the function f to be either even or odd, and in this
case the period will be 2L. This is particularly convenient in connection with PDEs,
as we will see in Chapter 4.

Example 3.12. Compute the half-range expansion of

f(x) =

{
2k
L
x x ∈

[
0, L

2

]
2k
L

(L− x) x ∈
[
L
2
, L
]
.

0 L
2 L

We are going to compute the extension first as an even periodic function and then
as an odd periodic function.
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Extension as an even periodic function: We assume that f is as above and
extend it to be an even function by setting f(x) = f(−x) for x ∈ [−L, 0]. Then set
f(x+ 2L) = f(x) for all x ∈ R.

−L 0 L
2 L

By Theorem 3.10(1) we have that

bn = 0

a0 =
1

L

∫ L

0

f(x) dx =
1

L

∫ L/2

0

2k

L
x dx+

1

L

∫ L

L/2

2k

L
(L− x) dx

=
2k

L2

1

2

L2

4
− 2k

L2

1

2
(L− x)2

∣∣∣∣L
L/2

=
k

4
+

2k

L2

1

2

L2

4
=

1

2
k ,

an =
2

L

∫ L

0

f(x) cos
(nπ
L
x
)
dx

=
2

L

∫ L/2

0

2k

L
x cos

(nπ
L
x
)
dx+

2

L

∫ L

L/2

2k

L
(L− x) cos

(nπ
L
x
)
dx = (∗)

Since

∫
x cos

(nπ
L
x
)
dx =

L

nπ
x sin

(nπ
L
x
)
− L

nπ

∫
sin
(nπ
L
x
)
dx

=
L

nπ
x sin

(nπ
L
x
)

+
L2

n2π2
cos
(nπ
L
x
)

+ C ,
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then

(∗) =
4k

L2

(
L

nπ
x sin

(nπ
L
x
)

+
L2

n2π2
cos
(nπ
L
x
))∣∣∣∣L/2

0

+
4k

L

∫ L

L/2

cos
(nπ
L
x
)
dx

−4k

L2

(
L

nπ
x sin

(nπ
L
x
)

+
L2

n2π2
cos
(nπ
L
x
))∣∣∣∣L

L/2

=
2k

nπ
sin
(
n
π

2

)
+

4k

n2π2
cos
(
n
π

2

)
− 4k

n2π2

+
4k

nπ
sinnπ − 4k

nπ
sin
(
n
π

2

)
−4k

L2

(
L2

nπ
sinnπ − L2

2nπ
sin
(
n
π

2

))
+

L2

n2π2

(
cosnπ − cos

(
n
π

2

))
=

(
2k

nπ
− 4k

nπ
+

2k

nπ

)
︸ ︷︷ ︸

=0

sin
(
n
π

2

)
+

(
4k

n2π2
+

4k

n2π2

)
︸ ︷︷ ︸

= 8k
n2π2

cos
(
n
π

2

)

+

(
4k

nπ
− 4k

nπ

)
︸ ︷︷ ︸

=0

sinnπ − 4k

n2π2
cosnπ− 4k

n2π2

=
8k

n2π2
cos
(
n
π

2

)
− 4k

n2π2
cosnπ − 4k

n2π2

=
4k

n2π2

(
2 cos

(
n
π

2

)
− cosnπ − 1

)
.

Since cosnπ = (−1)n and cos
(
nπ

2

)
=

{
0 n = 2j + 1

(−1)j n = 2j
, then

an =
(

2 cos
(
n
π

2

)
− cosnπ − 1

)
=

{
4k
n2π2

(
2 · 0− (−1)2j+1 − 1

)
n = 2j + 1

4k
n2π2

(
2(−1)j − (−1)2j − 1

)
n = 2j

=

{
4k
n2π2

(
(−1)2j − 1

)
n = 2j + 1

4k
n2π2

(
2(−1)j − 2

)
n = 2j

=


0 n = 2j + 1

0 n = 2j,with j even, that is j = 2m
4k
n2π2 (−4) = − 16k

n2π2 n = 2j,with j odd, that is j = 2m+ 1 ,
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so that

f(x) =
k

2
− 16k

π2

(
1

22
cos

(
2π

L
x

)
+

1

62
cos

(
6π

L
x

)
+ . . .

)
=
k

2
− 16k

π2

∞∑
m=0

1

(2(2m+ 1))2
cos

(
2(2m+ 1)

L
x

)
.

Extension as an odd periodic function: With an analogous calculation, after
having set f(x) = −f(−x) for x ∈ [−L, 0] and then f(x+ 2L) = f(x) for all x ∈ R,

−L 0 L
2 L

we obtain that

an = 0 for all n and bn =
8k

n2π2
sin
(nπ

2

)
=

{
o n even
8k(−1)j

n2π2 n = 2j + 1 ,

so that

f(x) =
8k

π2

∞∑
j=0

(−1)j

(2j + 1)2
sin

(
(2j + 1)π

L
x

)
.(3.4)

�

3.3. Complex Fourier series

We saw that the Fourier series of a periodic function f of period 2L is

f(x) = a0 +
∞∑
n=1

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]

.

We also know that

eit = cos t+ i sin t(3.5)

or, equivalently,

cos t =
eit + e−it

2
and sin t =

eit − e−it

2i
,

where these last formulas can be obtained from (3.5), by replacing t with −t and
using that cos t = cos(−t) and that sin t = − sin(−t). It follows that, by setting
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nπ
L
x =: tn for n > 0 for simplicity,

an cos tn + bn sin tn = an
eitn + e−itn

2
+ bn

eitn − e−itn
2i

= eitn
1

2
(an − ibn)︸ ︷︷ ︸

=:cn

+e−itn
1

2
(an + ibn)︸ ︷︷ ︸

=:kn

= cne
itn + kne

−itn .

We can hence set c0 := a0: moreover, if we compute

cn =
1

2
(an − ibn)

=
1

2L

∫ L

−L
f(x)

(
cos
(nπ
L
x
)
− i sin

(nπ
L
x
))

dx

=
1

2L

∫ L

−L
f(x)e−inπx/Ldx

and

kn =
1

2
(an + ibn)

=
1

2L

∫ L

−L
f(x)

(
cos
(nπ
L
x
)

+ i sin
(nπ
L
x
))

dx

=
1

2L

∫ L

−L
f(x)einπx/Ldx

we see that we can extend the definition of cn to negative n ∈ Z by setting c−n := kn.
With this notation we obtain

f(x) = c0 +
∑∞

n=1(cne
inπx/L + kne

−inπx/L)

= c0 +
∑∞

n=1(cne
inπx/L + c−ne

−inπx/L)

so that the complex Fourier series of f is

f(x) =
∞∑

n=−∞

cne
inπx/L ,

where

cn =
1

2L

∫ L

−L
f(x)e−inπx/L dx .

Remark 3.13. Notice that just because we have written the Fourier series of a real
function f with complex numbers, it does not mean that the function or its Fourier
series have all the sudden became complex! In fact, using the definition of cn (and



3.3. COMPLEX FOURIER SERIES 37

of kn), and denoting by z = x − iy the complex conjugate of the complex number
z = x+ iy, we have:

cne
inπx/L =

1

2
(an − ibn)einπx/L =

1

2
(an + ibn) e−inπx/L = kne−inπx/L = c−ne−inπx/L

and hence

cneinπx/L = c−ne
−inπx/L .

Since z + z = 2<z = 2x, we obtain that

cne
inπx/L + c−ne

−inπx/L

= 2<cneinπx/L = 2<
[

1

2
(an − ibn)(sin

(nπ
L
x
)

+ i sin
(nπ
L
x
)

)

]
= <

(
(an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)

) + i(an sin
(nπ
L
x
)
− bn cos

(nπ
L
x
)

)
)

= an cos
(nπ
L
x
)

+ bn sin
(nπ
L
x
)
.

(3.6)

Since the Fourier series is absolutely convergent, its terms can be rearranged arbi-
trarily. This, and the fact that c0 = a0, imply that

∞∑
n=−∞

cne
inπx/L = c0 +

∞∑
n=1

(cne
inπx/L + c−ne

−inπx/L)

= a0 +
∞∑
n=1

(
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
))

.

Example 3.14. We want to find the complex Fourier series of the function f(x) = ex

for −π < x < π, extended by periodicity so as to have f(x) = f(x + 2π). We will
then derive the real Fourier series from the complex one.

We start by computing the coefficients cn.

cn =
1

2π

∫ π

−π
f(x)e−inx dx =

1

2π

∫ π

−π
exe−inx dx

=
1

2π

∫ π

−π
e(1−in)x dx =

1

2π

1

1− in
e(1−in)x

∣∣∣∣π
−π

= (∗)

Since cosx = cos(−x), we have

e±inπ = cos(±nπ) + i sin(±nπ) = (−1)n .

Moreover
1

1− in
=

1 + in

(1− in)(1 + in)
=

1 + in

1 + n2
,

and sinhx = ex−e−x
2

, so that

(∗) =
1

2π

1 + in

1 + n2
(einπeπ − e−inπe−π) =

1

2π

1 + in

1 + n2
(−1)n(eπ − e−π) =

sinhπ

π

1 + in

1 + n2
(−1)n .
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Hence we can write the complex Fourier series of ex as

ex =
sinhπ

π

∞∑
n=−∞

(−1)n
1 + in

1 + n2
einx .

In order to find the real Fourier series, we just need to apply (3.6).

cne
inx + c−ne

−inx = 2
sinhπ

π
<(−1)n

1 + in

1 + n2
einx

=
2 sinhπ

π
(−1)n<

(
1 + in

1 + n2
(cosnx+ i sinnx)

)
=

2 sinhπ

π
(−1)n

(
1

1 + n2
cosnx− n

1 + n2
sinnx

)
Since c0 = 2 sinhπ

π
, the real Fourier series of ex with period 2π is

ex =
2 sinhπ

π
+

2 sinhπ

π

∞∑
n=1

(−1)n
(

1

1 + n2
cosnx− n

1 + n2
sinnx

)
.

3.4. Approximation by trigonometric polynomials

We saw already that a trigonometric polynomial is defined as

A0 +
N∑
n=1

(An cosnx+Bn sinnx) ,

where N is the degree of the polynomial. So, for example the partial sums of a
Fourier series are a particular case of a trigonometric polynomial.

Given for simplicity f(x) periodic of period 2π, one wants to find what is the
trigonometric polynomial that “best approximates” f(x). We are not interested in
pointwise approximation but we want an “overall best approximation”.

Let F (x) = A0 +
∑N

n=1(An cosnx+Bn sinnx) and let us define the square error
in the approximation of f by F as

E =

∫ π

−π
(f − F )2 dx .

A careful calculation using the orthogonality relations of the trigonometric system
shows the following:

Theorem 3.15. The trigonometric polynomial of degree N that best approximates
a function f on the interval [−π, π] (i.e. with the smallest square error) is the partial
sum of the Fourier series of f . The minimum value E∗ of the square error is

E∗ =

∫ π

−π
f 2 dx− π

[
2a2

0 +
N∑
n=1

(a2
n + b2

n)

]
and it decreases as N increases.
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As an exercise, compute the minimum square error for the sawtooth wave (see
Ex. 1 on page 505 of Kreyszig’s book).

