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Abstract

We prove the regularity of weak 1/2−harmonic maps from the real line into a
sphere. The key point in our result is first a formulation of the 1/2−harmonic map
equation in the form of a non-local linear Schrödinger type equation with a 3-terms

commutators in the right-hand-side . We then establish a sharp estimate for these
3-commutators.
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1 Introduction

Since the early 50’s the analysis of critical points to conformal invariant Lagrangians has
raised a special interest, due to the important role they play in physics and geometry.

For a complete overview on this topic we refer the reader to the introduction of [18] .
Here we recall some classical examples of conformal invariant variational problems.

The most elementary example of a 2-dimensional conformal invariant Lagrangian is
the Dirichlet Energy

E(u) =

∫

D

|∇u(x, y)|2dxdy , (1)

where D ⊆ R2 is an open set and u : D → IR, ∇u is the gradient of u . We recall that a
map φ : C → C is conformal if it satisfies





|∂φ
∂x

| = |∂φ
∂y

|

〈∂φ
∂x
,
∂φ

∂y
〉 = 0

det∇φ ≥ 0 and ∇φ 6= 0 .

(2)

Here 〈·, ·〉 denotes the standard Euclidean inner product in IRn .
For every u ∈ W 1,2(D, IR) and every conformal map φ, deg(φ) = 1, the following holds

E(u) = E(u ◦ φ) =
∫

φ−1(D)

|(∇ ◦ φ)u(x, y)|2dxdy .

Critical points of this functional are the harmonic functions satisfying

∆u = 0, in D . (3)

We can extend E to maps taking values in IRm as follows

E(u) =

∫

D

|∇u(x, y)|2dxdy =
∫

D

m∑

i=1

|∇ui(x, y)|2dxdy , (4)

where ui are the components of u . The Lagrangian (4) is still conformally invariant and
each component of its critical points satisfies the equation (3) .

We can define the Lagrangian (4) also in the set of maps taking values in a compact
submanifold N ⊆ IRm without boundary.

−∆u ⊥ TuN ,
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where TξN is the tangent plane a N at the point ξ ∈ N , or in a equivalent way

−∆u = A(u)(∇u,∇u) := A(u)(∂xu, ∂xu) + A(u)(∂yu, ∂yu), (5)

where A(ξ) is the second fundamental form at the point ξ ∈ N (see for instance [11]).
The equation (5) is called the harmonic map equation into N .

In the case when N is an oriented hypersurface of IRm the harmonic map equation
reads as

−∆u = n〈∇n,∇u〉 , (6)

where n denotes the composition of u with the unit normal vector field ν to N .
All the above examples belongs to the class of conformal invariant coercive Lagrangians

whose corresponding Euler-lagrangian equation is of the form

−∆u = f(u,∇u) , (7)

where f : IR2 × (IRm ⊗ R2) → IRm is a continuous function satisfying for some positive
constant C

C−1|p|2 ≤ f(ξ, p)| ≤ C|p|2, ∀ ξ, p .
One of the main issues related to equation (7) is the regularity of solutions u ∈ W 1,2(D,N ).
We observe that equation (7) is critical in dimension n = 2 for the W 1,2-norm. Indeed if
we plug in the nonlinearity f(u,∇u) the information that u ∈ W 1,2(D,N ), we get that
∆u ∈ L1(D) and thus ∇u ∈ L2,∞

loc (D) the weak L2 space (see [23]), which has the same
homogeneity of L2 . Hence we are back in some sense to the initial situation. This shows
that the equation is critical.

In general W 1,2 solutions to equations (7) are not smooth in dimension greater that
2 (see counter-example in [17]). We refer again the reader to [9] for a more complete
presentation of the results concerning the regularity and compactness results for equations
(7).

Here we are going to recall the approach introduced by F. Hélein [11] to prove the
regularity of harmonic maps from a domain D of IR2 into the unit sphere Sm−1 of IRm .
In this case the Euler-Lagrange equation is

−∆u = u|∇u|2 . (8)

It was observed by Shatah [22] that u ∈ W 1,2(D,Sm−1) is a solution of (8) if and only if
the following conservation law holds

div(ui∇uj − uj∇ui) = 0, (9)

for all i, j ∈ {1, . . . , m} .
Using (9) and the fact that |u| ≡ 1 =⇒ ∑m

j=1 uj∇uj = 0, Hélein wrote the equation
(8) in the form

−∆u = ∇⊥B · ∇u, (10)
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where∇⊥B = (∇⊥Bij) with∇⊥Bij = ui∇uj−uj∇ui , (for every vector field v : IR2 → IRn,
∇⊥v denotes the π/2 rotation of the gradient ∇v, namely ∇⊥v = (−∂yv, ∂xv)) .

The r.h.s of (10) can be written as a sum of jacobians:

∇⊥Bij∇uj = ∂xuj∂yBij − ∂yuj∂xBij .

This particular structure permits to apply to the equation (8) the following result

Theorem 1.1 [29] Let D be a smooth bounded domain of IR2. Let a and b be two mea-
surable functions in D whose gradients are in L2(D). Then there exists a unique solution
ϕ ∈ W 1,2(D) to 




−∆ϕ =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
, in D

ϕ = 0 on ∂D .
(11)

Moreover there exists a constant C > 0 independent of a and b such that

||ϕ||∞ + ||∇ϕ||L2 ≤ C||∇a||L2||∇b||L2 .

In particular ϕ is a continuous in D .

Theorem 1.1 applied to equation (10) leads, modulo some standard localization argument
in elliptic PDE, to an estimate of the form

‖∇u‖L2(Br(x0)) ≤ C ‖∇B‖L2(Br(x0)) ‖∇u‖L2(Br(x0)) + Cr ‖∇u‖L2(∂Br(x0)) (12)

for every x0 ∈ D and r > 0 such that Br(x0) ⊂ D. Assuming we are considering radii
r < r0 such that maxx0∈D C ‖∇B‖L2(Br(x0)) < 1/2, then (12) implies a Morrey estimate
of the form

sup
x0,r>0

r−β

∫

Br(x0)

|∇u|2 dx < +∞ (13)

for some β > 0 which itself implies the Hölder continuity of u by standard embedding
result (see [9]). Finally a bootstrap argument implies that u is in fact C∞ - and even
analytic - (see [12] and [15]).

In the present work we are interested in 1 dimensional quadratic Lagrangians which
are invariant under the trace of conformal maps that keep invariant the half space IR2

+:
the Möebius group.

A typical example is the following Lagrangian that we will call L−energy - L stands
for ”Line” -

L(u) =

∫

IR

|∆1/4u(x)|2dx , (14)

where u : IR → N , N is a smooth k-dimensional submanifold of IRm which is at least
C2, compact and without boundary. We observe that the L(u) in (14) coincides with the
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semi-norm ||u||2
Ḣ1/2(IR)

(for the definition of || · ||Ḣ1/2(IR) we refer to Section 2) . Moreover

a more tractable way to look at this norm is given by the following identity

∫

IR

|∆1/4u(x)|2dx = inf

{∫

IR2
+

|∇ũ|2dx : ũ ∈ W 1,2(IR2, IRm), trace ũ = u

}
.

The Lagragian L extends to map u in the following function space

Ḣ1/2(IR,N ) = {u ∈ Ḣ1/2(IR, IRm) : u(x) ∈ N , a.e, } .

The operator ∆1/4 on IR is defined by means of the the Fourier tranform as follows

∆̂1/4u = |ξ|1/2û ,

(given a function f, f̂ denotes the Fourier transform of f).
Denote πN the orthogonal projection onto N which happens to be a C l map in a

sufficiently small neighborhood of N if N is assumed to be C l+1. We now introduce the
notion of 1/2-harmonic map into a manifold.

Definition 1.1 A map u ∈ Ḣ1/2(IR,N ) is called a weak 1/2-harmonic map into N if for
any φ ∈ Ḣ1/2(IR, IRm) ∩ L∞(IR, IRm) there holds

d

dt
L(πN (u+ tφ))|t=0

= 0 .

2

In short we say that a weak 1/2−harmonic map is a critical point of L in Ḣ1/2(IR,N ) for
perturbations in the target.

1/2−harmonic maps into the circle S1 might appear for instance in the asymptotic of
equations in phase-field theory for fractional reaction-diffusion such as

ǫ2∆1/2u+ u(1− |u|2) = 0

where u is a complex valued ”wave function”.

In this paper we consider the case N = Sm−1. We first write the Euler-Lagrange
equation associated to L in Ḣ1/2(IR, Sm−1) in the following way

Proposition 1.1 A map u in Ḣ1/2(IR, Sm−1) is a weak 1/2-harmonic map if and only if
it satisfies the following Euler-Lagrange equation

∆1/4(u ∧∆1/4u) = T (u∧, u) , (15)
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where, in general for an arbitrary integer n, for every Q ∈ Ḣ1/2(IRn,Mℓ×m(IR)) ℓ ≥ 0(1)

and u ∈ Ḣ1/2(IRn, IRm) , T is the operator defined by

T (Q, u) := ∆1/4(Q∆1/4u)−Q∆1/2u+∆1/4u∆1/4Q . (16)

2

The Euler Lagrange equation (15) will often be completed by the following ”structure
equation” which is a consequence of the fact that u ∈ Sm−1 almost everywhere :

Proposition 1.2 All maps in Ḣ1/2(IR, Sm−1) satisfy the following identity

∆1/4(u ·∆1/4u) = S(u·, u)−R(∆1/4u · R∆1/4u) . (17)

where, in general for an arbitrary integer n, for every Q ∈ Ḣ1/2(IRn,Mℓ×m(IR)), ℓ ≥ 0
and u ∈ Ḣ1/2(IRn, IRm), S is the operator given by

S(Q, u) := ∆1/4[Q∆1/4u]−R(Q∇u) +R(∆1/4QR∆1/4u) (18)

and R is the Fourier multiplier of symbol m(ξ) = i ξ
|ξ|

. 2

In the present work we will first show that Ḣ1/2 solutions to the 1/2-harmonic map
equation (15) are Hölder continuous. This regularity result will be a direct consequence
of the following Morrey type estimate that we will establish

sup
x0∈IR,r>0

r−β

∫

Br(x0)

|∆1/4u|2 dx < +∞ . (19)

To this purpose, in the spirit of what we have just presented regarding Hélein’s proof
of the regularity of harmonic maps from a 2-dimensional domain into a round sphere, we
will take advantage of a ”gain of regularity” in the r.h.s of the equations (15) and (17)
where the different terms T (u∧, u), S(u·, u) and R(∆1/4u · R∆1/4u) play more or less the
role which was played by ∇⊥B · ∇u in (10). Precisely we will establish the following
estimates : for every u ∈ Ḣ1/2(IR, IRm) and Q ∈ H1/2(IR,Mℓ×m(IR)) we have

‖T (Q, u)‖H−1/2 ≤ C ‖Q‖Ḣ1/2(IR) ‖u‖Ḣ1/2(IR) , (20)

‖S(Q, u)‖H−1/2 ≤ C ‖Q‖Ḣ1/2(IR) ‖u‖Ḣ1/2(IR) , (21)

and
‖R(∆1/4u · R∆1/4u))‖Ḣ−1/2 ≤ C ‖u‖2

Ḣ1/2(IR)
. (22)

Our denomination ”gain of regularity” has been chosen in order to illustrate that, under
our assumptions u ∈ Ḣ1/2(IR, IRm) and Q ∈ Ḣ1/2(IR,Mℓ×m(IR)) each term individually

(1)Mℓ×m(IR) denotes, as usual, the space of ℓ×m real matrices.
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in T and S - like for instance ∆1/4(Q∆1/4u) or Q∆1/2u ... - are not in H−1/2 but the
special linear combination of them constituting T and S are in H−1/2. In a similar
way, in dimension 2, J(a, b) := ∂a

∂x
∂b
∂y

− ∂a
∂y

∂b
∂x

satisfies, as a direct consequence of Wente’s
theorem above,

‖J(a, b)‖Ḣ−1 ≤ C ‖a‖Ḣ1 ‖b‖Ḣ1 (23)

whereas, individually, the terms ∂a
∂x

∂b
∂y

and ∂a
∂y

∂b
∂x

are not in H−1.

The estimates (20) and (21) are in fact consequences of the following 3-terms com-
mutator or simply 3-commutator estimates which are valid in arbitrary dimension n and
which represent two of the main results of the present paper. We recall that BMO de-
notes the space of Bounded Mean Oscillations functions of John and Nirenberg (see for
instance [10])

‖u‖BMO(IRn) = sup
{x0∈IRn ; r>0}

1

|Br(x0)|

∫

Br(x0)

∣∣∣∣u(x)−
1

|Br(x0)|

∫
u(y) dy

∣∣∣∣ dx .

Theorem 1.2 Let n ∈ IN∗ and let u ∈ BMO(IRn), Q ∈ Ḣ1/2(IRn,Mℓ×m(IR)) . Denote

T (Q, u) := ∆1/4(Q∆1/4u)−Q∆1/2u+∆1/4u∆1/4Q ,

then T (Q, u) ∈ H−1/2(IRn) and there exists C > 0, depending only on n, such that

||T (Q, u)||H−1/2(IRn) ≤ C ||Q||Ḣ1/2(IRn)||u||BMO(IRn) . (24)

2

Theorem 1.3 Let n ∈ IN∗ and let u ∈ BMO(IRn), Q ∈ Ḣ1/2(IRn,Mℓ×m(IR)) . Denote

S(Q, u) := ∆1/4[Q∆1/4u]−R(Q∇u) +R(∆1/4QR∆1/4u)

where R is the Fourier multiplier of symbol m(ξ) = i ξ
|ξ|

. Then S(Q, u) ∈ H−1/2(IRn) and
there exists C depending only on n such that

||S(Q, u)||H−1/2(IRn) ≤ C ||Q||Ḣ1/2(IRn)||u||BMO(IRn) . (25)

2

The fact that Theorem 1.2 and Theorem 1.3 imply estimates (20) and (21) comes from
the embedding Ḣ1/2(IR) ⊂ BMO(IR).

The parallel between the structures T and S for H1/2 in one hand and the jacobian
structure J for H1 in the other hand can be pushed further as follows. As a consequence
of a result of R. Coifman, P.L. Lions, Y. Meyer and S. Semmes [4], Wente estimate
(23) can be deduced from a more general one : We denote, for any i, j ∈ {1 · · ·n}, and
a, b ∈ Ḣ1(IRn),

Jij(a, b) :=
∂a

∂xi

∂b

∂xj
− ∂a

∂xj

∂b

∂xi
,
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and denote J(a, b) := (Jij(a, b))ij=1···n. With this notation the main result in [4] implies

‖J(a, b)‖Ḣ−1(IRn) ≤ C ‖a‖Ḣ1(IRn) ‖b‖BMO(IRn) (26)

which is reminiscent to (24) and (25). Recall also that (26) is a consequence of a commu-
tator estimate by R. Coifman, R Rochberg and G. Weiss [5].

The two Theorems 1.2 and 1.3 will be the consequence of the two following ones
which are their ”dual versions”. Recall first that H1(IRn) denotes the Hardy space of L1

functions f on IRnsatisfying

∫

IRn

sup
t∈IR

|φt ∗ f |(x) dx < +∞ ,

where φt(x) := t−n φ(t−1x) and where φ is some function in the Schwartz space S(IRn)
satisfying

∫
IRn φ(x) dx = 1. Recall the famous result by Fefferman saying that the dual

space to H1 is BMO.
In one hand Theorem 1.2 is the consequence of the following result.

