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Abstract

In this paper we establish an equivalence between the Nirenberg problem on the
circle and the boundary of holomorphic immersions of the disk into the plane. More
precisely we study the following nonlocal Liouville-type equation

(−∆)
1
2u = κeu − 1 in S1 , (1)

where (−∆)
1
2 stands for the fractional Laplacian and κ is a bounded function. The

equation (1) can actually be interpreted as the prescribed curvature equation for
a curve in conformal parametrization. Thanks to this geometric interpretation we
perform a subtle blow-up and quantization analysis of (1). We also show a relation
between equation (1) and the analogous equation in R

(−∆)
1
2u = Keu in R , (2)

with K bounded on R.
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1 Introduction

A famous problem posed by Louis Nirenberg is the question for which positive functions K on
the standard sphere (Sn, gSn) there exists a function u on Sn such that the scalar curvature
(Gauss curvature in dimension n = 2) of the conformal metric g = e2ugSn is equal to K. This
problem prescribing the scalar curvature within a conformal class of manifolds has stimulated
a lot of works in geometry and analysis. In dimension n = 2 it consists in solving the so-called
Liouville equation. More precisely if (Σ, g0) is a smooth, closed Riemann surface with Gauss
curvature Kg0 , an easy computation shows that a function K(x) is the Gauss curvature for some
metric g = e2ug0 conformally equivalent to the metric g0 with u : Σ → R, if and only if there
exists a solution u = u(x) of

−∆g0u = Ke2u −Kg0 on Σ (3)

where ∆g0 is the Laplace Beltrami operator on (Σ, g0) , (see e.g. [8] for more details).
In particular when Σ = R2 or Σ = S2 equation (3) reads respectively

−∆u = Ke2u on R
2 (4)

and
−∆S2u = Ke2u − 1 on S2 . (5)

Singular Liouville equations of the form

−∆g0u = Ke2u −Kg0 − 2π

m∑

i=1

αiδpi on Σ (6)

have a role in fluid dynamics, see [41], as well as in the study of Electroweak theory or abelian
Chern-Simons vortices, see e.g [40]. For the latter cases, singular points represent zeroes of the
scalar wave function involved in the model.

Equations (4), (5) and also (6) have been largely studied in the literature. Here we would
like to recall the famous blow-up result by Brézis and Merle in [4] concerning Equation (4) .

2



Theorem 1.1 (Thm 3, [4]) Assume (uk) ⊂ L1(Ω), Ω open subset of R2, is a sequence of
solutions to (4) satisfying for some 1 < p ≤ ∞, Kk ≥ 0, ‖Kk‖Lp ≤ C1 , and ‖e

uk‖Lp′ ≤ C2 .
Then up to subsequences the following alternatives hold: either (uk) is bounded in L∞

loc(Ω),
or uk(x) → −∞ uniformly on compact subsets of Ω, or there is a finite nonempty set B =
{a1, . . . , aN} ⊂ Ω (blow-up set) such that uk(x)→ −∞ on compact subsets of Ω\B. In addition
in this last case Kke

2uk converges in the sense of measure on Ω to
∑N

i=1 αiδai , with αi ≥
2π
p′ .

The purpose of this work is to investigate an analogous prescribed curvature problem in
dimension 1 . Even if this is a classical problem, it has never been studied so far (up to our
knowledge) from the point of view of conformal geometry. In the case for instance of a planar Jor-
dan curve (namely a continuous closed and simple curve) there is the possibility to parametrize
it through the trace of the Riemann mapping between the disk D2 and the simply connected
domain enclosed by the curve. The equation corresponding to such a parametrization reads as
follow

(−∆)
1
2λ = κeλ − 1 in S1, (7)

where eλdθ and κeλdθ are respectively the length form and the curvature density of the curve
in this parametrization. The definition and relevant properties of the operator (−∆)

1
2 will be

given in the appendix.
One of the main result of this paper is the one-to-one correspondence between the solutions

to the Nirenberg problem in S1 (7) and the space of holomorphic immersions of the disk D2,
(see Theorem 1.3 below ). This correspondence can be seen as a sort of generalized Riemann
Mapping Theorem.

This permits us to perform a complete blow-up analysis of equation (7) in the spirit of
Theorem 1.1, even if we do not get exactly the same dichotomy. More precisely our first main
result is the following theorem.

Theorem 1.2 Let (λk) ⊂ L
1(S1,R) be a sequence with

Lk := ‖eλk‖L1(S1) ≤ L̄ (8)

satisfying

(−∆)
1
2λk = κke

λk − 1 in S1, (9)

where κk ∈ L
∞(S1,R) satisfies

‖κk‖L∞(S1) ≤ κ̄ . (10)

Then up to subsequence we have κke
λk ⇀ µ weakly in W 1,p

loc (S
1 \ B) for every p < ∞, where

µ is a Radon measure, B := {a1, . . . , aN} is a (possibly empty) subset of S1 and κk
∗
⇀ κ∞ in

L∞(S1) . Set λ̄k := 1
2π

∫

S1 λkdθ. Then one of the following alternatives holds:
i) λ̄k → −∞ as k →∞, N = 1 and µ = 2πδa1 . In this case

vk := λk − λ̄k ⇀ v∞ in W 1,p
loc (S

1 \ {a1}) for every p <∞,

where v∞(eiθ) = − log(2(1− cos(θ − θ1))) for a1 = eiθ1 , solving

(−∆)
1
2 v∞ = −1 + 2πδa1 in S1 . (11)
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ii) λ̄k → −∞ as k →∞, N = 2 and µ = π(δa1 + δa2). In this case

vk := λk − λ̄k ⇀ v∞ in W 1,p
loc (S

1 \ {a1, a2}) for every p <∞,

where

v∞(eiθ) = −
1

2
log(2(1− cos(θ − θ1)))−

1

2
log(2(1 − cos(θ − θ2))), a1 = eiθ1 , a2 = eiθ2

solves
(−∆)

