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Plan of today

 Fourier transform of the Gaussian

Chapter 4: Introduction to PDEs ( examples, classifications, method of

separation of the variables
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Chapter 4: Partial Differential Equations



Notation:




















CONVOLUTION
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Classification of PDEs 
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1 WAVE EQUATION IN ID

Utt Gunn o ne IR t o

2 Heat equation in e D

Ut K Un n o ne IR t o K o

3 LAPLACE EQUATION Poisson EQUATION
Unn t Uy y 0 y E 1122

Unni Uy y t Uzz o Cn y 2 c 1123

on z I knH5uGD

NOTE Una 1 Uy y trace Buca y

Unnt Uy ya f Cn y

1 ORDER OF AN EQUATION it is the
ocher of the highest derivative of the
DDE
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Second order linear PDEs in two variables  
 
 
 
 
 

2 LINEAR EQUATION

the PDE is linear if u and its

partial derivatives enter in a linear

way
If it is not the case the PDE is

said nonlinear

i Ut Unc 0 2nd outer linear
ii Ut nun Unu endoeder nonlinear
Iii Utt Cunnane a hthoader linear
iv n2 Un t y Uy sin u2 o rotoeder

nonlinear
3 LINEAR HOMOGENEOUS PDE

It is a LINEAR PDE where each term
contains either u oe its partial
derivatives
EXAMPLES

e Un t Uy o linear homogeneous
ii un t Uy m2 linear nonhomogeneous

A Unnt 2B Uny t C Uyy t Dun t Elly 1 FU G C

A B C are given functions in Cn y
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1 WAVE EQUATION
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2 Heat equation
Ut k Unu O

det foo o

parabolic
3 LAPLACE EQUATION

Uxx t Uy y O

det ff f soo

ELLIPTIC

4 EULER Trion EQUATION

YU xx t Uy y e o

auf
fr
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consider the equation a in the case
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Fourier series solution of the 1D wave equation 
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Zhen d Ust p uz is a solutions of 61
Ha pe IR

SO CALLED SUPER POSITION

PRINCIPLE

Utt CE Una o ne lo L 1 so

we assume that the string of length L
is fastened at the ends n o a L
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Method of separation of the variables

Step 1 Look foe PRODUCT SOLUTIONS

of the foam
u Cx f e E Cn G Ct

we obtain from the PDE two ODEs

one foe F and one for G

Step 2

We determine solutions of these codes

that satisfy the CBC
step 3

By using Fourier series you compose
the solutions found in Step 2 to

obtain a solution of the PDE

satisfying both Ba and CIC

Step 1
Product solutions
u Ca t F Cn Ect

Htt Cx t P CA G Ct
Unm x t z F x G Ctl

O htt EU xx FCx G Ct d F G Gct

TF x G t t Cx G Ct 37
Xe to it t o
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FCL o

Steps
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He 91

g G Ct Kd Gct ao

To solve Pe we have to

separate the cases K o K o k co



Theorem 1 Let u0, u1 : X → IR and v0, v1 : Y → IR (X, Y ⊆ IR) be such that u0, v0 are
not identically zero. Then

u0(x)v1(t) = u1(x)v0(t), ∀(x, t) ∈ X × Y (1)

if and only if there exists a unique constant λ ∈ IR such that

u1(x) = λu0(x), ∀x ∈ X

and
v1(t) = λv0(t), ∀t ∈ Y.

Proof.

1. Suppose that (1) holds. Let x̄ ∈ X be such that u0(x̄) &= 0 . Then if we set
λ = u1(x̄)

u0(x̄)
then v1(t) = λv0(t), ∀t ∈ Y . Moreover if v0(t̄) &= 0 then λ = v1(t̄)

v0(t̄)
and therefore

from (1) it follows that u1(x) = λu0(x), ∀x ∈ X as well.
2. On the other hand if u1(x) = λu0(x), ∀x ∈ X and v1(t) = λv0(t), ∀t ∈ Y then

(1) trivially holds. !

This Theorem is related to the existence of the separation constant in the

method of the separation of the variables. During the lecture we have applied

it when we found the two ODEs associated to the wave equation

G′′(t)F (x) = c2G(t)F ′′(x), ∀x ∈ [0, L], t > 0.

In this case X = (0, L), Y = IR+,u0 = F , u1 = F ′′, v0 = G(t), v1 = G′′(t) .....
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