Theorem 1.4 Let u,Q ∈ Ḣ1/2(IRn), denote

R(Q, u) = ∆1/4(Q∆1/4u)−∆1/2(Qu) + ∆1/4((∆1/4Q)u) .

then R(Q, u) ∈ H1(IRn) and

||R(Q, u)||H1 ≤ C||Q||Ḣ1/2(IRn)||u||Ḣ1/2(IRn) . (27)

In the other hand Theorem 1.3 is the consequence of this next result.

Theorem 1.5 Let u,Q ∈ Ḣ1/2(IRn) and u ∈ BMO(IRn).

S̃(Q, u) = ∆1/4(Q∆1/4u)−∇(QRu) +R∆1/4(∆1/4QRu) .

where R is the Fourier multiplier of symbol m(ξ) = i ξ
|ξ| .Then S̃(Q, u) ∈ H1 and

||S̃(Q, u)||H1 ≤ C||Q||Ḣ1/2(IRn)||u||Ḣ1/2(IRn) . (28)

2

We now say few words on the proof of estimates 27 and 28. The compensations of the
3 different terms in R(Q, u) will be clear from the Littlewood-Paley decomposition of the
different products that we present in section 3. Denoting as usual Π1(f, g) the high-low
contribution - respectively from f and g - denoting Π2(f, g) the low-high contribution and
Π3(f, g) the high-high contribution we shall need the following groupings
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• i) For Π1(R(Q, u)) we proceed to the following decomposition

Π1(R(Q, u)) = Π1(∆
1/4(Q∆1/4u))︸ ︷︷ ︸+Π1(−∆1/2(Qu) + ∆1/4((∆1/4Q)u))︸ ︷︷ ︸ .

• ii) For Π2(R(Q, u)) we decompose as follows

Π2(R(Q, u)) = Π2(∆
1/4(Q∆1/4u)−∆1/2(Qu))︸ ︷︷ ︸+Π2(∆

1/4((∆1/4Q)u))︸ ︷︷ ︸ .

• ii) Finally, for Π3(R(Q, u)) we decompose as follows

Π3(R(Q, u)) = Π3(∆
1/4(Q∆1/4u))︸ ︷︷ ︸−Π3(∆

1/2(Qu))︸ ︷︷ ︸+Π3(∆
1/4((∆1/4Q)u))︸ ︷︷ ︸ .

We remark that the notation Πk(∆
α(fg)) (k = 1, 2, 3, α = 1/4, 1/2) stands for the

operator ∆α(Πk(f, g)) .
Finally, injecting the Morrey estimate (19) in equations (15) and (17), a classical

”elliptic type” bootstrap argument leads to the following result (see [6] for the details of
this argument).

Theorem 1.6 Let u be a weak 1/2-harmonic map in Ḣ1/2(IR, Sm−1). Then it belongs to
Hs

loc(IR, S
m−1) for every s ∈ IR and thus it is C∞ . 2

The paper is organized as follows.

- In Section 2 we give some preliminary definitions and notations.

- In Section 3 we prove the 3-commutator estimates Theorems 1.2 and 1.3.

- In section 4 we study geometric localization properties of the Ḣ1/2− norm on the
real line for Ḣ1/2−functions in general

- In Section 4 we prove some L−energy decrease control on dyadic annuli for general
solutions to some linear non-local systems of equations that will include the systems
(15) and (17).

- in Section 5 we derive the Euler-Lagrange equation (15) associated to the La-
grangian (14) - proposition 1.1. We then prove proposition 1.2. We finally use
the results of the previous section in order to deduce the Morrey type estimate (19)
for 1/2−harmonic maps into a sphere .
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2 Notations and Definitions

In this Section we introduce some notations and definitions we are going to use in the
sequel.

For n ≥ 1, we denote respectively by S(IRn) and S ′(IRn) the spaces of Schwartz
functions and tempered distributions. Moreover given a function v we will denote either
by v̂ or by F [v] the Fourier Transform of v :

v̂(ξ) = F [v](ξ) =

∫

IRn

v(x)e−i〈ξ,x〉 dx .

Throughout the paper we use the convention that x, y denote variables in the space and
ξ, ζ variables in the phase .

We recall the definition of fractional Sobolev space (see for instance [26]).

Definition 2.1 For a real s ≥ 0,

Hs(IRn) = {v ∈ L2(IRn) : |ξ|sF [v] ∈ L2(IRn)}.

For a real s < 0,

Hs(IRn) = {v ∈ S ′(IRn) : (1 + |ξ|2)sF [v] ∈ L2(IRn)}.

It is known that H−s(IRn) is the dual of Hs(IRn) .
Another characterization of Hs(IRn), with 0 < s < 1, which does not use the Fourier

transform is the following, (see for instance [26]).

Lemma 2.1 For 0 < s < 1, u ∈ Hs(IRn) is equivalent to u ∈ L2(IRn) and

(∫

IRn

∫

IRn

(
(u(x)− u(y))2

|x− y|n+2s

)
dxdy

)1/2

< +∞ .

For s > 0 we set
||u||Hs(IRn) = ||u||L2(IRn) + |||ξ|sF [v]||L2(IRn) ,

and
||u||Ḣs(IRn) = |||ξ|sF [v]||L2(IRn) .

For an open set Ω ⊂ IRn, Hs(Ω) is the space of the restrictions of functions from
Hs(IRn) and

||u||Ḣs(Ω) = inf{||U ||Ḣs(IRn), U = u on Ω}
In the case of 0 < s < 1 then f ∈ Hs(Ω) if and only if f ∈ L2(Ω) and

(∫

Ω

∫

Ω

(
(u(x)− u(y))2

|x− y|n+2s

)
dxdy

)1/2

< +∞ .
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Moreover

||u||Ḣs(Ω) ≃
(∫

Ω

∫

Ω

(
(u(x)− u(y))2

|x− y|n+2s

)
dxdy

)1/2

< +∞ ,

see for instance [26] .
Finally for a submanifold N of IRm we can define

Hs(IR,N ) = {u ∈ Hs(IR, IRm) : u(x) ∈ N , a.e.} .

We introduce the so-called Littlewood-Paley or dyadic decomposition of unity. Such
a decomposition can be obtained as follows . Let φ(ξ) be a radial Schwartz function
supported on {ξ : |ξ| ≤ 2}, which is equal to 1 on {ξ : |ξ| ≤ 1} . Let ψ(ξ) be the function
ψ(ξ) := φ(ξ)−φ(2ξ) . ψ is a bump function supported on the annulus {ξ : 1/2 ≤ |ξ| ≤ 2} .

We put ψ0 = φ, ψj(ξ) = ψ(2−jξ) for j 6= 0 . The functions ψj , for j ∈ ZZ, are supported
on {ξ : 2j−1 ≤ |ξ| ≤ 2j+1} . Moreover

∑
j∈ZZ ψj(x) = 1 .

We then set φj(ξ) :=
∑j

k=−∞ ψk(ξ) . The function φj is supported on {ξ, |ξ| ≤ 2j+1}.
We recall the definition of the homogeneous Besov spaces Ḃs

p,q(IR
n) and homogeneous

Triebel-Lizorkin spaces Ḟ s
pq(IR

n) in terms of the above dyadic decomposition.

Definition 2.2 Let s ∈ IR, 0 < p, q ≤ ∞ . For f ∈ S ′(IRn) we set

||f ||Ḃs
p,q(IR

n) =
(∑∞

j=−∞ 2jsq||F−1[ψjF [f ]]||qLp(IRn)

)1/q
if q <∞

||f ||Ḃs
p,q(IR

n) = supj∈ZZ 2js||F−1[ψjF [f ]]||Lp(IRn) if q = ∞
(29)

When p, q <∞ we also set

||f ||Ḟ s
p,q(IR

n) = ||
(

∞∑

j=−∞

2jsq|F−1[ψjF [f ]]|q
)1/q

||Lp .

The space of all tempered distributions f for which the quantity ||f ||Ḃs
p,q(IR

n) is finite is

called the homogeneous Besov space with indices s, p, q and it is denoted by Ḃs
p,q(IR

n).
The space of all tempered distributions f for which the quantity ||f ||Ḟ s

p,q(IR
n) is finite is

called the homogeneous Triebel-Lizorkin space with indices s, p, q and it is denoted by
Ḟ s
p,q(IR

n) . It is known that Ḣs(IRn) = Ḃs
2,2(IR

n) = Ḟ s
2,2(IR

n) .
Finally we denote H1(IRn) the homogeneous Hardy Space in IRn. It is known that

H1(IRn) ≃ F 0
2,1 thus we have

||f ||H1(IRn) ≃
∫

IR

(∑

j

|F−1[ψjF [f ]]|2
)1/2

dx .
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We recall that in dimension n = 1, the space Ḣ1/2(IR) is continuously embedded in
the Besov space Ḃ0

∞,∞(IR). More precisely we have

Ḣ1/2(IR) →֒ BMO(IR) →֒ Ḃ0
∞,∞(IR) , (30)

(see for instance [20],page 31, and [28], page 129).
The s-fractional Laplacian of a function u : IRn → IR is defined as a pseudo differential

operator of symbol |ξ|2s :
∆̂su(ξ) = |ξ|2sû(ξ) . (31)

In the case where s = 1/2, we can write ∆1/2u = −R(∇u) where R is Fourier multiplier

of symbol
i

|ξ|
n∑

k=1

ξk :

R̂X(ξ) =
1

|ξ|
n∑

k=1

iξkX̂k(ξ)

for every X : IRn → IRn , namely R = ∆−1/2div .
We denote by Br(x̄) the ball of radius r and centered at x̄. If x̄ = 0 we simply write

Br . If x, y ∈ IRn, x · y denote the scalar product between x, y .
For every function f : IRn → IR we denote byM(f) the maximal function of f , namely

M(f) = sup
r>0,x∈IRn

|B(x, r)|−1

∫

B(x,r)

|f(y)|dy . (32)

3 3-Commutator Estimates : Proof of Theorem 1.2

and Theorem 1.3.

In this Section we prove Theorems 1.2 and 1.3 .
We consider the dyadic decomposition introduced in Section 2 . For every j ∈ ZZ and

f ∈ S ′(IRn) we define the Littlewood-Paley projection operators Pj and P≤j by

P̂jf = ψj f̂ P̂≤jf = φj f̂ .

Informally Pj is a frequency projection to the annulus {2j−1 ≤ |ξ| ≤ 2j}, while P≤j is a
frequency projection to the ball {|ξ| ≤ 2j} . We will set fj = Pjf and f j = P≤jf .

We observe that f j =
∑j

k=−∞ fk and f =
∑+∞

k=−∞ fk (where the convergence is in
S ′(IRn)) .

Given f, g ∈ S ′(IR) we can split the product in the following way

fg = Π1(f, g) + Π2(f, g) + Π3(f, g), (33)

12



where

Π1(f, g) =

+∞∑

−∞

fj
∑

k≤j−4

gk =

+∞∑

−∞

fjg
j−4 ;

Π2(f, g) =

+∞∑

−∞

fj
∑

k≥j+4

gk =

+∞∑

−∞

gjf
j−4 ;

Π3(f, g) =
+∞∑

−∞

fj
∑

|k−j|<4

gk .

We observe that for every j we have

suppF [f j−4gj] ⊂ {2j−2 ≤ |ξ| ≤ 2j+2};

suppF [
∑j+3

k=j−3 fjgk] ⊂ {|ξ| ≤ 2j+5} .
The three pieces of the decomposition (33) are examples of paraproducts. Informally the
first paraproduct Π1 is an operator which allows high frequences of f (∼ 2j) multiplied
by low frequences of g (≪ 2j) to produce high frequences in the output. The second
paraproduct Π2 multiplies low fequences of f with high frequences of g to produce high
fequences in the output. The third paraproduct Π3 multiply high frequences of f with
high frequences of g to produce comparable or lower frequences in the output. For a
presentation of these paraproducts we refer to the reader for instance to the book [10] .
The following Lemma will be often used in the sequel.

Lemma 3.1 For every f ∈ S ′ we have

sup
j∈Z

|f j| ≤M(f) .

13



Proof. We have

f j = F−1[φj] ⋆ f = 2j
∫

R

F−1[φ](2j(x− y))f(y)dy

=

∫

IR

F−1[φ](z)f(x− 2−jz)dz

=
+∞∑

k=−∞

∫

B
2k

\B
2k−1

F−1[φ](z)f(x− 2−jz)dz

≤
+∞∑

k=−∞

max
B

2k
\B

2k−1

|F−1[φ](z)|
∫

B
2k

\B
2k−1

|f(x− 2−jz)|dz

≤
+∞∑

k=−∞

max
B

2k
\B

2k−1

2k|F−1[φ](z)|2j−k

∫

B(x,2k−j)\B(x,2k−1−j )

|f(z)|dz

≤M(f)

+∞∑

k=−∞

max
B

2k
\B

2k−1

2k|F−1[φ](z)| ≤ CM(f) .

In the last inequality we use the fact F−1[φ] is in S(IRn) and thus

+∞∑

k=−∞

max
B

2k
\B

2k−1

2k|F−1[φ](z)| ≤ 2

∫

IR

|F−1[φ](z)|dξ < +∞.

We can now start the proof of one of the main result in the paper.

Proof of theorem 1.4.
We are going to estimate Π1(R(Q, u)),Π2(R(Q, u)) and Π3(R(Q, u)) .
• Estimate of ||Π1(∆

1/4(Q∆1/4u)||H1 .
By writing Π1(∆

1/4(Q∆1/4u) we mean

∆1/4(Π1(Q,∆
1/4)) =

∞∑

j=−∞

∆1/4(Qj(∆
1/4uj−4)) .

||Π1(∆
1/4(Q∆1/4u)||H1 =

∫

IRn

(
∞∑

j=−∞

2jQ2
j (∆

1/4uj−4)2

)1/2

dx (34)

≤
∫

IRn

sup
j

|∆1/4uj−4|
(∑

j

2jQ2
j

)1/2

dx

≤
(∫

IRn

(M(∆1/4u))2dx

)1/2
(∫

R

∑

j

2jQ2
jdx

)1/2

≤ C||u||Ḣ1/2||Q||Ḣ1/2 .
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• Estimate of Π1(∆
1/4(∆1/4Qu)−∆1/2(Qu)).

We show that it is in Ḃ0
1,1 (H1 →֒ Ḃ0

1,1) . To this purpose we use the “commutator
structure of the above term” .

||Π1(∆
1/4(∆1/4Q)u−∆1/2(Qu))||Ḃ0

1,1
(35)

= sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|t−j|≤3

[∆1/4(uj−4∆1/4Qj)−∆1/2(uj−4Qj)]htdx

= sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|t−j|≤3

F [uj−4]F [∆1/4Qj∆
1/4ht −Qj∆

1/2ht]dξ

= sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|t−j|≤3

F [uj−4](ξ)

(∫

IRn

F [Qj](ζ)F [∆1/4ht](ξ − ζ)(|ζ |1/2 − |ξ − ζ |1/2)dζ
)
dξ .

Now we observe that in (35) we have |ξ| ≤ 2j−3 and 2j−2 ≤ |ζ | ≤ 2j+2. Thus |ξ
ζ
| ≤ 1

2
.

Hence

||ζ |1/2 − |ξ − ζ |1/2 = |ζ |1/2[1− |1− ξ

ζ
|1/2] (36)

= |ζ |1/2 ξ
ζ
[1 + |1− ξ

ζ
|1/2]−1

= |ζ |1/2
∞∑

k=−∞

ck
k!
(
ξ

ζ
)k+1 .

We introduce the following notation: for every k ∈ ZZ and g ∈ S ′ we set

Skg = F−1[ξ−(k+1)|ξ|1/2Fg].

We note that if h ∈ Ḃs
∞,∞ then Skh ∈ Ḃ

s+1/2+k
∞,∞ and if h ∈ Ḣs then Skh ∈ Ḣs+1/2+k .

