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Abstract

We consider nonlocal linear Schrödinger-type critical systems of the type

∆1/4v = Ω v in IR , (1)

where Ω is antisymmetric potential in L2(IR, so(m)), v is a IRm valued map and Ω v
denotes the matrix multiplication. We show that every solution v ∈ L2(IR, IRm) of (1)
is in fact in Lp

loc(IR, IRm), for every 2 ≤ p < +∞, in other words, we prove that the
system (1) which is a-priori only critical in L2 happens to have a subcritical behavior
for antisymmetric potentials. As an application we obtain the C0,α

loc regularity of weak
1/2-harmonic maps into C2 compact sub-manifolds without boundary.
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1 Introduction

In this paper we consider maps v = (v1, · · · , vm) ∈ L2(IR, IRm) solving a system of the form

∀i = 1 · · ·m ∆1/4vi =
m∑

j=1

Ωi
j v

j , (2)

where Ω = (Ωj
i )i,j=1···m ∈ L2(IR, so(m)) is an L2 map from IR into the space so(m) of m×m

antisymmetric matrices. The operator ∆1/4 on IR is defined by means of the the Fourier
transform as follows

∆̂1/4u = |ξ|1/2û ,

(given a function f , f̂ or F [f ] denotes the Fourier transform of f).
We will also simply denote such a system in the following way

∆1/4v = Ω v .

We remark that the system (5) is a-priori critical for v ∈ L2(IR). Indeed under the as-
sumptions that v,Ω ∈ L2 we obtain that ∆1/4v ∈ L1 and using classical theory on singular
integrals we deduce that v ∈ L2,∞

loc , the weak-L2 space, which has the same homogeneity
of L2. Thus we are more or less back to the initial assumption which is a property that
characterizes critical equations.

In such a critical situation it is a-priori not clear whether solutions have some additional
regularity or whether weakly converging sequences of solutions tends to another solution
(stability of the equation under weak convergence)...etc.

In [10] and [11] the second author proved the sub-criticality of local a-priori critical
Schödinger systems of the form

∀i = 1 · · ·m −∆ui =

m∑

j=1

Ωi
j · ∇u

j , (3)

where u = (u1, · · · , um) ∈ W 1,2(D2, IRm) and Ω ∈ L2(D2, IR2 ⊗ so(m)), or of the form

∀i = 1 · · ·m −∆vi =

m∑

j=1

Ωi
j v

j , (4)
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where v ∈ Ln/(n−2)(Bn, IRm) and Ω ∈ Ln/2(Bn, so(m)). In each of these two situations the
antisymmetry of Ω was responsible for the regularity of the solutions or for the stability of
the system under weak convergence.

Our first main result in this paper is to establish the sub-criticality of non-local Schrödinger
systems of the form (2). Precisely we prove the following theorem which extends to a non-
local setting the phenomena observed in [10] and [11] for the above local systems.

Theorem 1.1 Let Ω ∈ L2(IR, so(m)) and v ∈ L2(IR) be a weak solution of

∆1/4v = Ω v . (5)

Then v ∈ Lp
loc(IR) for every 1 ≤ p < +∞.

As in the previous works the main technique to prove Theorem 1.1 is to perform a change
of gauge by rewriting the system after having multiplied v by a well chosen rotation valued
map P ∈ H1/2(IR, SO(m)) . (1) In [10] the choice of P for systems of the form (3) was given
by the geometrically relevant Coulomb Gauge satisfying

div
[
P−1∇P + P−1ΩP

]
= 0 . (6)

In this context there is not hope to solve an equation of the form (6) with the operator ∇
replaced by ∆1/4, since for P ∈ SO(m) the matrix P−1∆1/4P is not in general antisymmetric.
The novelty here, like in [11], is to choose the gauge P satisfying the following (maybe less
geometrically relevant) equation which involves the antisymmetric part of P−1∆1/4P (2):

Asymm
(
P−1∆1/4P

)
:= 2−1

[
P−1∆1/4P −∆1/4P−1P

]
= Ω . (7)

The local existence of such P is given by the following theorem.

Theorem 1.2 There exists ε > 0 and C > 0 such that for every Ω ∈ L2(IR; so(m)) satisfying∫
IR
|Ω|2dx ≤ ε, there exists P ∈ Ḣ1/2(IR, SO(m)) such that





(i) P−1∆1/4P −∆1/4P−1P = 2Ω ;

(ii)

∫

IR

|∆1/4P |2dx ≤ C

∫

IR

|Ω|2dx .
(8)

✷

(1)SO(m) is the space of m×m matrices R satisying RtR = RRt = Id and det(R) = +1
(2)Given a m×m matrix M , we denote by Asymm(M) and by Symm(M) respectively the antisymmetric

and the symmetric part of M , namely Asymm(M) := M−Mt

2 and Symm(M) := M+Mt

2 , M t is the transpose
of M .
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The proof of this theorem is established by following an approach introduced by K.Uhlenbeck
in [18] to construct Coulomb Gauges for L2 curvatures in 4 dimension. The construction does
not provide the continuity of the map which to Ω ∈ L2 assigns P ∈ Ḣ1/2. This illustrates
the difficulty of the proof of Theorem 1.2 which is not a direct consequence of an application
of the local inversion theorem but requires more elaborated arguments.

Thus if the L2 norm of Ω is small, Theorem 1.2 gives a P for which w := Pv satisfies

∆1/4w = −
[
PΩP−1 −∆1/4P P−1

]
w +N(P, v)

= −Symm
(
(∆1/4P )P−1

)
w +N(P, v) . (9)

where N is the bilinear operator defined as follows. For an arbitrary integer n, for every
Q ∈ Ḣ1/2(IRn,Mℓ×m(IR

n)) ℓ ≥ 0(3) and v ∈ L2(IRn, IRm), N is given by

N(Q, v) := ∆1/4(Qv)−Q∆1/4v +∆1/4Q v . (10)

One of the key result used in [4] establishes that, under the above assumptions on Q ∈
H1/2(IRn,Mm(IR)) and v ∈ L2(IRn, IRm), N(Q, v) is more regular than each of its three
generating terms respectively ∆1/4(Q v), Q∆1/4v and ∆1/4Qv (4). We proved that N(Q, v)
is in fact in H−1/2(IR, IRm). Such a result in [4] was called a 3-commutator estimate (see
Theorem 1.3).

In the paper [5] we improve the gain of regularity by compensation obtained in [4]. In
order to make it more precise we recall the definition of the Hardy space H1(IRn) which is
the space of L1 functions f on IRnsatisfying

∫

IRn

sup
t∈IR

|φt ∗ f |(x) dx < +∞ ,

where φt(x) := t−n φ(t−1x) and where φ is some function in the Schwartz space S(IRn)
satisfying

∫
IRn φ(x) dx = 1. (5)

Lemma 1.1 There exists a constant C > 0 such that, for any Q ∈ Ḣ1/2(IRn,Mm(IR)) and
v ∈ L2(IRn, IRm), N(Q, v) = ∆1/4(Qv)−Q∆1/4v+∆1/4Q v is in H1(IRn) and the following
estimate holds

‖N(Q, v)‖H1 ≤ C ‖Q‖Ḣ1/2 ‖v‖L2(IR) . (11)

Thus in equation (9) the last term in the r.h.s happens to be slightly more regular. It
remains to deal with the first term in this r.h.s. : −Symm

(
∆1/4PP−1

)
w. A-priori

Symm
(
(∆1/4P )P−1

)
= 2−1[∆1/4P P−1 + P ∆1/4P−1] is only in L2 but here again we are

going to take advantage of a gain of regularity due to a compensation. Though, individually

(3)Mℓ×m(IR) denotes, as usual, the space of ℓ×m real matrices.
(4)The last one for example being only a-priori in L1.
(5)For more properties on the Hardy space H1 we refer to [7] and [8].
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each of the terms ∆1/4P P−1 and its transposed P ∆1/4P−1 are only in L2, the sum happens
to belong to the ”slightly” smaller space L2,1 defined as follows: L2,1(IR) is the Lorentz space
of measurable functions satisfying

∫

IR+

t−1/2f ∗(t)dt < +∞ ,

where f ∗ is the decreasing rearrangement of |f | .

The fact that Symm
(
(∆1/4P )P−1

)
belongs to L2,1(IR) comes from the combination of

the following lemma according to which ∆1/4(Symm
(
(∆1/4P )P−1

)
) ∈ H1(IR) and the sharp

Sobolev embedding (6) which says that f ∈ H1(IR) implies that ∆−1/4f ∈ L2,1. Precisely we
have

Lemma 1.2 Let P ∈ H1/2(IR, SO(m)) then ∆1/4(Symm
(
∆1/4P P−1

)
) is in the Hardy

space H1(IR) and the following estimates hold

‖∆1/4[∆1/4P P−1 + P ∆1/4P−1]‖H1 ≤ C‖P‖2H1/2 ,

where C > 0 is a constant independent of P . This implies in particular that

‖Symm
(
(∆1/4P ) P−1

)
‖L2,1 ≤ C‖P‖2H1/2 . (12)

The proof of Lemma 1.2 is a consequence of the 3-commutator estimates in [4] (see Theorem
1.5 below).

Remark 1 The fact that, for rotation valued maps P ∈ W 2,n/2(IRn, SO(m)) (n > 2),
Symm (∆P P−1) happens to be more regular than Asymm (∆P P−1) was also one of the
key points in [11].

As we explain in Section 3, Theorem 1.1 is a consequence of this special choice of P for
which the new r.h.s. in the gauge transformed equation (9) is slightly more regular due to
Lemma 1.1 and Lemma 1.2. More precisely this gain of regularity in the right of equation (9)
combined with suitable localization arguments permit to obtain the following local Morrey
type estimate for Pv and thus for v, (since P is bounded in the L∞ norm)

sup
x0∈B(0,ρ)
0<r<ρ/8

r−β

∫

B(x0,r)

|∆1/4v|dx ≤ C , (13)

for ρ small enough, 0 < β < 1/2 independent on x0 and C > 0 depending only on the
dimension. Proposition 3.2 in [1] yields that v ∈ Lq

loc(IR) for some q > 2 . (7)

(6)The fact that v ∈ H1 implies ∆−1/4v ∈ L2,1 is deduced by duality from the fact that ∆1/4v ∈ L2,∞

implies that v ∈ BMO(IR) - This last embedding has been proved by Adams in [1]
(7)In a paper in preparation [5] we show that the solutions of (5) are actually in L∞

loc(IR) .
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Our study of the linear systems has been originally motivated by the following non-linear
problem.

In the joint paper [4] we proved the C0,α
loc regularity of weak 1/2-harmonic maps into a

sphere Sm−1. The second aim of the present paper is to extend this result to weak 1/2-
harmonic maps with values in a k dimensional sub-manifold N , which is supposed at least
C2, compact and without boundary. We recall that 1/2-harmonic maps are functions u in
the space Ḣ1/2(IR,N ) = {u ∈ Ḣ1/2(IR, IRm) : u(x) ∈ N , a.e, } , which are critical points for
perturbation of the type ΠN

N (u + tϕ), (ϕ ∈ C∞ and ΠN
N is the normal projection on N ) of

the functional

L(u) =

∫

IR

|∆1/4u(x)|2dx , (14)

(see Definition 1.1 in [4]) . The Euler Lagrange equation associated to this non linear problem
can be written as follows :

∆1/2u ∧ ν(u) = 0 in D′(IR) , (15)

where ν(z) is the Gauss Maps at z ∈ N taking values into the grassmannian G̃rm−k(IR
m) of

oriented m− k planes in IRm which is given by the oriented normal m− k−plane to TzN .
(8)

The Euler Lagrange equation in the form (15) is hiding fundamental properties of this
equation such as in particular its elliptic nature and is difficult to use directly to solve
problems related to regularity and compactness. One of the first task is then to rewrite it
in a form that will make some of its analysis features more apparent. This is the purpose of
the next proposition. Before stating it, we need some additional notations

We denote by P T (z) and PN(z) the projections respectively to the tangent space TzN
and to the normal space NzN to N at z ∈ N . For u ∈ Ḣ1/2(IR,N ) we simply denote by
P T and PN the compositions P T ◦ u and PN ◦ u. In Section 5 we establish that , under the
assumption N to be C2, P T ◦u as well as PN ◦u are matrix valued maps in Ḣ1/2(IR,Mm(IR)).

A useful formulation of the 1/2-harmonic map equation is given by the following result .

Proposition 1.1 Let u ∈ Ḣ1/2(IR,N ) be a weak 1/2-harmonic map. Then the following
equation holds

∆1/4v = Ω̃1 + Ω̃2 v + Ω v , (16)

where v ∈ L2(IR, IR2m) is given by

v :=

(
P T∆1/4u
RPN∆1/4u

)
,

(8)We can identify the unit simple m − k vector ν(z) with an oriented m− k plane (see for instance [6]).
Moreover since we are assuming that N is C2, ν is a C1 map on N and the paracomposition gives that ν(u)
is in Ḣ1/2(IR,∧m−kIRm) hence, since ∆1/2u is a-priori in Ḣ−1/2 the product ∆1/2u ∧ ν(u) makes sense in
D′ using the duality Ḣ1/2 − Ḣ−1/2
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and where R is the Fourier multiplier of symbol σ(ξ) = i ξ
|ξ| .

Ω ∈ L2(IR, so(2m)) is given by

Ω = 2




−ω ωR

ωR −RωR




the maps ω and ωR are in L2(IR, so(m)) and given respectively by

ω =
∆1/4P TP T − P T∆1/4P T

2
,

and

ωR =
(R∆1/4P T )P T − P T (R∆1/4P T )

2
.

Finally the maps Ω̃1 := Ω̃1(P
N , P T ) ∈ H−1/2(IR, IR2m) and Ω̃2 = Ω̃2(P

N , P T ,∆1/4u) ∈
L2,1(IR,M2m(IR)) and satisfy

‖Ω̃1‖H−1/2(IR,IR2m) ≤ C
(
‖PN‖2H−1/2 + ‖P T‖2H−1/2

)
; (17)

and
‖Ω̃2‖L2,1(IR,M2m(IR)) ≤ C

(
‖PN‖H−1/2 + ‖P T‖H−1/2

)
‖∆1/4u‖L(2,∞) . ✷ (18)

The explicit formulations of Ω̃1 and Ω̃2 are given in Section 5. The control on Ω̃1 and
Ω̃2 is a consequence of regularity by compensation results on some operators that we now
introduce.

