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In this paper we are interested in the large time behavior as t → +∞ of the viscosity solutions
of parabolic equations with nonlinear Neumann type boundary conditions in connection with
ergodic boundary problems which have been recently studied by Barles and the author in [6].
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1 Introduction

In this note we study the large time behavior as t → +∞ of the viscosity solutions to two different
types of Neumann boundary value problems

χt + F (x,Dχ,D2χ) = λ in O × (0,∞), (1)

L(x,Dχ) = µ on ∂O × (0,∞), (2)

χ(x, 0) = χ0(x) in O, (3)

and

wt + F (x,Dw,D2w) = 0 in O × (0,+∞), (4)

wt + L(x,Dw) = 0 on ∂O × (0,+∞), (5)

w(x, 0) = w0(x) in O, (6)

where, say, O ⊂ Rn is a smooth domain, F and L are, at least, continuous functions defined
respectively on O × Rn × Sn and O × Rn with values in R, Sn denotes the space of real, n × n,
symmetric matrices, χ0, w0 ∈ C(O) and λ, µ are real constant. The solution u of these nonlinear
problems is scalar and ut, Du, D

2u denote respectively the partial derivative with respect to t, the
gradient and the Hessian matrix of u.

We recall that the boundary condition L = 0 is said to be a nonlinear Neumann boundary
condition if the function L satisfies the following conditions

(L1) There exists ν > 0 such that, for every (x, p) ∈ ∂O × Rn, and s > 0, we have

L(x, p+ sn(x)) − L(x, p) ≥ νs, , (7)

where n(x) denotes the unit outward normal vector to ∂O at x ∈ ∂O.

(1)Dipartimento di Matematica Pura e Applicata, Università di Padova. Via Trieste, 7, 35121 Padova, Italy, e-mail:
dalio@math.unipd.it.
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(L2) There is a constant K > 0 such that, for all x, y ∈ ∂O, p, q ∈ Rn, we have

|L(x, p) − L(y, q)| ≤ K [(1 + |p| + |q|)|x − y| + |p− q|] . (8)

The main examples of boundary conditions we have in mind are the following : first, linear type
boundary conditions like oblique derivative boundary conditions, in which L is given by

L(x, p) = 〈p, γ(x)〉 + g(x) , (9)

where γ : ∂O → Rn is a bounded, Lipschitz continuous vector field such that

〈γ(x), n(x)〉 ≥ β > 0 for all x ∈ ∂O,

and g is a Lipschitz function. Here and below, “〈p, q〉” denotes the usual scalar product of the
vectors p and q of Rn.

Next nonlinear boundary conditions : the first example is capillarity type boundary conditions
for which L is given by

L(x, p) = 〈p, n(x)〉 − θ(x)
√

1 + |p|2 , (10)

where θ : ∂O → Rn is a Lipschitz scalar function, such that |θ(x)| < 1 for every x ∈ ∂O. A second
example is the boundary condition arising in the optimal control of processes with reflection when
there is control on the reflection, namely

L(x, p) = sup
α∈A

{〈γα(x), p〉 − gα(x)}, (11)

where A is a compact metric space, γα : ∂O → Rn are Lipschitz continuous vector fields such that
〈γα(x), n(x)〉 ≥ β > 0 for all x ∈ ∂O, and gα : ∂O → R is a Lipschitz continuous, scalar function.

The interest in these two evolution problems is motivated by some results recently obtained by
Barles and the author in[6] on what can be called “the boundary ergodic problems” which consist
in solving the following type of fully nonlinear elliptic equations associated with nonlinear Neumann
boundary conditions

F (x,Du,D2u) = λ in O, (12)

L(x,Du) = µ on ∂O. (13)

The key point in these ergodic problems is that the constant µ, which is called the “boundary ergodic
cost”, is part of the unknowns while λ is considered as a given constant.

If we consider only the equation (12) without boundary condition, i.e. the case when O = Rn the
typical result one expects, under suitable assumptions on F , is the existence of a unique constant
λ such that (12) has a bounded solution. Such results were first proved for first-order equations
by Lions, Papanicolaou & Varadhan [30] in the case of periodic equations and solutions. General
results for second-order equations in the periodic setting are proved by Evans [20, 21]. and results
in the evolution case, when the equation is periodic both in space and time, were obtained by Barles
and Souganidis [12]. Recently, Ishii [27] generalizes these results in the almost periodic case.

We refer the reader to the introduction of the paper [6] for a complete description of the con-
nection of such types of results with the applications (ergodic control problems, homogenization of
elliptic and parabolic pdes, asymptotic behavior of solutions to parabolic equations).

Since in this paper we are interested in the large time behavior of the solutions of (1)-(2) and
(4)-(5) we recall which is a typical result in Rn . One considers a solution u(x, t) of the corresponding
evolutive equation
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ut + F (x,Du,D2u) = 0 in R
n × (0,+∞) . (14)

If there exists a unique λ such that (12) has a bounded solution v∞ then one should have

u(x, t)

t
→ −λ locally uniformly as t→ ∞ . (15)

Therefore the ergodic constant governs the asymptotic behavior of the associated evolution equation
and in good cases, one can even show that

u(x, t) + λt → v∞(x) locally uniformly as t→ ∞ . (16)

It is worth pointing out that if a property like (15) can be obtained rather easily as a consequence
of standard comparison results for the equation (12), the more precise asymptotic behavior (16) is
a far more difficult result.

