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Partial Regularity for Stationary Solutions
to Liouville-Type Equation in Dimension 3
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In dimension n = 3, we prove that the singular set of any stationary solution to the
Liouville equation −�u = eu, which belongs to W 1�2, has Hausdorff dimension at
most 1.
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1. Introduction

The regularity theory for nonlinear elliptic equations has a long history. It is beyond
the scope of the present work to describe even part of it and we thus refer the reader
to Chapter 14 in [16] for a presentation of this theory and further references.

Typical examples of nonlinear elliptic problems are the semilinear elliptic
problems of the form

Lu = f�x� u� � � � � �m−1u�� (1)

where the function u is defined on some open subset of �n� L is a linear elliptic
operator of order m and where the nonlinear operator f involves derivatives of u
up to order m− 1.

Once we fix the dimension n of the underlying space and the function space � ,
to which the solution u is assumed to belong, equations like (1) can be classified in
three categories: the sub-critical, critical and super-critical equations.

These three categories of equations (which depend on the choice of n and � )
are characterized as follows. Starting from the fact that u belongs to � , one can
estimate the nonlinear part f�x� u� � � � � �m−1u�, if in addition u is a solution to (1),
this implies that Lu belongs to some function space � (which is usually larger than
the space � itself). Sub-critical (respectively super-critical) equations, are the one
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Stationary Solutions to Liouville-Type Equation 1891

for which the information Lu ∈ � implies, through elliptic regularity theory, that u
belongs to a function space which is strictly smaller (respectively strictly larger) and
which has different homogeneities than the original � . In turn, critical equations
are the one which are neither sub-critical nor supercritical in the above sense.

It is well known that solutions to subcritical equations of the form (1) for a
smooth f and smooth L are in fact smooth. This is a consequence of the standard
bootstrap argument. In contrast with the subcritical situation, solutions to a given
critical equation either can all be proven to be smooth or can have non trivial
singular sets (that is, non removable singularities). These results then depend on the
nature of the nonlinearity f .

For example, in dimension n = 2, when � = W 1�2�B1���, the equation

−�u = ��u�2 (2)

is critical. Indeed, plugging the information u ∈ W 1�2�B1��� into f��u� = ��u�2, one
obtains that �u ∈ L1 which itself implies that �u is in L2��, the weak-L2 space,
which has the same homogeneity as L2. Thus, in a some sense, we are back to
the initial situation and this shows that the equation is critical. Observe that this
critical equation, when n = 2 and � = W 1�2��B1���, admits singular solutions such
as log log 1

r
.

In contrast to the above situation, one can consider the equation

−�u = ux ∧ uy (3)

which is again critical in dimension n = 2 when � = W 1�2�B1��
3�, but this time any

solution can be shown to be smooth (see for instance [8]).
Finally, in dimension n = 3 and when � = W 1�2�B1��

3�, this equation is
super-critical and the existence result of Rivière [12] of everywhere discontinuous
harmonic maps in W 1�2�B1� S

2� has annihilated all hopes of having a partial
regularity result for solution to this super-critical semilinear equation.

When the equation has a variational structure, namely when the equation is the
Euler-Lagrange equation of a functional, it makes sense to restrict our attention to
the subspace of solutions which are stationary. That is, one considers the critical
points to the functional which are also critical with respect to perturbations of the
domain (see Definition 1.1 below and see also [8]). A consequence of this stationarity
assumption is that the solution satisfies an identity (which is in fact a conservation
law) which, in the most studied cases, can be converted into a monotonicity formula.
In most of the cases which have been studied so far, this monotonicity formula
implies that the solution u belongs to some Morrey type space �, which is much
smaller than the original space � . In the good cases, replacing � by � makes
the problem critical and this allows one to obtain a partial regularity result for the
stationary solutions (see for instance [3, 8] for harmonic maps, and [11] when the
nonlinearity is u� with � greater than the critical exponent).

The aim of this paper is to present an alternative approach to the partial
regularity theory when the stationary assumption cannot be converted in a
monotonicity formula. We illustrate this method by applying it to the famous
Liouville equation in dimension n = 3

−�u = eu in �� (4)
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1892 Da Lio

Throughout the paper, � ⊆ �3 denotes an open set, u is a scalar function and
�u and �2u denote respectively the gradient and Hessian matrix of u. In dimension
n = 2, the geometric meaning of equation (4) is well known and it corresponds to
the problem of finding metrics g, which are conformally equivalent to the flat metric,
and which have constant Gauss curvature. In dimension n ≥ 3, equation (4) arises
in the modeling of several physical phenomena such as the theory of isothermal gas
sphere and gas combustion.

A function u is said to be a weak solution of (4) in � if for all 	 ∈ C�
c ���

it satisfies

−
∫
�
u�	dx =

∫
�
eu	 dx� (5)

We now recall the definition of stationary solution.

