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Abstract

In this thesis we are interested in giving a rigorous Hausdorff dimen-
sion of a subset of Rn.
We provide a method to compute the Hausdorff dimension for a self-
similar and fractal sets. We then compute explicitly the Hausdorff
dimension of some well known fractals (Cantor set, Koch curve and
others).
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Chapter 1

Introduction

Historically, the sets now described as fractals where always regarded as
“pathological” or “monstrous” purely mathematical structures without any
application to the real world.
This perception changed thanks to the work made by Benoit Mandelbrot
(1924-2010), who introduced the term fractal to the world (fractal comes
from the Latin adjective fractus, which translates approximatively into “bro-
ken”) and who applied this mathematical theory to the physical world.
His efforts in this field culminated into publishing the book “Fractal geome-
try of nature”[1] in 1982 (a revisited version of the previously published book
“Fractals: Form, Chance and Dimension” published in 1977). This book is con-
sidered a milestone for the development of mathematics and science and it
appears in the 100 books of the 20th century by the magazine “American
scientist”.[2]
In his original essay, Mandelbrot defines a fractal as a set with Hausdorff
dimension (which he calls fractal dimension, see definition in chapter 2)
different from its topological dimension (the topological dimension, also
known as covering dimension or Lebesgue covering dimension is defined
inductively: a set has topological dimension 0 if and only if it is totally dis-
connected, a set has topological dimension n if every point has arbitrary
small neighbourhoods with boundary of dimension (n-1)). Note that the
topological dimension of a set is always an integer; therefore (by Mandel-
brot’s definition) every set with non-integer Hausdorff dimension is consid-
ered a fractal.
Instead of using this classical definition, we decided to go with the more
vague definition of fractal given by the book “Fractal Geometry, Mathematical
Foundations and Applications” by Kenneth Falconer[3], since it allows us give
the tag of fractal to more sets than Mandelbrot’s definition. Therefore, we
say that a set F is fractal if it is satisfies some of the following properties:

fine structure Which means that F has details on arbitrary small scales.
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1. Introduction

irregular i.e it cannot be described by traditional geometry.

self-similar F is composed by smaller copies of itself.

simple F must be easily describable by some rule.

The objective of the first chapter of this thesis is to give a rigorous definition
of Hausdorff dimension and prove the invariance of this quantity under ap-
plication of a bi-Lipschitz map. To do this we will define the Hausdorff
measure and work our way up to the main definition, with an excursus in
measure theory, where we will show the equivalence of Hausdorff measure
and Lebesgue measure in Rn.
In the third chapter of this thesis we will focus on calculating the Hausdorff
dimension of some self-similar fractals in a rigorous mathematical way, but
before that, we would like to show some examples of fractal structures that
can be found in nature, architecture and some other fields of mathematics
(in particular statistics).
We would like to emphasise the fact that fractals (just like circles and spheres)
do not exist in the real world, but only in our mathematical abstraction.
Therefore, we refer to the fractal representative of a real object when talk-
ing about the mathematical abstract fractal similar to the original object (in
the same way that we refer to a sphere as the geometrical representative of
an orange).
Mandelbrot himself in the above-mentioned book proposed the first classic
example of fractal in nature: the coast of Great Britain. The usual method
for measuring the length of a coast is to fit a polynomial over a map of the
coast and to add the length of the segments of this polygon to find an ap-
proximation of the wanted quantity. If we use a rough approximation (for
example if the sides of the polynomial are all of length 125 km) we find a
certain value. If we refine this approximation (length of the sides equal to
62.5 km), we will find a much higher, and intuitively much better, approxi-
mation of the length of the coastline. Repeating this procedure, we find out
that the value of the approximation tends to infinity whenever the length of
the side tends to zero.

Figure 1.1: Coastline of Britain. [4]
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The motivation for this behaviour is the fact that the coastline has a fractal-
like structure, and its fractal representative would have Hausdorff dimen-
sion bigger than one. Therefore its “length” cannot be measured with the
same instruments that we would use for a set of dimension one (in a cer-
tain way it is as if we were trying to measure the volume of a sphere using
ruler).
The second and more interesting example is the Roman cauliflower. The
characteristic in which we are interested is the fact that if we zoom into a por-
tion of this cauliflower, we find the same structure as the original cauliflower
itself. We can repeat this procedure a couple of times and continue finding
the same result. Of course, in the real world we cannot zoom in infinitely
many times, because sooner or later we would soon reach the molecular
level, which is not self-similar to the initial cauliflower. Nevertheless, we
can say that the fractal representative of the cauliflower has a self-similar
structure.

Figure 1.2: Roman Cauliflower. [5]

The more interesting point of this (and the following) example is the reason
why the Roman cauliflower has this structure. Evolution has created this
vegetable in a way that allows it to have a big surface in a confined volume.
This way the cauliflower is very efficient in absorbing oxygen from the air,
without needing a big space. This is the beauty and the key for technical
applications of fractal geometry: simple rules, which lead to efficiency (in
this case in the absorption of oxygen).
The same concept can be applied to the third example: the lungs. The struc-
ture of the lung is very similar to the structure of a tree: there are two main
bronchi, which divide into secondary bronchi, which divide further into ter-
tiary bronchi. The tertiary bronchioles divide into bronchioles, which divide
into terminal bronchioles. All of those parts of the lung are so similar to each
other that they almost have the same name. Therefore, we can say that the
fractal representative of the lung has a self-similar, fractal structure. Follow-
ing the same reasoning as in the case of the Roman cauliflower, evolution
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1. Introduction

has modelled the lungs efficiently, creating a structure with a big area inside
a confined volume (due to the ribcage) for the better transfer of oxygen form
the air to the blood.
Even before the publication of Mandelbrot’s book, fractal structures have ap-
peared into the work of many artist because of their beauty. Already in the
Early Middle Ages, we can find an example of Sierpinski triangle structure
in a mosaic on the floor of the Anagni Cathedral in Lazio.

Figure 1.3: Floor of the Anagni Cathedral in Lazio. [6]

A modern example of the application of fractal theory to architecture is the
work made by Wolfgang E. Lorenz [7], where he uses the idea behind the
concept of Hausdorff dimension to create an index, with which he can then
compare some architectural structures over the aspect of self-similarity.
The last example diverges from the solid world and starts dealing with sta-
tistical self-similarity. The argument in question is Brownian motion, which
was based on the study of the movement of a small particle of dust in a fluid.
Mandelbrot himself said that the work done by Jean Perrin on the subject
was a great motivation for the development of fractal geometry. The reason
why this motion might be considered fractal might not be immediately clear,
since the trajectory of one particle is not exactly self-similar to itself. Let it
be noted that cases like these are the reason why we have decided to go with
a loose definition of fractal. The first point to be made is that the trajectory
the this particle is considered to be nowhere differentiable, therefore it is ir-
regular. Secondly, the probability distribution of the trajectory of a particle
is the same at any time. This creates a sort of self similar structure of the
trajectory.
We hope that this small introduction helped in tickling your interest for frac-
tal structures and that it has given motivation to read forward.
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Chapter 2

Hausdorff dimension in Rn

This chapter has the goal of introducing the basic notions of set theory and
measure theory that build up to the definition of Hausdorff dimension. This
chapter will also contain the proof that the n-dimensional Hausdorff mea-
sure and the Lebesgue measure agree on Rn.

2.1 Set and Measure theoretical concepts

This section will seem a bit disjointed, but its purpose is to introduce some
results that will be used later on in the thesis.

Definition 2.1.1 Given a set C ⊂ Rn, we define the Diameter of C to be:

diam(C) = sup{∣x − y∣; x, y ∈ C}

Where ∣ ⋅ ∣ represents the euclidean norm.

Lemma 2.1.2 Given a set C ⊂ Rn, we have that

diam(C) = diam(C)

Proof ” ≤ ” This inequality is clear, since C ⊂ C
” ≥ ” Let p, q ∈ C and let ε > 0.
By the definition of closure in a metric space, we have that ∃p̃, q̃ ∈ C s.t.
∣p − p̃∣ < ε, ∣q − q̃∣ < ε.
By the triangular inequality it follows that
∣p − q∣ ≤ ∣p − p̃∣+ ∣p̃ − q̃∣+ ∣q̃ − q∣ ≤ 2ε + diam(C)
Since we took ε arbitrary, we can let it tend to 0 and we get that
∣p − q∣ < diam(C), ∀p, q ∈ C⇒ sup{∣p − q∣; p, q ∈ C} = diam(C) ≤ diam(C) ◻

After this small preliminary lemma, which will be used later in the thesis,
we introduce some measure theoretical concepts. It should be noted that
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2. Hausdorff dimension in Rn

when we talk about the Lebesgue measure Ln we are referring to the Hahn-
Carathéodory extension of the pre-measure defined on the set of cubes in
Rn. We first introduce a useful constant, which will appear later in the
definition of Hausdorff measure as a normalizing factor, and then calculate
the Lebesgue measure of a ball of radius r in Rn.

Definition 2.1.3 α(s) = πs/2
Γ( s

2+1) , where Γ(⋅) is the usual gamma function.

Lemma 2.1.4 Let BR(x) be a ball with centre in x and radius R. It holds that:

Ln(BR(x)) = α(n)Rn

Proof For this proof we use the system of spherical coordinates in Rn,
which is described by a radius r, n-2 angles ϕ1, . . . , ϕn−2 ∈ [0, π[ and one
angle ϕn−1 ∈ [0, 2π[.
The Cartesian coordinates are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = r cos(ϕ1)
x2 = r sin(ϕ1) cos(ϕ2)
x3 = r sin(ϕ1) sin(ϕ2) cos(ϕ3)
⋮
xn−1 = r sin(ϕ1) . . . sin(ϕn−2) cos(ϕn−1)
xn = r sin(ϕ1) . . . sin(ϕn−2) sin(ϕn−1)

By calculating the determinant of the Jacobian of the transformation above,
we can conclude that

dV = rn−1sinn−2(ϕ1)sinn−3(ϕ2) . . . sin(ϕn−2)dϕn−1dϕn−2 . . . dϕ1dr
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2.1. Set and Measure theoretical concepts

And the volume becomes:

Ln(BR(x)) = ∫
BR(x)

dV =

= ∫
R

0
∫

π

0
. . .∫

π

0
∫

2π

0
rn−1sinn−2(ϕ1)sinn−3(ϕ2) . . . sin(ϕn−2)dϕn−1dϕn−2 . . . dϕ1dr

= (∫
R

0
rn−1dr)(∫

π

0
sinn−2(ϕ1)dϕ1) . . . (∫

2π

0
dϕn−1)

(1)= Rn

n
(2∫

π
2

0
sinn−2(ϕ1)dϕ1) . . .(4∫

π
2

0
dϕn−1)

(2)= Rn

n
B (n − 1

2
,

1
2
) B (n − 2

2
,

1
2
) . . . B (1,

1
2
) ⋅ 2B (1

2
,

1
2
)

(3)= Rn

n
Γ(n−1

2 )Γ( 1
2)

Γ(n
2 )

. . .
Γ(1)Γ( 1

2)
Γ( 3

2)
⋅ 2

Γ( 1
2)Γ( 1

2)
Γ(1)

(4)= 2π
n
2 Rn

nΓ(n
2 )

= π
n
2 Rn

Γ(n
2 + 1) = α(n)Rn

Some explanations:

(1) We can change the integral boundaries since sin is symmetric with
respect to π

2 .