Recently a lot of works have been devoted to study the large time behavior of the solutions of
first order Hamilton-Jacobi equations. Fathi [23, 24, 25] and Namah & Roquejoffre [31] were the
first who established quite general convergence results for ut +H(x,Du) = 0 in Rn × (0,+∞), in
the case when H is convex in Du, it is periodic in x and the solutions are bounded. We recall
that Fathi’s approach is based on dynamical systems arguments and in particular on the so-called
Mather’s set which is roughly speaking an attractor for the geodesics associated to the representation
formula of the solution. By using more pdes techniques Barles & Souganidis [11] extended the
asymptotic results to a non-convex framework. Barles & Roquejoffre [10] and Ishii [28] have recently
investigated the case when the Hamiltonian is not periodic in x and the solutions of the evolution and
stationary equations are unbounded, (see also Fathi and Maderna [26] for results without periodicity
assumption of H). To the best of our knowledge, there is not a lot of general results in the case of
second-order equations : the uniformly elliptic case seems the only one which is duable through the
use of the Strong Maximum Principle and the methods of [12] which are used in the paper to prove
the convergence to space-time periodic solutions but which can be used to show the convergence to
solutions of the stationary equations.

As far as the connection with the large time behavior of the problems (1)-(2) and (4)-(5) is
concerned, in [6] the following results are proved. In the case of (1)-(2), it is shown that the ergodic
constant µ(λ) is characterized as the only constant µ for which the solution χ remains bounded. In
the case of (4)-(5), the expected behavior is to have t−1w(x, t) converging to a constant −λ̃ which
has to be such that (12)-(13) has a solution for λ̃ = λ = µ(λ). It is proved that, under suitable
conditions, such a constant λ̃, i.e. a fixed point of the map λ 7→ µ(λ), does exist and that we have
the expected behavior at infinity for w.

The aim of this paper is to complete the results in [6] by showing a more precise asymptotic
behavior as t→ +∞ of the solutions of the two evolutions problems (1)-(2) and (4)-(5). Under the
same assumptions in [6] we prove that

χ(x, t) → u∞(x), as t→ +∞ uniformly in O

and
w(x, t) + λ̃t → u∞(x) as t→ +∞ uniformly in O ,

where u∞ is a solution of the stationary problem (12)-(13), χ,w and λ̃ are as above.
The main ingredients to get such convergence results are the following. The first one is the

C0,α
loc (O) estimates for solutions of (1)-(2) and (4)-(5), which provide the compactness in C(O) of

the functions χ(·, t) and w(·, t) − λ̃t. The second one is the half-relaxed limits method introduced
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by Barles & Perthame [9]. The third one is the Strong Maximum Principle which is extended here
to viscosity solutions to evolution equations with Neumann boundary conditions (see Lemma 2.1).

In view of the results obtained here and in [6] it would be interesting, in the case when F is
a Hamilton-Jacobi operator, to investigate the connections between ergodic properties of diffusion
processes with reflection and their invariant measures. This will be the aim of a future work.

The paper is organized as follows. In Section 2 we list the main assumptions which are used in
the paper, we provide some preliminary results and state the main results. In Section 3 we show the
interior Hölder estimates in the x variable (uniformly with respect to t > 0). In Section 4 we prove
the main results of the paper namely the large time behavior as t→ +∞ of the solutions to (1)-(2)
and (4)-(5).

2 Preliminary results

In this Section we list the main assumptions and prove some preliminary results .
The main assumptions we will use are the following :

(O1) O is a bounded domain with a W 3,∞ boundary.

We point out that such an assumption on the regularity of the boundary is needed to use the
comparison and existence results of [4] .

We denote by d the sign-distance function to ∂O which is positive in O and negative in Rn \ O.
If x ∈ ∂O, we recall that Dd(x) = −n(x) where n(x) is the outward unit normal vector to ∂O at x.
The main consequence of (O1) is that d is W 3,∞ in a neighborhood of ∂O.

The operator F satisfies the following assumptions.

(F1) (Regularity) The function F is locally Lipschitz continuous on O×Rn ×Sn and there exists
a constant K > 0 such that, for any x, y ∈ O, p, q ∈ Rn, M,N ∈ Sn

|F (x, p,M) − F (y, q,N)| ≤ K {|x− y|(1 + |p| + |q| + ||M || + ||N ||) + |p− q| + ||M −N ||} .

(F2) (Uniform ellipticity) There exists κ > 0 such that, for any x ∈ O, p ∈ Rn, M,N ∈ Sn with
N ≥ 0

F (x, p,M +N) − F (x, p,M) ≤ −κTr(N) .

(F3) There exists a continuous function F∞ such that

t−1F (x, tp, tM) → F∞(x, p,M) locally uniformly, as t→ +∞ .

The operator L satisfies (L1) , (L2) and
(L3) There exists a continuous function L∞ such that

t−1L(x, tp) → L∞(x, p) locally uniformly, as t→ +∞ .

We want to emphasize the fact that the above assumptions are very well adapted for applications
to stochastic control and differential games: indeed (F1)-(L1) are clearly satisfied as soon as the
dynamic has bounded and Lipschitz continuous drift, diffusion matrix and direction of reflection and
when the running and boundary cost satifies analogous properties (maybe these assumptions are not
optimal but they are rather natural) while (F3)-(L3) are almost obviously satisfied because of the
structure of the Bellman or Isaac Equations (“sup” or “inf sup” of affine functions in p and M).

We recall here some results obtained in [6] by Barles and the author concerning the connection
between the evolution problems (1)-(2) and (4)-(5) and the boundary ergodic problem (12)-(13).
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Theorem 2.1 [6] Assume (O1), (F1)-(F3) and (L1)-(L3) then, for any λ ∈ R, there exists a
unique µ ∈ R such that (12)-(13) has a continuous viscosity solution. Moreover the map λ 7→ µ(λ)
is continuous, decreasing and therefore there exists a unique λ := λ̃ such that µ(λ̃) = λ̃.

Theorem 2.2 [6] Under the assumptions of Theorem 2.1, there exists a unique viscosity solution
χ of (1)-(2)-(3) which is defined for all time. Moreover, χ remains uniformly bounded in time if
and only if µ = µ(λ).

Theorem 2.3 [6] Under the assumptions of Theorem 2.1, there exists a unique viscosity solution
of (4)-(5)-(6) which is defined for all time. Moreover, as t→ +∞, we have

w(x, t)

t
→ −λ̃ uniformly on O ,

where λ̃ is as in Theorem 2.1.