Definition 1.1. A weak solution of (4) is said to be stationary if it satisfies

d

dt
E�u�x + tX���t=0 = 0� (6)

for all smooth vector fields X with compact support in �, where

E�u� = 1
2

∫
�
��u�2dx −

∫
�
eudx�

Computing (6) for weak solutions in W 1�2��� we find that for any smooth vector
field X the following identity holds

∫
�

[

u


xi


u


xk


Xk


xi
− 1

2
��u�2 
X

i


xi
+ eu


Xi


xi

]
dx = 0� (7)

This identity can be also understood as a conservation law (see again [8]).
Arguing as in [7], we insert in (7) the vector field X� = x	���x�� where


	��s� = 1 if s < r

	��s� = 1+ r − s

r�
if r ≤ s ≤ r + r�

	��s� = 0 if s > r�

After some calculations, we let � → 0 and deduce that, for almost every r > 0,
the following formula holds

1
r

∫
Br

(
1
2
��u�2 − 3eu

)
dx = 1

2

∫

Br

��Tu�2dx −
1
2

∫

Br

∣∣∣
u

r

∣∣∣2dx − ∫

Br

eudx� (8)

This can also be written as follows

d

dr

[
1
r

∫
Br

���u�2 − 6eu�dx
]
= 2

r

∫

Br

∣∣∣
u

r

∣∣∣2dx − 4
r

∫

Br

eudx� (9)

Unlike the cases of stationary solutions to super-critical semilinear equations which
have mainly be considered so far, the formula (8) does not seem to provide any
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Stationary Solutions to Liouville-Type Equation 1893

monotonicity information, any uniform bound neither for the term 1
r

∫
Br
��u�2dx nor

for 1
r

∫
Br
eudx� As already mentioned, the main contribution of the present work

is to present an alternative approach to the partial regularity theory in absence of
monotonicity and Morrey type estimates. Our approach is inspired by the technique
introduced by Lin and Rivière in [10] in the context of Ginzburg–Landau equations.
This technique is based on some kind of dimension reduction argument. More
precisely, applying Fubini’s Theorem one first extracts “good” 2 dimensional slices
to get estimates of the some suitable quantities, then one restricts these quantities
to these slices (whose dimension is such that the non-linearity eu becomes critical
for W 1�2) and obtains some estimates in interpolation spaces: the Lorentz spaces
L2�� − L2�1. Finally, the stationarity condition (8) can be used to “propagate” these
estimates from the slices (basically the boundary of balls) into the domain bounded
by the slices (the balls themselves).

Now we state our main result.

Theorem 1.1. Assume that u ∈ W 1�2��� is a stationary solution of (4), such that
eu ∈ L1���. Then there exists an open set � ⊂ � such that

u ∈ C���� and �dim��\�� ≤ 1

where �dim denotes the dimensional Hausdorff measure.

It is an open question whether such a partial regularity result is optimal or not
(the same question holds for instance also for stationary harmonic maps). What is
known is that stationary solutions to (4) can have singularities. Indeed the function
u�x� = log

(
2

�x�2
)
satisfies −�u = eu but is not bounded.

Our approach and the above result should also hold for the more general class
of equations of the form −�u = V�x�eu where V�x� is some smooth given potential.
For the sake of simplicity, we have chosen to focus our attention on the case
where V ≡ 1 in order to the keep the technicalities as low as possible and make
the paper more “readable”. We recall that, in dimension n = 2, the regularity of
weak solutions to the equation (4), starting from the hypothesis that u is in W 1�2, is
a straightforward consequence of the Moser–Trudinger inequality (see [6]). Still in
dimension n = 2, a L� estimate for solutions in L1��� to the equation (4), starting
from the hypothesis that eu ∈ L1���� has been obtained by Brezis and Merle [2].
Finally, in [1] the authors prove some a priori estimates for solutions of (4) in any
dimension but under the stronger assumption eu is in some ad-hoc Morrey Space
which makes the problem critical.

It is aim of future work to investigate compactness properties of stationary
solutions to equation (4).

2. Preliminary Estimates of the Energy

In this section we are going to prove some preliminary estimates.
We first introduce some notations and recall the definition of Hausforff

measure.
For x0 ∈ �, r > 0 we will denote by Br�x0

or simply by Br the ball B�x0� r�
centered at x0 and with radius r. Given A ⊂ �3 we denote by �A� its Lebegue
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1894 Da Lio

measure, by � s�A� its s dimensional Hausdorff measure and by �A�·� the
characteristic function of A.

We recall (see e.g., [4]) the definition of the s-dimensional Hausforff measure � s

in �n, with 0 ≤ s ≤ n. For any � > 0 and for any A ⊆ �n we set

� s
��A� = inf

{∑
i

wsr
s
i � A ⊆ ⋃

i

Bri
� ri < ��∀i

}

where ws = s/2

��1+s/2� and the infimum is taken over all contable collections of ball
�Bri

� covering the set A and having radii r < �. The s-dimensional Hausdorff
measure is then defined as

� s�A� = lim
�→0

� s
��A��

Given x0 ∈ � and 0 < r < d�x0� 
�� we introduce the following energy

�x0�r
�u� = 1

r

∫
Br

��u�2dx + 1
r

∫
Br

eudx (10)

and set

�u�x0�r �=
1

�
Br�x0
�
∫

Br�x0

u�y�dy�

The key result to prove Theorem 1.1 is the following assertion about the
energy (10).