For every Q, v ∈ L2(IRn) we define the operator F by

F (Q, v) := R(Q)R(v)−Qv . (19)

From the commutator estimates obtained in [3], one can deduce that F (Q, v) ∈ H−1/2(IR)
and

‖F (Q, v)‖H−1/2(IR) ≤ C‖Q‖L2(IR)‖v‖L2(IR) . (20)

By a suitable estimate on the dual operator of F (Lemma B.5) we show the following sharper
estimate

‖F (Q, v)‖H−1/2(IR) ≤ C‖Q‖L2(IR)‖v‖L2,∞(IR) . (21)

Next we recall some commutator estimates we obtained in [4].

Theorem 1.3 Let n ∈ IN∗ and let u ∈ BMO(IRn), Q ∈ Ḣ1/2(IRn,Mℓ×m(IR
n)) . Denote

T (Q, u) := ∆1/4(Q∆1/4u)−Q∆1/2u+∆1/4u∆1/4Q ,

then T (Q, u) ∈ H−1/2(IRn) and there exists C > 0, depending only on n, such that

‖T (Q, u)‖H−1/2(IRn) ≤ C ‖Q‖Ḣ1/2(IRn) ‖u‖BMO(IRn) .✷ (22)
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Theorem 1.4 Let n ∈ IN∗ and let u ∈ BMO(IRn), Q ∈ Ḣ1/2(IRn,Mℓ×m(IR
n)) . Denote

S(Q, u) := ∆1/4[Q∆1/4u]−R(Q∇u) +R(∆1/4QR∆1/4u) .

Then S(Q, u) ∈ H−1/2(IRn) and there exists C depending only on n such that

‖S(Q, u)‖H−1/2(IRn) ≤ C ‖Q‖Ḣ1/2(IRn)‖u‖BMO(IRn) .✷ (23)

As it is observed in [4], Theorems 1.3 and 1.4 are consequences respectively of the following
results which are their “dual versions” .

Theorem 1.5 Let u,Q ∈ Ḣ1/2(IRn), denote

T ∗(Q, u) = ∆1/4(Q∆1/4u)−∆1/2(Qu) + ∆1/4((∆1/4Q)u) .

then T ∗(Q, u) ∈ H1(IRn) and

‖T ∗(Q, u)‖H1(IRn) ≤ C‖Q‖Ḣ1/2(IRn)‖u‖Ḣ1/2(IRn) .✷ (24)

Theorem 1.6 Let u,Q ∈ Ḣ1/2(IRn), denote

S∗(Q, u) = ∆1/4(Q∆1/4u)−∇(QRu) +R∆1/4(∆1/4QRu) .

Then S∗(Q, u) ∈ H1(IRn) and

‖S∗(Q, u)‖H1(IRn) ≤ C‖Q‖Ḣ1/2(IRn)‖u‖Ḣ1/2(IRn) .✷ (25)

Since the operators T ∗ and S∗ are the duals respectively of T and S, by combining Theorems
1.3 and 1.5 and Theorems 1.4 and 1.6 one gets the followings sharper estimates for T and S:

‖T (Q, u)‖H−1/2(IRn) ≤ C ‖Q‖Ḣ1/2(IRn)‖∆
1/4u‖L2,∞(IRn) ; (26)

‖S(Q, u)‖H−1/2(IRn) ≤ C ‖Q‖Ḣ1/2(IRn)‖∆
1/4u‖L2,∞(IRn) . (27)

An adaptation of Theorem 1.1 to the Euler Lagrange equation of the 1/2-Energy written
in the form (16) leads to the following theorem which is the second main result of the present
paper.

Theorem 1.7 Let N be a closed C2 submanifold of IRm without boundary Let u ∈ Ḣ1/2(IR,N )
be a weak 1/2−harmonic map into N , then u ∈ C0,α

loc (IR,N ), for all 0 < α < 1 . ✷

Finally a classical elliptic type bootstrap argument leads to the following result (see [5] for
the details of this argument).

Theorem 1.8 Let N be a smooth closed submanifold of IRm. Let u be a weak 1/2-harmonic
map in Ḣ1/2(IR,N )), then u is C∞ . ✷
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The regularity of critical points of non-local functionals has been recently investigated by
Moser [9]. In this work critical points to the functional that assigns to any u ∈ Ḣ1/2(IR,N )
the minimal Dirichlet energy among all possible extensions in N are considered, while in
the present paper the classical Ḣ1/2 Lagrangian corresponds to the minimal Dirichlet energy
among all possible extensions in IRm. Hence the approach in [9] consists in working with
an intrinsic version of H1/2−energy while we are considering here an extrinsic one. The
drawback of considering the intrinsic energy is that the Euler Lagrange equation is almost
impossible to write explicitly and is then implicit while in the present case it has the explicit
form (15). However the intrinsic version of the 1/2−harmonic map is more closely related
to the existing regularity theory of Dirichlet Energy minimizing maps into N .

Finally the regularity of n/2 harmonic maps in odd dimension n > 1 with values into a
sphere has been recently investigated by Schikorra [15] . In this work the author extends
the results obtained in [4] by adapting some compensation arguments introduced by Tartar
[16].

The paper is organized as follows.

- In Section 3 we prove Theorem 1.1 .

- In Section 4 we prove Theorem 1.2 .

- In Section 5 we derive the Euler-Lagrange equation (16) associated to the Lagrangian
(14) and we prove Theorem 1.7 .

- In Appendix A we prove some localization estimates related to the solutions to the
linear nonlocal Schröndiger systems (9) .

- In Appendix B we provide some commutator estimates that are crucial for the con-
struction of the gauge P .

2 Preliminaries: function spaces and the fractional Lapla-

cian

In this Section we introduce some notations and definitions we are going to use in the sequel.
For n ≥ 1, we denote respectively by S(IRn) and S ′(IRn) the spaces of Schwartz functions

and tempered distributions. Moreover given a function v we will denote by v̂ and F [v] the
Fourier Transform of v :

v̂(ξ) = F [v](ξ) :=

∫

IRn

v(x)e−iξ·x dx .

Throughout the paper we use the convention that x, y denote variables in the space and ξ, η
the variables in the phase .

We recall the definition of fractional Sobolev space (see for instance [17]).
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Definition 2.1 For a real s ≥ 0,

Hs(IRn) =
{
v ∈ L2(IRn) : |ξ|sF [v] ∈ L2(IRn)

}

For a real s < 0,

Hs(IRn) =
{
v ∈ S ′(IRn) : (1 + |ξ|2)s/2F [v] ∈ L2(IRn)

}
.✷

It is known that H−s(IRn) is the dual of Hs(IRn) .
For 0 < s < 1, another classical characterization of Hs(IRn) which does not make use the

Fourier transform is the following, (see for instance [17]).

Lemma 2.1 For 0 < s < 1, u ∈ Hs(IRn) is equivalent to u ∈ L2(IRn) and

(∫

IRn

∫

IRn

(
(u(x)− u(y))2

|x− y|n+2s

)
dxdy

)1/2

< +∞ .

✷

For s > 0 we set
‖u‖Hs(IRn) = ‖u‖L2(IRn) + ‖‖ξ|sF [v]‖L2(IRn) ,

and
‖u‖Ḣs(IRn) = ‖‖ξ|sF [v]‖L2(IRn) .

For an open set Ω ⊂ IRn, Hs(Ω) is the space of the restrictions of functions from Hs(IRn)
and

‖u‖Ḣs(Ω) = inf
{
‖U‖Ḣs(IRn), U = u on Ω

}
.

In the case 0 < s < 1 then u ∈ Hs(Ω) if and only if u ∈ L2(Ω) and

(∫

Ω

∫

Ω

(
(u(x)− u(y))2

|x− y|n+2s

)
dxdy

)1/2

< +∞ .

Moreover

‖u‖Ḣs(Ω) ≃

(∫

Ω

∫

Ω

(
(u(x)− u(y))2

|x− y|n+2s

)
dxdy

)1/2

< +∞ ,

see for instance [17] .
Finally for a submanifold N of IRm we can define

Hs(IRn,N ) = {u ∈ Hs(IRn, IRm) : u(x) ∈ N , a.e.} .

Given q > 1 we also set

W s,q(IRn) := {v ∈ Lq(IRn) : F−1[|ξ|sF [v]] ∈ Lq(IRn)} .
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We shall make use of the Littlewood-Paley dyadic decomposition of unity that we recall
here. Such a decomposition can be obtained as follows . Let φ(ξ) be a radial Schwartz
function supported in {ξ ∈ IRn : |ξ| ≤ 2}, which is equal to 1 in {ξ ∈ IRn : |ξ| ≤ 1} . Let
ψ(ξ) be the function given by

ψ(ξ) := φ(ξ)− φ(2ξ) .

ψ is then a ”bump function” supported in the annulus {ξ ∈ IRn : 1/2 ≤ |ξ| ≤ 2} .

Let ψ0 = φ, ψj(ξ) = ψ(2−jξ) for j 6= 0 . The functions ψj , for j ∈ ZZ, are supported in
{ξ ∈ IRn : 2j−1 ≤ |ξ| ≤ 2j+1} and they realize a dyadic decomposition of the unity :

∑

j∈ZZ

ψj(x) = 1 .

We further denote

φj(ξ) :=

j∑

k=−∞

ψk(ξ) .

The function φj is supported on {ξ, |ξ| ≤ 2j+1}.
We recall the definition of the homogeneous Besov spaces Ḃs

p,q(IR
n) and homogeneous

Triebel-Lizorkin spaces Ḟ s
pq(IR

n) in terms of the above dyadic decomposition.

Definition 2.2 Let s ∈ IR, 0 < p, q ≤ ∞ . For f ∈ S ′(IRn) we set

‖u‖Ḃs
p,q(IR

n) =

(
∞∑

j=−∞

2jsq‖F−1[ψjF [u]]‖qLp(IRn)

)1/q

if q <∞

‖u‖Ḃs
p,q(IR

n) = sup
j∈ZZ

2js‖F−1[ψjF [u]]‖Lp(IRn) if q = ∞

(28)

When p, q <∞ we also set

‖u‖Ḟ s
p,q(IR

n) =

∥∥∥∥∥∥

(
∞∑

j=−∞

2jsq|F−1[ψjF [u]]|q

)1/q
∥∥∥∥∥∥
Lp

.

✷

The space of all tempered distributions u for which the quantity ‖u‖Ḃs
p,q(IR

n) is finite is

called the homogeneous Besov space with indices s, p, q and it is denoted by Ḃs
p,q(IR

n). The
space of all tempered distributions f for which the quantity ‖f‖Ḟ s

p,q(IR
n) is finite is called the

homogeneous Triebel-Lizorkin space with indices s, p, q and it is denoted by Ḟ s
p,q(IR

n) . A

classical result says (9) that Ẇ s,p(IRn) = Ḃs
p,2(IR

n) = Ḟ s
p,2(IR

n) .

(9)See for instance [7]
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Finally we denote by H1(IRn) the homogeneous Hardy Space in IRn. A less classical
result (10) asserts that H1(IRn) ≃ Ḟ 0

2,1, thus we have

‖u‖H1(IRn) ≃

∫

IR

(∑

j

|F−1[ψjF [u]]|2

)1/2

dx .

We recall that in dimension n = 1, the space Ḣ1/2(IR) is continuously embedded in the
Besov space Ḃ0

∞,∞(IR). More precisely we have

Ḣ1/2(IR) →֒ BMO(IR) →֒ Ḃ0
∞,∞(IR) , (29)

where BMO(IR) is the space of bounded mean oscillation dual to H1(IRn) (see for instance
[14], page 31).

The s-fractional Laplacian of a function u : IRn → IR is defined as a pseudo differential
operator of symbol |ξ|2s :

∆̂su(ξ) = |ξ|2sû(ξ) . (30)

In the case where s = 1/2, we can write ∆1/2u = −R(∇u) where R is Fourier multiplier of

symbol
iξ

|ξ|
.

To conclude we introduce some basic notations.
We denote by Br(x̄) the ball of radius r and centered at x̄. If x̄ = 0 we simply write Br .

If x, y ∈ IRn, x · y denote the scalar product between x, y .
Given a subset K of IRn, 11K denotes the characteristic function of B.
For every function u : IRn → IR we denote by M(u) the maximal function of u, namely

M(u) = sup
r>0, x∈IRn

|B(x, r)|−1

∫

B(x,r)

|u(y)|dy . (31)

Given q > 1 we denote by q′ the coniugate of q: q−1 + q′−1 = 1 .
In the sequel we will often use the symbols . and ≃ instead of ≤ and =, if the constants

appearing in the estimates are not relevant and therefore they are omitted.

3 Regularity of nonlocal Schrödinger type systems

In this Section we prove Theorem 1.1. The proof is based on “ ad-hoc” localization estimates
given in the Appendix A and on the 3 terms commutator estimates (26) and (24) .

Proof of theorem 1.1.
Let ρ > 0 be such that ‖11B(0,ρ)Ω‖L2 ≤ ε0, with ε0 small enough. We decompose Ω as

follows Ω1 = 11B(0,ρ)Ω and Ω2 = (1− 11B(0,ρ))Ω .

(10)See for instance [8].
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Let P ∈ Ḣ1/2(IR, SO(m)) given by Theorem 1.2 (with Ω replaced by Ω1). We have

∆1/4(Pv) =
[
PΩP−1 − (∆1/4P )P−1

]
Pv +N(P, v) (32)

where N is the operator defined in 10.
Since P satisfies (8)(i) we have

PΩP−1 −∆1/4PP−1 = −
(∆1/4P )P−1 + P∆1/4P−1

2
(33)

= −Symm
(
(∆1/4P )P−1

)
.

From Theorem 1.5 it follows that Symm
(
(∆1/4P )P−1

)
∈ L2,1(IR). We stress that the fact

that Symm
(
(∆1/4P )P−1

)
is in L2,1(IR) (which is stricly contained in L2) will play a crucial

role.
Claim 1. From Theorems 1.3 and 1.5 we can deduce the estimate (26), which can be
expressed in term of the operator N as follows:

‖N(Q, v)‖Ḣ1/2(IRn) ≤ C‖v‖L2,∞(IRn) ‖Q‖H1/2(IRn) .

for every Q ∈ Ḣ1/2(IRn) and v ∈ L2(IRn) .
Proof of Claim 1.

‖N(Q, v)‖Ḣ−1/2(IRn) = sup
‖h‖

Ḣ1/2≤1

∫

IRn

N(Q, v)hdx

= sup
‖h‖

Ḣ1/2≤1

∫

IRn

v[Q(∆1/4h)−∆1/4(Qh) + (∆1/4Q)h]dx

= sup
‖h‖

Ḣ1/2≤1

∫

IRn

v∆−1/4(T ∗(Q, h))dx

by applying Theorem 1.5

. sup
‖h‖

Ḣ1/2≤1

‖v‖L2,∞‖∆−1/4(T ∗(Q, h))‖L2,1

. ‖v‖L2,∞‖Q‖Ḣ1/2 .

