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Abstract

In this paper we consider critical points of the following nonlocal energy

Ln(u) =

∫

IRn

|(−∆)n/4u(x)|2dx , (1)

where u ∈ Ḣn/2(IRn,N ) N ⊂ IRm is a compact k dimensional smooth manifold
without boundary and n > 1 is an odd integer. Such critical points are called
n/2-harmonic maps into N . We prove that (−∆)n/4u ∈ Lploc(IR

n) for every p ≥ 1

and thus u ∈ C0,α
loc (IR

n) , for every 0 < α < 1 . The local Hölder continuity of n/2-
harmonic maps is based on regularity results obtained in [4] for nonlocal Schrödinger
systems with an antisymmetric potential and on some new 3-terms commutators

estimates.
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1 Introduction

In the paper [6] the authors considered 1/2-harmonic maps in IR with values in a k-
dimensional sub-manifold N ⊂ IRm (m ≥ 1), which is smooth, compact and without
boundary. We recall that 1/2-harmonic maps are functions u in the space Ḣ1/2(IR,N ) =
{u ∈ Ḣ1/2(IR, IRm) : u(x) ∈ N , a.e, } , which are critical points for perturbation of the
type ΠN

N (u+ tϕ), (ϕ ∈ C∞
c and ΠN

N is the normal projection on N ) of the functional

L1(u) =

∫

IR

|(−∆)1/4u(x)|2dx , (2)

(see Definition 1.1 in [5]) . The operator (−∆)1/4 on IR is defined by means of the Fourier
transform as follows

̂(−∆)1/4u = |ξ|1/2û ,

(given a function f , both f̂ and F [f ] denote the Fourier transform of f).
The Lagrangian (2) is invariant with respect to the Möbius group and it satisfies the

following identity

∫

IR

|(−∆)1/4u(x)|2dx = inf

{∫

IR2
+

|∇ũ|2dx : ũ ∈ W 1,2(IR2
+, IR

m), trace ũ = u

}
.

The Euler Lagrange equation associated to the nonlinear problem (2) can be written
as follows :

(−∆)1/2u ∧ ν(u) = 0 in D′(IR) , (3)

where ν(z) is the Gauss Map at z ∈ N taking values into the grassmannian G̃rm−k(IR
m)

of oriented m − k planes in IRm, which to every point z ∈ N assigns the unit m − k
vector defining the oriented normal m − k−plane to TzN . The C0,α

loc regularity of 1/2
harmonic maps was deduced from a key result obtained in [6] concerning with nonlocal
linear Schrödinger system in IR with an antisymmetric potential of the type:

∀i = 1 · · ·m (−∆)1/4vi =
m∑

j=1

Ωij v
j , (4)

where v = (v1, · · · , vm) ∈ L2(IR, IRm) and Ω = (Ωji )i,j=1···m ∈ L2(IR, so(m)) is an L2 maps
from IR into the space so(m) of m×m antisymmetric matrices.

It is natural to extend the above mentioned results to n/2 harmonic maps in IRn, with
values in a k-dimensional sub-manifold N ⊂ IRm, where m ≥ 1 and n = 2p + 1 is an
odd integer. By analogy with the case n = 1, n/2 harmonic maps are functions u in the
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space Ḣn/2(IRn,N ) = {u ∈ Ḣn/2(IRn, IRm) : u(x) ∈ N , a.e, } , which are critical points
for perturbation of the type ΠN

N (u+ tϕ), (ϕ ∈ C∞
c (IRn, IRm)) of the functional

Ln(u) =

∫

IRn

|(−∆)n/4u(x)|2dx . (5)

The Euler Lagrange equation associated to the non linear problem (5) can be written
as follows :

(−∆)n/2u ∧ ν(u) = 0 in D′(IRn) . (6)

We first mention that the case of 1/2−harmonic maps into the circle S1 might appear
for instance in the asymptotic of equations in phase-field theory for fractional reaction-
diffusion such as

ǫ2 (−∆)1/2u+ u(1− |u|2) = 0, in IR

where u is a complex valued ”wave function”.
Moreover variational problems of the form (5) appear as simplified models for renor-

malized energy in general relativity, (see [1]) .
There are also some strong geometric motivations in studying n/2- harmonic maps

in odd dimension n ≥ 1 in relation with the so-called free boundary sub-manifolds and
optimization problems of eigenvalues. This is the subject of a forthcoming paper [7] .

As it has been already pointed out in [5, 6], the Euler Lagrange in the form (6) is
hiding fundamental properties such as for instance its elliptic nature and it is difficult to
use it directly for solving problems related to regularity and compactness. One of the
first task is then to rewrite it in a form that will make some of its analysis features more
apparent. This is the purpose of the next proposition. Before stating it we need some
additional notations .

Denote by P T (z) and PN(z) the projections from IRm to the tangent space TzN and
to the normal space NzN to N at z ∈ N respectively . For u ∈ Ḣn/2(IRn,N ) we denote
simply by P T and PN the compositions P T ◦ u and PN ◦ u. Under the assumption that
N is smooth, P T ◦ u and PN ◦ u are matrix valued maps in Ḣn/2(IRn,Mm(IR

n)). We will
prove the following crucial formulation of the n/2-harmonic map equation.

Proposition 1.1 Let u ∈ Ḣn/2(IRn,N ) be a weak n/2-harmonic map. Then the following
equation holds

(−∆)n/4v = Ω v + Ω̃1 v + Ω̃2 (7)

where v ∈ L2(IRn, IR2m) and Ω ∈ L2(IRn, so(2m)) are given respectively by

v :=

(
P T (−∆)n/4u
PN(−∆)n/4u

)
and Ω = 2




−ω ω

ω −ω


 ,
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the map ω is in L2(IRn, so(m)) and given by

ω =
(−∆)n/4P TP T − P T (−∆)n/4P T

2
.

Finally Ω̃1 = Ω̃1(P
T , PN , (−∆)n/4u) is in L(2,1)(IRn,M2m(IR

n)) , Ω̃2 = Ω̃2(P
T , PN) is in

Ẇ−n/2,(2,∞)(IRn, IR2m), and satisfy

‖Ω̃1‖L(2,1)(IRn) ≤ C(‖PN‖2
Ḣn/2(IRn)

+ ‖P T‖2
Ḣn/2(IRn)

) ; (8)

‖Ω̃2‖Ẇ−n/2,(2,∞)(IRn) ≤ C(‖PN‖Ḣn/2(IRn) + ‖P T‖Ḣn/2(IRn))‖(−∆)n/4u‖L(2,∞)(IRn) . ✷ (9)

The explicit formulations of Ω̃1 and Ω̃2 in Proposition 1.1 are given in Section 3. The
control on Ω̃1 and Ω̃2 is a consequence of regularity by compensation results on some
operators that we now introduce.

Given Q ∈ S ′(IRn,Mℓ×m(IR
n)) ℓ ≥ 0(1) and u ∈ S ′(IRn, IRm), let us define the operator

Tn as follows.

Tn(Q, u) = (−∆)n/4[Q ((−∆)n/4u)]−Q(−∆)n/2u+ (−∆)n/4Q (−∆)n/4u . (10)

We prove the following commutator estimate.

Theorem 1.1 Let u ∈ Ẇ n/2,(2,∞)(IRn), Q ∈ Ḣn/2(IRn). Then Tn(Q, u) ∈ Ḣ−n/2(IRn)
and

||Tn(Q, u)||Ḣ−n/2(IRn) ≤ C||Q||Ḣn/2(IRn)||(−∆)n/4u||L(2,∞)(IRn) . ✷ (11)

Theorem 1.1 is a straightforward consequence of the following estimate for the dual op-
erator of Tn defined by

T ∗
n(Q, u) = (−∆)n/4[((−∆)n/4Q) u]− (−∆)n/2[Qu] + (−∆)n/4[Q ((−∆)n/4u)] . (12)

Theorem 1.2 Let u,Q ∈ Ḣn/2(IRn). Then T ∗
n(Q, u) ∈ W−n/2,(2,1)(IRn) , and

||T ∗
n(Q, u)||Ẇ−n/2,(2,1)(IRn) ≤ C‖Q‖Ḣn/2(IRn)‖u‖Ḣn/2(IRn) . ✷ (13)

We recall that the spaces W n/2,(2,∞)(IRn) and W−n/2,(2,1)(IRn) are defined as

Ẇ n/2,(2,∞)(IRn) := {f ∈ S ′ : F−1[|ξ|nF [v]] ∈ L(2,∞)(IRn)} ;

Ẇ−n/2,(2,1)(IRn) := {f ∈ S ′ : F−1[|ξ|−nF [v]] ∈ L(2,1)(IRn)} .