Remark 2.1 If L is a linear operator of the form (9) in the above Theorems we can weaken in a
suitable sense the uniform ellipticity of F (see hypothesis (F5) in Section 3) and we refer the reader
to [6] for the details.

The main results of this note are the following two Theorems.

Theorem 2.4 Assume (O1), (F1)-(F3) and (L1)-(L3). Let χ be the bounded solution of (1)-(2)-
(3) corresponding to λ and µ = µ(λ). Then there is a solution u∞ of (12)-(13) such that

χ(x, t) → u∞(x) as t→ +∞ uniformly in O . (17)

Theorem 2.5 Assume (O1), (F1)-(F3) and (L1)-(L3). Let w be the solution of (4)-(5) -(6) with
λ = µ = λ̃.. Then there is a solution u∞ of (12)-(13) such that

w(x, t) + λ̃t → u∞(x) , as t→ +∞ uniformly in O . (18)

The proofs of Theorem 2.4 and Theorem 2.5 are postponed to Section 4 and we continue by
showing some preliminary results.

In the following Lemma we show that under the current hypotheses the difference of a lower
semi-continuous supersolution and an upper semi-continuous subsolution of either (1)-(2) or (4)-(5)
is a supersolution of a problem involving a positively homogeneous uniformly elliptic operator and
boundary condition.

We recall the definition of extremal Pucci operators ([32], [14]), with parameters 0 < κ1 ≤ κ2,
defined by

M+
κ1,κ2

(M) = κ2

∑

ei>0

ei + κ1

∑

ei<0

ei, M−
κ1,κ2

(M) = κ1

∑

ei>0

ei + κ2

∑

ei<0

ei,

for any symmetric N × N matrix M . Here ei = ei(M), i = 1, ..., N, denote the eigenvalues of M .
Pucci’s operators are extremal in the sense that M+

κ1,κ2
(M) = sup

A∈Aκ1,κ2

tr(AM) , M−
κ1,κ2

(M) =

inf
A∈Aκ,κ2

tr(AM), where Aκ1,κ2
denotes the set of all symmetric matrices whose eigenvalues lie in the

interval [κ1, κ2].
In the sequel we will denote by BUSC(O × [0,+∞)) and BLSC(O × [0,+∞)) respectively the

set of bounded upper and lower semi-continuous functions in O × [0,+∞).
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Lemma 2.1 Assume (O1), (F1)-(F2) and (L1)-(L2). Let u ∈ BUSC(O × [0,+∞)) and v ∈
BLSC(O × [0,+∞)) be respectively sub and supersolution of either (1)-(2) or (4)-(5). Then the
function ω = u− v is a viscosity subsolution of

ωt −M+(D2ω) −K|Dω| = 0 in O × [0,+∞) (19)

ωt + ν
∂ω

∂n
− C|DTω| = 0 on ∂O × (0,+∞) (20)

where C > max (K, K̄), K, K̄, ν being the constants appearing in (F1) and (L1)-(L2) .

Proof. The strategy of proof in both cases is very similar to the one of Lemma 4.1 in [6], (see also
[19]), thus we provide here the main arguments only in the case when u, v are respectively sub- and
supersolution of problem (4)-(5).

Let φ ∈ C2(O × [0,+∞)) be such that ω − φ has a local maximum at (x̄, t̄) ∈ O × (0,+∞). We
suppose that x̄ ∈ ∂O, the case x̄ ∈ O being similar and even simpler.

For all ε > 0, α and η > 0, we introduce the auxiliary function

Φε,η,α(x, y, t, s) = u(x, t) − v(y, s) − ψε,η,α(x, y, t, s) − φ(
x+ y

2
,
t+ s

2
) − |x− x̄|4 − |t− t̄|2 (21)

where ψε,η,α(x, y, t, s) is the test function built in Barles [4] relative to the boundary condition (13).
Let (xε, yε, tε, sε) be the maximum point of Φε,η,α(x, y, t, s) in O × O × [0,+∞) × [0,+∞). Since
(x̄, t̄) is a strict local maximum point of (x, t) 7→ w(x, t) − φ(x, t) − |x − x̄|4 − |t − t̄|2, standard
arguments show that

(xε, yε) → (x̄, x̄) and (tε, sε) → t̄ as ε→ 0.

On the other hand, by construction we have

Dtψ(xε, yε, tε, sε) + L(xε, Dxψε,η,α(xε, yε, tε, sε) > 0 if xε ∈ ∂O ,

−Dsψ(xε, yε, tε, sε) + L(yε,−Dyψε,η,α(xε, yε)) < 0 if yε ∈ ∂O .

Moreover, if ζε,η,α(x, y, t, s) := ψε,η,α(x, y, t, s) + φ(
x+ y

2
,
t+ s

2
) + |x − x̄|4 + |t − t̄|2, by standard

arguments (cf. [16]), we know that, for every ρ > 0, there exist X,Y ∈ Sn such that

(Dtζε,α,η(xε, yε, tε, sε), Dxζε,α,η(xε, yε, tε, sε), X) ∈ P
2,+

O
u(xε, tε) ,

(−Dsζε,α,η(xε, yε, tε, sε),−Dyζε,α,η(xε, yε, tε, sε), Y ) ∈ P
2,−

O
v(yε, sε) ,

and

−(
1

ρ
+||D2ζε,α,η(xε, yε, tε, sε)||)Id ≤

(
X 0
0 −Y

)
≤ (Id+ρD2ζε,η,α(xε, yε, tε, sε))D

2ζε,α,η(xε, yε, tε, sε) .

Now suppose that

Dtφ(x̄, t̄) + ν
∂φ

∂n
(x̄, t̄) − C|DTφ(x̄, t̄)| > 0 .