(34)

This concludes the proof of claim 1.

We set now w = Pv and ω = −Symm
(
(∆1/4P )P−1

)
and rewrite equation (32) as follows

∆1/4w = ω w +N(P, P−1w) + Ω2P
−1w . (35)

where by construction ‖ω‖L2,1, ‖P‖Ḣ1/2 ≤ ε0 .

Claim 2 : There exists q > 2 such that v ∈ Lq
loc(IR).
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Proof of Claim 2 . In order to establish the claim 2, we are going to establish the
following bound

sup
x0∈B(0,ρ/8) , 0<r<ρ/16

r−β ‖w‖L2,∞(B(x0,r)) < +∞ .

Let x0 ∈ B(0, ρ/8) and r ∈ (0, ρ/16). We argue by duality and multiply (35) by φ which
is given as follows. Let g ∈ L2,1(IR), with ‖g‖L2,1 ≤ 1 and set grα = 11B(x0,rα)g, with

0 < α < 1/4 and φ = ∆−1/4(grα) ∈ L∞(IR) ∩ Ḣ1/2(IR) . We take the scalar product of both
sides of equation (35) with φ and we integrate.

Left hand side of the equation (35):

sup
‖g‖L2,1≤1

∫

IR

φ ∆1/4wdx = sup
‖g‖L2,1≤1

∫

IR

grαwdx

= ‖w‖L2,∞(B(x0,rα)) .

(36)

Right hand side of the equation (35):
We apply Lemmas A.5, A.3, A.4 and A.6 and we respectively obtain

∫

IR

φ ω wdx ≤ ‖ω‖L2,1 ‖g‖L2,1 ‖w‖L2,∞(B(x0,r))

+α1/2

+∞∑

h=−1

2−h/2‖ω‖L2,1 ‖g‖L2,1 ‖w‖L2,∞(B(x0,2h+1r)\B(x0,2h−1r))

. ε0‖w‖L2,∞(B(x0,r)) + α1/2
+∞∑

h=−1

2−h/2‖w‖L2,∞(B(x0,2h+1r)\B(x0,2h−1r)) ;

(37)

∫

IR

φ N(P, P−1w)dx ≤ ε0‖w‖L2,∞(B(x0,r)

+ Cα1/2
+∞∑

h=1

2−h/2‖w‖L2,∞(B(x0,2h+1r)\B(x0,2h−1r)) ,
(38)

and finally ∫

IR

Ω2P
−1w φdx ≤ Cα1/2r1/2 . (39)

Thus combining (36)...(38) we get

‖w‖L2,∞(B(x0,rα)) . ε0‖w‖L2,∞(B(x0,r) (40)

+ α1/2

+∞∑

h=1

2−h/2 ‖w‖L2,∞(B
2h+1r(x0)

\B
2h−1r

(x0)) +

(
r

ρ

)1/2

α1/2 .
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If α and ε are small enough the formula (40) implies that for all x0 ∈ B(0, ρ/8) and
0 < r < ρ/16 we have ‖w‖L2,∞(B(x0,r)) ≤ Crβ , for some β ∈ (0, 1/2) and C > 0 independent
on r . Since P−1 ∈ L∞, this implies that

sup
x0∈B(0,ρ/8)
0<r<ρ/16

r−β

∫

B(x0,r)

|∆1/4v|dx < +∞ . (41)

Proposition 3.2 in [1] yields that v ∈ Lq
loc(IR) for some q > 2 which finishes the proof of claim

2.

Claim 3: v ∈ Lp
loc(IR) for every p > 2.

Proof of Claim 3 . We argue as in the proof of claim 2. We consider again ρ > 0 such
that ‖11B(0,ρ)Ω‖L2 ≤ ε0, with ε0 small enough. We write Ω = Ω1 + Ω2 with Ω1 = 11B(0,ρ)Ω
and Ω2 = (1− 11B(0,ρ))Ω. We consider an arbitrary q > 2 such that v ∈ Lq

loc.

Let x0 ∈ B(0, ρ/8), r ∈ (0, ρ/16), g ∈ Lq′(IR), with ‖g‖Lq′ ≤ 1 and set grα = 11B(x0,rα)g,
with 0 < α < 1/4 and φ = ∆−1/4(grα) . We observe that φ ∈ W 1/2,q′(IR). Moreover since

q′ < 2 and W 1/2,q′(IR) →֒ L
2q
q−2 (IR), we also have φ ∈ L

2q
q−2 (IR) .

We write the equation (5) as follows

∆1/4v = Ω111B(x0,r/2)v +

+∞∑

h=0

Ω111B(x0,2hr)\B(x0,2h−1r)v

+ Ω2v . (42)

We take the scalar product of the equation (42) with ∆−1/4(grα) and integrate . By using
Lemmas A.6-A.9 we get that

‖v‖Lq(B(x0,rα)) . ε0‖v‖Lq(B(x0,r/4) (43)

+ α1/q
+∞∑

h=1

2−h/q ‖w‖Lq(B
2h+1r(x0)

\B
2h−1r

(x0)) +

(
r

ρ

)1/q

α1/q .

If α and ε are small enough, the formula (43) implies

sup
x0∈B(0,ρ/8)
0<r<ρ/16

r−γ

[∫

B(x0,r)

|v|qdx

]1/q
< +∞ , (44)

with 0 < γ < 1/4 independent on q . Thus by plugging (44) in the equation (5) we obtain
for the same γ > 0 independent of q

sup
x0∈B(0,ρ/8)
0<r<ρ/16

r−γ ‖∆1/4v‖L2q/(q+2)B(x0,r) dx < +∞ . (45)
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Theorem 3.1 in [1] yields that v ∈ Lq̃
loc, with q̃ > q given by

q̃−1 = q−1 − 2−1[1− γ(q−1 + 2−1)−1]−1 .

Since q > 2 we have

q̃−1 < q−1 −
2

(1− 4γ)
.

By repeating the above arguments with q replaced by q̃, one finally gets that v ∈ Lp
loc for

every p > 2 . This concludes the proof of theorem 1.1. ✷

4 Construction of an optimal gauge P : the proof of

Theorem 1.2.

Proof of Theorem 1.2.

We follow the strategy of [11] to construct solutions to Asymm(P−1∆P ) = Ω which was
itself inspired by Uhlenbeck’s construction in [18] of Coulomb Gauges solving (6) .

Let 2 < q < +∞ and consider

U q
ε =

{
Ω ∈ Lq(IR, so(m)) ∩ Lq′(IR, so(m)) :

∫

IR

|Ω|2dx ≤ ε

}
.

Claim: There exist ε > 0 small enough and C > 0 large enough such that

Vq
ε,C :=





Ω ∈ U q
ε : there exits P ∈ Ẇ 1/2,q(IR, SO(m)) ∩ Ẇ 1/2,q′(IR, SO(m))

satisfying (8) (i)-(ii) and

∫

IR

|∆1/4P |qdx ≤ C

∫

IR

|Ω|qdx,

∫

IR

|∆1/4P |q
′

dx ≤ C

∫

IR

|Ω|q
′

dx





is open and closed in U q
ε and thus Vq

ε ≡ U q
ε . Actually the set U q

ε is star-shaped with respect to
the origin (if Ω ∈ U q

ε , then tΩ ∈ U q
ε for every 0 ≤ t ≤ 1) and therefore it is path connected .

Proof of the claim .
We first observe that Vq

ε,C 6= ∅, (0 ∈ Vq
ε,C) .

Step 1: For any ε > 0 and C > 0, Vq
ε,C is closed in Lq ∩ Lq′(IR, so(m)).

Let Ωn ∈ Vq
ε,C such that Ωn → Ω∞ in the norm Lq ∩ Lq′, as n → +∞ and let Pn be a

solution of
P−1
n ∆1/4Pn −∆1/4P−1

n Pn = 2Ωn

16



with ∫

IR

|∆1/4Pn|
qdx ≤ C0

∫

IR

|Ωn|
qdx ,

∫

IR

|∆1/4Pn|
q′dx ≤ C0

∫

IR

|Ωn|
q′dx .

Since Ωn → Ω∞ in the norm Lq ∩ Lq′ and
∫
IR
|Ωn|2dx ≤ ε, we can pass to the limit in this

inequality and we have ∫

IR

|Ω∞|2dx ≤ ε , (46)

which implies that Ω∞ ∈ Uε.
One can extract a subsequence Pn′ ⇀ P∞ in Ẇ 1/2,q∩Ẇ 1/2,q′ . By the Rellich-Kondrachov

Theorem we also have Pn′ → P∞ in L2
loc and hence P∞ ∈ SO(m) a.e. Thus P∞ ∈

Ẇ 1/2,q(IR, SO(m)) ∩ Ẇ 1/2,q′(IR, SO(m)) and the lower semi-continuity of the Ḣ1/2, Ẇ 1/2,q

and Ẇ 1/2,q′ norms implies that
∫

IR

|∆1/4P∞|2dx ≤ C0

∫

IR

|Ω∞|2dx ,

∫

IR

|∆1/4P∞|qdx ≤ C0

∫

IR

|Ω∞|qdx

and

∫

IR

|∆1/4P∞|q
′

dx ≤ C0

∫

IR

|Ω∞|q
′

dx .

(47)

We have

P−1
n ∆1/4Pn −∆1/4P−1

n Pn → P−1
∞ ∆1/4P∞ −∆1/4P−1

∞ P∞ in D′(IR) .

Since P−1
n ∆1/4Pn −∆1/4P−1

n Pn = Ωn → Ω∞ in D′ as well, we deduce that

P−1
∞ ∆1/4P∞ −∆1/4P−1

∞ P∞ = Ω∞ a.e. (48)

and combining (46), (47) and (48) we deduce that Ω∞ ∈ Vq
ε,C which concludes the proof of

Step 1.

Step 2: For ε > 0 small enough and C > 0 large enough Vq
ε,C is open.

For every P0 ∈ Ẇ 1/2,q(IR, SO(m)) ∩ Ẇ 1/2,q′(IR, SO(m)) we introduce the map

F P0 : Ẇ 1/2,q ∩ Ẇ 1/2,q′(IR, so(m)) −→ Lq ∩ Lq′(IR, so(m))

U −→ (P0 expU)
−1∆1/4(P0 expU)−∆1/4(P0 expU)

−1(P0 expU) .

We claim first that F P0 is a C1 map between the two Banach spaces Ẇ 1/2,q∩Ẇ 1/2,q′(IR, so(m))
and Lq ∩ Lq′(IR, so(m))
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i) Since Ẇ 1/2,q for q > 2 embedds continuously in C0, the map V → exp (V ) is clearly
smooth from Ẇ 1/2,q ∩ Ẇ 1/2,q′(IR, so(m)) into Ẇ 1/2,q ∩ Ẇ 1/2,q′(IR, SO(m)).

ii) The operator ∆1/4 is a smooth linear map from Ẇ 1/2,q ∩ Ẇ 1/2,q′(IR,Mm(IR)) into
Lq ∩ Lq′(IR,Mm(IR)).

iii) Since again Ẇ 1/2,q embedds continuously in L∞ - Ẇ 1/2,q ∩ Ẇ 1/2,q′ is an algebra - the
following map

Π : Ẇ 1/2,q ∩ Ẇ 1/2,q′(IR,Mn(IR))× Lq ∩ Lq′(IR,Mn(IR)) −→ Lq ∩ Lq′(IR,Mn(IR))

(A,B) −→ AB

is also smooth.

Now we show that dF P0
0 = LP0 (11)

LP0(η) := −η P−1
0 ∆1/4P0 +∆1/4(η P−1

0 )P0

+P−1
0 ∆1/4(P0η)−∆1/4P−1

0 P0η .

• Differentiability of F P0 at U = 0 :

∥∥F P0(η)− F P0(0)− LP0 · η
∥∥
Lq∩Lq′ =

∥∥F P0(η)− F P0(0) + ηP−1
0 ∆1/4P0

−∆1/4(ηP−1
0 )P0 − P−1

0 ∆1/4(P0η) + ∆1/4P−1
0 P0η

∥∥
Lq∩Lq′

First of all we estimate
∥∥(P0 exp(η))

−1∆1/4(P0 exp η)− P−1
0 ∆1/4P0 + ηP−1

0 ∆1/4P0 − P−1
0 ∆1/4(ηP0)

∥∥
Lq∩Lq′

≤
∥∥∆1/4(P0)

∥∥
Lq∩L2

∥∥(P0 exp(η))
−1 − P−1

0 + η(P0)
−1
∥∥
L∞

+
∥∥(P0 exp(η))

−1
∥∥
L∞

∥∥∆1/4(P0 exp(η))−∆1/4(P0)−∆1/4(P0η)
∥∥
Lq∩Lq′

+
∥∥∆1/4(P0η)

∥∥
Lq∩Lq′ ‖P0 exp(η)− P0‖L∞

≤ C o(‖η‖Ẇ 1/2,q(IR))

(49)

The estimate of

∥∥(P0exp η)
−1∆1/4(P0 exp (η))− P−1

0 ∆1/4(P0)− P−1
0 ∆1/4(P0η) + ∆1/4P−1

0 P0η
∥∥
Lq∩Lq′ .

(11)In order to define LP0 as a map from Ẇ 1/2,q ∩ Ẇ 1/2,q′ into Lq ∩ Lq′ we recall again that we make use
of the embedding Ẇ 1/2,q(IR) →֒ L∞(IR) if q > 2 (see for instance [14], pag 33).

18



is analogous. Hence we have proved that dF P0
0 = LP0 .

• d0F P0 is an isomorphism from Ẇ 1/2,q ∩ Ẇ 1/2,q′(IR, so(m)) into Lq ∩ Lq′(IR, so(m)) .

Precisely we prove the following lemma.

Lemma 4.1 There exists ε > 0 such that if Ω0 ∈ U q
ε,C and if P0 ∈ Ẇ 1/2,q∩Ẇ 1/2,q′(IR, SO(m))

is a solution of (8) (i)-(ii), satisfying





∫
IR
|∆1/4P0|qdx ≤ C

∫
IR
|Ω0|qdx

∫
IR
|∆1/4P0|q

′

dx ≤ C
∫
IR
|Ω0|q

′

dx ,
(50)

then for every ω ∈ Lq ∩ Lq′(IR, so(m)) there exists a unique η ∈ Ẇ 1/2,q ∩ Ẇ 1/2,q′(IR, so(m))
such that

ω = −ηP−1
0 ∆1/4P0 +∆1/4(ηP−1

0 )P0 + P−1
0 ∆1/4(P0η)− (∆1/4P−1

0 )P0η (51)

and
‖η‖Ẇ 1/2,q∩Ẇ 1/2,q′ ≤ C ‖ω‖Lq∩Lq′ .