Moreover Ẇ n/2,(2,∞)(IRn) is the dual of Ẇ−n/2,(2,1)(IRn). We refer the reader to Section
2 for the definition of Lorentz spaces L(p,q), 1 ≤ p, q ≤ +∞ and of the fractional Sobolev
spaces .

(1)Mℓ×m(IRn) denotes, as usual, the space of ℓ×m real matrices.
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Theorems 1.1 and 1.2 correspond respectively to Theorem 1.2 and Theorem 1.4 in [5]
for n = 1. Unlike the case n = 1, here we are not able to show that T ∗

n is the Hardy space
H1(IRn) but it is in the bigger space Ẇ−n/2,(2,1)(IRn), which is still enough in order to get
our regularity results.

The main result of this paper is the following

Theorem 1.3 Let N be a smooth compact sub-manifold of IRm without boundary. Let
u ∈ Ḣn/2(IRn,N ) be a weak n/2−harmonic map into N , then u ∈ C0,α

loc (IR
n,N ) , for every

0 < α < 1 . ✷

Finally a classical ”elliptic type” bootstrap argument leads to the following result (see
[4] for the details of this argument).

Theorem 1.4 Let N be a smooth compact submanifold of IRm without boundary. Let
u ∈ Ḣn/2(IRn,N ) be a weak n/2−harmonic map into N , then u is C∞(IRn) . ✷

We mention that Theorem 1.3 is deduced from Proposition 1.1 and a slight perturbation
of the following result which concerns the sub-criticality of linear non-local Schrödinger
systems . The proof of this result is given in [4] and it follows the same arguments with
some suitable changes of the proof of Theorem 1.1 in [6] in dimenion n = 1 .

Theorem 1.5 Let Ω ∈ L2(IRn, so(m)) and v ∈ L2(IRn) be a weak solution of

(−∆)n/4v = Ω v . (14)

Then v ∈ Lploc(IR
n) for every 1 ≤ p < +∞.

As it was already observed in [6], the fact that Ω is antisymmetric plays a crucial role in
order to apply a suitable gauge transformation and rewrite the equation (14) with a more
regular right hand side .

Next we would like to underline the difference and the novelty with respect to the case
n = 1 .

First of all the proof of Theorem 1.2 is not a mere extension of Theorem 1.4 in [6]. The
fact that we are dealing with the dimension n > 1 requires a different analysis when we
split the operator T ∗

n in the so-called para-products . In particular we have to introduce
in addition the operators (57) and (58) and to estimate them in a suitable way (see
Proposition A.1 in the Appendix A). The fact the we need these two new operators will
be evident in the proof of Theorem 1.2 .

Moreover we obseve that in the case of n = 1 the pseudo-differential operators ∇ and
(−∆)1/2 are of the same orders and this permits us to write the equations for P T (−∆)1/4u
and PN(−∆)1/4u in a similar way (see Section 5 in [6]). More precisely P T (−∆)1/4u and
PN(−∆)1/4u satisfy

(−∆)1/4(P T (−∆)1/4u) = T1(P
T , u)− [(−∆)1/4P T ] [(−∆)1/4u] , (15)
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and
(−∆)1/4R[PN(−∆)1/4u)] = S1(P

N , u)− [(−∆)1/4PN ]R[(−∆)1/4u] , (16)

where R is the Fourier multiplier of symbol σ(ξ) = i ξ|ξ| and for Q, u ∈ S ′(IRn)

S1(Q, u) := (−∆)1/4[Q(−∆)1/4u]−R[Q∇u] + [(−∆)1/4Q]R[(−∆)1/4u] .

To write down (15) and (16) we use respectively the fact that P T (−∆)1/2u = 0 and
PN∇u = 0 . In the case n > 1, ∇ and (−∆)n/2 are pseudo-differential operators of order
respectively 1 and n. The equation for P T (−∆)n/4u is similar to equation (15), with T1
replaced by Tn. On the contrary we cannot replace the equation (16) by an equation of
the form

(−∆)n/4R[PN(−∆)n/4u)] = Sn(P
N , u)− [(−∆)n/4PN ]R(−∆)n/4u] , (17)

where for Q, u ∈ S ′(IRn)

Sn(Q, u) := (−∆)1/4[Q(−∆)n/4u]−R(−∆)
n−1
2 [Q∇u] + [(−∆)n/4Q]R[(−∆)n/4u] .

Actually even if Sn seems the natural extension of S1, it does not satisfy the same regu-
larity estimates as S1, (see [5]) .

Therefore we have to find a different formulation of the structure equation which still
satisfies good estimates .

In the case of n > 1, the structure equation becomes

(−∆)n/4(PN(−∆)n/4u) = ((−∆)n/4R̄)f(PN , u) . (18)

where
f(PN , u) := R(PN(−∆)n/4u)− (−∆)

n
4
− 1

2 (PN∇u) (19)

and R̄ is the Fourier multiplier of symbol σ(ξ) = −i ξ|ξ| (i.e. the conjugate of R) . We

show that the right hand side of equation (18) is in Ẇ−n/2,(2,∞)(IRn) and

‖((−∆)n/4R̄)f(PN , u)‖Ẇ−n/2,(2,∞)(IRn) . ‖PN‖Ḣn/2‖(−∆)n/4u‖L(2,∞) . (20)

The estimate (20) is not straightforward, but we need to apply suitable interpolation
arguments .

We conclude the present Section by recalling existing results in the literature on reg-
ularity of critical points of nonlocal Lagrangians and we refer the reader to [13] and [14]
for a complete overview of analogous results in the local case.

The regularity of 1/2-harmonic maps with values into a sphere has benn first inves-
tigated in [5] where new “three terms commutators” estimates have been obtained by
using the technique of paraproducts. Analogous results have been extended in [6] to
1/2-harmonic maps with values into general submanifolds.
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In [12] the author considers critical points to the functional that assigns to any u ∈
Ḣ1/2(IR,N ) the minimal Dirichlet energy among all possible extensions in N , while in the
papers [5, 6] the classical Ḣ1/2 Lagrangian corresponds to the minimal Dirichlet energy
among all possible extensions in IRm. Hence the approach in [12] consists in working
with an intrinsic version of H1/2−energy instead of an extrinsic one. The drawback of
considering the intrinsic energy is that the Euler Lagrange equation is almost impossible
to write explicitly and is then implicit . However the intrinsic version of the 1/2−harmonic
map is more closely related to the existing regularity theory of Dirichlet Energy minimizing
maps into N . Finally the regularity of n/2 harmonic maps in odd dimension n > 1 with
values into a sphere has been recently investigated by Schikorra [16] . In this paper the
author extends the results obtained in [5] by using an approach based on compensation
arguments introduced by Tartar [17], moreover the fact that the map takes values on the
sphere plays a crucial role in writing down the structure equation .

The paper is organized as follows.
- In Section 2 we recall some basic definitions and notations.
- In Section 3 we derive the Euler- Lagrangian equation (7) associated to the energy

(5) and we prove Theorem 1.3.
- In Appendix A we prove the commutator estimates that are used in Section 3.

2 Preliminaries: function spaces and the fractional

Laplacian

In this Section we introduce some notations and definitions that are used in the paper.
For n ≥ 1, we denote respectively by S(IRn) and S ′(IRn) the spaces of Schwartz

functions and tempered distributions. Moreover given a function v we will denote either
by v̂ or by F [v] the Fourier Transform of v :

v̂(ξ) = F [v](ξ) =

∫

IRn

v(x)e−i〈ξ,x〉 dx .

Throughout the paper we use the convention that x, y denote variables in the space and
ξ, ζ the variables in the phase .

We recall the definition of fractional Sobolev space (see for instance [18]).