Finally if Q ∈ Ḣ1/2 then ∇k+1(Q) ∈ Ḣ−k−1/2 .
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We continue the estimate (35) .

sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|t−j|≤3

F [uj−4](ξ)

(

∫

IRn

F [Qj](ζ)F [∆1/4ht](ξ − ζ)(|ξ − ζ |1/2 − (|ζ |1/2)dζ)dξ

by (36)

= sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|t−j|≤3

F [uj−4](ξ)

[∫

IRn

|ζ |1/2F [Qj ](ζ)F [∆1/4ht](ξ − ζ)
∞∑

ℓ=0

cℓ
ℓ!
(
ξ

η
)ℓ+1dζ

]
dξ

≤ C sup
||h||

Ḃ0
∞,∞

≤1

∞∑

ℓ=0

cℓ
ℓ!

∫

IRn

∑

j

∑

|t−j|≤3

(i)−(ℓ+1)F [∇ℓ+1uj−4]F [SℓQj∆
1/4ht)](ξ)dξ

≤ C sup
||h||

Ḃ0
∞,∞

≤1

||h||Ḃ0
∞,∞

∞∑

ℓ=0

cℓ
ℓ!

∫

IRn

∑

j

2j/2|∇ℓ+1uj−4||SℓQj|dx

≤
∞∑

ℓ=0

cℓ
ℓ!

∫

IRn

∑

j

|2−(ℓ+1/2)j∇ℓ+1uj−4||2(ℓ+1)jSℓQj |dx

≤ C
∞∑

ℓ=0

cℓ
ℓ!

(∫

IRn

∑

j

2−2(ℓ+1/2)j |∇ℓ+1uj−4|2dx
)1/2(∫

IRn

∑

j

22(ℓ+1)j |SℓQj |2dx
)1/2

by Plancherel Theorem

= C

∞∑

ℓ=0

cℓ
ℓ!

(∫

IRn

∑

j

2−2(ℓ+1/2)j |ξ|2ℓ|F [∇uj−4]|2dξ
)1/2(∫

IRn

∑

j

22(ℓ+1)j |ξ|−2(ℓ+1/2)|F [Qj]|2dξ
)1/2

≤ C
∞∑

ℓ=0

cℓ
ℓ!
2−3ℓ(

∫

IRn

∑

j

2−j|F [∇uj−4]|2dξ)1/2(
∫

IRn

∑

j

2j|F [Qj]|2dξ)1/2

≤ C

∞∑

ℓ=0

cℓ
ℓ!
2−3ℓ||Q||Ḣ1/2||u||Ḣ1/2 .

16



Above we also use the fact that for every vector field X we have

∫

IRn

+∞∑

j=−∞

2−j(Xj−4)2dx =

∫

IRn

∑

k,ℓ

XkXℓ

∑

j−4≥k,j−4≥ℓ

2−jdx

.

∫

IRn

+∞∑

j=−∞

2−j(Xj)
2dx . (37)

The estimate of ||Π2(∆
1/4(Q∆1/4u)−∆1/2(Qu))||Ḃ0

1,1
is analogous to (35) .

• Estimate of ||Π2(∆
1/4(∆1/4Qu)||H1. It is as in (34) .

• Estimate of ||Π3(∆
1/2(Qu)||H1.

We show that it is indeed in the smaller space Ḃ0
1,1 (we always have Ḃ0

1,1 →֒ H1) . We

first observe that if h ∈ Ḃ0
∞,∞ then ∆1/2h ∈ Ḃ−1

∞,∞ and

∆1/2hj+6 =

j+6∑

k=−∞

∆1/2hk ≤ sup
k∈IN

|2−k∆1/2hk|
j+6∑

k=−∞

2k ≤ C2j ||h||Ḃ0
∞,∞

. (38)

||Π3(∆
1/2(Qu)||Ḃ0

1,1
= sup

||h||
Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|k−j|≤3

∆1/2(Qjuk)h (39)

= sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|k−j|≤3

∆1/2(Qjuk)
[
hj+6

]
dx

= sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|k−j|≤3

(Qjuk)
[
∆1/2hj+6

]
dx

≤ C sup
||h||

Ḃ0
∞,∞

≤1

||h||Ḃ0
∞,∞

∫

IRn

∑

j

∑

|k−j|≤3

2j|Qjuk|dx

≤ C

(∫

IRn

∑

j

2jQ2
jdx

)1/2(∫

IRn

∑

j

2ju2jdx

)1/2

≤ C||Q||Ḣ1/2||u||Ḣ1/2 .

• Estimate of Π3(∆
1/4(Q∆1/4u)) .

We show that it is in Ḃ0
1,1.

We observe that if h ∈ Ḃ0
∞,∞ then ∆1/4h ∈ B

−1/2
∞,∞ and by arguing as in (38) we get

||∆1/4hj ||L∞ ≤ 2j/2||h||Ḃ0
∞,∞

.
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Thus we have

||Π3(∆
1/4(Q,∆1/4u))||Ḃ0

1,1
= sup

||h||
Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|k−j|≤3

∆1/4(Qj∆
1/4uk)h

= sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|k−j|≤3

(Qj∆
1/4uk)

[
∆1/4hj+6

]
dx

≤ C sup
||h||

Ḃ0
∞,∞

≤1

||h||Ḃ0
∞,∞

∫

IRn

∑

j

∑

|k−j|≤3

2j/2|Qj∆
1/4uk|dx (40)

≤ C(

∫

IRn

∑

j

2jQ2
jdx)

1/2(

∫

IRn

∑

j

(∆1/4uj)
2dx)1/2

≤ C||Q||Ḣ1/2||u||Ḣ1/2 .

The estimate of Π3(∆
1/4(∆1/4Qu)) is analogous to (40) . 2

From Theorem 1.4 and the duality between BMO and H1 we get Theorem 1.2.
Proof of Theorem 1.2 .
For all h,Q ∈ Ḣ1/2 and u ∈ BMO we have

∫

IRn

[(∆1/4(Q∆1/4u)−Q∆1/2u+∆1/4Q∆1/4u]hdx

=

∫

IRn

[(∆1/4(Q∆1/4h)−∆1/2(Qh) + ∆1/4(h∆1/4Q]udx

by Theorem (1.4)

≤ C||u||BMO||R(Q, h)||H1 ≤ C||u||BMO||Q||Ḣ1/2||h||Ḣ1/2 .

Hence

||T (Q, u)||Ḣ−1/2 = sup
||h||

Ḣ1/2≤1

∫

IRn

T (Q, u)hdx ≤ C||u||BMO||Q||Ḣ1/2 .

2

Proof of theorem 1.5. We observe that R is a Fourier multiplier of order zero thus
R : H−1/2 → H−1/2, R : H1 → H1, and R : Ḃ0

1,1 → Ḃ0
1,1 (see [27] and [21]) .

The estimates are very similar to ones in Theorem 1.4, thus we will make only the
following one.

• Estimate of Π1(R∆1/4(∆1/4QRu)−∇(QRu)).
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We observe that ∇u = ∆1/4R∆1/4u

sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|t−j|≤3

[R∆1/4(∆1/4QjRuj−4)−∇(QjRuj−4)]htdx (41)

≃ sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|t−j|≤3

Ruj−4[R∆1/4ht∆
1/4Qj)−∇ht)Qj ]dx

≃ sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|t−j|≤3

F [Ruj−4](ξ)

(∫

IRn

F [Qj](ζ)F [R∆1/4ht](ξ − ζ)

(
|ζ |1/2 − |ξ − ζ |1/2

)
dζ
)
dξ .

Now we can proceed exactly as in (35) and get

sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|t−j|≤3

[R∆1/4(∆1/4QjRuj−4)−∇(QjRuj−4)]htdx

≤ C||Q||Ḣ1/2||u||Ḣ1/2 . 2

From Theorem 1.5 and the duality between H1 and BMO we obtain Theorem 1.3 .
Proof of Theorem 1.3. It follows from Theorem 1.5 and the duality between H1

and BMO . 2

Lemma 3.2 Let u ∈ Ḣ1/2(IRn), then R(∆1/4u · R∆1/4u) ∈ H1 and

||R(∆1/4u · R∆1/4u)||H1 ≤ C||u||2
Ḣ1/2 .

Proof of lemma 3.2. Since R : H1 → H1, it is enough to verify that ∆1/4u · R∆1/4u ∈
H1 .

• Estimate of Π1(∆
1/4u,R∆1/4u)

||Π1(∆
1/4u,R∆1/4u)||H1 =

∫

IRn

(
+∞∑

j=−∞

[∆1/4uj(R∆1/4u)j−4]2)1/2dx

≤
∫

IRn

sup
j

|(R∆1/4u)j−4)|(
+∞∑

j=0

[∆1/4uj ]
2)1/2dx (42)

≤ (

∫

IRn

|M(R∆1/4u)|2dx)1/2(
∫

IRn

+∞∑

j=−∞

[∆1/4uj]
2dx)1/2

≤ C||u||2
Ḣ1/2

The estimate of the H1 norm of Π2(∆
1/4u · R∆1/4u) is similar to (42) .

19



• Estimate of Π3(∆
1/4u · R∆1/4u) .

sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|k−j|≤3

∆1/4ujR(∆1/4uk)[h
j−6 +

j+6∑

t−=j−5

ht]dx

= sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|k−j|≤3

[
∆1/4ujR(∆1/4uk)− uj∇uk +

1

2
∇(ujuk)

]

[hj−6 +

j+6∑

t−=j−5

ht]dx (43)

We only estimate the terms with hj−6, being the estimates with ht similar .

sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|k−j|≤3

(∆1/4ujR(∆1/4uk)− uj∇uk)hj−6dx

sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|k−j|≤3

F [hj−6](x)

(∫

IRn

F [uj]F [R∆1/4uk][|y|1/2 − |x− y|1/2]dy
)
dx

by arguing as in (35)

≤ C||u||2
Ḣ1/2

Finally we also have

sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|k−j|≤3

1

2
∇(ujuk)h

j−6dx

= sup
||h||

Ḃ0
∞,∞

≤1

∫

IRn

∑

j

∑

|k−j|≤3

1

2
(ujuk)∇hj−6dx

≤ C sup
||h||

Ḃ0
∞,∞

≤1

||h||Ḃ0
∞,∞

∫

IRn

∑

j

∑

|k−j|≤3

2jujukdx

≤ C(

∫

IRn

∑

j

2ju2jdx)
1/2 = C||u||2

Ḣ1/2 . 2

We get the following result

Corollary 3.1 Let n ∈ Ḣ1/2(IRn, Sm−1). Then

∆1/4[n ·∆1/4n] ∈ H1 . (44)
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Proof. Since n · ∇n = 0 we can write

∆1/4[n ·∆1/4n] = ∆1/4[n ·∆1/4n]−R(n · ∇n) +R[∆1/4n · R∆1/4n]

−R[∆1/4n · R∆1/4n]

= S(n·, n)−R[∆1/4n · R∆1/4n] .

The estimate (44) is a consequence of Theorem 1.5 and Lemma 3.2, which respectively
imply that S(n·, n) ∈ H1 and R(∆1/4n · R∆1/4n) ∈ H1 . 2

4 L-Energy Decrease Controls.

In this Section we provide some localization estimates of solutions to the following equa-
tions

∆1/4(M∆1/4u) = T (Q, u) (45)

and
∆1/4(p ·∆1/4u) = S(q·, u)−R(∆1/4u · R∆1/4u) , (46)

whereQ ∈ Ḣ1/2(IR,Mℓ×m(IR)),M ∈ Ḣ1/2(IR,Mℓ×m(IR)), ℓ ≥ 1 and p, q ∈ Ḣ1/2(IR, IRm) .

Such estimates will be crucial to obtain Morrey-type estimates for half-harmonic maps
into the sphere (see Section 5). As we have already observed in the Introduction, half-
harmonic maps into the sphere satisfy both equations (15) and (17), (which are (45) and
(46) with (M,Q) and (p, q) given respectively by (u∧, u∧) and (u, u)) . Roughly speaking,
we show that the L2 norm ofM∆1/4u in a sufficiently small ball (being u solution of either
(45) or (46)), is controlled by the L2 norm of the same function in annuli outside the ball
multiplied by a “crushing” factor.

To this purpose we consider a dyadic decomposition of the unity ϕj ∈ C∞
0 (IR) such

that

supp(ϕj) ⊂ B2j+1 \B2j−1 ,

+∞∑

−∞

ϕj = 1 . (47)

For every k, h ∈ ZZ, we set

χk :=
k−1∑

−∞

ϕj , ūk = |B2k |−1

∫

B
2k

u(x) dx,

Ah = B2h+1 \B2h−1 , ūh = |Ah|−1

∫

Ah

u(x) dx ,

A′
h = B2h \B2h−1 , ū′,h = |A′

h|−1

∫

A′

h

u(x)dx .

The main results of this Section are the following two Propositions.
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Proposition 4.1 Let Q ∈ Ḣ1/2(IR,Mℓ×m(IR)), M ∈ Ḣ1/2(IR,Mℓ×m(IR)), ℓ ≥ 1 and let
u ∈ Ḣ1/2(IR, IRm) be a solution of (45). Then for k < 0 with |k| large enough we have

||M∆1/4u||2L2(B
2k

) −
1

4
||∆1/4u||2L2(B

2k
) ≤ C

[
∞∑

h=k

(2
k−h
2 )||M∆1/4u||2L2(Ah)

(48)

+

∞∑

h=k

(2
k−h
2 )||∆1/4u||2L2(Ah)

]
.

Proposition 4.2 Let p, q ∈ Ḣ1/2(IR, IRm), and u ∈ Ḣ1/2(IR, IRm) be a solution of (46).
Then for k < 0 with |k| large enough we have

||p ·∆1/4u||2L2(B
2k

) −
1

4
||∆1/4u||2L2(B

2k
) ≤ C

[
∞∑

h=k

(2
k−h
2 )||p ·∆1/4u||2L2(Ah)

(49)

+

∞∑

h=k

(2
k−h
2 )||∆1/4u||2L2(Ah)

]
.

We first need premise some estimates.

Lemma 4.1 Let u ∈ Ḣ1/2(IR). Then for all k ∈ ZZ the following estimate holds

+∞∑

h=k

2k−h||ϕh(u− ūk)||Ḣ1/2(IR) ≤ C

[∑

s≤k

2s−k||u||Ḣ1/2(As)
+
∑

s≥k

2k−s||u||Ḣ1/2(As)

]
. (50)

Proof of Lemma 4.1 . We first have

||ϕh(u− ūk)||Ḣ1/2(IR) ≤ ||ϕh(u− ūh)||Ḣ1/2(IR) + ||ϕh||Ḣ1/2(IR)|ūk − ūh| . (51)

We estimate separately the two terms on the r.h.s of (51) . We have

||ϕh(u− ūh)||2
Ḣ1/2(IR)

=

∫

Ah

∫

Ah

|ϕh(u− ūh)(x)− ϕh(u− ūh)(y)|2
|x− y|2 dxdy (52)

≤ 2

[∫

Ah

∫

Ah

|u(x)− u(y)|2
|x− y|2 dxdy + ||∇ϕh||2∞

∫

Ah

∫

Ah

|u− ūh|2dxdy
]

≤ C

[
||u||2

Ḣ1/2(Ah)
+ 2−h

∫

Ah

|u− ūh|2dx
]

≤ C||u||2
Ḣ1/2(Ah)

,
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where we use the fact ||∇ϕh||∞ ≤ C2−h and the embedding Ḣ1/2(IR) into BMO(IR).
Now we estimate |ūk − ūh|. We can write

ūk =

k−1∑

ℓ=−∞

2ℓ−kū′,ℓ .