If xε ∈ ∂O, then, for ε small enough, we have

Dtζε,α,η + L(xε, Dxζε,α,η) ≥ Dtψε,η,α + L(xε, Dxψε,η,α)

+
1

2
(Dtφt + ν

∂φ(x̄, t̄)

∂n
− C|DTφ(x̄, t̄)|) + oε(1) > 0 ,
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while if yε ∈ ∂O

−Dsζε,α,η(xε, yε, tε, sε) + L(yε,−Dyζε,α,η) ≤ −Dsψε,η,α + L(yε,−Dyψε,α,η)

−
1

2
(Dtφt(x̄, t̄) + ν

∂φ(x̄, t̄))

∂n
− C|DTφ(x̄, t̄)|) + oε(1) < 0 .

Therefore, if ε is small enough, wherever xε, yε lie we have

Dtζε,α,η + F (xε, Dxζε,η,α, X) ≤ 0 , −Dsζε,α,η + F (yε,−Dyζε,η,α, Y ) ≥ 0 .

By subtracting the above inequalities, using the above estimates on X,Y together with the com-
parison arguments of Subsection A.1 in [6] (see also [19]), the assumption (F1) and (F2) and the
definition of the Pucci’s extremal operator M+, by letting first ε → 0 and then α, η → 0, we are
lead to

φt(x̄, t̄) −M+(D2φ(x̄, t̄)) −K|Dφ(x̄, t̄)| ≤ 0 ,

and the conclusion follows. �

Next we prove the Strong Maximun Principle for the subsolutions to the problem (19)-(20).

Proposition 2.1 Assume the hypotheses of Lemma 2.1. Let w be a bounded subsolution of (19)-(20)
that attains its maximum at (x̄, t̄) in O × (0,+∞). Then w(x, t) is constant in O × [0, t̄] .

Proof. Let (x̄, t̄) ∈ O × (0,+∞) be such that w(x̄, t̄) = supO×[0,+∞) w(x, t) =: M . If x̄ ∈ O
then the result follows from the Strong Maximum Principle for viscosity solutions to parabolic
equations proved by the author [18]. Thus x̄ ∈ ∂O and there is r̄ > 0 such that w(y, s) < M in
B((x̄, t̄), r̄) ∩ (O × (0,+∞)) .

Now we are going to use the following Lemma whose proof is postponed to the end of this Section.

Lemma 2.2 There exists 0 < θ̃ < r̄ and a smooth function ϕ on B((x̄, t̄), θ̃) ∩ (O × (0,+∞)) such
that ϕ(x̄, t̄) = 0, ϕ(y, s) > 0 on B((x̄, t̄), θ̃) ∩ (∂O × (0,+∞)),

ϕt −M+(D2w) −K|Dϕ| > 0 on B((x̄, t̄), θ̃) ∩ (O × (0,+∞)) , (22)

and

ϕt − ν
∂ϕ

∂n
− C|DTϕ| > 0 on B((x̄, t̄), θ̃) ∩ (∂O × (0,+∞)) . (23)

We continue with the proof of Proposition 2.1.
By choosing τ > 0 small enough, we have w(y, s) − τϕ(y, s) < M = w(x̄, t̄) − τϕ(x̄, t̄) for

(y, s) ∈ ∂B((x̄, t̄), θ̃) ∩ (O × (0,+∞)). Indeed, for (y, s) close to ∂O × (0,+∞), ϕ(y, s) > 0 while in
O × (0,+∞) we have w(y, s) < M .

We deduce from this property that, if we consider maxB((x̄,t̄),θ)∩(O×(0,+∞))(w − τϕ), this maxi-

mum is achieved in (x′, t′) ∈ B((x̄, t̄), θ̃)∩(O×(0,+∞)) and therefore it is a local maximum point of
w− τϕ. Since the operators in (19)-(20) are positively homogeneous of degree 1, the function τϕ is
still a strict supersolution of (22)-(23). Thus by applying to the function w the definition of viscosity
solution at (x′, t′) with τϕ as test function we get a contradiction with the inequalities (22)-(23). �

Remark 2.2 In the same way one can prove under the assumption of Lemma 2.1 that if w is a
bounded supersolution of (19)-(20) that attains its minimum at (x̄, t̄) in O × (0,+∞), then w(x, t)
is constant in O × [0, t̄] .
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Proof of Lemma 2.2
We use here arguments which are borrowed from [18]. Since O is a C2 domain, for δ > 0 small

enough, d((x̄, t̄) − δn(x̄)) = δ where d is the distance to the boundary ∂O. We set x0 = x̄ − δn(x̄)
for such a δ and we build a function ϕ of the following form

ϕ(y, s) = exp(−ρδ2) − exp(−ρ(|y − x0|
2 + |s− t̄|2)) ,

where ρ has to be chosen later. Let us set θ = δ/2. Since δ = |x̄ − x0|, we have ϕ(x̄, t̄) = 0 and if
(y, s) ∈ (∂O × (0,+∞)) ∩B((x̄, t̄), θ) − {(x̄, t̄)}, |y − x0| ≥ δ/2 and therefore ϕ(y, s) > 0. Moreover

Dxϕ(y, s) = 2ρ(y − x0) exp(−ρ(|y − x0|
2 + |s− t̄|2)) ,

Dtϕ(y, s) = 2ρ(s− t) exp(−ρ(|y − x0|
2 + |s− t̄|2)) .

We note that by the definition of x0, Dϕ(x̄, t̄) = kn(x̄) with k = 2δρ exp(−ρδ2) > 0.
Using the notations `(y, s) = 2ρ exp(−ρ(|y − x0|

2 + |s− t̄|2)) and p(y) = y − x0, we have

Dtϕ−M+(D2ϕ) −K|Dϕ| = `(y, s)[(s− t̄) −M+(Id− 2ρp(y) ⊗ p(y)) −K|p(y)|] .

Dtϕ+ ν
∂ϕ

∂n
− C|DTϕ| = (s− t̄)`(y, s) + ν`(y, s)〈p(y), n(y)〉 − C|DT (`(y, s)p(y))| .

