Lecture Analysis3-30.11.2020 Last week

We concluded the lecture of last week with the D'Alembert Formula which gives a representation formula for the solution of the 1D wave equation with given initial conditions. We obtained such a formula by performing a suitable change of variables v= x+ct, w=x-ct and by solving the equation

$$
W_{\text{UV}} = 0
$$
 m \dot{R}^2

The point of having reduced the wave equation $\| \mathbf{u}_{\mathbf{t}} - \mathbf{c}^{\top} \mathbf{u}_{\mathbf{x}\mathbf{x}} \|$ was that the new expression preserved the original feature of the differential equations. The expression $\mathbf{u}_{\mathbf{v}\mathbf{w}}$ is called the normal form of the equation to the form: μ_{ν} \sim 0

In fact with an appropriate change of coordinates a second order linear PDE can be brought into a normal form

Uvw = F" (v, w, u, uv, uw) (hyperbolic $U_{\text{UU}} = F^*(v, w, u, u, u)$ (parabolic) $W_{\sigma\sigma} + W_{\omega\sigma} = F^* (\sigma, \omega, u, w_{\sigma}, u_{\omega})$ (elliptic) This year we will skip Theorem 4.10 m Iozzi¹s notes.

Today: we analyse in details the D'Alembert formula, method of characteristics, heat equation via Fourier series

Characteristic lines D Alembert formula $u(x,t)$, $\frac{1}{2}$ $\left[f\left(x+t\right) + f\left(x-t\right) \right] + \frac{1}{2c} \int_{x-ct} g\left(x\right) dy$

REMARK

u $(x_0, t_0) = 1$ of $(x_0 + c t_0) + 2(x_0 - c t_0) + 1$ $\frac{1}{2}$ $\left(\frac{x_0 + ct_0}{2} + c t_0\right)$ x_{0} - ct_{0} u depends on the values of the initial data between [no-cto, norito] BluiS INTERVAL IS CALLED DOMAIN OF Q_f^Q u ot $(x_{0,10})$. DEPENDENCE OPPOSITE QUESTION What REGION of the G.+) in the $intersv2C$ $C2,57?$ ヒノ ー)
ス ぜ $\overline{\mathsf{x}}$ $(70, 0)$ $x + ct = 20$ $x-ct=\epsilon$ (\hat{x}, \hat{t}) (\bar{x},\bar{t}) (x, t) $\overline{(\overline{x}+\overline{c}\overline{t},0)}$ $(20, 0)$ $(\bar{x} - \bar{x}, 0)$ $\left|\hat{x}+c\hat{t}_{i0}\right|$ $(\widetilde{x}-c\widetilde{t}_{,0})$

The points that are effected by the INITIAL CONDITIONS ONE EXECTLY the POINTS (x,t) : $[x-t, n+ct] \wedge [e, 5] = \emptyset$

O Region I and III
\n
$$
u(x_0,t_0) = \frac{1}{2} \oint_{C} [x_0 + c_t b] + \frac{\rho}{2} [x_0 - c_t b] + \frac{1}{2c} \int_{x_0 - c_t b}^{x_0 + c_t b}
$$

\n $u = 0$

O Region
$$
\frac{11}{16}
$$
:
\n $(x_4, t_1) \in \frac{11}{16}$
\n $u(x_4, t_4) = \frac{1}{2} \{(x_4 + t_4) + \frac{1}{2} \int_{-1}^{x_4 + t_4} g(x) dx$
\n $= \frac{4}{2} + \frac{1}{2}(x_4 + t_4 + 1) = 4 + \frac{x_1 + t_2}{2}$

O Regrou IX
\n
$$
(a_2, t_2) \in (1\nu)
$$

\n $u(x_2, t_2) = \frac{d}{dz} \{(x_2 - t_2) + \frac{d}{2}\int_{x_2 - t_2}^{4} g(x) dx$
\n $= \frac{4}{2} + \frac{d}{2} (1 - x_2 + t_2)$
\n $= 4 + \frac{t_2 - x_2}{2}$
\nTypical questiono:
\n $1)k_x \in 12$: $lim_{t \to +\infty} u(x, t) = \frac{d}{2} \int_{-4}^{4} g(x) dx$
\n $= \frac{d}{2} 2 = 4$
\n2) Determine the max value of u(x, t)