Proof of Lemma 4.1. Let Ω0 ∈ U q
ε,C. Suppose that P0 ∈ Ẇ 1/2,q ∩ Ẇ 1/2,q′IR, SO(m)) is a

solution of (8) (i)-(ii), satisfying (50) .
Claim 1. Let 1 < r < 2. LP0 is an isomorphism between Ẇ 1/2,r(IR, so(m)) and

Lr(IR, so(m)), namely for any ω ∈ Lr(IR, so(m)) there exists a unique η ∈ Ẇ 1/2,r(IR, so(m))
solution to LP0(η) = ω and

‖η‖Ẇ 1/2,r ≤ C ‖ω‖Lr

for C > 0 .
We rewrite the equation (51) in the following way

ω = 2∆1/4η − 2ηP−1
0 ∆1/4P0 − 2∆1/4P−1

0 P0η (52)

+ Q(η, P0)−Qt(η, P0) ,

where

Q(η, P0) = ∆1/4(ηP−1
0 )P0 + η P−1

0 ∆1/4P0 −∆1/4η . (53)

From Lemma B.2 and Lemma B.3 it follows that

‖Q(η, P0)‖Lr ≤ C‖ηP−1
0 ‖Ẇ 1/2,r‖P0‖Ḣ1/2 (54)

≤ C ‖η‖Ẇ 1/2,r

(
‖P−1

0 ‖L∞ + ‖P−1
0 ‖Ḣ1/2

)
‖P0‖Ḣ1/2

≤ C ‖η‖Ẇ 1/2,r

(
‖P0‖L∞‖P0‖Ḣ1/2 + ‖P0‖

2
Ḣ1/2

)
.
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Since 2−1 + (2− r) (2r)−1 = r−1, by applying Hölder Inequality we get

‖η P−1
0 ∆1/4P0‖Lr ≤ ‖η‖L2r/(2−r)‖P−1

0 ∆1/4P0‖L2 (55)

since Ẇ 1/2,r(IR) →֒ L
2r
2−r (IR)

≤ C|η‖Ẇ 1/2,r‖P−1
0 ∆1/4P0‖L2 .

We consider the following map HP0 : Ẇ 1/2,r(IR, so(m)) → Lr(IR, so(m)),

HP0(η) = −2 ηP−1
0 ∆1/4P0 − 2∆1/4P−1

0 P0 η +Q(η, P0)−Qt(η, P0) .

From (54) and (55), it follows that there exists a constant C > 0 (independent of P0) such
that

‖HP0(η)‖Lr ≤ C ‖η‖Ẇ 1/2,r

(
‖P0‖L∞‖P0‖Ḣ1/2 + ‖P0‖

2
Ḣ1/2

)
.

Because of (50), ‖P0‖Ḣ1/2 ≤ (Cε)1/2 and hence, if ε > 0 is small enough, LP0 = 2∆1/4 +
HP0 : Ẇ

1/2,r(IR, so(m)) → Lr(IR, so(m)) is invertible which proves the first claim.

Claim 2. Let q′ < r < 2. Let ω ∈ Lq ∩ Lr and η ∈ Ẇ 1/2,r be the solution of LP0(η) = ω,
then η is in Ẇ 1/2,q ∩ Ẇ 1/2,r.

We apply Lemma B.3 to

∆1/4η − P−1
0 ∆1/4(P0η) = ∆1/4(P−1

0 P0η)− P−1
0 ∆1/4(P0η)

and we obtain

‖∆1/4η − P−1
0 ∆1/4(P0η)‖Lt ≤ C‖P0η‖Ẇ 1/2,r ‖P−1

0 ‖Ẇ 1/2,q(IR,SO(m))

by Lemma B.2 (56)

≤ C‖η‖Ẇ 1/2,r [‖P0‖L∞ + ‖P0‖Ḣ1/2 ] ‖P0‖Ẇ 1/2,q(IR,SO(m)) ,

where t is given by 1
t
= 1

q
+ 2−r

2r
.

In a similar way we have

‖∆1/4η −∆1/4(η P−1
0 )P0‖Lt ≤ C‖η‖Ẇ 1/2,r [‖P0‖L∞ + ‖P0‖Ḣ1/2 ] ‖P0‖Ẇ 1/2,q(IR,SO(m) .

On the other hand we also have

‖(η P−1
0 )∆1/4P0‖Lt ≤ ‖η‖

L
2r
2−r

‖∆1/4P0‖Lq . (57)

Thus Q(η, P0), Q
t(η, P0) and HP0(η) are in Lt . Since ω ∈ Lq ∩ Lr, we have ∆1/4η ∈ Lt as

well. Since q′ < r < 2 and 1
t
= 1

q
+ 1

r
− 1

2
, we have that t > 2.
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The fact that ∆1/4η ∈ Lr ∩ Lt for some r < 2 and t > 2 implies that η ∈ L∞ (see for
instance [2], pag 25) .

From the fact that η ∈ L∞ we deduce that η P−1
0 ∆1/4P0 ∈ Lq and (∆1/4P−1

0 )P0 η ∈ Lq .
Now we apply Lemma B.4 respectively to a = P0 η ∈ Ḣ1/2 ∩ L∞, b = P−1

0 ∈ Ẇ 1/2,q and
a = ηP−1

0 , b = P0 and we get that HP0(η) ∈ Lq. Since ω ∈ Lq ∩ Lr we have ∆1/4η ∈ Lq as
well. Moreover the following estimate holds

‖∆1/4η‖Lq ≤ C ‖ω‖Lq∩Lr ,

which proves the claim 2.

Claim 3. Let w ∈ Lq ∩ Lq′ and η ∈ ∩q′<r≤qẆ
1/2,r be the solution of LP0(η) = ω. Then η is

in Ẇ 1/2,q ∩ Ẇ 1/2,q′.
It is enough to apply apply Lemma B.4 respectively to a = P0 η ∈ L∞, b = P−1

0 ∈ Ẇ 1/2,q′

and a = ηP−1
0 , b = P0 in order to get that HP0(η) ∈ Lq′. Since ω ∈ Lq ∩ Lq′ we have

∆1/4η ∈ Lq′ as well.

Combining claim 1, claim 2 and claim 3 we obtain that for any ω ∈ Lq ∩ Lq′(IR, so(m))
there exists a unique η ∈ Ẇ 1/2,q ∩ Ẇ 1/2,q′(IR, so(m)) such that

LP0η = ω ,

and
‖η‖Ẇ 1/2,q∩Ẇ 1/2,q′ ≤ C ‖ω‖Lq∩Lq′ .

This finishes the proof of lemma 4.1. ✷

Proof of step 2 continued. We take Ω0 ∈ Vq
C,ε . By definition of Vq

C,ε there exists P0 ∈

Ẇ 1/2,q′ ∩ Ẇ 1/2,q(IR, SO(m) that solves (8) (i)-(ii) and satisfies (50) . Now we apply the
Implicit Function Theorem to F P0 and we deduce that for every P in some neighborhood of
P0 and Ω in a neighborhood of Ω0 (both neighborhoods having a size depending on P0 and
Ω0 of course) the equation (8)(i) is satisfied and for some constant C > 0 independent on q
one has

‖∆1/4P‖Lq ≤ C‖Ω‖Lq , and ‖∆1/4P‖Lq′ ≤ C‖Ω‖Lq′ . (58)

The inequality (58) is satisfied by Ω0 and P0 by definition of Vq
C,ε .

By possibly taking a smaller neighborhood of P0 we may always assume that
∫

IR

|∆1/4P |2dx ≤ ε′ < 1 .

Step 3:The fact that
∫
IR
|∆1/4P |2dx ≤ ε′ < 1 implies that

∫
IR
|∆1/4P |2dx ≤ C

∫
IR
|Ω|2dx .

We write

P−1∆1/4P =
1

2
(P−1∆1/4P − (P−1∆1/4P )t) +

1

2
(P−1∆1/4P + (P−1∆1/4P )t)

= Asymm(P−1∆1/4P ) + Symm(P−1∆1/4P ) .
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We apply the estimate (12) and we get

‖P−1∆1/4P +∆1/4P−1P‖L2(IR) ≤ C‖∆1/4P‖2L2

≤ C‖P−1∆1/4P‖2L2

≤ C‖∆1/4P‖L2

(
‖Symm(P−1∆1/4P )‖L2 + ‖Asymm(P−1∆1/4P )‖L2

)
.

Thus we get

‖Symm(P−1∆1/4P )‖L2 ≤ Cε′
(
‖sym(P−1∆1/4P )‖L2 + ‖Asymm(P−1∆1/4P )‖L2

)
.

If Cε′ < 1/2 then

‖Symm(P−1∆1/4P )‖L2 ≤ C‖Asymm(P−1∆1/4P )‖L2 = C‖Ω‖L2

which ends the proof of Step 3.

Step 4. Take now Ω ∈ L2 and
∫
IR
|Ω|2dx ≤ ε. Let Ωk ∈ U q

ε be such that Ωk → Ω as
k → +∞ in L2. By arguing as in the proof of that Vq

ε is closed one gets that there exists
P ∈ Ḣ1/2 satisfying (8)(i)-(ii). ✷

5 Euler Equation for Half-Harmonic Maps into Mani-

folds

We consider a compact k dimensional C2 manifold without boundary N ⊂ IRm. Let ΠN be
the orthogonal projection on N . We also consider the Dirichlet energy (14).

The weak 1/2-harmonic maps are defined as critical points of the functional (14) with
respect to perturbation of the form ΠN (u+tφ), where φ is an arbitrary compacted supported
smooth map from IR into IRm .

Definition 5.1 We say that u ∈ H1/2(IR,N ) is a weak 1/2-harmonic map if and only if,
for every maps φ ∈ H1/2(IR, IRm) ∩ L∞(IR, IRm) we have

d

dt
L(ΠN (u+ tφ))|t=0 = 0 . (59)

✷

We introduce some notations. We denote by
∧
(IRm) the exterior algebra (or Grassmann

Algebra) of IRm and by the symbol ∧ the exterior or wedge product. For every p = 1, . . . , m,∧
p(IR

m) is the vector space of p-vectors .
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If (ǫi)i=1,...,m is the canonical orthonormal basis of IRm, then every element v ∈
∧

p(IR
m)

is written as v =
∑

I vIǫI where I = {i1, . . . , ip} with 1 ≤ i1 ≤ . . . ≤ ip ≤ m , vI := vi1,...,ip
and ǫI =:= ǫi1 ∧ . . . ∧ ǫip .

By the symbol we denote the interior multiplication :
∧

p(IR
m)×

∧
q(IR

m) →
∧

q−p(IR
m)

defined as follows.
Let ǫI = ǫi1 ∧ . . .∧ ǫip , ǫJ = ǫj1 ∧ . . .∧ ǫjq , with q ≥ p . Then ǫJ ǫI = 0 if I 6⊂ J , otherwise

ǫJ ǫI = (−1)MǫK where ǫK is a q − p vector (with K ∪ I = J) and M is the number of
pairs (i, j) ∈ I × J with j > i .

Finally by the symbol ∗ we denote the Hodge-star operator, ∗ :
∧

p(IR
m) →

∧
m−p(IR

m),
defined by ∗β = (ǫ1 ∧ . . . ∧ ǫn) β. For an introduction of the Grassmann Algebra we refer
the reader to the first Chapter of the book by Federer [6] .

In the sequel we denote by P T and PN respectively the tangent and the normal projection
to the manifold N .

They verify the following properties: (P T )t = P T , (PN)t = PN (namely they are sym-
metric operators), (P T )2 = P T , (PN)2 = PN , P T + PN = Id, PNP T = P TPN = 0 .

We set e = ǫ1 ∧ . . .∧ ǫk and ν = ǫk+1 ∧ . . .∧ ǫm . For avery z ∈ N , e(z) and ν(z) give the
orientation respectively of the tangent k-plane and the normal m− k-plane to TzN .

We observe that for every v ∈ IRm we have

P Tv = (−1)k−1 ∗ ((e v) ∧ ν) . (60)

PNv = (−1)m−1 ∗ (e ∧ (ν e)) . (61)

We observe that PNand P T can be seen as matrices in Ḣ1/2(IR) ∩ L∞(IR) .
Next we write the Euler equation associated to the functional (14) .

Proposition 5.1 All weak 1/2-harmonic maps u ∈ H1/2(IR,N ) satisfy in a weak sense the
following three equivalent equations:

i) the equation ∫

IR

(∆1/2u) · v dx = 0, (62)

for every v ∈ H1/2(IR, IRm) ∩ L∞(IR, IRm) with v ∈ Tu(x)N almost everywhere ;
ii) the equation

P T∆1/2u = 0 in D′ , (63)

and
iii) the equation

∆1/4(P T∆1/4u) = T (P T , u)− (∆1/4P T )∆1/4u . (64)

✷
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The Euler Lagrange equation (64) can be considered together with by the following ”structure
equation” involving the normal projection of ∆1/4u .

Proposition 5.2 All maps in Ḣ1/2(IR,N ) satisfy the following identity

∆1/4(R(PN∆1/4u)) = R(S(PN , u))− (∆1/4PN)(R∆1/4u) . (65)

✷

For the proofs of Proposition 5.1 and 5.2 we refer the reader to [4] .

Next we see that by combining (64) and (65) we can obtain the new equation (16) for the
vector field v = (P T∆1/4u,R(PN∆1/4u)) whose right hand side contains an antisymmetric
potential.

We introduce the following matrices

ω1 =
(∆1/4P T )P T + P T∆1/4P T −∆1/4(P TP T )

2
, (66)

ω2 = (∆1/4P T )PN + P T∆1/4PN −∆1/4(P TPN) , (67)

ω =
(∆1/4P T )P T − P T∆1/4P T

2
; (68)

and

ω3 =
(R∆1/4P T )P T + P T∆1/4(R∆1/4P T )−R∆1/4(P TP T )

2
, (69)

ω4 = (R∆1/4P T )PN + PN(R∆1/4P T )−R∆1/4(PNP T ), (70)

ωR =
(R∆1/4P T )P T − P T (R∆1/4P T )

2
. (71)

We observe that Theorem 1.3 and Theorem 1.4 imply respectively that ∆1/4(ω1), ∆
1/4(ω2)

and ∆1/4(ω3), ∆
1/4(ω4) are in the homogeneous Hardy SpaceH1(IR). Therefore ω1, ω2, ω3, ω4 ∈

L2,1(IR) . The matrices ω and ωR are antisymmetric.