3.5. Fourier integral

We see now how to extend the concept of Fourier series expansion to functions
that are not periodic but defined on the whole real line (and hence cannot be ex-
tended by periodicity). If f is periodic of period 2L, then we can write

f(x) = a0 +
∞∑
n=1

(
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
))

=
1

2L

∫ L

−L
f(v) dv +

∞∑
n=1

[(
1

L

∫ L

−L
f(v) cos

(nπ
L
v
)
dv

)
cos
(nπ
L
x
)

+

(
1

L

∫ L

−L
f(v) sin

(nπ
L
v
)
dv

)
sin
(nπ
L
x
)]

.

We set now wn := nπ
L

so that ∆w = wn+1 − wn = π
L

, and we obtain

f(x) =
1

2L

∫ L

−L
f(v) dv +

1

L

∞∑
n=1

[(∫ L

−L
f(v) cos(wnv) dv

)
cos(wnx)+(∫ L

−L
f(v) sin(wnv) dv

)
sin(wnx)

]
=

1

2L

∫ L

−L
f(v) dv +

1

π

∞∑
n=1

[(∫ L

−L
f(v) cos(wnv) dv

)
cos(wnx)∆w+(∫ L

−L
f(v) sin(wnv) dv

)
sin(wnx)∆w

]
.

We assume that f is absolutely integrable on R, that is that∫ ∞
−∞
|f(x)| dx <∞ .

(We recall that
∫∞
−∞ |f(x)| dx = limα→−∞

∫ o
α
|f(x)| dx+ limβ→∞

∫ β
0
|f(x)| dx.) From

this is follows that if L → ∞ the first term goes to 0 and ∆w → 0, so the sum on
the right becomes an integral

f(x) =
1

π

∫ ∞
0

[(∫ ∞
−∞

f(v) coswv dv

)
coswx+

(∫ ∞
−∞

f(v) sinwv dv

)
sinwx

]
dw

=

∫ ∞
0

[A(w) cos(wx) +B(w) sin(wx)] dw = f(x) ,
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where

A(w) :=
1

π

∫ ∞
−∞

f(v) cos(wv) dv

and

B(w) :=
1

π

∫ ∞
−∞

f(v) sin(wv) dv

This representation of f is called the Fourier integral of f .
Just like for the Fourier series, one has to be careful to see whether the Fourier

integral actually represents the function. This happens if:

(1) f is piecewise continuous in finite intervals;
(2) f has left and right derivatives at the points of discontinuity;
(3) f if absolutely integrable.

Then the Fourier integral represents f at all points where f is continuous and con-
verges toward the average of f at the points of discontinuity. The behaviour is
analogous as for the Fourier series.

Remark 3.16. The partial sums of a Fourier series correspond to integrals on finite
intervals

∫ a
0

.

Example 3.17. Sometimes one can use Fourier integrals to “compute” integrals in
the following sense. Let us consider the function

f(x) :=

{
1 |x| < 1

0 |x| > 1 .

−1 1

Then

A(w) =
1

π

∫ ∞
−∞

f(v) cos vw dv =
1

π

∫ 1

−1

cos vw dv =
sinwv

πw

∣∣∣∣1
−1

=
2 sinw

πw
,

and

B(w) = 0 ,

so that

f(x) =
2

π

∫ ∞
0

coswx sinw

w
dw .(3.7)
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Since the average of the left and the right limit of f at x = 1 is 1
2

= 1+0
2

, comparing
(3.7) with the definition of the function f ,

∫ ∞
0

coswx sinw

w
dw =


π
2
|x| < 1

π
4
|x| = 1

0 |x| > 1 . �

This is called Dirichlet’s discontinuous factor. For x = 0 it becomes∫ ∞
0

sinw

w
dw =

π

2
,

and

Si(u) =

∫ u

0

sinw

w
dw

is called the sine integral.

3.5.1. Fourier sine and Fourier cosine integrals. Just like for the Fourier
series, we can simplify the formulas of the Fourier integral if the function is even or
odd.

If f is even , then

A(w) =
2

π

∫ ∞
0

f(v) coswv dv

B(w) = 0

and

f(x) =

∫ ∞
0

A(w) coswxdw ,

while if f is odd , then

A(w) = 0

B(w) =
2

π

∫ ∞
0

f(v) sinwv dv

and

f(x) =

∫ ∞
0

B(w) sinwxdw .
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3.6. Fourier transform

There is another, and more common, form of the Fourier integral, one that
corresponds to the complex form of the Fourier series.

f(x) =

∫ ∞
0

(A(w) coswx+B(w) sinwx) dw

=
1

π

∫ ∞
0

∫ ∞
−∞

f(v)(coswv coswx+ sinwv sinwx︸ ︷︷ ︸
cos(wx−wv)

) dv dw

=
1

π

∫ ∞
0

∫ ∞
−∞

f(v) cos(wx− wv) dv dw

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(v) cos(wx− wv) dv dw ,

where we used that

cos(wx− wv) = coswv coswx+ sinwv sinwx

is an even function of w.
Likewise, since sin(wx− wv) is an odd function of w, we have that

1

2π

∫ ∞
−∞

∫ ∞
−∞

f(v) sin(wx− wv) dv dw = 0 ,

so that we can write

f(x) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(v) (cos(wx− wv) + i sin(wx− wv))︸ ︷︷ ︸
eiw(x−v)

dv dw

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(v)eiw(x−v) dv dw

=
1√
2π

∫ ∞
−∞

(
1√
2π

∫ ∞
−∞

f(v)e−iwv dv

)
eiwx dw .

Definition 3.18. The Fourier transform F(f) of f is defined as

F(f)(w) :=
1√
2π

∫ ∞
−∞

f(v)e−iwv dv .

We denote the Fourier transform either as F(f) or as f̂(w). In either cases we
have that

f(x) =
1√
2π

∫ ∞
−∞

f̂(w)eiwx dw

=
1√
2π

∫ ∞
−∞
F(f)(w)eiwx dw .
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Just like the Laplace transform, the Fourier transform is an integral transform widely
used in the engineering sciences.

Remark 3.19. Using the Fourier sine and cosine integral, one can define in an
analogous way the Fourier sine and cosine transforms.

The above formula gives also a formula for the inverse Fourier transform of a
function g(w), namely

F−1(g)(x) :=
1√
2π

∫ ∞
−∞

g(w)eiwx dw ,

where the name “inverse Fourier transform” comes from the fact that if g = F(f),
then

F−1(F(f)) = f .

As for the existence of the Fourier transform of a function f , we remark that if f
is absolutely integrable and piecewise continuous on finite intervals, then its Fourier
transform exists.

Example 3.20. We compute the Fourier transform f̂ of the function in Example 3.17

f(x) :=

{
1 |x| < 1

0 |x| > 1 .

Applying the definition, we obtain

f̂(w) =
1√
2π

∫ ∞
−∞

f(x)e−ixw dx =
1√
2π

∫ 1

−1

e−ixw dx

=
1

−iw
√

2π
e−ixw

∣∣∣∣1
−1

=
−1

iw
√

2π
(e−iw − eiw)

=
2 sinw

w
√

2π
=

√
2

π

sinw

w
.

Example 3.21. We compute the Fourier transform of the function

f(x) :=

{
e−ax x > 0

0 x < 0
,

where a > 0.

f̂(w) =
1√
2π

∫ ∞
0

e−axe−iwx dx =
1√
2π

∫ ∞
0

e−(a+iw)x dx

=
1√
2π

1

−(a+ iw)
e−(a+iw)x

∣∣∣∣∞
0

=
1√

2π(a+ iw)
,
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where we used the fact that

lim
x→∞

e−(a+iw)x = lim
x→∞

e−ax(coswx+ i sinwx) = 0 ,

since limx→∞ e
−ax = 0 and coswx+ i sinwx is bounded in absolute value.

Properties (Properties of the Fourier transform). (1) (Linearity)

F(αf + βg) = αF(f) + βF(g)

if all the Fourier transforms exist.
(2) (Fourier transform of a derivative) If f is continuous on R, lim|x|→∞ f(x) = 0

and f ′ is absolutely integrable, then

F(f ′(x)) = iwF(f(x)) .(3.8)

(3) If f and g are piecewise continuous, bounded and absolutely integrable,
then

F(f ∗ g) =
√

2πF(f)F(g) .

Example 3.22. As an application of the properties of the Fourier transform, we
assume we known that

F(e−ax
2

) =
1√
2a
e−w

2/4a .

and we compute F(xe−x
2
).

F(xe−x
2

) = F
(
d

dx

(
−1

2
e−x

2

))
= iwF

(
−1

2
e−x

2

)
= −iw

2
F(e−x

2

) = −iw
2

1√
2
e−w

2/4 =
−iw
2
√

2
e−w

2/4 .



CHAPTER 4

Partial Differential Equations

4.1. Introduction and basic definitions

A partial differential equation (PDE in short) is an equation involving an un-
known function and some of its partial derivatives. The unknown function depends
on more than one variable, one of which can be the time and the others are space
variables.

Example 4.1. uxyuz + utt = g(x, y, t). �

A PDE is called linear if the unknown function u and its derivatives appear with
degree one.

Example 4.2. The PDE uxyuz + utt = g(x, y, t) is not linear, but uxy + uz + utt =
g(x, y, t) is. �

A linear PDE is called homogeneous if each of its terms contains either the
function or one of its derivatives.

Example 4.3. The PDE uxy + uz + utt = g(x, y, t) is not homogeneous, but uxy +
uz + utt = 0 is. �

The order of a PDE is the order of the highest derivative in the PDE. We will
be mostly concerned with second order PDEs.

Example 4.4. (1) One dimensional wave equation:

∂2u

∂t2
= c2∂

2u

∂x2
.

(2) One dimensional heat equation:

∂u

∂t
= c2∂

2u

∂x2
.

(3) Two dimensional Laplace equation:

∂2u

∂x2
+
∂2u

∂y2
= 0 .

(4) Two dimensional Poisson equation:

∂2u

∂x2
+
∂2u

∂y2
= f(x, y) .
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46 4. PARTIAL DIFFERENTIAL EQUATIONS

(5) Two dimensional wave equation:

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
.

(6) Three dimensional Laplace equation:

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 .

Here c is a positive real constant, x, y, z are spacial variables and the “dimension”
refers to the number of spacial variables in the PDE. �

Remark 4.5. We will see later (for a class of PDEs a bit wider than the linear PDEs
of second order) that linear PDEs of the second order can be classified into three
groups. In the above Examples 4.4(1)-(4), we could write each equation as

Auxx + 2Buxy + Cuyy = F (x, y, u, ux, uy) .(4.1)

(1) Set y = ct and obtain uyy − uxx = 0, that is A = −1 = −C, B = F = 0.
(2) Set y = c2t and obtain uy−uxx = 0, that is A = 1, B = C = 0, and F = uy.
(3) Here the PDE is already in the form (4.1), with A = C = 1 and B = F = 0.
(4) Also here the PDE is already in the form (4.1), but now with A = C = 1,

B = 0 and F = f .