Definition 2.1 For a real s ≥ 0,

Hs(IRn) =
{
v ∈ L2(IRn) : |ξ|sF [v] ∈ L2(IRn)

}
, .

For a real s < 0,

Hs(IRn) =
{
v ∈ S ′(IRn) : (1 + |ξ|2)s/2F [v] ∈ L2(IRn)

}
.

✷
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It is known that H−s(IRn) is the dual of Hs(IRn) .
For a submanifold N of IRm we can define

Hs(IRn,N ) = {u ∈ Hs(IRn, IRm) : u(x) ∈ N , a.e.} .

Given q > 1 and s ∈ IR we also set

W s,q(IRn) := {v ∈ S ′(IRn) : F−1[(1 + |ξ|2)s/2F [v]] ∈ Lq(IRn)}

and
Ẇ s,q(IRn) := {v ∈ S ′(IRn) : F−1[|ξ|sF [v]] ∈ Lq(IRn)} .

We shall make use of the Littlewood-Paley dyadic decomposition of unity that we recall
here. Such a decomposition can be obtained as follows. Let φ(ξ) be a radial Schwartz
function supported in {ξ ∈ IRn : |ξ| ≤ 2}, which is equal to 1 in {ξ ∈ IRn : |ξ| ≤ 1} . Let
ψ(ξ) be the function given by

ψ(ξ) := φ(ξ)− φ(2ξ) .

ψ is then a “bump function” supported in the annulus {ξ ∈ IRn : 1/2 ≤ |ξ| ≤ 2} .

Let ψ0 = φ, ψj(ξ) = ψ(2−jξ) for j 6= 0 . The functions ψj , for j ∈ ZZ, are supported in
{ξ ∈ IRn : 2j−1 ≤ |ξ| ≤ 2j+1} and realize a dyadic decomposition of the unity :

∑

j∈ZZ

ψj(x) = 1 .

We denote further

φj(ξ) :=

j∑

k=−∞

ψk(ξ) .

The function φj is supported on {ξ, |ξ| ≤ 2j+1}.
We recall the definition of the homogeneous Besov spaces Ḃs

p,q(IR
n) and homogeneous

Triebel-Lizorkin spaces Ḟ s
p,q(IR

n) in terms of the above dyadic decomposition (see e.g
[11, 15]) .

Definition 2.2 Let s ∈ IR, 0 < p, q ≤ ∞ . For f ∈ S ′(IRn) we set

‖u‖Ḃs
p,q(IR

n) =

(
∞∑

j=−∞

2jsq‖F−1[ψjF [u]]‖qLp(IRn)

)1/q

if q <∞

‖u‖Ḃs
p,q(IR

n) = sup
j∈ZZ

2js‖F−1[ψjF [u]]‖Lp(IRn) if q = ∞

(21)
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When p, q <∞ we also set

‖u‖Ḟ s
p,q(IR

n) =

∥∥∥∥∥∥

(
∞∑

j=−∞

2jsq|F−1[ψjF [u]]|q

)1/q
∥∥∥∥∥∥
Lp

.

✷

The space of all tempered distributions u for which the quantity ‖u‖Ḃs
p,q(IR

n) is finite is

called the homogeneous Besov space with indices s, p, q and it is denoted by Ḃs
p,q(IR

n).
The space of all tempered distributions f for which the quantity ‖f‖Ḟ s

p,q(IR
n) is finite is

called the homogeneous Triebel-Lizorkin space with indices s, p, q and it is denoted by
Ḟ s
p,q(IR

n) . A classical result says (2) that Ẇ s,q(IRn) = Ḃs
q,2(IR

n) = Ḟ s
q,2(IR

n) .
Finally we denote H1(IRn) the homogeneous Hardy Space in IRn. A less classical

results (3) asserts that H1(IRn) ≃ Ḟ 0
2,1 thus we have

‖u‖H1(IRn) ≃

∫

IRn

(∑

j

|F−1[ψjF [u]]|2

)1/2

dx .

We recall that
Ḣn/2(IRn) →֒ BMO(IRn) →֒ Ḃ0

∞,∞(IRn) , (22)

where BMO(IRn) is the space of bounded mean oscillation dual to H1(IRn) (see for
instance [15], page 31).

The s-fractional Laplacian of a function u : IRn → IR is defined as a pseudo differential
operator of symbol |ξ|2s :

̂(−∆)su(ξ) = |ξ|2sû(ξ) . (23)

Finally we introduce the definition of Lorentz spaces (see for instance [10] for a complete
presentation of such spaces). For 1 ≤ p < +∞, 1 ≤ q ≤ +∞, the Lorentz space L(p,q)(IRn)
is the set of measurable functions satisfying





∫ +∞

0
(t1/pf ∗(t))q dt

t
< +∞, if q <∞, p < +∞

supt>0 t
1/pf ∗(t) <∞ if q = ∞, p <∞ ,

where f ∗ is the decreasing rearrangement of |f | .
We observe that Lp,∞(IRn) corresponds to the weak Lp space. Moreover for 1 < p <

+∞, 1 ≤ q ≤ ∞, the space L( p
p−1

, q
q−1

) is the dual space of L(p,q) .
Let us define

Ẇ s,(p,q)(IRn) = {f ∈ S ′ : |ξ|sF [v] ∈ L(p,q)(IRn)} .

(2)See for instance [10]
(3)See for instance [11].

9



In the sequel we will often use the Hölder inequality in the Lorentz spaces: if f ∈
Lp1,q1, g ∈ Lp2,q2, with 1 ≤ p1, p2, q1, q2 ≤ +∞. Then fg ∈ Lr,s, with r−1 = p1

−1 + p2
−1

and s−1 = q1
−1 + q2

−1 , (see for instance [10]).
To conclude this section we introduce some basic notations.
Br(x̄) is the ball of radius r and centered at x̄. If x̄ = 0 we simply write Br . If

x, y ∈ IRn, x · y is the scalar product between x, y .
Given a multindex α = (α1, . . . , αn), where αi is a nonegative integer, we denote by

|α| = α1 + . . .+ αn the order of α.
For every function u : IRn → IR, M(u) is the maximal function of u, namely

M(u) = sup
r>0, x∈IRn

|B(x, r)|−1

∫

B(x,r)

|u(y)|dy . (24)

Given q > 1 we denote by q′ the coniugate of q: q−1 + q′−1 = 1 .
In the sequel we will often use the symbols . and ≃ instead of ≤ and =, if the

constants appearing in the estimates are not relevant and therefore they are omitted.

3 Euler Equation for n/2-Harmonic Maps into Man-

ifolds

We consider a compact k dimensional smooth manifold without boundary N ⊂ IRm. Let
ΠN be the orthogonal projection on N . We also consider the Dirichlet energy (5) .

The weak n/2-harmonic maps are defined as critical points of the functional (5) with
respect to perturbation of the form ΠN (u + tφ), where φ is an arbitrary compacted
supported smooth map from IRn into IRm .

Definition 3.1 We say that u ∈ Hn/2(IRn,N ) is a weak n/2-harmonic map if and only
if, for every maps φ ∈ Hn/2(IRn, IRm) ∩ L∞(IRn, IRm) we have

d

dt
Ln(ΠN (u+ tφ))|t=0

= 0 . (25)

We introduce some notations. We denote by
∧
(IRm) the exterior algebra (or Grass-

mann Algebra) of IRm and by the symbol ∧ the exterior or wedge product. For every
p = 1, . . . , m,

∧
p(IR

m) is the vector space of p-vectors .
If (ǫi)i=1,...,m is the canonical orthonormal basis of IRm, then every element v ∈

∧
p(IR

m)
is written as v =

∑
I vIǫI where I = {i1, . . . , ip} with 1 ≤ i1 ≤ . . . ≤ ip ≤ m , vI := vi1,...,ip

and ǫI =:= ǫi1 ∧ . . . ∧ ǫip .
By the symbol we denote the interior multiplication :

∧
p(IR

m) ×
∧
q(IR

m) →∧
q−p(IR

m) defined as follows.
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Let ǫI = ǫi1 ∧ . . . ∧ ǫip , ǫJ = ǫj1 ∧ . . . ∧ ǫjq , with q ≥ p . Then ǫJ ǫI = 0 if I 6⊂ J ,
otherwise ǫJ ǫI = (−1)MǫK where ǫK is a q − p vector (with K ∪ I = J) and M is the
number of pairs (i, j) ∈ I × J with j > i .