1
2 v∞ = −1 + πδa1 + πδa2 in S1 . (12)

iii) |λ̄k| ≤ C and µ = κ∞e
λ∞ + π(δa1 + · · · + δaN ) for some λ∞ ∈ W 1,p

loc (S
1 \ B), with

λ∞, e
λ∞ ∈ L1(S1) and

(−∆)
1
2λ∞ = κ∞e

λ∞ − 1 +

N∑

i=1

πδai in S1 . (13)

We would like to stress that we obtain a quantization-type result, namely the curvature concen-
trating at each blow-up point is precisely π, without any assumption on the sign of the curvature
(this hypothesis is crucial in [4]) and on the convergence of the κk . Actually several works on
equations (4) and (5) have extended the result of Brézis and Merle showing that, under the
crucial assumption that the prescribed curvatures Kk converge in C0, the amount of curvature
concentrating at each point is a multiple of 4π, i.e. a multiple of the total Gaussian curvature
of S2, see e.g. [27] (Also higher-dimensional extensions were studied under the same strong
assumptions of convergence of Kk in C0 or even C1, see e.g. [17], [29] and [33].) In [4] the func-
tions Kk can belong to Lp(R), with 1 < p ≤ +∞ . We believe that in the case of the nonlocal
Liouville equation (7) the quantization result by π does not hold once we replace κ ∈ L∞ by
κ ∈ Lp with 1 < p < +∞.

The fact that we are able to get a quantization result only under the minimal (and geomet-
rically meaningful) bounds (8)-(10) is better understandable through the above mentioned one-
to-one correspondence between the solutions to the equation (7) and the space of holomorphic
immersions of the disk D2. Precisely given a solution λ to the equation (7), with κ ∈ L∞(S1),
the function eλ provides a “conformal” parametrization of a closed curve γ : S1 → C in normal
parametrization and whose curvature at the point γ(z) is exactly κ(z) .

Precisely let us define:

Definition 1.1 A function Φ ∈ C1(D̄2,C) is called a holomorphic immersion if Φ is holomor-
phic in D2 and Φ′(z) := ∂zΦ(z) 6= 0 for every z ∈ D̄2.

A curve γ ∈ C1(S1,C) is said to be in normal parametrization if |γ̇| ≡ const and in conformal
parametrization if there exists a holomorphic immersion Φ ∈ C1(D̄2,C) with Φ|S1 = γ.

Then we have the following characterization:

Theorem 1.3 A function λ ∈ L1(S1,C) with L := ‖eλ‖L1(S1) <∞ satisfies

(−∆)
1
2λ = κeλ − 1 in S1 (14)
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Jordan Curve

D2

conformal
Φk γk

normal

σk

S1

diffeomorphism

Figure 1: A domain bounded by a Jordan curve γk and biholomorphic to the unit disk
D2 via a map Φk : D̄2 → C.

for some function κ : S1 → R, κ ∈ L∞(S1), if and only if there exists a closed curve γ ∈
W 2,∞(S1,C), with |γ̇| ≡ L

2π , a holomorphic immersion Φ: D̄2 → C and a diffeomorphism
σ : S1 → S1 , such that for all z ∈ S1 , we have Φ ◦ σ(z) = γ(z),

|Φ′(z)| = eλ(z), (15)

and the curvature of Φ(S1) is κ . While Φ uniquely determines λ via (15), λ determines Φ up
to a rotation and a translation. Moreover it holds

|Φ′(z)| = eλ̃(z), z ∈ D̄2, (16)

where λ̃ : D2 → R is the harmonic extension of λ. ✷

The pictures Fig.1 and Fig.2, Fig.5 provide some examples of curves satisfying the assump-
tions of Theorem 1.3. Theorem 1.3 allows us to interpret and re-formulate Theorem 1.2 from
the point of view of the behavior of the sequences of the curves γk (in normal parametrization)
and of the immersions Φk corresponding to a sequence of solutions to (9), see Fig. 3, and Fig.
4.

Theorem 1.4 Let a sequence (λk) ⊂ L1(S1,R) satisfy (8)-(9)-(10), and let Φk : D̄
2 → C be a

holomorphic immersion satisfying (15), and σk, γk with γk = Φk ◦ σk be as given by Theorem
1.3. Then, up to extracting a subsequence, there exists an at most countable family J such that
for every j ∈ J there exist a sequence of Möbius transformations f jk : D̄2 → D̄2 and a finite set

finitely many points Bj = {a
j
1, . . . a

j
Nj
} ⊂ S1 such that

γk ⇀ γ∞ in W 2,p(S1) , Φ̃j
k := Φk ◦ f

j
k ⇀ Φ̃j

∞ in W 2,p
loc (D̄

2 \Bj) .
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D2

conformal
Φk γk

normal parametrization

σk

S1

diffeomorphism

Figure 2: The curve γk can have self-intersections. In this case Φk : D̄2 → C is a
holomorphic immersion but it is not injective.

D2

conformal

Φ∞

γ∞
normal parametrization

S1

Figure 3: As k → ∞ the curves γk can generate a pinching phenomenon. In this case
Φk can converge to a constant or, as in the figure above, to a holomorphic immersion Φ∞

(singular at finitely many points of ∂D2) whose image “selects” one of the “components”
bounded by γ∞.
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D2

conformal
Φ̃∞ = limk→+∞Φk ◦ f

j
k γ∞

normal parametrization

S1

Figure 4: Composing Φk as in Figure 3 with suitable Möbius Transformations one can
have Φ∞ cover a different “component” bounded by γ∞. In this figure one can choose
among 4 different components, or choose Φ∞ to be constant.

where p <∞, Φ̃j
∞ : D̄2 \Bj → C are holomorphic immersions satisfying

(γ∞)∗[S
1] =

∑

j∈J

(Φ̃j
∞)∗[S

1 \Bj ] , (17)

where for every φ : S1 → C and for every differential form ω on C

〈φ∗[S
1], ω〉 :=

∫

S1

φ∗ω .