Moreover

|ūk − ūh| ≤ |ūh − ū′,h|+ |ūk − ū′,h|

≤ C|Ah|−1

∫

Ah

|u− ūh| dx+
k−1∑

ℓ=−∞

2ℓ−k
h−1∑

s=ℓ

|ū′,s+1 − ū′,s|

≤ C|Ah|−1

∫

Ah

|u− ūh| dx+
k−1∑

ℓ=−∞

2ℓ−k
h−1∑

s=ℓ

|As+1|−1

∫

As+1

|u− ūs+1| dx (53)

≤ C

[
||u||Ḣ1/2(Ah)

+

k−1∑

ℓ=−∞

2ℓ−k
h−1∑

s=ℓ

||u||Ḣ1/2(As+1)

]
.

Thus combining (52) and (53) we get

||ϕh(u− ūh)||Ḣ1/2(IR) ≤ [||ϕh(u− ūh)||Ḣ1/2(IR) + ||ϕh||Ḣ1/2(IR)|ūk − ūh|]

≤ C

[
||u||Ḣ1/2(Ah)

+
k−1∑

ℓ=−∞

2ℓ−k
h−1∑

s=ℓ

||u||Ḣ1/2(As+1)

]
. (54)

Multiplying both sides of (54) by 2k−h and summing up from h = k to +∞ we get

+∞∑

h=k

2k−h

(
k−1∑

ℓ=−∞

2ℓ−k
h∑

s=ℓ+1

||u||Ḣ1/2(As)

)
(55)

≤ C
∑

s≤k

||u||Ḣ1/2(As)

(∑

h≥k

∑

ℓ≤s

2ℓ−h

)
+
∑

s≥k

||u||Ḣ1/2(As)

(∑

h≥s

∑

ℓ≤k

2ℓ−h

)

≤ C
∑

s≤k

2s−k||u||Ḣ1/2(As)
+
∑

s≥k

2k−s||u||Ḣ1/2(As)
.

This ends the proof of Lemma 4.1 . 2

Now we recall the value of the Fourier transform of some functions that will be used
in the sequel.

We have
F [|x|−1/2](ξ) = |ξ|−1/2 .
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The Fourier transforms of |x|, x|x|−1/2, |x|1/2 are the tempered distributions defined, for
every ϕ ∈ S(IR), respectively by

〈F [|x|], ϕ〉 = 〈F [
x

|x| ] ⋆ F [x], ϕ〉 = 〈p.v.( 1
x
) ⋆ (δ)′0(x), ϕ〉 (56)

= p.v.

∫

IR

ϕ(x)− ϕ(0)− 11B1(0)φ
′(0)x

x2
dx

(p.v. denotes the Cauchy principal value) ;

〈F [x|x|−1/2], ϕ〉 = 〈F [x] ⋆F [|x|−1/2], ϕ〉 = 〈(δ)′0(x) ⋆ |x|−1/2, ϕ〉

= p.v.

∫

IR

[ϕ(x)− ϕ(0)]
x

|x|
1

|x|3/2dx (57)

and

〈F [|x|1/2], ϕ〉 = p.v.

∫

IR

ϕ(x)− ϕ(0)

|x|3/2 dx .

Next we introduce the following two operators

F (Q, a) = ∆1/4(Qa)−Q∆1/4a+∆1/4Qa ,

G(Q, a) = R∆1/4(Qa)−Q∆1/4Ra +∆1/4QRa .

We observe that

T (Q, u) = F (Q,∆1/4u) and S(Q, u) = RG(Q,∆1/4u) .

In the next two Lemmae we estimate the Ḣ1/2 norm of w = ∆−1/4(M∆1/4u) (resp. w =
∆−1/4(p ·∆1/4u)) in B2k , being M,u (resp. p, u) as in Proposition 4.1 (resp. Proposition
4.2), in terms of the Ḣ1/2 norm of w in annuli outside the ball and the L2 norm of ∆1/4u
in annuli inside and outside the ball B2k . The key point is that each term is multiplied
by a “crushing” factor.

Lemma 4.2 Assume hypotheses of Proposition 4.1. Then there exist C > 0, n̄ > 0
(independent of u and M) such that for all η ∈ (0, 1/4), for all k < k0 (k0 ∈ ZZ depending
on η and the Ḣ1/2 norm of Q in IR) and n ≥ n̄ , we have

||χk−4(w − w̄k−4)||Ḣ1/2(IR) ≤ η||χk−4∆
1/4u||L2 (58)

+C

(
∞∑

h=k

2
k−h
2 ||∆1/4u||L2(Ah) +

+∞∑

h=k−n

2k−h||w||Ḣ1/2(Ah)

)
,

where w = ∆−1/4(M∆1/4u) and we recall that χk−4 ≡ 1 on B2k−5 and χk−4 ≡ 0 on Bc
2k−4 .

24



Lemma 4.3 Assume hypotheses of Proposition 4.2. Then there exist C > 0, n̄ > 0
(independent of u and M) such that for all η ∈ (0, 1/4), for all k < k0 (k0 ∈ ZZ depending
on η and the Ḣ1/2 norms of Q and u in IR) and n ≥ n̄ , we have

||χk−4(w − w̄k−4)||Ḣ1/2(IR) ≤ η||χk−4∆
1/4u||L2(IR) (59)

+C

(
∞∑

h=k

(2
k−h
2 ||∆1/4u||L2(Ah) +

k−3∑

h=k−n

2h−k||w||Ḣ1/2(Ah)

)

where w = ∆−1/4(p ·∆1/4u) .

Proof of Lemma 4.2 .
We fix η ∈ (0, 1/4).
We first consider k < 0 be large enough in absolute value so that ||χk(Q−Q̄k)||Ḣ1/2(IR) ≤

ε, where ε ∈ (0, 1) will be determined later.
We write

F (Q,∆1/4u) = F (Q1,∆
1/4u) + F (Q2,∆

1/4u) ,

where Q1 = χk(Q− Q̄k) and Q2 = (1 − χk)(Q− Q̄k) . We observe that, by construction,
we have

supp(Q2) ⊆ Bc
2k−1 , ||Q1||Ḣ1/2(IR) ≤ ε and ||Q2||Ḣ1/2(IR) ≤ ||Q||Ḣ1/2(IR) .

We rewrite the equation (45) as follows:

∆1/2(χk−4(w − w̄k−4)) = −∆1/2

(
+∞∑

h=k−4

ϕh(w − w̄k−4)

)
(60)

+F (Q1,∆
1/4u) + F (Q2,∆

1/4u) .

We take the scalar product of both sides of the equation (60) with χk−4(w − w̄k−4)
and integrate over IR .

We observe that from Lemma A.5 it follows

lim
N→+∞

∫

IR

∆1/2[

+∞∑

h=N

(ϕh(w − w̄k−4))] · (χk−4(w − w̄k−4))dx = 0 .

This fact allow us to exchange the infinite summation with the integral and the operator
∆1/2 in the following expression.

∫

IR

∆1/2[
+∞∑

h=k−4

(ϕh(w − w̄k−4))] · (χk−4(w − w̄k−4))dx

=

+∞∑

h=k−4

∫

IR

∆1/2(ϕh(w − w̄k−4)) · (χk−4(w − w̄k−4))dx .
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Thus we can write

∫

IR

|∆1/4(χk−4(w − w̄k−4))|2dx = −
+∞∑

h=k−4

∫

IR

∆1/2(ϕh(w − w̄k−4)) · (χk−4(w − w̄k−4))dx

+

∫

IR

F (Q1,∆
1/4u) · (χk−4(w − w̄k−4))dx (61)

+

∫

IR

F (Q2,∆
1/4u) · (χk−4(w − w̄k−4))dx .

We estimate the last three terms in (61) .
1. Estimate of −∑+∞

h=k−4

∫
IR
∆1/2(ϕh(w − w̄k−4)) · (χk−4(w − w̄k−4)) .

We split the sum in two parts: k − 4 ≤ h ≤ k − 3 and h ≥ k − 2.

1a) Estimate of
∑k−3

h=k−4

∫
IR
∆1/2(ϕh(w − w̄k−4)) · (χk−4(w − w̄k−4)) .

k−3∑

h=k−4

∫

IR

∆1/2(ϕh(w − w̄k−4)) · (χk−4(w − w̄k−4))dx

≤ ||(χk−4(w − w̄k−4))||Ḣ1/2(IR)

(
k−3∑

h=k−4

||(ϕh(w − w̄k−4))||Ḣ1/2(IR)

)

by Lemma 4.1 (62)

≤ ||(χk−4(w − w̄k−4))||Ḣ1/2(IR)

(
k−3∑

h=k−4

[
||w||Ḣ1/2(Ah)

+

k−5∑

ℓ=−∞

2ℓ−(k−4)

h∑

s=ℓ+1

||w||Ḣ1/2(As)

])

≤ C||(χk−4(w − w̄k−4))||Ḣ1/2(IR)

(
k−3∑

h=−∞

2h−k||w||Ḣ1/2(Ah)

)
.

From Localization Theorem A.1 it follows that

k−6∑

h=−∞

||w||2
Ḣ1/2(Ah)

≤ C̃||(χk−4(w − w̄k−4))||2Ḣ1/2(IR)
,

where C̃ > 0 is independent of k and w .
Thus we can find n1 ≥ 6 such that if n ≥ n1 we have

C

k−n∑

h=−∞

2h−k||w||Ḣ1/2(Ah)
≤ 1

8
||(χk−4(w − w̄k−4))||Ḣ1/2(IR) ,

being C the constant appearing in (62).
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Thus for n ≥ n1 we have

k−3∑

h=k−4

∫

IR

∆1/2(ϕh(w − w̄k−4)) · (χk−4(w − w̄k−4))dx

≤ 1

8
||(χk−4(w − w̄k−4))||2Ḣ1/2(IR)

(63)

+C||(χk−4(w − w̄k−4))||Ḣ1/2(IR)

(
k−3∑

h=k−n

2h−k||w||Ḣ1/2(Ah)

)
.

1b) Estimate of
∑+∞

h=k−2

∫
IR
∆1/2(ϕh(w − w̄k−4)) · (χk−4(w − w̄k−4))dx .

In this case we use the fact that the supports of ϕh and of χk−4 are disjoint and in
particular 0 /∈ supp(ϕh(w − w̄k−4)) ⋆ (χk−4(w − w̄k−4)).

+∞∑

h=k−2

∫

IR

∆1/2(ϕh(w − w̄k−4)) · (χk−4(w − w̄k−4))dx

=
+∞∑

h=k−2

∫

IR

F−1(|ξ|)(x)(ϕh(w − w̄k−4)) ⋆ (χk−4(w − w̄k−4))dx (64)

≤
+∞∑

h=k−2

||F−1(|ξ|)||L∞(B
2h+2\B2h−2 )||ϕh(w − w̄k−4)||L1||χk−4(w − w̄k−4|)|L1

≤ C

+∞∑

h=k−2

2−2h2h/2||ϕh(w − w̄k−4)||L2(IR)2
k/2||χk−4(w − w̄k−4)||L2(IR) .

By Theorem A.2 and Lemma 4.1 we have

(64) ≤ C

+∞∑

h=k−2

2k−4−h||ϕh(w − w̄k−4||Ḣ1/2(IR)||χk−4(w − w̄k−4||Ḣ1/2(IR)

≤ C

+∞∑

h=k−2

2k−4−h

[
||w||Ḣ1/2(Ah)

+

k−5∑

ℓ=−∞

2ℓ−(k−4)

h∑

s=ℓ+1

||w||Ḣ1/2(As)

]

||χk−4(w − w̄k−4)||Ḣ1/2(IR)

≤ C

[
+∞∑

h=k−2

2k−4−h||w||Ḣ1/2(Ah)
+
∑

s≤k−4

||w||Ḣ1/2(As)

( ∑

h≥k−4

∑

ℓ≤s−1

2ℓ−h

)

+
∑

s≥k−4

||w||Ḣ1/2(As)

( ∑

h≥s−1

∑

ℓ≤k−4

2ℓ−h

)]
||χk−4(w − w̄k−4)||Ḣ1/2(IR)

≤ C

[
+∞∑

h=k−4

2k−4−h||w||Ḣ1/2(Ah)
+

k−5∑

h=−∞

2h−(k−4)||w||Ḣ1/2(Ah)

]
||χk−4(w − w̄k−4)||Ḣ1/2(IR) .
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Let n2 ≥ 6 be such that if n ≥ n2 we have

C

k−n∑

h=−∞

2h−(k−4))||w||Ḣ1/2(Ah)
≤ 1

8
||χk−4(w − w̄k−4)||Ḣ1/2(IR) .

Finally if n > n̄ = max(n1, n2), then from (63) and (64) it follows

+∞∑

h=k−4

∫

IR

∆1/2(ϕh(w − w̄k−4)) · (χk−4(w − w̄k−4))

≤ 1

4
||χk−4(w − w̄k−4)||2Ḣ1/2(IR)

(65)

+C||χk−4(w − w̄k−4)||Ḣ1/2(IR)

+∞∑

h=k−n

2k−h||w||Ḣ1/2(Ah)
.

[5mm] 2. Estimate of
∫
IR
F (Q1,∆

1/4u) · (χk−4(w − w̄k−4))dx .
We write

F (Q1,∆
1/4u) = F (Q1, χk−4∆

1/4u) +
+∞∑

h=k−4

F (Q1, ϕh∆
1/4u) . (66)

We estimate the r.h.s of (66).
2a) Estimate of

∫
IR
F (Q1, χk−4∆

1/4u) · (χk−4(w − w̄k−4))dx .

∫

IR

F (Q1, χk−4∆
1/4u) · (χk−4(w − w̄k−4))dx (67)

by Theorem 1.4

≤ C||Q1||Ḣ1/2(IR)||χk−4∆
1/4u||L2||χk−4(w − w̄k−4)||Ḣ1/2(IR)

≤ Cε||χk−4∆
1/4u||L2||χk−4(w − w̄k−4)||Ḣ1/2(IR) .

By choosing ε > 0 small enough, we may assume that Cε < η
4
< 1

16
.

2b) Estimate of
∫
IR
F (Q1,

∑+∞
h=k−4 ϕh∆

1/4u)(χk−4(w − w̄k−4))dx.
Again by Lemma A.5 we can exchange the infinite summation with the integral and

write
∫

IR

F (Q1,
+∞∑

h=k−4

ϕh∆
1/4u) · (χk−4(w − w̄k−4))dx

=

+∞∑

h=k−4

∫

IR

F (Q1, ϕh∆
1/4u) · (χk−4(w − w̄k−4))dx .
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We separate the cases k − 4 ≤ h ≤ k + 1 and h ≥ k + 2 .
• Case k − 4 ≤ h ≤ k + 1.
We use again Theorem 1.4.

k+1∑

h=k−4

∫

IR

F (Q1, ϕh∆
1/4u) · (χk−4(w − w̄k−4))dx (68)

≤ C
k+1∑

h=k−4

||Q1||Ḣ1/2(IR)||ϕh∆
1/4u||L2(IR)||χk−4(w − w̄k−4)||Ḣ1/2(IR)

• Case h ≥ k + 2.
We estimate the single terms of F (Q1, ϕh∆

1/4u) · (χk−4(w − w̄k−4)) .
We observe that if h ≥ k + 2 then the supports of Q1 and ϕh and those of χk−4 and

ϕh are disjoint. Therefore

F (Q1, ϕh∆
1/4u) · (χk−4(w − w̄k−4) = Q1∆

1/4(ϕh∆
1/4u) · (χk−4(w − w̄k−4)) .