Proof of Proposition 1.1. From Propositions 5.1 and 5.2 it follows that u satisfies in a
weak sense the equations (64) and (65).

The key point is to rewrite the terms (∆1/4P T )(∆1/4u) and (∆1/4PN)R(∆1/4u) .
• Re-writing of (∆1/4P T )∆1/4u .

(∆1/4P T )∆1/4u = (∆1/4P T )(P T (∆1/4u) + PN(∆1/4u))

= ((∆1/4P T )P T )(P T (∆1/4u)) + ((∆1/4P T )PN)(PN(∆1/4u)) .

Now we have

(∆1/4P T )P T = ω1 + ω +
∆1/4P T

2
; (72)
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and

(∆1/4P T )PN = (∆1/4P T )PN + P T∆1/4PN −∆1/4(P TPN)− P T∆1/4PN

= ω2 + P T∆1/4P T (73)

= ω2 + ω1 − ω +
∆1/4P T

2
.

where in (73) we use that ∆1/4PN = −∆1/4P T . Thus

(∆1/4P T )(P T∆1/4u)

2
= ω1(P

T∆1/4u) + ω(P T∆1/4u) (74)

(∆1/4P T )(PN∆1/4u)

2
= (ω1 + ω2)(P

N∆1/4u)− ω(PN∆1/4u) (75)

= R(ω1 + ω2)R(PN∆1/4u)−R(ω)R(PN∆1/4u)

+ F (−ω + ω1 + ω2, (P
N∆1/4u)) .

• Re-writing of (∆1/4PN)(R∆1/4u) .
We have

(∆1/4PN)(R∆1/4u) = (R(∆1/4PN))(P T (∆1/4u) + PN(∆1/4u))

+ F ((R(∆1/4PN)),∆1/4u) .

We rewrite the terms (R∆1/4PN)P T (∆1/4u) and (R∆1/4PN)PN(∆1/4u) . We have

(R∆1/4PN)P T = −(R∆1/4P T )P T

= −ω3 − ωR −
(R∆1/4P T )

2

= −ω3 − ωR +
(R∆1/4PN)

2
,

and

(R∆1/4PN)PN = −(R∆1/4P T )PN ± P T (R∆1/4PN)

= −[(R∆1/4P T )PN + P T (R∆1/4PN)−R∆1/4(PNP T )]

+ P T (R∆1/4PN)

= −ω4 − ω3 + ωR +
(R∆1/4PN)

2
.
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Thus

(R∆1/4PN)P T∆1/4u

2
= −ω3(P

T∆1/4u)− ωR(P
T∆1/4u) (76)

(R∆1/4PN)PN∆1/4u

2
= −ω4(P

N∆1/4u)− ω3(P
N∆1/4u) + ωR(P

N∆1/4u) (77)

= R(−ω3 − ω4)R(PN∆1/4u)

+ R(ωR)R(PN∆1/4u)

+ F (ωR − ω3 − ω4, P
N∆1/4u) .

By combining (74), (75), (76) and (77) we obtain

∆1/4

(
P T∆1/4u
RPN∆1/4u

)
= Ω̃1 + Ω̃2

(
P T∆1/4u
RPN∆1/4u

)
(78)

+ 2

(
−ω ωR

ωR −RωR

)(
P T∆1/4u
RPN∆1/4u

)
,

where Ω̃1 and Ω̃2 are given by

Ω̃1 =

(
−2F (−ω + ω1 + ω2, (P

N∆1/4u)) + T (P T , u)
−2F (R(∆1/4PN),R(∆1/4u))− 2F (ωR − ω3 − ω4, P

N(∆1/4u) +R(S(PN , u))

)
.

Ω̃2 = 2

(
−ω1 −[R(ω1 + ω2) + (R(ω)− ωR)]
ω3 −R(ω3 − ω4)

)
.

The matrix

Ω = 2

(
−ω ωR

ωR −RωR

)

is antisymmetric .
We observe that from the estimates on the operators F , T and S it follows that Ω̃1 ∈

H−1/2(IR, IR2m) and

‖Ω̃1‖H−1/2(IR) ≤ C(‖PN‖Ḣ1/2(IR) + ‖P T‖Ḣ1/2(IR))‖∆
1/4u‖L2,∞ . (79)

On the other hand Ω̃2 ∈ L2,1(IR,M2m) and

‖Ω̃2‖L2,1(IR) ≤ C(‖PN‖2
Ḣ1/2(IR)

+ ‖P T‖2
Ḣ1/2(IR)

) . (80)

This concludes the proof of Proposition 1.1. ✷
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Proof of Theorem 1.7.
From Proposition 1.1 it follows that v = (P T (∆1/4u),R(PN(∆1/4u))) solves equation

(78) which is of the type (5) up to the terms Ω̃1 and Ω̃2 v. The important point here is that
the terms Ω̃1 and Ω̃2 v are not “dangerous” because of the key estimates (79) and (80).

Therefore the arguments are very similar to those of Theorem 1.1 and we give only a
sketch of proof.

We aim at obtaining that ∆1/4u ∈ Lp
loc(IR), for all p ≥ 1 . To this purpose we take ρ > 0

such that
‖Ω‖L2(B(0,ρ), ‖P

T‖Ḣ1/2(B(0,ρ), ‖P
N‖Ḣ1/2(B(0,ρ) ≤ ε0,

with ε0 > 0 small enough. Let x0 ∈ B(0, ρ/8) and r ∈ (0, ρ/16). As in the case of equation
(5) we argue by duality and multiply both sides of equation (78) by φ = ∆−1/4(grα), with
g ∈ L2,1(IR), ‖g‖L2,1 ≤ 1 and grα = 11B(x0,rα)g, with 0 < α < 1/4 .

It is enough to estimate the integral

∫

IR

Ω̃1

(
∆−1/4P T (grα))
∆−1/4PN(grα))

)
dx , (81)

(the other terms have already estimated in the proof of Theorem 1.1) .
We observe that

‖∆1/4u‖L2,∞ .

∥∥∥∥
√

(P T (∆1/4u))2 + (R(PN(∆1/4u)))2
∥∥∥∥
L2,∞

= ‖v‖L2,∞ . (82)

By combining Lemma A.5-A.10 and the estimate (82) we obtain

(81) . ε0‖∆
1/4u‖L2,∞ + α1/2

+∞∑

h=1

2−h/2‖∆1/4u‖L2,∞(B(x0,2h+1r)\B(x0,2h−1r))

. ε0‖v‖L2,∞ + α1/2

+∞∑

h=1

2−h/2‖v‖L2,∞(B(x0,2h+1r)\B(x0,2h−1r)) .

Since v satisfies an estimate of the type (40), for α and ε0 small enough, we have

sup
x0∈B(0,ρ/8),0<r<ρ/16

‖v‖L2,∞(B(x0,r)) ≤ Crβ ,

for some C > 0 and β ∈ (0, 1/2) .
By arguing as in Theorem 1.1 we deduce that v ∈ Lp

loc(IR), for all p ≥ 1 . Therefore
∆1/4u ∈ Lp

loc(IR), for all p ≥ 1 as well.

This implies that u ∈ C0,α
loc for all 0 < α < 1, since W

1/2,p
loc (IR) →֒ C0,α

loc (IR) if p > 2 (see
for instance [2]). This concludes the proof of Theorem 1.7 . ✷
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A Localization Estimates

The aim of this Appendix is to provide localization estimates for weak solutions to the
equations (32) and (78) .

For r > 0, h ∈ ZZ and x0 ∈ IR we set

Ah,x0(r) = B(x0, 2
h+1r) \B(x0, 2

h−1r) and A′
h,x0

(r) = B(x0, 2
hr) \B(x0, 2

h−1r) .

In the following two Lemmae we prove some estimates that will be often used in the
sequel.

In the Lemma A.1 we estimate the L1 and Ḣ1/2 norms of ∆−1/4g respectively in a ball
and in an annulus, where g ∈ Lq(IR), q > 1 has compact support .

Lemma A.1 Let g ∈ Lq(IR), q > 1 supp g ⊂ B(x0, rα), with x0 ∈ IR, α > 0 . Then

‖∆−1/4g‖L1(B(x0,γr) . γ1/2α1/2r
q′+2
2q′ ‖g‖Lq(IR) , (83)

for all γ > 0 and

‖∆−1/4g‖Ḣ1/2(A′
h,x0

(r)) . 2−h/2α1/q′r
( 1
q′
− 1

2
)‖g‖Lq(IR) . (84)

Proof of Lemma A.1 .
First of all we may assume without restriction that x0 = 0.
1. Estimate of (83).
We have

‖∆−1/4g‖L1(B(0,γr)) . ‖| · |−1/2 ∗ g‖L1(B(0,γr))

. ‖|x|−1/2‖L1(B(0,γr))‖g‖L1(B(0,rα))

. (γr)1/2(rα)1/q
′

‖g‖Lq .

2. Estimate of (84).
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We have

‖11A′
h,0(r)

∆−1/4g‖2
Ḣ1/2(A′

h,0(r))

=

∫

A′
h,0(r)

∫

A′
h,0(r)

1

|t− s|2

(∫

|x|<rα

g(x)(
1

|x− s|1/2
−

1

|x− t|1/2
)dx

)2

dtds

by Mean Value Theorem

.

∫

A′
h,0(r)

∫

A′
h,0(r)

(∫

|x|<rα

g(x)max(
1

|x− t|3/2
,

1

|x− s|3/2
)dx

)2

dtds

.

∫

A′
h,0(r)

∫

A′
h,0(r)

2−3hr−3(rα)2/q
′

(∫

|x|<rα

|g(x)|qdx

)2/q

dtds

. 2−hα2/q′r−1+2/q′‖g‖2Lq .

This concludes the proof of Lemma A.1 . ✷

In the next Lemma we estimate the integral over a ball of the product of ∆1/4v with
v ∈ L2,∞, supp v ⊂ Ah,x0(r) and ∆−1/4g with g ∈ Lq(IR), q > 1, supp g ⊂ B(x0, rα) .

Lemma A.2 Let g ∈ Lq(IR), q > 1, supp g ⊂ B(x0, rα), with x0 ∈ IR, 0 < α < 1
4
and let

v ∈ L2,∞, supp v ⊂ Ah,x0(r) with h > −1. Then for all δ > 0 we have
∫

IR

∆1/4v 11B(x0,δr)∆
−1/4gdx . 2−hδ1/2α1/q′r

1
q′
− 1

2‖g‖Lq(IR)‖v‖L2,∞(Ah,0(r)) . (85)

Proof of Lemma A.2 . We assume without restriction that x0 = 0. We have

∫

IR

(∆1/4v)(x) (11B(0,δr) ∆
−1/4g)(x) dx

by the Plancherel Theorem (86)

=

∫

IR

F
[
(∆1/4v)

]
(ξ)F [(11B(0,δr)∆

−1/4g)](ξ)dξ

≃

∫

IR

F−1(| · |1/2)(x)[v ∗ (11B(0,δr)∆
−1/4g)] dξ .

Now we observe that supp[v ∗ (11B(0,δr)∆
−1/4g)] ⊂ B(0, 2h+2r) \B(0, 2h−2r) .
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Thus we have

(85) . ‖|ξ|−3/2‖L∞(Bc(0,2h−2r))‖v ∗ (11B(0,δr)∆
−1/4g)‖L1(IR)

. 2−3/2hr−3/2‖v‖L1(Ah,x0
(r))‖11B(x0,δr)∆

−1/4g)‖L1(IR)

. 2−3/2hr−3/2‖v‖L1(Ah,x0
(r))‖∆

−1/4g)‖L1(B(0,δr))

by (83)

. 2−hδ1/2α1/q′r
1
q′
− 1

2‖g‖Lq(IR)‖v‖L2,∞(Ah,0(r)) .

This conclude the proof of Lemma A.2 . ✷

1. Localization of the term N(Q, v) = ∆1/4(Qv)−Q∆1/4v +∆1/4Q v .

Lemma A.3 Let Q ∈ Ḣ1/2(IR) ∩ L∞(IR), ‖Q‖Ḣ1/2(IR) ≤ ε0, v ∈ L2(IR), g ∈ L2,1(IR), supp

g ⊂ B(x0, rα), with x0 ∈ IR, 0 < α < 1
4
, r > 0. Then we have

∫

IR

N(Q, v)∆−1/4gdx . ε0‖g‖L2,1‖v‖L2,∞(B(x0,r)) (87)

+ α1/2(‖Q‖Ḣ1/2(IR) + ‖Q‖L∞)‖g‖L2,1

+∞∑

h=1

2−h‖v‖L2,∞(Ah,x0
(r)) .

Proof of Lemma A.3. We suppose without restriction that x0 = 0.
We consider a dyadic decomposition of the unity ϕj ∈ C∞

0 (IR) such that

supp(ϕj) ⊂ B2j+1r(0) \B2j−1r(0),

+∞∑

−∞

ϕj = 1 . (88)

We set χr :=
∑0

−∞ ϕj.

We observe that the function ∆−1/4g ∈ L∞(IR) ∩ Ḣ1/2(IR).
We take the scalar product of N(Q, v) with ∆−1/4g and we integrate. We write

∫

IR

N(Q, v)∆−1/4gdx =

∫

IR

N(Q, χrv)∆
−1/4gdx

︸ ︷︷ ︸
(1)

+

∫

IR

+∞∑

k=1

N(Q,ϕkv)∆
−1/4gdx

︸ ︷︷ ︸
(2)

.
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To estimate (1) we use the fact that N(Q, v) ∈ Ḣ−1/2(IR) and (34) holds.

(1) . ‖∆−1/4g‖Ḣ−1/2(IR)‖Q‖Ḣ1/2(IR)‖v‖L2,∞

. ε0‖g‖L2,1‖v‖L2,∞(B(0,r) .

Next we spilt (2) in two parts:

(2) =
∞∑

k=1

∫

IR

N(Q,ϕkv)11B(0,r/4)∆
−1/4gdx

︸ ︷︷ ︸
(3)

+

∞∑

k=1

∞∑

h=−1

∫

IR

N(Q,ϕkv)11A′
h,0(r)

∆−1/4gdx

︸ ︷︷ ︸
(4)

.

We observe that in (3) and (4) we can exchange the integral with the infinite sum “
∑+∞

k=1”.
Indeed one can easily check that

lim
n→+∞

∫

IR

∞∑

k=n

N(Q,ϕkv)∆
−1/4gdx = 0 .