For the equations in Example 4.4(5) and (6), one could consider a general form
similar to (4.1) but with more variables.

Now consider the polynomial

Ax2 + 2Bxy + Cy2 = L(x, y) ,(4.2)

where L is a linear function of x and y. We look at the discriminant.

(1) AC −B2 < 0, the curve in (4.2) is a hyperbola;
(2) AC −B2 = 0, the curve in (4.2) is (most of the times) a parabola;
(3) AC −B2 > 0, the curve in (4.2) is an ellipse.

We adopt the same denomination for the corresponding PDE, that are hence hyper-
bolic, parabolic or elliptic. The reason to classify the second order linear PDEs in
this way it that each “group” of PDE has similar features that we will study later.

Example 4.6. (1) Wave equations are the prototypes of hyperbolic PDEs;
(2) Heat equations are the prototypes of parabolic PDEs;
(3) Laplace equations are the prototypes of elliptic PDEs. Given that the type

of a PDE depends only on the terms of second order, Poisson equations are
also elliptic.

This classification is independent of the dimension of the PDE, although our
method to derive the classification was not. �

A solution of a PDE in a region R is a function differentiable “enough times” in
R and satisfying the PDE in R.
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Warning. Sometimes some care might need to be used on the boundary of the
region R. This can be done by insuring that R (in fact the boundary ∂R or R) is
contained in a slightly larger region where the function has enough derivatives.

Notice that the space of solutions of a PDE can be enormous.

Example 4.7. Any function of the form

u(x, t) = φ(x+ ct) + ψ(x− ct)

is a solution of the one-dimensional wave equation utt = c2uxx. In fact, uxx = u and

φt = cφ′ φtt = c2φ′′

ψt = −cψ′ ψtt = c2ψ′′ .

so that utt = φtt + ψtt = c2(φ′′ + ψ′′) = c2uxx.
This means that any function of x + ct and x − ct is a solution, for example

u(x, t) = (x+ ct)1/3 + ex−ct or u(x, t) = cos(x+ ct) + (x− ct)n, or... �

In order to have uniqueness of solutions, we need to impose boundary conditions
or initial conditions. As the words say, the first are prescribed values of the solution
or of its derivatives on the boundary of the region R, while the second are given
values of the solution at a given time.

Another tool used to find solutions of a PDE is the following absolutely crucial
principle:

Superposition Principle. If u1 and u2 are solutions of a homogeneous PDE, then
αu1 + βu2 is also a solution of the same PDE for all α, β ∈ R.

It is absolutely essential that the PDE be homogeneous.

4.2. From a vibrating string to the wave equation

Given a physical system whose behaviour we want to analyse, one of the first
step is to device an equation that describes the behaviour. The equation has to
be simple enough to be able to solve it (maybe numerically) but also such that the
solution will describe faithfully the system.

Take an elastic string stretched to have length L and tighten the endpoints. We
set the left endpoint to be at the origin of a system of Cartesian coordinates and
denote by u(x, t) the displacement of a point on the string above the point (x, 0)
and at time t. We assume that

(1) the string movement happens only on one plane, say a vertical one, and
every point on the string moves only vertically;

(2) the string is homogenous (that is the mass per unit length ρ is constant),
elastic and offers no resistance to bending;

(3) the tension is such that the effect of gravity is negligible.
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We consider the forces acting on the string at the points P (x) and Q(x+ ∆x).

0 Lx

α

x+ ∆x

β

Since the string does not offer resistance to bending, the only force acting is the
tension and this is tangential to the string. There is no horizontal displacement and
hence

TP cosα = TQ cos β = constant =: T > 0 .(4.3)

According to Newton’s first law of mechanics, if ρ is the mass of the (undeflected)
string per unit length, we have

−TP sinα + TQ sin β = ρ∆xutt .(4.4)

Divinding (4.4) by (4.3) we obtain

TQ sin β

TQ cos β
− TP sinα

TP cosα
=
ρ

T
∆xutt ,

that is,

tan β − tanα =
ρ

T
∆xutt .

But tan β = ux
∣∣
x+∆x

and tanα = ux
∣∣
x
, so that

ux(x+ ∆x, t)− ux(x, t) =
ρ

T
∆xutt .

By dividing by ∆x we obtain

ux(x+ ∆x, t)− ux(x, t)
∆x

=
ρ

T
utt ,

which, taking the limit for ∆x → 0 gives uxx = ρ
T
utt. This is the one-dimensional

wave equation with c2 = T
ρ
.

4.3. Fourier series solution of the one-dimensional wave equation

We want to find the solution of the one-dimensional wave equation utt = c2uxx
found in § 4.2, subject to some “reasonable” boundary conditions and initial con-
ditions (where “reasonable” means for example dictated by the observation). We
know the boundary condition u(0, t) = u(L, t) = 0 for all t ≥ 0 and it is conceiv-
able that u will be determined by its initial position u(x, 0) = f(x) and velocity
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u′(x, 0) = g(x), for all 0 ≤ x ≤ L. Hence we want to solve the system
utt = c2uxx

u(0, t) = u(L, t) = 0 t ≥ 0

u(x, 0) = f(x) 0 ≤ x ≤ L

ut(x, 0) = g(x) 0 ≤ x ≤ L .

(4.5)

The first method we want to study consists in three steps:

1. Separation of variables;
2. Determination of “many” intermediary solutions;
3. Use of Fourier series “to put together” the solutions.

4.3.1. Separation of variables. Suppose there exists a solution of the form

u(x, t) = F (x)G(t) .

Then utt = FG̈ and uxx = F ′′G, so that

FG̈ = c2F ′′G ,

from which it follows that

G̈

c2G
=
F ′′

F
.

Since the right hand side of the equation does not depend on t, it follows that even
the left hand side is independent of t, and hence constant. Thus the right hand side
is a constant as well

G̈

c2G
=
F ′′

F
= k ,

which is equivalent to the system of two equations{
F ′′ = kF

G̈ = c2kG .
(4.6)

Thus, assuming that there is a solution of the PDE in (4.5) of the form u(x, t) =
F (x)G(t), the two functions F and G must satisfy (4.6). The type of solution will
depend on the sign of the constant k. We start by solving the ordinary differential
equation that has homogeneous boundary conditions. In other words the boundary
condition for such a solution u(x, t) = F (x)G(t) get transformed into

u(0, t) = F (0)G(t) = 0 for every t ≥ 0⇒ F (0) = 0

u(L, t) = F (L)G(t) = 0 for every t ≥ 0⇒ F (L) = 0 .
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4.3.2. Determination of “many” solutions. Hence we start looking for a
function F (x) that is a solution of the system

F ′′ = kF , with F (0) = F (L) = 0 .(4.7)

k = 0 Then the ODE becomes F ′′ = 0, which has solution F (x) = ax + b. If
we impose the conditions F (0) = F (L) = 0 we see that F (x) must be
identically equal to zero and this is not an interesting solution.

k > 0 Then the theory of the solutions of linear second order ODEs with constant

coefficients tells us that the general solution is F (x) = Ae
√
kx + Be−

√
kx.

Imposing the initial conditions we deduce from F (0) = 0 that A + B = 0

and from F (L) = 0 that Ae
√
kL + Be−

√
kL = 0. Replacing B = −A in

the second equation we obtain that A(e
√
kL − e−

√
kL) = 0. Then either

A = B = 0 and this is again the zero solution or e2
√
kL = 1, that is

impossible since k 6= 0.
k < 0 In this case we know that

F (x) = A cos(
√
−k x) +B sin(

√
−k x) .

Again imposing the initial conditions we obtain that 0 = F (0) = A and
0 = F (L) = B sin(

√
−kL). If B = 0 then F is again the solution that is

identically equal to zero. So it must be sin(
√
−kL) = 0, that is

√
−kL = nπ

for any n ∈ N or
√
−k = nπ

L
for any n ∈ N. Hence for every n ∈ N there is

a solution

Fn(x) = sin
(nπ
L
x
)

of (4.7), where
√
−k = nπ

L
.

For these values of k we look for a solution of G̈ = c2kG, that is we look for a

solution of G̈ = −c2
(
nπ
L

)2
G. We obtain

Gn(t) = Bn cos
(cnπ
L
t
)

+B∗n sin
(cnπ
L
t
)

= Bn cos(λnt) +B∗n sin(λnt) ,

where λn = cnπ
L

.
We have thus found a family of solutions indexed by n ∈ N, namely

un(x, t) =
(
Bn cos(λnt) +B∗n sin(λnt)

)
sin
(nπ
L
x
)
.(4.8)

The functions un are the eigenfunctions of the vibrating string with eigenvalues
λn = cnπ

L
. The set {λ1, λ2, . . . , } is called the spectrum.
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4.3.3. Use of Fourier series. Each of the eigenfunctions un satisfies the PDE
in (4.5) and the boundary conditions,{

utt = c2uxx

u(0, t) = u(L, t) = 0 t ≥ 0 .
(4.9)

However, most of the times, each one of them will not satisfy the initial conditions
u(x, 0) = f(x) and ut(x, 0) = g(x). Since the PDE is homogeneous, we can use the
superposition principle. Without worrying too much about convergence issues, we
can say that the function

u(x, t) :=
∞∑
n=1

un(x, t) =
∞∑
n=1

(
Bn cos(λnt) +B∗n sin(λnt)

)
sin
(nπ
L
x
)

is also a solution of (4.9) and now we have many coefficients that we can determine
so that u(x, t) satisfies also the initial conditions. With this solution the first initial
condition about u becomes

f(x) = u(x, 0) =
∞∑
n=1

Bn sin
(nπ
L
x
)
.(4.10)

where the series on the right hand side is the sine series of an odd 2L-periodic
function that coincides with f on [0, L]. So if we extend f to be odd and 2L-
periodic, we have

Bn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx ,

for n ≥ 1, n ∈ N. Moreover the initial condition on the derivative u′ becomes

g(x) = ut(x, 0)

=
∞∑
n=1

(
− λnBn sin(λnt) + λnB

∗
n cos(λnT )

)
sin
(nπ
L
x
) ∣∣∣∣

t=0

=
∞∑
n=1

λnB
∗
n sin

(nπ
L
x
)
.

Just like in the case of (4.10), this is nothing but the Fourier series of the function g,
extended to be odd and periodic of period 2L, so that the formula for the coefficients
gives us

λnB
∗
n =

2

L

∫ L

0

g(x) sin
(nπ
L
x
)
dx ,

or

B∗n =
2

Lλn

∫ L

0

g(x) sin
(nπ
L
x
)
dx .
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Remark 4.8. Let us assume for simplicity that g = 0. Recalling that λn = cnπ
L

, the
solution u(x, t) becomes

u(x, t) =
∞∑
n=1

Bn cos(λnt) sin
(nπ
L
x
)

=
∞∑
n=1

Bn
1

2

[
sin
(nπ
L
x− λnt

)
+ sin

(nπ
L
x+ λnt

)]
=

1

2

∞∑
n=1

Bn

[
sin

nπ

L
(x− ct) + sin

nπ

L
(x+ ct)

]
=

1

2

∞∑
n=1

Bn sin
nπ

L
(x− ct) +

1

2

∞∑
n=1

Bn sin
nπ

L
(x+ ct)

=
1

2
[f ∗(x− ct) + f ∗(x+ ct)] ,

(4.11)

where f ∗ is the odd extension of f to a 2L-periodic function.
If

(1) f is twice differentiable on 0 < x < L and
(2) f has one-sided zero second derivative at the endpoints,

then u is a solution for all 0 ≤ x ≤ L.
If f is only piecewise twice differentiable or the one-sided derivatives are not

zero, then u is a solution for all 0 ≤ x ≤ L except at the points x where f is not
twice differentiable.