Finally by the symbol ∗ we denote the Hodge-star operator, ∗ :
∧
p(IR

m) →
∧
m−p(IR

m),
defined by ∗β = (ǫ1∧ . . .∧ǫn) β. For an introduction of the Grassmann Algebra we refer
the reader to the first Chapter of the book by Federer [9] .

In the sequel we denote by P T and PN respectively the tangent and the normal
projection from IRm to the manifold N .

They verify the following properties: (P T )t = P T , (PN)t = PN (namely they are
symmetric operators), (P T )2 = P T , (PN)2 = PN , P T + PN = Id, PNP T = P TPN = 0 .

We set e = ǫ1 ∧ . . . ∧ ǫk and ν = ǫk+1 ∧ . . . ∧ ǫm . For avery z ∈ N , e(z) and ν(z) give
the orientation respectively of the tangent k-plane and the normal m− k-plane to TzN .

We observe that for every v ∈ IRm we have

P Tv = (−1)k−1 ∗ ((e v) ∧ ν) . (26)

PNv = (−1)m−1 ∗ (e ∧ (ν e)) . (27)

Hence PNand P T can be seen as matrices in Ḣn/2(IRn, IRm) ∩ L∞(IRn, IRm) .
Next we write the Euler equation associated to the functional (5) .

Proposition 3.1 All weak n/2-harmonic maps u ∈ Hn/2(IRn,N ) satisfy in a weak sense
i) the equation ∫

IRn

((−∆)n/2u) · v dx = 0, (28)

for every v ∈ Ḣn/2(IRn, IRm) ∩ L∞(IRn, IRm) and v ∈ Tu(x)N almost everywhere, or in a
equivalent way

ii) the equation
P T (−∆)n/2u = 0 in D′(IRn) , (29)

or
iii) the equation

(−∆)n/4(P T (−∆)n/4u) = Tn(P
T , u)− ((−∆)n/4P T )(−∆)n/4u , (30)

where Tn is the operator defined in (10) .

Together with the Euler Lagrange equation (30) we consider the following ”structure
equation”:

Proposition 3.2 All maps in Ḣn/2(IRn,N ) satisfy the following identity

(−∆)n/4(PN(−∆)n/4u) = ((−∆)n/4R̄)f(PN , u) , (31)

11



where
f(PN , u) := R(PN(−∆)n/4u)− (−∆)

n
4
− 1

2 (PN∇u) (32)

is in L(2,∞)(IRn) and

‖((−∆)n/4R̄)f(PN , u)‖Ẇ−n/2,(2,∞)(IRn) . ‖PN‖Ḣn/2(IRn)‖(−∆)n/4u‖L(2,∞)(IRn) . (33)

We give the proof of Proposition 3.2. For the proof of Proposition 3.1 we refer the reader
to [5] .

Proof of Proposition 3.2. We first observe that PN∇u = 0 (see Proposition 1.2 in
[5]). Thus we can write:

(−∆)n/4(PN(−∆)n/4u) = ((−∆)n/4R̄)
[
R(PN(−∆)n/4u)

]

= ((−∆)n/4R̄)
[
R(PN(−∆)n/4u)− PN((−∆)n/4Ru)

]
︸ ︷︷ ︸

(1)

(34)

+ ((−∆)n/4R̄)
[
PN((−∆)n/4Ru)− (−∆)

n
4
− 1

2 (PN∇u)
]

︸ ︷︷ ︸
(2)

= ((−∆)n/4R̄)f(PN , u) .

Corollary A.2 and Theorem A.2 imply respectively that (1) and (2) ∈ Ẇ−n/2,(2,∞)(IRn)
and

‖(1)‖Ẇ−n/2,(2,∞)(IRn) . ‖PN‖Ḣn/2(IRn) ‖(−∆)n/4u‖L(2,∞)(IRn) ;

‖(2)‖Ẇ−n/2,(2,∞)(IRn) . ‖PN‖Ḣn/2(IRn) ‖(−∆)n/4u‖L(2,∞)(IRn) .

Hence ((−∆)n/4R̄)f(PN , u) ∈ Ẇ−n/2,(2,∞)(IRn) and (33) holds. ✷

Next we see that by combining (30) and (31) we can obtain the new equation (7)
for the vector field v = (P T (−∆)n/4u, PN(−∆)n/4u)) where an antisymmetric potential
appears.

We introduce the following matrices

ω1 =
((−∆)n/4P T )P T + P T (−∆)n/4P T − (−∆)n/4(P TP T )

2
(35)

ω2 = ((−∆)n/4P T )PN + P T (−∆)n/4PN − (−∆)n/4(P TPN), (36)

ω =
((−∆)n/4P T )P T − P T (−∆)n/4P T

2
. (37)
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We observe that Theorem 1.2 implies that ω1, ω2 ∈ L(2,1)(IRn) . Moreover it holds

‖ω1‖L(2,1)(IRn) + ‖ω2‖L(2,1)(IRn) . ‖P T‖2
Ḣn/2(IRn)

.

The matrix ω is antisymmetric.

Proof of Proposition 1.1.
From Propositions 3.1 and 3.2 it follows that u satisfies in a weak sense the equations

(30) and (31).
The key point is to rewrite the the terms ((−∆)n/4P T )(−∆)n/4u and equation (31) in

a different way.

• Re-writing of ((−∆)n/4P T )(−∆)n/4u .

((−∆)n/4P T )(−∆)n/4u = ((−∆)n/4P T )(P T (−∆)n/4u+ PN(−∆)n/4u)

= [((−∆)n/4P T )P T ][P T (−∆)n/4u)]

+[((−∆)n/4P T )PN ][PN(−∆)n/4u)] .

Now we have

((−∆)n/4P T )P T = ω1 + ω +
(−∆)n/4P T

2
; (38)

and

((−∆)n/4P T )PN = ((−∆)n/4P T )PN + P T (−∆)n/4PN − P T (−∆)n/4PN

−(−∆)n/4(P TPN)

= ω2 + P T (−∆)n/4P T (39)

= ω2 + ω1 − ω +
(−∆)n/4P T

2
.

Thus

((−∆)n/4P T )(P T (−∆)n/4u)

2
= ω1(P

T (−∆)n/4u) + ω(P T (−∆)n/4u) (40)

((−∆)n/4P T )(PN(−∆)n/4u)

2
= (ω1 + ω2)(P

N(−∆)n/4u)− ω(PN(−∆)n/4u) . (41)
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• Re-writing of equation (31). Equation (31) can be rewritten as follows:

((−∆)n/4(PN(−∆)n/4u) = ((−∆)n/4R̄)f(PN , u)

+ (−∆)n/4[P T (−∆)n/4u]− (−∆)
n−1
2 [P T (−∆)1/2u]︸ ︷︷ ︸

(3)

+(−∆)
n−1
2 [P T (−∆)1/2u]− (−∆)n/4[P T (−∆)n/4u] + P T (−∆)

n
2 u

+((−∆)n/4P T )((−∆)n/4u)− ((−∆)n/4P T )((−∆)n/4u) (42)

= ((−∆)
n−1
2 )(P T (−∆)1/2u)− Tn(P

T , u)︸ ︷︷ ︸
(4)

−((−∆)n/4PN)((−∆)n/4u)︸ ︷︷ ︸
(5)

.

The term (3) in (42) is in W−n/2,(2,∞)(IRn) by Corollary A.1 . The term (4) is in
Ẇ−n/2,(2,∞)(IRn) by Theorem 1.1 and Corollary A.1 . We finally observe that in (4) we
use the fact that P T (−∆)

n
2 u = 0 and in (5) the fact that (−∆)n/4P T = −(−∆)n/4PN .

Given u,Q we set

R(Q, u) = ((−∆)n/4)(Q(−∆)n/4u)− ((−∆)
n−1
2 )(Q(−∆)1/2u)

+ ((−∆)
n−1
2 )(Q(−∆)1/2u)− Tn(Q, u) .

We remark that R(P T , u) is the sum of (3), (4) in (42) .

