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Abstract

We consider nonlocal linear Schrodinger-type critical systems of the type
AY4% =Quv in R, (1)

where ) is antisymmetric potential in L2(IR,so(m)), v is a IR™ valued map and Qv
denotes the matrix multiplication. We show that every solution v € L2(IR, IR™) of (1)
is in fact in L} (IR,IR™), for every 2 < p < 400, in other words, we prove that the
system (1) which is a-priori only critical in L? happens to have a subcritical behavior
for antisymmetric potentials. As an application we obtain the Cl?)’ca regularity of weak

1/2-harmonic maps into C? compact sub-manifolds without boundary.
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1 Introduction

In this paper we consider maps v = (v, -+, v,,) € L2(IR, IR™) solving a system of the form
Vi=1---m AVt =3t (2)
j=1

where Q = (Q1); j=1..n, € L*(IR, so(m)) is an L? map from IR into the space so(m) of m xm
antisymmetric matrices. The operator A4 on IR is defined by means of the the Fourier

transform as follows o
Al/ty = |£|1/2ﬁ,

(given a function f, f or F[f] denotes the Fourier transform of f).
We will also simply denote such a system in the following way

A% = Qu.

We remark that the system (5) is a-priori critical for v € L?(IR). Indeed under the as-
sumptions that v, € L? we obtain that A%y € L' and using classical theory on singular
integrals we deduce that v € Li;zo, the weak-L? space, which has the same homogeneity
of L?. Thus we are more or less back to the initial assumption which is a property that
characterizes critical equations.

In such a critical situation it is a-priori not clear whether solutions have some additional
regularity or whether weakly converging sequences of solutions tends to another solution
(stability of the equation under weak convergence)...etc.

In [10] and [11] the second author proved the sub-criticality of local a-priori critical
Schodinger systems of the form

Vi=1---m —Aui:ZQé-Vuj, (3)
=1
where u = (u!,---,u™) € WH(D? IR™) and Q € L?(D?, IR* ® so(m)), or of the form
Vi=1---m —Avi:ZQé-vj, (4)
=1
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where v € LY®™=2(B" IR™) and Q € L™?(B", s0(m)). In each of these two situations the
antisymmetry of {2 was responsible for the regularity of the solutions or for the stability of
the system under weak convergence.

Our first main result in this paper is to establish the sub-criticality of non-local Schrodinger
systems of the form (2). Precisely we prove the following theorem which extends to a non-
local setting the phenomena observed in [10] and [11] for the above local systems.

Theorem 1.1 Let Q € L*(IR, so(m)) and v € L*(IR) be a weak solution of
A4y =Qu. (5)

Then v € Lj (IR) for every 1 < p < +00.

As in the previous works the main technique to prove Theorem 1.1 is to perform a change
of gauge by rewriting the system after having multiplied v by a well chosen rotation valued
map P € HY2(IR, SO(m)). @ In [10] the choice of P for systems of the form (3) was given
by the geometrically relevant Coulomb Gauge satisfying

div [P'VP + P71QP] = 0. (6)

In this context there is not hope to solve an equation of the form (6) with the operator V
replaced by A4 since for P € SO(m) the matrix P~'!A/4 P is not in general antisymmetric.
The novelty here, like in [11], is to choose the gauge P satisfying the following (maybe less
geometrically relevant) equation which involves the antisymmetric part of P~'AY/4P2):

Asymm (PT'AYVAP) =271 [PTIAYAP — AYAPTIP] = Q. (7)
The local existence of such P is given by the following theorem.

Theorem 1.2 There existse > 0 and C > 0 such that for every () € L?(IR; so(m)) satisfying
[ Q2 dz < e, there exists P € HY*(IR, SO(m)) such that

(i) PIAYVAP _AYAPTlp=2Q;

(8)
(id) /\A1/4P\2d:c§0/ O2dz.
R R

|

(1 SO(m) is the space of m x m matrices R satisying R'R = RR* = Id and det(R) = +1

) Given a m x m matrix M, we denote by Asymm(M) and by Symim (M) respectively the antisymmetric
and the symmetric part of M, namely Asymm(M) := M*TMY and Symm(M) := M+TM, M is the transpose
of M.



The proof of this theorem is established by following an approach introduced by K.Uhlenbeck
in [18] to construct Coulomb Gauges for L? curvatures in 4 dimension. The construction does
not provide the continuity of the map which to Q € L? assigns P € HY/2. This illustrates
the difficulty of the proof of Theorem 1.2 which is not a direct consequence of an application
of the local inversion theorem but requires more elaborated arguments.

Thus if the L? norm of  is small, Theorem 1.2 gives a P for which w := Puv satisfies

AV = —[PQP™' = AV*P P! w+ N(P,v)
= —Symm ((AY*P)P7") w+ N(P,v). (9)

where N is the bilinear operator defined as follows. For an arbitrary integer n, for every
Q € HY?(IR", Mysrn(IR™)) £ > 0©) and v € L*(IR", IR™), N is given by

N(Q,v) == AY4(Quv) — QAY*v + AV4Q v. (10)

One of the key result used in [4] establishes that, under the above assumptions on @ €
HY2(IR", M,,(IR)) and v € L*(IR",IR™), N(Q,v) is more regular than each of its three
generating terms respectively AY4(Q v), QAY*v and AV4Qv W, We proved that N(Q,v)
is in fact in H~Y2(IR, IR™). Such a result in [4] was called a 3-commutator estimate (see
Theorem 1.3).

In the paper [5] we improve the gain of regularity by compensation obtained in [4]. In
order to make it more precise we recall the definition of the Hardy space H!(IR") which is
the space of L! functions f on IR"satisfying

/ sup |¢; * f|(z) do < 400
R telR

where ¢;(x) := t™ ¢(t"'x) and where ¢ is some function in the Schwartz space S(IR")
satisfying [p. ¢(z) dv =1. ©®

Lemma 1.1 There exists a constant C' > 0 such that, for any Q € HY?*(IR", M,,(IR)) and
v e LA(R", IR™), N(Q,v) = AV4Quv) — QAY*v + AY2Q v is in H' (IR™) and the following

estimate holds

IN(Q, 0) I < ClIQl s N0l 2w - (11)
Thus in equation (9) the last term in the r.h.s happens to be slightly more regular. It
remains to deal with the first term in this r.hs. @ —Symm (AY*PP™') w. A-priori

Symm ((AV4P)P~1) = 271 AV4p P=1 4+ PAY4P~1] is only in L? but here again we are
going to take advantage of a gain of regularity due to a compensation. Though, individually

) Myserm(IR) denotes, as usual, the space of £ x m real matrices.
(The last one for example being only a-priori in L.
(5)For more properties on the Hardy space H' we refer to [7] and [8].
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each of the terms A4P P~ and its transposed P AY*P~! are only in L?, the sum happens
to belong to the "slightly” smaller space L*! defined as follows: L*!(IR) is the Lorentz space
of measurable functions satisfying

/‘t]ﬂfﬂﬂﬁ<i+mm
R

where f* is the decreasing rearrangement of |f]| .

The fact that Symm ((AY4P) P~!) belongs to L*!(IR) comes from the combination of
the following lemma according to which AY*(Symm ((AY*P) P~')) € H'(IR) and the sharp
Sobolev embedding () which says that f € H'(IR) implies that A=/ f € L>!. Precisely we
have

Lemma 1.2 Let P € HY?(IR,SO(m)) then AY*(Symm (AY*P P7')) is in the Hardy
space HY(IR) and the following estimates hold

IAYAAYEP Pt 4 P AYEP [l < C|IP| 32
where C' > 0 1s a constant independent of P. This implies in particular that
|Symm (AY4P) PY) |20 < CJ[ P20 (12)

The proof of Lemma 1.2 is a consequence of the 3-commutator estimates in [4] (see Theorem
1.5 below).

Remark 1 The fact that, for rotation valued maps P € W2"/2(IR" SO(m)) (n > 2),
Symm (AP P~1) happens to be more regular than Asymm (AP P~!) was also one of the
key points in [11].

As we explain in Section 3, Theorem 1.1 is a consequence of this special choice of P for
which the new r.h.s. in the gauge transformed equation (9) is slightly more regular due to
Lemma 1.1 and Lemma 1.2. More precisely this gain of regularity in the right of equation (9)
combined with suitable localization arguments permit to obtain the following local Morrey
type estimate for Pv and thus for v, (since P is bounded in the L* norm)

sup 7 ”° / |AY4y|de < C, (13)
20€B(0,p) B(xor)
0<r<p/8

for p small enough, 0 < f < 1/2 independent on zy and C' > 0 depending only on the
dimension. Proposition 3.2 in [1] yields that v € L}, (IR) for some ¢ > 2. (7

loc

(6)The fact that v € H' implies A~Y4y € L?! is deduced by duality from the fact that A%y € L*>
implies that v € BMO(IR) - This last embedding has been proved by Adams in [1]
(Mn a paper in preparation [5] we show that the solutions of (5) are actually in L2 (IR) .

loc
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Our study of the linear systems has been originally motivated by the following non-linear
problem.

In the joint paper [4] we proved the C’ﬁ)’f regularity of weak 1/2-harmonic maps into a
sphere S™~ 1. The second aim of the present paper is to extend this result to weak 1/2-
harmonic maps with values in a & dimensional sub-manifold N, which is supposed at least
C?, compact and without boundary. We recall that 1/2-harmonic maps are functions u in
the space H/2(IR,N) = {u € H*(IR,IR™) : wu(x) € N, a.e, }, which are critical points for
perturbation of the type II3(u + ), (p € C* and II}; is the normal projection on A') of
the functional

E(u):/]R|A1/4u(x)|2dx, (14)

(see Definition 1.1 in [4]). The Euler Lagrange equation associated to this non linear problem
can be written as follows :

AYV2u A v(u) =0 in D'(IR), (15)

where v(z) is the Gauss Maps at z € NV taking values into the grassmannian G7,,_(IR™) of

oriented m — k planes in IR™ which is given by the oriented normal m — k—plane to T, N .
(8)

The Euler Lagrange equation in the form (15) is hiding fundamental properties of this
equation such as in particular its elliptic nature and is difficult to use directly to solve
problems related to regularity and compactness. One of the first task is then to rewrite it
in a form that will make some of its analysis features more apparent. This is the purpose of
the next proposition. Before stating it, we need some additional notations

We denote by PT(z) and P (z) the projections respectively to the tangent space T,N
and to the normal space N,N to N at z € N . For u € H/?(IR, N') we simply denote by
PT and P the compositions PT ou and PY ow. In Section 5 we establish that , under the
assumption N to be C2, PTou as well as PN ou are matrix valued maps in H/2(IR, M,,(IR)).