(2) B(., .) is the Euler beta function, which has an alternative definition
that coincides with the formula from the line above.

(3) B(x, y) = Γ(x)Γ(y)
Γ(x+y)

(4) Here we use telescopic multiplication and the fact that Γ(1
2) =

√
π

◻

In the following we will give a list of properties of measures and in the
next section we will show that the Hausdorff measure has some of those
properties (it will not be Radon in every case).

Definition 2.1.5 Let µ be a measure on Rn. We say that µ is:

(Borel) If every Borel set is µ measurable.

(Borel-Regular) If µ is Borel and if :

∀C ⊂ Rn,∃B such that C ⊂ B and µ(C) = µ(B).

(Radon) If µ is Borel-Regular and if µ(K) <∞, ∀K ⊂ Rn compact.

(Metric) If ∀A, B ⊂ Rn such that dist(A, B) > 0 it follows that

µ(A ∪ B) = µ(A)+ µ(B)
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2. Hausdorff dimension in Rn

Remark 2.1.6 In the definition of metric measure, the function dist is defined by
dist(A, B) = in f{∣x − y∣; x ∈ A, y ∈ B} and should not be confused with the Haus-
dorff distance, which will be introduced in a later chapter.

The last definition is useful, because in most cases it is easier to prove that a
measure is metric rather than prove directly the Borel property of a measure.
The following theorem links the two concepts together.

Theorem 2.1.7 (Carathéodory’s criterion) Let µ be a measure on Rn.

µ is metric⇒ µ is Borel.

We will make use of this theorem in proving that the Hausdorff measure is
Borel.
We now introduce a result that will be used in section (2.3)

Lemma 2.1.8 Let Ln be the Lebesgue measure on Rn. Then we have

Ln+1 = Ln ×L1

Where × denotes the product measure generated by two measures.

Proof We will use theorem 1.2.3 form the script from M.Struwe [8], which
states that the Hahn-Carathéodory extension of a σ-finite premeasure is
unique. This statement has to be interpreted in this way: if two measures
agree on the algebra in which the premeasure is defined, and one of those
two measures is the Hahn-Carathéodory extension of said premeasure, then
they must be equal. We have defined Ln+1 as the Hahn-Carathéodory exten-
sion of the volume in Rn+1. If we take a random (n + 1)-dimensional cube

Q =
n+1

∏
i=1

[ai, bi] , ai ≤ bi we get:

Ln+1(Q) = Vol(Q) = Vol (
n+1

∏
i=1

[ai, bi]) =
n+1

∏
i=1

(bi − ai) =

=
n
∏
i=1

(bi − ai) ⋅ (bn+1 − an+1) =

= Ln (
n
∏
i=1

[ai, bi]) ⋅L1 ([an+1, bn+1]) =

(1)= Ln ×L1 (
n
∏
i=1

[ai, bi]× [an+1, bn+1]) = Ln ×L1(Q)

Were in equality (1) we used the first statement of Fubini’s theorem (4.1.1
Script M.Struwe[8]). This proves that they agree on the generating Algebra
and they must therefore be equal. ◻
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2.2. Hausdorff measure

Remark 2.1.9 By induction over n we can see that Ln = L1 ×L1 ×⋯×L1

Lemma 2.1.10 Let A ⊂ R with L1(A) = 0. Then ([0, 1]− A) is dense in [0, 1].

Proof Let U be a non empty open subset of [0, 1]. Since U is open,U con-
tains at least an interval and therefore we have L1(U) > 0. This implies that
U /⊂ A (otherwise A would have positive measure). We now have that
U ∩ ([0, 1]− A) ≠ ∅. Since U was an arbitrary open set, we can conclude. ◻

To conclude this section and link us with the next one we introduce a notion,
which will help us immensely in the definition of Hausdorff measure.

Definition 2.1.11 (δ-covering) Let C ⊂ Rn and let δ > 0 be arbitrary. We say
that {Ui}i∈I is a δ-covering of C if those three conditions hold:

• Ui ⊂ Rn and ∀i ∈ I ∶ diam(Ui) < δ

• C ⊂⋃
i∈I

Ui

• I is countable

Remark 2.1.12 For countable it is intended either finite or infinitely countable.

2.2 Hausdorff measure

In this subsection we will introduce the Hausdorff measure of a set. There
are two reasons why this concept is useful. Firstly it allows us to define the
Hausdorff dimension of a set. Secondly it lets us measure sets of ”dimen-
sion” (interpreted as a more classic intuitive way, see topological dimension
defined in the introduction) lower than the framework in which we are work-
ing.
To be clearer, imagine that we are working in R3 and want a significant value
for the area of the circle

C = {(x, y, z) ∈ R3∣x2 + y2 = 1 and z = 0}.

We cannot use the Lebesgue measure Ln to get a meaningful measure for
this object, since Ln(C) = 0. (This can be proven by taking the square B =
[−1, 1]× [−1, 1]×{0}, seeing that C ⊂ B we have that Ln(C) ≤ Ln(B) = 2 ⋅2 ⋅0 =
0). The Hausdorff measure allows us to give a meaningful value for the sets
of ”dimension” lower than n in Rn. Inverting this line of taught, we can
define the Hausdorff measure for non integer values.

Definition 2.2.1 Let C ⊂ Rn and let 0 ≤ s <∞, 0 < δ ≤∞ arbitrary. Define

Hs
δ(C) = inf{

∞
∑
i=1

α(s)(diam(Ui)
2

)
s

;{Ui}i∈I is a δ-covering of C}

9



2. Hausdorff dimension in Rn

Remark 2.2.2 In lemma (2.1.2) we have proven that diam(U) = diam (U). There-
fore we can restrict the above definition by only taking the infimum over closed
δ-coverings:

Hs
δ(C) = inf{

∞
∑
i=1

α(s)(diam(Ui)
2

)
s

;{Ui}i∈I is a δ-covering of C, Ui closed}

Remark 2.2.3 If we take δ̃ < δ, we have that Hs
δ̃
(C) ≥ Hs

δ(C), ∀C ⊂ Rn, s ≥ 0.
This is true because every δ̃-covering is also a δ-covering. Therefore, when we
calculate Hs

δ̃
(C), we take the infimum on a smaller set than when we calculate

Hs
δ(C), resulting in a bigger value.

From this remark we can finally define the Hausdorff measure:

Definition 2.2.4 (Hausdorff measure) Let C ⊂ Rn and let 0 ≤ s < ∞. The s-
dimensional Hausdorff measure of C on Rn is given by:

Hs(C) = lim
δ→0
Hs

δ(C) = sup
δ>0
Hs

δ(C)

Where the last equality is true thanks to the remark above.

Remark 2.2.5 The existence of the limit is also a consequence of remark (2.2.3);
since Hs

δ(C) increases (not necessarily monotonously ) for δ which goes to 0 from
the right. It is not always the case that the limit is finite.

Remark 2.2.6 The constant α(s) is present in the definition of Hs
δ and its effect

cascades into the definition of Hs. It is just a normalizing factor that allows us
to prove (in the next section) that the Lebesgue measure and the n-dimensional
Hausdorff measure agree on Rn(Ln =Hn).

Remark 2.2.7 If s < n then Hs is not a Radon measure in Rn. The proof of this
statement will be presented later in remark (2.4.3).

We will now prove the first theorem of this thesis, in which we want to show
that the Hausdorff measure is well defined and has some ”nice” properties.
The proof of this theorem is very much inspired by the proof found in the
book of Evans[9], with some clarifications.

Theorem 2.2.8 Hs is a Borel regular measure ∀0 ≤ s <∞

Proof Let 0 ≤ s be fix.
Claim 1 Hs

δ is a measure ∀ δ > 0
Proof Claim 1 Choose {Ui}∞i=1 ⊂ Rn and suppose that ∀i there is a δ-covering

{Ci
j}∞j=1 of Ui; then {Ci

j}∞i,j=1 covers
∞
⋃
i=1

Ui. Therefore

Hs
δ (

∞
⋃
i=1

Ui) ≤
∞
∑
i=1

∞
∑
j=1

α(s)
⎛
⎝

diam Ci
j

2
⎞
⎠

s

.
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2.2. Hausdorff measure

Taking the inf over all the possible {Ci
j}∞j=1 and pulling it into the first sum,

we find

Hs
δ (

∞
⋃
i=1

Ui) ≤
∞
∑
i=1
Hs

δ(Ui).

This proves the sub additivity of Hs
δ. The claim is concluded, since the we

can take {∅} as a δ-covering of the empty set to prove that Hs
δ(∅) = 0∀ s, δ.

Claim 2 Hs is a measure
Proof Claim 2 Choose {Ui}∞i=1 ⊂ Rn. Then

Hs
δ (

∞
⋃
i=1

Ui) ≤
∞
∑
i=1
Hs

δ(Ui) ≤
∞
∑
i=1
Hs(Ui).

Where the first inequality was proven in Claim 1 and the second inequality
uses the ”sup” the definition of Hs = sup

δ>0
Hs

δ. We now use the fact that the

right hand side of this inequality does not depend on δ by letting δ go to 0.

Hs (
∞
⋃
i=1

Ui) = lim
δ→0
Hs

δ (
∞
⋃
i=1

Ui) ≤
∞
∑
i=1
Hs(Ui).

In this way we proved the sub additivity. To conclude the claim note that
Hs(∅) = lim

δ→0
Hs

δ(∅) = lim
δ→0

0 = 0.