Example 4.9. We want to solve the PDE in (4.5) with

f(x) =

{
2k
L
x 0 < x < L

2
2k
L

(L− x) L
2
< x < L .

g(x) = 0 0 L
2 L

From the last equation (4.11) and from (3.4) in Example 3.12 we obtain immediately
that

u(x, t) =
4k

π2

∞∑
j=0

(−1)j

(2j + 1)2

[
sin

(
(2j + 1)π

L
(x− ct)

)
+ sin

(
(2j + 1)π

L
(x+ ct)

)]
.

(The following picture is taken from the book by Kreyszig.)
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4.4. D’Alembert solution of the wave equation and characteristics

Let utt = c2uxx be the wave equation for −∞ < x < ∞ and t > 0, and let us
make the change of variable v = x + ct and w = x − ct. Then the solution u(x, t)
becomes u(v, w) and

ut = uvvt + uwwt = uvc− uwc ,
ux = uvvx + uwwx = uv + uw ,

so that

utt = uvvvtc+ uvwwtc− uwvvtc− uwwwtc
= uvvc

2 − uvwc2 − uwvc2 + uwwc
2

= uvvc
2 − 2uvwc

2 + uwwc
2 ,

uxx = uvv + 2uvw + uww .

Plugging in these results into the wave equation utt = c2uxx, we obtain

c2(��uvv − 2uvw +���XXXuww ) = c2(��uvv + 2uvw +���XXXuww ) ,

that is in these new coordinates the wave equation becomes

uvw = 0 .(4.12)

This is now very easy to integrate because from uvw = 0 it follows that

uv(v, w) =

∫
uvw(v, w) dw + h(v) = h(v) ;

Hence

u(v, w) =

∫
uv(v, w) dv + ψ(w) =

∫
h(v) dv + ψ(w) = ϕ(v) + ψ(w) ,

for any ϕ and ψ. Hence

u(x, t) = ϕ(x+ ct) + ψ(x− ct)

is the general solution of the wave equation given in the form of the D’Alembert
solution.

The point of having reduced the wave equation utt = c2uxx to the form (4.12) was
that the new expression preserved the original feature of the differential equation
and highlighted some of its features. The expression in (4.12) is called the normal
form of the equation utt = c2uxx. In fact, with an appropriate change of coordinates
a 2nd order PDE can be brought into the normal form, that is

uvw = F ∗(v, w, u, uv, uw) if it is hyperbolic

uvv = F ∗(v, w, u, uv, uw) if it is parabolic

uvv + uww = F ∗(v, w, u, uv, uw) if it is elliptic .
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We will look at the case of a hyperbolic PDE to see how to find the appropriate
change of coordinates. Take an equation

Auxx + 2Buxy + Cuyy = 0 ,

where A,B and C are constants. We look for a solution u = ϕ(x+λy). After taking
derivatives one obtains that

Cλ2 + 2Bλ+ A = 0

and, if the equation is hyperbolic, this has two distinct solutions λ1, λ2 ∈ R. It is
easy to see that

v = x+ λ1y w = x+ λ2y

is the required change of coordinates that leads to the normal form uvw = 0.
Consider now the lines

x+ λ1y = c1 and x+ λ2y = c2 ,(4.13)

where c1, c2 ∈ R are constants. It is easy to verify that the slope y′ of these two
lines satisfies the equation

A(y′)2 − 2By′ + C = 0 .(4.14)

This is the characteristic equation and the lines in (4.13) are the characteristics of
the equation (4.12).

This method can be applied in general. In other words, as mentioned in § 4.1,
the equation

A(x, y)uxx + 2B(x, y)uxy + C(x, y)uyy = F (u, ux, uy, x, y)(4.15)

is called hyperbolic, parabolic or elliptic on a region R if B2(x, y)−A(x, y)C(x, y) is
greater than, equal to or less than zero on all points in R. Furthermore, generalizing
the property expressed by (4.14), the curves

ξ(x, y) = c1 and ζ(x, y) = c2(4.16)

which are the solutions of the differential equation

A(x, y)(y′)2 − 2B(x, y)y′ + C(x, y) = 0(4.17)

are said to be the characteristics of the partial differential equation in (4.15).
The following theorem tells us what is the change of variable needed to reduce

a PDE to its normal form

Theorem 4.10. Consider the PDE in (4.15) and let

ξ(x, y) = c1 and ζ(x, y) = c2

be independent solutions of the equation (4.17). Then:
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(1) If the given equation is hyperbolic, the change of variables defined by the
substitution

v = ξ(x, y) and w = ζ(x, y)

will reduce it to the normal form uvw = F ∗(u, uv, uw, v, w).
(2) If the given equation is parabolic, the change of variables defined by the

substitution

v = x and w = ζ(x, y)

will reduce it to the normal form uvv = F ∗(u, uv, uw, v, w).
(3) If the given equation is elliptic, the change of variables defined by the sub-

stitution

v =
ξ(x, y) + ζ(x, y)

2
and w =

ξ(x, y)− ζ(x, y)

2i

will reduce it to the normal form uvv + uww = F ∗(u, uv, uw, v, w).

Remark 4.11. If the coefficients are functions of x, y, then the change of coordinates
will not be linear.

Example 4.12. We want to transform the differential equation xuxx−yuxy+ux = 0
into normal form. Here A(x, y) = x, 2B(x, y) = −y and C(x, y) = 0, so that
B(x, y) − A(x, y)C(x, y) = (−y/2)2 > 0 and hence the PDE if hyperbolic. The
characteristic equation is

x(y′)2 + yy′ = 0 ,

from which it follows that y′(xy′ + y) = 0 and hence

either y′ = 0 or xy′ + y = 0 .

From y′ = 0 we obtain y = c1 and from xy′ + y = 0 we obtain that

x
dy

dx
+ y = 0⇔ dy

y
+
dx

x
= 0

⇔ ln |y|+ ln |x| = c′2
⇔ yx = c2 .

Hence if we perform the change of coordinates

v = y w = yx

we obtain

ux = uvvx + uwwx = yuw

uxx = y2uww

uxy = uw + y(uvwvy + uwwwy) = uw + y(uvw + xuww) .
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Plugging this into the original equation gives, after simplifying, uvw = 0. Hence
u(v, w) = ϕ(v) + ψ(w) or

u(x, y) = ϕ(y) + ψ(xy) ,

where ϕ and ψ are arbitrary. �

Why are the characteristics important? Let us go back to the d’Alembert solution
of the wave equation,

u(x, t) = ϕ(x+ ct) + ψ(x− ct) for x ∈ R and t > 0 ,(4.18)

and let us assume that we want to satisfy the initial conditions

u(x, 0) = f(x) ut(x, 0) = g(x) for all x ∈ R(4.19)

The initial value problem consisiting of (4.18) and (4.19) is called Cauchy problem
for the one dimensional wave equation. A solution of this problem can be interpreted
for example as the amplitude of a sound wave propagating in a very long and narrow
pipe.

To find the solution of (4.18) and (4.19), observe that for every y ∈ R{
f(y) = ϕ(y) + ψ(y)

g(y) = cϕ′(y)− cψ′(y) ,

from which it follows that
ϕ(y) + ψ(y) = f(y)

ϕ(y)− ψ(y) = 1
c

∫ y
0
g(s) ds+

=:k0︷ ︸︸ ︷
ϕ(0)− ψ(0) ,

⇒

{
ϕ(y) = 1

2
f(y) + 1

2c

∫ y
0
g(s) ds+ 1

2
k0

ψ(y) = 1
2
f(y)− 1

2c

∫ y
0
g(s) ds− 1

2
k0 .

In particular evaluating the first expression for y = x + ct and the second for y =
x− ct, we have

ϕ(x+ ct) =
1

2
f(x+ ct) +

1

2c

∫ x+ct

0

g(s) ds+
1

2
k0

ψ(x− ct) =
1

2
f(x− ct)− 1

2c

∫ x−ct

0

g(s) ds− 1

2
k0

(4.20)

and hence

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct
g(s) ds ,

which is the d’Alembert solution of the Cauchy problem (4.18) and (4.19).
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We are interested in investigating what kind of information has an influence on
the solution u at the point (x, t). Through any point (x0, t0) with t0 > 0, there are
exactly two characteristics, namely

x− ct = x0 − ct0 and x+ ct = x0 + ct0 .

These are straight lines whose intersections with the x-axis are respectively the
points (x0− ct0, 0) and (x0 + ct0). The triangle with vertices (x0− ct0, 0), (x0 + ct0)
and (x0, t0) is called characteristic triangle. Since

u(x0, t0) =
1

2
[f(x0 + ct0) + f(x0 − ct0)] +

1

2c

∫ x0+ct0

x0−ct0
g(s) ds

the value of u(x0, t0) is determined by the values of f at the vertices of the triangle
and of g along the base.

x

t

(x0 − ct0, 0)

(x0, t0)

(x0 + ct0, 0)

The interval [x0−ct0, x0 +ct0] is called the domain of dependence of u at (x0, t0).
Changing f or g outside this domain of dependence will not affect the value u(x0, t0).

Now we ask the opposite question, namely what region of the (x, t) in the upper
half plane is affected by the initial data on an interval [a, b]. The endpoints of the
interval define four characteristics

x± ct = a and x± ct = b ,

whose intersections define six regions indicated in the picture with I, II, III, IV, V
and VI. The points that are affected by the initial conditions are exactly the points
(x, t) whose domain of dependence [x − ct, x + ct] intersects the interval [a, b] in a
non-trivial way. In particular, as shown in the picture, any point in the regions I
and III are such that u(x, t) = 0.

If a point (x3, t3) is in the region IV, then u(x3, t3) = ϕ(x3 + ct3) + ψ(x3 + ct3),
where

ϕ(x3 + ct3) =
1

2
f(x3 + ct3) +

1

2c

∫ x3+ct3

0

g(s) ds+
1

2
k0

=
1

2
f(x3 + ct3) +

1

2c

∫ x3+ct3

a

g(s) ds+
1

2
k0

ψ(x3 − ct3) =
1

2
f(x3 − ct3)− 1

2c

∫ x3−ct3

0

g(s) ds− 1

2
k0 = −1

2
k0 .
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So, up to the constant k0, any point in the region IV is influenced only by the
characteristics with negative slopes, on in other words only by the left moving wave,
and

u(x3, t3) =
1

2
f(x3 + ct3) +

1

2c

∫ x3+ct3

a

g(s) ds .

