
A LEBESGUE MEASURABLE SET THAT IS NOT BOREL

SAM SCHIAVONE

Tuesday, 16 October 2012

1. Outline

(1) Ternary Expansions
(2) The Cantor Set
(3) The Cantor Ternary Function (a.k.a. The Devil’s Staircase Function)
(4) Properties of the Cantor Ternary Function

• Continuous
• Monotone
• Maps C onto [0, 1]
• Constant on each interval in complement of Cantor set C

(5) Brief review of Vitali set
(6) Problem #28, pp. 71 - 72, [Roy]

2. Ternary Expansions

We’re quite comfortable using decimal expansions for real numbers, i.e., writing

x =
N∑

n=−∞

dn10n = dN · 10N + · · ·+ d1 · 10 + d0 +
d−1
10

+ · · ·

with dn ∈ {0, 1, . . . , 9}. But the choice of 10 as our base is quite arbitrary (mathematically,
not evolutionarily). In this construction we will be using ternary expansions, that is, writing

x =
N∑

n=−∞

tn3n = tN · 3N + · · ·+ t1 · 3 + t0 +
t−1
3

+ · · ·

with an ∈ {0, 1, 2}. For instance,

197.2 = 1 · 102 + 9 · 10 + 7 +
2

10

= 2 · 34 + 1 · 33 + 0 · 32 + 2 · 3 + 2 +
1

3
+

2

32
+

1

33
+ · · ·

= 21022.121 . . .3 .

In defining the Cantor ternary function, we will be using ternary expansions for x ∈ [0, 1],

which can be expressed as x =
∞∑
n=1

an
3n

. (How can you express 1 in this way?)
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3. The Cantor Set

Recall that the Cantor set C can be constructed by starting with the interval [0, 1] and
iteratively removing the middle third of the remaining intervals. (Draw picture.) At each

stage we are removing intervals of the form

(
3k − 2

3m
,
3k − 1

3m

)
with k ∈ {1, . . . , 3m−1}.

It can be shown that the Cantor set is also the set of all numbers in [0, 1] that have ternary
expansions with no 1s. (Discuss how at nth stage numbers in left, middle and right thirds
have 0, 1, and 2 as the nth digit of their ternary expansions, respectively. Use picture.)

4. The Cantor Ternary Function

We define a function f : [0, 1]→ [0, 1] as follows. Given x ∈ [0, 1] with x =
∞∑
n=1

an
3n

, let N

be the smallest n such that an = 1. If no such n exists, let N =∞. Define

bn =

{
an/2 if n < N

1 if n = N .

Define f by

f(x) = f

(
∞∑
n=1

an
3N

)
=

N∑
n=1

bn
2n
.

Note that we should check that f is well-defined since numbers of the form
a

3b
have two

ternary expansions. Observe that f(x) =
N∑

n=1

bn
2n

is a binary expansion of a number in [0, 1].

(Show Mathematica plot.)

Lemma. f is continuous.

Proof. Fix ε > 0 and c ∈ [0, 1]. Idea: make δ small enough so that the ternary expansions of

x and c agree sufficiently far. Choose N such that 2N > 1/ε. Let δ =
1

3N+1
. Given x with

|x − c| < δ, then x and c have ternary expansions (xn) and (cn) such that xn = cn for all
n ≤ N . Let (yn) and (dn) be the binary expansions of f(x) and f(c), i.e.,

f(x) =
∞∑
n=1

yn
2n

f(c) =
∞∑
n=1

dn
2n
.

Then yn = dn for all n ≤ N . Then

|f(x)− f(c)| =

∣∣∣∣∣
∞∑
n=1

yn
2n
−
∞∑
n=1

dn
2n

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

yn − dn
2n

∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=1

yn − dn
2n

+
∞∑

n=N+1

yn − dn
2n

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

n=N+1

yn − dn
2n

∣∣∣∣∣ =
1

2N

∣∣∣∣∣
∞∑
n=1

yN+1+n − dN+1+n

2n

∣∣∣∣∣ ≤ 1

2N
< ε .

�
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Lemma. f is monotone.

Proof. Idea: If x < y, then their ternary expansions (xn) and (yn) must differ at some point
N and at that point xN < yN . �

Lemma. f is constant on each interval in [0, 1] \ C.

Proof. Suppose x, y ∈
(

3k − 2

3M
,
3k − 1

3M

)
with ternary expansions (xn) and (yn). Without

loss of generality, assume that M is the smallest positive integer such that xM = 1 = yM .
Then xn = yn for all n < M , so

f(x) =
M−1∑
n=1

(1/2)xn
2n

+
1

2M
=

M−1∑
n=1

(1/2)yn
2n

+
1

2M
= f(y) .

�

Lemma. f maps C onto [0, 1].

Proof. Suppose y ∈ [0, 1] has binary expansion (yn). For each n, let xn = 2yn. Then xn = 0

or 2 for all n, so x :=
∞∑
n=1

xn
3n
∈ C. Since

f(x) =
∞∑
n=1

(1/2)xn
2n

=
∞∑
n=1

yn
2n

= y

then f maps C onto [0, 1]. �

5. Facts About Nonmeasurable Sets

Recall that we constructed the Vitali set V by choosing representatives for the equiva-
lence classes of the equivalence relation given by x ∼ y if and only if x − y ∈ Q (i.e., coset
representatives for the quotient group R/Q). We showed that these representatives could
be chosen to all lie in [0, 1], but also noted that they could be chosen to lie in any interval
[0, 1/10n] by choosing a suitable decimal approximation. We proved that V was nonmea-
surable by letting (qn) be an enumeration of the rational numbers in [0, 1] and defining
Vn = V + qn = {v + qn : v ∈ V}. We will use this construction once again in the following
propositions.