Now we observe that for ρ large enough we have 1 − 2ρ|p| < 0 and thus

M+(Id− 2ρp(y) ⊗ p(y)) = κ(1 − 2ρ|p(y|2) + κ̃(n− 1)

for suitable κ, κ̃ depending on the ellipticity constants of F . Moreover for ρ large enough and for
some η > 0 we have

Dtϕ(x̄, t̄) −M+(D2ϕ(x̄, t̄)) −K|Dϕ(x̄, t̄)| = −`(x̄, t̄)M+(Id− 2ρp(x̄) ⊗ p(x̄)) −K`(y)|p(x̄)|

= `(x̄, t̄)[−Λ(n− 1) − λ(1 − ρ|p(x̄)|2) −K|p(x̄)|] > η ,

and

Dtϕ(x̄, t̄) + ν
∂ϕ

∂n
(x̄, t̄) − C|DTϕ(x̄, t̄)| = ν`(x̄, t̄) > η .

Thus there is θ̃ < θ such that

Dtϕ(y, s) −M+(D2ϕ(y, s)) −K|Dϕ(y, s)| > η/2, for all (y, s) ∈ B((x̄, t̄), θ̃) ∩ (O × (0,+∞) ,

and

Dtϕ(y, s) + ν
∂ϕ

∂n
(y, s) − C|DTϕ(y, s)| > η/2, for all (y, s) ∈ B((x̄, t̄), θ̃) ∩ (∂O × (0,+∞) .

The proof is complete and we conclude. �
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3 Interior Hölder estimates

The regularity of viscosity solutions to fully nonlinear uniformly parabolic equations has been studied
by several authors (see for instance [17, 33, 13] and the references therein). What is known is that

a bounded solution of (1)-(2) and (4)-(5) is in C
1+α, 1+α

2

loc (O× (0,+∞)) and for every interior subset
O′ ⊂ O and for every c > 0 we have

||u||
C1+α,

1+α
2 (O′×[c,+∞))

≤ C(1 + ||u||∞) ,

for some α ∈ (0, 1), where C is a constant depending on the operator F (through the constants
appearing in F1 and F2), the distance from O′ to ∂O and the diameter of O .

In order to prove the asymptotic of the solutions to the problems (1)-(2) and (4)-(5) we will just
need the local Hölder continuity with respect the the x variable uniformly in t ∈ [c,+∞) . We would
like to mention that the proofs in the literature of the interior Hölder continuity of the solutions
are in general consequences of Harnack type inequalities (see e.g. [17, 33] ) or of comparison and
continuous dependence type results under suitable regularity assumption of the initial data (see, e.g
[13]).

In this Section we would like to show, for the reader’s convenience, another proof of the local
Hölder continuity with respect the the x variable uniformly in t ∈ [c,+∞) which is based on an
idea introduced by Ishii and Lions [29]. This idea have been already used for instance in [3, 12]
to show gradient estimates of viscosity solutions to quasilinear elliptic and parabolic pdes with
Lipschitz initial conditions, and by Barles and the author [7] to prove local Hölder estimates up
to the boundary of bounded solutions to fully nonlinear elliptic pdes with Neumann boundary
conditions. We point out that this method works also for quasilinear and possibly degenerate
parabolic equations. To this purpose we consider only in this Section operators F satisfying the
following two weaker assumptions :

(F4) (Growth Condition on F ) There exist positive constants C1, C2, C3 and functions ω1,
ω2, $

R : R+ → R+ such that ω1(0+) = 0, ω2(r) = O(r) as r → +∞, $(t) → 0 as t → +∞,
and for any x, y ∈ O, p, q ∈ Rn, M ∈ Sn and K > 0

F (x, p,M) − F (y, q,M +KId) ≤ ω1(|x − y|(1 + |p| + |q|)

+ $(|p| ∧ |q|)|p− q|)||M ||

+ω2(K) + C1 + C2(|p|
2 + |q|2)

+C3|x− y|(|p|3 + |q|3) ,

where |p| ∧ |q| = min(|p|, |q|).

(F5) There exist κ > 0 such that, for all x ∈ O, M,N ∈ Sn with N ≥ 0, we have

F (x, u, p,M +N) − F (x, u, p,M) ≤ −κ〈Np̂, p̂〉 + o(1)||N || , (24)

where o(1) denotes a function of the real variable |p| which converges to 0 as |p| tends to
infinity.

One of the main examples we have in mind is the case of standard quasilinear equations

ut − Tr[b(x,Du)D2u] +H(x, u,Du) = 0 in O × (0,+∞), (25)

9



where b is a n × n matrix and H a continuous function. In this case, the assumptions (F4) and
(F5) are easily checkable.

(F5) is equivalent to : there exists κ > 0 such that, for any x ∈ O, p ∈ Rn

b(x, p) ≥ κp̂⊗ p̂− o(1)Id ,

where, as in (F5), o(1) is a function of |p| which converges to 0 as |p| → +∞.
We observe that the assumption (F5) without the o(1) term would be essentially reduced to

b(x, p) ≥ κp̂⊗ p̂ ,

for any x ∈ O and p ∈ Rn − {0}, while, with this term, (F5) is satisfied if

b(x, p) ≥ κq̂(x, p) ⊗ q̂(x, p) ,

where q is a continuous function such that |p|−1(q(x, p) − p) → 0 as p→ ∞, uniformly with respect
to x ∈ O.

As far as the hypothesis (F4) is concerned it is satisfied if
(i) b is a bounded, continuous function of x and p and there exists a modulus of continuity

ω1 : R+ → R+ and a function $ : R+ → R+ such that $(t) → 0 as t→ +∞ and

|b(x, p) − b(y, q)| ≤ ω1(|x − y|(1 + |p| + |q|) +$(|p| ∧ |q|)|p− q|) .

Moreover the uniform bound on b provides a ω2 with a linear growth.
(ii) The functionH satisfies : there exist positive constants C1, C2, C3 such that, for any x, y ∈ O,

and p, q ∈ Rn,

H(x, p) −H(y, q) ≤ C1 + C2(|p|
2 + |q|2) + C3|x− y|(|p|3 + |q|3) .