Likewise, any point in the region VI is only influenced by the characteristics with
positive slope, that is only by the right moving wave. Notice that on the parallel
lines x + ct = constant the function ϕ(x + ct) is constant, and on the parallel lines
x− ct = constant it is the function ψ(x− ct) to be constant.

A point in the region II is on the other hand influenced by both the right moving
and the left moving wave. Finally, if (x0, t0) is a point in the region V, then the
whole interval [a, b] is contained in the domain of dependence. We have

f(x0 − ct0) = f(x0 + ct0) = 0 and

∫ x0+ct0

x0−ct0
g(s) ds =

∫ b

a

g(s) ds ,

so that

u(x0, t0) =
1

2c

∫ b

a

g(s) ds

is hence constant throughout the region.

xa b

t

0

x− ct = ax+ ct = a x− ct = bx+ ct = b

(x1, t1)

(x2, t2)

x3 − ct3

(x3, t3)

x3 + ct3

(x0, t0)

x0 − ct0 x0 + ct0

`

P

t4

t5

I II III

IV VI

V

In general draw a vertical line through the point and see how the point is affected
as t grows. We say that the region of influence of the interval [x1, x2] is the union
of the regions II, IV, V and VI.

The behavior of a particular point on the string can be determined qualitatively
by moving upward the vertical line that goes through the point. For example, as we
move upward along the line `, we see that the point P on the string is affected by both
travelling waves until time t4, then only by the right travelling wave for t4 ≤ t ≤ t5.

For values of t > t5 the point is at rest in a position u(x, t) = 1
2c

∫ b
a
g(s) ds.
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Remark 4.13. It follows from the above considerations that if at some point there
is a singularity, it will propagate for all t. This is typical of hyperbolic equations.

4.5. The Heat equation via Fourier series

Assume that we have an insulated bar of length L, positioned along the interval
[0, L] of the x-axis, so that the heat flows only in the x-direction. We assume that
the temperature at the endpoints of the bar is zero and, given an initial distribution
of temperature f(x), we want to find the heat distribution of the bar at time t and
position x. In other words, we want now to solve the one-dimensional heat equation,
that is 

ut = c2uxx
u(0, t) = u(L, t) = 0

u(x, 0) = f(x) ,

where c2 = K
σρ

, with K the thermal conductivity, σ the specific heat and ρ the

density of the bar. Here c is the thermal diffusivity that measures the ability of a
material to conduct thermal energy relative to its ability to store thermal energy,
(this is approximately analogous to whether a material is ”cold to the touch”).

As in the case of the wave equation, we look for a solution of the form

u(x, t) = F (x)G(t) .

Differentiating this with respect to t once and to x twice, and plugging it into the
heat equation, we obtain

Ġ

c2G
=
F ′′

F
= k ,

where k is a constant due to the fact that each of the two fractions cannot depend
on the only variable present. This leads to the two differential equations

F ′′ = kF , Ġ = kc2G ,

with initial conditions

F (0) = F (L) = 0 .

Solving first

F ′′ = kF , F (0) = F (L) = 0 ,

as in the case of the wave equation we can easily argue that if k = 0 the only possible
solution is the one identically zero and that if k > 0 there are no solutions. So k < 0
and we can set k = −p2, so that the system to solve becomes

F ′′ = −p2F , F (0) = F (L) = 0 .(4.21)

The general solution is F (x) = A cos(px)+B sin(px). Imposing the initial condition
F (0) = 0 we obtain that A = 0; imposing the initial condition F (L) = 0 we obtain
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that sin(pL) = 0, that is that pL = nπ for n ∈ Z, n ≥ 1. Hence p = nπ
L

. We have
therefore found the infinite family of solutions of (4.21)

Fn(x) = sin
(nπ
L
x
)
, n ∈ N .

The corresponding differential equation for G is

Ġ+ c2
(nπ
L

)2

G = 0

whose solution is

Gn(t) = Bne
−λ2nt ,

where λ2
n =

(
cnπ
L

)2
. It follows that the functions

un(x, t) = Bn sin
(nπ
L
x
)
e−λ

2
nt n ∈ N ,

with λn as above satisfies the conditions{
ut = c2uxx
u(0, t) = u(L, t) = 0 .

Because of the Superposition Principle, the function

u(x, t) =
∞∑
n=1

un(x, t) =
∞∑
n=1

Bn sin
(nπ
L
x
)
e−λ

2
nt(4.22)

is also a solution. By imposing the initial condition u(x, 0) = f(x), we obtain

f(x) = u(x, 0) =
∞∑
n=1

Bn sin
(nπ
L
x
)
.

Hence the Bn are the Fourier coefficients of the extension of f to be an odd function
periodic of period 2L, that is

Bn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx .(4.23)

Hence (4.22) is the solution with the coefficients Bn given by (4.23) We remark that
each term in the Fourier series (4.22) goes to zero with time, and the larger the n
is, the faster the decay is.

Example 4.14. We consider a copper bar of length 80 cm that is laterally insulated.
The ends are kept at 0◦C and the initial temperature is f(x). We want to find u(x, t)
and compute how long it will take for the maximum temperature to drop to 50◦C
in the two cases in which

(1) f(x) = 100 sin
(
πx
80

)
, and

(2) f(x) = 100 sin
(

3πx
80

)
.
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We recall that the density ρ of copper is 8.92 g/cm3, the specific heat σ is 0.092 cal/(g×
◦C) and the thermal conductivity K is 0.95 cal/(cm× sec× ◦C), so that

c2 =
K

σρ
=

0.95

0.092× 8.92

cal

cm× sec× ◦C
g × ◦C

cal

cm3

g
= 1.158

cm2

sec
.

Solution. We have

(1a) u(x, 0) = 100 sin
(
πx
80

)
⇒ Bn = 0 for n ≥ 2 and B1 = 100;

(2a) u(x, 0) = 100 sin
(

3πx
80

)
⇒ Bn = 0 for n = 1, 2 and n ≥ 4 and B3 = 100,

hence

(1b) λ2
1 = c2 π2

L2 = 1.1589.870
802
' 0.001785 sec−1;

(2b) λ2
3 = c2 9π2

L2 = 9λ1 ' 0.01607 sec−1,

from which it follows that

(1c) u(x, t) = 100 sin
(
π
L
x
)
e−0.001785t;

(2c) u(x, t) = 100 sin
(

3π
L
x
)
e−0.01607t.

Thus

(1d) umax(x, t) = 100e−0.001785t;
(2d) umax(x, t) = 100e−0.01607t,

and hence

(1e) 100e−0.001785t = 50⇒ t = ln 0.5/(−0.001785) ' 388 sec;
(2e) 100e−0.01607t = 50⇒ t = ln 0.5/(−0.01607) ' 43 sec.

4.5.1. Steady two-dimensional heat equation and Laplace equation.
The heat equation ut = c2∇2u reduces to ∇2u = 0 if the solution u does not
depend on time. This is the so-called Laplace equation. It governs not only the
so-called steady-state solution of a heat equation (that is the solution after the
system reaches its equilibrium and does not change anymore with time), but also
many other phenomena in mechanics and electromagnetism, such as for instance the
electrostatic potential. This is an example of an elliptic equation and it comes with
different kinds of boundary conditions. Suppose for example that ∇2u = 0 holds on
a region R.

• If u is prescribed on the boundary ∂R of R, then we have the Dirichlet
problem;
• If the partial derivative un of u in the direction n normal to ∂R is prescribed

on ∂R, then we have the Neumann problem;
• If u is prescribed on one part of ∂R and un on another part of ∂R, we have

the Robin problem.

Dirichlet problem on a rectangle. We assume that the temperature u(x, y)
on a rectangle R satisfies ∇2u = 0 and if

R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b} ,
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then

u(0, y) = u(a, y) = u(x, 0) = 0 u(x, b) = f(x) .

x

y

a

b

0 0

0

f(x)

We look for a solution of the form u(x, y) = F (x)G(y), so that the Laplace equation
∇2u = uxx + uyy = 0 becomes

F ′′G+ F G′′ = 0 ,

and, as usual, there exists a constant k such that

F ′′

F
= −G

′′

G
= −k .

By considering also the boundary conditions we obtain the two problems{
F ′′ = −k F
F (0) = F (a) = 0

and G′′ = k G .

and we start by solving the problem with the (homogeneous) boundary conditions,
that is the one with unknown F . As in the case of the wave and the heat equation
we can see that if k ≤ 0, the only possible solution is F (x) ≡ 0. If on the other
hand k > 0, then we obtain

F (x) = A cos(
√
kx) +B sin(

√
kx) .

By setting F (0) = 0 we obtain that A = 0, and by setting F (a) = 0 we obtain that

sin(
√
ka) = 0, that is

√
ka = nπ for n = 1, 2, . . . , or

√
k = nπ/a. Hence we have

the infinite family of solutions

Fn(x) = sin
(nπ
a
x
)
, n ∈ N .

The corresponding differential equation for G becomes

G′′ −
(nπ
a

)2

G = 0 ,

from which we obtain

Gn(y) = A∗ne
nπ
a
y +B∗ne

−nπ
a
y .

By imposing the boundary condition Gn(0) = 0 we obtain that A∗n = −B∗n, that is

Gn(y) = A∗n(e
nπ
a
y − e−

nπ
a
y) = 2A∗n sinh

(nπ
a
y
)
.
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Thus for every n ∈ N we have a solution

un(x, y) = An sin
(nπ
a
x
)

sinh
(nπ
a
y
)
,

and hence by the Superposition Principle

u(x, y) =
∞∑
n=1

un(x, y) =
∞∑
n=1

An sin
(nπ
a
x
)

sinh
(nπ
a
y
)

is a solution as well. To satisfy the last condition u(x, b) = f(x), we write

f(x) =
∞∑
n=1

[
An sinh

(nπ
a
b
)]

sin
(nπ
a
x
)
,

from which we deduce that An sinh
(
nπ
a
b
)

is the Fourier coefficient of the extension
of f to be an odd periodic function of period 2a. In other words

An sinh
(nπ
a
b
)

=
2

a

∫ a

0

f(x) sin
(nπ
a
x
)
dx .

Hence the solution of the above Dirichlet problem is

u(x, y) =
∞∑
n=1

An sin
(nπ
a
x
)

sinh
(nπ
a
y
)
,

where

An =
2

a sinh
(
nπ
a
b
) ∫ a

0

f(x) sin
(nπ
a
x
)
dx .

4.6. Heat equation on an infinite bar

This method is appropriate when we have an infinite domain, for example a bar
of infinite length. In this case the problem to solve is{

ut = c2uxx

u(x, 0) = f(x) .

We are going to modify the method that used the Fourier series in order to use the
Fourier integral. Then we will see also how one can use the Fourier transform. We
look again for a solution of the form

u(x, t) = F (x)G(t) ,

and we obtain

F (x)Ġ(t) = c2F ′′(x)G(t) ,

from which, as usual,

F ′′(x)

F (x)
=

1

c2

Ġ(t)

G(t)
= −k .
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Hence the differential equations to solve are{
F ′′(x) + kF (x) = 0

Ġ(t) + c2kG(t) = 0 .