Theorem 2.1. There exist constants �� � ∈ �0� 1� such that for every x0 ∈ � and
0 < r < d�x0� 
��/2,

�x0�2r
�u� ≤ � and �u�x0�r�x0�2r

�u� ≤ � (11)

imply

�y�s�u� ≤ Cs�

for all y in a neighborhood of x0, for all s ≤ r, and for some C depending on r and
independent on y� s�

In order to prove Theorem 2.1 we need to give some definitions and to show a
series of preliminary results.

We decompose u− �u�x0�r as the sum of two functions solving to different
Dirichlet problems. More precisely we write u− �u�x0�r = v+ w, with v and w
satisfying respectively {

−�v = eu in Br

v = 0 on 
Br�
(12)

{
−�w = 0 in Br

w = u− �u�x0�r on 
Br�
(13)
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Stationary Solutions to Liouville-Type Equation 1895

We observe that up to a choice of smaller radius r and � we may suppose without
loss of generality that

∫

Br

eu + ��u�2dx ≤ C

2r

∫
B2r

eu + ��u�2dx ≤ �� (14)

Indeed by Mean Value Theorem we can find �̄ ∈ �3/4� 4/5� such that

∫

B�̄r

eu + ��u�2dx ≤ 20
r

∫
Br

eu + ��u�2dx�

Setting r ′ = �̄r, �′ = 40�, with � < 1
120 , we get

∫

Br′

eu + ��u�2dx ≤ 40
2r ′

∫
B2r′

eu + ��u�2dx ≤ �′�

The new r and � will be respectively r ′ and �′.
Given a constant C > 1 and a positive function f ∈ L1�B2r �, by a C-good slice

in ��1� �2� ⊂ �0� 1/2�, we mean any sphere of radius � ∈ ��1� �2� such that

∫

B�r

f dx ≤ C

r��2 − �1�

∫
Br

f dx�

We observe that the existence of a good slice is a consequence of Fubini
Theorem. Moreover one can check that for every � > 0 there exists C� > 0 such the
set of the C�-good slices has Lebesgue measure bounded from below by �2 − �1 − �.
This property will be frequently used throughout the paper.

We now prove two Lemmae which will be useful in the next subsections. In the
first one we show that �x0�r

�w� is nonincreasing with respect to the radius r and in
the second one we show that that �v and �w are orthogonal in Br .

Lemma 2.1. The functions ew and ��w�2 satisfy respectively

1
�r

∫
B�r

ewdx ≤ �2 1
r

∫
Br

ewdx� (15)

and

1
�r

∫
B�r

��w�2dx ≤ �2 1
r

∫
Br

��w�2dx� (16)

for every � ∈ �0� 1�.

Proof. We observe that w ∈ C��Br� and both ew and ��w�2 are sub-harmonic in Br .
Indeed we have

−�ew = −��w�2ew ≤ 0 in Br
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1896 Da Lio

and

−���w�2 = −∑
i�j

(

2w


xi
xj

)2

≤ 0 in Br�

A well-known fact of sub-harmonic functions is that their mean value on a ball is a
non increasing function with respect to radius of the ball, namely for every � ∈ �0� 1�
we have

1
�B�r �

∫
B�r

ewdx ≤ 1
�Br �

∫
Br

ewdx

1
�B�r �

∫
B�r

��w�2dx ≤ 1
�Br �

∫
Br

��w�2dx�

This clearly implies

1
�

∫
B�r

ewdx ≤ �2 1
r

∫
Br

ewdx

1
�

∫
B�r

��w�2dx ≤ �2 1
r

∫
Br

��w�2dx

and we conclude.
�

Lemma 2.2. The following estimate holds∫
Br

��u�2dx =
∫
Br

��v�2dx +
∫
Br

��w�2dx�

Proof. Let ��x� denote the exterior normal versor to 
Br at the point x ∈ 
Br .
We have ∫

Br

�w · �v dx =
∫

Br

v�w · �−
∫
Br

v �w = 0�
�

Now we recall the definition of the weak L2 space (or Marcinkievicz space L2��,
see [13]).

The space L2����� is defined as the space of functions f � � → � such that

sup
�∈�

���x � �f ��x� ≥ ���1/2 < +��

The dual space of L2����� is the Lorentz space L2�1��� whose norm is equivalent

��f ��2�1 
∫ �

0
2��x � �f ��x� ≥ s��ds�

In dimension 2 we have the following property: W 1�1��� continuously embeds in
L2�1���� (see e.g. [9, 14, 15]).

We next recall a result obtained by Lin and Riviere in [10] in the framework of
Ginzurg–Landau functionals, which will play a crucial role to get estimates of the
energy (10).
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Stationary Solutions to Liouville-Type Equation 1897

Lemma 2.3 (Lemma A.2, [10]). For any g ∈ L1�B1�, if we denote

f�x� =
∫
B1

g�y�

�y − x�2 dy�

then for every � > 0 there exists a subset E� ⊆ �0� 1� and �E�� > 1− � such that for all
� ∈ E� we have

�f�L2���
B��
≤ C��g�L1�B1�

�

where C� depends only on �.