Claim 3 Hs is a metric and Borel measure
Proof Claim 3 Let A, B ⊂ Rn with dist(A, B) > 0 and let 0 < δ < 1

4 dist(A, B).
Let {Ui}∞i=1 be a δ-covering of A ∪ B. Now put A = {Uj∣Uj ∩ A ≠ ∅} and
B = {Uj∣Uj ∩ B ≠ ∅}. We can see:

A = A ∩ (
∞
⋃
i=1

Ui) =
∞
⋃
i=1

(A ∩Ui)
(1)= ⋃

Ui∈A
(A ∩Ui) ⊂ ⋃

Ui∈A
Ui

Where in (1) we use the definition of A. In the same way it can be proved
that B ⊂ ⋃

Ui∈B
Ui. Since dist(A, B) > 0 we can see that

Ui ∩Uj = ∅ if Ui ∈ A, Uj ∈ B. Thanks to this separation we can calculate:

∞
∑
i=1

α(s)(diam(Ui)
2

)
s

≥ ∑
Ui∈A

α(s)(diam(Ui)
2

)
s

+ ∑
Ui∈B

α(s)(diam(Ui)
2

)
s

≥Hs
δ(A)+Hs

δ(B)
Where the first inequality comes from the separation in A and B and the
second inequality is the definition of Hs

δ. Since the right hand side of the
equality does not depend on the covering {Ui}∞i=1, we can take the infimum
(still over {Ui}∞i=1, δ-coverings of A ∪ B) on the left hand side to get:

Hs
δ(A ∪ B) = inf{

∞
∑
i=0

α(s)(diam(Ui)
2

)
s

;{Ui}i∈I is a δ-covering of A ∪ B}

≥Hs
δ(A)+Hs

δ(B).
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2. Hausdorff dimension in Rn

This result is only valid for δ < 1
4 dist(A, B), but this is not a problem, since

we want to let δ go to 0. By doing so, we get

Hs(A ∪ B) = lim
δ→0
Hs

δ(A ∪ B) ≥ lim
δ→0
Hs

δ(A)+ lim
δ→0
Hs

δ(B) =Hs(A)+Hs(B).

The inequality in the other direction comes from the sub additivity of Hs,
proven in claim 2. Therefore we can conclude that

Hs(A ∪ B) =Hs(A)+Hs(B)∀A, B with dist(A, B) > 0.

This implies that Hs is a metric measure and (by the Carathéodory criterion
(thm 2.1.7)) it is also Borel.
Claim 4 Hs is a Borel regular measure.
Proof Claim 4 For this proof we will use the equivalent definition of Hs

δ given
in remark (2.2.2).
Let A ⊂ Rn such that Hs(A) < ∞. It follows that Hs

δ(A) < ∞∀ δ > 0 (this is
because of the sup definition of Hs).
∀ j > 0, let {U j

i}
∞
i=1 be a 1

j -closed-covering of A, with

∞
∑
i=1

α(s)
⎛
⎝

diam(U j
i )

2
⎞
⎠

s

≤Hs
1
j
(A)+ 1

j
.

This last condition can be fulfilled because of the ”inf” in the definition of
Hs

1
j
(A). Now let Aj =

∞
⋃
i=1

U j
i and B =

∞
⋂
j=1

Aj. B is a Borel set (since the U j
i are

all closed, they are Borel. By taking infinite union and infinite intersection
we remain in the Borel σ-algebra). A ⊂ Aj, ∀j since {U j

i}
∞
i=1 is a covering of

A for all j. This implies that A ⊂ B ⇒ Hs(A) ≤ Hs(B). The inequality in the
other direction comes from the definition of B

Hs
1
j
(B) ≤Hs

1
j
(Aj) ≤

∞
∑
i=1

α(s)
⎛
⎝

diam(U j
i )

2
⎞
⎠

s

≤Hs
1
j
(A)+ 1

j
.

Letting j tend to 0 on both sides of the inequality we get the wanted Hs(B) ≤
Hs(A). This implies Hs(A) = Hs(B) and ends the proof of claim 4, since
(for an arbitrary A) we have found a B Borel, that has the same Hausdorff
measure as A. ◻
After having proved that the Hausdorff measure is nice to deal with, we
start presenting and proving some properties that will help us in dealing
with the study of fractal structures.

Theorem 2.2.9 (Scaling property) Given λ > 0 and C ⊂ Rn we have

Hs(λC) = λsHs(C)

where λC = {λx∣x ∈ C} is just the scaling of C by λ.

12



2.2. Hausdorff measure

Proof let {Ui}∞i=1 be a δ-covering of C. Then {λUi}∞i=1 is a λδ-covering of
λC. Hence

Hs
λδ(λC) ≤

∞
∑
i=1

α(s)(λ diam(Ui)
2

)
s

= λs
∞
∑
i=1

α(s)(diam(Ui)
2

)
s

.

Taking the infimum over all δ-coverings of C, we get

Hs
λδ(λC) ≤ λsHs

δ(C)

Now by letting δ → 0 we get Hs(λC) ≤ λsHs(C). By replacing λ with 1
λ and

C by λC, we get the converse inequality and the end of the proof. ◻

Definition 2.2.10 Let C ⊂ Rn and f ∶ C → Rm be a mapping such that

∣ f (x)− f (y)∣ ≤ L∣x − y∣β

for some L > 0 and β > 0. Then f is said to satisfy the Hölder condition of exponent
β and constant L.

Remark 2.2.11 If β = 1 we say that f is Lipschitz continuous

Theorem 2.2.12 Assume that f satisfies the Hölder condition of exponent β and
constant L. Than ∀ s > 0

H
s
β ( f (C)) ≤

α( s
β)2

s
β

α(s)2s L
s
βHs(C)

Proof Let {Ui}∞i=1 be a δ-covering of C.
Claim 1 diam( f (C ∩Ui)) ≤ L diam(Ui)β

Proof Claim 1 Let x, y ∈ f (C ∩Ui). Than x = f (x̃), y = f (ỹ) for
x̃ and ỹ ∈ C ∩Ui. It follows ∣x − y∣ = ∣ f (x̃)− f (ỹ)∣ ≤ L∣x̃ − ỹ∣β. It follows

diam( f (C ∩Ui)) = sup
x̃,ỹ∈C∩Ui

∣ f (x̃)− f (ỹ)∣ ≤ L sup
x̃,ỹ∈C∩Ui

∣x̃ − ỹ∣β ≤

≤ L sup
x̃,ỹ∈Ui

∣x̃ − ỹ∣β = L diam(Ui)β◻claim1

Thanks to claim 1 we can assert that { f (C ∩Ui)}∞i=1 is an ε cover of f (C),
where ε = Lδβ. By claim 1 we have:

∞
∑
i=1

α( s
β
)(diam( f (C ∩Ui))

2
)

s
β

≤
α( s

β)2
s
β

α(s)2s L
s
β

∞
∑
i=1

α(s)(diam(Ui)
2

)
s

.

By taking the inf over the {Ui}∞i=1 we get

H
s
β
ε ( f (C)) ≤

α( s
β)2

s
β

α(s)2s L
s
βHs

δ(C).

Since ε → 0 whenever δ → 0, we just let δ → 0 and get the wanted result. ◻

13



2. Hausdorff dimension in Rn

Remark 2.2.13 If f is a Lipschitz function (β = 1) , the inequality simplifies to

Hs( f (C)) ≤ LsHs(C)

Remark 2.2.14 If f is an isometry (a function, such that ∣x − y∣ = ∣ f (x)− f (y)∣),
then both f and f −1 are Lipschitz, with both Lipschitz constants L = 1(this can be
seen just by staring at the definition of Lipschitz function).

Corollary 2.2.15 Let f be an isometry, then Hs(C) =Hs( f (C))∀C ⊂ Rn

Proof
Hs( f (C)) ≤Hs(C) =Hs( f −1( f (C))) ≤Hs( f (C))

⇒Hs(C) =Hs( f (C))
Where in the first inequality we used remark (2.2.13) on f and in the second
one we used it on f −1. ◻

Corollary 2.2.16 Hs is translation and rotation invariant, because rotations and
translations are isometries.

2.3 H
n
= L

n on Rn

The reason why we defined the Hausdorff measure using α(s) is to have this
nice result, even though we had to struggle a bit in the past section. This
equality is not trivial: Ln is defined as the Hahn-Carathéodory extension
of the volume, which was defined on n-dimensional intervals (also called
cubes), where Hn is defined on arbitrary δ-coverings. Once again, this sub-
section follows the path suggested by Evans book[9].
We start by proving a simpler statement.

Lemma 2.3.1 H1 = L1 on R

Proof Let A ⊂ R and let δ > 0.

L1(A) = inf{
∞
∑
i=1

diam(Uj)∣A ⊂
∞
⋃
i=1

Uj}

≤ inf{
∞
∑
i=1

diam(Uj)∣{Ui}∞i=1 is a δ-covering of A}

=H1
δ(A).

Now let Ij = [jδ, (j + 1)δ], k ∈ Z. We have that diam(Ui ∩ Ij) ≤ diam(Ui) ≤ δ.
Therefore {Ui ∩ Ij}i,j is a δ-covering of A. By using the fact that
diam(D ∪ E) ≥ diam(D)+ diam(E) we get

diam(Ui) = diam
⎛
⎝⋃j∈Z

(Ui ∩ Ij)
⎞
⎠
≥∑

j∈Z

diam(Ui ∩ Ij)

14



2.3. Hn = Ln on Rn

From those two facts we get:

L1(A) = inf{
∞
∑
i=1

diam(Uj)∣A ⊂
∞
⋃
i=1

Uj}

≥ inf
⎧⎪⎪⎨⎪⎪⎩

∞
∑
i=1
∑
j∈Z

diam(Ui ∩ Ij)∣A ⊂
∞
⋃
i=1

Uj

⎫⎪⎪⎬⎪⎪⎭
≥H1

δ(A)

Where the last inequality comes from the fact that {Ui ∩ Ij}i,j is a δ-covering
of A. Thus we get that H1

δ = L1 for an arbitrary δ, by letting δ → 0 we
conclude the proof. ◻

The following lemma and definition will be pivotal in proving the so called
Isodiametric inequality (Theorem (2.3.5)).

Lemma 2.3.2 Let f ∶ Rn → [0,+∞] be an Ln measurable function. Then the
”region under the graph” of f :

A = {(x, y)∣x ∈ Rn, y ∈ R, 0 ≤ y ≤ f (x)} is Ln+1measurable.

Proof Let us define the sets

B = f −1({+∞}) = {x ∈ Rn∣ f (x) = +∞}

C = f −1([0,+∞[) = {x ∈ Rn∣0 ≤ f (x) < +∞}

Cjk = f ∣−1
C ([ j

k , j+1
k [) = {x ∈ C∣ j

k ≤ f (x) < j+1
k }

From the first equality in all three of those lines we can see that the sets are
Ln measurable (since f is an Ln measurable function). Let it be noted that

C =
∞
⋃
j=0

Cjk, ∀k ∈ N. We finally set

Dk =
∞
⋃
j=0

(Cjk × [0,
j
k
])∪ (B × [0,+∞])

Ek =
∞
⋃
j=0

(Cjk × [0,
j + 1

k
])∪ (B × [0,+∞])

Both Dk and Ek are Ln+1 measurable: This comes from Fubini’s theorem,
which states that the product of an L1 and an Ln measurable sets is Ln+1

measurable. As stated previously Cjk and B are Ln measurable and intervals

are L1 measurable. Therefore a set like Cjk × [0, j
k[ is Ln+1 measurable (here

we also use Lemma(2.1.8), which states that Ln+1 = Ln ×L1). Taking then
unions leaves the sets Dk and Ek in the σ-algebra of Ln+1 measurable sets.