A useful formulation of the 1/2-harmonic map equation is given by the following result .
Proposition 1.1 Let u € HY?(IR,N) be a weak 1/2-harmonic map. Then the following

equation holds . .
AV = Q1 4+ Qv+ Qu, (16)

where v € L?(IR, IR*™) is given by

PTAVAy,
U\ RPYAVA )

(®)We can identify the unit simple m — k vector v(z) with an oriented m — k plane (see for instance [6]).
Moreover since we are assuming that A is C?, v is a C! map on N and the paracomposition gives that v(u)
is in H'/2(IR, "™ *IR™) hence, since A'/?u is a-priori in H~/? the product AY?u A v(u) makes sense in
D' using the duality H/2 — H~1/2




and where R is the Fourier multiplier of symbol o(§) = z%
Q€ L3(IR, so(2m)) is given by

—Ww WR
Q=2
WR —RWR

the maps w and wg are in L*(IR, so(m)) and given respectively by

A1/4PTPT _ PTA1/4PT
w =
2 Y

and

_(RAYAPTYPT — PT(RAYAPT)

WR = 9 .

Finally the maps Q) = Ql(PN,PT) c H'2(IR, IR*™) and Q, = QQ(PN,PT’AIMU) c
L*Y(R, My,,,(IR)) and satisfy

100 v gzmy < C (1PN [G-172 + 1P N5-1r2) 5 (17)

and
190|220 (mrta () < C (IPY sg=172 + |1PT || gr=1s2) | AV 0| ooy . O (18)

The explicit formulations of Q) and Q, are given in Section 5. The control on Q) and
Qg is a consequence of regularity by compensation results on some operators that we now
introduce.

For every Q,v € L*(IR") we define the operator F' by

F(Q,v) :=R(Q)R(v) — Qu. (19)

From the commutator estimates obtained in [3], one can deduce that F(Q,v) € H~'/2(IR)
and

IE(Q, )l a-1720my < ClQ 2y l0]] 22y (20)

By a suitable estimate on the dual operator of F' (Lemma B.5) we show the following sharper
estimate

IE(Q, ) l-1/2(m) < CllQll 2y [[0]] 200 () - (21)

Next we recall some commutator estimates we obtained in [4].
Theorem 1.3 Let n € IN* and let w € BMO(IR"Y), Q € H/*(IR", Myym(IR™)) . Denote
T(Q,u) == AV4HQAY*u) — QA2 u + AVAuAYAQ |
then T(Q,u) € HY2(IR™) and there exists C > 0, depending only on n, such that

IT(Q, Wl g-12(my < C @l 1/2(mmy Nl BrOERR) O (22)



Theorem 1.4 Let n € IN* and let u € BMO(RR"), Q € H'?(IR", My (IR")) . Denote
S(Q,u) := AVHQAY u] — R(QVu) + R(AVAQRAYu) .
Then S(Q,u) € H™Y2(IR™) and there exists C' depending only on n such that
15(Q; Wl -1/2(mny < C 1@ 172y el BMIO R B (23)

As it is observed in [4], Theorems 1.3 and 1.4 are consequences respectively of the following
results which are their “dual versions” .

Theorem 1.5 Let u,Q € H'/?(IR"), denote
T*(Q.u) = AYHQAY u) — AV2(Qu) + AVA((AY1Q)u).
then T*(Q,u) € H'(IR™) and
1T(Q, w) I3 (rmy < ClR /2 ey 10l 51721y B (24)
Theorem 1.6 Let u,Q € H/*(IR"), denote
S*(Q,u) = AVHQAY ) — V(QRu) + RAYH(AYAQRu) .
Then S*(Q,u) € H'(IR™) and
15°(Q; w2 ey < ClQU g2y llull o2y - (25)

Since the operators T and S* are the duals respectively of 7" and S, by combining Theorems
1.3 and 1.5 and Theorems 1.4 and 1.6 one gets the followings sharper estimates for 7" and S:

IT(Q W)l -1r2mm) < C N1QN sy |1 Al 2wy (26)

1S(@, Wl -r2gmmy < C M@ a oy 1A | 2. ey (27)

An adaptation of Theorem 1.1 to the Euler Lagrange equation of the 1/2-Energy written
in the form (16) leads to the following theorem which is the second main result of the present

paper.

Theorem 1.7 Let N be a closed C? submanifold of IR™ without boundary Letw € HY?(IR,N)
be a weak 1/2—harmonic map into N, then u € C*(IR,N), for all 0 < a < 1. O

loc

Finally a classical elliptic type bootstrap argument leads to the following result (see [5] for
the details of this argument).

Theorem 1.8 Let N be a smooth closed submanifold of IR™. Let u be a weak 1/2-harmonic
map in HY2(IR,N)), then u is C* . O



The regularity of critical points of non-local functionals has been recently investigated by
Moser [9]. In this work critical points to the functional that assigns to any u € HY?(IR,N)
the minimal Dirichlet energy among all possible extensions in N are considered, while in
the present paper the classical H'/2 Lagrangian corresponds to the minimal Dirichlet energy
among all possible extensions _in IR™. Hence the approach in [9] consists in working with
an intrinsic version of H'/?2—energy while we are considering here an extrinsic one. The
drawback of considering the intrinsic energy is that the Euler Lagrange equation is almost
impossible to write explicitly and is then implicit while in the present case it has the explicit
form (15). However the intrinsic version of the 1/2—harmonic map is more closely related
to the existing regularity theory of Dirichlet Energy minimizing maps into N.

Finally the regularity of n/2 harmonic maps in odd dimension n > 1 with values into a
sphere has been recently investigated by Schikorra [15] . In this work the author extends
the results obtained in [4] by adapting some compensation arguments introduced by Tartar

16].

The paper is organized as follows.

- In Section 3 we prove Theorem 1.1 .
- In Section 4 we prove Theorem 1.2.

- In Section 5 we derive the Euler-Lagrange equation (16) associated to the Lagrangian
(14) and we prove Theorem 1.7.

- In Appendix A we prove some localization estimates related to the solutions to the
linear nonlocal Schrondiger systems (9) .

- In Appendix B we provide some commutator estimates that are crucial for the con-
struction of the gauge P.

2 Preliminaries: function spaces and the fractional Lapla-
cian
In this Section we introduce some notations and definitions we are going to use in the sequel.
For n > 1, we denote respectively by S(IR") and S'(IR") the spaces of Schwartz functions

and tempered distributions. Moreover given a function v we will denote by v and Flv] the
Fourier Transform of v :

8(6) = Flul(€) = / () d

Throughout the paper we use the convention that x,y denote variables in the space and &, n
the variables in the phase.
We recall the definition of fractional Sobolev space (see for instance [17]).
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Definition 2.1 For a real s > 0,
HY(R") ={ve L*(R"): [{°F[v] € L*(R")}
For a real s < 0,
H(R") ={veS(R"): (1+|¢*)**Fv] e L*(R")} .0

It is known that H ~°(/R") is the dual of H*(IR").
For 0 < s < 1, another classical characterization of H*(IR"™) which does not make use the
Fourier transform is the following, (see for instance [17]).

Lemma 2.1 For0< s <1, u e H*(IR") is equivalent to u € L*(IR") and

</n/n< v —y |n+22)2) dxdy)l/z < 4o00.

For s > 0 we set
Jull sy = lell 2y + IEPF | L2y
and
HUHHS(JRn) = ’H\f|s~7:[U]HL2(mn)-

For an open set 2 C IR", H*(Q2) is the space of the restrictions of functions from H*(IR")
and

Hes(Q) — 1nf{||U| Hs(R™)> U =wu on Q} .

In the case 0 < s < 1 then u € H*(Q) if and only if u € L*(2) and

(/ | ( \x—y|"+22)2)df“dy)l/2<+°o'
o (L (5252 )"
see for instance [17].

Finally for a submanifold A/ of IR™ we can define

]

Moreover

[l

H(R"N)={ue H*(R",IR") : u(z) € N,ae.}.
Given ¢ > 1 we also set
WI(R") == {v e LYR"): F '|¢IPFv]] € LIY(IR")}.
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We shall make use of the Littlewood-Paley dyadic decomposition of unity that we recall
here. Such a decomposition can be obtained as follows . Let ¢(§) be a radial Schwartz
function supported in {£ € R" : |£] < 2}, which is equal to 1 in {£ € R" : [¢| < 1}. Let
(&) be the function given by

»(&) = o(&) — B(26) .
1 is then a "bump function” supported in the annulus {£ € R" : 1/2 < |¢] < 2}.

Let ¢y = ¢, ¥;(€) = ¥(277€) for j # 0. The functions ¢;, for j € Z, are supported in
{£e€ R": 271 < |¢] <2971} and they realize a dyadic decomposition of the unity :

D x) =1.
jeZ
We further denote

$;(€) == > wl§).

k=—o00

The function ¢; is supported on {&, [£] < 27+1}. ‘
We recall the definition of the homogeneous Besov spaces B,  (IR") and homogeneous

Triebel-Lizorkin spaces Flfq(ﬂ%") in terms of the above dyadic decomposition.

Definition 2.2 Let s€ IR, 0 < p,q < oco. For f € §'(IR") we set

o) 1/q
p— (Z Wuf1[wmumrip<mn)> ifq < oo

j=—00 (28)
lull g ey = sup 27 IF o3 F ]l 2oy if ¢ =00
’ JEZ
When p,q < oo we also set
00 l/q
lull gy gy = (Z 2]8‘1|f-1[wjf[umq>
j=—o0 .
O

The space of all tempered distributions w for which the quantity | u|| B, () 18 finite is

called the homogeneous Besov space with indices s, p, ¢ and it is denoted by B;,q(ﬂ%”). The
space of all tempered distributions f for which the quantity [|f||z (gn) is finite is called the
P9

homogeneous Triebel-Lizorkin space with indices s,p,q and it is denoted by F;q(ﬂ%"). A
classical result says ) that W*P(IR") = 3572(3") = F;Z(B”) :

) See for instance [7]

11



Finally we denote by H!(IR") ‘the homogeneous Hardy Space in IR". A less classical
result (1) asserts that H'(JR") ~ [, thus we have

1/2
||U||H1(mn)2/]R<ZI}"1[wjf[u]]|2> dx .