• Re-writing of ((−∆)n/4PN)(−∆)n/4u .

We have

((−∆)n/4PN)(−∆)n/4u = ((−∆)n/4PN)(P T ((−∆)n/4u) + PN((−∆)n/4u))) .

We estimate ((−∆)n/4PN)P T ((−∆)n/4u) and ((−∆)n/4PN)PN((−∆)n/4u) . We have

((−∆)n/4PN)P T = −((−∆)n/4P T )P T (43)

= −ω1 − ω −
((−∆)n/4P T )

2

= −ω1 − ω +
((−∆)n/4PN)

2
,
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and

((−∆)n/4PN)PN = −((−∆)n/4P T )PN + P T ((−∆)n/4PN)− P T ((−∆)n/4PN) (44)

= −[((−∆)n/4P T )PN + P T ((−∆)n/4PN)− (−∆)n/4(PNP T )](45)

+ P T ((−∆)n/4PN)

= −ω2 − P T ((−∆)n/4P T ) (46)

= −ω2 − ω1 + ω +
((−∆)n/4PN)

2
.

In (44) we use (38) and the fact that P T = −PN . Thus

((−∆)n/4PN)P T (−∆)n/4u

2
= −ω1(P

T (−∆)n/4u)− ω(P T (−∆)n/4u) (47)

((−∆)n/4PN)PN(−∆)n/4u

2
= −ω2(P

N(−∆)n/4u)− ω1(P
N(−∆)n/4u) (48)

+ω(PN(−∆)n/4u) .

By combining (40), (41), (47) , (48) we obtain

(−∆)n/4
(
P T (−∆)n/4u
PN(−∆)n/4u

)
= 2Ω̃1

(
P T (−∆)n/4u
PN(−∆)n/4u

)
+ Ω̃2 (49)

+ 2

(
−ω ω
ω −ω

)(
P T (−∆)n/4u
PN(−∆)n/4u

)
,

where Ω̃1 and Ω̃2 are given by

Ω̃1 =

(
−ω1 −(ω1 + ω2)
ω1 (ω1 + ω2)

)
;

Ω̃2 =

(
Tn(P

T , u)
R(P T , u) + R̄(−∆)n/4f(PN , u)

)
.

The matrix

Ω = 2

(
−ω ω
ω −ω

)

is antisymmetric .
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We observe that from the estimates on the operators Tn, R and f it follows that
Ω̃2 ∈ Ẇ−n/2,(2,∞)(IRn, IR2m) and

‖Ω̃2‖Ẇ−n/2,(2,∞)(IRn,IR2m) .
(
‖PN‖Ḣn/2(IRn) + ‖P T‖Ḣn/2(IRn)

)
‖(−∆)n/4u‖L(2,∞)(IRn) . (50)

On the other hand Ω̃1 ∈ L(2,1)(IRn,M2m×2m) and

‖Ω̃1‖L(2,1)(IRn,M2m×2m) . (‖PN‖2
Ḣn/2(IRn)

+ ‖P T‖2
Ḣn/2(IRn)

) . (51)

✷

Now we prove Theorem 1.3.

Proof of Theorem 1.3. We give just a sketch of proof, since the arguments are
similar to those of Theorem 1.1 and Theorem 1.7. in [6]. From Proposition 1.1 it follows
that

v = (P T ((−∆)n/4u), PN((−∆)n/4u)

solves equation (49) which of the type (14) up to the terms Ω̃1 and Ω̃2.
We aim at obtaining that (−∆)n/4u ∈ Lploc(IR

n), for all p ≥ 1 . To this purpose we take
ρ > 0 such that

‖Ω‖L2(B(0,ρ), ‖P
T‖Ḣn/2(B(0,ρ)), ‖P

N‖Ḣn/2(B(0,ρ)) ≤ ε0,

with ε0 > 0 small enough. Let x0 ∈ B(0, ρ/4) and r ∈ (0, ρ/8). We argue by duality and
multiply (49) by φ which is given as follows. Let g ∈ L(2,1)(IRn), with ‖g‖L(2,1) ≤ 1 and set
grα = 11B(x0,rα)g, with 0 < α < 1/4 and φ = (−∆)−n/4(grα) ∈ L∞(IRn) ∩ Ẇ n/2,(2,1)(IRn) .
We multiply both sides of equation (49) by φ and we integrate.

By using the same “localization arguments” in the proof of Theorem 1.7 in [6] one
can show that v satisfies for all x0 ∈ B(0, ρ/4) and 0 < r < ρ/8 , ‖v‖L(2,∞)(B(x0,r)) ≤ Crβ ,
for some β ∈ (0, 1/2) . Then by bootstrapping into the equation one can deduce that
v ∈ Lploc(IR

n), for all p ≥ 1 . Therefore (−∆)n/4u ∈ Lploc(IR
n), for all p ≥ 1 as well.

This implies that u ∈ C0,α
loc for all 0 < α < 1, since W

n/2,p
loc (IRn) →֒ C0,α

loc (IR
n) if p > 2

(see for instance [2]). This concludes the proof of Theorem 1.3 . ✷

A Commutator Estimates

In this appendix we present a series of commutator estimates which have been used in the
previous sections. We consider the Littlewood-Paley decomposition of unity introduced
in Section 2. For every j ∈ ZZ and f ∈ S ′(IRn) we define the Littlewood-Paley projection
operators Pj and P≤j by

P̂jf = ψj f̂ P̂≤jf = φj f̂ .
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Informally Pj is a frequency projection to the annulus {2j−1 ≤ |ξ| ≤ 2j+1}, while P≤j is a
frequency projection to the ball {|ξ| ≤ 2j+1} . We will set fj = Pjf and f j = P≤jf .

We observe that f j =
∑j

k=−∞ fk and f =
∑+∞

k=−∞ fk (where the convergence is in
S ′(IRn)) .

Given f, g ∈ S ′(IRn) we can split the product in the following way

fg = Π1(f, g) + Π2(f, g) + Π3(f, g), (52)

where

Π1(f, g) =

+∞∑

−∞

fj
∑

k≤j−4

gk =

+∞∑

−∞

fjg
j−4 ;

Π2(f, g) =
+∞∑

−∞

fj
∑

k≥j+4

gk =
+∞∑

−∞

gjf
j−4 ;

Π3(f, g) =
+∞∑

−∞

fj
∑

|k−j|<4

gk .

We observe that for every j we have

suppF [f j−4gj] ⊂ {2j−2 ≤ |ξ| ≤ 2j+2};

suppF [
∑j+3

k=j−3 fjgk] ⊂ {|ξ| ≤ 2j+5} .

The three pieces of the decomposition (52) are examples of paraproducts. Informally the
first paraproduct Π1 is an operator which allows high frequences of f (∼ 2nj) multiplied
by low frequences of g (≪ 2nj) to produce high frequences in the output. The second
paraproduct Π2 multiplies low fequences of f with high frequences of g to produce high
fequences in the output. The third paraproduct Π3 multiply high frequences of f with
high frequences of g to produce comparable or lower frequences in the output. For a
presentation of these paraproducts we refer to the reader for instance to the book [11] .
The following Lemma will be often used in the sequel. For the proof of the first one we
refer the reader to [5] .

Lemma A.1 For every f ∈ S ′ we have

sup
j∈Z

|f j| ≤M(f) .

Lemma A.2 Let ψ be a Schwartz radial function such that supp(ψ) ⊂ B(0, 4). Then for
every s ≥

[
n
2

]
+ 1 we have

‖(−∆)sF−1ψ‖L1 ≤ Cψ,n(1 + sn+1)42s ,

where Cψ,n is a positive constant depending on the Cn+1 norm of ψ and the dimension .

17



Proof of Lemma A.2. We assume that n ≥ 1 is odd, so that
[
n
2

]
+ 1 = n+1

2
, (the case

n even is similar) . We recall that

(−∆)sF−1ψ(ξ) = F−1[|ξ|2sψ](ξ) .

We write
∫

IRn

|(−∆)sF−1ψ(ξ)|dξ =

∫

|ξ|≤1

|(−∆)sF−1ψ(ξ)|dξ +

∫

|ξ|≥1

|(−∆)sF−1ψ(ξ)|dξ .