15



2. Hausdorff dimension in Rn

Let it be noted that Dk and Ek are approximations of the set A: Dk from
below and Ek from above.
By definition we have that Dk ⊂ A ⊂ Ek, and we also have that Dk ⊂ Dk+1

and that Ek+1 ⊂ Ek. Therefore we can set E =
∞
⋂
k=1

Ek and D =
∞
⋃
k=1

Dk. We still

have that D ⊂ A ⊂ E and both D and E are Ln+1 measurable (as union and
intersection of Ln+1 measurable sets). Now we see:

Ln+1((E −D)∩ BR(0)) ≤ Ln+1((Ek −Dk)∩ BR(0)) ≤ 1
k
Ln+1(BR(0)),∀R > 0.

The first inequality comes from the fact that E ⊂ EK and Dk ⊂ D, the second
by the definition of Ek and DK. Letting k → ∞ we have that the right hand
side goes to 0. Therefore Ln+1((E − D) ∩ BR(0)) = 0,∀R > 0 and so Ln+1(E −
D) = 0. Since A ⊂ E, it follows that Ln+1(A −D) = 0, and therefore A is Ln+1

measurable(D was Borel). ◻

We now introduce the Steiner symmetrization, takes a set Ω and a plane P
that ”cuts” Ω in two parts. We replace the ”top” part of Ω with a symmetric
copy of the ”bottom” part of Ω.

Figure 2.1: A representation of Steiner transformation of a set Ω. [10]

Definition 2.3.3 Let a, b ∈ Rn, ∣a∣ = 1. Also let A ⊂ Rn. We define

Lb
a = {b + ta∣t ∈ R}, the line thorugh b in direction a

Pa = {x ∈ Rn∣x ⋅ a = 0}, the plane thourgh the origin perpendicular to a

Sa(A) = ⋃
b∈Pa; A∩La

b≠∅
{b + ta∣; ∣t∣ ≤ 1

2
H1(A ∩ La

b)}

The set Sa(A) is called the Steiner symmetrization of A with respect to the plane
Pa.

Lemma 2.3.4 (Properties of Steiner Symmetrization)

(i) diam(Sa(A)) ≤ diam(A)

16



2.3. Hn = Ln on Rn

(ii) If A is Ln measurable, then so is Sa(A); and Ln(Sa(A)) = Ln(A)

The proof of this lemma makes use of the fact that Ln is rotation invariant,
lemma (2.3.1) [H1 = L1 on R], lemma(2.3.2), Fubini and Tonelli’s theorems.
The proof can be read on Evans’book[9].
To complete the proof of the main theorem of this section we will need the
following inequality.

Theorem 2.3.5 (Isodiametric inequality) Let A ⊂ Rn. Then

Ln(A) ≤ α(n)(diam(A)
2

)
n

Remark 2.3.6 At a first look, this inequality seems trivial, since it can look like we
can just take a ball B = B diam(A)

2
of diameter diam(A) which contains A. In that

case we would have that

Ln(A) ≤ Ln(B) = Ln (B diam(A)
2

) = α(n)(diam(A)
2

)
n

Where in the last equality we used lemma (2.1.4). The problem is that such a B
doesn’t always exist.

Figure 2.2: Equilateral Triangle and its covering.

Take for example the equilateral triangle of size 1 in R2. The diameter of the triangle
is 1 (length of a side). If we would have to find a circle (blue circle in the image) that
covers the triangle, we would centre it in the centroid of the triangle (for symmetry
reasons). But the distance between the centroid of the triangle and one of the vertices
is
√

3
3 ≈ 0.577 > 1

2 .(yellow line in the image).
From this example we can conclude that we cannot find a circle of diameter diam(A)
which covers A in every case. What we can always do is find a circle of radius
diam(A), but in that case the inequality becomes much worse.
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2. Hausdorff dimension in Rn

Remark 2.3.7 The proof of this inequality uses property (ii) from the lemma above,
but we decided to omit it in order to focus on the proof of the main theorem of this
section.

Theorem 2.3.8

Hn = Ln on Rn

Proof Claim 1 Ln(A) ≤Hn(A), ∀A ⊂ Rn

Proof of Claim 1 Let δ > 0 arbitrary. Let {Ui}∞i=1 be a δ-covering of A. Then we
have

Ln(A) ≤ Ln (
∞
⋃
i=1

Ui) ≤
∞
∑
i=1
Ln(Ui) ≤

∞
∑
i=1

α(n)(diam(Ui)
2

)
n

Where in the last inequality we used the Isodiametric inequality. Taking the
inf over {Ui}∞i=1 coverings we get Ln(A) ≤ Hn

δ (A). Since δ was arbitrary, we
can let δ → 0 and conclude the proof of claim1.
Claim 2

Ln(A) = inf{
∞
∑
i=1
Ln(Qi)∣Qicube and {Qi}∞i=1 is a δ-covering of A}

Proof of Claim 2”≤” Since our definition of Lebesgue measure is the Hahn-
Carathéodory extension of the volume in Rn, we have that

Ln(A) = inf{
∞
∑
i=1
Ln(Qi)∣Qi cube and {Qi}∞i=1 is a covering of A}

Therefore the inequality holds, since on the right and side we take the infi-
mum on a smaller set. ” ≥ ” If we have {Qi}∞i=1 a covering of A in cubes, we
just divide this cubes in smaller ones of diameter ≤ δ.

Claim 3 Hn(A) ≤ CnLn(A), where Cn = α(n) (
√

n
2 )

n
.

Proof of Claim 3 Let Q be a cube of side length d = diam(Q)√
n . Then we have

Ln(Q) = dn = (diam(Q)√
n

)
n

.

rearranging those term and inserting the definition of Cn we find:

α(n)(diam(Q)
2

)
n

= CnLn(Q) (1)

18



2.3. Hn = Ln on Rn

Therefore we have

Hn
δ (A) ≤ inf{

∞
∑
i=1

α(n)(diam(Qi)
2

)
n

∣Qicube and {Qi}∞i=1δ-covering of A}

(1)= inf{
∞
∑
i=1

CnLn(Qi)∣Qicube and {Qi}∞i=1 is a δ-covering of A}

= Cn inf{
∞
∑
i=1
Ln(Qi)∣Qicube and {Qi}∞i=1 is a δ-covering of A}

= CnLn(A)
Where in the last equality we used Claim 2. Since δ was arbitrary, let it tend
to 0 and we have Hn(A) ≤ CnLn(A). This implies that Hn is absolutely con-
tinuous with respect to Ln ∶ take A with Ln(A) = 0⇒

Hn(A) ≤ CnLn(A) = 0⇒Hn(A) = 0.

Claim 4 Hn(A) ≤ Ln(A), ∀A ⊂ Rn

Proof of Claim 4 Let δ, ε > 0 and let Qi cubes such that {Qi}∞i=1 is a δ-covering of A
and

∞
∑
i=1
Ln(Qi) ≤ Ln + ε

Those cubes can be found because of claim 2 and the definition of infimum.
By a corollary of Vitali’s covering theorem (See Evans [9],Ch 1.5, Corollary
2),∀ i ∃{Bi

j}∞j=1 collection of disjoint closed balls contained in Q̊i such that
diam(Bi

j) ≤ δ and

Ln ⎛
⎝

Qi −
∞
⊍
j=1

Bi
j
⎞
⎠
= Ln ⎛

⎝
Q̊i −

∞
⊍
j=1

Bi
j
⎞
⎠
= 0.

Where F̊ denotes the interior of the set F and F − G = {x ∈ F∣ x /∈ G}. From

absolute continuity we get that Hn ⎛
⎝

Qi −
∞
⊍
j=1

Bi
j
⎞
⎠
= 0. We can now conclude:

Hn
δ (A) ≤Hn

δ (
∞
⋃
i=1

Qi) ≤
∞
∑
i=1
Hn

δ (Qi)
(2)=

∞
∑
i=1
Hn

δ

⎛
⎝
∞
⊍
j=1

Bi
j
⎞
⎠
≤

∞
∑
i=1

∞
∑
j=1
Hn

δ (Bi
j)

≤
∞
∑
i=1

∞
∑
j=1

α(n)
⎛
⎝

diam(Bi
j)

2
⎞
⎠

n

=
∞
∑
i=1

∞
∑
j=1
Ln(Bi

j) =
∞
∑
i=1
Ln ⎛

⎝
∞
⊍
j=1

Bi
j
⎞
⎠

=
∞
∑
i=1
Ln(Qi) ≤ Ln(A)+ ε.

Where in (2) we use the statement proven above. By letting δ → 0 we get
Hn(A) ≤ Ln(A) + ε and by letting the arbitrary ε go to 0 we get the wanted
inequality. By putting Claim 1 and Claim 4 together we can conclude the
proof. ◻
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2. Hausdorff dimension in Rn

2.4 Hausdorff dimension

In this section we will finally define the Hausdorff dimension of a set and
prove that it is invariant under bi-Lipschitz transformations.

Lemma 2.4.1 Let A ⊂ Rn, such that Hs
δ(A) = 0 for some δ > 0. Then Hs(A) = 0.

Proof If s = 0 we have thatH0
δ =H0∀δ > 0. The claim is then trivial.

Therefore we can assume that s > 0. Let ε > 0. We can find {Ui}∞i=1, a δ-
covering of A such that

∞
∑
i=1

α(s)(diam(Ui)
2

)
s

≤Hs
δ(A)+ ε = 0+ ε = ε.

Now let δ(ε) = 2 ( ε
α(s))

1
s . Remark that δ(ε)→ 0, whenever ε → 0.

It is also true that ∀ i ∶ diam(Ui) < δ(ε), just by reversing the equation above.
From that je have that Hδ(ε)(A) ≤ ε. We can now conclude:

Hs(A) = lim
δ→0
Hs

δ(A) = lim
ε→0
Hs

δ(ε)(A) ≤ lim
ε→0

ε = 0.

◻

Lemma 2.4.2 Let A ⊂ Rn and 0 ≤ s < t < +∞
(i) If Hs(A) < +∞, then Ht(A) = 0.

(ii) If Ht(A) > 0, then Hs(A) = +∞.

Proof (i) Let Hs(A) < +∞. Let {Ui}∞i=1 be a δ-covering of A such that

∞
∑
i=1

(diam(Ui)
2

)
s

≤Hs
δ(A)+ 3.

This is possible because of the definition of Hs
δ(A) and by taking ε = 3.