We recall that in dimension n = 1, the space H'2(IR) is continuously embedded in the
Besov space Bgo,oo(]R)’ More precisely we have

o'?*(R) — BMO(R) — BY, (R), (29)

where BMO(IR) is the space of bounded mean oscillation dual to H!(IR™) (see for instance
[14], page 31).

The s-fractional Laplacian of a function u: IR™ — IR is defined as a pseudo differential
operator of symbol |¢]* :

Asu(g) = [¢*a(S) (30)
In the case where s = 1/2, we can write A2y = —R(Vu) where R is Fourier multiplier of
bol i
symbol — .
€]

To conclude we introduce some basic notations.

We denote by B,(z) the ball of radius r and centered at z. If £ = 0 we simply write B, .
If x,y € IR™, x - y denote the scalar product between z,y .

Given a subset K of IR", 1, denotes the characteristic function of B.

For every function u: IR"™ — IR we denote by M (u) the maximal function of u, namely

M(u)= sup  [Bla,r)|” / )l (31)

r>0, x€R™

Given ¢ > 1 we denote by ¢ the coniugate of ¢: ¢ 1 +¢ ' =1.
In the sequel we will often use the symbols < and ~ instead of < and =, if the constants
appearing in the estimates are not relevant and therefore they are omitted.

3 Regularity of nonlocal Schrodinger type systems

In this Section we prove Theorem 1.1. The proof is based on “ ad-hoc” localization estimates
given in the Appendix A and on the 3 terms commutator estimates (26) and (24).

Proof of theorem 1.1.

Let p > 0 be such that ||1p )2 < €0, With gy small enough. We decompose €2 as
follows Ql = nB(O,p)Q and Qg = (1 — ﬂB(Oﬁ))Q.

(10)See for instance [8].
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Let P € H'/?(IR, SO(m)) given by Theorem 1.2 (with Q replaced by €). We have
AV (Pv) = [PQP — (AY*P)P7'] Pv+ N(P,v) (32)

where N is the operator defined in 10.
Since P satisfies (8)(i) we have

A1/4P P—l PA1/4P_1
pop-t - Avippt — L ) ; (33)

= —Symm ((AY*P)P7') .

From Theorem 1.5 it follows that Symm ((AY4P)P~') € L*'(IR). We stress that the fact
that Symm ((AY*P)P~!) is in L*!(IR) (which is stricly contained in L?) will play a crucial
role.

Claim 1. From Theorems 1.3 and 1.5 we can deduce the estimate (26), which can be
expressed in term of the operator NV as follows:

IN(Q; o)l g2y < Cllvl L2y QN rrr2(mey -

for every Q € HY?(IR") and v € L*(IR").
Proof of Claim 1.

IN@Q oy = sup / N(Q, v)hdz
lAll ;172 <1 JIR"
= s [ ulQUAY) - AVH@H) + (AVQ)H
lAll 172 <1 JIR"
= sup /UA_1/4(T*(Q,h))dx
1Al 1 2 <1 J I (34)

by applying Theorem 1.5

S sup ol e |ATVHTHQ, 7))l e

1Bl 71/2<1
S vllze 1@ e -
This concludes the proof of claim 1.

We set now w = Pv and w = —Symm ((AY*P)P~') and rewrite equation (32) as follows
AY4%w = ww+ N(P, P 'w) + QP 'w. (35)

where by construction ||w||pz21, || P|| 712 < €o.

Claim 2 : There exists ¢ > 2 such that v € L}

loc

(IR).
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Proof of Claim 2. In order to establish the claim 2, we are going to establish the

following bound

sup rP |w]| £2.50 (B(z0,r)) < +00.
20€B(0,p/8) ,0<r<p/16

Let 2o € B(0,p/8) and r € (0,p/16). We argue by duality and multiply (35) by ¢ which
is given as follows. Let g € L*'(IR), with ||g|[;22 < 1 and set gro = Lp(era)g, with
0<a<1/4and ¢ =A"4(g,,) € L(R) N H/*(IR). We take the scalar product of both

sides of equation (35) with ¢ and we integrate.

Left hand side of the equation (35):

sup /¢A1/4wdx = sup /gmwdx
R R

llgll 2,1 <1 llgll 2,1 <1

= HwHLQ’w(B(mo,m)) .

Right hand side of the equation (35):
We apply Lemmas A.5, A.3, A.4 and A.6 and we respectively obtain

[ owwde < Jllian gl ol aienm
R

+oo
+a!2 > " 272wl p2a [[gllzan W] 2 (5o 2vt L Bleo2i- 1)

h=-—1
+oo
S eollwllzse By + D 27wl L2 (Blao2rt 1 Bleo,2t-1r))
h=-1

/¢N(P,P1w)d:c < eollwllr2eo(Baor
R

+00
+ Call? Z2’h/2|!wHL&oo(B(mo,2h+1r)\B(w072”’17‘)>’
h—1

and finally
/ 0P tw odr < Call?rt/? .
R

Thus combining (36)...(38) we get

|wlL200(Boray S €ollwl 200 (B(ao.r)

—+00 1/2
- T
+ al? Z 9—h/2 HwHL2’°°(Bzh+1r(zo)\Bzhflr(l“o)) + (—) al’?

h=1 P

14
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If o and ¢ are small enough the formula (40) implies that for all zo € B(0,p/8) and
0 <7 < p/16 we have ||w| z2.0c(B(r) < Cr?, for some B € (0,1/2) and C > 0 independent
on 7. Since P~ € L™, this implies that

sup 77 / |AY4|de < +oo. (41)
xo€B(0,p/8) B(zo,r)
0<r<p/16

Proposition 3.2 in [1] yields that v € L (IR) for some ¢ > 2 which finishes the proof of claim
2.

Claim 3: v € L} (IR) for every p > 2.
Proof of Claim 3. We argue as in the proof of claim 2. We consider again p > 0 such
that || 1p,,)$2 2 < €9, with g¢ small enough. We write 2 = Q; + Qy with Q; = g )2

and Qy = (1 — 1 p(,))2. We consider an arbitrary ¢ > 2 such that v € L]

loc*

Let zo € B(0,p/8), r € (0,p/16), g € Lq'(]R), with [|g]| e < 1 and set gro = LB@yra)9,
with 0 < a < 1/4 and ¢ = A~Y*(g,o). We observe that ¢ € W29 (IR). Moreover since

¢ < 2and W29 (R) — L%(R), we also have ¢ € L%(ﬂ%).
We write the equation (5) as follows

+oo
A1/4U = Ql ]13(;,307r/2)v -+ Z Ql ﬂB(xo,2hr)\B(mo,2h—1r)v
h=0
+ QQU . (42)

We take the scalar product of the equation (42) with A='/%(g,,) and integrate. By using
Lemmas A.6-A.9 we get that

[Vl aB@ora)y S collvlLa(Bao.r/a) (43)

+00 1/q
_ r
+ al/q Z 2 h/q Hw|’Lq(32h+1r(zo)\B2h*1r(mo)) + (;) al/q .
h=1

If o and € are small enough, the formula (43) implies

1/q
sup r 7 [/ |v|qu} < 400, (44)
zo€B(0,p/8) B(zo,r)

0<r<p/16

with 0 < v < 1/4 independent on ¢. Thus by plugging (44) in the equation (5) we obtain
for the same v > 0 independent of ¢

sup 17 [JAYY]| f2asar) plag ) T < 400 (45)
zo€B(0,p/8)
0<r<p/16
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Theorem 3.1 in [1] yields that v € LY | with § > ¢ given by

loc?
= = el 2

Since ¢ > 2 we have

2
~—1 -1
q <q - .
(1—49)
By repeating the above arguments with ¢ replaced by ¢, one finally gets that v € L} . for
every p > 2. This concludes the proof of theorem 1.1. O

4 Construction of an optimal gauge P : the proof of
Theorem 1.2.

Proof of Theorem 1.2.

We follow the strategy of [11] to construct solutions to Asymm(P~1 AP) =  which was
itself inspired by Uhlenbeck’s construction in [18] of Coulomb Gauges solving (6) .

Let 2 < ¢ < +00 and consider
(3

Z/{q:{QELq(R,so( ) N LY (IR, so(m / |2 d:c<€} :

Claim: There exist € > 0 small enough and C' > 0 large enough such that

([ QeU! :there exits P € WY2(IR, SO(m)) N W24 (IR, SO(m)) )

Vi satisfying (8) (i)-(ii) and
c=

/ |AYAP|1dz < 0/ 1Q|d, / |AYVAP|T d < c/ Q| dz
R R R R

/

is open and closed in U2 and thus VI = U2. Actually the set U is star-shaped with respect to
the origin (if Q € U2, then tQ € UZ for every 0 < ¢ < 1) and therefore it is path connected .
Proof of the claim.

We first observe that VI, # 0, (0 € V).

Step 1: For anye >0 and C >0, V{ . is closed in LN L7 (IR, so(m)).

Let Q,, € Vg,c such that ,, — Q. in the norm LN Lq, as n — +oo and let P, be a
solution of
PIAVAP, — AYVAP-IP =20,
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with
/ \A1/4Pn|qu§00/ 1Q,|9dz
R R

/ \A1/4Pn|q,d:c§00/ Q7 da: .
R R

Since €, — Q in the norm L9 N LY and flR |2,]2dx < &, we can pass to the limit in this
inequality and we have

/R Qufdr <e, (46)

which implies that Q. € U..

One can extract a subsequence P, — P in W/24N1W1/2¢ . By the Rellich-Kondrachov
Theorem we also have P, — P, in L?_ and hence P, € SO(m) ae. Thus P, €
W124(IR, SO(m)) N W% (IR, SO(m)) and the lower semi-continuity of the H/2, TW1/%4
and W24 norms implies that

/ \A1/4Poo\2d:c§00/ Q00| ?da

R R

/ IAYVAP, |dz < C / Q00 |9dz (47)
R R

and / IAVAP |7 dx < Co/ Q0|7 daz .
R R
We have
PIAYAP, — AYAPIP, — PIAYAP, — AVAPIP, in D'(IR).
Since P7IAYAP, — AVAPALP, = Q, — Q. in D’ as well, we deduce that
PIAVAP, — AVAPIP =Q a.e. (48)

and combining (46), (47) and (48) we deduce that Q, € V! which concludes the proof of
Step 1.