In the next two subsections we are going to estimate 1
�r

∫
B�r

eudx and
1
�r

∫
B�r

��u�2dx (with 0 < � < 1/2) in function of the energy �x0�2r
�u��

2.1. Estimate of eu

In this subsection we are going to estimate 1
�r

∫
B�r

eudx in function of the energy
�x0�2r

�u�� More precisely we prove the following theorem.

Theorem 2.2. For all � ∈ �0� 1�, there exist constants � ∈ �0� 1�, 0 < �1 < �2 < 1/2
such that

�x0�2r
�u� ≤ �� (17)

implies

1
�r

∫
B�r

eudx ≤ ��x0�2r
�u�� (18)

for every � ∈ ��1� �2�.

Proof. We split the proof in several steps.

Step 1. We start by estimating the oscillation of w in B�r with 0 < � < 1/2 and
the mean value of v2 in Br .

Proposition 2.1. For all � ∈ �0� 1/2� and x� y ∈ B�r we have

�w�x�− w�y�� ≤ C�1/2�2�r��

for some C depending only on the dimension of the space.

Proof. We set w̄r = w�rx + x0�� w̄r satisfies{
−�w̄r = 0 in B1

w̄r = ur − �ur�1�x0 on 
B1�
(19)
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1898 Da Lio

Standard elliptic estimates and Poincaŕe–Wirtinger Inequality imply that for all
� ∈ �0� 1/2� and for some C > 0 we have

�w̄r�C1�B��
≤ C

( ∫

B1

�ur − �ur�1�x0�
2dx

)1/2

≤ C��ur�L2�
B1�
�

Thus for every x� y ∈ B�r we have

�w�x�− w�y��2 ≤ C�x − y�2
∫

Br

��u�z��2dz ≤ C�x − y�2�� (20)

where in the last inequality of (20) we use assumption (17) on the energy and (14).
Hence

�w�x�− w�y�� ≤ C�2�r��1/2 (21)

and we can conclude. �

Proposition 2.2. The function v satisfies

(
1
r3

∫
Br

v2�x�dx

)1/2

≤ C�� (22)

Proof of Proposition 2.2. We recall that

v�x� =
∫
Br

eu�y�G�x� y�dy�

where G�x� y� is the Green function on the ball which satisfies

�G�x� y�� ≤ C
1

�x − y� and ��xG�x� y�� ≤ C
1

�x − y�2 �

(see for instance [6]).
Thus ( ∫

B1

v2�rx�dx

)1/2

≤ Cr2
∫
B1

eu�rx�dx� (23)

Setting y = rx we get

(
1
r3

∫
Br

v2dy

)1/2

≤ C
1
r

∫
Br

eudy�

By assumption (17) we get (22) and we conclude. �

Step 2. From (22) it follows

���x ∈ B�r � v ≥ �1/2����1/2 ≤
( ∫

Br

v2�x�dx

)1/2

≤ C�r3/2� (24)
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Stationary Solutions to Liouville-Type Equation 1899

Hence

��x ∈ B�r � v ≥ �1/2�� ≤ C�r3� (25)

Now let us take � > 0 (that we will determine later) and set

I1� �= �x � v�x� ≤ �1/2�

I1� �= �x � v�x� ≥ ��

I2��� = �x � �1/2 ≤ v�x� ≤ ���

By using the fact that v solves (12) and Lemma 2.2, we obtain

1
r

∫
Br

veudx = 1
r

∫
Br

v�−�v�dx

= 1
r

∫
Br

��v�2dx ≤ 1
r

∫
Br

��u�2dx�

Thus

1
�r

∫
B�r∩I1�

eudx ≤ 1
�r�

∫
B�r∩I1�

veudx

≤ 1
�r�

∫
Br

��v�2dx ≤ 1
�r�

∫
Br

��u�2dx� (26)

We also have

1
�r

∫
B�r∩I1�

eudx ≤ e�
1/2
e�u�x0�r

1
�r

∫
B�r

ewdx� (27)

By Proposition 2.1, estimate (25) and the fact that ew�0� ≤ 1
�B�r �

∫
B�r

ew�x�dx� being
ew sub-harmonic, we get

1
�r

∫
B�r∩I2���

eudx ≤ e�e�u�x0�r
1
�r

∫
B�r∩I2���

ewdx

= e�e�u�x0�r ew�0�
1
�r

∫
B�r∩I2���

ew�x�−w�0�dx

≤ e�e�u�x0�r eC�
1/2 ∣∣�x � v ≥ �1/2�

∣∣ 1
�r

1
��r�3

∫
B�r

ewdx

≤ Ce�e�u�x0�r eC�
1/2
�
1
�3

1
�r

∫
B�r

ewdx� (28)