Even without boundary conditions we see that if k < 0, then{
F (x) = Ae

√
−kx +Be−

√
−kx

G(t) = e−c
2kt ,

from which u(x, t) = e−c
2kt(Ae

√
−kx +Be−

√
−kx) will increase as t increases, which is

physically impossible. Thus k ≥ 0, and we can write k = p2. Then{
Fp(x) = A(p) cos(px) +B(p) sin(px)

Gp(t) = e−c
2p2t .

A generalisation of the Superposition Principle leads to the solution

u(x, t) =

∫ ∞
0

[A(p) cos(px) +B(p) sin(px)]e−c
2p2t dp .(4.24)

Since u(x, 0) = f(x), then

f(x) =

∫ ∞
0

[A(p) cos(px) +B(p) sin(px)] dp ,

which is nothing but the Fourier integral of f . Hence we can determine the coeffi-
cients A(p) and B(p), namely

A(p) =
1

π

∫ ∞
−∞

f(v) cos(pv) dv

B(p) =
1

π

∫ ∞
−∞

f(v) sin(pv) dv .

Plugging these into (4.24) and using the prostapheresis formulas, we obtain

u(x, t) =
1

π

∫ ∞
0

∫ ∞
−∞

f(v)[cos(pv) cos(px) + sin(pv) sin(px)]e−c
2p2t dv dp

=
1

π

∫ ∞
0

∫ ∞
−∞

f(v) cos(px− pv)e−c
2p2t dv dp

=
1

π

∫ ∞
−∞

f(v)

(∫ ∞
0

cos(px− pv)e−c
2p2t dp

)
dv .

(4.25)

We assume for the moment that we know that∫ ∞
0

cos(2bs)e−s
2

ds =

√
π

2
e−b

2

,(4.26)
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formula that we will discuss later. In order to use (4.26) we set{
s2 = c2p2t

px− pv = 2bs

from which we obtain

p =
s

c
√
t

and b =
x− v
2c
√
t
.

Hence applying (4.26) with

dp =
ds

c
√
t
, b =

x− v
2c
√
t

and s2 = c2p2t ,

we obtain ∫ ∞
0

cos(px− pv)e−c
2p2t dp =

√
π

2c
√
t

exp

[
−
(
x− v
2c
√
t

)2
]
.

Replacing this in (4.25) we obtain

u(x, t) =
1

2c
√
πt

∫ ∞
−∞

f(v) exp

[
−
(
x− v
2c
√
t

)2
]
dv .

Before turning to the solution of the same problem using the Fourier transform we
need to prove (4.26). This can be obtained using complex analysis methods or as
follows: let us define

I(b) =

∫ ∞
0

e−s
2

cos(2bs) ds .

Differentiating with respect to b and using the integration by parts we obtain

I ′(b) =

∫ ∞
0

−2se−s
2

sin(2bs) ds

= e−s
2

sin(2bs)
∣∣∞
0
− 2b

∫ ∞
0

e−s
2

cos(2bs) ds

= −2bI(b) ,

so that

I(b) = C e−b
2

,

where C = I(0) =
∫∞

0
e−s

2
ds =

√
π

2
.
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Alternative method using the Fourier transform. We start with ut =
c2uxx, and apply the Fourier transform on both sides F(ut) = c2F(uxx). Note that
u = u(x, t) is a function of the two variables x and t and that we are taking the
Fourier transform with resect to the variable x. Hence by property (3.8) of the
Fourier transform applied twice,

F(uxx) = −w2F(u)

while

F(ut(x, t))(w) =
1√
2π

∫ ∞
−∞

ut(x, t)e
−iwx dx =

1√
2π

∂

∂t

∫ ∞
−∞

u(x, t)e−iwx dx =
∂û

∂t
(w, t) .

Thus we have that

∂û

∂t
(w, t) = −c2w2û(w, t) ,

so that

û(w, t) = C(w)e−c
2w2t .

Since u(x, 0) = f(x), then û(w, 0) = f̂(w), so that f̂(w) = C(w) and

û(w, t) = f̂(w)e−c
2w2t .

By applying the inverse Fourier transform to û and f̂ we obtain

u(x, t) =
1√
2π

∫ ∞
−∞

f̂(w)e−c
2w2teiwx dw

=
1√
2π

∫ ∞
−∞

(
1√
2π

∫ ∞
−∞

f(v)e−ivw dv

)
e−c

2w2teiwx dw

=
1

2π

∫ ∞
−∞

f(v)

(∫ ∞
−∞

e−c
2w2tei(wx−wv) dw

)
dv

=
1

2π

∫ ∞
−∞

f(v)

(∫ ∞
−∞

e−c
2w2t[cos(wx− wv) + i sin(wx− wv)] dw

)
dv

=
1

2π

∫ ∞
−∞

f(v)

(∫ ∞
−∞

e−c
2w2t cos(wx− wv) dw

)
dv

+ i
1

2π

∫ ∞
−∞

f(v)

(∫ ∞
−∞

e−c
2w2t sin(wx− wv) dw

)
dv

=
1

π

∫ ∞
−∞

f(v)

(∫ ∞
0

e−c
2w2t cos(wx− wv) dw

)
dv

(4.27)

where in the last equality we used that the function cos(wx−wv) is an even function
of w and sin(wx − wv) is an odd function of w. But this is exactly (4.25), from
which the solution u(x, t) was obtained.
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Alternative method to the alternative method. From the first equality in
(4.27) we obtain

u(x, t) =
1√
2π

∫ ∞
−∞

f̂(w)e−c
2w2teiwx dw

=

∫ ∞
−∞

f̂(w)

(
1√
2π
e−c

2w2t︸ ︷︷ ︸
=:ĝt(w)

)
eiwx dw

=
√

2πF−1(f̂ ĝt)(x)

= (f ∗ gt)(x)

=

∫ ∞
−∞

f(p)gt(x− p) dp ,

(4.28)

where gt = F−1(ĝt). To compute this observe that

F(e−ax
2

) =
1√
2a
e−w

2/4a ,

so that

e−ax
2

= F−1

(
1√
2a
e−w

2/4a

)
.

If we set c2t = 1
4a

we obtain a = 1
4c2t

and 1√
2a

=
√

2c
√
t, so that

gt(x) =
1√
2π
F−1(e−w

2c2t) =
1√

2c
√
t
e−x

2/4c2t 1√
2π

,

and hence from (4.28)

u(x, t) =

∫ ∞
−∞

f(p)gt(x− p) dp =
1

2c
√
πt

∫ ∞
−∞

f(p) exp

(
−(x− p)2

4c2t

)
dp .

4.7. Rectangular membrane: the wave equation

We want to study the motion of an elastic membrane that is stretched and fixed
along its edge. An example of such situation is a drumhead. We will study two
different shapes of membranes, but in both cases we make the following assumptions:

(1) the membrane is homogeneous (that is the mass per unit area is constant)
and flexible, and

(2) the tension T per unit length caused by stretching is the same at all points
and does not change with time.

Then the deflection u(x, y, t) satisfies the equation utt = c2∇2u, where if we denote
by ρ the mass of the undeflected membrane per unit area, we have c2 = T/ρ.
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We want to find the solution of the following problem:
utt = c2∇2u on R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}
u = 0 on ∂R

u(x, y, 0) = f(x, y)

ut(x, y, 0) = g(x, y) ,

(4.29)

where f(x, y) is the initial displacement and g(x, y) is the initial velocity.
We look for a solution that satisfies u(x, y, t) = F (x, y)G(t). Then the differential

equation utt = c2∇2u becomes

FG̈ = c2(Fxx + Fyy)G ,

from which

G̈

c2G
=

1

F
(Fxx + Fyy) = −ν2 .

Moreover

F (x, 0) = F (0, y) = F (x, b) = F (a, y) = 0 .

Note that we took the constant to be negative because we cannot have that 1
F

(Fxx+
Fyy) = ν2 > 0. In fact, suppose that Fxx +Fyy = µF , for some µ ∈ R. We will show
that µ < 0. In fact,

µ

∫ a

0

∫ b

0

F 2 =

∫ a

0

∫ b

0

(Fxx + Fyy)F .

But ∫ a

0

FxxF dx = Fx F
∣∣a
0
−
∫ a

0

F 2
x dx = −

∫ a

0

F 2
x dx ,

so that ∫ b

0

∫ a

0

FxxF dx dy = −
∫ b

0

∫ a

0

F 2
x dx dy .(4.30)

Likewise, ∫ a

0

∫ b

0

FyyF dy dx = −
∫ a

0

∫ b

0

F 2
y dy dx .(4.31)

Hence from (4.30) and (4.31) we obtain

µ

∫ a

0

∫ b

0

F 2 dy dx = −
∫ a

0

∫ b

0

(F 2
x + F 2

y ) dy dx ≤ 0 ,

that is µ ≤ 01.

1Notice that this is true for every domain R. That is if ∇2u = µu on R and u = 0 on ∂R,
then µ ≤ 0.
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Hence we need to solve the two differential equations{
G̈+ ν2c2G = 0

Fxx + Fyy = −ν2F ,

where the second is called the Hemholtz equation for the amplitude function. To
solve the equation for F we look for a solution of the form F (x, y) = H(x)Q(y).
Then Fxx + Fyy = −ν2F becomes

HxxQ+H Qyy = −ν2H Q .

This is equivalent to

Hxx

H
+
Qyy

Q
= −ν2 ,

or
Hxx

H
= − 1

Q
(Qyy + ν2Q) = −k2 ,

where we took the constant to be negative because it is easy to see, with the usual
reasoning, that a non-negative constant would lead to the solution identically equal
to zero. Thus we need to solve the following equations{

Hxx + k2H = 0

Qyy + p2Q = 0 ,

where p2 = ν2 − k2. Since F (x, y) = 0 on ∂R, we infer that

H(0) = H(a) = Q(0) = Q(b) = 0 .

Therefore the solutions are

Hm(x) = sin
(mπx

a

)
for m ∈ Nr {0}

(
and k =

mπ

a

)
Qn(x) = sin

(nπy
b

)
for n ∈ Nr {0}

(
and p =

nπ

b

)
.

and

Fmn(x, y) = sin
(mπx

a

)
sin
(nπy

b

)
are the solutions of the Hemholtz equation for the amplitude. Now we have to solve
the equation G̈+ λ2G = 0, where p2 = ν2 − k2 and

λ = cν = c
√
p2 + k2 = c

√
m2π2

a2
+
n2π2

b2
= πc

√
m2

a2
+
n2

b2
=: λmn .

The corresponding solutions are

Gmn(t) = Bmn cos(λmnt) +B∗mn sin(λmnt) ,

so that for every m,n ∈ N we have a solution

umn(x, y, t) =
[
Bmn cos(λmnt) +B∗mn sin(λmnt)

]
sin
(mπx

a

)
sin
(nπy

b

)
.
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As usual these are called the eigenfunctions corresponding to the eigenvalue λmn.
The frequency of umn is λmn/2π.