Step 2: For e > 0 small enough and C' > 0 large enough Vgc 1S open.
For every Py € WY%4(IR, SO(m)) N W24 (IR, SO(m)) we introduce the map

Fho wi2aeqa w24 (IR, so(m)) — LN LY (IR, so(m))
U — (PyexpU) 'AY4(PyexpU) — AY4(Pyexp U) (Pyexp U).

We claim first that F is a C'' map between the two Banach spaces W/240W /24 (IR, so(m))
and LN L7 (IR, so(m))

17



i) Since W1/24 for ¢ > 2 embedds continuously in C°, the map V' — exp (V) is clearly
smooth from W'/24 N\ W1/24 (IR, so(m)) into W24 N W24 (IR, SO(m)).

ii) The operator A% is a smooth linear map from W24 0 W24 (IR, M,,(IR)) into
LiN LY (IR, M,,(IR)).

iii) Since again W1/%? embedds continuously in L - W1/%4 0 W1/2¢ is an algebra - the
following map

I . WY29nWY24 (R, M,(IR)) x LN LY (R, M,(IR)) — LN LY (IR, M,(IR))
(A, B) — AB
is also smooth.
Now we show that alFOP0 = [ (D
L™ (n) := —n Py AV Py + AV (n Py )Py
+ Py P AYA(Pyn) — AYAP Py
e Differentiability of F'©* at U =0 :

E0) = F0) = %l = [F0) = FP0) + 0Py 0,

’ nHLquq/

_A1/4(77Po_1)P0 - Po_1A1/4(P071) + A1/4P0_1P0nHLquf1’

First of all we estimate

H(PO exp(n)) TAY4(Pyexpn) — Py PAYAPy + nPy IAVAR, — Po_lAl/A‘('r]Po)HLqu,
< AYHPO)|| pappe [(Poexp(m) ™" = Pt +n(Po) ||
+{[(Poexp(m) || [|AYH(Poexp(n)) — AYH(Py) = AY4(Pon) || urs (49)

+ || AV (Pon) || paprpr 1 Poexp(n) = Poll

< Co(llnllvirnr2agm))

The estimate of

H(Poexp ﬁ)_1A1/4<P0 exp (1)) — P0_1A1/4(P0) - P0_1A1/4(P077) + A1/4]30_1P(mHLquq’ :

(DIn order to define L™ as a map from W/2a 0 11/24" into LY N LY we recall again that we make use
of the embedding W'/24(IR) < L>(IR) if ¢ > 2 (see for instance [14], pag 33).

18



is analogous. Hence we have proved that dF’(fD 0= [,

e dyF™ is an isomorphism from W24 N W27 (IR, so(m)) into LN LY (IR, so(m)) .

Precisely we prove the following lemma.

Lemma 4.1 There exists e > 0 such that if Qo € U2 and if Py € WY/2NWY24 (IR, SO(m))
is a solution of (8) (i)-(ii), satisfying

fﬂ% |A1/4P0|qdl‘ S CfR|Qo|qdl‘

(50)
[ |AYAP|9 dx < C[r Q0|9 dzz

then for every w € LI N LY (IR, so(m)) there exists a unique n € W29 N W27 (IR, so(m))
such that

w=—nFy AV Py + AV Py R + By ' AV (Pon) — (AYVUP ) Py (51)

and

Il /zanmiee < C llwll panga -
Proof of Lemma 4.1. Let Q € U!.. Suppose that Py € W21 0 W24 R, SO(m)) is a
solution of (8) (i)-(ii), satisfying (50) . .

Claim 1. Let 1 < r < 2. L' is an isomorphism between WI/Q’T‘(B, so(m)) and
L"(IR, s0(m)), namely for any w € L" (IR, so(m)) there exists a unique n € W27 (IR, so(m))
solution to LY (n) = w and

11l < € flwllzr

for C'>0.
We rewrite the equation (51) in the following way

w = 2AY4 — Pyt AYAP) — 2AYAP Py (52)

+ Qn, Ro) — Q'(n, Po) ,
where
Q(n, Po) = AV (nPy ) Py +1n Pyt AYAR — A4y, (53)
From Lemma B.2 and Lemma B.3 it follows that

1Q(n, Po)l|zr ClinFy sz | Poll e (54)
Clnllirzs (156 Mz + 115 a2 ) (1Poll oo

Clinllsze (1Pollel|Poll gz + |1 PollZs2) -

IA A IA
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Since 271 + (2 — r) (2r)~! = r~1, by applying Holder Inequality we get
ln Py ' AV Pol| e < (0l porsa-n | Py P AV ol 2 (55)

2r

since W27 (IR) — L2 (IR)

< Clllyirjes |1 By " APyl 12
We consider the following map H™: W27 (IR, so(m)) — L" (IR, so(m)),
H™(p) = —2qF; 'AYIR) — 28 PC Py + Q(n, Bo) — Q' (1, Fo)

From (54) and (55), it follows that there exists a constant C' > 0 (independent of Fy) such
that

L )l < Cllnllyrer (1Pollze [ Pollzae + [1Poll2) -

Because of (50), [Pyl 12 < (Ce)*? and hence, if € > 0 is small enough, L = 2AY4 +
Hp,: WY27(IR, so(m)) — L" (IR, so(m)) is invertible which proves the first claim.

Claim 2. Let ¢ <r < 2. Letw € LN L" and n € WY be the solution of L™ (n) = w,

then n is in WY2a W1/
We apply Lemma B.3 to

Ay — PUYAYA(Pyn) = AV Py Pon) — Py 'AYA(Pon)
and we obtain

|AY 4 — P AYA(Pon) ||z < ClIPon]lyiar HPJIHWUM(B,SO(m))
by Lemma B.2 (56)

< Clinlhirser 1 Bollzes + [1Poll vl 1Pollvirsz.agm somy) -

- 11, 2-r
where ¢ is given by ; = PR T
In a similar way we have

|AY 4 — AV Py Polle < Clinlliser 1Pollze + [1Poll g2 1 Pollyirs 2. (. s00m) -
On the other hand we also have

10 Py YAV Py e < Il e 1A Pyl 1o (57)

Thus Q(n, Py), Q' (n, By) and Hp,(n) a are in L'. Since w € LN L", we have A4y € L' as
well. Since ¢’ < r < 2 and 1 :%+% =, we have that t > 2.

20



The fact that AY4y € L™ N L! for some r < 2 and ¢t > 2 implies that n € L™ (see for
instance [2], pag 25).

From the fact that € L® we deduce that n Py *AY4Py € L7 and (AY4Py \Pyn € L9,
Now we apply Lemma B.4 respectively to a = Pyn € HY2N L™ b= Pyt e W1/24 and
a=nP;"', b= P, and we get that Hp,(n) € L% Since w € LI N L" we have A4y € L? as
well. Moreover the following estimate holds

IAY 9]l za < C || oz

which proves the claim 2.
Claim 3. Let w € LINLY and 1 € Ny <p<gW?" be the solution of L™(n) = w. Then 1 is
in WY2an Wwi2d,

It is enough to apply apply Lemma B.4 respectively toa = Pon € L™, b= P, ' € Wi/2d
and a = NPy, b = P, in order to get that Hp(n) € LY. Since w € L9 N LY we have
A4 e L7 as well.

Combining claim 1, claim 2 and claim 3 we obtain that for any w € LN LY (IR, so(m))
there exists a unique n € W29 N W27 (IR, so(m)) such that

L =w,
and
[nllviv2amirnze < C llwllponre -
This finishes the proof of lemma 4.1. O

Proof of step 2 continued. We take Qy € V{_. By definition of V{,_ there exists I €
W24 WY24(IR, SO(m) that solves (8)(i)-(ii) and satisfies (50). Now we apply the
Implicit Function Theorem to F° and we deduce that for every P in some neighborhood of
Py and 2 in a neighborhood of €y (both neighborhoods having a size depending on P, and
o of course) the equation (8)(i) is satisfied and for some constant C' > 0 independent on ¢
one has

IAYA P e < CllQ|ze,  and  [AYIP|| 0 < OfQ 10 - (58)
The inequality (58) is satisfied by €2y and P by definition of V¢, _.
By possibly taking a smaller neighborhood of Py we may always assume that

/ IAVAP2dr < & < 1.
R

Step 3:The fact that [, |AY*P|*dx < &' <1 implies that [, |AYV*P|*dx < C [, |Q]*dx .
We write

1 1
P71A1/4P — §(P71A1/4P_ (P71A1/4P)t) + §(P71A1/4P+ (P71A1/4P)t)

= Asymm(P'AY*P) + Symm(P~1AY4P).
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We apply the estimate (12) and we get

|PAYVAP & AVAPT Py < CI AP
< C|P AP,

< CIAYAP| gz ([Symm(P~TAYEP) | 2 + || Asymm(P~ AYVP) | 2) .
Thus we get
1Symm(P~tAYIP)|| 12 < CE' ([|sym (P~ AYVEP)|| 2 + || Asymm (P~ AYVP)||2) .
If Ce’ < 1/2 then
|Symm(P~ AYVAP)|| 2 < C||Asymm(P~ AYAP)|| 2 = CQ 2

which ends the proof of Step 3.

Step 4. Take now Q € L* and [, |Q|*dx < e. Let Q € U? be such that Q — Q as
k — +o0 in L?. By arguing as in the proof of that V¢ is closed one gets that there exists
P € HY? satisfying (8)(i)-(ii). O

5 Euler Equation for Half~-Harmonic Maps into Mani-
folds

We consider a compact k& dimensional C? manifold without boundary N' C IR™. Let [Ty be
the orthogonal projection on N'. We also consider the Dirichlet energy (14).

The weak 1/2-harmonic maps are defined as critical points of the functional (14) with
respect to perturbation of the form Iy (u+t¢), where ¢ is an arbitrary compacted supported
smooth map from IR into IR™ .

Definition 5.1 We say that u € HY?(IR,N') is a weak 1/2-harmonic map if and only if,
for every maps ¢ € HY?(IR, IR™) N L>(IR, IR™) we have

(Ml + 16)), = 0. (59)

|

We introduce some notations. We denote by A(IR™) the exterior algebra (or Grassmann
Algebra) of IR™ and by the symbol A the exterior or wedge product. For every p =1,...,m,
A, (IR™) is the vector space of p-vectors.
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.....

is written as v = Y vre;y where I = {iy,...,4,} with 1 <43 < ... <4, <m , vy ==,
and €7 == ¢€; N\ ... N¢€, .