(see also the arguments of Lemma A.3, Lemma A.4 and Corollary A.1 in [4]) .
We estimate (3). We first observe that since 11B(0,r/4) and ϕk have disjoint supports, we

have

N(Q,ϕkv)11B(0,r/4)∆
−1/4g =

[
∆1/4(Qϕkv)−Q∆1/4(ϕkv)

]
11B(0,r/4) ∆

−1/4g .
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We have

(3) =
∞∑

k=1

∫

IR

[
∆1/4(Qϕkv)−Q∆1/4(ϕkv)

]
11B(0,r/4) ∆

−1/4g dx

by the Plancherel Theorem

=

∞∑

k=1

∫

IR

F
[
∆1/4(Qϕkv)−Q∆1/4(ϕkv)

]
(ξ)F [(11B(0,r/4)∆

−1/4g)](ξ)dξ

≃
∞∑

k=1

∫

IR

F−1(| · |1/2)(x)

[
Q(ϕkv) ∗ (11B(0,r/4)∆

−1/4g)− (ϕkv) ∗ (Q11B(0,r/4)∆
−1/4g)

]
dξ

by applying Lemma A.2

.

∞∑

k=1

‖ξ|−3/2|‖L∞(Bc(0,2k−2r))

.

∞∑

k=1

2−kα1/2
[
‖Q‖L∞‖v‖L2,∞(Ak,0(r))‖g‖L2,1(IR)

]

. α1/2‖Q‖L∞(IR)‖g‖L2,1(IR)

∞∑

k=1

2−k‖v‖L2,∞(Ak,0(r)) .

Next we split (4) as follows .

(4) =
∞∑

k=1

∑

|k−h|≤5

∫

IR

N(Q,ϕkv)11A′
h,0(r)

∆−1/4gdx

︸ ︷︷ ︸
(5)

=
∞∑

k=1

∑

|k−h|≥5

∫

IR

N(Q,ϕkv)11A′
h,0(r)

∆−1/4gdx

︸ ︷︷ ︸
(6)

.

We estimate (5).

32



(5) .

∞∑

k=1

∑

|k−h|≤5

‖N(Q,ϕkv)‖Ḣ−1/2(IR)‖11A′
h,0(r)

∆−1/4g‖Ḣ1/2(IR)

by applying (34)

.

∞∑

k=1

∑

|k−h|≤5

‖Q‖Ḣ1/2(IR)‖ϕkv‖L2,∞(IR) ‖∆
−1/4g‖Ḣ1/2(A′

h,0(r))

by applying (84)

. α1/2‖Q‖Ḣ1/2(IR)‖g‖L2,1(IR)

(
∞∑

k=1

2−k/2‖v‖L2,∞(Ak,0(r))

)
.

In order to estimate (6) we observe if |k − h| ≥ 6 then ϕkv and 11A′
h,0(r)

∆−1/4g have disjoint

supports . Thus by arguing as in (3) we get

(6) . α1/2‖Q‖L∞‖g‖L2,1(IR)

+∞∑

k=1

2−k‖v‖L2,∞(Ak,0(r))

. α1/2‖Q‖L∞‖g‖L2,1(IR)

+∞∑

k=1

2−k‖v‖L2,∞(Ak,0(r)) .

This concludes the proof of Lemma A.3 . ✷

Lemma A.4 Let Q ∈ Ḣ1/2(IR) ∩ L∞(IR), supp Q ⊂ Bc(0, ρ) for some ρ > 0, v ∈ L2(IR),
x0 ∈ B(0, ρ/8), g ∈ L2,1(IR), supp g ⊂ B(x0, rα), with , 0 < α < 1, 0 < r < ρ/16.

Then we have

∫

IR

N(Q, v)∆−1/4gdx .

(
r

ρ

)1/2

‖g‖L2,1(IR)‖Q‖Ḣ1/2(IR)‖v‖L2,∞(B(x0,r)) (89)

+ α1/2‖Q‖L∞‖g‖L2,1(IR)

(
+∞∑

h=1

2−h/2‖v‖L2,∞(Ah,x0
(r))

)
.
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Proof of Lemma A.4. We write
∫

IR

N(Q, v)∆−1/4gdx =

∫

IR

N(Q, χrv)∆
−1/4gdx

︸ ︷︷ ︸
(7)

+

∫

IR

N(Q, (1− χr)v)∆
−1/4gdx

︸ ︷︷ ︸
(8)

,

where χr is defined as in Lemma A.3 .
We denote by Qρ = |Bρ(0)|−1

∫
Bρ(0)

Q(y)dy = 0 and write Q =
∑+∞

h=−1 ϕ̃h(Q−Qρ) , with

supp(ϕ̃h) ⊂ B(0, 2h+1ρ) \B(0, 2h−1ρ), ϕ̃h partition of unity.
We recall two key results obtained in [4]. The first one is a sort of Poincaré Inequality for

functions in Ḣ1/2(IR) having compact support and the second one concerns with a geometric
localization property of the Ḣ1/2− norm on the real line .

Precisely from Lemma A.2 in [4] it follows that

‖ϕ̃h(Q−Qρ)‖L1 ≤ C2hρ‖Q‖Ḣ1/2(IR) , (90)

and from Lemma 4.1 in [4] one can deduce that

+∞∑

h=0

2−h/2‖ϕ̃h(Q−Qρ)‖Ḣ1/2(IR) . ‖Q‖Ḣ1/2(IR) . (91)

We estimate (7).
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(7) =

∫

IR

N(

+∞∑

h=−1

ϕ̃h(Q−Qρ), χrv) (∆
−1/4g)dx

=

+∞∑

h=−1

∫

IR

[−ϕ̃h(Q−Qρ)∆
1/4(χrv)∆

−1/4g +∆1/4(ϕ̃h(Q−Qρ))(χrv)∆
−1/4g]dx

by applying the Plancherel Theorem

=
+∞∑

h=−1

∫

IR

F [∆1/4(χrv)]F [−ϕ̃h(Q−Qρ)∆
−1/4g]

+ F [∆1/4(ϕh(Q−Qρ)]F [(χrv)∆
−1/4g]dξ

=

+∞∑

h=−1

∫

IR

F−1[| · |1/2](x)

[
−(χrv) ∗ (ϕ̃h(Q−Qρ)∆

−1/4g) + ϕ̃h(Q−Qρ) ∗ (χrv∆
−1/4g)

]
dx

.

+∞∑

h=−1

‖|ξ|−3/2‖L∞(Bc(0,2h−2ρ))

‖
[
−(χrv) ∗ (ϕ̃h(Q−Qρ)∆

−1/4g) + ϕh(Q−Qρ) ∗ (χrv∆
−1/4g)

]
‖L1(IR)

.

+∞∑

h=−1

‖|ξ|−3/2‖L∞(Bc(0,2h−2ρ))

[
‖χrv‖L1‖ϕh(Q−Qρ)‖L1‖∆−1/4g‖L∞

]
.
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Now we apply (90) and (91) and we get:

(7) .

+∞∑

h=−1

2−3/2hρ−3/2r1/2‖v‖L2,∞(B(x0,r))2
hρ‖ϕh(Q−Qρ)‖H1/2(IR)

. ‖g‖L2,1(IR)

+∞∑

h=−1

2−h/2

(
r

ρ

)1/2

‖v‖L2,∞(B(x0,r)‖ϕh(Q−Qρ)‖Ḣ1/2(IR)

.

(
r

ρ

)1/2

‖g‖L2,1(IR)‖Q‖Ḣ1/2(IR)‖v‖L2,∞(B(x0,r)) .

By arguing as in (3) and (4) we get

(8) . ‖Q‖L∞‖g‖L2,1(IR)α
1/2

(
+∞∑

h=1

2−h/2‖v‖L2,∞(Ah,x0
(r))

)
. (92)

This concludes the proof of Lemma A.4 . ✷

The localization of the operator S(Q,∆−1/4v), with v ∈ L2(IR) is similar to that of
N(Q, v) and we omit it.

2. Localization of a term of the type Av with A ∈ L2,1 and v ∈ L2 .

Lemma A.5 Let A ∈ L2,1(IR), x0 ∈ IR, r > 0, 0 < α < 1/4 and g ∈ L2,1(IR), supp
g ⊂ B(x0, rα). Then∫

IR

Av∆−1/4gdx . ‖A‖L2,1‖g‖L2,1‖v‖L2,∞(B(x0,r)) (93)

+ α1/2‖A‖L2,1‖g‖L2,1

+∞∑

h=−1

2−h/2‖v‖L2,∞(Ah,x0
(r)) .

Proof of Lemma A.5. We suppose again for simplicity that x0 = 0. We write
∫

IR

Av∆−1/4gdx =

∫

IR

Av 11B(0,r)∆
−1/4gdx

︸ ︷︷ ︸
(9)

+
+∞∑

h=0

∫

IR

Av11A′
h,0
∆−1/4gdx

︸ ︷︷ ︸
(10)

.

Now we observe that ∆−1/4g = |x|−1/2∗g ∈ L∞(IR) since |x|−1/2 ∈ L2,∞(IR) and g ∈ L2,1(IR)
(see for instance [7]) .Thus we have

(9) ≤ ‖A∆−1/4g‖L2,1‖v‖L2,∞(B(0,r))

≤ ‖A‖L2,1‖∆−1/4g‖L∞‖v‖L2,∞(B(0,r))

. ‖A‖L2,1‖g‖L2,1‖v‖L2,∞(B(0,r)) .
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(10) ≃
+∞∑

h=0

∫

IR

F−1[| · |−1/2](ξ)g ∗ (11A′
h,0
Av)dξ

.

+∞∑

h=0

‖ξ|−1/2‖L∞(Bc(0,2h−1r)‖g ∗ (11A′
h,0
Av)‖L1

.

+∞∑

h=0

2−h/2r−1/2‖g‖L1‖11A′
h,0
Av‖L1

.

+∞∑

h=0

2−h/2r−1/2(rα)1/2‖g‖L2,1‖A‖L2,1‖v‖L2,∞(Ah′,0)

. α1/2‖g‖L2,1‖A‖L2,1

+∞∑

h=0

2−h/2‖v‖L2,∞(Ah,0(r)) .

This concludes the proof of Lemma A.5 . ✷

3. Localization of a term of the type Ωv with Ω ∈ L2 and v ∈ Lq , q ≥ 2.

Lemma A.6 Let Ω ∈ L2(IR,Mm×m(IR) be such that supp Ω ⊂ Bc(0, ρ), v ∈ Lq(IR), q ≥ 2,
x0 ∈ B(0, ρ/8), g ∈ Lq′(IR), supp g ⊂ B(x0, rα), with 0 < α < 1/4, 0 < r < ρ/16.

Then we have
∫

IR

Ωv∆−1/4gdx .

(
r

ρ

)1/q

α1/q‖g‖Lq′‖Ω‖L2‖v‖Lq . (94)

Proof of Lemma A.6. We give the proof for the case q > 2 (the case q = 2 is similar and
even simpler). We use the fact that Ω and g have disjoint supports.

∫

IR

Ωv∆−1/4gdx =

∫

IR

F−1(| · |−1/2)(ξ)(g ∗ Ωv) dξ

. ‖|x|−1/2‖
L

2q
q−2 (Bc(0,ρ/4))

‖g ∗ Ωv‖
L

2q
q+2

. ρ−1/q‖g‖L1‖Ωv‖
L

2q
q+2

.

(
r

ρ

)1/q

α1/q‖g‖Lq′‖Ω‖L2‖v‖Lq .

This concludes the proof of Lemma A.6 . ✷

Lemma A.7 Let Ω ∈ L2(IR,Mm×m(IR)), v ∈ Lq(IR), q > 2, x0 ∈ IR, g ∈ Lq′(IR) and
r > 0 . Then we have

∫

IR

Ω11B(x0,r/2)v∆
−1/4gdx . ‖g‖Lq′‖Ω‖L2‖v‖Lq(B(x0,r/2)) . (95)
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Proof of Lemma A.7. We observe that 1 < q′ < 2 and W 1/2,q′(IR) →֒ L
2q
q−2 (IR). Thus we

have ∆−1/4g ∈ L
2q
q−2 (IR) .

Moreover one has
q − 2

2q
+

1

2
+

1

q
= 1 .

Thus by applying the generalized Hölder inequality we get
∫

IR

Ω(11B(x0,r/2)v)∆
−1/4gdx . ‖g‖Lq′‖Ω‖L2‖v‖Lq(B(x0,r/2) .

This concludes the proof of Lemma A.7. ✷

An analogous result of Lemma A.7 for q = 2 still holds provided g ∈ L2,1(IR). Indeed in
this case we use the fact that ∆−1/4g ∈ L∞ .

Lemma A.8 Let Ω ∈ L2(IR,Mm×m(IR)), v ∈ L2(IR), q > 2, x0 ∈ IR, g ∈ L2,1(IR) and
r > 0 . Then we have

∫

IR

Ω11B(x0,r/2)v∆
−1/4gdx . ‖g‖L2,1‖Ω‖L2‖v‖L2(B(x0,r/2)) . ✷ (96)

The proof of Lemma A.8 is similar to that of Lemma A.7 and we omit it.

Lemma A.9 Let Ω ∈ L2(IR,Mm×m(IR), v ∈ Lq(IR), q > 2, x0 ∈ IR, g ∈ Lq′(IR), supp
g ⊂ B(x0, rα), with , 0 < α < 1/4, and r > 0.

Then we have

∞∑

h=0

∫

IR

Ω11Ah,x0
(r)v∆

−1/4gdx . α1/q
∞∑

h=0

2−h/q‖g‖Lq′‖Ω‖L2‖v‖Lq(A′
h,x0

(r)) . (97)

Proof of Lemma A.9. We assume x0 = 0. We have

∞∑

h=0

∫

IR

Ω(11A′
h,0(r)

v)∆−1/4gdx =
∞∑

h=0

∫

IR

F−1[| · |−1/2](x)g ∗ Ω11A′
h,0(r)

vdx

.

∞∑

h=0

‖|x|−1/2‖
L

2q
q−2 (B(0,2h+2r))

‖g ∗ Ω11A′
h,0(r)

v‖
L

2q
q+2 (IR)

.

∞∑

h=0

2−h/qr−1/q‖g‖L1(B(0,rα))‖Ω11A′
h,0(r)

v‖
L

2q
q+2

.