By combining estimates (26), (27) and (28) and Lemma 2.1 we finally get

1
�r

∫
B�r

eudx = 1
�r

∫
B�r∩I1�

eudx + 1
�r

∫
B�r∩I1�

eudx + 1
�r

∫
B�r∩I2���

eudx

≤ e�
1/2
e�u�x0�r

1
�r

∫
B�r

ewdx+ 1
�r�

∫
B�r

��u�2dx+Ce�e�u�x0�r eC�
1/2
�
1
�3

1
�r

∫
B�r

ewdx
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1900 Da Lio

≤ e�
1/2
e�u�x0�r �2 1

r

∫
Br

ewdx + 1
��

1
r

∫
Br

��u�2dx + Ce�e�u�x0�r eC�
1/2
�

�

1
r

∫
Br

ewdx

=
[
Ce�eC�

1/2
�

�
+ �2e�

1/2

]
e�u�x0�r

1
r

∫
Br

ewdx + 1
��

1
r

∫
Br

��u�2 dx�

Now we first fix the interval ��1� �2� ⊆ �0� 1/2� where we make � vary, and then the
constants �� ��

Consider any 0 < �′ < 1/4. We choose � such that

e�2 <
�′

3
�

Hence we take �1� �2 satsfying 0 <
√
�′

3
√
3e

< �1 < �2 <
√
�′√
3e
� Then we choose � large

enough so that

1
�1�

<
�′

3

and finally we choose � small enough so that

CeC�
1/2
e��

1
�1

<
�′

3
�

We observe that
∫
Br
ewdx ≤ ∫

Br
eu−ux0�r dx, being v nonnegative by the Maximum

Principle. Thus by these choices of the constants �1� �2, � and � we have

1
�r

∫
B�r

eudx ≤ �′
[
1
r

∫
Br

eudx + 1
r

∫
Br

��u�2dx
]
≤ 2�′�x0�2r

�

for all � ∈ ��1� �2�� Setting, � = 2�′ we can conclude. �

2.2. Estimate of �u

In this subsection we are going to estimate 1
�r

∫
B�r

��u�2dx in function of �x0�2r
�u�,

with � ∈ ��1� �2� ⊆ �0� 1/2�, �1� �2 being the constants determined in Theorem 2.2.

Theorem 2.3 (Estimate Gradient of u). For every � > 0 there exists a subset
E� ⊆ ��1� �2� and �E�� > �2 − �1 − 3� such that for all � ∈ E� we have

1
�r

∫
B�r

��u�2dx ≤ ���x0�2r
�u��+ C��x0�2r

�u��
(
�x0�2r

�u�+ �u�+x0�r�x0�2r
�u�

)
� (29)

for some C > 0 and 0 < � < 1 independent on r�

Proof. We split the proof in several steps.

Step 1. Estimate of �v�
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Stationary Solutions to Liouville-Type Equation 1901

Proposition 2.3. For some C > 0 (independent on r) we have

∫
Br

��v� log�2+ ��v��dx ≤ C

( ∫
Br

�eu + ��u�2dx+ �u�+r�x0

∫
Br

eudx+ 4r
∫

Br

��u�2dx
)
�

(30)

Proof of Proposition 2.3. We have

∫
Br

��v� log�2+ ��v��dx =
∫
Br

eu log�2+ eu�dx

≤ C
∫
Br

eu�1+ u+�dx (31)

≤ C

[ ∫
Br

eudx + �u�+r�x0

∫
Br

eudx +
∫
Br

euv+dx +
∫
Br

euw+dx
]

We estimate
∫
Br
euv+dx and

∫
Br
euw+dx. We have

∫
Br

euv+dx =
∫
Br

−�vv dx =
∫
Br

��v�2dx

≤
∫
Br

��u�2dx� (32)

∫
Br

euw+dx =
∫
Br

−�uw+dx

= −
∫
Br

div��uw+�dx +
∫
Br

�u · �w+

≤ −
∫

Br


u


�
w+dx + 2

( ∫
Br

��u�2dx +
∫
Br

��w�2dx
)

≤ 2r
∫

Br

��u�2dx + 2
r

∫

Br

��u− �u�r�x0�
+�2dx + 4

∫
Br

��u�2dx

≤ 2r
∫

Br

��u�2dx + 2r
∫

Br

��u�2dx + 4
∫
Br

��u�2dx�

≤ 4
∫
Br

��u�2dx + 4r
∫

Br

��u�2dx� (33)

By combining (31), (32), (33) we finally get

∫
Br

��v� log�2+ ��v��dx

≤ C

[ ∫
Br

eudx + �u�+r�x0

∫
Br

eudx + 4
∫
Br

��u�2dx + 4r
∫

Br

��u�2dx
]

≤ C

( ∫
Br

eu + ��u�2dx + �u�+r�x0

∫
Br

eudx + 4r
∫

Br

��u�2dx
)
�

Thus we can conclude. �
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1902 Da Lio

Corollary 2.1. We have �2v ∈ L1�Br� and

��2v�L1�Br �
≤ C

( ∫
Br

�eu + ��u�2dx + �u�+r�x0

∫
Br

eudx + 4r
∫

Br

��u�2dx
)
�

Proof. Calderon–Zygmund theory (see e.g., [14]) yields that if
∫
Br
��v� log�2+

��v��dx < +� then �2v ∈ L1�Br� and

��2v�L1�Br �
≤ C

∫
Br

��v� log�2+ ��v��dx�

Thus the result follows directly from Proposition 2.3 and we conclude. �

We can now use Lemma 2.3 to prove the following result.