By the symbol L we denote the interior multiplicationL: A (IR™)x A (R™) — A\, ,(IR™)
defined as follows.

Let e =€, N.. . ANe€y,, €5 =€, A...\€j,, with ¢ > p. Then e;Le; = 0if I ¢ J, otherwise
esler = (—=1)Mex where € is a ¢ — p vector (with K U T = J) and M is the number of
pairs (4,7) € I x J with j > 1.

Finally by the symbol * we denote the Hodge-star operator, *: A (IR™) — A,,_ (IR™),
defined by 3 = (e; A ... A e,)L 3. For an introduction of the Grassmann Algebra we refer
the reader to the first Chapter of the book by Federer [6].

In the sequel we denote by PT and P respectively the tangent and the normal projection
to the manifold .

They verify the following properties: (PT)! = PT (PN)! = PN (namely they are sym-
metric operators), (P1)?2 = PT (PN)?2 = PN pT + PN =[d, PNPT = PTPN =0.

Weset e =€ A...ANepand v = €x 1 A ... N€,. Foravery z € N, e(z) and v(z) give the
orientation respectively of the tangent k-plane and the normal m — k-plane to T, N .

We observe that for every v € IR™ we have

Py = (=D« ((eLv)Av). (60)

PYy = (=)™ 'x(en(vLe)). (61)

We observe that PNand PT can be seen as matrices in H/2(IR) N L (IR) .
Next we write the Euler equation associated to the functional (14).

Proposition 5.1 All weak 1/2-harmonic maps w € H?(IR, N) satisfy in a weak sense the
following three equivalent equations:
i) the equation

/ (AY24) v dz = 0, (62)

or every v € H'2(IR, IR™) N L™®(IR, R™) with v € Ty N almost everywhere ;
(z)
ii) the equation

PTAY2y =0 inD', (63)
and
iii) the equation
AV PTAY4y) = T(PT u) — (AVAPT)AY4y . (64)
]
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The Euler Lagrange equation (64) can be considered together with by the following ”structure
equation” involving the normal projection of A4y .

Proposition 5.2 All maps in Hl/z(B,N) satisfy the following identity
AYVYR(PNAYA)) = R(S(PY,u)) — (AY*PV)(RAY*u). (65)

For the proofs of Proposition 5.1 and 5.2 we refer the reader to [4].

Next we see that by combining (64) and (65) we can obtain the new equation (16) for the
vector field v = (PTAY4u, R(PN A'Y*u)) whose right hand side contains an antisymmetric
potential.

We introduce the following matrices

(A1/4PT)PT +PTA1/4PT _ A1/4(PTPT)

W1 = 9 ) (66)
wy = (AYAPT)PN  PTAVAPN _ AVA(PTPN) | (67)
A1/4PT pT _ PTA1/4PT
w = ( ) ; (68)
2
and
(RA1/4PT)PT 4 PTA1/4<RA1/4PT) _ RA1/4(PTPT)
W3 = 9 ) (69)
wy = (RAYAPT)PN 1 PN(RAVAPT) — RAVA(PN PT), (70)
A1/4PT pr _ pT A1/4PT
wr = & ) (R ) (71)

2

We observe that Theorem 1.3 and Theorem 1.4 imply respectively that AY4(w;), AY4(w,)
and A'4(ws), A%(wy) are in the homogeneous Hardy Space H' (IR). Therefore wy, ws, ws, wy €
L*'(IR) . The matrices w and wg are antisymmetric.

Proof of Proposition 1.1. From Propositions 5.1 and 5.2 it follows that u satisfies in a
weak sense the equations (64) and (65).

The key point is to rewrite the terms (AY4PT)(AY*u) and (AY*PN)YR(AY*u).

e Re-writing of (AV4PT)Al/4y .

(A1/4PT)A1/4U — <A1/4PT)(PT<A1/4u) + PN<A1/4U))
(AYEPT) P (PT(AY ) + (AYAPT)PY) (PN (A ) .
Now we have
A1/4PT

(AYAPTYPT = ) +w + 5
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and

(A1/4PT)PN — (A1/4PT)PN + PTA1/4PN _ A1/4(PTPN) _ PTA1/4PN

wy + PTAVAPT (73)
AL/APT
= Wy +w —w-+ 5 .
where in (73) we use that AY4PN = —AV4PT  Thus

A1/4PT PTA1/4
( )(2 w) = w (PTAY4) + w(PTAY4y) (74)

AL/APTY (PN AL/A
( >(2 v) = (w1 4 wy)(PNAYA) — w(PNAY4y) (75)

= R(w + wr)R(PYAY* ) — R(w)R(PNAY4y)

+ F(—w+wy + ws, (PYAY4)) .

e Re-writing of (AY4PN)(RAY4u).
We have

(APY)RAVA) = (R(AVPN)(PT(AYu) + PY(AV )
+ F((R(AYAPN)), AV4)
We rewrite the terms (RAY4PN)PT(AY4y) and (RAYAPN)PN(AY4u) . We have

(RA1/4PN)PT — —<RA1/4PT)PT
(RA1/4PT)
2
(RAYVAPN)
= —wz3—wr+ 5
and
(RAVAPMYPN = —(RAYAPT)PN + PT(RAY*PN)

= —[(RAY*PT)PN + PT(RAY*PY) — RAV*(PYPT)]
+ PT(RAYAPYN)

(RA1/4PN)

= —W4— w3+ wWr+ 5
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Thus

A1/4PN PTA1/4

& 2) D= wg(PTAYA) — wr(PTAY ) (76)
A1/4PN PNA1/4

(R 2) U _ —w4(PNA1/4u) B w3(PNA1/4u) + wR(PNA1/4U) (77)

= R(—ws — wi)R(PVAV)

+ Rwr)R(PNAY4y)

+  Flwg — ws —wy, PNAYA)
By combining (74), (75), (76) and (77) we obtain

PTAY4y ~ & PTAY4y

oo Y wr PTAY4y,
wr —Rwr RPNAY4Yy )
where Q; and Q, are given by

& — —2F(—w + wy + wy, (PYAY4w)) + T(PT, u)
P 2F(R(AVAPN), R(AY*u)) — 2F (wr — ws — wy, PN (AY44) + R(S(PY, u))

w3 —,R,(CU?, — w4)

Q —9 ( —W1 —[R<W1 + w2) + (R(w) — WR)] )
2 = .
The matrix
o —W WR
=2 ( WR —RCUR )
is antisymmetric .

We observe that from the estimates on the operators F, T and S it follows that ; €
H~2(IR, R>) and

1200l vz < CUPM sy + 1P sz ey NIA | 2 (79)
On the other hand Q, € L*' (IR, Ma,,) and
19231y < CUPY oy + 1P ooy (50)

This concludes the proof of Proposition 1.1. O
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Proof of Theorem 1.7.

From Proposition 1.1 it follows that v = (PT(AY4y), R(PN(AY*u))) solves equation
(78) which is of the type (5) up to the terms € and Q, v. The important point here is that
the terms € and Qy v are not “dangerous” because of the key estimates (79) and (80).

Therefore the arguments are very similar to those of Theorem 1.1 and we give only a
sketch of proof.

We aim at obtaining that AY4u € L7 (IR), for all p > 1. To this purpose we take p > 0
such that

1201 2(B0.0)> 1P 11728009 1P 17230,y < €05

with g9 > 0 small enough. Let 2y € B(0, p/8) and r € (0, p/16). As in the case of equation
(5) we argue by duality and multiply both sides of equation (78) by ¢ = A~Y4(g,,), with
g < L2’1<R), ”gHLQ,l <1and g, = ﬂB(wo,Ta)g7 with 0 < a < 1/4.

It is enough to estimate the integral

fon(Snpnlyy ) o= )

(the other terms have already estimated in the proof of Theorem 1.1).
We observe that

|8 e 5 [T OTE REN@IDE| ol (52)
2,00
By combining Lemma A.5-A.10 and the estimate (82) we obtain
+oo
(81) S eollAul| 2 + !/ Z 27h/2”A1/4uHL2’°°(B($o72h+1r)\B(xo,thlr))

h=1

+oo

S eollvllzae + 0D 2720l L2 (Blao2h+ 1\ B 2i-1r)) -
h=1

Since v satisfies an estimate of the type (40), for  and gy small enough, we have

Sup [0]] L2 (B(zo.ryy < CT7,
z0€B(0,p/8),0<r<p/16

for some C' > 0 and 5 € (0,1/2).
By arguing as in Theorem 1.1 we deduce that v € Lj (IR), for all p > 1. Therefore
A4y e [P (IR), for all p > 1 as well.

loc

This implies that u € C2* for all 0 < a < 1, since VV;OQQ”’(R) — CPY(IR) if p > 2 (see

loc

for instance [2]). This concludes the proof of Theorem 1.7. O
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A Localization Estimates

The aim of this Appendix is to provide localization estimates for weak solutions to the
equations (32) and (78).
Forr >0, h € Z and zg € IR we set

Apzo(r) = B(xo, 2’”17’) \ B(xo, 2h’17’) and Aj . (r) = B(xo, 2hr) \ B(x, Qh’lr) )

thO

In the following two Lemmae we prove some estimates that will be often used in the
sequel.

In the Lemma A.1 we estimate the L' and HY/2 norms of A~Y/4¢ respectively in a ball
and in an annulus, where g € L9(IR), ¢ > 1 has compact support .

Lemma A.1 Let g € LY(IR), ¢ > 1 supp g C B(xg,ra), with zg € IR, a > 0. Then

a+2
1A gl Baonr S 72?2 gl Lo (83)

for all v > 0 and
ro(L 1
1A gl iy S 27200 T2 g (84)

Proof of Lemma A.1.
First of all we may assume without restriction that xy = 0.
1. Estimate of (83).
We have

I 172

[[ET

18" g 52510 9l

HLl(B(Owr)) HQHLI(B(o,m))
(yr) 2 (re) 7| g -

AR ZANRYAN

2. Estimate of (84).
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We have

(Y

h,O(T

4
)A Y 9HH1/2 Af (1)

1 1 2
B |t —sp? - dr | dtd
/%,O(T) /;L,O(T) ‘t - S|2 (/|1”|<rozg<$>< |$ - S|1/2 |$ — t|1/2) x) °

by Mean Value Theorem

1 1 2
<
N g(z) max( ’ )dx) dtds
/Ih,o(?’) /A/ho(r) </|I|<ra |ZL‘ — t|3/2 |l‘ . S|3/2
2/q
sf et ([ ) s
ho(r) AL o(r) o] <ra

— / —
< 2l g 2,

This concludes the proof of Lemma A.1. O

In the next Lemma we estimate the integral over a ball of the product of A4y with
v € L>®, supp v C Aj,(r) and A~Y4g with g € LI(IR), ¢ > 1, supp g C B(x,ra).