If λjk := log |(Φ̃j
k)

′|S1 |, then up to a subsequence λjk ⇀ λj∞ in W 1,p
loc (S

1 \Bj), where

(−∆)
1
2λj∞ = κj∞e

v∞ − 1−

Nj∑

i=1

πδ
aji
, (18)

and κk ◦ f
j
k

∗
⇀ κj∞ in L∞(S1,R) as k → +∞ . ✷

Theorem 1.4 says that it is always possible, up to the action of sequences of Möbius trans-
formations, to recover all the connected components enclosed by the limiting curve γ∞ (see in
particular (17)) . We will also see that these components are separated by what we call pinched
points, (see Definition 3.1), namely (roughly speaking) couple of points p 6= p′ ∈ S1 such that
γ∞(p) = γ∞(p′). The angle between the tangent vectors in these couples of points is shown to
be necessarily π .This explains also the coefficient π in front of each δai in (18) .
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It would be interesting to compare Theorems 1.2 and 1.4 to the blow-up analysis obtained
recently by Mondino and the third author in [34] in the case of sequences of weak conformal
immersions from S2 into Rm. In [34] the authors study the possible limit of the Liouville equation

−∆g0u = Ke2u − 1, on S2 (19)

satisfied by the conformal factor of the immersion Φ (gΦ = e2ug0) under the assumption that the
second fundamental form is bounded in L2. Also in their case a sort of bubbling phenomenon
occurs and the choice of different sequences of Möbius transformations of S2 permits to detect all
the limiting enclosed currents. However the 2-dimensional blow-up analysis differs substantially
from the 1-dimensional case: in the 2-dimensional case the area is quantized, namely there is no
production of area in the neck region between the different bubbles, whereas in the 1-dimensional
case the quantization of the length does not hold. Precisely in [34] the authors show that

∑

“Bubbles”

∫

S2

e2u∞dv = lim inf
k→+∞

∫

S2

e2ukdv,

whereas in the present situation one can produce examples such that

∑

“Bubbles”

∫

S1

eλ∞dθ < lim inf
k→+∞

∫

S1

eλkdθ .

We insists on the fact that “conformal” parametrizations of planar curves are relevant in
different applications. For instance they should be one of the main tools of the Willmore Plateau
problem, of the analysis of the renormalizing area of surfaces in the hyperbolic space H2 and of
the free-boundaries. In particular for the latter the first author has observed in [12] that there
is a one to one correspondence between free boundaries and 1/2-harmonic maps and here we
show that the holomorphic immersion φ for which eλ(z) = | ∂∂θφ(z)|, z ∈ S

1, is a 1/2-harmonic
map into φ(S1) .

In a forthcoming work [14] we are going to investigate the the topological and differential
structure of the subspace of C1,α(S1) × C0,α(S1) made of solutions (u, κ) of the Nirenberg
problem in S1 (the Nirenberg Moduli Space). The present work should be interpreted as an
attempt to describe the “boundary of the Nirenberg Moduli Space”. We mention that a nonlocal
version of the Nirenberg problem in dimension n ≥ 2 has been recently studied in [22, 23].

We finally prove a link between the equation (7) and the analogous nonlocal equation in R .
Precisely if u ∈ L 1

2
(R) (see (130)), eu ∈ L1(R) and u satisfies

(−∆)
1
2u = Keu in R (20)

for someK ∈ L∞(R), then λ(z) := u(Π(z))−log(1+sin z) (Π: S1\{−i} → R is the stereographic
projection) satisfies

(−∆)
1
2λ = K ◦Π eλ − 1 +

(

2π − ‖(−∆)
1
2u‖L1

)

δ−i in S1. (21)

Owing to this correspondence from Theorem 1.2 we can deduce the following compactness result
in R .
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Theorem 1.5 Let uk ∈ L 1
2
(R) be a sequence of solutions to

(−∆)
1
2uk = Kke

uk in R

with ‖Kk‖L∞ ≤ C and ‖euk‖L1 ≤ C . Then
1. Up to subsequence we have Kke

uk ⇀ µ weakly in W 1,p
loc (R\B) for every p <∞, where µ is

a finite Radon measure in R, B := {a1, . . . , aN} is a (possibly empty) subset of R and Kk
∗
⇀K∞

in L∞(R) . Moreover the following alternatives holds:
i) µ|R\B = K∞e

u∞ for some u∞ ∈W
1,p
loc (R \B) satisfying.

(−∆)
1
2u∞ = K∞e

u∞ +

N∑

i=1

πδai in R . (22)

ii) µ|R\B ≡ 0, N ≤ 2 and uk → −∞ locally uniformly in R \B. ✷

In particular we can deduce the following

Corollary 1.1 Under the hypotheses of Theorem 1.5 if Kk ≥ 0, and

∫

R

Kke
ukdx ≤ 2π,

then either N = 1 and uk → −∞ locally uniformly R \ {a1} or N = 0 and uk ⇀ u∞ in W 1,p(R)
as k → +∞ where u∞ solves

(−∆)
1
2u∞ = K∞e

u∞ . (23)

We will give the proof of Theorem 1.5 and Corollary 1.1 in the forthcoming paper [15].
An interesting consequence of Theorem 1.3 is a proof of the classification of the solutions to

the non-local equation

(−∆)
1
2u = eu in R, (24)

under the integrability condition

L :=

∫

R

eudx <∞. (25)

Equation 24 is a special case of the problem

(−∆)
n
2 u = (n− 1)!enu in R

n, V :=

∫

Rn

enudx <∞, (26)

which has been studied by several authors in the last decades (see e.g. [11], [9], [28], [24] and
[31]). Geometrically if u solves (26) and n ≥ 2, then the metric e2u|dx|2 on Rn has constant
Q-curvature (n − 1)! and volume V , see e.g. [7]. All the above mentioned works rely on the
application of a moving-plane technique, in order to show that under certain growth conditions
at infinity (needed only when n ≥ 3) the solutions to (26) have the form

uµ,x0(x) := log

(
2µ

1 + µ2|x− x0|2

)

, x ∈ R
n, (27)
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for some µ > 0 and x0 ∈ Rn. For the case n = 1, instead of using the moving plane technique, we
will use the stereographic projection to transform (24) into Equation (14), and use the geometric
interpretation of the latter (Theorem 1.3) to compute all its solutions (Corollary 2.1 below). This
will yield

Theorem 1.6 Every function u ∈ L 1
2
(R) solving (24)-(25) is of the form (27) for some µ > 0

and x0 ∈ R.