Ht
δ(A) ≤

∞
∑
i=1

α(t)(diam(Ui)
2

)
t

=

= α(t)
α(s)2s−t

∞
∑
i=1

α(s)(diam(Ui)
2

)
s

(diam(Ui))t−s

≤ α(t)
α(s)2s−t

∞
∑
i=1

α(s)(diam(Ui)
2

)
s

δt−s

= α(t)
α(s)2s−t δt−s

∞
∑
i=1

α(s)(diam(Ui)
2

)
s

≤ α(t)
α(s)2s−t δt−s(Hs

δ(A)+ 3)
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2.4. Hausdorff dimension

Since Hδ(A) < +∞, we have that the right hand side tends to 0, whenever
δ → 0. This concludes the proof of (i). (ii) Is the exact logical inversion of (i),
therefore it is also proved. ◻

Remark 2.4.3 We can now easily prove remark (2.2.7), which stated that Hs is not
a radon measure for s < n.

Proof let n ≥ 1 (otherwise there would not be an s < n and the proposition
would not make sense). Let B be the closed unit ball on Rn. Then Hn(B) =
Ln(B) = α(n). since 0 < α(n) < +∞∀n > 0, we have that 0 <Hn(B) < +∞. Now
we apply Lemma (2.4.2)(ii) and get that Hs(B) = +∞. This implies that Hs is
not Radon, since B was closed and bounded, therefore compact. ◻

Remark 2.4.4 Thanks to this last lemma we can finally define the Hausdorff dimen-
sion of a set: it s in fact notable that there is a one and only value in which Hs(F)
could be different than 0 or +∞.

Figure 2.3: Graph of Hs
(F) with respect to s .Note the ”jump” in Hausdorff measure by

s = dimH (F). (From Falconer [3], page 28, figure 2.3)

Definition 2.4.5 (Hausdorff dimension) The Hausdorff dimension of a set A ⊂
Rn is

dimH (A) = inf{0 ≤ s < +∞∣Hs(A) = 0} = sup{0 ≤ s < +∞∣Hs(A) = +∞}.

Remark 2.4.6 The Hausdorff dimension of a set does not have to be an integer
number, we will see examples of such sets in Chapter 3

Remark 2.4.7 From the previous lemma, dimH (A) is well defined. We also get for
free the first condition, which helps us calculate the Hausdorff dimension of a set:

0 <Hs(A) < +∞⇒ dimH (A) = s.

The other implication doesn’t always hold: we have that dimH (Rn) = n butHn(Rn) =
Ln(Rn) = +∞. Other counterexamples can be found also for compact sets. Rewrit-
ing the above statement in a more mathematical way, we can say that

dimH (A) = s⇒Hs(A) ∈ [0,+∞]
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2. Hausdorff dimension in Rn

Example 2.4.8 For a simple example let us consider a flat unit disc in R3 as in the
preface of section (2.2)

C = {(x, y, z) ∈ R3∣x2 + y2 = 1 and z = 0}.

We have thatH1(C) = +∞, H2(C) = π,H3(C) = 0. Therefore the disc C must have
Hausdorff dimension dimH (C) = 2.

Remark 2.4.9 For a set A in Rn we have dimH (A) ≤ n.

Proof We will prove thatHn+t(A) = 0∀t > 0. this claim is sufficient because
of the explanations given above.

Hn+t(A) =Hn+t (
∞
⋃
k=1

A ∩ Bk(0)) ≤
∞
∑
k=1
Hn+t(A ∩ Bk(0))

We also have that

Hn(A ∩ Bk(0)) ≤Hn(Bk(0)) = Ln(Bk(0)) = α(n)kn < +∞

By applying lemma (2.4.2)(i) we have that Hn+t(A ∩ Bk(0)) = 0∀k.
By inserting this fact into the first equation of this proof we get

Hn+t(A) ≤
∞
∑
k=1
Hn+t(A ∩ Bk(0)) =

∞
∑
k=1

0 = 0.

◻

Remark 2.4.10 Any open set A ⊂ Rn has dimH (A) = n.

Proof If A is open, we can always find a ball B ⊂ A. We now have:

Hn(A) ≥Hn(B) = Ln(B) > 0

Therefore dimH (A) ≥ n and by applying the previous remark we get equal-
ity. ◻

Remark 2.4.11 Any countable set A ⊂ Rn has dimH (A) = 0.

Proof Let A = {xn, n ∈ N}. We will show that Hs(A) = 0∀s > 0 this is
enough because of the definition of Hausdorff dimension.

Let δ > 0. Choose {B δ

2
n
s

(xn)}
∞

n=1
be a δ-covering of A. It follows that

Hs
δ(A) ≤

∞
∑
n=1

( δ

2
n
s
)

s
=

∞
∑
n=1

δs ⋅ 2−n = δs

Since s > 0, the right hand side tends to 0 whenever δ → 0. This concludes
the proof. ◻

22
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Remark 2.4.12 If A is a smooth m-dimensional sub-manifold of Rn, then we have
dimH (A) = m, as expected. This can be deduced from the relationship between
Hausdorff and Lebesgue measures, but the calculation is overly complicated for this
thesis.

Remark 2.4.13 A ⊂ B ⇒ dimH (A) ≤ dimH (B) . This comes form the monotonic-
ity of the Hausdorff measure.

We will now prove a couple of properties, that will be useful in calculating
the Hausdorff dimension of auto-similar sets.

Lemma 2.4.14 Let A ⊂ Rn and let f ∶ A → Rm satisfy the Hölder condition of
exponent β. Then

dimH ( f (A)) ≤ 1
β

dimH (A) .

Proof If s > dimH (A) we have that Hs(A) = 0. By theorem (2.2.12) we can
see

H
s
β ( f (A)) ≤

α( s
β)2

s
β

α(s)2s L
s
βHs(A) = 0 ≤H

s
β ( f (A))

This proves equality overall and (by the remarks above) implies that dimH ( f (A)) ≤
s
β ∀s > dimH (A). Letting s → dimH (A) we get the wanted inequality. ◻

Definition 2.4.15 Let A ⊂ Rn.A function f ∶ A → Rm is said to be bi-Lipschitz
if ∃L1, L2 ∈ R such that

L1∣x − y∣ ≤ ∣ f (x)− f (y)∣ ≤ L2∣x − y∣

Remark 2.4.16 f bi-Lipschitz ⇒ f injective.

Proof Assume that f (x) = f (y). Hence

∣x − y∣ ≤ 1
L1

∣ f (x)− f (y)∣ = 0⇒ ∣x − y∣ = 0⇒ x = y.

◻

Remark 2.4.17 f bi-Lipschitz ⇒ f −1 ∶ f (A)→ A is Lipschitz

Proof Note that the function f −1 is well defined because of the previous
remark. Now let a = f (x) and b = f (y) ∈ f (A). We have

∣ f −1(a)− f −1(b)∣ = ∣ f −1( f (x))− f −1( f (x))∣ = ∣x−y∣ ≤ 1
L1

∣ f (x)− f (y)∣ = 1
L1

∣a−b∣.

◻

Thanks to these small remarks, we can prove a not so trivial result.
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2. Hausdorff dimension in Rn

Theorem 2.4.18 Let A ⊂ Rn.

(i) If f ∶ A → Rm is Lipschitz, then dimH ( f (A)) ≤ dimH (A)

(ii) If f ∶ A → Rm is bi-Lipschitz, then dimH ( f (A)) = dimH (A)

Proof (i) f Lipschitz ⇒ f satifies the Holder condition with β = 1. The
claim follows form the application of lemma (2.4.13).
(ii) from (i), we have that dimH ( f (A)) ≤ dimH (A). Using remark (2.4.17),
we know that f −1 is Lipschitz. Therefore we can apply point (i) also on f −1

and get
dimH (A) = dimH ( f −1( f (A))) ≤ dimH ( f (A)) .

We have therefore proved both inequality and by putting them together we
get (ii). ◻

Remark 2.4.19 The previous theorem shows that the Hausdorff dimension of a set
is invariant under bi-Lipschitz transformation. This means that there cannot be a
bi-Lipschitz transformation between two sets of different Hausdorff dimension. This
fact can be helpful in proving that a set does not have a certain Hausdorff dimension
(by finding another set with that dimension and constructing a bi-Lipschitz function
between the two sets).

This condition resembles the topological notion of invariant under contin-
uous mapping, with bi-Lipschitz functions in place of homeomorphisms.
Let it be noted that every bi-Lipschitz function is also continuous, therefore
Hausdorff dimension does not usually provide us with hints on the topo-
logical structure of the set. An exception to this statement is the following
lemma.

Lemma 2.4.20 Let A ⊂ Rn with dimH (A) < 1. Then A is totally disconnected.

Proof Let x, y ∈ A be different. Define the mapping

f ∶ Rn → [0,+∞[
z ↦ f (z) = ∣z − x∣

By the triangular inequality we get that ∣ f (z)− f (w)∣ ≤ ∣z −w∣. Therefore f is
Lipschitz with Lipschitz constant 1. By applying theorem (2.4.18)(i) we get
that dimH ( f (A)) ≤ dimH (A) < 1. This implies that f (A) ⊂ R with
0 =H1( f (A)) = L1( f (A)). Thanks to lemma (2.1.10) we know that f (A) has
a dense complement in [0, 1].
Now let r /∈ f (A) and 0 < r < f (y) (this r exists because x and y are distinct).
We now have

A = {z ∈ A ∶ ∣z − x∣ < r}⊍ {z ∈ A ∶ ∣z − x∣ > r}.
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2.4. Hausdorff dimension

Therefore A is contained in two disjoint open sets, with x belonging to one
and y belonging to the other. This implies that x and y lie in different
connected components of A. This concludes the proof. ◻

Example 2.4.21 We will see that the Cantor triadic set has Hausdorff dimension
ln(2)
ln(3) < 1. This can be a proof that the Cantor triadic set is totally disconnected.
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Chapter 3

Calculating Hausdorff dimension

In this chapter we will focus on some methods for calculating the Hausdorff
dimension of some compact sets. This will bring us to the definition of
box-counting dimension and the concept of Iterated function system (IFS).

3.1 Direct Method

As we have seen in the previous chapter, we have the following implication:

0 <Hs(A) < +∞⇒ dimH (A) = s.

The idea is now to find an upper and a lower bound for Hs(A) for a given
s and to use the proposition above to conclude that dimH (A) = s. Let it be
noted that this method is not particularly effecting, since finding the lower
bound usually requires some effort. Nevertheless it will help us calculate the
Hausdorff dimension of two sets: the Cantor dust and the Cantor triadic set.

3.1.1 Cantor dust

Figure 3.1: Cantor Dust. [11]

Let A0 = [0, 1]2 ⊂ R2. Next divide A0 into 16 equal squares and delete 12
of them as according to the picture. Repeat this step on the remaining 4
squares. We have that
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3. Calculating Hausdorff dimension

A0 is the union of 1 square of side length 1.

A1 is the union of 4 square of side length 1
4 .

A2 is the union of 16 square of side length 1
16 .

⋮
Ak is the union of 4k square of side length 4−k.