Lemma A.2 Let g € L(IR), ¢ > 1, supp g C B(zo,ra), with g € R, 0 < o < 1 and let
v € L** supp v C Apa,(r) with h > —1. Then for all & > 0 we have

/RA”vllB(mr)A Vigda < 27620y 2| g | agmy [0 240 00 - (85)

Proof of Lemma A.2. We assume without restriction that zo = 0. We have
[ (8740)@) (Laam A Vig)() da
R
by the Plancherel Theorem (86)

:/B]-"[(Al/‘lv)] (&) Fl(1,or) A~V g)](€)de

/ F ) @) (posnd™ g de
Now we observe that supp[v * (1psnA~Y4g)] C B(0,2"2r)\ B(0,2"2r) .
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Thus we have

(85) < |||§|_3/2||Loo(3c(o,zh—2r))||U*(ﬂB(o,sr)A_1/49)||Ll(R)

A

272202 0] 1,y () 1L B AT 9) 20

A\

2732512 ||v||L1(Ah,x0(T')) |a~14g) 1B 0.6r)

by (83)

< 27620072 gl oy 0l ey o0 -
This conclude the proof of Lemma A.2. O
1. Localization of the term N(Q,v) = AY4(Qv) — QAY*v + AY4Q v.
Lemma A.3 Let Q € H'2(IR) N L°°( ), QN 12wy < €0, v € LA(IR), g € L*'(IR), supp
g C B(zo,ra), withzg € R, 0 <a <1, 7> 0. Then we have
| NQu)aigds 5 gl ol (57)
R
+oo
+ o 2(1Ql g2y + 1@l e)llgllzza D 27 [0l p2oe (o) -
h=1

Proof of Lemma A.3. We suppose without restriction that zy = 0.
We consider a dyadic decomposition of the unity ¢; € C5°(IR) such that

supp(;) C Bare1,(0) \ By-1,(0), Y ;=1 (88)

We set x, 1= Zﬂw ©;.
We observe that the function A~4g € L=(IR) N H'/?(IR).
We take the scalar product of N(Q,v) with A='/4g and we integrate. We write

/ N(Q.0)A Vigdr = / N(Q, xo0)A"Vigd
R

(1)

/ ZN (Q, prv)A “Vigda .
R

k=1

J

@)
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To estimate (1) we use the fact that N(Q,v) € H~2(IR) and (34) holds.
(1) S 1Al -1/ | QU a2y 0] 2

S eollgllzrllvllzesor -

Next we spilt (2) in two parts:

o0

(2) = Z/ N(Q, prv)Lp,m A~ gda
k=171

J/

-~

®3)

+ Y [ M@y od s
ke

1 h=-1
(. 4
v~

(4)

We observe that in (3) and (4) we can exchange the integral with the infinite sum “3,%".
Indeed one can easily check that

n—-+o0o

lim /ZN(Q,@kv)Al/‘lgdx:O.
R p—p

(see also the arguments of Lemma A.3, Lemma A.4 and Corollary A.1 in [4]).

We estimate (3). We first observe that since (/4 and ¢, have disjoint supports, we
have

N(Q, oxv) L,/ A~ g = [AVH(Qpiw) — QAY*(010)] Lpo,ra) A7y
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We have
= Z/ [AYH(Qerv) — QA (1)) Lpop/a) A g dax
— JRr

by the Plancherel Theorem

=3 [ F[A@e0) — QA (o) (€) Fllbiarm A gl (€
k=1

~ Z/ F1 1/2 ()

[Q(orv) * (Lpor/9 A1 g) — (prv) * (QUp A~ g)] dE

by applying Lemma A.2

NE

S €172 || oo (Be (0,221

b
Il

1

22 k 1/2 QI zoel[vll 2200 Ay oo 19Nl 221 ()
k=1

5 a1/2||Q||L°°(B) ||g||L2,1(R) Z 2_k||v||L2,oo(Ak,O(r)) :
k=1

Next we split (4) as follows.

Z > /N Q, pr0) g (A gd

k=1 |k—h|<5

-~

(®)

Z Z /Nngkv IlA/ AV gdx .

k=1 [h=h|>5

~~

(6)
We estimate (5).
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B) S D D IN@e)la-1amlla A gl
k=1 |k—h|<5

by applying (34)

Z Z ”QHHl/Q(IR)|’90kUHL2’°°(B) HAAMQHHU?(A;L’O(T))

k=1 |k—h|<5

AN

by applying (84)

< " 21Ql e gl oy (Z 2"f/2||v||W<Ak,o<r>>) -
k=1

In order to estimate (6) we observe if [k — h| > 6 then v and 14, O(T)A_l/‘lg have disjoint

supports . Thus by arguing as in (3) we get

+o0o
6) < Ql<lgllzzam Y 27 F vl z2ee(an o)
k=1

“+oo
IR (o] P PR e (PR
k=1

This concludes the proof of Lemma A.3. O

Lemma A.4 Let Q € H'?(IR) N L®(IR), supp Q C B(0,p) for some p > 0, v € L*(IR),
zo € B(0,p/8), g € L*(IR), supp g C B(xg,ra), with , 0 <a<1,0<r < p/16.
Then we have

1/2
3 r
/B N(Q.v)A 1/4gdass(;) ol Qe o2 sry  (89)
+oo
a2 Qe gl (Z 2—’“2||v||L2,oo<Ah,m<r») -
h=1
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Proof of Lemma A.4. We write

J/

/ N(Q,0)A Vigde = / N(Q, xov)A Vi gda
R R

J/

™)
+ /N(Q,(l—xr)v)ﬁ‘l/4gdx,
R
®

where x, is defined as in Lemma A.3.

We denote by Q, = |B,(0)]* fBP(O) Q(y)dy = 0 and write Q = Eﬁil on(Q — Q) , with
supp(@n) C B(0,2"1p) \ B(0,2"1p), &, partition of unity.

We recall two key results obtained in [4]. The first one is a sort of Poincaré Inequality for
functions in H/ 2(IR) having compact support and the second one concerns with a geometric
localization property of the H*/2— norm on the real line .

Precisely from Lemma A.2 in [4] it follows that

16n(Q = Qp)llr < C2"pllQ g2y (90)

and from Lemma 4.1 in [4] one can deduce that

—+o0
> 27M280(@Q = Qo) e my SN Q2w o)
h=0

We estimate (7).
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400
(7) = /B NS 34(Q — Q) xot) (A Vig)di

h=-1

+o0
—23/‘ W(Q = @AY () A g 1+ AVY(5,(Q — Q) (xev) A Vigld

h=-1

by applying the Plancherel Theorem

= / FIAY (x,0)] FI-g(@ — Q,) A~V1g]

h=-1

+ FIAY (0n(Q — Q)] Fl(xpv) A~V gldg

-3 [F e

h=-1

[_(er) * (@h(@ - Qp)Ail/llg) + @h(@ - Qp) * (erAil/Zlg)] dSL’
S Z HEF2 ] Loe 5e0,21-2p
h=-1

| [—(er) * (Pn(Q — Qp)Afl/llg) + on(Q — Qp) * (XWA*MQ)} HLl(JR)

+o0
SO MET 2 e e 0,2n-20p) [IXev i ln(@ = Qo)L AT 4g] <] -

h=-1
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Now we apply (90) and (91) and we get:

+oo
(1) < D27 P ol e (0. 2" Pl o (@ — Qo) vz
h=-1

+00 1/2
_ T
< ol 3 272 (;) ollzse oo 12n(@ — @) v,

h=—1

1/2
.
S (5) lgllz2rm 1@l iz 1Vl 2o (B ooy -

By arguing as in (3) and (4) we get

+oo
(8) S 1Qlz<llgll 21 (zye'”? (Z 2"‘/2IIUIIL%w(Ah,xO(r))) : (92)
h=1

This concludes the proof of Lemma A.4. O

The localization of the operator S(Q,A~Y%v), with v € L?(IR) is similar to that of
N(Q,v) and we omit it.

2. Localization of a term of the type Av with A € L?>! and v € L?.

Lemma A.5 Let A € L*'(R), 7o € IR, r > 0, 0 < a < 1/4 and g € L*'(IR), supp
g C B(xg,ra). Then

/]I%AUA1/4ng < HA”LQJ”gHLQJ”UHLQ’w(B(xOﬂ")) <93)
—+00
+ &P Allzallgllzzr D 27 ol 2o 4y ) -
h=-1

Proof of Lemma A.5. We suppose again for simplicity that g = 0. We write

+oo
/AUA1/4gd:c = /Av IlB(OJ)Al/‘lgdijZ/ Avly A Vgda .
R JR h—o ” R '

v~ . 7

Now we observe that A™V4g = |z|7Y/2x g € L=(IR) since |z|7%/2 € L>*(IR) and g € L*>'(IR)
(see for instance [7]).Thus we have

(9) < [AA gl e Joll 2o 0.y
< Al z2a AT gl [[0] 22 (0.0

S ||A||L271||g||L2’1||U||L2’°°(B(O,r))-
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(10) ~ Z / F 172009 * (L, Av)de

+o0
S D MET Pl meo2r-in g * (g Av)|| 12
h=0
“+oo
S D27 lgl |1y Al
h=0
+o0
S Y2 2 a) gl e Al 0]l 2o ay )
h=0
+oo
S aPlgllzeallAllea Y272 0]l gy oy
h=0
This concludes the proof of Lemma A.5. O

3. Localization of a term of the type Qv with Q € L? and v € LY,q > 2.

Lemma A.6 Let Q € L*(IR, M,xm(IR) be such that supp 2 C B¢(0,p), v € LIY(IR), q > 2,
xo € B(0,p/8), g € LY (IR), supp g C B(zy,ra), with 0 < a < 1/4, 0 <r < p/16.
Then we have

1/q
o T
/JRQ“A Vgda < (E) 9| gl 1o 19| 2 0] o - (94)

Proof of Lemma A.6. We give the proof for the case ¢ > 2 (the case ¢ = 2 is similar and
even simpler). We use the fact that © and g have disjoint supports.