The following estimates hold.

∫

|ξ|≤1

|(−∆)sF−1ψ(ξ)|dξ ≤ ωn‖(−∆)sF−1ψ(ξ)‖L∞ (53)

≤ ωn‖|x|
2sψ‖L1 ≤ ωn4

2s‖ψ‖L1 ,

where ωn = |B1(0)| .

∫

|ξ|≥1

|(−∆)sF−1ψ(ξ)|dξ =

∫

|ξ|≥1

(−
1

|ξ|n+1
)

[∫

IRn

(−∆)
n+1
2

x ei〈x,ξ〉ψ(x)|x|2sdx

]
dξ(54)

=

∫

|ξ|≥1

(
1

|ξ|n+1
)

[∫

IRn

ei〈x,ξ〉(−∆)
n+1
2

x (ψ(x)|x|2s)dx

]
dξ

≤

∫

|ξ|≥1

1

|ξ|n+1
dξ

[
(

n+1∑

k=0

(2s)k42s−k)‖ψ‖Cn+1

]
.

By combining (53) and (54) we obtain

‖(−∆)sF−1ψ(ξ)‖L1 ≤ ωn4
2s‖ψ‖L1 (55)

+
(
42s(1 + sn+1)‖ψ‖Cn+1

) ∫

|ξ|≥1

1

|ξ|n+1
dξ

≤ Cψ,n(1 + sn+1)42s .

This concludes the proof of Lemma A.2. ✷

Lemma A.3 Let f ∈ B0
∞,∞(IRn). Then for all s ≥

[
n
2

]
+ 1 and for all j ∈ Z we have

2−2sj‖(−∆)sfj‖L∞ ≤ Cψ,n(1 + sn+1)42s‖f‖B0
∞,∞(IRn) .

Proof of Lemma A.3. Let Ψ be a Schwartz radial function such that Ψ = 1 in B2 and
Ψ = 0 in Bc(0, 4) .
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Since suppF [fj] ⊆ B2j+1 \B2j−1 we have

F [(−∆)sfj] ≃ |ξ|2sF [fj] = 22sjψ(2−jξ)
|ξ|2s

22sj
F [fj] . (56)

Observe that

‖F−1[ψ(2−jξ)
|ξ|2s

22sj
]‖L1

= ‖

∫

IRn

ei〈x,ξ〉ψ(2−jξ)
|ξ|2s

22sj
dξ‖L1

= 2nj‖

∫

IRn

ei2
j〈x,ξ〉ψ(ξ)|ξ|2s dξ‖L1

= 2nj‖(−∆)sF−1[ψ](2j·)‖L1 .

Thus

2−2sj‖(−∆)sfj‖L∞ ≤ ‖F−1[ψ(2−jξ)
ξ2s

22sj
] ∗ fj‖L∞

≤ ‖F−1[ψ(2−jξ)
|ξ|2s

22sj
]‖L1‖fj‖L∞

= ‖(−∆)s(F−1[ψ])‖L1‖fj‖L∞ ≤ Cψ,n(1 + sn+1)42s‖fj‖L∞

≤ Cψ,n(1 + sn+1)42s‖f‖B0
∞,∞(IRn) . ✷

In the sequel we suppose that n > 1 is an odd integer.

Given Q ∈ Ḣn/2(IRn,Mℓ×m(IR
n)) ℓ ≥ 0 and u ∈ Ḣn/2(IRn, IRm), we introduce the

following operators

M1(Q, u) =
∑

1≤|α|≤[n/2]
|α|odd

cα
α!

(−∆)n/4([(−∆)n/4−|α|(∇αQ)]∇αu) (57)

+
∑

1≤|α|≤[n/2]
|α|even

cα
α!

(−∆)n/4([(−∆)n/4−|α|/2Q] ,∇αu) ;
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M2(Q, u) =
∑

1≤|α|≤[n/2]
|α|odd

cα
α!

(−∆)n/4(∇αQ [(−∆)n/4−|α|(∇αu)] ) (58)

+
∑

1≤|α|≤[n/2]
|α|even

cα
α!

(−∆)n/4(∇αQ [(−∆)n/4−|α|/2u])

where cα = ∂|α||x|n/2||x|=1
.

Proposition A.1 Let u,Q ∈ Ḣn/2(IRn). Then M1(Q, u),M2(Q, u) ∈ Ẇ−n/2,(2,1)(IRn)
and

‖M1(Q, u)‖Ẇ−n/2,(2,1)(IRn) . ||Q||Ḣn/2(IRn)‖(−∆)n/4u‖L2(IRn) ; (59)

‖M2(Q, u)‖Ẇ−n/2,(2,1)(IRn) . ||Q||Ḣn/2(IRn)‖(−∆)n/4u‖L2(IRn) . (60)

Proof of Proposition A.1 . We prove only (59), since the estimate of (60) similar.
We recall that for 0 < s < n/2 we have

Ḣn/2(IRn) →֒ Ẇ s,(n
s
,2)(IRn) ,

(see for instance [19]).
Thus if n = 2p + 1 > 1, (p ≥ 1), is an odd integer number and 0 < |α| ≤ [n/2] then

∇αu ∈ L( n
|α|
,2) and ((−∆)n/4−|α|/2(∇αQ)) ; ((−∆)n/4−|α/2|Q) belong to ∈ L( n

n/2−|α|
,2) . Thus

by Hölder Inequality the following products

[(−∆)n/4−|α|(∇αQ)]∇αu , [(−∆)n/4−|α/2|Q]∇αu

are in L(2,1)(IRn) and

‖[(−∆)n/4−|α|(∇αQ)]∇αu‖L(2,1) . ‖[(−∆)n/4−|α|(∇αQ)]‖
L
( n
n/2−|α|

,2)‖∇αu‖
L
( n
|α|

,2)

. ‖Q‖Ḣn/2(IRn)‖u‖Ḣn/2(IRn) ,

‖[(−∆)n/4−|α|/2Q]∇αu‖L(2,1) . ‖[(−∆)n/4−|α|/2Q]‖
L
( n
n/2−|α|

,2) ‖∇αu‖
L
( n
|α|

,2)

. ‖Q‖Ḣn/2(IRn)‖u‖Ḣn/2(IRn) .

It follows that M1(Q, u) ∈ Ẇ−n/2,(2,1)(IRn) and (59) holds. . This concludes the proof
of Proposition A.1. ✷

Next we prove Theorem 1.2.
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Proof of Theorem 1.2. We group as follows :

Π1[T
∗
n(Q, u)] = Π1[(−∆)n/4(((−∆)n/4Q) u)− (−∆)n/2(Qu)]︸ ︷︷ ︸+Π1[(−∆)n/4(Q ((−∆)n/4u))]︸ ︷︷ ︸

Π2[T
∗
n(Q, u)] = Π2[(−∆)n/4(((−∆)n/4Q) u)]︸ ︷︷ ︸+Π2[−(−∆)n/2(Qu) + (−∆)n/4(Q ((−∆)n/4u)]︸ ︷︷ ︸

Π3[T
∗
n(Q, u)] = Π3[(−∆)n/4(((−∆)n/4Q) u)]︸ ︷︷ ︸−Π3[(−∆)n/2(Qu)]︸ ︷︷ ︸+Π3[(−∆)n/4(Q ((−∆)n/4u))]︸ ︷︷ ︸ .

Some terms appearing in T ∗
n(Q, u) satisfy a better estimate in the sense that they belong

in H1 or in Ḃ0
1,1. We recall that Ḃ0

1,1 →֒ H1 →֒ Ẇ−n/2,(2,1) .

• Estimate of ‖Π1[(−∆)n/4(Q(−∆)n/4u)]‖H1(IRn).

‖Π1[(−∆)n/4(Q(−∆)n/4u)]‖H1(IRn) ≃

∫

IRn

(∑

j

(
2

n
2
jQj(−∆)n/4uj)

)2
)1/2

dx (61)

.

∫

IRn

sup
j
[(−∆)n/4uj]

(∑

j

2njQ2
j

)1/2

dx

.

(∫

IRn

(sup
j
(−∆)n/4uj)2dx

)1/2
(∫

IRn

∑

j

2njQ2
j dx

)1/2

. ‖Q‖Ḣn/2(IRn)‖u‖Ḣn/2(IRn) .