∞∑

h=0

2−h/qr−1/q(rα)1/q‖g‖Lq′‖Ω‖L2‖v‖Lq(A′
h,0(r))

. α1/q
∞∑

h=0

2−h/q‖g‖Lq′‖Ω‖L2‖v‖Lq(A′
h,0(r))

.
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This concludes the proof of Lemma A.9 . ✷

4. Localization of the operator F (Q, v) := R(Q)R(v)−Qv .

Lemma A.10 Let Q ∈ L2(IR) ∩ L∞(IR), ‖Q‖L2(IR) ≤ ε0, v ∈ L2(IR), g ∈ L2,1(IR), supp
g ⊂ B(x0, rα), with x0 ∈ IR, 0 < α < 1

4
, r > 0.

Then we have
∫

IR

F (Q, v)∆−1/4gdx . ε0‖g‖L2,1‖v‖L2,∞(Br(x0) (98)

+ α1/2(‖Q‖L2(IR) + ‖Q‖L∞)‖g‖L2,1

+∞∑

h=1

2−h/2‖v‖L2,∞(Ah,x0
(r)) .

Proof of Lemma A.10. We assume x0 = 0. We take the scalar product of F (Q, v) with
∆−1/4g and we integrate. We get

∫

IR

F (Q, v)∆−1/4gdx =

∫

IR

F (Q, χrv)∆
−1/4gdx

︸ ︷︷ ︸
(11)

+

∫

IR

+∞∑

k=1

F (Q,ϕkv)∆
−1/4gdx

︸ ︷︷ ︸
(12)

.

To estimate (11) we use the fact that F (Q, v) ∈ Ḣ−1/2(IR) and

‖F (Q, v)‖Ḣ1/2(IR) . ‖Q‖L2(IR)‖v‖L2,∞ .

(11) ≤ ‖∆−1/4g‖Ḣ1/2(IR)‖Q‖L2(IR)‖v‖L2,∞(B(0,r))

. ‖g‖L2,1‖Q‖L2(IR)‖v‖L2,∞(B(0,r))

. ε0‖g‖L2,1‖v‖L2,∞(B(0,r)) .

Next we spilt (12) in two parts:

(12) =
∞∑

k=1

∫

IR

F (Q,ϕkv)11B(0,r/4)∆
−1/4gdx

︸ ︷︷ ︸
(13)

+

∞∑

k=1

∞∑

h=−1

∫

IR

F (Q,ϕkv)11A′
h,0(r)

∆−1/4gdx

︸ ︷︷ ︸
(14)

.
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Estimate of (13):

(13) =
+∞∑

k=1

∫

IR

F (Q,ϕkv)11B(0,r/4)∆
−1/4gdx

=
+∞∑

k=1

∫

IR

R(Q)R(ϕkv)11B(0,r/4)∆
−1/4gdx

≃
+∞∑

k=1

∫

IR

F−1

[
·

| · |

]
(ξ)[(ϕkv) ∗ (Q11B(0,r/4)∆

−1/4g)] dξ

.

+∞∑

k=1

‖
1

ξ
‖L∞(Bc(0,2k−1r))‖ϕkv‖L1(IR)‖Q11B(0,r/4)∆

−1/4g‖L1(IR)

.

+∞∑

k=1

2−kr−12k/2r1/2rα1/2‖v‖L2,∞(Ah,0(r))‖Q‖L∞‖g‖L2,1

. (rα)1/2‖Q‖L∞‖g‖L2,1

+∞∑

k=1

2−k/2‖v‖L2,∞(Ak,0(r)) .

The estimate of (14) is analogous of (4) in the proof of Lemma A.4 and we omit it. ✷

Lemma A.11 Let Q ∈ L2(IR) ∩ L∞(IR), supp Q ⊂ Bc(0, ρ) for some ρ > 0, v ∈ L2(IR),
x0 ∈ B(0, ρ/8), g ∈ L2,1(IR), supp g ⊂ B(x0, rα), with 0 < α < 1/4, 0 < r < ρ/16.

Then we have

∫

IR

F (Q, v)∆−1/4gdx .

[
α1/2 +

(
r

ρ

)1/2
]
‖Q‖L2‖g‖L2,1‖v‖L2,∞(B(x0,r)) (99)

+ α1/2(‖Q‖L2 + ‖Q‖L∞)‖g‖L2,1

+∞∑

h=1

2−h/2‖v‖L2,∞(Ah,x0
(r)) .

Proof of Lemma A.11. We just give a sketch of proof.
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We write
∫

IR

F (Q, v)∆−1/4gdx =

∫

IR

F (Q, χrv)11B(x0,r/4)∆
−1/4gdx

︸ ︷︷ ︸
(15)

+

∫

IR

F (Q, χrv)11A′
h,x0

(r)∆
−1/4gdx

︸ ︷︷ ︸
(16)

+

∫

IR

F (Q, (1− χr)v)∆
−1/4gdx

︸ ︷︷ ︸
(17)

.

To estimate (15) we write Q =
∑

h=−2 ϕ̃h(Q−Qρ) with supp ϕ̃h ⊆ B(0, 2h+1ρ \B(0, 2h−1ρ)
and ϕ̃h partition of unity.

(15) =
∞∑

h=−2

∫

IR

R(ϕ̃h(Q−Qρ))R(χrv)11B(x0,r/4)∆
−1/4gdx

=
∞∑

h=−2

∫

IR

F−1

[
·

| · |

]
(x)[ϕ̃h(Q−Qρ)] ∗ [R(χrv)11B(x0,r/4)∆

−1/4g]dx

.

∞∑

h=−2

‖x−1‖L∞(Bc(0,2hρ))‖ϕ̃h(Q−Qρ)‖L1‖R(χrv)‖L1(B(x0,r/4))‖∆
−1/4g‖L∞(IR)

. ‖g‖L2,1‖R(χrv)‖L2,∞(B(x0,r/4))

(
r

ρ

)1/2 ∞∑

h=−2

2−h/2‖Q‖L2(Ah,0(ρ))

.

(
r

ρ

)1/2

‖g‖L2,1‖Q‖L2‖v‖L2,∞(B(x0,r)) .
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Now we write

(16) =

+∞∑

h=−2

+∞∑

k=−2

∫

IR

F (ϕ̃kQ, χrv)11A′
h,x0

(r)∆
−1/4gdx

=
+∞∑

h=−2

∑

|k−h|≤5

∫

IR

F (ϕ̃kQ, χrv)11A′
h,x0

(r)∆
−1/4gdx

+

+∞∑

h=−2

∑

|k−h|>5

∫

IR

F (ϕ̃kQ, χrv)11A′
h,x0

(r)∆
−1/4gdx

by arguing as in (5) and (6)

. ‖g‖L2,1‖Q‖L2

[(
r

ρ

)1/2

+ α1/2

]
‖v‖L2,∞(B(x0,r)) .

The estimate of (17) is analogous to (2) in the proof of Lemma A.3 and we omit it. ✷

B Commutator Estimates

We consider the Littlewood-Paley decomposition of unity introduced in Section 2. For every
j ∈ ZZ and f ∈ S ′(IR) we define the Littlewood-Paley projection operators Pj and P≤j by

P̂jf = ψj f̂ P̂≤jf = φj f̂ .

Informally Pj is a frequency projection to the annulus {2j−1 ≤ |ξ| ≤ 2j}, while P≤j is a
frequency projection to the ball {|ξ| ≤ 2j} . We will set fj = Pjf and f j = P≤jf .

We observe that f j =
∑j

k=−∞ fk and f =
∑+∞

k=−∞ fk (where the convergence is in S ′(IR)) .
Given f, g ∈ S ′(IR) we can split the product in the following way

fg = Π1(f, g) + Π2(f, g) + Π3(f, g), (100)

where

Π1(f, g) =

+∞∑

−∞

fj
∑

k≤j−4

gk =

+∞∑

−∞

fjg
j−4 ;

Π2(f, g) =

+∞∑

−∞

fj
∑

k≥j+4

gk =

+∞∑

−∞

gjf
j−4 ;

Π3(f, g) =
+∞∑

−∞

fj
∑

|k−j|<4

gk .
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We observe that for every j we have

suppF [f j−4gj] ⊂ {2j−2 ≤ |ξ| ≤ 2j+2};

suppF [
∑j+3

k=j−3 fjgk] ⊂ {|ξ| ≤ 2j+5} .

The three pieces of the decomposition (100) are examples of paraproducts. Informally the
first paraproduct Π1 is an operator which allows high frequences of f (∼ 2j) multiplied by low
frequences of g (≪ 2j) to produce high frequences in the output. The second paraproduct
Π2 multiplies low fequences of f with high frequences of g to produce high fequences in
the output. The third paraproduct Π3 multiply high frequences of f with high frequences
of g to produce comparable or lower frequences in the output. For a presentation of these
paraproducts we refer to the reader for instance to the book [8] . The following two Lemmas
will be often used in the sequel. For the proof of it we refer the reader to [4] .

Lemma B.1 For every f ∈ S ′ we have

sup
j∈Z

|f j| ≤ M(f) . ✷

In the sequel we will often use the following property: for every vector field X ∈ Ẇ s,r(IR)
with s < 0 we have

∫

IR

(
+∞∑

j=−∞

22js(Xj)2

)r/2

dx =

∫

IR

(∑

k,ℓ

XkXℓ

∑

j−4≥k,j−4≥ℓ

22js

)r/2

dx

≃

∫

IR


∑

k

Xk


 ∑

|k−ℓ|≤2

Xℓ


 22(k+2)s




r/2

dx

by Cauchy-Schwarz Inequality

.

∫

IR

(∑

k

22ksX2
k

)r/4(∑

k

22ksX2
k

)r/4

dx (101)

=

∫

IR

(
+∞∑

j=−∞

22ks(Xk)
2

)r/2

dx = ‖X‖r
Ẇ s,r(IR)

,

(see also Section 4.4.2 in [14], page 165).

Now we start with a series of preliminary Lemmas which will be crucial for the construc-
tion of the gauge P in the Section 4 .
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Lemma B.2 Let 1 < r < 2, a ∈ Ẇ 1/2,r(IR) and b ∈ Ḣ1/2(IR) ∩ L∞(IR) . Then

‖ab‖Ẇ 1/2,r ≤ C‖a‖Ẇ 1/2,r(‖b‖Ḣ1/2 + ‖b‖L∞) .

Proof of Lemma B.2 .
• Estimate of ‖Π1(∆

1/4(ab))‖Lr .

‖
∑

j

∆1/4(ajb
j−4)‖rLr .

∫

IR

(
∑

j

2j|aj |
2|bj−4|2)r/2dx

.

∫

IR

sup
j

|bj−4|r

(∑

j

2j|aj|
2

)r/2

dx

.

∫

IR

|M(b)|r

(∑

j

2j|aj |
2

)r/2

dx ≤ ‖b‖rL∞

∫

IR

(∑

j

2j|aj |
2

)r/2

dx

. ‖b‖rL∞‖a‖r
Ẇ 1/2,r .

• Estimate of ‖Π2∆
1/4(ab)‖Lr .

‖
∑

j

∆1/4(aj−4bj)‖Lr ≃ sup
‖h‖

Lr′≤1

∫

IR

∑

j

aj−1bj∆
1/4hj

. sup
‖h‖

Lr′≤1

∫

IR

sup
j

|aj−4|

(∑

j

2j|bj |
2

)1/2(∑

j

|hj|

)1/2

dx

. sup
‖h‖

Lr′≤1

∫

IR

|M(a)|

(∑

j

2j|bj |
2

)1/2(∑

j

|hj|

)1/2

dx

by the generalized Hölder Inequality: 1
r′
+ 1

2
+ 2−r

2r
= 1

. ‖b‖Ḣ1/2‖a‖Ẇ 1/2,r .

• Estimate of ‖Π3(∆
1/4(ab)‖Lr .

44



‖
∑

j

∆1/4(ajbj)‖Lr

≃ sup
‖h‖

Lr′≤1



∫

IR

∑

j

∑

|k−j|≤3

∆1/4(ajbj)hkdx+

∫

IR

∑

j

∆1/4(ajbj)h
j−4dx




= sup
‖h‖

Lr′≤1




∫

IR

∑

j

∑

|k−j|≤3

(ajbj)∆
1/4hkdx

︸ ︷︷ ︸
(1)

+

∫

IR

∑

j

(ajbj)∆
1/4hj−4dx

︸ ︷︷ ︸
(2)




We estimate the term (2) .

(2) . ‖b‖B0
∞,∞

∫

IR

(∑

j

2−j|∆1/4hj−4|2

)1/2(∑

j

2ja2j

)1/2

dx

. ‖b‖B0
∞,∞



∫

IR

(∑

j

2−j|∆1/4hj−4|2

)r′/2

dx




1/r′

∫

IR

(∑

j

2ja2j

)r/2

dx




1/r

by applying (101) to ∆1/4h

. ‖b‖B0
∞,∞

‖h‖Lr′‖a‖Ẇ 1/2,r .

The term (1s) is estimated in a similar way. Thus we get

‖
∑

j

∆1/4(ajbj)‖Lr . ‖b‖Ḣ1/2‖a‖Ẇ 1/2,r .

This concludes the proof of Lemma B.2 . ✷

Lemma B.3 Let 1 < r < 2 ≤ q, a ∈ Ẇ 1/2,r(IR) and b ∈ Ẇ 1/2,q(IR) and t = 2rq
2r+q(2−r)

. Then

‖∆1/4(ab)− (∆1/4a)b‖Lt(IR) ≤ C‖a‖Ẇ 1/2,r(IR)‖b‖Ẇ 1/2,q(IR) .

Proof of Lemma B.3 .
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• Estimate of ‖Π2(∆
1/4(ab))‖Lt .

‖
∑

j

∆1/4(aj−4bj)‖
t
Lt .

∫

IR

(∑

j

2j|aj−4|2|bj |
2

)t/2

dx

.

∫

IR

sup
j

|aj−4|t

(∑

j

2j |bj|
2

)t/2

.

(∫

IR

M(a)
tq
q−tdx

)1− t
q

(∫

IR

(
∑

j

2j|bj|
2)q/2dx

)t/q

. ‖a‖t
L

2r
2−r

‖b‖t
Ẇ 1/2,q . ‖a‖t

Ẇ 1/2,r(IR)
‖b‖t

Ẇ 1/2,q(IR)
.

In the above expression we use the fact that tq
q−t

= 2r
2−r

.

• Estimate of ‖Π2((∆
1/4a)b)‖Lt .

‖
∑

j

(∆1/4aj−4)bj‖
t
Lt

.

∫

IR

(
sup
j

2−j/2|∆1/4aj−4|

)t
(∑

j

2j |bj|
2

)t/2

dx

.