/QUA1/4gd:1: = /f Y2 (E) (g % Q) de
R

S =72 2 Hg*QvH 2
L1 7(36(0 p/4)) Lat2
—1/q
< o lgll ]l s,

r 1/q ,
< (;) o gl 12 2 e

This concludes the proof of Lemma A.6. O

Lemma A.7 Let Q € L*(IR, Myxm(IR)), v € LY(IR), ¢ > 2, 20 € R, g € LY (IR) and
r > 0. Then we have

/lR W pay,r/mo A gdz < gl o 19 22Vl oo 2) - (95)
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Proof of Lemma A.7. We observe that 1 < ¢’ < 2 and W'/27 (IR) — L%(ﬂ%). Thus we
29
have A~Y4g € Li—2(IR).

Moreover one has
q—2+1+1_1
2¢ 2 q

Thus by applying the generalized Holder inequality we get

/IR QL (eo,r/2v) A gde S 1|gll o 19U 22 0] a(Beo,r/2)
This concludes the proof of Lemma A.7. O

An analogous result of Lemma A.7 for ¢ = 2 still holds provided g € L*>!(IR). Indeed in
this case we use the fact that A=1/4g € L>.

Lemma A.8 Let Q € L*(IR, M,xm(IR)), v € L*(IR), ¢ > 2, 79 € R, g € L>'(IR) and
r > 0. Then we have

/QHB(mo,r/2>UA1/49dSU§ gl (|2l 22|Vl 2(Bzor/2)) - B (96)
R

The proof of Lemma A.8 is similar to that of Lemma A.7 and we omit it.

Lemma A.9 Let Q € L*(IR, Myum(IR), v € LI(IR), ¢ > 2, 7y € R, g € LY (IR), supp
g C B(xo,ra), with , 0 < a < 1/4, and r > 0.
Then we have

> /B Qlla,, oA gde S oD " 279 gl| |2 2|0 gy, o) (97)
0 h=0

Proof of Lemma A.9. We assume g = 0. We have

Z/ A, ROL 1/4gdx—2/ aa e 1/2 )g*Q]lA%’O(r)vda:

1/2
SN[ I 25 o son 19 % Lt g?l 2

h=0
N Z 274V g L B0ra)) 1920, vl 2,
h=0

S D27V (ra) gl o Q12 1]l acay o0
h=0

S a3 27 g o ]2 0l oy o -
h=0

38



This concludes the proof of Lemma A.9. O
4. Localization of the operator F(Q,v) := R(Q)R(v) — Qu.
Lemma A.10 Let Q € L*(IR) N L°°( ), 1@l 2(m) < €0, v € L*(IR), g € L*'(IR), supp

g C B(zo,ra), withzg € R, 0 < < 1, r > 0.
Then we have

/F(Q,U)A_l/“gdaf S collgllzzallvllzze s, o) (98)
R

—+00
+ a2 (1@l 2wy + QN p=)gllz21 D 272 0ll 2o (ay o) -
h=1

Proof of Lemma A.10. We assume xy = 0. We take the scalar product of F(Q,v) with
A~Y%g and we integrate. We get

/ F(Q.0)A Vigde = / F(Q, xo0)A P Agde
R R

N J/

(1)
+ / ZFQ orv) A gd
ka 1 )
(12)

To estimate (11) we use the fact that F(Q,v) € H Y2(IR) and

1F(Q, )l 2y S @l z2myllv] p2ee -
(1) < NA gl 1QN 2wy V]| 2. (B0
S gl 1@l 2wy vl 2 (B0,
<

eollgll 2 HUHLQ’O"(B(O,T)) .

Next we spilt (12) in two parts:

(12) = Z/F(Q>kav)]lB(O,r/4)A_1/4gdx
k=171 )
(13)
+ Z / Q PrU ]lA/ o(T)A 1/4 d
h=—1

k=1
.

4

(14)

39



Estimate of (13):

(13) =

12

AN

A

S

+o0

Z/ F(Q, orv) Lo, mA Y gda
=1 YR

+o0

Z/ R(Q)R(pxv) L g0, /m A~ *gdx
k=17 R

2/]}%}—1 {ﬁ] (©)[(erv) * (QUpor A~ g)] dé

+001

=1l 2o (Be (0.2~ 1rp |0k | 21 () | QL B0 ) A 4| L1 ()
= ¢

+oo
D 272 2 2 o o a4 o o) | Qoo 9 2

k=1
+oo

(ra) 211 Q= llglzea D 2720l 2o (gt
k=1

The estimate of (14) is analogous of (4) in the proof of Lemma A.4 and we omit it. O

Lemma A.11 Let Q € L*(IR) N L=(IR), supp Q C B(0,p) for some p > 0, v € L*(IR),
zo € B(0,p/8), g € L*'(IR), supp g C B(xo,ra), with 0 < a < 1/4, 0 <r < p/16.

Then we have

/ F(Q.v)A Yigde <
R

1/2
i
a2 4 (;) ] 1912 gl 2 ol 2w Bieamy (99)
+oo
Fa (1@l + Qe lglln 322 el
h=1

Proof of Lemma A.11. We just give a sketch of proof.
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We write

/ F(Qv)A™gdr = / F(Q, Xrv) Lp(ao.r/n A~ gda
R JIR

J/

(15)

+ / F(Qx0) a0 A~ gda
- ,

J/

(16)

+ /F(Q,(l—xr)v)ﬁ_l/‘lgdx-
R

J J

(17)

To estimate (15) we write Q@ = >, _ , ¢n(Q — Q,) with supp @, C B(0,2"p\ B(0,2"'p)
and ¢, partition of unity.

(15) = Z/BR(%(Q—Qp))R(xrv)ﬂB(mO,r/@A_l/A‘gdl“

h=-2

- X [ﬁ] (2)[20(Q = Q)] # RO ) Upteary A~ gld

h=-2

Sl e ae 020 [91(Q — @)1t R G0 2 oo i 1A g ey
h=-2

AN

A

1/2 oo
T _
||g||L2’1||R(X7"U)||L27°°(B(mo,r/4)) <;) Z 2 h/2||Q||L2(Ah,O(P))
h=-2

- 1/2
< (E) gl 2 lQ 21Vl 2o (B0,
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Now we write
+oo 400

1) = 3 3 [ Fawoy, od igds
R

h=—2 k=—2

+o0
= Y % [ Faiyg, oA il
R

h=—2 |k—h|<5

+oo
DI O WICT RS PR

h=—2 |k—h|>5

by arguing as in (5) and (6)

r 1/2
S gllzza Q22 [(;) +al/?

The estimate of (17) is analogous to (2) in the proof of Lemma A.3 and we omit it. O

[Vl £2.5 (B(ao,r) -

B Commutator Estimates

We consider the Littlewood-Paley decomposition of unity introduced in Section 2. For every
Jj € Z and f € S'(IR) we define the Littlewood-Paley projection operators P; and P<; by

Pif =v5f Pef = o5
Informally P; is a frequency projection to the annulus {2771 < [¢] < 27}, while P; is a

frequency projection to the ball {|¢| < 27}. We will set f; = P;f and f/ = P<;f.
We observe that f/ = >7 frand f =3 fi. (where the convergence is in S'(IR)) .

k=—o0 k=—o0
Given f,g € §'(IR) we can split the product in the following way
fg=1(f,9) +1(f, 9) + (f, 9), (100)
where

+oo +o00
m(f9) = D0 >, =21

—o00 k<j—4

+oo +o0o
Mo(fr9) = D 0 D o= gl

—00 k>j+4 —00

H3(fag) = ij Z 9k -

-0 [k—jl<4
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We observe that for every j we have
suppF[f/g;] € {2772 < |¢] < 2742

suppF[>_10 s fior] € {1€] < 2775}

The three pieces of the decomposition (100) are examples of paraproducts. Informally the
first paraproduct II; is an operator which allows high frequences of f (~ 27) multiplied by low
frequences of g (< 27) to produce high frequences in the output. The second paraproduct
[Ty multiplies low fequences of f with high frequences of g to produce high fequences in
the output. The third paraproduct II3 multiply high frequences of f with high frequences
of g to produce comparable or lower frequences in the output. For a presentation of these
paraproducts we refer to the reader for instance to the book [8]. The following two Lemmas
will be often used in the sequel. For the proof of it we refer the reader to [4].

Lemma B.1 For every f € S' we have

sup [f/| < M(f). O

j€z

In the sequel we will often use the following property: for every vector field X € WS’T(B)
with s < 0 we have

1o r/2 r/2
/ ( Z 22]‘5(Xj)2> dr :/ <Z X X, Z 22js> dx
R\ ;=" R\ ki j—4>k,j—4>L

r/2

2/ ZXk Z Xg 22(k+2)5 dx
B\

k—f|<2

by Cauchy-Schwarz Inequality

r/4 r/4
< / (ZQ”“X,?) (ZQ%SX,f) dx (101)
R\ 'k k

o0 r/2
[ (3 ) e it

j=—00
(see also Section 4.4.2 in [14], page 165).

Now we start with a series of preliminary Lemmas which will be crucial for the construc-
tion of the gauge P in the Section 4.
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Lemma B.2 Let 1 <7 <2, a € WY (IR) and b € H/?>(IR) N L®(IR). Then
labllyi/zr < Cllallyiaar (10l g1z + [16] o) -

Proof of Lemma B.2.
e Estimate of ||IT;(AY*(ab))| 1 -

HZM a5 < / (3 a6 2y 2da
R .
J
r/2
5/ sup |v/ 4" 22j|aj\2 dx
R J J
r/2

r/2
§/B|M(b)|7" <22j|%|2> dx < ||b||2oo/B<ZQj|aj|2> da
J J

S bl el .

e Estimate of |[TI,AY4(ab)| 1 .

|0 AV @40 |5 = sup / S i A,
J J

Iall, <1 Jm

1/2 1/2
< sup /sup|aj 4 271b;|? |h;| dx
il <1 B ] Z zj:

1/2 1/2
an [ @) (S2nr) (Sm) o
HhH ’<1 j j

by the generalized Holder Inequality: L 4 4 + 2 =1

S ol llallyier -

e Estimate of ||II5(AY*(ab)||- .
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HZA”“ a;b)|l -
~ sup /Z > AV, hkdaz+/ ZA1/4ab YW da

”hIILr/Sl j ‘k _]|<3

= sup /Z Z (a;b; A/hdx+/2a] VAYARI A dx
HhHLO"/Sl j |k—j|<3

e 2)

We estimate the term (2).