• Estimate of ‖Π3[(−∆)n/4(Q(−∆)n/4u)]‖B0
1,1(IR

n) .

‖Π3[(−∆)n/4(Q(−∆)n/4u)]‖Ḃ0
1,1(IR

n) (62)

≃ sup
‖h‖

B0
∞,∞≤1

∫

IRn

∑

j

Qj(−∆)n/4uj)[(−∆)n/4hj−6 +

j+6∑

t=j−5

(−∆)n/4ht]

by Lemma A.3 (63)

. sup
‖h‖

B0
∞,∞≤1

‖h‖B0
∞,∞

∫

IRn

∑

j

2
n
2
j |Qj||(−∆)n/4uj| dx

. ‖Q‖Ḣn/2(IRn)‖u‖Ḣn/2(IRn) .

The estimate of Π3[(−∆)n/2(Qu)], Π3[(−∆)n/4(Q ((−∆)n/4u)], Π2[(−∆)n/4(((−∆)n/4Q) u)]
are similar to (61) and (62) and we omit them.
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• Estimate of ‖Π1[(−∆)n/4(((−∆)n/4Q) u)− (−∆)n/2(Qu)]‖Ẇ−n/2,(2,1)(IRn) .

||Π1((−∆)n/4((−∆)n/4Q)u− (−∆)n/2(Qu))||W−n/2,(2,1)(IRn) (64)

= sup
||h||

Ẇn/2,(2,∞)(IRn)
≤1

∫

IRn

∑

j

∑

|t−j|≤3

[(−∆)n/4((−∆)n/4Qju
j−4)− (−∆)n/2(Qju

j−4)]htdx

= sup
||h||

Ẇn/2,(2,∞)(IRn)
≤1

∫

IRn

∑

j

∑

|t−j|≤3

F [uj−4]F [∆n/4Qj(−∆)n/4ht −Qj(−∆)n/2ht]dξ

= sup
||h||

Ẇn/2,(2,∞)(IRn)
≤1

∫

IRn

∑

j

∑

|t−j|≤3

F [uj−4](ξ)

(∫

IRn

F [Qj](ζ)F [(−∆)n/4ht](ξ − ζ)(|ζ |n/2 − |ξ − ζ |n/2)dζ

)
dξ .

Now we observe that in (64) we have |ξ| ≤ 2j−3 and 2j−2 ≤ |η| ≤ 2j+2. Thus |
ξ

ζ
| ≤

1

2
.

Hence

|ζ |n/2 − |ξ − ζ |n/2 = |ξ|n/2

[
1−

∣∣∣∣
ξ

|ζ |
−

ζ

|ζ |

∣∣∣∣
n/2
]

= |ζ |n/2



∑

|α|≥1
|α|odd

cα
α!

(
ξ

|ζ |

)α(
ζ

|ζ |

)α
+
∑

|α|≥2
|α|even

cα
α!

(
ξ

|ζ |

)α

 .

We may suppose the series in (65) is convergent if |
ξ

|ζ |
| ≤

1

2
, otherwise one may consider

a different Littlewood-Paley decomposition by replacing the exponent j − 4 with j − s,
s > 4 large enough.

Unlike the case n = 1 (see the proof of estimate (35) in [5]) we need to separate two
cases: |α| ≥ [n/2] + 1 and 1 ≤ |α| ≤ [n/2] .

Case 1: |α| ≥ [n/2]+1 . Here we use the fact that Ẇ n/2,(2,∞)(IRn) →֒ Ḃ0
∞,∞(IRn) and
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the crucial property that for every vector field X ∈ Ḣn/2(IRn) we have

∫

IRn

+∞∑

j=−∞

2−jn(Xj)2dx =

∫

IRn

∑

k,ℓ

XkXℓ

∑

j−4≥k,j−4≥ℓ

2−jndx

≃

∫

IRn

∑

k

Xk


 ∑

|k−ℓ|≤2

Xℓ


 2−(k−2)ndx

by Cauchy-Schwarz Inequality

.

∫

IRn

(∑

k

2−knX2
k

)1/2(∑

k

2−knX2
k

)1/2

dx (65)

=

∫

IRn

+∞∑

j=−∞

2−kn(Xk)
2dx ,

(see also Section 4.4.2 in [15], page 165).

We are going to estimate

sup
||h||

Ẇn/2,(2,∞)≤1

[
∑

|α|≥[n/2]+1
|α|odd

cα
α!

∫

IRn

∑

j

∇αuj−4(−∆)n/4−|α|(∇αQj)(−∆)n/4hjdx

+
∑

|α|≥[n/2]+1
|α|even

cα
α!

∫

IRn

∑

j

|∇αuj−4(−∆)n/4−|α|/2(Qj)(−∆)n/4hjdx] . (66)

By applying Lemma A.3 (‖(−∆)n/4hj‖Ḃ0
∞,∞

. 2
nj
2 4n/2||h||Ḃ0

∞,∞
) we get
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(66) . sup
||h||

Ẇn/2,(2,∞)≤1

||h||Ḃ0
∞,∞

[
∑

|α|≥[n/2]+1
|α|odd

cα
α!

2n
∫

IRn

∑

j

2
nj
2 |∇αuj−4||(−∆)n/4−|α|(∇αQj)|dx

+
∑

|α|≥[n/2]+1
|α|even

cα
α!

2n
∫

IRn

∑

j

2
nj
2 |∇αuj−4||(−∆)n/4−|α|/2(Qj)|dx]

. sup
||h||

Ẇn/2,(2,∞)≤1

||h||Ḃ0
∞,∞

[
∑

|α|≥[n/2]+1
|α|odd

cα
α!

23n−4|α| (67)

(∫

IRn

∑

j

2(n−2|α|)(j−4)|∇αuj−4|2dx

)1/2(∫

IRn

∑

j

22|α|j|(−∆)n/4−|α|(∇αQj)|
2dx

)1/2

]

+[
∑

|α|≥[n/2]+1
|α|even

cα
α!

23n−4|α|

(∫

IRn

∑

j

2(n−2|α|)(j−4)|∇αuj−4|2 dx

)1/2(∫

IRn

∑

j

22|α|j|(−∆)n/4−|α|/2(Qj)|
2dx

)1/2

]

. ‖Q‖Ḣn/2(IRn)‖u‖Ḣn/2(IRn) .

Case 2: 1 ≤ |α| ≤ [n/2] . In this case we apply Proposition A.1.
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We have:

sup
||h||

Ẇn/2,(2,∞)≤1

[
∑

1≤|α|≤[n/2]
|α|odd

cα
α!

∫

IRn

∑

j

∇αuj−4(−∆)n/4−|α|(∇αQj)(−∆)n/4hjdx

+
∑

1≤|α|≤[n/2]
|α|even

cα
α!

∫

IRn

∑

j

|∇αuj−4(−∆)n/4−|α|/2(Qj)(−∆)n/4hjdx]

. sup
||h||

Ẇn/2,(2,∞)≤1

‖(−∆)n/4h‖L(2,∞)

[
∑

1≤|α|≤[n/2]
|α|odd

cα
α!

‖(−∆)n/4−|α|(∇αQ)‖
L
( n
n/2−|α|

,2)‖∇αu‖
L
( n
|α|

,2)

+[
∑

1≤|α|≤[n/2]
|α|even

cα
α!

‖(−∆)n/4−|α|/2Q‖
L
( n
n/2−|α|

,2)‖∇αu‖
L
( n
|α|

,2)

. sup
||h||

Ẇn/2,(2,∞)≤1

‖(−∆)n/4h‖L(2,∞)‖Q‖Ḣn/2(IRn)‖u‖Ḣn/2(IRn)

. ‖Q‖Ḣn/2(IRn)‖u‖Ḣn/2(IRn) .

The estimate of Π2[(−∆)n/4(Q ((−∆)n/4u))− (−∆)n/2(Qu)] is analogous to (64) and
we omit it. This concludes the proof of Theorem 1.2 . ✷

The next result permits us to estimate the right hand side of equation (31) .
We denote by r′ the coniugate of 1 < r < +∞.