Proposition 2.4. For every � > 0 small enough, there exists a subset E1
� ⊆ ��1� �2� and

�E1
� � > �2 − �1 − � such that for all � ∈ E1

� we have

��v�L2���
B�r �
≤ C�

r

∫
Br

eudx�

where C� depends only on �.

Proof of Proposition 2.4. As we observe in the proof of Proposition 2.2, we can write

v�x� =
∫
Br

eu�y�G�x� y�dy�

where G�x� y� is the Green function on Br� Since ��xG�x� y�� ≤ C 1
�x−y�2 we have

��v�x�� ≤ C
∫
Br

eu�y�

�x − y�2 dy�

Lemma 2.3 yields that for every � > 0 there exists a subset E1
� ⊆ ��1� �2� and �E1

� � >
�2 − �1 − � such that for almost very � ∈ E1

� we have

��v�L2���
B�r �
≤ C�

r

∫
Br

eudx�

and we conclude. �

Proposition 2.5. For every � > 0 there exists a subset E� ⊆ ��1� �2� and �E�� > �2 −
�1 − 3� such that for all � ∈ E� we have

∫

B�r

��v�2dx ≤ C
(
�x0�r

�u�
)(
�x0�r

�u�+ �u�+r�x0�x0�r
�u�+ �x0�2r

�u�
)
�

with C depending on � and the dimension.
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Stationary Solutions to Liouville-Type Equation 1903

Proof. Since �2v ∈ L1�Br�, from Fubini Theorem it follows that for all � > 0 there
is E2

� ⊆ ��1� �2�, �E2
� � > �2 − �1 − � and C� such that for all � ∈ E2

� we have

∫

B�r

��2v�dx ≤ C�

1
r��2 − �1�

∫
Br

��2v�dx�

We set C = C�

��2−�1�
� By the embedding of the space W 1�1�
B�r� into L2�1�
B�r�,

we have �v ∈ L2�1�
B�r� as well and thus the following estimate holds

��v�L2�1�
B�r �
≤ C��2v�L1�
B�r �

≤ C
1
r
��2v�L1�Br �

≤ C

(
1
r

∫
Br

��u�2 + eudx + �u�+r�x0
1
r

∫
Br

eudx + 4
∫

Br

��u�2dx
)
�

Now set E� �= E1
� ∩ E2

� . We have �E�� > �2 − �1 − 3��
By using the duality between L2�� and L2�1 and Proposition 2.4, for all � ∈ E�

we obtain∫

B�r

��v�2dx ≤ ��v�L2���
B�r �
��v�L2�1�
B�r �

(34)

≤ C

(
1
r

∫
Br

eudx

)(
1
r

∫
Br

��u�2 + eudx + �u�+r�x0
1
r

∫
Br

eudx

+ 4
∫

Br

��u�2dx
)
� (35)

Since we may suppose without restriction that

∫

Br

��u�2dx ≤ C

2r

∫
B2r

��u�2dx�

(see (14)), we have

∫

B�r

��v�2dx ≤ C

(
1
r

∫
Br

eudx

)

×
(
1
r

∫
Br

��u�2 + eudx + �u�+r�x0
1
r

∫
Br

eudx + 4
∫

Br

��u�2 dx
)

≤ C
(
�x0�r

�u�
)(
�x0�r

�u�+ �u�+r�x0�x0�r
�u�+ �x0�2r

�u�
)
�

and we can conclude. �

Step 2. We premise two remarks.

1. Since w solves (13), then

∫

Br

∣∣∣∣
w
�
∣∣∣∣
2

dx ≤
∫

Br

��Tw�2 dx =
∫

Br

��Tu�2 dx� (36)
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1904 Da Lio

To show the first inequality in (36), one can use for instance the monotonicity formula
for harmonic funtions.

Thus

∫

B�r

��w�2dx ≤ 2
∫

Br

��u�2dx� (37)

2. Since ��w�2 is sub-harmonic, for every � ∈ E� we have

∫

B�r

��w�2dx ≤ �2
∫

Br

��w�2dx� (38)

The proof of (38) is similar to the one of Lemma 2.1.

From (37), (38) and (14) it follows

∫

B�r

��w�2dx ≤ C�2
∫

Br

��u�2dx

≤ C�2

2r

∫
B2r

��u�2dx� (39)

From Proposition 2.5 and (39) it follows that for all every � ∈ E� we have

∫

B�r

��u�2dx ≤ 2
∫

B�r

��w�2dx + 2
∫

B�r

��v�2dx

≤ C
�2

2r

∫
B2r

��u�2dx + C��x0�r
�u����x0�r

�u�+ �u�+r�x0�x0�r
�u�+ �x0�2r

�u��

≤ C�2�x0�2r
�u�+ C��x0�r

�u����x0�r
�u�+ �u�+r�x0�x0�r

�u�+ �x0�2r
�u���

Finally by applying formula (8) to u in the ball B�r and Theorem 2.2, we obtain the
following estimate