We mention that the assumption (F4) is classical when one wants to get interior regularity (see for
instance Ishii & Lions[29], Barles[3]).

In the next Theorem we will show that a bounded viscosity solution of either (1)-(2)-(3) or (4)-
(5)-(6) is in C0,α

loc (O) uniformly in t ∈ [c,+∞) c > 0. We adapt to the parabolic case the strategy of
proof of Theorem 2.1 in [7]. Here the situation is simpler since we want to obtain interior estimates.
We give the proof in detail for the reader’s convenience.

Theorem 3.1 Assume (O1),(F4)-(F5) and (L1)-(L2). Let u ∈ C(O × [0,+∞)) be a bounded
viscosity solution of either (1)-(2)-(3) or (4)-(5)-(6). Then for all c > 0, for all t ≥ c , and for every
0 < α < 1, u(·, t) ∈ C0,α

loc (O) . Moreover for every interior subset O′ ⊂ O and for every c > 0 the the
C0,α–norm of u in O′ × [c,+∞) depends only on ||u||∞, c, the distance from O′ to ∂O, F , (through
the constants appearing in (F4)-(F5)).

Proof. We suppose that u is a solution of (1)-(2)-(3) (the proof of the other case is the same). We
fix δ > 0, c > 0 x0 ∈ O, d(x0, ∂O) > δ. We want to show that there exists C > 0 (depending on δ

and the data of the problem) such that for all x ∈ B(x0,
δ

4
), t0 ≥ c we have

u(x, t0) − u(x0, t0) ≤ C|x− x0|
α . (26)

We note that the condition (26) implies the Hölder continuity of u(·, t0) in B(x0,
δ

4
) . Indeed if

x, y ∈ B(x0,
δ

4
), then B(x,

δ

4
) ⊆ O, B(y,

δ

4
) ⊆ O as well. If |x− y| <

δ

4
then the result follows from

(26), otherwise

u(x, t0) − u(y, t0) ≤ 2||u||∞
|x− y|α

(δ/4)α
. (27)
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In order to prove (26) we consider the auxiliary function

Φ(x, y) = u(x) − u(y) − Θ(x, y) ,

where the function Θ has the following form

Θ(x, y) = C|x− y|α + L(|x− x0|
4 + |t− t0|

2),

where α ∈ (0, 1) is a fixed constant, C, L are some large constants to be chosen later on.
We show that for a suitable choice of L , chosen large enough in order to localize in the space

and time variables , then for C > 0 large enough we have

ML,C := max
B(x0,δ/4)×B(x0,δ/4)×[0,+∞)

Φ(x, y, t) ≤ 0 . (28)

Indeed if (28) holds then by choosing x = x0 and t = t0 we get (26) .
We first choose L large enough so that Φ(x, y) ≤ 0 is |t − t0| >

c
2 and x ∈ ∂B(x0,

δ
4 ) . This

is possible since u is bounded in O × [0,+∞). We fix such an L and we argue by contradiction
assuming that for all C > 0, ML,C > 0. Since Φ is a continuous function, the maximum is achieved
at some (x̄, ȳ, t̄) ∈ B(x0, δ/4) × B(x0, δ/4) × [c,+∞) and we observe that, by the choice of L,C,
we may even assume that x ∈ B(x0, δ/8) and y ∈ B(x0, δ/8) and t̄ > 0. Here we have dropped the
dependence of x, y, t̄ on C for simplicity of notations.

Two quantities are going to play a key role in the proof

Q1 := C|x − y|α ,

Q2 := L|x− x0|
4 ,

(again we have dropped the dependence of Q1, Q2 in C for the sake of simplicity of notations). The
reason for that is the following: by using only the local boundedness of u, we are only able to show
that Q1, Q2 are uniformly bounded when C becomes very large while if we use the local modulus
of continuity of u, we can show that Q1, Q2 → 0 as C → +∞. The idea of the proof can therefore
be described in the following way: we first show that u is locally in C0,α for α small enough with
suitable estimates depending only on the L∞ norm of u and on the data, and this is done by using
only the uniform boundedness od Q1, Q2. Then this first step provides us with a local modulus of
continuity for u and we obtain the full result using this time that Q1, Q2 → 0 as C → +∞.

From the fact that Φ(x̄, ȳ, t̄) > 0 by using classical arguments we get

C|x − y|α ≤ 2||u||∞

L(|x− x0|
4 + |t− t0|

2) ≤ 2||u||∞ .

In particular it follows that |x̄ − ȳ| → 0, as C → +∞. We may also suppose without loss of
generality that |x̄− ȳ| > 0 for C large enough.

By the arguments of User’s Guide [16], for all ε > 0, there exist (a, p,B1) ∈ P
2,+
u(x, t),

(b, q, B2) ∈ P
2,−

u(y, t) such that

p = DxΘ(x, y, t) , q = −DyΘ(x, y, t) , a− b = DtΘ

−(ε−1 + ||D2Θ(x, y, t)||)Id ≤

(
B1 0
0 −B2

)
≤ D2Θ(x, y, t) + ε(D2Θ(x, y))2 , (29)
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and
a+ F (x, u(x, t), p, B1) ≤ 0 , b+ F (y, u(y, t), q, B2) ≥ 0. (30)

We choose below ε = ρ||D2Θδ(x, y, t)||
−1 for ρ small enough but fixed. Its size is determined in

the proofs below. The following estimates hold.

DxΘ = Cα|x− y|α−2(x − y) + 4L|x− x0|
2(x− x0)

DyΘ = −Cα|x− y|α−2(x− y)

D2
xxΘ0 = CαId|x− y|α−2 + Cα(α − 2)|x− y|α−4(x− y) ⊗ (x− y) +

8L(x− x0) ⊗ (x− x0) + 4L|x− x0|
2Id

D2
xyΘ = −CαId|x − y|α−2 − Cα(α − 2)|x− y|α−4(x− y) ⊗ (x− y)

D2
yyΘ = CαId|x− y|α−2 + Cα(α − 2)|x− y|α−4(x− y) ⊗ (x− y)

DtΘ = 2L(t− t0) .