We also remark that by changing the sign of the nonlinearity in (24) the problem has no solutions.
More precisely:

Proposition 1.1 Given a function K ∈ L∞(R) with K ≤ 0, the equation

(−∆)
1
2u = Keu in R

has no solution satisfying (25).

The proof of Proposition 1.1 is a simple application of the maximum principle for the operator
(−∆)

1
2 , but it is worth remarking that for n ≥ 4 even solutions to Problem (26) with (n − 1)!

replaced by −(n− 1)! (or any negative constant) do exist, as shown in [32].

The paper is organized as follows. In Section 2 we introduce the nonlocal Liouville equation
(7) in S1 and we explain its geometric interpretation. In Section 3 we perform the blow-up
and quantization analysis of the equation (7) and in particular we prove Theorems 1.2 and
1.4 . Section 4 is devoted to the description of the relation between the equations (7) and (20) .
Finally in Section 5 we prove Theorem 1.6 and Proposition 1.1.

Notations. Given x, y ∈ RN we denote by 〈x, y〉 the scalar product of x, y. Let h : Ω ⊂
C→ R, and γ : S1 → C a curve. We denote by

∫

γ h(z)|dz| or by
∫

γ h(z)dθ the line integral of h

along γ . Given z ∈ C, we denote by ℜ(z) and ℑ(z) respectively its real and imaginary part.

2 Nonlocal Liouville equation in S1

In this section we study the following nonlocal Liouville type equation on S1

(−∆)
1
2u = κeu − 1 in S1

where u ∈ L1(S1), (−∆)
1
2u stands for the fractional Laplacian and κ : S1 → R is a bounded

function. In the Appendix A.1 we recall the definition and some properties of the fractional
Laplacian in S1 .

2.1 Geometric Interpretation of the Liouville equation in S1

The first key step in our analysis is the geometric interpretation of the equation (7) . Roughly
speaking such an equation prescribes the curvature of a closed curve in conformal parametriza-
tion.
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It is easy to verify that for φ ∈ L1(S1) we have

(−∆)
1
2φ(θ) =

∑

n∈Z

|n|φ̂(n)einθ = H

(
∂φ

∂θ

)

=
∂H(φ)

∂θ
, (28)

where H is the Hilbert Transform on S1 defined by

H(f)(θ) :=
∑

n∈Z

−i sign(n)f̂(n)einθ, f ∈ D′(S1) .

We recall that the Hilbert transform has the following property, a proof of which can be
found e.g. in [25, Chapter III].

Lemma 2.1 The Hilbert transform H is bounded from Lp(S1) into itself, for 1 < p < +∞,
and it is of weak type (1, 1) . A function f := u+ iv with u, v ∈ L1(S1,R) can be extended to a
holomorphic function in D2 if and only if v = H(u) + a for some a ∈ C .

Proof of Theorem 1.3. 1. Let Φ ∈ C1(D̄2,C) be a holomorphic immersion. Set λ :=
(log |Φ′|)|S1 . Since Φ′ : D2 → C \ {0} is holomorphic, it holds Φ′|S1 = eλ+iρ+iθ0 , for some
θ0 ∈ [0, 2π) where ρ := H(λ) is the Hilbert transform of λ. Indeed by Lemma 2.1 the function

f := λ + iρ has a holomorphic extension f̃ to D2, hence ef̃ is holomorphic in D2 and ef̃ |S1 =

ef = eλ+iρ. But |ef | = eλ = (|Φ′|)|S1 , so that by Lemma B.1 we have Φ′/ef̃ = eiθ0 for some
constant θ0. Up to a rotation of Φ we can assume that θ0 = 0. Up to such a rotation and a
translation Φ is determined by λ.

∂Φ(z)

∂θ
(z) = ieλ(z)+iρ(z)+iθ . (29)

Now let

s(θ) :=

∫ θ

0

∣
∣
∣
∣
∣

∂Φ(eiθ
′
)

∂θ′

∣
∣
∣
∣
∣
dθ′.

We have s : [0, 2π]→ [0, L], where L = ‖∂Φ∂θ ‖L1(S1) is the length of the curve Φ(S1), and up to a
scaling we will assume that L = 2π. Let θ := s−1 : [0, 2π]→ [0, 2π]. One can easily also see that
θ ∈ C1([0, 2π], [0, 2π]) . Then using (29) and that

ṡ(θ) = |Φ′(eiθ)| = eλ(e
iθ) > 0, θ̇(s) = e−λ(eiθ(s))

we compute

τ(s) :=
d

ds
Φ(eiθ(s)) = Φ′(eiθ(s))ieiθ(s)θ̇(s) =

∂Φ

∂θ
(eiθ(s))e−λ(eiθ(s)) .

Notice that |τ | ≡ 1, i.e. the curve γ : eis 7→ Φ(eiθ(s)) is parametrized by arc-length, and τ is its
unit tangent vector. Using (28), (29) and identifying s with eis, the curvature of γ is given by

κ(s) = 〈iτ(s), τ̇ (s)〉 =

〈

iτ(s),
d

dθ

(

ieiρ(e
iθ(s))+iθ(s)

)〉

=

(

dρ(eiθ(s))

dθ
+ 1

)

θ̇(s)

=
(

(−∆)
1
2λ(eiθ(s)) + 1

)

e−λ(eiθ(s)).

(30)
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From (30) it follows that λ satisfies (14) with κ(eis(θ)) := 〈iτ(s(θ)), τ̇ (s(θ))〉 . Since |κ(eis)| =
|γ̈(eis)| ∈ L∞(S1) we also have γ ∈W 2,∞(S1,C).