By construction we also have that Ak+1 ⊂ Ak. Finally we set A =
∞
⋂
k=0

Ak.

The set A is called Cantor dust.

Theorem 3.1.1 dimH (A) = 1

Proof We will show 1 ≤H1(A) ≤
√

2
”H1(A) ≤

√
2” Since Ak is the union of 4k square of side length 4−k., we can

cover each one of those squares with a ball of diameter diam(Bi) =
√

2 ⋅ 4−k.
Since A ⊂ Ak and α(1) = 2 we can conclude:

H1
δ(A) ≤H1

δ(Ak) = inf{
∞
∑
i=1

α(1)(diam(Ui)
2

) ;{Ui}i∈I is a δ-covering of C}

≤
4k

∑
i=1

2(diam(Bi)
2

) =
4k

∑
i=1

2(
√

2 ⋅ 4−k

2
) = 4k ⋅ 2(

√
2 ⋅ 4−k

2
) =

√
2.

This was done assuming that δ > diam(Bi). Since the right hand side is inde-
pendent of δ, we can let δ → 0 and conclude the claim.

”1 ≤H1(A)” Let π ∶
⎧⎪⎪⎨⎪⎪⎩

R2 → R

(x, y) ↦ x
be the projection into the x-axis. By con-

struction we have that π(A) = [0, 1] (it is enough to look at the picture).
Now let {Ui}∞i=1 be a δ-covering of A. Without loss of generality, we can
assume that Ui = Bri(zi), for some zi = (xi, yi)) (This can be done thanks to a
reasoning similar to the one explained in the proof of theorem (2.3.8) claim
2). Then we have

[0, 1] = π(A) ≤ π (
∞
⋃
i=1

Bri(zi)) ≤
∞
⋃
i=1

π(Bri(zi)) =
∞
⋃
i=1

]xi − ri, xi + ri[

and hence

1 = L1([0, 1]) ≤
∞
∑
i=1
L1(]xi − ri, xi + ri[) = 2

∞
∑
i=1

ri

It follows that
∞
∑
i=1

α(1)(diam(Ui)
2

) =
∞
∑
i=1

2 ⋅ ri = 2
∞
∑
i=1

ri ≥ 1

Taking the inf over the δ-coverings of A yields us the wanted result. ◻
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3.1. Direct Method

3.1.2 Cantor triadic set

Figure 3.2: Cantor Triadic Set. [12]

The Cantor triadic set is defined in a similar way as the cantor dust. We
start with S0 = [0, 1] and we remove the middle third of the set, this way
S1 = [0, 1

3]∪ [ 2
3 , 1]. Repeating this process on the two remaining intervals we

get S2 and so on. We have that Sk is a union of 2k intervals of length 3−k and
let us denote {Ij}2k

j=1 those intervals. The definition of the cantor triadic set
is therefore

S =
∞
⋂
k=0

Sk.

It can be proven that S is an example of uncountable set with Lebesgue
measure 0. This implies(since H1 = L1 on [0, 1]) that H1(S) = 0 and, as
a consequence, that dimH (S) ≤ 1. The proof of the following theorem is
inspired by the proof given by Jay Shah[19].

Theorem 3.1.2
dimH (S) = ln(2)

ln(3) ∶= s.

Proof Claim 1 Ht(S) = 0∀t > s.
Proof of Claim 1 Let k > 0 and let {Ij}2k

j=1 be the intervals of length 3−k compos-

ing Sk. Since S ⊂ Sk, we have that {Ij}2k

j=1 is also a covering of S and

2k

∑
j=1

diam(Ij)t =
2k

∑
j=1

(3−k)t = 2k ⋅ 3−kt = ek(ln(2)−t ln(3))

Since (ln(2) − t ln(3)) < 0 by the choice of t, it follows that the right hand
side goes to 0, whenever k →∞. By this fact we can conclude claim 1.
Claim 1 ⇒ dimH (S) ≤ s by the definition of Hausdorff dimension.
The next claim will be used for proving Claim 3.
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3. Calculating Hausdorff dimension

Claim 2 ∀ε > 0∀α ∈]0, 1[∀{Cn}∞n=1 ⊂ [0, 1]∃ finitely many D1, . . . , Dm such
that

∞
⋃
n=1

Cn ⊂
m
⋃
j=1

Dj and
m
∑
j=1

diam(Dj)α ≤
∞
∑
n=1

diam(Cn)α + ε.

Proof of Claim 2 Let Cn be any subset of [0, 1]. Since [0, 1] is bounded, we
have that an = inf Cn and bn = sup Cn exist and are finite. Let In = [an, bn].
We have that diam(Cn) = diam(In) and Cn ⊂ In. Therefore we can assume
without loss of generality that Cn are all closed intervals.
Now for every Cn we can take an open interval Un with Cn ⊂ Un and

diam(Un) = diam(Cn)+ ( ε
2n )

1
α . We now have that

diam(Un)α ≤ diam(Cn)α + ε

2n .

Since [0, 1] is compact and the Un are open, we can find a finite sub cover

D1, . . . , Dm with Di = Un for some n and
∞
⋃
n=1

Cn ⊂
∞
⋃
n=1

Un =
m
⋃
j=1

Dj. Taking the

sum of the diameters concludes the proof.
Claim 3 Hs(S) > 0
Proof of Claim 3 Let {Cn}∞n=1 be a covering of S. We can find countable D1, . . . , Dm
as in Claim 2. Now choose k such that

(1
3
)

k
≤

m
min

j=1
{diam(Dj)}

Define Nl as the number of sets Dj such that 3−l ≤ diam(Dj) < 3−l+1, for every
l = 1, . . . , k. By using this definition we have

m
∑
j=1

diam(Dj)s ≥
k
∑
l=1

Nl3
−ls =

k
∑
l=1

Nl2
−l (3.1)

Where in the last equality we used the definition of s. Now if we find a lower
bound for the right hand side, we can conclude.
Suppose that Dj satisfies 3−l ≤ diam(Dj) < 3−l+1. Then Dj can intersect at most
2 of the intervals composing Sl (because the space between the intervals com-
posing Sl is 3−l). Each one of those intervals produces 2k−l intervals when
going from Sl to Sk. This implies that Dj contains at most 2 ⋅ 2k−l = 2k−l+1

intervals in Sk. Since Sk is composed by 2k intervals, we get the inequality:

2k ≤
k
∑
l=1

Nl2
k−l+1 ⇒ 1

2
≤

k
∑
l=1

Nl2
−l .

We have therefore found a lower bound for∑k
l=1 Nl2−l and (by using equation

(3.1)) also a lower bound for ∑m
j=1 diam(Dj)s. Since the covering was arbitrary,

we have that the lower bound holds also for Hs(S) and we can therefore
conclude the proof. ◻
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3.2. An upper bound for the Hausdorff dimension

3.2 An upper bound for the Hausdorff dimension

Throughout the years, there have been many definitions of dimension, as
we have briefly stated in the introduction. One of these definitions will
help us in finding an upper bound for the Hausdorff dimension of a set
and it is called the Box-counting dimension. The advantage of working
with this dimension is that it is much easier to calculate then the Hausdorff
dimension.
The idea behind this dimension is the following: imagine we have a set A
and we want to cover A in cubes of length 1

n . How many cubes would be
need? We will see that this is independent of the frame of reference Rn. Let
us start with a definition:

Definition 3.2.1 Let A ⊂ Rn bounded and let δ > 0. We define

N (A, δ) = min{n ∈ N∣A can be covered by n cubes of side length δ}.

Remark 3.2.2 This is well defined since A is bounded, therefore it can be contained
in a big cube, which can be divided into a finite number of smaller cubes of side
length δ.

Example 3.2.3 Usually it is easier to set δ = 1
n .

If we take A = [0, 1] ⊂ R, it can be seen that the best way of dividing it is to write

[0, 1] =
n
⋃
i=1

[ i − 1
n

,
i
n
] , therefore we have that N (A, 1

n) = n.

In the same way, if we would have A = [0, 1] × {0} ⊂ R2 we can write A ⊂
n
⋃
i=1

[ i − 1
n

,
i
n
] × [− 1

2n
,

1
2n

] is an efficient way of covering A, hence N (A, 1
n) = n

still.
This invariance is what will help us defining the box-counting dimension.

Definition 3.2.4 Let A ⊂ Rn be bounded,

(lower box-counting dimension) dimB(A) = lim inf
δ→0

ln(Nδ(A))
− ln(δ)

(upper box-counting dimension) dimB(A) = lim sup
δ→0

ln(Nδ(A))
− ln(δ)

(box-counting dimension) dimB(A) = lim
δ→0

ln(Nδ(A))
− ln(δ)

The last definition only makes sense when dimB(A) = dimB(A).

Remark 3.2.5 It can be shown that dimB(A) does not change if we take arbitrary
sets of diameter less than δ instead of cubes when calculating the minimum in
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3. Calculating Hausdorff dimension

N (A, δ). The same thing can be said if we take the collection of cubes in the δ-
coordinate mesh of Rn; i.e. cubes of the form:

Q = [m1δ, (m1 + 1)δ]× [m2δ, (m2 + 1)δ]× . . . [mnδ, (mn + 1)δ], mi ∈ Z∀i.

This list can be extended further, but in praxis we take the most convenient defini-
tion, and it is usually the last one.

Example 3.2.6 Let us once again consider the Cantor triadic set S. We will prove
that

dimB(S) = dimB(S) = ln(2)
ln(3) = dimH (S)

By the usual covering of the intervals {Ij}2k

j=1 of Sk, we have that Nδ(S) ≤ 2k for
δ ∈]3−k, 3−k+1]. Therefore it follows :

dimB(S) = lim sup
δ→0

ln(Nδ(S))
− ln(δ) ≤ lim sup

k→+∞

ln(2k)
− ln(3−k+1) = lim sup

k→+∞

ln(2k)
ln(3k−1) =

= lim sup
k→+∞

k ln(2)
(k − 1)) ln(3) = ln(2)

ln(3)
By a similar argument as in the proof of the Hausdorff dimension of the triadic set,
we can say that any interval of length δ, with δ ∈ [3−k−1, 3−k[, intersects at most one
of the intervals of length 3−k constructing Sk. Since there are 2k intervals composing
Sk, we require at least 2k intervals of length δ to cover S. This yields us to the bound
Nδ(S) ≥ 2k and by a calculation similar to the one above we get dimB(S) ≥ ln(2)

ln(3) .
This concludes the proof:

ln(2)
ln(3) ≤ dimB(S) ≤ dimB(S) ≤ dimB(S) ≤ ln(2)

ln(3) .

Remark 3.2.7 It is not always the case that dimH = dimB, the next example will
be a proof of this statement.

Example 3.2.8 Let A = {0, 1, 1
2 , 1

3 , 1
4 , . . . } . We have that dimH (A) = 0, since A

is a countable set. We claim that dimB(A) = 1
2 .