Theorem A.1 Let n > 2, 1 < r < 2n
n−2

, h ∈ Lr
′
(IRn), Q ∈ Ḣn/2(IRn). Then

(−∆)
n
4
− 1

2 (Qh)−Q(−∆)
n
4
− 1

2h ∈ Ẇ−(n
2
−1),r′(IRn) , (68)

and
‖(−∆)

n
4
− 1

2 (Qh)−Q(−∆)
n
4
− 1

2h‖
Ẇ−(n2 −1),r′ (IRn)

. ‖h‖Lr‖Q‖Ḣn/2(IRn) . (69)
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Theorem A.1 implies “by duality” the following result.

Theorem A.2 Let n > 2, 1 < r < 2n
n−2

, Q ∈ Ḣn/2(IRn), f ∈ Ẇ
n
2
−1,r(IRn) then

Q(−∆)
n
4
− 1

2 f − (−∆)
n
4
− 1

2 (Qf) ∈ Lr(IRn) , (70)

and
‖Q(−∆)

n
4
− 1

2f − (−∆)
n
4
− 1

2 (Qf)‖Lr(IRn) . ‖Q‖Ḣn/2(IRn)‖f‖Ẇ n
2 −1,r . ✷ (71)

Proof of Theorem A.1 . Throughout the proof we use the following embeddings:

Ẇ
n
2
−1,r(IRn) →֒ Ls(IRn),

1

s
=

1

r
−

n
2
− 1

n
; (72)

Ḣn/2(IRn) →֒ Ẇ
n
2
−1,(q,2)(IRn)

1

q
=

1

2
−

1

n
=

n
2
− 1

n
. (73)

We also use the fact that
1

r′
+

1

s
+

1

q
= 1 . (74)

• Estimate of ‖Π1[(−∆)
n
4
− 1

2 (Qh)]‖
Ẇ−(n2 −1),r′ (IRn)

.

‖Π1[(−∆)
n
4
− 1

2 (Qh)]‖
Ẇ−(n2 −1),r′(IRn)

≃ sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

∫

IRn

∑

j

Qjh
j(−∆)

n
4
− 1

2 gjdx

. sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

∫

IRn

sup
j
hj

︸ ︷︷ ︸
∈Lr′

(
∑

j

22(
n
2
−1)jQ2

j )
1/2

︸ ︷︷ ︸
∈Lq

(
∑

j

2−2(n
2
−1)j((−∆)

n
4
− 1

2gj)
2)1/2

︸ ︷︷ ︸
∈Ls

dx

by (74)

. sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

‖h‖Lr′‖(−∆)
n
4
− 1

2Q‖Lq‖g‖Ls

. ‖h‖Lr′‖Q‖Ḣn/2(IRn) . (75)

• Estimate of ‖Π1[Q(−∆)
n
4
− 1

2h]‖
Ẇ−(n2 −1),r′ (IRn)

.
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‖Π1[Q(−∆)
n
4
− 1

2h]‖
Ẇ−(n2 −1),r′ (IRn)

≃ sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

∫

IRn

∑

j

Qj(−∆)
n
4
− 1

2hjgjdx (76)

. sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

∫

IRn

∑

j

sup
j

2(
1
2
−n

2
)j(−∆)

n
4
− 1

2hj

︸ ︷︷ ︸
∈Lr′

(
∑

j

22(
n
2
−1)jQ2

j )
1/2

︸ ︷︷ ︸
∈Lq

(
∑

j

g2j )
1/2

︸ ︷︷ ︸
∈Ls

dx

by (74)

. sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

‖h‖Lr′‖(−∆)
n
4
− 1

2Q‖Lq‖g‖Ls

. ‖h‖Lr′‖Q‖Ḣn/2(IRn) .

• Estimate of ‖Π3[(−∆)
n
4
− 1

2 (Qh)]‖
Ẇ−(n2 −1),r′(IRn)

.

‖Π3[(−∆)
n
4
− 1

2 (Qh)]‖
Ẇ−(n2 −1),r′(IRn)

≃ sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

∫

IRn

∑

j

Qjhj(−∆)
n
4
− 1

2 gjdx

. sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

∫

IRn

sup
j

2−(n
2
−1)j((−∆)

n
4
− 1

2 gj)
∑

j

2(
n
2
−1)jQjhj dx (77)

by (74)

. sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

‖h‖Lr′‖(−∆)
n
4
− 1

2Q‖Lq‖g‖Ls

. ‖h‖Lr′‖Q‖Ḣn/2(IRn) .

The estimates of Π1[Q(−∆)
n
4
− 1

2h] and Π3[Q(−∆)
n
4
− 1

2h] are similar to (75) and (77)
and we omit them.

• Estimate of ‖Π2[(−∆)
n
4
− 1

2 (Qh)−Q(−∆)
n
4
− 1

2h]‖
Ẇ−(n2 −1),r′ (IRn)

.

We denote by c̃α the coefficients of the Taylor expansion of |x|
n
2
−1 at x = 1 .
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‖Π2[(−∆)
n
4
− 1

2 (Qh)−Q(−∆)
n
4
− 1

2h]‖
Ẇ−(n2 −1),r′(IRn)

≃ sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

∫

IRn

(
(−∆)

n
4
− 1

2 (Qjhj)−Qj(−∆)
n
4
− 1

2hj

)
gj dx . (78)

Now we argue as in (64) and we get

(78) . sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

[
∑

1≤|α|
|α|odd

c̃α
α!

∫

IRn

∑

j

∇αQj−4(−∆)
n
4
− 1

2
−|α|(∇αhj)gjdx

+
∑

1≤|α|
|α|even

c̃α
α!

∫

IRn

∑

j

|∇αQj−4(−∆)
n
4
− 1

2
−|α|/2(hj)gjdx]

by Lemma A.3

. sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

‖Q‖B0
∞,∞

[
∑

1≤|α|

c̃α
α!

2−2|α|

∫

IRn

2|α|j2−(n
2
−1)j |(−∆)

n
4
− 1

2
−|α|/2(hj)|2

(n
2
−1)j |gj|dx]

. sup
‖g‖

Ẇ
(n2 −1),r

(IRn)
≤1

‖Q‖B0
∞,∞

‖h‖Lr′‖(−∆)
n
4
− 1

2g‖Lr

. ‖Q‖Ḣn/2‖h‖Lr′ . ✷

Since 2n
n−2

> 2 we can now apply the interpolation Theorem 3.3.3 in [8] and obtain the
following:

Corollary A.1 Let n > 2 , Q ∈ Ḣn/2(IRn), f ∈ Ḣ
n
2
−1(IRn) then

Q(−∆)
n
4
− 1

2 f − (−∆)
n
4
− 1

2 (Qf) ∈ L(2,∞)(IRn) , (79)

and
‖Q(−∆)

n
4
− 1

2f − (−∆)
n
4
− 1

2 (Qf)‖L(2,∞)(IRn) . ‖Q‖Ḣn/2(IRn)‖f‖Ẇ n
2 −1,(2,∞) . (80)
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We finally recall a commutator estimate obtained in [3] .

Lemma A.4 Let p > 1, Q ∈ BMO(IRn), u ∈ Lp(IRn) and let P(4) a pseudo-differential
operator of order zero. Then P(Qu)−QPu ∈ Lp(IRn) and

‖P(Qu)−QPu‖Lp(IRn) . ‖Q‖BMO(IRn)‖u‖Lp(IRn) . ✷

The interpolation Theorem 3.3.3 in [8], and Lemma A.4 imply the following result.

Corollary A.2 Let Q ∈ BMO(IRn), u ∈ L(2,∞)(IRn) and let P a pseudo-differential
operator of order zero. Then P(Qu)−QPu ∈ L2,∞(IRn) and

‖P(Qu)−QPu‖L(2,∞)(IRn) . ‖Q‖BMO(IRn)‖u‖L(2,∞)(IRn) ✷

We observe that Corollary A.2 implies that for every h ∈ L(2,1)(IRn), u ∈ L(2,∞)(IRn) the
operator uPh− (Pu)h ∈ H1(IRn) and

‖uPh− (Pu)h‖H1(IRn) . ‖u‖L(2,∞)(IRn)‖h‖L(2,1)(IRn) . (81)
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