∫

IR

(∑

j

2−j|∆1/4aj−4|2

)t/2(∑

j

2j|bj |
2

)t/2

dx

.



∫

IR

(∑

j

2−j|∆1/4aj−4|2

)tq/2(q−t)



1−t/q

(∑

j

2j|bj|
2

)q/2

dx




t/q

. ‖a‖tLtq/q−t‖b‖
t
Ẇ 1/2,q . ‖a‖t

Ẇ 1/2,r‖b‖
t
Ẇ 1/2,q .

• Estimate of ‖Π3(∆
1/4(ab))‖Lt .
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‖
∑

j

∆1/4(ajbj)‖Lt ≃ sup
‖h‖

Lt′≤1

∫

IR

∆1/4h
∑

j

ajbjdx

. sup
‖h‖

Lt′≤1




∫

IR

∑

j

∑

|j−k|≤4

(∆1/4hk)ajbjdx

︸ ︷︷ ︸
(3)

+

∫

IR

∑

j

(∆1/4hj−4)ajbjdx

︸ ︷︷ ︸
(4)



.

We estimate the term (4).

(4) .

∫

IR

sup
j

(
2−j/2|∆1/4hj−4|

)∑

j

2j/2|aj‖bj |dx

.

∫

IR

(∑

j

|∆1/4hj−4|2

)1/2(∑

j

|aj |
2

)1/2(∑

j

2j|bj |
2

)1/2

dx

.



∫

IR

(∑

j

2−j|∆1/4hj−4|2

)t′/2



1/t′ 

∫

IR

(∑

j

|aj|
2

)t/2(∑

j

2j |bj|
2

)t/2



1/t

. ‖h‖Lt′



∫

IR

(∑

j

|aj|
2

)tq/2(q−t)

dx




q−t
qt


∫

IR

(∑

j

2j|bj |
2

)q/2

dx



1/q

. ‖h‖Lt′‖a‖tq/q−t‖b‖W 1/2,q

. ‖h‖Lt′‖a‖W 1/2,r‖b‖W 1/2,q .

The estimate of (3) is similar.
• Estimate of ‖Π3((∆

1/4a)b)‖Lt .
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‖
∑

j

(∆1/4aj)bj)‖
t
Lt .

∫

IR

|
∑

j

∆1/4ajbj |
t

.

∫

IR

(∑

j

2−j|∆1/4aj |
2

)t/2(∑

j

2jbj |
2

)t/2

dx

. ‖a‖ttq/q−t‖b‖
t
W 1/2,q . ‖a‖tW 1/2,r‖b‖

t
W 1/2,q .

• Estimate of ‖Π2(∆
1/4(ab)− (∆1/4a)b)‖Lt .

‖
∑

j

(∆1/4(ab)− (∆1/4a)b)‖‖Lt (102)

= sup
‖h‖

Lt′≤1

∫

IR

∑

j

hj [∆
1/4(ajb

j−4)− (∆1/4aj)b
j−4]dx

= sup
‖h‖

Lt′≤1

∫

IR

∑

j

bj−4[(∆1/4hj)aj − hj(∆
1/4aj)]dx

= sup
‖h‖

Lt′≤1

∫

IR

∑

j

F [b]j−4(η)(

∫

IR

F [h]j(ξ)F [a]j(η − ξ)[|ξ|1/2 − |η − ξ|1/2]dξ)dη .

Now we observe that in (102) we have |η| ≤ 2j−3 and 2j−2 ≤ |ξ| ≤ 2j+2. Thus |
ξ

η
| ≤

1

2
.

Hence

|ξ|1/2 − |η − ξ|1/2 = |ξ|1/2[1− |1−
η

ξ
|1/2] (103)

= |ξ|1/2
η

ξ
[1 + |1−

η

ξ
|1/2]−1

= |ξ|1/2
∞∑

k=0

ck
k!
(
η

ξ
)k+1 .

We may suppose that
∑∞

k=0
ck
k!
(η
ξ
)k+1 is convergent if |

ξ

η
| ≤

1

2
, otherwise one may consider a

different Littlewood-Paley decomposition by replacing the exponent j − 4 with j − s, s > 0
large enough. We introduce the following notation: for every k ≥ 0 we set

Skg = F−1[ξ−(k+1)|ξ|1/2Fg].
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We note that if g ∈ Lt′ then Skg ∈ Ẇ 1/2+k,t′ .
We have

(102) = sup
‖h‖

Lt′≤1

∞∑

ℓ=0

cℓ
ℓ!

∫

IR

F [bj−4](ξ)

[∫

IR

F [hj](η)F [aj](ξ − η)[|η|1/2(
ξ

η
)ℓ+1]dη

]

= sup
‖h‖

Lt′≤1

∞∑

ℓ=0

cℓ
ℓ!

∫

IR

(ξℓ+1F [bj−4])(ξ)

[∫

IR

(η−(ℓ+1)|η|1/2F [hj])(η)F [aj](ξ − η)dη

]

. sup
‖h‖

Lt′≤1

∞∑

ℓ=0

cℓ
ℓ!

∫

IR

∑

j

∑

|k−j|≤3

[∇ℓ+1bj−4] [(Sℓhk)aj ](x)dx

. sup
‖h‖

Lt′≤1

∞∑

ℓ=0

cℓ
ℓ!

∫

IR

∑

j

∑

|k−j|≤3

[∇ℓ+1bj−4][(Sℓhk)aj)](x)dx

. sup
‖h‖

Lt′≤1

∞∑

ℓ=0

cℓ
ℓ!

∫

IR

∑

j

[2−(ℓ+1/2)j∇ℓ+1bj−4][2(ℓ+1/2)j(Sℓhj)aj)](x)dx

. sup
‖h‖

Lt′≤1

∞∑

ℓ=0

cℓ
ℓ!

∫

IR

sup
j
[|2(ℓ+1/2)j(Sℓhj)|]

(∑

j

|aj |
2

)1/2(∑

j

2−2(ℓ+1/2)j |∇ℓ+1bj−4|2

)1/2

dx
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. sup
‖h‖

Lt′≤1

∞∑

ℓ=0

cℓ
ℓ!
2−2ℓ

∫

IR

(∑

j

2−2(ℓ+1/2)j |Sℓhj|
2

)1/2

(∑

j

|aj|
2

)1/2(∑

j

2−2(ℓ+1/2)j |∇ℓ+1bj−4|2

)1/2

dx

. sup
‖h‖

Lt′≤1

(

∫

IR

(
∑

j

2j|∆−1/4hj |
2)t

′/2)t
′



∫

IR

(∑

j

|aj |
2

)qt/2(q−t)


q−t/qt 


∫

IR

(∑

j

|bj|
2

)q/2


1/q

. ‖a‖Lqt/q−t‖b‖W 1/2,q . ‖a‖W 1/2,r‖b‖W 1/2,q .

We observe that
∑∞

ℓ=0
cℓ
ℓ!
2−2ℓ < +∞ since we have supposed that

∑∞
ℓ=0

cℓ
ℓ!
xℓ is convergent for

|x| ≤ 1/2 . This concludes the proof of Lemma B.3. ✷

Lemma B.4 Let a ∈ L∞(IR), b ∈ W 1/2,q(IR), 1 < q < +∞ . Then

‖∆1/4(ab)− (∆1/4a)b‖Lq(IR) ≤ C‖b‖Ẇ 1/2,q(IR)‖a‖L∞(IR) .

Proof of Lemma B.4.
• Estimate of ‖Π1(∆

1/4(ab))‖qLq .

‖
∑

j

∆1/4(aj−4bj)‖
q
Lq ≃

∫

IR

(∑

j

2j |aj−4|2|bj |
2

)q/2

. ‖a‖qL∞‖b‖q
W 1/2,q .

• Estimate of ‖Π1((∆
1/4a)b)‖qLq .

‖
∑

j

(∆1/4aj−4)bj‖
q
Lq .

∫

IR

(∑

j

|∆1/4aj−4|2|bj|
2

)q/2

. sup
j

‖2−j/2|∆1/4aj−4‖qL∞

∫

IR

(∑

j

2j|bj |
2

)q/2

dx

. ‖b‖q
W 1/2,q‖a‖

q
B0

∞,∞
. ‖a‖qL∞‖b‖q

W 1/2,q .
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• Estimate of ‖Π3(∆
1/4(ab))‖Lq .

‖
∑

j

∆1/4(ajbj)‖Lq = sup
‖h‖

Lq′≤1

∫

IR

(∆1/4h)
∑

j

ajbjdx

= sup
‖h‖

Lq′≤1




∫

IR

∑

j

∑

|k−j|≤4

(∆1/4hk)ajbjdx

︸ ︷︷ ︸
(1)

+

∫

IR

∑

j

(∆1/4hj−4)ajbjdx

︸ ︷︷ ︸
(2)



.

We estimate (2):

(2) . ‖a‖B0
∞,∞

∫

IR

∣∣∣∣∣
∑

j

2−j|∆1/4hj−4|2

∣∣∣∣∣

1/2 ∣∣∣∣∣
∑

j

2j|bj |
2

∣∣∣∣∣

1/2

dx

. ‖a‖B0
∞,∞



∫

IR

∣∣∣∣∣
∑

j

2−j|∆1/4hj−4|2

∣∣∣∣∣

q′/2



1/q′

∫

IR

∣∣∣∣∣
∑

j

2j |bj|
2

∣∣∣∣∣

q/2



1/q

. ‖b‖W 1/2,q‖a‖B0
∞,∞

. ‖a‖L∞‖b‖W 1/2,q .

The estimate of (1) is similar .
• Estimate of ‖Π3((∆

1/4a)b)‖Lq .

‖
∑

j

∆1/4ajbj‖Lq = sup
‖h‖

Lq′≤1

∫

IRh
∑

j

∆1/4ajbjdx

= sup
‖h‖

Lq′≤1



∫

IR

∑

j

∑

|k−j|≤4

hk(∆
1/4aj)bjdx+

∫

IR

∑

j

hj−4(∆1/4aj)bjdx




We estimate the last term
∫
IR

∑
j h

j−4∆1/4ajbjdx.

To this purpose we show that
∑

j ∆
1/4(hj−4bj) ∈ H1 and the conclusion follows from the
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embedding Ḣ1/2(IR) →֒ BMO(IR) . We have

‖
∑

j

∆1/4(hj−4bj)‖H1 ≃

∫

IR

(∑

j

2j|hj−4bj |
2

)1/2

dx

.

∫

IR

|hj−4|

(∑

j

2j |bj|
2

)1/2

dx

.

(∫

IR

sup
j

|hj−4|q
′

)1/q′
(∫

IR

(
∑

j

2j |bj|
2)q/2

)1/q

. ‖h‖Lq′‖b‖W 1/2,q .

• Estimate of ‖Π2(∆
1/4(ab)− (∆1/4a)b)‖Lq .

‖Π2(∆
1/4(ab)− (∆1/4a)b)‖Lq

≃ sup
‖h‖

Lq′≤1

∫

IR

∑

j

hj(∆
1/4(ajb

j−4)−∆ajb
j−4)dx

≃ sup
‖h‖

Lq′≤1

∫

IR

∑

j

bj−4(∆1/4(hj)aj − hj∆aj)dx

sup
‖h‖

Lq′≤1

∫

IR

∑

j

F [b]j−4(η)

∫

IR

F [h]j(ξ)F [a]j(η − ξ)(|ξ|1/2 − |η − ξ|1/2)dξ

by arguing as in (102)

. sup
‖h‖

Lq′≤1

‖a‖B0
∞,∞

‖b‖W 1/2,q‖h‖Lq′

. ‖a‖L∞‖b‖W 1/2,q .

This concludes the proof of Lemma B.4 . ✷

In the next Theorem we prove an estimate for the dual of the operator F introduced in
(19). It is defined as follows: given Q ∈ L2(IR), v ∈ Ḣ1/2(IR) we have

F ∗(Q, v) = ∆1/4(Qv)−∆1/4R(R(Q)v) .
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Lemma B.5 Let Q ∈ L2(IR), v ∈ Ḣ1/2(IR). Then

‖∆1/4(Qv)−∆1/4R(R(Q)v)‖H1 . ‖Q‖L2‖v‖Ḣ1/2 . (104)

Proof of Lemma B.5 .
Estimate of Π2(∆

1/4(Q, v)) .

‖Π2(∆
1/4(Q, v))‖H1 =

∫

IR

(
+∞∑

i=−∞

2i(Qi−4)2(vi)
2

)1/2

dx (105)

.

∫

IR

|M(Q)|

(
+∞∑

i=−∞

2i(vi)
2

)
dx

. ‖Q‖L2‖v‖Ḣ1/2 .

The estimate of Π2(∆
1/4R((RQ)v)) is analogous to (105) .

Estimate of Π3(∆
1/4(Q, v)) .

‖Π3(Q, v)‖B0
1,1

≃ sup
‖h‖

B0
∞,∞

≤1

∫

R

(Qivi)

[
∆1/4hi−6 +

i+6∑

t=h−5

∆1/4ht

]
dx (106)

. sup
‖h‖

B0
∞,∞

≤1

‖h‖B0
∞,∞

∫

IR

2i/2|Qivi|dx

.

(∫

IR

∑

i

2iv2i dx

)1/2(∫

IR

∑

i

Q2
i dx

)1/2

= ‖Q‖L2‖v‖Ḣ1/2 .

The estimate of Π3(∆
1/4R((RQ)v)) is analogous to (106) .

Estimate of ‖Π1(∆
1/4(Qv)−∆1/4R((RQ)v))‖B0

1,1(IR) .

We show that
‖Π1(∆

1/4(Qv)−∆1/4R((RQ)v))‖B0
1,1(IR) = 0 .
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We have

‖Π1(∆
1/4(Qv)−∆1/4R(RQ)v))‖B0

1,1(IR)

≃ sup
‖h‖

B0
∞,∞≤1

∫

IR

∑

j

[∆1/4(Qjv
j−4)−∆1/4R((RQj)v

j−4)]hjdx

= sup
‖h‖

B0
∞,∞≤1

∫

IR

∑

j

vj−4[Qj∆
1/4hj − (RQj)R∆1/4hj ]dx

= sup
‖h‖

B0
∞,∞≤1

∫

IR

∑

j

F [vj−4]F [Qj∆
1/4hj − (RQj)R∆1/4hj ]dξ

= sup
‖h‖

B0
∞,∞≤1

∫

IR

∑

j

F [vj−4]

∫

IR

F [Qj]F [∆1/4hj ](1 +
η

|η|

ξ − η

|ξ − η|
)dη = 0

This concludes the proof of Lemma B.5 . ✷
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