Let us consider a set U with diam(U) = δ < 1
2 and lets define the set

Ak = {1, 1
2 , 1

3 , 1
4 , . . . , 1

k−1 , 1
k} ⊂ A. Now let k such that

1
k − 1

− 1
k
= 1

k(k − 1) > δ ≥ 1
k(k + 1) = 1

k
− 1

k + 1
.

Thanks to the first inequality, we discover that U contains at most one point of Ak
and therefore we need at least k sets of diameter δ to cover A. This yields (by using
the second part of the inequality)

ln(Nδ(A))
− ln(δ) ≥ ln(k)

ln(k(k + 1))
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3.2. An upper bound for the Hausdorff dimension

By using the theorem of Bernoulli de l’Hôpital, we can conclude that

dimB(A) = lim inf
δ→0

ln(Nδ(A))
− ln(δ) ≥ lim inf

k→∞

ln(k)
ln(k(k + 1)) = lim inf

k→∞

k(k + 1)
2 ⋅ k(k + 1) = 1

2

For the other inequality, take again k such that 1
k−1 −

1
k = 1

k(k−1) > δ ≥ 1
k(k+1) =

1
k −

1
k+1 . Then you only need (k+ 1) intervals of length δ to cover the interval [0, 1

k ],
which contains all but (k−1) points of A. For said remaining (k−1) points just take
any (n − 1) intervals of length δ which contain them. Thanks to this construction,
we can assert that

ln(Nδ(A))
− ln(δ) ≤ ln((k + 1)+ (k − 1))

ln(k(k − 1)) = ln(2k)
ln(k(k − 1))

a calculation similar to the previous one shows

dimB(A) = lim sup
δ→0

ln(Nδ(A))
− ln(δ) ≤ lim sup

k→∞

ln(2k)
ln(k(k − 1)) = lim sup

k→∞

k(k − 1)
2 ⋅ k(k − 1) = 1

2

We can therefore conclude

1
2
≤ dimB(S) ≤ dimB(S) ≤ dimB(S) ≤ 1

2
.

Remark 3.2.9 From this examples, it follows that dimB (
∞
⋃
i=1

Ai) /= ∞
sup
i=1

dimB(Ai),

which is a property that we would like to have in a ”dimension”.
The Box-counting dimension also has the problem that it is not always defined,
specifically when dimB /= dimB and for unbounded sets.

Nevertheless, the Box-counting dimension gives us a useful boundary for
the Hausdorff dimension:

Theorem 3.2.10 Let A ⊂ Rn. We have that dimH (A) ≤ dimB(A).

Proof This proof follows closely the path laid in the lecture notes from
Prof. Orsina.[13]
Let s̃ = dimB(A). Let ε > 0 and δ(ε) such that

s̃ − ε ≤ ln(Nδ(A))
− ln(δ) ≤ s̃ + ε, ∀δ < δ(ε)

Remark that such a δ(ε) exists because of the lim in the definition of dimB(A).
By multiplying by − ln(δ)(which is positive for δ < 1) and taking the expo-
nential, we get

1
δs̃−ε

≤ N (A, δ) ≤ 1
δs̃+ε

, ∀δ < δ(ε) (3.2)
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3. Calculating Hausdorff dimension

Now we fix δ < δ(ε) and we define Mδ = N (A, δ).
By the definition of N (A, δ), there is a finite amount of cubes {Qi}Mδ

i=1 of side

length δ with A ⊂
Mδ

⋃
i=1

Qi. Since diam(Qi) =
√

nδ, we know that {Qi}Mδ

i=1 is a
√

nδ-covering of A.
Now ∀s > s̃ choose ε such that s̃ + ε < s. For those values we can now write:

Hs√
nδ
(A) ≤

Mδ

∑
i=1

α(s)(diam(Qi)
2

)
s

=
Mδ

∑
i=1

α(s)(
√

nδ

2
)

s

= Mδα(s)δs (
√

n
2

)
s

≤ α(s)(
√

n
2

)
s

δs−(s̃+ε)

Where the last inequality comes from equation (3.2). Since both
√

nδ and
δs−(s̃+ε) tend to 0 ad δ → 0, we get that

Hs(A) = 0, ∀s > s̃ = dimB(A).

We can therefore conclude that dimH (A) ≤ dimB(A). ◻

We will use this inequality in the next chapter to show that
dimH (A) = dimB(A) for A fix point of an Iterated Functions System.

3.3 Self-similarity and Iterated Function Systems

In this last section of the thesis we will follow the construction given in the
course by Prof.Orsina [13] in order to describe self-similar compact subsets
of Rn as attractors of Iterated Function Systems (from now on IFS).

3.3.1 Banach Fixed Point Theorem

Definition 3.3.1 A metric space (M, d) is said to be complete, if every Cauchy
sequence in M converges in M.

Definition 3.3.2 Given a metric space (M, d), a function f ∶ M → M is a con-
traction if ∃0 < C < 1 such that

d( f (x), f (y)) ≤ Cd(x, y).

Definition 3.3.3 Let f ∶ M → M. x̃ is a fixed point of f if f (x̃) = x̃.

Remark 3.3.4 Fixed Points are defined not only for contractions. For example a
rotation around the origin in Rn has the origin itself as a unique fixed point but is
not a contraction.
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Remark 3.3.5 In the case that f is not a contraction the number of fixed points of
f can vary from 0 to uncountably infinite. Take for example f = idRn . Even though
f is almost a contraction (C = 1) it has all of Rn as a set of fixed points. On the
other hand, if we take f as a translation, we have that f does not have any fixed
points.

Theorem 3.3.6 (Banach Fixed Point Theorem) let f be a contraction on (M, d)
complete metric space. The f has a unique fixed point x̃ ∈ M

Remark 3.3.7 The idea behind the proof is to take any initial value x0 and define
the sequence xn = f (xn−1) inductively. Still by induction and by making use the
fact that f is a contraction, it can be proved that d(xn, xn−1) ≤ Cn−1d(x1, x0), where
C is the constant of the contraction f . Now by using the triangular inequality, it
can be shown that d(xn, xm) ≤ Cm

1−C d(x0, x1), which tends to 0 as m → ∞. This
proves that (xn)∞n=0 is a Cauchy sequence and, by completeness of M, that it has a
limit x̃. Uniqueness is proved in the usual way.

Remark 3.3.8 The fact that in the proof we can take any initial point x0 is truly
remarkable and will be an important characteristic of self-similar set.

3.3.2 Hausdorff distance

The purpose of this subsection is to show that the set of compact subsets of
Rn can be seen as a complete metric space by choosing the right distance,
the Hausdorff distance. This fact will allow us to apply Banach Fixed point
theorem on some specific functions and describe some self similar sets as
the unique fixed point of such functions.
We will take for granted some basic properties of compact sets, which can
be found in the script of Topology by Prof. W.Werner[14].

Definition 3.3.9 Let (M, d) be a metric space. Then set

K(M) = {K ⊂ M∣K /= ∅ and K compact}.

Notation if there is no ambiguity, we just write K instead of K(M).

We will now build up the definition of Hausdorff distance on K.

Definition 3.3.10 Let x ∈ M and K ∈ K(M). define

d̃(x, K) = min{d(x, y)∣y ∈ K}.

This is well defined, since d(x, .) is continuous and K is compact.

Remark 3.3.11 Let K ∈ K fix. Then the function d̃(., K) ∶ M → [0,+∞[ is also
continuous. This can be seen by taking a sequence (xn)∞n=1 which converges to a fix
x0 and showing that d̃(x0, K) = lim

n→∞
d̃(xn, K)

35



3. Calculating Hausdorff dimension

Definition 3.3.12 Let (M, d) be metric and let K, H ∈ K. The oriented distance
(or signed distance) between K and H is

dor(K, H) = max{d̃(x, H)∣x ∈ K}.

The maximum is obtained thanks to the compactness of K and the previous remark.

Remark 3.3.13 The importance of min and max instead of inf and sup in the
previous two definitions is the fact that we can now find x and y in K and H
respectively, such that dor(K, H) = d(x, y).

Lemma 3.3.14 dor(K, H) = 0⇒ K ⊂ H.

Proof By the definition of dor, we have that d̃(x, H) = 0∀x ∈ K. Now by the
definition of d̃, we know that there is a y ∈ H such that d(x, y) = d̃(x, H) = 0.
Since d is a metric, this implies that x = y. Therefore, for every x ∈ K we have
found an y ∈ H such that x = y. This concludes the proof. ◻

Remark 3.3.15 Even though dor is called a ”distance”, it is not one. The problem
is that dor is not symmetric. The definition of Hausdorff distance yields a solution
to this problem.

Definition 3.3.16 Let (M, d) be metric and let K, H ∈ K. The the Hausdorff dis-
tance between K and H is

dh(K, H) = max{dor(K, H), dor(H, K)}.

Theorem 3.3.17 (K, dh) is a metric space.

Proof The well definedness of dh was discussed above. It remains to be
proved that dh is a metric. Non negativity comes from the fact that d is a
metric on M and symmetry comes straight from the definition of dh.
It remains to be proved that dh(H, K) = 0 ⇒ H = K and that the triangular
inequality is satisfied. The triangular inequality will not be covered by this
thesis but we refer to the lecture notes of Prof.Orsina ([13], p.24). We will
prove the first statement.
Let H, K ∈ K such that dh(H, K) = 0. By the definition of dh we have that both
dor(H, K) = 0 and dor(K, H) = 0. Applying twice lemma (3.3.14), we have that
H ⊂ K and K ⊂ H. ◻
We will now work our way up to an equivalent definition of the Hausdorff
distance on M = Rn with d as the usual euclidean distance.

Definition 3.3.18 Let K ∈ K.The ε-dilation of K is given by

K + ε = {x ∈ Rn∣d̃(x, K) ≤ ε}

Lemma 3.3.19 Let H, K ∈ K, ε > 0. Then

(K + ε)∪ (H + ε) ⊂ (K ∪ H)+ ε
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Proof Let x ∈ K + ε. Then by definition of K + ε we have that d̃(x, K) ≤ ε. By
plugging in the definition of d̃, we arrive to min{d(x, y)∣y ∈ K} ≤ ε. Hence

d̃(x, K ∪ H) = min{d(x, y)∣y ∈ K ∪ H} ≤ min{d(x, y)∣y ∈ K} ≤ ε.

Where the middle inequality derives from taking the min on a smaller set.
Therefore x ∈ (K∪H)+ ε. The same reasoning can be repeated for x ∈ H + ε. ◻

Lemma 3.3.20 Let K ∈ K. Then

dh(H, K) = min{ε > 0∣H ⊂ K + ε and K ⊂ H + ε}

Proof [sketch] This proof goes by demonstrating two small claims. First let
H, K ∈ K. It can be proved that K+ ε and H+ ε are both compact.(Boundedness
is clear, since K + ε is just a ”collar” of radius ε around the bounded K;
sequence-Closeness can be shown by triangular inequality). Finally, thanks
to lemma (3.3.19), it can be shown that

dh(H, K) ≤ ε⇔ H ⊂ K + ε and K ⊂ H + ε (3.3)

◻

This lemma is pivotal in proving the following theorem

Theorem 3.3.21 (K, dh) is a complete metric space.