1
�r

∫
B�r

��u�2dx ≤
∫

B�r

��u�2dx + 6
�r

∫
B�r

eudx

≤ C�2�x0�2r
�u�+ C�x0�2r

�u���x0�2r
�u�+ �u�+r�x0�x0�2r

�u�+ �x0�2r
�u��

+ 6
�r

∫
B�r

eudx

≤ C�2�x0�2r
�u�+ 2C�x0�2r

�u���x0�2r
�u�+ �u�+r�x0�x0�2r

�u�+ �x0�2r
�u��

+ 6��x0�2r
�u�

≤ �C�2 + 6���x0�2r
�u�+ 2C�x0�2r

�u�

× ��x0�2r
�u�+ �u�+r�x0�x0�2r

�u�+ �x0�2r
�u��

where � is the constant appearing in Theorem 2.2. We remark that we can always
choose �2 and � in Theorem 2.2 in such a way that C�2

2 + 6� < � < 1� With this
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Stationary Solutions to Liouville-Type Equation 1905

choice we also get

1
�r

∫
B�r

��u�2dx ≤ ��x0�2r
�u�+ C�x0�2r

�u���x0�2r
�u�+ �u�+r�x0�x0�2r

�u��

and we can conclude the proof of Theorem 2.3. �

3. Proofs of Theorems 2.1 and 1.1

In this section we give the proof of Theorems 2.1 and 1.1. We start by giving an
estimate of the mean value �u�r�x0 .

Lemma 3.1. For all 0 < r < s ≤ 1 the following estimate holds

�u�r�x0 ≤ �u�s�x0 +
1
r

∫
Br

eu�x�dx −
∫
Bs\Br

eu�x�

�x − x0�
dx� (40)

Proof. One can check that in the sense of distribution the following estimate holds

d

dr
�u�r�x0 = − 1

r2

∫
Br

eu�x�dx < 0� (41)

Integrating (41) between r and s > r we get

�u�r�x0 = �u�s�x0 +
1
r

∫
Br

eu�x�dx − 1
s

∫
Bs

eudx +
∫
Bs\Br

eu

�x − x0�
dx� (42)

and we conclude. �

Proof of Theorem 2.1. We split the proof in several steps.

Step 1. By combining Theorems 2.2 and 2.3 we can find � ∈ ��1� �2�
(independent on r) such that

�x0��r
�u� ≤ ��x0�2r

�u�+ C�x0�2r
�u�

(
�x0�2r

�u�+ �u�+r�x0�x0�2r
�u�

)
� (43)

Indeed we observe that up to choosing �� � and �1� �2 smaller, the constant �1 always
satisfies (43).

Up to replace � by �/2 and 2r by r we can rewrite (43) as follows

�x0��r
�u� ≤ ��x0�r

�u�+ C�x0�r
�u�

(
�x0�r

�u�+ �u�+x0�r/2�x0�r
�u�

)
� (44)

We set �j = �jr, aj = �x0��j
�u� and uj = �u�x0��j/2� We first estimate uj . First of all

we have

uj ≤ u0 +
2
�0

∫
B�0/2

eudx +
j∑

k=0

2
�k+1

∫
B�k

eudx (45)
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1906 Da Lio

≤ u0 +
2
�0

∫
B�0

eudx + 2
�1

j∑
k=0

�x0��k
�u�

≤ u0 +
8
�1

j∑
k=0

�x0��k
�u� (46)

By plugging (45) in (44) we get

aj+1 ≤ �aj + Caj

(
aj + aju0 +

8
�1

aj

( j∑
0

ak

))
(47)

The recursive formula (47) implies that if � is small enough then

aj ≤ a0�̄
j�

for some 0 < �̄ < 1. We deduce that for all 0 ≤ s ≤ r we also have

�x0�s
�u� ≤ Cs��

with 0 < � < 1 and C is a positive constant that may depend on r�

Step 2. Claim: The maps

�× �0� 1� → � �x0� r� �→ �x0�r
�u�

and

�× �0� 1� → �� �x0� r� �→ �u�r�x0

are continuous.

Proof of the Claim. The continuity of �x0� r� �→ �x0�2r
�u� follows from the fact that

eu and ��u�2 are in L1���.
As far as the continuity of �x0� r� �→ �u�r�x0 is concerned, we observe that for

0 < r < 1 we have

�u�r�x0 = �u�1�x0 +
1
r

∫
Br

eu�x�dx −
∫
B1

eu�x�dx +
∫
B1\Br

eu�x�

�x − x0�
dx� (48)

Therefore we need only to show the continuity of the map x0 �→ �u�1�x0 , being the
other terms in the right hand side of (48) continuous with respect to �x0� r�.

The continuity of the map x0 �→ �u�1�x0 , follows from the fact it can be
represented as the composition of the following three continuous maps.