2. Conversely, let us assume that λ ∈ L1(S1) with eλ ∈ L1(S1) weakly satisfies (14) for
some κ ∈ L∞(S1). By regularity theory λ ∈ W 1,p(S1) for any p < ∞. We set ρ := H(λ). Let
φ ∈W 1,p(D̄2,C) be the holomorphic extension of the function eλ+iρ ∈W 1,p(S1) and set

Φ(z) :=

∫

Σ0,z

φ(w)dw, z ∈ D̄2 (31)

where Σ0,z is any path in D̄2 connecting 0 and z . Then Φ ∈ W 2,p(D̄2,C) satisfies (29). From
part 1 we see that κ is the curvature of the curve Φ(S1) in normal parametrization.

Let Φ̂ : D̄2 → C be another holomorphic immersion such that |Φ̂′(z)| = eλ(z),, z ∈ S1 . We
claim that

Φ = eiθ0Φ̂ + a in D̄2, for some θ0 ∈ R, a ∈ C . (32)

Indeed the function h := Φ′

Φ̂′
never vanishes in D̄2 and satisfies

|h(z)| =
|Φ′(z)|

|Φ̂′(z)|
=
eλ(z)

eλ(z)
= 1, z ∈ S1.

It follows from Lemma B.1 that h is a constant of modulus 1, say h ≡ eiθ0 , and (32) follows at
once. ✷

Remark 2.1 In Theorem 1.3, we cannot expect that Φ is a biholomorphism from D̄2 onto
Φ(D̄2). For instance the function Φ(z) := eaz for any a > 0 is an immersion and Φ(S1) has
self-intersections whenever a ≥ π, as easily seen by writing

Φ(eiθ) = ea cos θ(cos(a sin θ) + i sin(a sin θ)),

see Fig. 5.

Corollary 2.1 All functions λ ∈ L1(S1) with eλ ∈ L1(S1) solutions to

(−∆)
1
2λ = C0e

λ − 1 on S1, (33)

where C0 is an arbitrary positive constant, are given by

λ(θ) = log

(∣
∣
∣
∣

∂

∂θ

z − a1
1− ā1z

∣
∣
∣
∣

)

− logC0 (34)

for some a1 in D2.

Proof. Up to the translation λ̃ = λ + logC0 we can assume C0 = 1. By Theorem 1.3 the
function λ determines a holomorphic immersion Φ ∈ C1(D̄2,C), such that Φ(S1) is curve of
curvature 1, hence up to a translation Φ(S1) ⊆ S1, and therefore it is Möbius transformation of
the disk. From (15) we infer that λ = log (|Φ′|S1 |), and we conclude. ✷

The following corollary is an easy consequence of Theorem 1.3 and Corollary 2.1.
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normal

Figure 5: Plot of the curve ecos θ(cos(2π sin θ)+ i sin(2π sin θ)), θ ∈ [0, 2π]. It has the same kind

of self-intersections as the curve Φ(eiθ) = e2πe
iθ
, whose plot is difficult to inspect, since |Φ(z)|

oscillates between e2π and e−2π.

Corollary 2.2 Let Φ, λ and κ be as in Theorem 1.3, and let f : D̄2 → D̄2 be a Möbius
diffeomorphism. Set Φ̃ := Φ ◦ f , λ̃ := log |Φ̃′|S1 | and κ̃ := κ ◦ f |S1. Then

λ̃ = λ ◦ f |S1 + log(|f ′|S1 |)

and
(−∆)

1
2 λ̃ = κ̃eλ̃ − 1.

Remark 2.2 One can give an analogous geometric characterization also for an equation of the
type

(−∆)
1
2λ = κeλ − n in S1 , (35)

with n > 1 . In this case there is a correspondence between the solutions of (35) and holomorphic
functions Φ: D2 → C of the form Φ(z) = Ψ(z)h(z) where Ψ is Blaschke product

Ψ(z) :=

n−1∏

k=1

z − ak
1− ākz

, a1, . . . , an−1 ∈ D
2,

and h′(z) 6= 0 for every z ∈ D̄2 . In this case n− 1 = iΨ · ∂Ψ∂θ = deg(Ψ) .

Next we show that the existence of a holomorphic immersion of the disk D̄2 , is equivalent to
the existence of a positive diffeomorphism of the disc D̄2. Such a result can be seen as a sort of
generalization Riemann Mapping Theorem in the case of closed curves which are not necessarily
injectives. We premise the following Lemma giving a better regularity up to the boundary of
a holomorphic immersion u : D2 → C under the assumption that the curve u|S1 has a W 2,∞

constant speed parametrization.
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Lemma 2.2 Let u ∈ C0(D̄2,C) be holomorphic in D2 with ∂zu 6= 0 in D2 and suppose there
is γ ∈ W 2,∞(S1,C) with |γ̇| ≡ const and a homeomorphism σ : S1 → S1 such that γ = u ◦ σ.
Then u ∈W 2,p(D̄2,C) for every p < +∞ and ∂zu(z) 6= 0 for all z ∈ S1 .

Proof. Let z0 ∈ S
1. Since γ̇(z0) 6= 0, we can find some ρ > 0 such that γ(S1∩B(z0, ρ)) coincides

up to a rotation with a piece of the graph of a function ϕ ∈ C1,α(R) with ϕ′(u1(x0)) = 0. We
may also assume that u = u1 + iu2 takes value into the set {(ξ, η) ∈ R2 : η ≥ ϕ(ξ)} . Define

û = û1 + iû2, û1 := u1, û2 := u2 − ϕ(u1) .