Remark 3.3.22 For the proof of this theorem we refer to the lecture notes of Prof.Orsina
([13],p.28), even though the bulk of the work is to arrive to the right definition as
we just did.

3.3.3 IFS

In all of this subsection we will deal with M = Rn, therefore we set K =
K(Rn). We also refer to K as the metric space (K, dh).

Definition 3.3.23 Given a continuous function f ∶ Rn → Rn, we can define:

f̃ ∶ K → K
K ↦ f (K)

This function is well defined because f (K) is still compact for f continuous.

Lemma 3.3.24 f Lipchitz with Lipschitz constant L ⇒ f̃ Lipschitz with lipschitz
constant L (on K)
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Proof Let K, H ∈ K. Then

dor( f̃ (K), f̃ (H)) = max
z∈ f̃ (K)

min
w∈ f̃ (H)

d(z, w) (1)=

(1)= max
x∈K

min
y∈H

d( f (x), f (y)) ≤ L max
x∈K

min
y∈H

d(x, y) = Ldor(K, H).

Where in (1) we used the definition of f̃ . We can repeat the same process
for dor( f̃ (H), f̃ (K)) and then, by taking the max we get that

dh( f̃ (H), f̃ (K)) ≤ Ldh(H, K).

◻

Remark 3.3.25 From the previous lemma, we can say that if f is a contraction, then
also f̃ is a contraction(since they have the same Lipschitz constant). By the fact that
K is complete we can apply Banach Fixed point theorem and get that f̃ has a unique
fix point K in K. The problem is that this fix point is uninteresting:
Since K is a compact subset of a complete space, it is also complete. Then since f is
a contraction on K complete, we have that f has a fixed point x ∈ K. The set {x} is
compact in K, therefore it is in K and we have that f̃ ({x)} = f ({x}) = { f (x)} = x.
This implies that {x} is a fixed point of f̃ and, by uniqueness, that it is K.

The interesting part is not taking only one contraction f , but a series of
contractions f1, . . . , fm and ”composing” them in a smart way.

Definition 3.3.26 (IFS) Given contractions f1, . . . , fm we say thatF = { f1, . . . , fm}
is an iterated function system.

Definition 3.3.27 Given an IFS F , we can define

Φ ∶ K → K

K ↦ Φ(K) =
m
⋃
i=1

fi(K)

This is well defined since a finite union of compact sets is still compact.

Theorem 3.3.28 Let an IFSF = { f1, . . . , fm} with Lipschitz constants {C1, . . . Cm}
and let Φ defined as above.
Then Φ is a contraction with contraction constant C = CΦ ≤ m

max
i=1

{Ci} < 1.

Proof We use that that

dh(A ∪ B, C ∪D) ≤ max{dh(A, C), dh(B, D)} =∶ ε.
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for any given A, B, C, D ∈ K, which we will now prove.
Since dh(A, C) ≤ ε and dh(B, D) ≤ ε, we have that A ⊂ C + ε and B ⊂ D + ε.
Therefore

A ∪ B ⊂ (C + ε)∪ (D + ε) ⊂ (C +D)+ ε.

Where in the last inclusion we used lemma (3.3.19). Exchanging A, B with
C, D we get an inverse inequality and the claim follows by equation (3.3).
Now let H, K ∈ K. Applying previous fact 2m times we have that

dh(Φ(H), Φ(K)) = dh (
m
⋃
i=1

fi(H),
m
⋃
i=1

fi(K)) ≤ m
max

i=1
{dh( fi(H), fi(K))}.

Now we use lemma 3.3.24 and conclude the proof. ◻

Definition 3.3.29 Given an IFS F and Φ defined as above. Since the previous
theorem has proven that Φ is a contraction, we can apply Banach fixed point theorem
on Φ. Let K be the unique fixed point of Φ. We say that K is the attractor of Φ.

Remark 3.3.30 By the application of Banach fixed point theorem and its proof, we
have that K = lim

n→∞
Φn(A), where A ∈ K is any starting set and Φn(A) = Φ ○ ⋅ ⋅ ⋅ ○

Φ(A).

Lemma 3.3.31 let xi be a fixed point of fi. Then xi ∈ K.

Proof Simply ba calculating Φ({xi}) =
m
⋃
j=1

f j(xi) = {xi} ∪
m
⋃

j=1,j/=i
f j(xi) we see

that xi ∈ Φ({xi}). By repetition of this calculation ad the independence of
the convergence starting point the the proof of Banach fixed point theorem,
the statement follows. ◻

The beauty of working with IFSs is the fact that we can easily compute the
box-counting dimension of their attractors, if the IFS satisfies a couple of
additional conditions.

Theorem 3.3.32 Given an IFS F ,{C1, . . . , Cm} be its Lipschitz constants and Φ
as usual. Let K be the attractor of Φ and let s̃ = dimb(K). If F satisfies:

(i) fi(x) = Cix + ti for some ti ∈ Rn.

(ii) ∃Q̃ cube such that Φ(Q̃) ⊂ Q̃.

(iii) fi(Q̃)∩ fi(Q̃) = ∅ for j /= i

Then we have that s̃ is the unique solution of the equation

m
∑
i=1

Cs̃
i = 1. (3.4)
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Remark 3.3.33 Conditions (i),(ii),(iii) are satisfied by the ”classical” fractal struc-
tures, since they are defined inductively by a contraction (in size) and translation,
which is the requirement (i). Requirement (ii) and (iii) ensure that we don’t overlap
too much when applying Φ (which could bring to a lowering of the box counting
dimension when repeated infinitely many times).

The next key theorem is what brings this construction together and allows
us to calculate the Hausdorff dimension of an IFS

Theorem 3.3.34 Let F and IFS as in the previous theorem. Let K be its attractor.
Then

dimH (K) ≥ dimb(K)

Remark 3.3.35 Considering that theorem (3.2.10) was valid for every subset of Rn,
we get that

dimH (K) = dimb(K)
and they both are the unique solution fo equation (3.4).

In the case that a set A is composed by n copies of side length λ of itself,
some authors estimate the Hausdorff dimension of A by the heuristic seu =
− ln(n)

ln(λ) . The reasoning behind this definition is the scaling property of the
Hausdorff measure (theorem (2.2.9)):

Hs(A) =Hs (
n
⊍
i=1

λA) =
n
∑
i=1
Hs(λA) = nλsHs(A).

By simplifying Hs(A) (which we can do since s is supposed to be the Haus-
dorff dimension of A) we get

1
n
= λs ⇒ s = − ln(n)

ln(λ) .

There are two problems with this calculation. The first is that s = dimH (A) /⇒
Hs(A) /= 0 or Hs(A) /= +∞. Therefore the simplification cannot always occur.

The second is the representation A =
n
⊍
i=1

λA, which is not rigorous (it is the

union of the ”same” set n times).
Nevertheless, we have that seu and dimb(and therefore also dimH) agree once
we consider a better representation a A given by the IFS:
”A is composed by n copies of size λ of itself” means that A is the fixed point
of an IFS of the form F = { f1, . . . , fn} with Lipschitz constants {C1, . . . Cm}
all equal to λ. By using equation (3.4) we get:

1 =
n
∑
i=1

Cs̃
i =

n
∑
i=1

λs̃ = nλs̃ ⇒ s̃ = − ln(n)
ln(λ) = seu.

Therefore the heuristic is justified in the case of an IFS.
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3.3.4 Calculating Hausdorff dimension of some IFS

3.3.4.1 Koch Curve

Figure 3.3: Koch Curve [15]

The Koch curve K is a subset of R2 which is defined by taking the inter-
val [0, 1] × {0}, dividing it in 3 parts and replacing the middle part by two
segments of length 1

3 , the first one with an angle of 2π
3 with respect to the

horizontal line and the with an angle of 2π
3 with respect to the previous seg-

ment. Repeating this process on the four segments left yields to 16 segments,
repeating an infinite amount of times gives us the Koch Curve.
We can therefore define K as the fixed point of an IFS. The right choice of
functions can be seen by describing the process in the first step, with fi
describing the transformation from the beginning segment (L) to the i-th
segment, which we will call Li.

L1 = [0, 1
3]× {0} is just the rescaling of L, therefore f1(x) = 1

3 x

L4 = [ 2
3 , 1]× {0} adds a translation to the process, hence f4(x) = 1

3 x + (
2
3
0
)

L2 adds a rotation, resulting in f2(x) = 1
3 ( cos (2π

3 ) sin (2π
3 )

− sin (2π
3 ) cos (2π

3 )) x + (
1
3
0
)

similarly for L3: f3(x) = 1
3 ( cos (−2π

3 ) sin (−2π
3 )

− sin (−2π
3 ) cos (−2π

3 )) x + (
1
2√
3

6
)

All 4 of those functions are contractions with Lipschitz constant 1
3 (rotations

and translations are isometries, the only factor is always the 1
3 before the s).

By using equation (3.4), we have

1
3

s̃
+ 1

3

s̃
+ 1

3

s̃
+ 1

3

s̃
= 1⇒ s̃ = dimH (K) = ln(4)

ln(3) ≈ 1.2619 < 2.
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3.3.4.2 Vicsek Fractal

Figure 3.4: Vicsek Fractal [16]

The Vicsek fractal V is once again a subset of R2. It is defined by taking the
square [0, 1]2 and dividing it in 9 squares. We then keep the only the 5 of
them accordingly to the scheme given in the picture above. by repeating this
process an infinite amount of time, we get V; which is composed of n = 5
copies of itself with side length λ = 1

3 with respect to the whole V.
In the last paragraph of last section we have shown that the the heuristic
seu = − ln(n)

ln(λ) = dimH (V) is valid. It follows that

dimH (V) = − ln(5)
ln (1

3)
= ln(5)

ln(3) ≈ 1.4649 < 2.

3.3.4.3 Menger Sponge

Figure 3.5: Menger Sponge [17]

Finally, we treat a set S ⊂ R3 called Menger sponge. We start by taking the set
cube[0, 1]3 ⊂ R3, dividing it into 27 equal cubes of side length 1

3 and taking
20 of them in the way illustrated by the picture.(We remove the central cube
from each ”side” and the cube in the middle). Repeat on the remaining 20
cubes the same procedure infinitely many times and get the set S. Therefore
S is the union of n = 20 copies of itself of side length λ = 1

3 . By the reasoning
presented in the previous example, we can conclude that

dimH (S) = ln(20)
ln(3) ≈ 2.7268 < 3.
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