Proposition. If E is measurable and E ⊆ V , then λ(E) = 0.

Proof. As in the construction of V , let (qi) be an enumeration of the rational numbers in
[−1, 1]. Leting Ei = E+qi for each i, then (Ei) is a disjoint sequence and λ(Ei) = λ(E) for all
i. (This follows by the same reasoning used in the construction of V .) Since E ⊆ V ⊆ [0, 1],

then
⋃

i∈Z>0

Ei ⊆ [−1, 2]. Then

3 ≥ λ[−1, 2] ≥ λ

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

λ(Ei) =
∞∑
i=1

λ(E) = λ(E)
∞∑
i=1

1 =

{
0 if λ(E) = 0

∞ if λ(E) > 0 .

Since
∞∑
i=1

λ(E) ≤ 3, then λ(E) = 0. �

3



Proposition. If A ⊆ R with λ∗(A) > 0, then there exists E ⊆ A with E nonmeasurable.

Proof. Without loss of generality, take A ⊆ [0, 1). (Since λ∗(A) > 0, then it must the case
that λ∗(A∩ [n, n+1)) > 0 for some n. Let B := (A∩ [n, n+1))−n. Since Lebesgue measure
is translation-invariant, then λ∗(B) > 0 and B ⊆ [0, 1).) For each i, let Ei = A ∩ Vi where
Vi is, as before, the translate of V by qi. For contradiction, suppose that Ei is measurable
for all i. Since Ei ⊆ Vi = V + qi, then Ei − qi ⊆ V . Since Ei is measurable, then Ei − qi is
measurable, so λ(Ei − qi) = 0 by the previous proposition. Thus λ(Ei) = λ(Ei − qi) = 0.

Since
∞⋃
i=1

Ei =
∞⋃
i=1

(A ∩ Vi) = A ∩

(
∞⋃
i=1

Vi

)
⊇ A ∩ [0, 1) = A

then

0 < λ∗(A) ≤ λ∗

(
∞⋃
i=1

Ei

)
≤

∞∑
i=1

λ∗(Ei) = 0 ,

which is a contradiction. Thus Ei is nonmeasurable for some i, and Ei ⊆ A. �

6. Constructing A Measurable Non-Borel Set

We follow the construction indicated in Exercise 3.28, pp. 71-72 of [Roy]. Let f be the
Cantor ternary function as defined above, and let g(x) = f(x) + x.

Lemma. g : [0, 1] → [0, 2] is a homeomorphism, i.e., g is a continuous bijection with a
continuous inverse.

Proof. • One-to-one: g is increasing
• Continuous: Since f is continuous, then g is a sum of continuous functions, hence

continuous.
• Onto: Since g(0) = 0 and g(1) = 2 and g is continuous, then g attains every value

between 0 and 2 by the Intermediate Value Theorem.
• Continuous Inverse: Let h = g−1. Suppose U ⊆ [0, 1] is open. Then [0, 1]\U is closed

and bounded, hence compact. Since g is continuous, then g([0, 1] \ U) is compact.
Now

g([0, 1] \ U) = h−1([0, 1] \ U) = [0, 2] \ h−1(U) ,

so [0, 2] \ h−1(U) is compact, hence closed and bounded. Then h−1(U) ⊆ [0, 2] is
open, hence h is continuous.

Thereforefore g is a homeomorphism.
�

Lemma. g(C) has measure 1.

Proof. Recall that f is constant on any interval in [0, 1] \ C. Thus for any interval (a, b) ⊆
[0, 1] \ C,

λ(g(a), g(b)) = g(b)− g(a) = f(b) + b− f(a)− a = b− a .
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Let {In,k}2
n−1

k=1 denote the collection of intervals removed at stage n in the construction of C.
Then

λ([0, 2] \ C) = λ(g([0, 1] \ C)) = λ

(
g

(
∞⋃
n=1

2n−1⋃
k=1

In,k

))
= λ

(
∞⋃
n=1

2n−1⋃
k=1

g(In,k)

)

=
∞∑
n=1

2n−1∑
k=1

λ(g(In,k)) =
∞∑
n=1

2n−1∑
k=1

λ(In,k) = 1

since the total measure of intervals removed is 1. Since [0, 2] = g(C) ] ([0, 2] \ g(C)), then

2 = λ[0, 2] = λ(g(C)) + λ([0, 2] \ g(C)) = λ(g(C)) + 1 ,

hence λ(g(C)) = 1. �

Since λ(g(C)) > 0, then there exists a nonmeasurable E ⊆ g(C). Let A = g−1(E). Since
A ⊆ C, then λ∗(A) ≤ λ∗(C) = 0. Thus A has outer measure zero, hence is measurable, but
g(A) = E is nonmeasurable.

Since g−1 = h is continuous, hence measurable. We claim that A is not a Borel set.
For contradiction, suppose A is Borel. Since h is measurable, then h−1(A) = g(A) = E is
measurable, which is a contradiction. Therefore A is not a Borel set.
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