The first map is: � → W 1�2�B1�0�, x0 �→ u�x − x0�.
The second map is the trace operator:

W 1�2�B1�0� → W 1/2�2�
B1�0�� u �→ u�
Br�0
�
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Stationary Solutions to Liouville-Type Equation 1907

The third one is the bounded linear operator

H1/2�
B1�0� → �� w �→ 1
�
B1�0�

∫

B1�0

wdx�

Step 3. By the continuity of �x� r� �→ �x�2r �u� and �x� r� �→ �u�x�r we can
conclude that up to the choice of a smaller �� we can find � > 0 such that for all
y ∈ B��x0

and for s ∈ �r − �� r + �� we have

�y�2s�u� < �� and �u�y�s�y�2s�u� < ��

Finally by Theorems 2.2, 2.3 and Step 1 we get

�s�y�u� ≤ Cs��

for all y ∈ B��x0
and for s ≤ s0, s0 being a constant independent on y (actually

by changing C we could choose s0 = r). Thus we can conclude the proof of
Theorem 2.1. �

Proof of Theorem 1.1. Set

� = �x ∈ � � �x�2r �u� < � and �u�x�r �x�2r �u� < � for some 0 < r < d�x���/2��

From Theorem 2.1 it follows that � is open. Moreover u ∈ C�/2���, (see e.g.,
Giaquinta [5]), and routine elliptic regularity theory then proves that u ∈ C�����

We set

A1 = �x ∈ � � �x�r �u� ≥ � for all 0 < r < d�x����

and

A2 = �x ∈ � � �u�x�r/2�x�r �u� ≥ � for all 0 < r < d�x�����

We have

V = �c = A1 ∪ 	2�

Next we show that �1�A1� = 0 and �1+��A2� = 0 for any � > 0�

1. �1�A1� = 0.
Let x ∈ A1. By definition we have

�r�x�u� ≥ � (49)

for all 0 < r < d�x���. Now fix � > 0 and define


 =
{
Br�x � x ∈ A1� 0 < r < �� Br�x ⊆ �� and

∫
Br�x

��u�2 + eudx ≥ ��r�

}

By Vitali–Besicovitch Covering Theorem (see for instance [4]), we can find an at
most countable family of points �xi0�i∈I , x

i
0 ∈ A1 and 0<ri < � such that Bri

�xi0�∈
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1908 Da Lio

and A1 ⊆
⋃

i∈I Bri
�xi0�� Moreover every x ∈ A1 is contained in at most N balls, N

being a number depending only on the dimension of the space.
The following estimates holds

�
∑
i∈I

ri ≤
∑
i∈I

∫
Bri

�xi0�
��u�2 + eudx� (50)

∑
i∈I

∫
Bri

�xi0�
��u�2 + eudx ≤

∫
�

∑
i∈I

�Bri
�xi0�

�x����u�2 + eu�dx

≤ N
∫
�x�d�x�A1�<��

���u�2 + eu�dx ≤ C� (51)

where the constant C does not depend on ��

Claim: The estimates (50) and (51) imply that �1�A1� = 0�

Proof of the Claim. By combining (50) and (51) and sending � → 0, we get a
priori that �1�A1� < +�� As a consequence �A1� = �3�A1� = 0 and in particular
lim�→0 ��x � d�x� A1� < ��� = 0� Hence since ���u�2 + eu� ∈ L1���, we also have

lim
�→0

∫
�x�d�x�A1�<��

���u�2 + eu�dx = 0�

Therefore by sending � → 0 in (50) and (51) we actually get that that �1�A1� = 0
and we conclude the proof of the claim.

2. �1+��A2� = 0�
Let x ∈ A2. By definition

�u�x�r�x�r �u� ≥ � (52)

for all 0 < r < d�x���.
Let us consider r > 0 such that∫


Br/2

udx ≤ C

r

∫
Br

u dx ≤ Cr1/2�

For such a r, Jensen’s Inequality implies that

e�u�r�x ≤ 1
�
Br�x�

∫

Br�x

eudx ≤ C

r3/2
�

Thus

�u�r�x ≤ −C log�r3/2��

Therefore if x ∈ A2, we can find 0 < r < d�x��� such that −C log�r3/2��r�x�u� ≥ ��

Now fix � ∈ �0� 1� and define


 =
{
Br�x � x ∈ A2� 0 < r < �� Br�x ⊆ �� and

∫
Br�x

��u�2 + eudx ≥ −C�r log�r3/2�
}
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Stationary Solutions to Liouville-Type Equation 1909

By Vitali–Besicovitch Covering Theorem we can find an at most countable
family of points �xi0�i∈I , xi0 ∈ A2 and 0 < ri < � such that Bri

�xi0� ∈ 
 and A2 ⊆⋃
i∈I Bri

�xi0�� Moreover every x ∈ A2 is contained in at most N balls, N being a
number depending only on the dimension of the space.

We have

N
∫
�
�eu + ��u�2�dx ≥ N

∫
�x�d�x�A2�<��

�eu + ��u�2�dx

≤ ∑
i∈I

∫
Bri

�xi0�
�eu + ��u�2�dx (53)

≥ −�C
∑
i∈I

�ri��log �ri��
−1�

If � is small enough, then (53) implies that for all � > 1
∑

i∈I �r�i � < +� as well.
This implies by definition �dim�A2� ≤ 1�

It follows that �dim�V� ≤ 1 too and we conclude. �
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