Claim: û2 satisfies {
∂xi(aij∂xj û2) = 0, in B(x0, ρ) ∩D

2

û2 = 0, in B(x0, ρ) ∩ S
1 (36)

where the matrix

(aij) =






1− 1
1+(ϕ′)2(u1)

ϕ′(u1)
1+(ϕ′)2(u1)

− ϕ′(u1)
1+(ϕ′)2(u1)

1− 1
1+(ϕ′)2(u1)




 (37)

is in L∞(D̄2) and uniformly elliptic .
Proof of the claim: We can write u = û + iϕ(u1). Since by hypothesis ∂z̄u(z) = 0, for all
z ∈ D2, the following estimates hold

∂z̄u1 = −i∂z̄u2

∂z̄û(z) = −iϕ′(u1)∂z̄u1 = −ϕ
′(u1)∂z̄u2

∂z̄u1 + i∂z̄û2(z) = −iϕ′(u1)∂z̄u1

∂z̄u1 = −
i

1 + iϕ′(u1)
∂z̄û2(z)

∂z̄û = −
ϕ′(u1)

1 + iϕ′(u1)
∂z̄û2(z) .

Therefore

∆û2 = 4ℑ(∂z∂z̄û) = −4ℑ

[

∂z

[
ϕ′(u1)

1 + iϕ′(u1)
∂z̄û2(z)

]]

. (38)

Writing

ϕ′(u1)

1 + iϕ′(u1)
∂z̄û2(z) =

ϕ′(u1)

1 + (ϕ′)2(u1)

∂x1û2 + ϕ′(u1)∂x2 û2 + i(∂x2 û2 − ϕ
′(u1)∂x1 û2)

2
,

we compute the right hand side of (38) and get

∆û2 = −ℑ

[

(∂x1 − i∂x2)
ϕ′(u1)

1 + (ϕ′)2(u1)
[(∂x1 û2 + ϕ′(u1)∂x2 û2) + i(∂x2 û2 − ϕ

′(u1)∂x1 û2)]

]

.

Therefore û2 satisfies (36)-(37) and the claim is proven .
Elliptic estimates imply that û2 ∈W

2,p(B̄(z0, r/4)∩ D̄
2) , for every p < +∞ , in particular it

is in C1,α(B̄(z0, r/4) ∩ D̄
2) for every α ∈ (0, 1) . Now since û2 ≥ 0 in D̄2 and û2(z0) = 0, Hopf’s

Lemma yields that ∂rû2(z0) 6= 0. Since u = û+ iϕ(u1), it follows that

∂ru(z0) = ∂rû1(z0) + i∂rû2(z0) + i ϕ′(u1(z0))
︸ ︷︷ ︸

=0

∂rû1(z0) 6= 0,

14



and since z0 ∈ S
1 was arbitrary, we conclude that ∂ru 6= 0 everywhere on S1. Then since u is

conformal up to the boundary we also have ∂zu 6= 0 on S1. ✷

We introduce the following set

T := {γ : S1 → C, γ ∈W 2,∞, |γ̇| ≡ const,

such that there is Ψ ∈ C1(D̄2,C), det(Jac(Ψ(z))) > 0, z ∈ D2,

(Ψ ◦ σ)(z) = γ(z), z ∈ S1 for some diffeomorphism σ : S1 → S1}.

Theorem 2.1 (Generalized Riemann Mapping Theorem ) A curve γ ∈ T if and only if
there exists a holomorphic immersion Φ: D̄2 → C and a diffeomorphism σ : S1 → S1 such that
Φ ◦ σ = γ .

Proof.
1. Suppose that there exists a holomorphic immersion Φ: D̄2 → C and a diffeomorphism

σ : S1 → S1 such that Φ ◦ σ = γ. The one can take Ψ = Φ. Therefore γ ∈ T .
2. Conversely let Ψ ∈ C1(D̄2,C), Ψ|S1 = γ with det(Jac(Ψ)) > 0 in D2 .
2i) Consider the pull back of the Euclidean metric g on R2 by Ψ:

hij := 〈∂xiΨ, ∂xjΨ〉 .

Since det(Jac(ψ)) > 0 we have
c−1δij ≤ (hij) ≤ cδij .

We can write
h = h11dx

2 + 2h12dxdy + h22dy
2 . (39)

Setting z = x+ iy one can write h in the form

h = ν|dz + µdz̄|2

where ν is a positive continuous function on U and µ is a complex-valued continuous function
with ‖µ‖L∞(D̄2) < 1 on U . Actually ν and µ are given by

ν =
1

4

(

h11 + h22 + 2
√

h11h22 − h212

)

,

µ =
h11 − h22 + 2ih12

h11 + h22 + 2
√

h11h22 − h212
.

Moreover Ψ solves the following equation

∂w̄Ψ(w)

∂wΨ(w)
= µ(w) , in D2. (40)

The function µ is the so-called Beltrami coefficient associated to the metric h . Now we extend µ
by 0 outside D̄2 (we still denote this extension by µ). Then there exists a unique homeomorphism
ξ : C̄→ C̄ (here C̄ = C ∪ {∞} ≃ S2) which satisfies in distributional sense

∂z̄ξ = µ(z) ∂zξ, in C

15



and the following normalization conditions

ξ(0) = 0, ξ(1) = 1, ξ(∞) =∞ .

Moreover ξ ∈ W 1,p
loc (C) for some p > 2, ∂zξ 6= 0 , a.e in C . The function ξ is called a quasicon-

formal map with dilation coefficient µ, (see e.g. Theorem 4.30 in [21]).
Since ξ is a homemorphism, ξ(S1) is a Jordan curve
2ii) Consider now Ψ̃ := Ψ ◦ ξ−1 : ξ(D̄2)→ C . From [21, Proposition 4.13] it follows that the

complex dilatation of Ψ̃ is 0 in ξ(D2), therefore ∂z̄Ψ̃ = 0 and Ψ̃ is holomorphic in ξ(D2) , see
[21, Lemma 4.6].

2iii) Now we apply the Riemann Mapping Thereorem: there exists u biholomorphic map
from D2 onto ξ(D2) . In particular ∂zu 6= 0 in D2 . Take Φ := Ψ ◦ ξ−1 ◦ u . We observe that
det(Jac(Ψ)) > 0 implies ∂zΨ 6= 0 in D̄2. Therefore it holds

∂zΦ = ∂w(Ψ ◦ ξ
−1)∂zu+ ∂w̄(Ψ ◦ ξ

−1)∂z ū

= ∂w(Ψ ◦ ξ
−1)∂zu+ ∂w̄(Ψ ◦ ξ

−1)∂z̄u

= ∂w(Ψ ◦ ξ
−1)∂zu .