Hence

+∞∑

h=k+2

∫

IR

F (Q1, ϕh∆
1/4u) · (χk−4(w − w̄k−4))dx

=

+∞∑

h=k+2

∫

IR

Q1∆
1/4(ϕh∆

1/4u) · (χk−4(w − w̄k−4))dx (69)

=

+∞∑

h=k+2

∫

IR

F−1(|ξ|1/2)(x)
(
[Q1ϕh∆

1/4u] ⋆ [(χk−4(w − w̄k−4))]
)

+∞∑

h=k+2

||F−1(|ξ|1/2)||L∞(B
2h+2\B2h−2 )||Q1ϕh∆

1/4u||L1||(χk−4(w − w̄k−4))||L1

≤ C
+∞∑

h=k+2

2−3/2h||Q1ϕh∆
1/4u||L1||(χk−4(w − w̄k−4))||L1

By Theorem A.2 we finally get

(69) ≤ C

+∞∑

h=k+2

2k−h||Q1||Ḣ1/2(IR)|| ||ϕh∆
1/4u||L2(IR)||χk−4(w − w̄k−4)||Ḣ1/2(IR)

≤ C

+∞∑

h=k+2

2k−h||ϕh∆
1/4u||L2||χk−4(w − w̄k−4)||Ḣ1/2(IR) .
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3. Estimate of
∫
IR
F (Q2,∆

1/4u) · (χk−4(w − w̄k−4))dx .
As above we write

F (Q2,∆
1/4u) = F (Q2, χk−4∆

1/4u) + F (Q2,
+∞∑

h=k−4

ϕh∆
1/4u) .

Since the support of Q2 is included in Bc
2k−1 , we have

F (Q2, χk−4∆
1/4u) (χk−4(w − w̄k−4)) = ∆1/4[Q2(χk−4∆

1/4u)] · (χk−4(w − w̄k−4)) .

We can write Q2 =
∑+∞

h=k−1 ϕh(Q2 − Q̄2k−1), (Q̄2k−1 = 0) . By applying Lemma A.5
we get

∫

IR

F (Q2, χk−4∆
1/4u) · (χk−4(w − w̄k−4))dx

=

+∞∑

h=k−1

∫

IR

∆1/4[(ϕh(Q2 − Q̄2k−1))(χk−4∆
1/4u)] · (χk−4(w − w̄k−4))

≤ C

+∞∑

h=k−1

∫

IR

F−1(|ξ|1/2)
(
[χk−4∆

1/4u)ϕh(Q2 − Q̄2k−1)] ⋆ [χk−4(w − w̄k−4)]
)

≤ C||(χk−4(w − w̄k−4))||L1 (70)
+∞∑

h=k−1

||F−1(|ξ|1/2)||L∞(B
2h+2\B2h−2 )||(χk−4∆

1/4u)ϕh(Q2 − Q̄2k−1)||L1

≤ C||χk−4∆
1/4u||L2||χk−4(w − w̄k−4)||Ḣ1/2(IR)

+∞∑

h=k−1

2−h/22k/2||ϕh(Q2 − Q̄2k−1)||Ḣ1/2(IR) .

From Lemma 4.1, by choosing possibly a smaller k, it follows that

C

+∞∑

h=k−1

2
k−h
2 ||ϕh(Q2 − Q̄2k−1)||Ḣ1/2(IR) ≤

η

4
<

1

16
.

Therefore
∫

IR

F (Q2, χk−4∆
1/4u) · (χk−4(w − w̄k−4))dx

≤ η

4
||χk−4∆

1/4u||L2||χk−4(w − w̄k−4)||Ḣ1/2(IR) . (71)

4. Estimate of
∫
IR
F (Q2,

∑+∞
h=k−4 ϕh∆

1/4u) · (χk−4(w − w̄k−4))dx .
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By Lemma A.5 we can write

∫

IR

F (Q2,

+∞∑

h=k−4

ϕh∆
1/4u) · (χk−4(w − w̄k−4))dx

=
+∞∑

h=k−4

∫

IR

F (Q2, ϕh∆
1/4u) · (χk−4(w − w̄k−4))dx .

• Sum for k − 4 ≤ h ≤ k + 1

k+1∑

h=k−4

∫

IR

F (Q2, ϕh∆
1/4u) · (χk−4(w − w̄k−4))dx

by Theorem 1.4 (72)

≤ C

k+1∑

h=k−4

||Q||Ḣ1/2(IR)||ϕh∆
1/4u||L2||χk−4(w − w̄k−4)||Ḣ1/2(IR) .

• Sum for h ≥ k + 2
In this case, since the support of Q2 is included in Bc

2k−1 , if h ≥ k + 2, we have

F (Q2, ϕh∆
1/4u) · (χk−4(w − w̄k−4)) = (χk−4(w − w̄k−4))

·
[
∆1/4(Q2 ϕh∆

1/4u)−Q2∆
1/4(ϕh∆

1/4u) + ∆1/4Q2ϕh∆
1/4u

]

= (χk−4(w − w̄k−4)) ·∆1/4(Q2ϕh∆
1/4u) .
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Let ψh ∈ C∞
0 (IR), ψh ≡ 1 in B2h+1 \B2h−1 and supp(ψ) ⊂ B2h+2 \B2h−2 .

+∞∑

h=k+2

∫

IR

F (Q2, ϕh∆
1/4u) · (χk−4(w − w̄k−4))dx

+∞∑

h=k+2

∫

IR

∆1/4(Q2ϕh∆
1/4u)(χk−4(w − w̄k−4))dx

=
+∞∑

h=k+2

∫

IR

F [∆1/4(Q2ϕh∆
1/4u)]F [(χk−4(w − w̄k−4))]dx

=
+∞∑

h=k+2

∫

IR

|ξ|1/2F [(Q2ϕh∆
1/4u)]F [(χk−4(w − w̄k−4))]dx (73)

=

+∞∑

h=k+2

∫

IR

F−1(|ξ|1/2)
(
[ϕh∆

1/4u(Q2 − Q̄2k−1)] ⋆ [χk−4(w − w̄k−4)]
)
dx

≤
+∞∑

h=k+2

||F−1[|ξ1/2]||L∞(B
2h+2\B2h−2 )||[ϕh∆

1/4u(Q2 − Q̄2k−1)] ⋆ [χk−4(w − w̄k−4)]||L1(IR)

≤ C

+∞∑

h=k+2

2−3/2h||ϕh∆
1/4u||L2(IR)||ψh(Q2 − Q̄2k−1)||L2(IR)||χk−4(w − w̄k−4)||L1(IR) .

By applying Theorem A.2 and Cauchy-Schwartz Inequality we get

(73) ≤ C
+∞∑

h=k+2

2k−h||ψh(Q2 − Q̄2k−1)||Ḣ1/2(IR)||ϕh∆
1/4u||L2(IR)||χk−4(w − w̄k−4)||Ḣ1/2(IR)

≤ C

(
+∞∑

h=k+2

2k−h||ψh(Q2 − Q̄2k−1)||2Ḣ1/2(IR)

)1/2( +∞∑

h=k+2

2k−h||ϕh∆
1/4u||2L2

)1/2

||χk−4(w − w̄k−4)||Ḣ1/2(IR) .

From Lemma 4.1 (with ϕ replaced by ψ) and Theorem A.1 we deduce that

(
+∞∑

h=k+2

2k−h||ψh(Q2 − Q̄2k−1)||2Ḣ1/2(IR)

)1/2

≤ C||Q||Ḣ1/2(IR) .
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Thus

+∞∑

h=k+2

∫

IR

F (Q2, ϕh∆
1/4u) · (χk−4(w − w̄k−4))dx (74)

≤ C||χk−4(w − w̄k−4)||Ḣ1/2(IR)

(
+∞∑

h=k+1

2k−h||ϕh∆
1/4u||2L2(IR)

)1/2

≤ C||χk−4(w − w̄k−4)||Ḣ1/2(IR)

(
+∞∑

h=k+1

2
k−h
2 ||ϕh∆

1/4u||L2(IR)

)
.

By combining (67), (68),(70), (72) and (74) we obtain (for some constant C depending
on Q)

∫

IR

F (Q,∆1/4u) · (χk−4(w − w̄k−4))dx ≤ η

2
||χk−4∆

1/4u||L2||χk−4(w − w̄k−4)||Ḣ1/2(IR)

+ C

+∞∑

h=k−4

2
k−h
2 ||∆1/4u||L2(Ah)||χk−4(w − w̄k−4)||Ḣ1/2(IR) . (75)

Finally for all n ≥ n̄ we have

||χk−4(w − w̄k−4)||Ḣ1/2(IR) ≤ η||χk−4∆
1/4u||Ḣ1/2(IR) (76)

+C

(
+∞∑

h=k−n

2k−h||w||Ḣ1/2(As)
+

+∞∑

h=k−4

2
k−h
2 ||∆1/4u||L2(Ah)

)
.

and we can conclude. 2

Next we prove Lemma 4.3.

Proof of Lemma 4.3 . The proof is similar to that of Lemma 4.2 thus we just sketch
it.

We observe that equation (46) is equivalent to

R∆1/4(p ·∆1/4u) = G(q·,∆1/4u)−∆1/4u · (R∆1/4u) . (77)

We fix η ∈ (0, 1/4) .
We first take k < 0 such that

||χk(q − q̄k)||Ḣ1/2(IR) ≤ ε and ||χk∆
1/4u||L2(IR) ≤ ε ,

with ε > 0 to be determined later.
We write

G(q·,∆1/4u) = G(q1·,∆1/4u) +G(q2·,∆1/4u) ,
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where q1 = χk(q − q̄k) and q2 = (1− χk)(q − q̄k) . We observe that supp(q2) ⊆ Bc
2k−1 and

||q1||Ḣ1/2(IR) ≤ ε .

We also set u1 = χk∆
1/4u and u2 = (1− χk)∆

1/4u and w = ∆−1/4(p ·∆1/4u) .
We rewrite the equation (77) as follows:

R∆1/2(χk−4(w − w̄k−4)) = −
+∞∑

h=k−4

R∆1/2(ϕh(w − w̄k−4)) (78)

+G(q1·,∆1/4u) +G(q2·,∆1/4u) + u1 · (R∆1/4u) + u2 · (R∆1/4u) .

We multiply the equation (78) by χk−4(w − w̄k−4) and integrate over IR . By using
again Lemma A.5 we get

∫

IR

|∆1/4(χk−4(w − w̄k−4))|2dx = −
+∞∑

h=k−4

∫

IR

R∆1/2(ϕh(w − w̄k−4))(χk−4(w − w̄k−4))dx

+

∫

IR

G(q1·,∆1/4u)(χk−4(w − w̄k−4))dx+

∫

IR

G(q2·,∆1/4u)(χk−4(w − w̄k−4))dx (79)

+

∫

IR

u1 · (R∆1/4u)(χk−4(w − w̄k−4))dx+

∫

IR

u2 · (R∆1/4u)(χk−4(w − w̄k−4))dx .

We observe that
∫
IR
u2 · (R∆1/4u)(χk−4(w − w̄k−4))dx = 0, having u2 and χk−4 supports

disjoint .

1. Estimate of −∑+∞
h=k−4

∫
IR
R∆1/2(ϕh(w − w̄k−4))(χk−4(w − w̄k−4))dx .

We split the sum in two parts. In the first sum we take k − 4 ≤ h ≤ k − 3 and in the
second sum we take h ≥ k − 2 .

• Sum for k − 4 ≤ h ≤ k − 3 .

k−3∑

h=k−4

∫

IR

R∆1/2(ϕh(w − w̄k−4))(χk−4(w − w̄k−4))

≤
k−3∑

h=k−4

∫

IR

||∆1/2(ϕh(w − w̄k−4))||Ḣ−1/2(IR)||(χk−4(w − w̄k−4))||Ḣ1/2(IR)

by Lemma 4.1 (80)

≤
k−3∑

h=k−4

[
||w||Ḣ1/2(Ah)

+

k−5∑

ℓ=−∞

2ℓ−(k−4)

h∑

s=ℓ+1

||w||Ḣ1/2(As)

]

||(χk−4(w − w̄k−4))||Ḣ1/2(IR)
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Let n1 ≥ 6 be such that

C

k−n1∑

h=−∞

2h−k||w||Ḣ1/2(Ah)
≤ 1

8
||(χk−4(w − w̄k−4))||Ḣ1/2(IR) .

Thus if n ≥ n1 the following estimate holds

(80) ≤ 1

8
||(χk−4(w − w̄k−4))||2Ḣ1/2(IR)

(81)

+C||(χk−4(w − w̄k−4))||Ḣ1/2(IR)

[
k−3∑

h=k−n

2h−k||w||Ḣ1/2(Ah)

]
.

• Sum for h ≥ k − 2 .
In this case we use the fact that

supp((ϕh(w − w̄k−4)) ⋆ (χk−4(w − w̄k−4))) ⊆ B2h+2 \B2h−2 ,

and in particular 0 /∈ supp((ϕh(w − w̄k−4)) ⋆ (χk−4(w − w̄k−4))) .

+∞∑

h=k−2

∫

IR

R∆1/2(ϕh(w − w̄k−4))(χk−4(w − w̄k−4))dx

=
+∞∑

h=k−2

∫

IR

ξF [ϕh(w − w̄k−4)](ξ)F [χk−4(w − w̄k−4)](ξ)dξ (82)

+∞∑

h=k−2

∫

IR

F−1(ξ)(x) ([ϕh(w − w̄k−4))] ⋆ [χk−4(w − w̄k−4)]) dx

=

+∞∑

h=k−2

∫

IR

δ′0(x) (ϕh(w − w̄k−4)) ⋆ (χk−4(w − w̄k−4))) (x)dx = 0 .

2. Estimate of
∫
IR
u1 · (R∆1/4u)(χk−4(w − w̄k−4))dx .

We have
∫

IR

u1 · (R∆1/4u)(χk−4(w − w̄k−4))dx

=

∫

IR

u1 · (Ru1)(χk−4(w − w̄k−4))dx+

+∞∑

h=k

∫

IR

u1 · (Rϕh∆
1/4u)(χk−4(w − w̄k−4))dx .
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By applying Lemma 3.2 and using the embedding of H1(IR) into Ḣ−1/2(IR) we get

∫

IR

u1 · (Ru1)(χk−4(w − w̄k−4))dx

≤ C||u1 · (Ru1)||H1||(χk−4(w − w̄k−4))||Ḣ1/2(IR)

≤ C||u1||2L2||(χk−4(w − w̄k−4))||Ḣ1/2(IR)

≤ Cε||χk∆
1/4u||L2||(χk−4(w − w̄k−4))||Ḣ1/2(IR) .

By choosing ε > 0 smaller we may suppose that Cε < η
4
.

Now we observe that for h ≥ k the supports of ϕh and χk−4 are disjoint. Thus we
have

+∞∑

h=k

∫

IR

u1 · (Rϕh∆
1/4u)(χk−4(w − w̄k−4))dx

+∞∑

h=k

∫

IR

F−1[
ξ

|ξ| ](x)
(
[ϕh∆

1/4u] ⋆ [u1χk−4(w − w̄k−4)]
)
dx

≤ C
+∞∑

h=k

|||x|−1||L∞(B
2h+2\B2h−2 )||(ϕh∆

1/4u) ⋆ (u1(χk−4(w − w̄k−4)))||L1

≤ C

+∞∑

h=k

2−h2h/22k/2||ϕh∆
1/4u||L2(IR)||u1||L2(IR)||(χk−4(w − w̄k−4))||Ḣ1/2(IR)

≤ Cε

+∞∑

h=k

2
k−2

2 ||ϕh∆
1/4u||L2(IR)||(χk−4(w − w̄k−4))||Ḣ1/2(IR)

≤ η

4

+∞∑

h=k

2
k−2

2 ||ϕh∆
1/4u||L2(IR)||(χk−4(w − w̄k−4))||Ḣ1/2(IR) .