We denote Y = x− y and Ψ(Y ) = |Y |α .
The r.h.s of inequality (29) can be rewritten as : for all ξ, ζ ∈ Rn

〈B1ξ, ξ〉 − 〈B2ζ, ζ〉 ≤ (1 +O(ρ))
[
C〈DY Y Ψ(ξ − ζ), (ξ − ζ)〉 + 2L|x− x0|

2|ξ|2
]

(31)

Choosing ξ = ζ in the above inequality, we first deduce that

B1 −B2 ≤ (1 +O(ρ))8L|x − x0|
2Id =: K̃Id

We next choose in (31), ξ = −ζ = Ŷ and we get

〈(B1 −B2)Ŷ , Ŷ 〉 ≤ (1 +O(ρ))[8L|x− x0|
2 + 〈DY Y ΨŶ , Ŷ 〉

= (1 +O(ρ))[8L|x− x0|
2 + Cα(α− 1)|Y |α−2] .

In the sequel, K always denotes a positive constant which may vary from line to line and depends
only on the data of the problem.

Now by using the estimates on the first and second derivatives of Θ we get, for some K > 0,

|p|, |q| ≥ CαK−1|Y |α−1 +K ,

|p|, |q| ≤ CαK|Y |α−1 +O(|x − x0|
3) ,

|p− q| = O(|x − x0|
3) ,

||B1||, ||B2|| ≤ K(1 +
1

O(ρ)
)(1 + Cα|Y |α−2 +O(|x − x0|

2)) ,

||B1 −B2|| ≤ K(1 +
1

O(ρ)
)
[
Cα|Y |α−2 + 8L|x− x0|

2
]
,

as C → +∞ .
We subtract the two inequalities (30) and write the difference in the following way

F (x, p,B1) − F (x, p,B2 + K̃Id) ≤ F (y, q, B2) − F (x, p,B2 + K̃Id) + b− a ,

and, using the fact that B1 − B2 ≤ K̃Id, we apply (F4) to the left-hand side and (F5) to the
right-hand side of (32). Recalling also that |p|, |q| → +∞ as C → +∞, this yields
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κTr[(B2 −B1 + K̃Id)(p̂⊗ p̂)] + o(1)||B2 −B1 + K̃Id||

≤ ω1(|x− y|(1 + |p| + |q|) +$(|p| ∧ |q|)|p− q|)||B2|| + ω2(K̃) + C1

+C2(|p|
2 + |q|2) + C3|x− y|(|p|3 + |q|3)

Now one can easily see that

p̂ = Ŷ + oY (1) as |Y | → 0 .

We point out that, |Y | → 0 is in fact equivalent to C going to infinity.
We have

Tr[(B2 −B1 + K̃Id)(p̂⊗ p̂)] ≥ 〈(B2 −B1)Ŷ , Ŷ 〉 + K̃ − ||B2 −B1 + K̃||(oY (1)) .

Therefore, by using the estimates on ||B2||, ||B1 −B2||, |p|, |q| and |p− q|, we are lead to

Tr[(B2 −B1 + K̃Id)(p̂⊗ p̂)] ≥ CK−1α(1 − α)|Y |α−2 −K

−(CKα|Y |α−2 +K)oY (1) .

On the other hand, for the right-hand side of (32), we first look at the ω1 term. By some
computations, we get

|x− y|(1 + |p| + |q|) +$(|p| ∧ |q|)|p− q| = KαQ1 +K$(|p| ∧ |q|)Q
3/4
2 + oY (1) ,

since O(|x− x0|
3) is like Q

3/4
2 . This estimate is emphasizing the role of Q1, Q2 and the necessity of

having the $ term.
The complete estimate of the right hand side of (32) is

Kω1

(
KαQ1 +K$(|p| ∧ |q|)Q

3/4
2 + oY (1)

)
Cα|Y |α−2

+KC2α2|Y |2α−2 + C3α3|Y |3α−2 +K + oY (1) + 2L(t− t0) ,

where we (partially) use the fact that Q1 = C|Y |α and Q2 = L|x − x0|
4 are bounded for C large

enough.
By dividing all the above inequalities by the (very large) term Cα|Y |α−2, we obtain the following

(almost) final estimate

κ(1 − α)K−1 ≤ Kω1

(
KαQ1 +K$(|p| ∧ |q|)Q

3/4
2 + oY (1)

)
+KαQ1 +Kα2Q2

1 + oY (1) .

And by using the fact that |p|, |q| → +∞ as C tends to +∞, this yields

κ(1 − α)K−1 ≤ Kω1

(
KαQ1 + oY (1)Q

3/4
2 + oY (1)

)

+KαQ1 +Kα2Q2
1 + oY (1) . (32)

On one hand, by using the uniform control on Q1, Q2, we can choose α small enough (depending
only on the L∞ norm of u and the data) in order to have

κ(1 − α)K−1 ≥
3

2

(
Kω1(KαQ1) +KαQ1 +Kα2Q2

1

)
> Kω1 (KαQ1)) +KαQ1 +Kα2Q2

1 .
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With this choice, it is clear that the inequality (32) cannot holds for C large enough (depending
again only on the local L∞ norm of u and the data) and the local C0,α estimate is proved for small
enough α.

This C0,α property provides us with a modulus of continuity in B(x0, δ/4) (which depends only
on the L∞ norm of u and the data). By using this modulus of continuity we can show that for any
0 < α < 1, Q1, Q2 → 0 as C → +∞. Hence arguing as above, we obtain the C0,α estimate for any
α < 1. The proof of Theorem 3.1 is complete. �

Remark 3.1 If we suppose that F satisfies (F4)-(F5) and for every R > 0 there is LR > 0 such
that

|F (x, p,M)| ≤ LR(1 + ||M ||), for all (x, p,M) ∈ O ×B(0, R) × Sn,

then by using for instance the same strategy of proof of Lemma 9.1 in [5] one can show that u is in

C
0,α/2
loc (0,+∞) locally uniformly in x .