Contrary to what happens in the one-dimensional wave equation, different func-
tions Fmn might correspond to the same frequency. In other words there are solu-
tions that have the same frequency but different nodal lines (that is curves where
the membrane does not move).

Example 4.15. We assume a = b = 1 in the above discussion, so that λmn =
πc
√
m2 + n2. Then λmn = λnm, but

Fmn(x, y) = sin(mπx) sin(nπy) 6= sin(nπx) sin(mπy) = Fnm(x, y) .

For example

u12(x, y, t) =
[
B12 cos(πc

√
5t) +B∗12 sin(πc

√
5t)
]

sin(πx) sin(2πy)

u21(x, y, t) =
[
B21 cos(πc

√
5t) +B∗21 sin(πc

√
5t)
]

sin(2πx) sin(πy) .

Then

u12(x, y, t) = 0 for every t⇔ sin(πx) sin(2πy) = 0, for 0 < x, y < 1⇔ y =
1

2
.

On the other hand

u21(x, y, t) = 0 for every t⇔ x =
1

2
. �

We continue with the solution of the system (4.29). By the Superposition Prin-
ciple, we have a solution

u(x, y, t) =
∞∑
m=1

∞∑
n=1

umn(x, y, t)

=
∞∑
m=1

∞∑
n=1

[
Bmn cos(λmnt) +B∗mn sin(λmnt)

]
sin
(mπx

a

)
sin
(nπy

b

)
.

Imposing the initial conditions, we obtain

f(x, y) =
∞∑
m=1

∞∑
n=1

Bmn sin
(mπx

a

)
sin
(nπy

b

)
,

that is a double Fourier series of the function f . (This exists and converges if f is
twice differentiable with continuity on R.) We can write

f(x, y) =
∞∑
m=1

( ∞∑
n=1

Bmn sin
(nπ
b
y
)

︸ ︷︷ ︸
=:Km(y)

)
sin
(mπ
a
x
)
,

where

Km(y) =
2

a

∫ a

0

f(x, y) sin
(mπx

a

)
dx
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are the Fourier coefficients of f(x, y) thought of as a function of x extended to [−a, a]
as an odd function. But

Km(y) =
∞∑
n=1

Bmn sin
(nπ
b
y
)

is the Fourier series of Km(y), so that

Bmn =
2

b

∫ b

0

Km(y) sin
(nπy

b

)
dy =

4

ab

∫ b

0

∫ a

0

f(x, y) sin
(mπx

a

)
sin
(nπy

b

)
dx dy .

Likewise

g(x, y) = ut(x, y, 0) =
∞∑
m=1

∞∑
n=1

B∗mnλmnt sin
(mπx

a

)
sin
(nπy

b

)
,

so that

B∗mn =
4

abλmn

∫ b

0

∫ a

0

g(x, y) sin
(mπx

a

)
sin
(nπy

b

)
dx dy .

for m,n ∈ N.

4.8. Dirichlet problem on a region with symmetries

We are interested in studying the Laplace equation on a region that has a radial
symmetry. The first thing to do is to write our equation in coordinates that are
appropriate with respect to this symmetry. We will study the Dirichlet problem on
a disk, so that the first step will be to transform the Laplace equation using polar
coordinates.

Recall that the polar coordinates are defined as{
x = r cos θ

y = r sin θ
⇔

{
r = (x2 + y2)1/2

θ = arctan y
x
.

Then

ux = urrx + uθθx

uy = urry + uθθy ,

from which

uxx = (urrx)x + (uθθx)x

= urrr
2
x + urθθxrx + urrxx + uθrrxθx + uθθθ

2
x + uθθxx

= urrr
2
x + 2urθrxθx + uθθθ

2
x + urrxx + uθθxx .

Since

r2 = x2 + y2 ⇒ 2rrx = 2x⇒ rx =
x

r
⇒ rxx =

r − xrx
r2

=
y2

r3
.



4.8. DIRICHLET PROBLEM ON A REGION WITH SYMMETRIES 73

Moreover

y = r sin θ ⇒ 0 = rx sin θ + r(cos θ)θx ⇒ θx = −rx
r

tan θ = −rx
r

y

x
= − y

r2
,

so that

θxx =
2yrrx
r4

=
2xy

r4
.

The partial derivatives ry, ryy and uyy can be obtained from the one above simply
by replacing x with y, that is

ry =
y

r
, ryy =

x2

r3

and

uyy = urrr
2
y + 2urθryθy + uθθθ

2
y + urryy + uθθyy ,

while

θy =
1

1 +
(
y
x

)2

1

x
=

x

r2
⇒ θyy = −x2rry

r4
= −2xy

r4
.

Finally it follows that

uxx + uyy = urrr
2
x + 2urθrxθx + uθθθ

2
x + urrxx + uθθxx

+ urrr
2
y + 2urθryθy + uθθθ

2
y + urryy + uθθyy

= urr(r
2
x + r2

y) + 2urθ(rxθx + ryθy)

+ uθθ(θ
2
x + θ2

y) + ur(rxx + ryy) + uθ(θxx + θyy)

= urr

(
y2

r2
+
x2

r2

)
+ 2urθ

(
���

���
���XXXXXXXXX

x

r

(
− y

r2

)
+
y

r

x

r2

)
+ uθθ

(
y2

r4
+
x2

r4

)
+ ur

(
x2

r3
+
y2

r3

)
+ uθ

(
�
��

��
�HH

HHHH

2xy

r4
− 2xy

r4

)
= urr + uθθ

1

r2
+ ur

1

r
,

that is

urr + uθθ
1

r2
+ ur

1

r
= 0

is the Laplace equation in polar coordinates.
Suppose now that we look for the solution of the problem{

∇2u = 0 on {(x, y) : x2 + y2 < R2}
u = f on {(x, y) : x2 + y2 = R2} .
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Because of the symmetry of the problem and the above calculation we look for a
solution of the problem{

urr + uθθ
1
r2

+ ur
1
r

= 0 on {(r, θ) : 0 ≤ r < R, 0 ≤ θ ≤ 2π}
u(R, θ) = f(θ) on {(R, θ) : 0 ≤ θ < 2π} .

(4.32)

We are going to apply the method of separation of variables, so that we look for a
solution of the form

u(r, θ) = F (r)G(θ) .

Such function will have to satisfy the equation

F ′′G+
1

r
F ′G+

1

r2
F G′′ = 0

⇒r2F ′′G+ rF ′G+ F G′′ = 0

⇒(r2F ′′ + rF ′)G = −F G′′

⇒r2F ′′ + rF ′

F
= −G

′′

G
= k

⇒

{
r2F ′′ + rF ′ − kF = 0

G′′ + kG = 0

with the conditions

G(0) = G(2π) and G′(0) = G′(2π) .(4.33)

Thus we start with the solution of the differential equation in G and we study as
usual the possible signs of k.

k < 0 The solution in this case is G(θ) = Ae
√
−kθ + Be−

√
−kθ. Imposing the

conditions (4.33) we obtain{
A+B = Ae

√
−k2π +Be−

√
−k2π

√
−kA−

√
−kB =

√
−kAe

√
−k2π −

√
−kBe−

√
−k2π ,

that is {
A+B = Ae

√
−k2π +Be−

√
−k2π

A−B = Ae
√
−k2π −Be−

√
−k2π .

Adding the two equations one obtains that

2A = 2Ae
√
−k2π ,

so that A = 0. Replacing this into one of either equations one obtains that
also B = 0.

k = 0 Then G(θ) = Aθ + B. Since B = G(0) = G(2π) = 2πA + B, then A = 0.
The condition on the derivative of G is of course verified, and hence G(θ)
has to be constant.
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k > 0 In this case the solution is G(θ) = A cos(
√
kθ) +B sin(

√
kθ). Imposing the

conditions (4.33) we obtain{
A = A cos(2π

√
k) +B sin(2π

√
k)

B = −A sin(2π
√
k) +B cos(2π

√
k) .

Multiplying the first equation by B, the second by A and comparing them,
we obtain

B2 sin(2π
√
k) = −A2 sin(2π

√
k) .

Since B2 = −A2 is never possible for real A,B, then sin(2π
√
k) = 0, that

is
√
k ∈ N. Then

Gn(θ) = An cos(nθ) +Bn sin(nθ)

is a solution for every n = 0, 1, 2, . . . . Notice that G0 = A0 is a constant,
and hence we recover here the solution found for k = 0.

Now we need to find the corresponding solution of the differential equation for F ,
namely

r2F ′′ + rF ′ − n2F = 0 .

This is a Euler equation2 of the second order and a solution will be of the form
F (r) = rα, where α ∈ Q is to be determined. Taking the derivatives and plugging
them into the equation of F , we obtain

r2α(α− 1)rα−2 + rαrα−1 − n2rα = 0

⇒α(α− 1) + α− n2 = 0

⇒α2 − n2 = 0

⇒α = ±n .

Notice that the two solutions rn and r−n are lineary independent if n ≥ 1, but
coincide if n = 0. Without invoking the general theory, note that in this case the
Euler equation becomes

r2F ′′ + rF ′ = 0⇒ rF ′′ + F ′ = 0 ,

which has the two solutions F (r) = constant and F (r) = ln r. But this last solution
is not bounded if r = 0 and r = 0 is a point in our disk, so we disregard this solution.
In fact, in general we remark that we want our solution

Fn(r) = Pnr
n +Qnr

−n

2The general form of the Euler equation is

y(n) +
bn−1
rn−1

y(n−1) + · · ·+ b1
r
y′ + b0y = 0 ,

where y = y(r).



76 4. PARTIAL DIFFERENTIAL EQUATIONS

to be bounded on the domain, so that we must require that Qn = 0 and hence

Fn(r) = Pnr
n .

Notice that if we were to consider the same problem on a region “outside” the disk,
we would have to impose instead that Pn = 0.

So, renaming the constants, we have found for every n = 0, 1, 2, . . . the solutions

un(r, θ) = rn(An cos(nθ) +Bn sin(nθ))

and hence the solution

u(r, θ) =
∞∑
n=0

un(r, θ) =
∞∑
n=0

rn(An cos(nθ) +Bn sin(nθ)) .(4.34)

Imposing the condition u(R, θ) = f(θ), we obtain

u(R, θ) =
∞∑
n=0

Rn(An cos(nθ) +Bn sin(nθ)) = f(θ) .

Comparing this condition with the Fourier series expansion of f

f(θ) = a0 +
∞∑
n=1

(an cos(nθ) + bn sin(nθ)) ,

where

a0 =
1

2π

∫ 2π

0

f(ϕ) dϕ

an =
1

π

∫ 2π

0

f(ϕ) cos(nϕ) dϕ

bn =
1

π

∫ 2π

0

f(ϕ) sin(nϕ) dϕ

and comparing the coefficients3 we obtain the following

A0 =
1

2π

∫ 2π

0

f(ϕ) dϕ

An =
1

Rnπ

∫ 2π

0

f(ϕ) cos(nϕ) dϕ

Bn =
1

Rnπ

∫ 2π

0

f(ϕ) sin(nϕ) dϕ .