The Max value of
$$
u(x,t)
$$
 is
\n
$$
u(x,t) = \frac{1}{2}
$$
\n
$$
u(x,t) = \frac{1}{2} \int_{0}^{0} x_0 + t_0 = 1
$$
\n
$$
u(x,t) = \frac{1}{2} \int_{0}^{0} (1) + (1) \int_{0}^{1} (1) \int_{0}^{1}
$$

$$
4 \frac{\partial^{\dagger} \mathbf{d} \mathbf{e} \mathbf{p}}{u_{\mathbf{t}^{\infty}}} \mathbf{u} (x, t) = \mathbf{F}(\infty) \mathbf{G}(\mathbf{t})
$$
\n
$$
u_{\mathbf{x} \mathbf{x}} = \mathbf{F}^{\mathsf{T}}(\mathbf{x}) \mathbf{G}^{\mathsf{T}}(\mathbf{t})
$$
\n
$$
\mathbf{F}(\mathbf{x}) \mathbf{G}^{\mathsf{T}}(\mathbf{t}) - c^{2} \mathbf{F}^{\mathsf{T}}(\mathbf{x}) \mathbf{G}(\mathbf{t}) = 0
$$
\n
$$
\Rightarrow c^{2} \mathbf{G}(\mathbf{t}) \mathbf{F}(\mathbf{x})
$$
\n
$$
\frac{\mathbf{F}^{\mathsf{T}}(\mathbf{x})}{\mathbf{F}(\mathbf{x})} = \frac{\mathbf{G}^{\mathsf{T}}(\mathbf{t})}{c^{2} \mathbf{G}(\mathbf{t})} = \mathbf{K} \mathbf{e} \mathbf{f} \mathbf{g}^{\mathsf{T}} \mathbf{x} \mathbf{\epsilon} (\mathbf{0}, \mathbf{L}) \mathbf{g}^{\mathsf{T}}(\mathbf{x})
$$

$$
\frac{\text{Step 2}}{\text{}
$$

$$
\Rightarrow F''(x) \Rightarrow k \in E(x) \qquad G'(t) \Rightarrow k \in C^{2}G(t)
$$
\n
$$
(\text{BC}) \Rightarrow F(0) = F(L) = 0
$$
\n
$$
(P_{F}) \qquad \begin{cases} F''(x) - k \in E(x) = 0 \\ F(0) = F(L) = 0 \end{cases}
$$

$$
(\rho_{\epsilon}) \cdot \mathcal{G}'(t) - k c^2 \in (t) \ge 0
$$

$$
(P_P): \leq P_P
$$
 is the only cone when there are
nontrivial solutions is when $k < 0$?

$$
P(x) = A cos (V + x) + B sin (V - k)
$$

$$
P(0) = 0 \Rightarrow A = 0
$$

$$
P(L) = 0 \Rightarrow J - V - k = m \hat{u}
$$

$$
\Rightarrow K = - (m \bar{u})^2
$$

$$
(P_{6}) \quad K_{m} = -(\underline{n}_{\underline{k}}\overline{n})^{2}
$$
\n
$$
G_{m}^{-1}(t) + c^{2}(\underline{n}_{\underline{k}}\overline{n})^{2}G_{m}(t) = 0
$$
\n
$$
\Rightarrow G_{m}(t) = R_{m}e^{-c^{2}(\underline{n}_{\underline{k}}\overline{n})^{2}t}
$$
\n
$$
Recal\overline{n}
$$
\n
$$
V_{m} = -c^{2}(\underline{n}_{\underline{k}}\overline{n})^{2}t
$$
\n
$$
Recal\overline{n}
$$
\n
$$
V_{m} = 0
$$
\n
$$
S_{m} = c^{2}(\underline{n}_{\underline{k}}\overline{n})^{2}
$$
\n
$$
S_{m} = c^{2}(\underline{n}_{\underline{k}}\overline{n})^{2}t
$$
\n
$$
V_{m} = 0
$$
\n
$$
S_{m} = c^{2}(\underline{n}_{\underline{k}}\overline{n})^{2}t
$$
\n
$$
V_{m} = 0
$$
\n
$$
S_{m} = c^{2}(\underline{n}_{\underline{k}}\overline{n})^{2}t
$$
\n
$$
V_{m} = 0
$$

EXAMPLE

Copper bar of length 80 cm
L=80 cm, u(0, b) = u(1, b/=0

u(x, 0) = f(x).
\nQ: Find u(x,t) and compute four
\nlong it will take for the maximum.
\n
$$
+
$$
 Therefore to drop to be 0
\n $+$
\n $+$ Therefore the down
\n $+$
\n $+$ <

$$
U_{MAX}(x,t) = 100 e^{-\frac{(3\pi}{80})^{2}t} = 50
$$

\n $\Leftrightarrow t = \frac{(80)}{(3\pi)}^{2}log(2)$