4 Convergence as t → +∞ to the stationary solution

In this Section we will prove Theorem 2.4 and Theorem 2.5.
Proof of Theorem 2.4.

We split the proof in several steps
1. Let ũ be a solution of (12)-(13). Since χ and ũ are both solutions of(1)-(2), by applying the

comparison result in O × (t,+∞) instead of O × (0,+∞) , we get for all s ≥ t

max
O

(χ(x, s) − ũ(x)) ≤ max
O

(χ(x, t) − ũ(x)) ,

min
O

(χ(x, s) − ũ(x))) ≥ min
O

(χ(x, t) − ũ(x)) .

Thus the functions t 7→ M(t) = max
O

(χ(x, t) − ũ(x)), t 7→ m(t) = min
O

(χ(x, t) − ũ(x)) are
respectively decreasing and increasing in t. SinceM(t) andm(t) are also bounded, we havem(t) → m
and M(t) →M as t→ +∞ .

2. Let x0 ∈ O and r > 0 such that B(x0, r) ⊂ O . From Theorem 3.1 it follows that there exists
a sequence tn → +∞ as n→ +∞ such that

χ(x, tn) → v(x), uniformly on B(x0, r).

We define
φn(x, t) := χ(x, t+ tn) .

We notice that φn is a solution of the problem (1)-(2) in O × (−tn,+∞). We are going to use the
half-relaxed limits of φn introduced by Barles and Perthame [9] and defined by

φ(x, t) = lim sup
(y,s)→(x,t)

n→+∞

φn(y, s) , φ(x, t) = lim inf
(y,s)→(x,t)

n→+∞

φn(y, s) .

The two functions φ and φ are respectively sub and supersolutions of the problem on O×(−∞,+∞) .

3. We claim that max
O

(φ(x, t) − ũ(x))) and min
O

(φ(x, t) − ũ(x))) are constant in time.
In order to prove the claim it is enough to show that

lim
n→∞

max
O

(φn(x, t) − ũ(x)) = max
O

(φ(x, t) − ũ(x)) , (33)
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and
lim

n→∞
min
O

(φn(x, t) − ũ(x)) = min
O

(φ(x, t) − ũ(x)) . (34)

Indeed if the (33) and (34) hold, then Lemma 2.1 and Proposition 2.1 imply

φ(x, t) = ũ(x) +m, φ(x, t) = ũ(x) +M, for all (x, t) ∈ O × [0,+∞) .

Now we show (33) (the proof of (34) is similar).
For all n ∈ IN let xn ∈ O and x̄ ∈ O be such that

χ(xn, t+ tn) − ũ(xn) = max
O

(χ(x, t+ tn) − ũ(x)) = max
O

(φn(x, t) − ũ(x))

and
φ(x̄, t) − ũ(x̄) = max

O

(φ(x, t) − ũ(x)) .

We have xn → x̃ up to subsequence. Thus the following estimate holds.

lim
n→+∞

M(t+ tn) ≤ lim sup
n→+∞

(φn(xn, t) − ũ(xn))

≤ φ(x̃, t) − ũ(x̃)) ≤ max
O

(φ(x, t) − ũ(x, t)).

On the other hand let (xn, sn) → (x̄, t̄) be such that

φn(xn, sn) → φ(x̄, t) as n→ +∞ .

We have

max
O

(φ(x, t) − ũ(x, t)) = φ(x̄, t) − ũ(x̄) = lim
n→+∞

φn(xn, sn) − ũ(xn)

= lim sup
s→t,n→∞

φn(xn, s) − ũ(xn) = lim sup
n→∞

φn(xn, t) − ũ(xn)

≤ lim
n
M(t+ tn) .

Thus we have proved the (33) and the claim.
4. Now we observe that φ(x, t) = φ(x, t) in B(x0, r)×{0} . Indeed since the problem is invariant

by translation, the operators F and L being independent of the time, we have by the maximum
principle

||χ(y, tn + s) − χ(y, tn)||L∞(O) ≤ ||χ(y, s) − χ(y, 0)||L∞(O) .

Thus

φ(x, 0) = lim sup
(y,s)→(x,0)

n→+∞

φn(y, s) = lim sup
(y,s)→(x,0)

n→+∞

χ(y, tn + s)

= lim sup
(y,s)→(x,0)

n→+∞

[χ(y, tn + s) − χ(y, tn) + χ(y, tn)]

= lim sup
(y,s)→(x,0)

n→+∞

[χ(y, tn + s) − χ(y, tn)] + lim sup
(y,s)→(x,0)

n→+∞

χ(y, tn) = v(x).
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Therefore m = M and in particular v = ũ+m. The convergence (17) holds with ũ replaced by
u∞ = ũ+m. Indeed for t > tn we have

||χ(x, t) − ũ−m||L∞(O) ≤ ||χ(x, tn) − ũ+m||L∞(O) = on(1)

as n→ +∞ .
The proof is complete and we conclude. �

Proof of Theorem 2.5. We just give a sketch of proof, the arguments being similar to ones of
proof of Theorem 2.4. The existence and the uniqueness of a solution w of (4)-(5) is a consequence
of the results in [4]. We observe that w + λ̃t and ũ are both solutions of

wt + F (x,Dw,D2w) = λ̃ in O × (0,+∞), (35)

wt +G(x,Dw) = λ̃ on ∂O × (0,+∞), (36)

The comparison principle for this evolution problem yields

||w(x, t) − u(x) + λ̃t||∞ ≤ ||Φ − u||∞ .

Therefore w(x, t) + λ̃t remains bounded. Theorem 3.1 yields that for all t ≥ c > 0 we have w(·, t) +
λ̃t ∈ C0,α(O). Thus the conclusion follows arguing exactly as in the proof of Theorem 2.4 . 2
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