3 Note that
∫ 2π

0
f(ϕ) dϕ =

∫ π
−π f̃(ϕ) dϕ, where f̃ is the 2π-periodic extension of f .
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By replacing these coefficients into the equation (4.34), we obtain

u(r, θ) =
1

2π

∫ 2π

0

f(ϕ) dϕ

+
1

π

∞∑
n=1

( r
R

)n ∫ 2π

0

[
cos(nθ) cos(nϕ) + sin(nθ) sin(nϕ)︸ ︷︷ ︸

cos(n(θ−ϕ))

]
f(ϕ) dϕ

=
1

2π

∫ 2π

0

f(ϕ) dϕ+
1

π

∞∑
n=1

( r
R

)n ∫ 2π

0

cos(n(θ − ϕ))f(ϕ) dϕ .

Assuming we can exchange the series and the integral, we obtain

u(r, θ) =
1

2π

∫ 2π

0

[
1 + 2

∞∑
n=1

( r
R

)n
cos(n(θ − ϕ))

]
f(ϕ) dϕ .(4.35)

To manipulate the series, observe that if α ∈ R and for |t| < 1,

∞∑
n=1

tn cos(nα) = <

(
∞∑
n=1

tneinα

)
= <

(
teiα

1− teiα

)
= · · · = t cosα− t2

1− 2t cosα + t2
,

so that

1 + 2
∞∑
n=1

tn cos(nα) =
1− t2

1− 2t cosα + t2
.

We use this identity with t = r
R

and α = θ − ϕ and substitute the result in (4.35),
so that

u(r, θ) =
1

2π

∫ 2π

0

[
1 + 2

∞∑
n=1

( r
R

)n
cos(n(θ − ϕ))

]
f(ϕ) dϕ

=
1

2π

∫ 2π

0

1−
(
r
R

)2

1− 2 r
R

cos(θ − ϕ) +
(
r
R

)2f(ϕ) dϕ

=
1

2π

∫ 2π

0

R2 − r2

R2 − 2rR cos(θ − ϕ) + r2
f(ϕ) dϕ .

The function

K(r, θ, R, ϕ) :=
R2 − r2

R2 − 2rR cos(θ − ϕ) + r2

is called Poisson integral kernel and the solution

u(r, θ) =
1

2π

∫ 2π

0

K(r, θ, R, ϕ)f(ϕ) dϕ

is given in Poisson integral form.
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4.9. Mean value property and the maximum principle

Functions that satisfy the Laplace equation ∇2u = 0 are called harmonic and
enjoy very important properties. Suppose for example that u is a function that is
harmonic on a region D, that is ∇2u = 0 on D: let (x0, y0) ∈ D be any point and
let a ∈ R be such that a disk of center (x0, y0) and radius a is contained in D. Thus
u is tautologically a solution of the Dirichlet problem{

∇2u = 0 on {(r, θ) : 0 ≤ r < a , 0 ≤ θ ≤ 2π}
u = u(a, θ) on {(a, θ) : 0 ≤ θ ≤ 2π} ,

and hence can be written in Poisson integral form

u(r, θ) =
1

2π

∫ 2π

0

K(r, θ, a, ϕ)u(a, ϕ) dϕ ,

where we are considering here polar coordinates centred at (x0, y0). We want to
compute the value u(x0, y0). To this purpose observe that to the point (x0, y0)
corresponds r = 0 and hence u(x0, y0) = u(0, θ) (the angle θ is undefined, but it will
not be a problem). Observe moreover that K(0, θ, a, ϕ) = 1. Thus

u(x0, y0) = u(0, θ) =
1

2π

∫ 2π

0

K(0, θ, a, ϕ)u(a, ϕ) dϕ =
1

2π

∫ 2π

0

u(a, ϕ) dϕ

=
1

2π

∫ 2π

0

u(x0 + a cosϕ, y0 + a sinϕ) dϕ .

In other words a harmonic function is equal at any point to the average of the values
on any circle centred at that point. This has in particular the following consequence

Maximum Principle. If a harmonic function u takes its maximum values on the
interior of the region D where it is harmonic, then it must be constant.

In fact, let us assume that P0 is the point in D where u attains its maximum,
u(P0) = M . If u were not to be constant, there would be another point P1 ∈ D
where u(P1) < M . Take a path from P0 to P1 and let P be the point on the path
closest to P1 where u(P ) = M . Consider now a circle C with center P all contained
in D and not containing P1, and let Q be the intersection of the circle C with the
path closest to P1. Then u|C ≤ M and in particular u(Q) < M , so that u(P ) = M
cannot be the average of the values of u on the circle C.

P0
P Q P1

D
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4.10. Well-posed and ill-posed problems

Solutions of ordinary differential equations behave well, in the sense that, under
certain conditions, one can prove the existence and the uniqueness of the solutions of
an initial value problem, as well as the smooth dependence on the initial parameters.

The same statements unfortunately do not hold for partial differential equations,
although the same questions arise. Not only we would like to know that a solution
of a given problem exist and is unique, but often the boundary conditions and the
initial conditions are obtained through measurements. So we would like to know that
the solution is not affected too much by the likely imprecision with which boundary
conditions and initial conditions were measured.

We say that a problem is well-posed if it satifies the following three conditions:

(1) Existence: the problem has a solution;
(2) Uniqueness: the solution is unique;
(3) Stability: the solution depends continuously on the initial conditions and

on the boundary conditions.

The problem is ill-posed if one of the above properties does not hold. For partial dif-
ferential equation there is no general theorem like in the case of ordinary differential
equations.

Example 4.16. We look for a solution of the differential equation

ux = c0u+ c1 ,

where u = u(x, y), c0 is a constant and c1 = c1(x, y). We are going to look at
different initial conditions, namely

(1) u(0, y) = f(y);
(2) u(x, 0) = x in the case in which c1(x, y) = 0;
(3) u(x, 0) = ec0x also in the case c1(x, y) = 0.

(1) Using the formula

y(x) = e−P (x)

(∫ x

0

eP (ξ)q(ξ) dξ + y(0)

)
for the solution of a linear ordinary differential equation

y′ + p(x)y = q(x) ,

where

P (x) :=

∫ x

0

p(s)ds ,

we obtain

u(x, y) = ec0x
(∫ x

0

e−c0ξc1(ξ, y) dξ + f(y)

)
,

where we used that u(0, y) = f(y). In this case the problem is well-posed.
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(2) The differential equation is now

ux = c0u ,

so that

u(x, y) = g(y)ec0x ,

where g is a function to be determined with the initial conditions. Doing so, we
obtain

x = u(x, 0) = g(0)ec0x

and hence

g(0) = xe−c0x .

But this is not possible since xe−c0x is not a constant, and hence the problem has
no solution.

(3) Like in (2) the solution is now

u(x, y) = g(y)ec0x ,

where g is a function to be determined with the initial conditions. Imposing the
initial conditions we obtain

ec0x = u(x, 0) = g(0)ec0x ,

from which it follows that any function g(y) with g(0) = 1 gives a different solution

u(x, y) = g(y)ec0x .

In this case the problem is not well-posed because the solution is not unique.

Example 4.17. It is easy to verify that the one-dimensional wave equation on an
infinite string is a well-posed problem for any initial conditions f, g. Recall in fact
the problem 

utt = c2uxx for t ≥ 0

u(x, 0) = f(x)

ut(x, 0) = g(x) ,

that has solution

u(x, t) =
1

2

(
f(x+ ct) + f(x− ct)

)
+

1

2c

∫ x+ct

x−ct
g(y) dy .
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We want to investigate the change in u if f and g are replaced by f + δf and g+ δg.
With the modified initial conditions the solutions becomes

uδ(x, t) =
1

2
(f(x− ct) + δf(x− ct) + f(x+ ct) + δf(x+ ct))

+
1

2c

∫ x+ct

x−ct
(g(y) + δg(y)) dy

= u(x, t) +
1

2
(δf(x− ct) + δf(x+ ct)) +

1

2c

∫ x+ct

x−ct
δg(y) dy ,

so that

|u(x, t)− uδ(x, t)| ≤
1

2

∣∣δf(x− ct) + δf(x+ ct)
∣∣+

1

2c
max

∣∣δg(y)
∣∣((x+ ct)− (x− ct)

)
=

1

2
δ
∣∣f(x− ct) + f(x+ ct)

∣∣+ tmax
∣∣δg(y)

∣∣ .
If ε > 0, we can find a δ > 0 such that

1

2
δ
∣∣f(x− ct) + f(x+ ct)

∣∣ < ε and max δ
∣∣g(y)

∣∣ < ε ,

from which it follows that

|u(x, t)− uδ(x, t)| < ε+ tε .

It should be noted that, although this shows continuity on the initial parameter, we
also see the the more time goes by, the more the function uδ differs from u.

Example 4.18. The Neumann problem on a region R is the following{
∇2u = 0 on R
∂u
∂n

= g on ∂R .

We see now that a necessary condition for the existence of a solution is that
∫
∂R
g = 0.

In fact, using the divergence theorem, we obtain∫
∂R

g =

∫
∂R

∂u

∂n
=

∫
∂R

∇u · n =

∫
R

div(∇u) dA =

∫
R

∇2u = 0 ,

which shows that the Neumann problem is not well-posed if
∫
∂R
g 6= 0.


	Chapter 1. Preface
	Chapter 2. The Laplace Transform
	2.1. Introduction
	2.2. Definitions and examples
	2.3. First properties and applications
	2.3.1. Linearity
	2.3.2. Shifting Theorem (s-shifting)
	2.3.3. Differentiation

	2.4. The Heaviside function and t-shifting
	2.4.1. Second shifting theorem (t-shifting)

	2.5. Integration
	2.6. Dirac's delta function
	2.7. Convolution and integral equations
	2.8. Last properties: differentiation and integration of transforms

	Chapter 3. Fourier Analysis
	3.1. Fundamentals
	3.2. Even and odd functions, half-range expansion
	3.2.1. Simplified form of the Fourier series for even and for odd functions
	3.2.2. The half-range expansion

	3.3. Complex Fourier series
	3.4. Approximation by trigonometric polynomials
	3.5. Fourier integral
	3.5.1. Fourier sine and Fourier cosine integrals

	3.6. Fourier transform

	Chapter 4. Partial Differential Equations
	4.1. Introduction and basic definitions
	4.2. From a vibrating string to the wave equation
	4.3. Fourier series solution of the one-dimensional wave equation
	4.3.1. Separation of variables
	4.3.2. Determination of ``many'' solutions
	4.3.3. Use of Fourier series

	4.4. D'Alembert solution of the wave equation and characteristics
	4.5. The Heat equation via Fourier series
	4.5.1. Steady two-dimensional heat equation and Laplace equation
	Dirichlet problem on a rectangle

	4.6. Heat equation on an infinite bar
	Alternative method using the Fourier transform
	Alternative method to the alternative method

	4.7. Rectangular membrane: the wave equation
	4.8. Dirichlet problem on a region with symmetries
	4.9. Mean value property and the maximum principle
	4.10. Well-posed and ill-posed problems