We observe that Φ is holomorphic in D2 because it is the composition of two holomorphic maps
and ∂zΦ 6= 0 in D2 . From Lemma 2.2 it follows that ∂zΦ 6= 0 in D̄2 and we conclude the proof
of Theorem 2.1 . ✷

From the next Lemma we can deduce that if γ ∈ T then the winding number (or equivalently
the degree) of γ is 1 .

Lemma 2.3 Let Φ ∈ W 2,p(D̄2,C), for some 1 < p ≤ +∞ be a holomorphic function such that
∂zΦ 6= 0 in D̄2. Then

degΦ =
1

2π

∫ 2π

0

〈i∂θΦ, ∂
2
θΦ〉

|∂θΦ|2
dθ = 1 +

1

2πi

∫

S1

f ′(z)

f(z)
dz = 1 , (41)

where f(z) = Φ′(z) .

We observe that Lemma 2.3 is a direct corollary of Theorem 1.3. Indeed degΦ|S1 = 1
2π

∫

S1 κ|Φ′|dθ =
1
2π

∫

S1 κe
λdθ, but since (−∆)

1
2λ = κeλ − 1, integrating we get

∫

S1 κe
λdθ = 2π.

Anyway we provide a direct proof for the reader’s convenience.
Proof. We recall that

Φ′(z) =
e−iθ

2

(
∂Φ

∂r
−
i

r

∂Φ

∂θ

)

=: f(z) .

Since Φ is holomorphic we have
∂Φ

∂r
= −

i

r

∂Φ

∂θ
. (42)
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Hence

∫

S1

f ′(z)

f(z)
dz =

∫

S1

e−iθ

2 ( ∂
∂r −

i
r

∂
∂θ )

e−iθ

2 (∂Φ∂r −
i
r
∂Φ
∂θ )

e−iθ

2 (∂Φ∂r −
i
r
∂Φ
∂θ )

dz (43)

=
︸︷︷︸

by (42)

∫

S1

( ∂
∂r −

i
r

∂
∂θ )(−

i
re

−iθ ∂Φ
∂θ )

(∂Φ∂r −
i
r
∂Φ
∂θ )

dz

=

∫

S1

e−iθ
2i
r2

∂Φ
∂θ −

i
r
∂2Φ
∂r∂θ −

1
r2

∂2Φ
∂2θ

−2i
r

∂Φ
∂θ

dz

=
︸︷︷︸

r=1 on S1

−

∫

S1

e−iθ dz +

∫

S1

e−iθ
∂2Φ
∂r∂θ

−2i∂Φ∂θ
dz

∫

S1

e−iθ
∂2Φ
∂2θ

−2i∂Φ∂θ
dz

= −2πi−
i

2

∫ 2π

0

∂2Φ
∂r∂θ
∂Φ
∂θ

dθ −
1

2

∫ 2π

0

∂2Φ
∂θ∂θ
∂Φ
∂θ

dθ

=
︸︷︷︸

by (42)

−2πi−

∫ 2π

0

∂2Φ
∂θ∂θ
∂Φ
∂θ

dθ .

On the other hand we have

∫ 2π

0

〈i∂θΦ, ∂
2
θΦ〉

|∂θΦ|2
dθ =

1

2

∫ 2π

0

−i∂θΦ∂
2
θ2Φ

∂θΦ∂θΦ
dθ +

1

2

∫ 2π

0

i∂θΦ∂
2
θ2
Φ

∂θΦ∂θΦ
dθ . (44)

We observe that

1

2

∫ 2π

0

i∂θΦ∂
2
θ2
Φ

∂θΦ∂θΦ
dθ = −

i

2

∫ 2π

0
∂θΦ

∂2θ2Φ

|∂θΦ|2
dθ (45)

−
i

2

∫ 2π

0
|∂θΦ|

2∂θ
(
|∂θΦ|

−2
)
dθ

= −
i

2

∫ 2π

0

∂2θ2Φ

∂θΦ
dθ .

It follows that

∫ 2π

0

〈i∂θΦ, ∂
2
θΦ〉

|∂θΦ|2
dθ = −i

∫ 2π

0

∂2θ2Φ

∂θΦ
dθ . (46)

By combining the estimates (43),(44),(45),(46) we get

∫

S1

1

2πi

f ′(z)

f(z)
dz = −1−

1

2πi

∫ 2π

0

∂2θ2Φ

∂θΦ
dθ

= −1 +
1

2π

∫ 2π

0

〈i∂θΦ, ∂
2
θΦ〉

|∂θΦ|2
dθ .

We conclude the proof. ✷
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2.2 Connection with half-harmonic maps

In this subsection we show an interesting connection between the solutions of (7) and the half-
harmonic maps into a given curve Γ .

Let φ̃ = Φ ∈ C1(D̄2,C) be the map given by Theorem 2.1 and set φ := Φ|S1 . Then Φ is

conformal up to the boundary, i.e. ∂φ
∂θ ·

∂φ̃
∂r = 0 on S1. Since ∂φ̃

∂r

∣
∣
∣
r=1

= (−∆)
1
2φ, we deduce

(−∆)
1
2φ ⊥ TφΓ , i.e.

∂φ

∂θ
· (−∆)1/2φ = 0 on D′(S1) . (47)

Equation (47) says that φ is a 1/2-harmonic map into Γ (see [13]).
We would like to recall a characterization of 1/2-harmonic maps of S1 into submanifolds of

Rn, which has been already observed in [12] and then in [30] .

Theorem 2.2 ([16]) Let u ∈ H
1
2 (S1,N ), where N is a k-dimensional smooth submanifold of

Rm without boundary . Then u is a weak 1/2-harmonic map i.e. (−∆)
1
2u ⊥ TuN , if and only

if its harmonic extension ũ ∈W 1,2(D2,Rm) is conformal, in which case

∂rũ ⊥ TuN in D′(S∞). (48)

Proof. Let u ∈ H
1
2 (S1,N ) be a weak 1/2-harmonic map and let ũ ∈ W 1,2(D,Rm) be the

harmonic extension of u . Then it holds

E(u) :=

∫

S1

|(−∆)
1
4u|2|dz| =

∫

D2

|∇ũ|2|dz| .