The estimate of the terms
∫

IR

G(Q1,∆
1/4u)(χk−4(w − w̄k−4))dx and

∫

IR

G(Q2,∆
1/4u)(χk−4(w − w̄k−4))dx

are analogous of those of
∫

IR

F (Q1,∆
1/4u)(χk−4(w − w̄k−4))dx and

∫

IR

F (Q2,∆
1/4u)(χk−4(w − w̄k−4))dx

and so we omit them. 2
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Now we can prove Propositions 4.1 and 4.2 .

Proof of Proposition 4.1 .
From Lemma 4.2, it follows that there exist C > 0 and n̄ > 0 such that for all n > n̄,

0 < η < 1/4, k < k0 (k0 depending on η and the Ḣ1/2 norm of Q), every solution to (45)
satisfies for some constant C > 0 the estimate (76) and thus

||χk−4(w − w̄k−4)||2Ḣ1/2(IR)
≤ η2||χk−4∆

1/4u||2L2 (83)

+C2n/2
+∞∑

h=k−n

2k−h||w||2
Ḣ1/2(Ah)

+ C

+∞∑

h=k−4

2
k−h
2 ||∆1/4u||2L2(IR) .

Now we can fix n ≥ n̄ and we can replace in the second term of (83) C2n/2 by C .
From Lemma A.1 it follows that there are C1, C2 > 0 and m1 > 0 (independent on n,

k) such that if m ≥ m1 we have

||χk−4(w − w̄k−4)||2Ḣ1/2(IR)
≥ (84)

≥ C1

∫

B
2k−n−m

|M∆1/4u|2dx− C2

+∞∑

h=k−n−m

2k−h

∫

B
2h

\B
2h−1

|M∆1/4u|2dx .

Finally from Lemma A.2 it follows that there is C > 0 such that for all γ ∈ (0, 1) there
exists m2 > 0 such that if m ≥ m2 we have

+∞∑

h=k−n

2k−h||w||2
Ḣ1/2(Ah)

=

+∞∑

h=k−n

2k−h||∆−1/4(M∆1/4u)||2
Ḣ1/2(Ah)

(85)

≤ γ

∫

|ξ|≤2k−n−m

|M∆1/4u|2dx+
+∞∑

h=k−n−m

2
k−h
2

∫

2h≤|ξ|≤2h+1

|M∆1/4u|2dx .

By combining (83), (84) and (85) we get

C1||M∆1/4u||2L2(B
2k−n−m ) ≤ C

∞∑

h=k−n−m

(2
k−h
2 )||M∆1/4u||2L2(Ah)

+C2

+∞∑

h=k−n−m

2
k−h
2 ||∆1/4u||L2(Ah) (86)

+η2||χk−4∆
1/4u||2L2(IR) + Cγ||M∆1/4u||2L2(B

2k−n−m ) .

Now we choose γ, η > 0 so that C−1
1 Cγ < 1/4 and C−1

1 η2 < 1/4 .
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With these choices we get for some constant C > 0

||M∆1/4u||2L2(B
2k−n−m ) −

1

4
||∆1/4u||2L2(B

2k−n−m ) (87)

≤ C

[
∞∑

h=k−n−m

(2
k−h
2 )||M∆1/4u||2L2(Ah)

+
+∞∑

h=k−n−m

2
k−h
2 ||∆1/4u||L2(Ah)

]
.

We observe that in the final estimate (87) the index m can be fixed as well. Thus by
replacing in (87) k − n−m by k we get (48) and we conclude the proof . 2

The proof of Proposition 4.2 is analogous to that of Proposition 4.1 and thus we
omit it.

5 Morrey estimates and Hölder continuity of 1/2-

Harmonic Maps into the Sphere

We consider the m − 1-dimensional sphere Sm−1 ⊂ IRm. Let ΠSm−1 be the orthogonal
projection on Sm−1 . We also consider the Dirichlet energy

L(u) =
∫

IR

|∆1/4u(x)|2dx . (88)

where u : IR → Sm−1 .
The weak 1/2-harmonic maps are defined as critical points of the functional (88)

with respect to perturbation of the form ΠSm−1(u + tφ), where φ is an arbitrary map in
H1/2(IR, IRm) ∩ L∞(IR, IRm) .

Definition 5.1 We say that u ∈ H1/2(IR, Sm−1) is a weak 1/2-harmonic map if and only
if, for every maps φ ∈ H1/2(IR, IRm) ∩ L∞(IR, IRm) we have

d

dt
L(ΠSm−1(u+ tφ))|t=0

= 0 . (89)

We introduce some notations. We denote by
∧
(IRm) the exterior algebra (or Grassmann

Algebra) of IRm and by the symbol ∧ the exterior or wedge product. For every p =
1, . . . , m,

∧
p(IR

m) is the vector space of p-vectors
If (ei)i=1,...,m is the canonical orthonormal basis of IRm, then every element v ∈ ∧p(IR

m)
is written as v =

∑
I vIeI where I = {i1, . . . , ip} with 1 ≤ i1 ≤ . . . ≤ ip ≤ m , vI := vi1,...,ip

and eI =:= ei1 ∧ . . . ∧ eip .
By the symbol we denote the interior multiplication :

∧
p(IR

m) × ∧q(IR
m) →∧

q−p(IR
m) defined as follows.
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Let eI = ei1 ∧ . . . ∧ eip, eJ = ej1 ∧ . . . ∧ ejq , with q ≥ p . Then eI eJ = 0 if I 6⊂ J ,
otherwise eI eJ = (−1)MeK where eK is a q − p vector and M is the number of pairs
(i, j) ∈ I × J with j > i .

By the symbol • we denote the first order contraction between multivectors. We recall
that it satisfies α•β = α β if β is a 1-vector and α•(β∧γ) = (α•β)∧γ+(−1)pq(α•γ)∧β,
if β and γ are respectively a p-vector and a q-vector .

Finally by the symbol ∗ we denote the Hodge-star operator, ∗ : ∧p(IR
m) → ∧

m−p(IR
m),

defined by ∗β = (e1 ∧ . . . ∧ en) • β. For an introduction of the Grassmann Algebra we
refer the reader to the first Chapter of the book by Federer[8] .

Next we write the Euler equation associated to the functional (88) .

Theorem 5.1 All weak 1/2-harmonic maps u ∈ H1/2(IR, Sm−1) satisfy in a weak sense
i) the equation ∫

IR

(∆1/2u) · v dx = 0, (90)

for every v ∈ H1/2(IR, IRm) ∩ L∞(IR, IRm) and v ∈ Tu(x)S
m−1 almost everywhere, or in a

equivalent way
ii) the equation

∆1/2u ∧ u = 0 in D′ , (91)

or
iii) the equation

∆1/4(u ∧∆1/4u) = T (Q, u) ; (92)

with Q = u ∧ .

Proof of Theorem 5.1
i) The proof of (90) is analogous of Lemma 1.4.10 in [11].
Let v ∈ H1/2(IR, IRm) ∩ L∞(IR, IRm) and v ∈ Tu(x)S

m−1. We have

ΠSm−1(u+ tv) = u+ twt ,

where

wt =

∫ 1

0

∂ΠSm−1

∂yj
(u+ tsv)vjds .

Hence

L(ΠSm−1(u+ tv)) =

∫

IR

|∆1/4u|2dx+ 2t

∫

IR

∆1/4u · wtdx+ o(t) ,

as t→ 0.
Thus (89) is equivalent to

lim
t→0

∫

IR

∆1/4uwtdx = 0 .
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Since ΠSm−1 is smooth it follows that wt → w0 = dΠSm−1(u)(v) in H1/2(IR, IRm) ∩
L∞(IR, IRm) and therefore

∫

IR

∆1/4u dΠSm−1(u)(v)dx = 0 .

Since v ∈ Tu(x)S
m−1 a.e., we have dΠSm−1(u)(v) = v a.e. and thus equation (90) follows

immediately.
ii) We prove (91). We take ϕ ∈ C∞

0 (IR,
∧

m−2(IR
m)). The following holds

∫

IR

ϕ ∧ u ∧∆1/2u dx =

(∫

IR

∗(ϕ ∧ u) ·∆1/2u dx

)
e1 ∧ . . . ∧ em . (93)

Claim : v = ∗(ϕ ∧ u) ∈ Ḣ1/2(IR, IRm) and v(x) ∈ Tu(x)S
m−1 a.e.

Proof of the claim.
The fact that v ∈ H1/2(IR, IRm)∩L∞(IR, IRm) follows form the fact that its components

are the product of two functions which are in Ḣ1/2(IR, IRm) ∩ L∞(IR, IRm), which is an
algebra .

We have
v · u = ∗(u ∧ ϕ) · u = ∗(u ∧ ϕ ∧ u) = 0 . (94)

It follows from (90) and (93) that
∫

IR

ϕ ∧ u ∧∆1/2udx = 0 .

This shows that ∆1/2u ∧ u = 0 in D′ , and we can conclude .
iii) As far as equation (92) is concerned it is enough to observe that ∆1/2u ∧ u = 0

and ∆1/4u ∧∆1/4u = 0 . 2

Next we show that any map u ∈ H1/2(IR, IRm) such that |u| = 1 a.e. satisfies the
structural equation (17) .

Proof of 1.2. We observe that if u ∈ H1/2(IR, IRm−1) then the Leibiniz’s rule holds.

∇|u|2 = 2u · ∇u in D′ . (95)

Indeed the equality (95) trivially holds if u ∈ C∞
0 (IR, IRm−1). Let u ∈ H1/2(IR, IRm−1)

and uj ∈ C∞
0 (IR, IRm) be such that uj → u as j → +∞ in H1/2(IR, IRm) Then ∇uj → ∇u

as j → +∞ in H−1/2(IR, IRm−1). Thus uj · ∇uj → u · ∇u in D′ and (95) follows.
If u ∈ H1/2(IR, Sm−1), then ∇|u|2 = 0 and thus u · ∇u = 0 in D′ as well. Thus u

satisfies equation (17) and this conclude the proof. 2

By combining Theorem 5.1, Proposition 1.2 and the results of the previous Section we
get the Hölder regularity of weak 1/2-harmonic maps.

Theorem 5.2 Let u ∈ Ḣ1/2(IR, Sm−1) be a harmonic map. Then u ∈ C0,α(IR, Sm−1) .
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Proof of 5.2. From Theorem 5.1 it follows that u satisfies equation (92). Moreover,
since |u| = 1, Proposition 1.2 implies that u satisfies (17) as well . Proposition 4.1 and
Proposition 4.2 yield respectively that for k < 0, with |k| large enough

||u ∧∆1/4u||2L2(B
2k

) ≤ C
∞∑

h=k

(2
k−h
2 )||∆1/4u||2L2(Ah)

+
1

4
||∆1/4u||2L2(B

2k
) . (96)

and

||u ·∆1/4u||2L2(B
2k

) ≤ C

∞∑

h=k

(2
k−h
2 )||∆1/4u||2L2(Ah)

+
1

4
||∆1/4u||2L2(B

2k
) . (97)

Since
||∆1/4u||2L2(B

2k
) = ||u ·∆1/4u||2L2(B

2k
) + ||u ∧∆1/4u||2L2(B

2k
) ,

we get

||∆1/4u||2L2(B
2k

) ≤ C

∞∑

h=k

(2
k−h
2 )||∆1/4u||2L2(Ah)

. (98)

Now observe that for some C > 0 (independent on k) we have

C−1
k−1∑

h=−∞

||∆1/4u||2L2(Ah)
≤ ||∆1/4u||2L2(B

2k
) ≤ C

k∑

h=−∞

||∆1/4u||2L2(Ah)
.

Thus from (99) and (97) it follows

k−1∑

h=−∞

||∆1/4u||2L2(Ah)
≤ C

∞∑

h=k

(2
k−h
2 )||∆1/4u||2L2(Ah)

.

By applying Proposition A.1 and using again (98) we get for r > 0 small enough and
some β ∈ (0, 1)

∫

Br

|∆1/4u|2dx ≤ Crβ . (99)

Condition (99) yields that u belongs to the Morrey-Campanato Space L2,−β (see [1]), and
thus u ∈ C0,β/2(IR) , (see for instance [1, 9]) . 2
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A Geometric localization properties of the Ḣ1/2−norm

on the real line.

In the next Theorem we show that the Ḣ1.2([a, b]) norm (−∞ ≤ a < b ≤ +∞) can be
localized in space. This result, besides being of independent interest, will be used in
Section 4 for suitable localization estimates. For simplicity we will suppose that [a, b] =
[−1, 1].

Theorem A.1 [Localization of H1/2((−1, 1)) norm] Let u ∈ H1/2((−1, 1)) . Then for
some C > 0 we have

||u||2
Ḣ1/2((−1,1))

≃
0∑

j=−∞

||u||2
Ḣ1/2(Aj)

where Aj = B2j+1 \B2j−1 .

Proof. We set for every i ∈ ZZ, A′
i = B2i \ B2i−1 and ū′i = |A′

i|−1
∫
A′

i
u(x) dx (i.e. the

mean value of u on the annulus A′
i). We have

||u||2
Ḣ1/2((−1,1))

≃
∫

[−1,1]

∫

[−1,1]

|u(x)− u(y)|2
|x− y|2 dxdy (100)

=
0∑

i,j=−∞

∫

A′

i

∫

A′

j

|u(x)− u(y)|2
|x− y|2 dxdy

=

0∑

i=−∞

∫

A′

i

∫

A′

i

|u(x)− u(y)|2
|x− y|2 dxdy

+2

0∑

j=−∞

∑

i>j+1

∫

A′

i

∫

A′

j

|u(x)− u(y)|2
|x− y|2 dxdy

+2
0∑

j=−∞

∫

A′

j

∫

A′

j+1

|u(x)− u(y)|2
|x− y|2 dxdy .

We first observe that

0∑

i,j=−∞

∫

A′

i

∫

A′

j

|u(x)− u(y)|2
|x− y|2 dxdy ≤

0∑

i,j=−∞

∫

Ai

∫

Aj

|u(x)− u(y)|2
|x− y|2 dxdy (101)

and

0∑

j=−∞

∫

A′

j

∫

A′

j+1

|u(x)− u(y)|2
|x− y|2 dxdy ≤

0∑

j=−∞

∫

Aj

∫

Aj

|u(x)− u(y)|2
|x− y|2 dxdy . (102)
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It remains to estimate the term
∑0

j=−∞

∑
i>j+1

∫
A′

i

∫
A′

j

|u(x)−u(y)|2

|x−y|2 dxdy in (100).

We have

0∑

j=−∞

∑

i>j+1

∫

A′

i

∫

A′

j

|u(x)− u(y)|2
|x− y|2 dxdy

≤ C
0∑

j=−∞

∑

i≥j+2

2−2i

∫

A′

i

∫

A′

j

|u(x)− u(y)|2dxdy

≤ C(
0∑

j=−∞

∑

i≥j+2

2−2i

∫

A′

i

∫

A′

j

|ū′i − ū′j|2dxdy

+

0∑

j=−∞

∑

i≥j+2

2−2i

∫

A′

i

∫

A′

j

|u(x)− ū′i|2dxdy

+

0∑

j=−∞

∑

i≥j+2

2−2i

∫

A′

i

∫

A′

j

|u(y)− ū′j|2dxdy)

≤ C(
0∑

j=−∞

∑

i≥j+2

2−2i2i+j|ū′i − ū′j|2

+
0∑

j=−∞

∑

i≥j+2

2−2i2j
∫

A′

i

|u(x)− ū′i|2dx

+
0∑

j=−∞

∑

i≥j+2

2−2i2i
∫

A′

j

|u(y)− ū′j|2dy) .