1/2 1/2
(2) S bllsg, /]R (Z 21‘A1/4hj4‘2> (Z 2]’5@) dx
j j

r'/2 1/ r/2 yr
< |lbll / S o AVAE ) da / S 2| da
B\ B\
by applying (101) to AY*h
S bllsy, Ml e llallien -
The term (1s) is estimated in a similar way. Thus we get
128 bl S ol
This concludes the proof of Lemma B.2. O

Lemma B.3 Let1 <r <2<gq,a€ WY (IR) and b € WY>Y(IR) and t = #(g_r) . Then

1AY4(ab) — (A )bl ey < Clalli ey Il 20 -

Proof of Lemma B.3.
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e Estimate of ||TI;(AY*(ab))| 1t .

t/2

||ZA1/4 J— 4b HLt N/ <223|a] 4|2|b |2> dr

t/2
< / sup |7 (} j2f|bj\2)
R J :

j
1—t t/q
t q .
< (/ M(a)qqtdx) / O 27(by|*)*d
R R
< Ml e 18050 = Nl 100 2y -
In the above expression we use the fact that % = QZT’"T .

e Estimate of ||IL,((AY*a)b)| 1 .

| Z(A1/4aj‘4)bj||2t
j
‘ t/2
< / (supw/?ml/‘*ajﬂ) (ZlebjI2> da
t/2 t/2
< / <Z2J’|A1/4aj4\2> <22j|bj|2> dx
R\ j

ta/2(q—t)\ 14/ q/2
/ <Z 2_j|A1/4aj_4|2> (Z 2J‘|bj|2> dx
R\ j

allprasa—e [0l s20 S @l 101 e -

t/q

S

e Estimate of ||TIs(AY*(ab))| 1 .
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I Z AV (a;b;

sup
IAll <1

V=

S sup

”h”Lt/Sl j Ij k“<4

/ AYRY " abide
R j

/ >N (A h)agb, da;+/ Z(Al/‘*hﬂ Ya,b;dx

J/

'

®3)

We estimate the term (4).

-~

(4)

(4) < / sup (22| AVARI=)) 3 9720y b |da
R J

J

() ()
L

t//2 1/t

5 2~ jA1/4h] 42
[z

t/2g—t) T
S Al e /(Z\aﬂz) dx
LA
SRl e llalltq/q—el 1Dl w2

S 1Pl e llallwrrze (16l -

The estimate of (3) is similar.
e Estimate of ||II3((AY4a)b)| ¢ .
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(Z 27|b; |2> " dz

¢/27 Mt
zw (zzﬂw)
J

q/2
/ > Y| da
R\

1/q




HZ (AY4a;)b,) L < /R |3 AVig )
J

t/2 t/2
< / <Zz—j|&/4aj|2> (Zzﬁm?) dz
AN j

alltgjq-t10ll5y1r20 S Nl e [1Blpa/2a

e Estimate of ||IIy(AY4(ab) — (AY%a)b)||1: .

S

I Z(A1/4(ab) — (AY1a))|[]| (102)

— sup / 3" I AY (@b — (A ay)b 4 da

Il o<1 Jm

= sup / > V(A hy)a; — hi(AV*a;)]da

Il o<t J R

- sw [ S ()| FIRLEFils(n = Ol = I = € Jde)ay

1wl <1 J
Now we observe that in (102) we have || < 2973 and 2972 < |¢| < 2772, Thus \§| < %
Hence !
€12 = by — €12 =l = 1= 2 (103)
- |s|1/22[ -

_ / Nk
- m”Zk,(é)H.

1
We may suppose that >-° % (f)kﬂ is convergent if |§| < 3 otherwise one may consider a

different Littlewood-Paley decomposition by replacing the exponent j — 4 with j — s, s > 0
large enough. We introduce the following notation: for every k > 0 we set

Sig = F e tVIE 2 Fg].
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We note that if g € LY then Syg € W1/t
We have

(102) = sup E' / Fv

IR, <1925

FIhy)(n) Flas)(€ - n)[\n\1/2<§>”11dn
AL Haet

[e.e]

— o 32 / EFY ) ()

|
Ihl, <1 4= ¢!

[ ) Fa € - i)

/Z > VY [(Sehw)ag) (z)d

IIhIILu<1z 0 Jlk—jl<3
/Z Z V“‘lb] 1[(Sehr)ay)|(z)dx
|h|| t’<1 ‘= 0 i k—4l<3
< /Z ~(E /205 g4 z+1/2)j(5£hj)aj)](:c)d:c
IIhII t’<1 = 0

< sup Z [ sl i)
R

Il e <17y

1/2

1/2
(Z |aj|2) (Z 22““/2’]'|V”1b74|2) da
J J
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Rl e <17

1/2
< swp Z oy 2@/ <222(6+1/2)j|56hj‘2>
i

1/2

1/2
(Z ‘aj|2> (Z 22(Z+1/2)j|vf+lbj4|2> dr
J J

< swp | / (3 27| AVp )12y
R =
J

1Al o <1
qt/2(q—t) a/2] 14
o, [ (X wr
A v

J

q—t/qt

S llallparsa=cl[bllwrrza S llallwzr [0llnr/za -

We observe that ) ;7 %2~ ! < 400 since we have supposed that Y~ 07 x is convergent for
|z| < 1/2. This concludes the proof of Lemma B.3. O

Lemma B.4 Leta € L*(IR), b € WY?4(IR), 1 < ¢ < +oo. Then
1A (ab) — (AY )bl oy < Cllbllvin gy lall =y

Proof of Lemma B.4.
e Estimate of ||IT;,(AY*(ab))|%, .

1> AV (@ b))lI%
J

q/2

12

JROSEIE
"\
<

~ ||a||Loo||b||W1/2q'
e Estimate of ||II;((AY4a)b)|4, .

||Z(A1/4aj_4)bj||qm5/]R<Z|A1/4aj_4|2|bj|2>
j j

q/2

q/2

SSup||2‘j/2|A1/4aj_4II%oo/ (E 2j|bjl2> dx
. R pa
J

J

S 0l 2 llaly, o < NlallzoollBl5n /2

20



e Estimate of ||II5(AY4(ab))||za .

1> AY*(ab)|lze = sup /]}%(A1/4h)zajbjdﬂf
j

1Al <1 ;

= o / ) (A m)asbida+ / Z(A1/4hj_4)ajbjdx
ra' <1 J o k—j]<4

(1) 2)

J/

We estimate (2):

(2) S llellsy, . da

2 1/2
>_ 2l
J

Z 27j‘A1/4hj74‘2
Rl

g/2\ V7 q/2\ 1/

> 29|
R

S llellsg,

Z 2—j|A1/4hj—4|2
R

all e B2 -

ooooN|

S [1bllwrzallall 5

The estimate of (1) is similar.
e Estimate of ||II5((AY*a)b)|| L. .

|]ZA1/4ajijLq: sup / AY4a;bdx

1Al <1

— sup /Z > I A1/4a]bd:p+/2hj HAY4a,)bdx

IR <1 -
Il ” q’ J o |k—jl<4

We estimate the last term [, 3. hi=4AY4a;b;da.
To this purpose we show that Y. AV4(h/~*b;) € H' and the conclusion follows from the

o1



embedding H'?(IR) — BMO(IR) . We have

/2

”ZA1/4 J 4b H?—ll N/ (ZQ]VL] 4b ‘2> dr

1/2

< / W (Y2
R j
A 1/q ‘ ) 1/a
< sup|hﬂ-4|q/) JOSEIGIE
(/= (2,

S Wl o 1ol -

e Estimate of ||IIy(AY4(ab) — (AY*a)b)]|La -
T (A (ab) — (AY*a)b)]| o

~  sup /Zh (AY4(a;07) — Aa; i/ ~1)dx

Il <1 Jm

~ sup /ij_A‘(Al/A‘(hj)aj—thaj)d:p

Il <t Jm

sup /Zf ) | FIBLE)Flalstn = 061 = g — 1)

Il o<1 R

by arguing as in (102)

S sup |allsg, 0ollwrzallAll Lo

]l o <1

S llallze16llyw1/2.0

This concludes the proof of Lemma B.4. O

In the next Theorem we prove an estimate for the dual of the operator F' introduced in
(19). It is defined as follows: given Q € L?(IR), v € H'/?(IR) we have

F*(Q,v) = AV (Qu) — AV*R(R(Q)v).
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Lemma B.5 Let Q € L*(IR), v € H'/?(IR). Then

IAYH(Qu) = AV R(R(Q)0)lla S 1@ z2llv] 1o - (104)

Proof of Lemma B.5.
Estimate of IT,(AY4(Q,v)).

too 1/2
T (AYH(Q,v)) e = /B<Z 2i(Qi‘4)2(vi)2> da (105)

1=—00

< /B M(Q)) <Z 2i<v@->2> du

1=—00

S l@Qllzallvll e

The estimate of II,(AY4*R((RQ)v)) is analogous to (105).
Estimate of II3(AY4(Q,v)).

i+6
M@, = s [ (Qui) [AV0 4 ST AR da (106)
7 Pllpg, <1/ R t=h—5
S s [l [ 2PQulds
Ihlsg, <1 =~ Jr

1/2 1/2
< ( / Zz@@f@») ( / ZQ?daf) = @ lell =
R i R 7

The estimate of II3(AY4*R((RQ)v)) is analogous to (106).
Estimate of ||TII;(AY4(Qu) — A1/4R((RQ)U))HB%I(]R) .
We show that
ITL(AY4(Qu) — AVIR((RQ)v))ll s, () = 0.

23



We have
[T (AY*(Qu) — A1/473(7%2)“))||Bg{1(1pz)

= / ZA”“W 1) — AVIR((RQ;)v )] hyda

IIhIIBo

=  sup / D VTHQAY h; — (RQ;)RAY hy)de
R

It o<1 /R

_ / vaﬂ “F(Q,AV4h, — (RQ,)RAY*h,)d¢

||h||Bo
/vaf‘*/fcgj A1/4h](1+—§ T ydn =0
||h||Bo Il 1€ —nl
This concludes the proof of Lemma B.5. O
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