• Estimate of
∑0

j=−∞

∑
i≥j+2 2

−2i2j
∫
A′

i
|u(x)− ū′i|2dx .
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0∑

j=−∞

∑

i≥j+2

2−2i2j
∫

A′

i

|u(x)− ū′i|2dx (103)

=

0∑

i=−∞

∑

j≤i−2

2−2i2j
∫

A′

i

|u(x)− ū′i|2dx

=

0∑

i=−∞

2−2i

∫

A′

i

|u(x)− ū′i|2dx(
∑

j≤i−2

2j)

≤ C
0∑

i=−∞

|A′
i|−1

∫

A′

i

|u(x)− ū′i|2dx

≤ C

0∑

i=−∞

∫

A′

i

∫

A′

i

|u(x)− u(y)|2
|x− y|2 dxdy .

In the last inequality we use the fact that for every i it holds

|A′
i|−1

∫

A′

i

|u(x)− ū′i|2dx

≤ |A′
i|−1

∫

A′

i

|u(x)− |A′
i|−1

∫

A′

i

u(y)dy|2dx

≤ |A′
i|−2

∫

A′

i

∫

A′

i

|u(x)− u(y)|2dxdy

≤ C

∫

A′

i

∫

A′

i

|u(x)− u(y)|2
|x− y|2 dyxdy .

• Estimate of
∑0

j=−∞

∑
i≥j+2 2

−2i2j
∫
A′

i
|u(y)− ū′j|2du

0∑

j=−∞

∑

i≥j+2

2−i

∫

A′

j

|u(y)− ū′j|2dy (104)

=

0∑

j=−∞

∫

A′

j

|u(x)− ūj|2dx(
∑

i≤j+2

2−i)

=
1

2

0∑

j=−∞

2−j

∫

A′

j

|u(x)− ū′j|2dy

≤ C

0∑

j=−∞

∫

A′

j

∫

A′

j

|u(x)− u(y)|2
|x− y|2 dxdy .
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• Estimate of
∑0

j=−∞

∑
i≥j+2 2

−2i2i+j|ū′i − ū′j|2 . We first observe that

|ū′i − ū′j|2 ≤ (i− j)
i−1∑

j

|ū′ℓ+1 − ū′ℓ|2

and

|ūℓ+1 − ūℓ|2 ≤ |Aℓ|−1

∫

Aℓ

|u− ūℓ|2dx,

where ūℓ = |Aℓ|−1
∫
Aℓ
u(x) dx .

We set aℓ = |Aℓ|−1
∫
Aℓ

|u− ūℓ|2dx . We have

0∑

j=−∞

∑

i≥j+2

2−2i2i+j|ū′i − ū′j|2

≤
0∑

j=−∞

∑

i≥j+2

(i− j)2j−i

i−1∑

j

aℓ ≤
0∑

ℓ=−∞

aℓ

ℓ∑

j=−∞

∑

i−j≥ℓ+1−j

(i− j)2j−i .

We observe that

∑

i−j≥ℓ+1−j

(i− j)2j−i ≤
∫ +∞

ℓ+1−j

2−xxdx = 2−(ℓ+1−j)(ℓ+ 2− j) (105)

and
ℓ∑

j=−∞

2−(ℓ+1−j)(ℓ+ 2− j) ≤
∫ +∞

1

2−t(t+ 1) dx ≤ C,

for some constant C independent on ℓ . Therefore we get

0∑

j=−∞

∑

i≥j+2

2−2i2i+j |ū′i − ū′j|2 (106)

≤
0∑

j=−∞

∑

i≥j+2

(i− j)2j−i
i−1∑

j

aℓ ≤ C

0∑

ℓ=−∞

aℓ ≤ C

0∑

ℓ=−∞

∫

Aℓ

∫

Aℓ

|u(x)− u(y)|2
|x− y|2 dxdy .

By combining (101),(102),(103),(104) and (106) we finally obtain

||u||2
Ḣ1/2((−1,1))

.

0∑

ℓ=−∞

||u||2
Ḣ1/2(Aℓ)

.

Next we show that
0∑

ℓ=−∞

||u||2
Ḣ1/2(Aℓ)

. ||u||2
Ḣ1/2((−1,1))

. (107)
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We observe that for every ℓ we have Aℓ = Cℓ ∪ Dℓ where Cℓ = B2ℓ+1 \ B2ℓ and Dℓ =
B2ℓ \B2ℓ−1 . Thus

||u||2
Ḣ1/2(Aℓ)

=

∫

Cℓ

∫

Cℓ

|u(x)− u(y)|2
|x− y|2 dxdy

+

∫

Dℓ,h

∫

Dℓ

|u(x)− u(y)|2
|x− y|2 dxdy + 2

∫

Dℓ,h

∫

Cℓ

|u(x)− u(y)|2
|x− y|2 dxdy .

Since ∪ℓ(Cℓ×Cℓ), ∪ℓ(Dℓ×Cℓ) and ∪ℓ(Dℓ×Cℓ) are disjoint unions contained in [0, 1]×[0, 1]
we have

∑

ℓ

∫

Cℓ

∫

Cℓ

|u(x)− u(y)|2
|x− y|2 dxdy ≤

∫

[−1,1]

∫

[−1,1]

|u(x)− u(y)|2
|x− y|2 dxdy ;

∑

ℓ

∫

Dℓ,h

∫

Cℓ

|u(x)− u(y)|2
|x− y|2 dxdy ≤

∫

[−1,1]

∫

[−1,1]

|u(x)− u(y)|2
|x− y|2 dxdy ;

∑

ℓ

∫

Dℓ,h

∫

Dℓ

|u(x)− u(y)|2
|x− y|2 dxdy ≤

∫

[−1,1]

∫

[−1,1]

|u(x)− u(y)|2
|x− y|2 dxdy .

It follows that

0∑

ℓ=−∞

||u||2
Ḣ1/2(Aℓ)

≤ C̄

∫

[−1,1]

∫

[−1,1]

|u(x)− u(y)|2
|x− y|2 dxdy = C̄||u||2

Ḣ1/2((−1,1))

and we can conclude. 2

Remark A.1 By analogous computations one can show that for all r > 0 we have

||u||2
Ḣ1/2(IR)

≃
+∞∑

j=−∞

||u||2
Ḣ1/2(Ar

j )

where Ar
j = B2j+1r \B2j−1r , where the equivalence constants do not depend on r.

Next we compare the Ḣ1/2 norm of ∆−1/4(M∆1/4u) with the L2 norm of M∆1/4u,
where u ∈ Ḣ1/2(IR) and M ∈ Ḣ1/2(IR,Mℓ×m(IR)), t ≥ 1 .

Lemma A.1 Let M ∈ Ḣ1/2(IR,Mt×m(IR)), m ≥ 1, t ≥ 1, and u ∈ Ḣ1/2(IR). Then there
exist C1 > 0, C2 > 0 and n0 ∈ IN , independent of u and M , such that, for any r ∈ (0, 1),
n > n0 and any x0 ∈ IR, we have
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||∆−1/4(M∆1/4u)||2
Ḣ1/2(Br(x0))

≥ C1

∫

Br/2n (x0)

|M∆1/4u|2dx

−C2

+∞∑

h=−n

2−h

∫

B
2hr

(x0)\B2h−1r
(x0)

|M∆1/4u|2 dx .

Proof of lemma A.1. We write

∆−1/4(M∆1/4u) = ∆−1/4(11|x|≤r/2nM∆1/4u) + ∆−1/4((1− 11|x|≤r/2n)M∆1/4u) ,

where n > 0 is large enough(the threshold will be determined later in the proof) .
For any ρ ≥ 0, we denote by 11|x|≤ρ and 11ρ≤|x| the characteristic functions of the sets

of point x ∈ IR respectively where |x| ≤ ρ and |x| ≥ ρ. For all ρ ≤ σ we also denote by
11ρ≤|x|≤σ the characteristic function of the set {x ∈ IR ; ρ ≤ |x| ≤ σ}. We have

||∆−1/4(M∆1/4u)||Ḣ1/2(Br)
≥ ||∆−1/4(11r/2nM∆1/4u)||Ḣ1/2(Br)

− ||∆−1/4((1− 11|x|≤r/2n)M∆1/4u)||Ḣ1/2(Br)

≥ ||∆−1/4(11r/2nM∆1/4u)||Ḣ1/2(Br)
− ||∆−1/4(11r/2n≤|x|≤4rM∆1/4u)||Ḣ1/2(Br)

− ||∆−1/4(11|x|≥4rM∆1/4u)||Ḣ1/2(Br)

≥ ||∆−1/4(11|x|≤r/2nM∆1/4u)||Ḣ1/2(Br)
− ||∆−1/4(11r/2n≤|x|≤4rM∆1/4u)||Ḣ1/2(IR)

− ||∆−1/4(11|x|≥4rM∆1/4u)||Ḣ1/2(Br)
.

(108)

We estimate of the last three terms in (108) .

• Estimate of ||∆−1/4(11r/2n≤|x|≤4rM∆1/4u)||Ḣ1/2(IR).

||∆−1/4(11r/2n≤|x|≤4rM∆1/4u)||2
Ḣ1/2(IR)

=

∫

r/2n≤|x|≤4r

|M∆1/4u|2 dx

=
1∑

h=−n

∫

2hr≤|x|≤2h+1r

|M∆1/4u|2 dx .
(109)

• Estimate of ||∆−1/4(11|ξ|≥4rM∆1/4u)||Ḣ1/2(Br)
. We set

g := 11|x|≥4rM∆1/4u .
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With this notation we have

||∆−1/4(11|x|≥4rM∆1/4u)||2
Ḣ1/2(Br)

=

∫

Br

∫

Br

|( 1
|x|2

⋆ g)(t)− ( 1
|x|2

⋆ g)(s)|2

|t− s|2 dt ds

=

∫

Br

∫

Br

1

|t− s|2
(∫

|x|≥4r

g(x)(
1

|t− x|1/2 − 1

|s− x|1/2 )dx
)2

dt ds

by Mean Value Theorem

≤ C

∫

Br

∫

Br

(∫

|x|≥4r

|g(x)|max(
1

|t− x|3/2 ,
1

|s− x|3/2 )dx
)2

dt ds

≤ C

∫

Br

∫

Br

(
+∞∑

h=4

∫

2hr≤|x|≤2h+1r

|g(x)|max(
1

|t− x|3/2 ,
1

|s− x|3/2 )dx
)2

dt ds

≤ C

∫

Br

∫

Br

(
+∞∑

h=4

∫

2hr≤|x|≤2h+1r

|g(x)|2−3/2hr−3/2dξ

)2

dt ds

by Hölder Inequality

≤ C

∫

Br

∫

Br

(
+∞∑

h=4

2−hr−1(

∫

2h+1r≤|x|≤2h+1r

|g(x)|2 dx)1/2
)2

dt ds

by Cauchy-Schwartz Inequality

≤ C(

+∞∑

h=4

2−h)

(
+∞∑

h=4

2−h

∫

B
2h+1r

(x0)\B2hr
(x0)

|M∆1/4u|2 dx
)

≤ C

(
+∞∑

h=4

2−h

∫

B
2h+1r

(x0)\B2hr
(x0)

|M∆1/4u|2 dx
)
.

(110)

• Estimate of ||∆−1/4(11|x|≤r/2nM∆1/4u)||Ḣ1/2(Br)
.

We set
Ar

h := {x : 2h−1r ≤ |x| ≤ 2h+1r} .
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By Localization Theorem A.1 there exists a constant C̃ > 0 (independent on r ) such that

||∆−1/4(11|x|≤r/2nM∆1/4u)||2
Ḣ1/2(IR)

≤ C̃
+∞∑

h=−∞

||∆−1/4(11|x|≤r/2nM∆1/4u)||2
Ḣ1/2(Ar

h)

≤ C̃ ||∆−1/4(11|x|≤r/2nM∆1/4u)||2
Ḣ1/2(Br)

+C̃

+∞∑

h=0

||∆−1/4(11|x|≤r/2nM∆1/4u)||2
Ḣ1/2(Ar

h)
.

(111)
• Estimate of

∑+∞
h=0 ||∆−1/4(11|x|≤r/2nM∆1/4u)||2

Ḣ1/2(Ar
h)
. We set now

f(x) := 11|x|≤r/2n (M∆1/4u) .

Using this notation we have

+∞∑

h=0

||∆−1/4(11|x|≤r/2nM∆1/4u)||2
Ḣ1/2(Ar

h)

≤
+∞∑

h=0

∫

Ar
h

∫

Ar
h

(∫

|x|≤r/2n
|f(x)|(| 1

|t− x|1/2 − 1

|s− x|1/2 |)dx
)2

dt ds

by Mean Value Theorem

≤ C
+∞∑

h=0

∫

Ar
h

∫

Ar
h

(∫

|x|≤r/2n
|f(x)|max(

1

|t− x|3/2 ,
1

|s− x|3/2 )dξ
)2

dt ds

≤ C
+∞∑

h=0

∫

Ar
h

∫

Ar
h

max(
1

|t|3 ,
1

|s|3 )
r

2n
(

∫

|x|≤r/2n
|f(x)|2 dx)dt ds

=
C

2n

+∞∑

h=0

2−h(

∫

|x|≤r/2n
|f(x)|2 dx) ≤ C

2n

∫

Br/2n(x0)

|M∆1/4u|2 dx

(112)

If n is large enough in such a way that C C̃/2n < 1/2, we get, combining (108), (109),
(110), (111) and (112), for some C1, C2 positive,

||∆−1/4(M∆1/4u)||2
Ḣ1/2(Br)

≥ C1

∫

Br/2n

|M∆1/4u|2 dx

−C2

+∞∑

h=−n

2−h

∫

B
2h+1r

\B
2hr

|M∆1/4u|2 dx ,

(113)
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which ends the proof of the lemma. 2

In the following Lemma we compare the Ḣ1/2 norm of w = ∆−1/4(M∆1/4u) in the
annuli Ah = B2h+1(x0) \B2h−1(x0) with the L2 norm in the same annuli of M∆1/4u. Such
a result will be used in the following Section for suitable localization estimates.

Lemma A.2 Let M ∈ Ḣ1/2(IR,Mt×mt ≥ 1(IR)), m ≥ 1, t ≥ 1, and u ∈ Ḣ1/2(IR). Then
there exists C > 0 such that for every γ ∈ (0, 1), for all n ≥ n0 ∈ IN (n0 dependent on γ
and independent of u and M), for every k ∈ ZZ, and any x0 ∈ IR, we have

+∞∑

h=k

2k−h||∆−1/4(M∆1/4u)||2
Ḣ1/2(B

2h+1 (x0)\B2h−1 (x0))
≤ γ

∫

B
2k−n (x0)

|M∆1/4u|2dξ

+
+∞∑

h=k−n

2
k−h
2

∫

B
2h+1 (x0)\B2h−1 (x0)

|M∆1/4u|2dξ .

Proof. Given h ∈ ZZ and ℓ ≥ 3 we set Ah = B2h+1(x0) \B2h−1(x0) and Dℓ,h = B2h+ℓ(x0) \
B2h−ℓ(x0) . For simplicity of notations we suppose that x0 = 0 but all the following
estimates will be independent on x0.

We fix γ ∈ (0, 1) .
We have

||w||2
Ḣ1/2(Ah)

=

∫

Ah

∫

Ah

|w(x)− w(y)|2
|x− y|2 dxdy

≤ 2||∆−1/411Dℓ,h
M∆1/4u||2

Ḣ1/2(Ah)
+ 2||∆−1/4(1− 11Dℓ,h

)M∆1/4u||2
Ḣ1/2(Ah)

≤ 2||∆−1/411Dℓ,h
M∆1/4u||2

Ḣ1/2(IR)
+ 2||∆−1/4(1− 11Dℓ,h

)M∆1/4u||2
Ḣ1/2(Ah)

.

The constant ℓ will be determined later.

• Estimate of ||∆−1/411Dℓ,h
M∆1/4u||2

Ḣ1/2(IR)
.

||∆−1/411Dℓ,h
M∆1/4u||2

Ḣ1/2(IR)
=

∫

Dℓ,h

|M∆1/4u|2dx

=

h+ℓ−1∑

s=h−ℓ

∫

B
2s+1\B2s

|M∆1/4u|2dx . (114)

We multiply (114) by 2k−h and we sum up from h = k to +∞ and get

+∞∑

h=k

2k−h||∆−1/411Dℓ,h
M∆1/4u||2

Ḣ1/2(IR)
≤ C2ℓ

+∞∑

h=k−ℓ

∫

B
2h+1\B2h−1

|M∆1/4u|2dx .(115)
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• Estimate of ||∆−1/4(1− 11Dℓ,h
)M∆1/4u||2

Ḣ1/2(Ah)
.

We set g = (1− 11Dℓ,h
)M∆1/4u .

||∆−1/4(1− 11Dℓ,h
)M∆1/4u||2

Ḣ1/2(Ah)
=

∫

Ah

∫

Ah

|( 1
|x|2

⋆ g)(t)− ( 1
|x|2

⋆ g)(s)|2

|t− s|2 dtds

≤ 2

∫

Ah

∫

Ah

1

|t− s|2
(∫

|x|>2ℓ+h

g(x)(
1

|x− t|1/2 − 1

|x− s|1/2 )dx
)2

dtds (116)

+2

∫

Ah

∫

Ah

1

|t− s|2
(∫

|x|<2h−ℓ

g(x)(
1

|x− t|1/2 − 1

|x− s|1/2 )dx
)2

dtds .

We estimate the last two terms in (116).

1. Estimate of
∫
Ah

∫
Ah

1
|t−s|2

(∫
|x|>2ℓ+h g(x)(

1
|x−t|1/2

− 1
|x−s|1/2

)dx
)2
dtds .

∫

Ah

∫

Ah

1

|t− s|2
(∫

|x|>2ℓ+h

g(x)(
1

|x− t|1/2 − 1

|x− s|1/2 )dx
)2

dtds

≤ C

∫

Ah

∫

Ah

(
∞∑

s=h+ℓ

∫

2s≤|x|≤2s+1

g(x)max(
1

|x− t|3/2 ,
1

|x− s|3/2 )dx
)2

dtds

by Hölder Inequality (117)

≤ C

∫

Ah

∫

Ah

(
∞∑

s=h+ℓ

2−s

∫

2s≤|x|≤2s+1

|g(x)|2dx)1/2
)2

dtds

by Cauchy-Schwartz Inequality

≤ C22h(

∞∑

s=h+ℓ

2−s)

(
∞∑

s=h+ℓ

2−s(

∫

2s≤|x|≤2s+1

|g(x)|2dx
)

≤ C2h−ℓ

(
∞∑

s=h+ℓ

2−s

∫

2s≤|x|≤2s+1

|g(x)|2dx
)
.

We observe that in (117) we use the fact that, since ℓ ≥ 3 then |x− t|, |x− s| ≥ 2s−1 for
every x, y ∈ Ah and 2s ≤ |ξ| ≤ 2s+1 .
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We multiply the last term in (117) by 2k−h, where k ∈ ZZ, and we sum up from h = k
to +∞. We get

+∞∑

h=k

2k−h2h−ℓ

(
∞∑

s=h+ℓ

2−s

∫

2s≤|x|≤2s+1

|M∆1/4u|2dx
)

= 2−ℓ

+∞∑

s=k+ℓ

2k−s(s− ℓ− k)

(∫

2s≤|x|≤2s+1

|M∆1/4u|2dx
)

(118)

≤ C2−ℓ

+∞∑

s=k+ℓ

2
k−s
2

(∫

2s≤|x|≤2s+1

|M∆1/4u|2dx
)
.

2. Estimate of
∫
Ah

∫
Ah

1
|t−s|2

(∫
|x|<2h−ℓ g(x)(

1
|x−t|1/2

− 1
|x−s|1/2

)dx
)2
dtds .

For h ≥ k we have

∫

Ah

∫

Ah

1

|t− s|2
(∫

|x|<2h−ℓ

g(x)(
1

|x− s|1/2 − 1

|x− t|1/2 )dx
)2

dtds

ny Mean Value Theorem

≤ C

∫

Ah

∫

Ah

(∫

|x|<2h−ℓ

g(x)max(
1

|x− t|3/2 ,
1

|x− s|3/2 )dx
)2

dtds (119)

≤ C

∫

Ah

∫

Ah

2−3h2h−ℓ

(∫

|x|<2h−ℓ

|g(x)|2dx
)
dtds

= C2−ℓ

∫

|x|<2h−ℓ

|M∆1/4u|2dx

= C2−ℓ

(∫

|x|<2k−ℓ

|M∆1/4u|2dx+
h−ℓ∑

s=k−ℓ

∫

2s≤|ξ|<2s+1

|M∆1/4u|2dx
)
.

In (119) we use the fact that since ℓ ≥ 3, t, s ∈ Ah and |x| < 2h−ℓ we have |x−s|, |x− t| ≥
2h−2 .

We multiply (119) by 2k−h, and we sum up from h = k to +∞. We get

∫

Ah

∫

Ah

1

|t− s|2
(∫

|x|<2h−ℓ

g(x)(
1

|x− s|1/2 − 1

|x− t|1/2 )dx
)2

dtds

≤ C2−ℓ

∫

|x|<2k−ℓ

|M∆1/4u|2dx+ C2−2ℓ
+∞∑

h=k−ℓ

2k−h

∫

2h≤|x|≤2h+1

|M∆1/4u|2dx . (120)
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We choose ℓ so that C2−ℓ < γ and let n0 ≥ ℓ. Then for all n ≥ n0 we obtain

+∞∑

h=k

2k−h

[
C2−ℓ

∫

|x|<2k−ℓ

|M∆1/4u|2dx+ C2−2ℓ

h−ℓ∑

s=k−ℓ

∫

2s≤|x|≤2s+1

|M∆1/4u|2dx
]

≤ γ

∫

|x|<2k−n

|M∆1/4u|2dx+
+∞∑

h=k−n

2k−h

∫

2h≤|x|≤2h+1

|M∆1/4u|2dx .

By combining (115), (118), (120), for n ≥ n0 we finally get

+∞∑

h=k

2k−h||∆−1/4(M∆1/4u)||2
Ḣ1/2(Ah)

≤ γ

∫

|x|<2k−n

|M∆1/4u|2dx+
+∞∑

h=k−n

∫

2h−1≤|x|≤2h+1

2k−h|M∆1/4u|2dx .

and we conclude the proof. 2

Next we show a sort of Poincaré Inequality for functions in Ḣ1/2(IR) having compact

support. We remark that in general the extension by zero of a function in H
1/2
0 (Ω) =

C∞
0 (Ω)

H1/2

, Ω open subset of IR is not in H1/2(IR) . This is the reason why Lions and

Magenes [13] introduced the set H
1/2
00 (Ω) for which Poincaré Inequality holds.

Theorem A.2 Let v ∈ Ḣ1/2(IR) be such that supp(v) ⊂ (−1, 1).
Then v ∈ L2([−1, 1]) and

∫

[−1,1]

|v(x)|2dx ≤ C||v||2
Ḣ1/2((−2, 2)) .

Proof. We have
∫

[−1,1]

|v(x)|2dx ≤ 9

∫

1≤|y|≤2|

∫

|x|≤1

|v(x)|2
|x− y|2dxdy

≤ C

∫

1≤|y|≤2

∫

|x|≤1

|v(x)|2
|x− y|2dxdy

≤ C

∫

1≤|y|≤2|

∫

|x|≤1

|v(x)− v(y)|2
|x− y|2 dxdy

≤ C

∫

|y|≤2|

∫

|x|≤2

|v(x)− v(y)|2
|x− y|2 dxdy = C||v||2

Ḣ1/2([−2, 2]) .

We can conclude. 2
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From Lemma A.2 it follows that

||v||L2((−r,r)) ≤ Cr1/2||v||Ḣ1/2(IR) .

We conclude this Section with the following technical result.

Proposition A.1 Let (ak)k be a sequence of positive real numbers satisfying
∑+∞

k=−∞ a2k <
+∞ and for every n ≤ 0

n∑

−∞

a2k ≤ C

(
+∞∑

k=n+1

2
n+1−k

2 a2k

)
. (121)

Then there are 0 < β < 1 , C > 0 and n̄ < 0 such that for n ≤ n̄ we have

n∑

−∞

a2k ≤ C(2n)β .

Proof. For n < 0, we set An =
∑n

−∞ a2k. We have a2k = Ak − Ak−1 and thus

An ≤ C
+∞∑

k=n+1

2
n+1−k

2 (Ak − Ak−1) ≤ C(1− 1/
√
2)

+∞∑

k=n+1

2
n+1−k

2 Ak − CAn .

Therefore

An ≤ τ

+∞∑

n+1

2
n+1−k

2 Ak , (122)

τ = C
(C+1)

(1− 1/
√
2) < 1− 1/

√
2 .
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The relation (122) implies the following estimate

An ≤ τAn+1 + τ

+∞∑

n+2

2
n+1−k

2 Ak

by induction

≤ τ 2

(
+∞∑

n+2

2
n+2−k

2 Ak

)
+

τ√
2

(
+∞∑

n+2

2
n+2−k

2 Ak

)

= τ(τ + 1/
√
2)

(
+∞∑

n+2

2
n+2−k

2 Ak

)

= τ(τ + 1/
√
2)

[
An+2 + 1/

√
2

+∞∑

n+3

2
n+3−k

2 Ak

]

again by induction

≤ τ(τ + 1/
√
2)2

+∞∑

n+3

2
n+3−k

2 Ak

≤ . . .

≤ τ(τ + 1/
√
2)−n

+∞∑

k=0

2−kAk

≤ τ(τ + 1/
√
2)−n

(
∞∑

k=0

2−k

)(
+∞∑

k=−∞

a2k

)

≤ 2τ(τ + 1/
√
2)−n

+∞∑

k=−∞

a2k

≤ Cγ−n ,

with γ = τ(τ + 1/
√
2)−n . Therefore for some β ∈ (0, 1) and for all n < 0 we have

An ≤ C(2n)β . 2

The following three Lemmas are crucial for the Morrey-type estimates obtained in
Section 4.

Lemma A.3 Let g ∈ Ḣ1/2(IR) ∩ L∞(IR) be such that supp(g) ⊂ B2k(IR). Then for all
h > k + 3 we have

||∆1/4g||L2(Ah) ≤ C2k−h , (123)

where Ah = B2h \B2h−1 and C depends on ||g||Ḣ1/2(IR), ||g||L∞(IR) .
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Proof . We fix h > k + 3 and let x ∈ Ah. We set ḡk = |B2k |−1
∫
B

2k
g(x)dx . We have

∆1/4g(x) = lim
ε→0

∫

|x−y|≥ε

g(y)− g(x)

|x− y|3/2 dy

= lim
ε→0

∫

|x−y|≥ε
y∈B

2k

g(y)− g(x)

|x− y|3/2 dy

≤ C2−3/2h2k|B2k |−1

∫

B
2k

|g(y)− ḡk|dy

+ 2−3/2h

∫

B
2k

|g(x)− ḡk|dy

≤ C2−3/2h2k(||g||Ḣ1/2(IR) + ||g||L∞(IR)) .

In the last inequality we use the fact that Ḣ1/2(IR) →֒ BMO(IR) . It follows that

∫

Ah

|∆1/4g(x)|2dx ≤ C22k−2h(||g||2L∞(IR) + ||g||2
Ḣ1/2(IR)

)

Thus (123) follows and we conclude. 2

Lemma A.4 Let f ∈ Ḣ1/2(IR) ∩ L∞(IR) be such that supp(f) ⊂ Bc
2N (IR). Then for all

h < N − 3 we have
||∆1/4f ||L2(IR)dx ≤ C2

h−N
2 , (124)

where C depends on ||f ||Ḣ1/2(IR), ||f ||L∞ .

Proof . Let h < N − 3 and x ∈ Ah. We have

∆1/4f(x) = lim
ε→0

∫

|x−y|≥ε

f(y)− f(x)

|x− y|3/2 dy (125)

= lim
ε→0

[∫

2N−1≥|x−y|≥ε

f(y)− f(x)

|x− y|3/2 dy +

∫

|x−y|≥2N−1

f(y)− f(x)

|x− y|3/2 dy

]
.

We observe that if |x− y| < 2N−2 and x ∈ Ah then |y| < 2N−1 and thus f(y) = f(x) = 0 .
Hence

(125) =

∫

2N−2≤|x−y|≤2N

f(y)− f(x)

|x− y|3/2 dy +

∫

2N≤|x−y|

f(y)− f(x)

|x− y|3/2 dy (126)

≤ C[2−3/2N2N(||f ||Ḣ1/2(IR) + ||f ||L∞(IR)) + 2−N/2||f ||L∞(IR)]

≤ C2−N/2(||f ||Ḣ1/2(IR) + ||f ||L∞(IR)) .
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From (126) it follows that
∫

Ah

|∆1/4f(x)|2dx ≤ C2−N+h(||f ||2
Ḣ1/2(IR)

+ |f ||2L∞(IR))

and thus (124) holds. 2

For every k ∈ ZZ, let χk be a smooth function such that suppχ ⊂ B2k(IR) and χ = 1
in B2k−1 . Given a locally integrable function u : IR → IRm we denote by ūk the average of
u in B2k(IR).

Lemma A.5 Let u ∈ Ḣ1/2(IR) ∩ L∞(IR). Then for every k ∈ ZZ we have

lim
N→+∞

∫

IR

∆1/4[(1− χN)(u− ūk)]∆
1/4[χk(u− ūk)]dx = 0 (127)

Proof. We set g := χk(u− ūk) and f = (1− χN )(u− ūk). We split the integral in (127)
as follows ∫

IR

∆1/4(1− χN )(u− ūk)∆
1/4(χk(u− ūk)dx (128)

=
k+2∑

h=−∞

∫

Ah

∆1/4f(x)∆1/4g(x)dx+
N−2∑

h=k+3

∫

Ah

∆1/4f(x)∆1/4g(x)dx

+

k+3∑

h=N−3

∫

Ah

∆1/4f(x)∆1/4g(x)dx . (129)

We estimate the three summations in (128). We suppose N ≫ k .
By applying Lemma A.4 we have

k+2∑

h=−∞

∫

Ah

∆1/4f(x)∆1/4g(x)dx ≤ C||g||Ḣ1/2

k+2∑

h=−∞

2
h−N

2

≤ C2
k−N

2 . (130)

By Lemma A.3 we have

+∞∑

h=N−3

∫

Ah

∆1/4f(x)∆1/4g(x)dx ≤ C||f ||Ḣ1/2(IR)

+∞∑

h=N−3

2k−h

≤ C2k−N (131)

Finally by applying both Lemmae A.3 and A.4 we get

N−2∑

h=k+3

∫

Ah

∆1/4f(x)∆1/4g(x)dx ≤ C(N − 2− k + 3)2k−N/2 . (132)

By combining (128), (130) and (131) we get (127) and we can conclude. 2
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