Claim: For every X̃ ∈ C∞(D̄2,R2) such that X̃(z) · z = 0 for z ∈ S1 it holds

(
d

dt

∫

D2

|∇ũ(z + tX̃(z))|2|dz|

) ∣
∣
∣
∣
t=0

= 0 . (49)

Proof of the Claim.
It has been proved in [13] that if u is 1/2-harmonic, then u ∈ C∞(S1), in particular u satisfies

(
d

dt

∫

S1

|(−∆)
1
4u(z + tX(z))|2|dz|

) ∣
∣
∣
∣
t=0

= 0 . (50)

for every X ∈ C∞(S1) .
Let X̃ ∈ C∞(D̄2,R2) such that X̃(z) · z = 0 for z ∈ S1. We observe that for all z ∈ S1,

Y := dũ · X̃ = du · X̃ ∈ TuN and
(
d

dt

∫

D2

|∇ũ(z + tX̃(z))|2|dz|

) ∣
∣
∣
∣
t=0

=

∫

D2

∇ũ · ∇Y |dz|

=

∫

S1

∂rũ · Y |dz|

= −

∫

S1

(−∆)
1
2u · Y |dz| = 0 ,

where the last equality follows from (50) .
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From Proposition 2.1 below and the regularity of ũ up to the boundary it follows that ũ is
also conformal in D̄2 i.e.

|∂x1 ũ| = |∂x2 ũ|, ∂x1 ũ · ∂x2 ũ = 0

Conversely, suppose that the harmonic extension ũ of u is conformal and satisfies (48) . Since

∂rũ = −(−∆)
1
2u we deduce that u is 1/2-harmonic . �

Proposition 2.1 (Prop. II.2 in [36]) Let ũ be a map in W 1,2(D2,Rm) satisfying

(
d

dt

∫

D2

|∇ũt|
2|dz|

) ∣
∣
∣
∣
t=0

= 0, ut(x) := u(x+ tX(x))

for every X ∈ C∞(D̄2,R2) such that 〈X(x), x〉 = 0 for x ∈ S1. Then ũ is conformal in D2 .

In the case of 1/2-harmonic maps u : S1 → S1 we deduce from Theorem 2.2 the following

Corollary 2.3 Let u ∈ H
1
2 (S1, S1) with deg(u) = 1. Then u is a weak 1/2-harmonic map if

and only if its harmonic extension ũ : D̄2 → D̄2 is a Möbius map, namely it has the form

ũ(z) = eiθ0
z − a

1− āz
,

for some |a| < 1 and θ0 ∈ [0, 2π) .

3 Compactness of the Liouville equation in S1

In this section we analyse the asymptotics of solutions to the equation (7) .

3.1 The ε-regularity lemma and first compactness result.

A key point in the proof of Theorem 1.2 is an ε-regularity Lemma, asserting roughly speaking
that if the L1 norm in conformal parametrization of the curvature (κke

λk) is small (less than π)
in a neighborhood of a point, then λk −Ck is uniformly bounded in the same neighborhood, for
some constant Ck. This result (Lemma 3.2) depends on Theorem 3.1 below.

Lemma 3.1 (Fundamental solution of (−∆)
1
2 on S1) The function

G(θ) := −
1

2π
log(2(1− cos(θ)))

belongs to BMO(S1), can be decomposed as

G(θ) =
1

π
log

π

|θ|
+H(θ), θ ∈ [−π, π] ∼ S1, with H ∈ C0(S1), (51)

and satisfies

(−∆)
1
2G = δ1 −

1

2π
in S1,

∫

S1

G(θ)dθ = 0, (52)
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and for every function u ∈ L1(S1) with (−∆)
1
2u ∈ L1(S1) one has

u− ū = G ∗ (−∆)
1
2u :=

∫

S1

G(· − θ)(−∆)
1
2u(θ)dθ, for almost every t ∈ S1. (53)

Proof. Identity (52) follows at once from Lemma 4.1. That G ∈ BMO(S1) follows from

parametrizing S1 = [−π, π]/{π ∼ −π}, writing 1− cos(θ) = θ2

2 +O(θ4) as θ → 0 and therefore

G(θ) = −
1

2π
(log(θ2/2) + log(1 +O(θ2)))

as θ → 0. Similarly (51) follows from the explicit expression of G, since

H(θ) := G(θ)−
1

π
log

π

|θ|
= C + log(1 +O(θ)2)→ C as θ → 0,

and H(θ)→ − 1
2π log 2 as |θ| → π, so that H ∈ C0(S1).

To prove (53) for u ∈ C∞ we write

u(0)− ū =

〈

δ1 −
1

2π
, u

〉

= 〈(−∆)
1
2G,u〉 :=

∫

S1

G(θ)(−∆)
1
2u(θ)dθ,

and translating one gets (53) also for t 6= 0. For a general function u ∈ H1,1
∆ (S1) take a sequence

(uk) ⊂ C
∞(S1) with

uk → u, (−∆)
1
2uk → (−∆)

1
2u in L1(S1),

which can be easily obtained by convolution. Then

u
L1(S1)
←− uk =

∫

S1

G(· − θ)(−∆)suk(θ)dy
L1(S1)
−→

∫

S1

G(· − θ)(−∆)s(θ)dθ,

the convergence on the right following from (51), and Fubini’s theorem:
∫

S1

∣
∣
∣
∣

∫

S1

G(t− θ) [(−∆)suk(θ)− (−∆)su(θ)] dθ

∣
∣
∣
∣
dt

≤ ‖G‖L1(S1)‖(−∆)suk − (−∆)su‖L1(S1) → 0

as k →∞. Since the convergence in L1 implies the a.e. convergence (up to a subsequence), (53)
follows. The last claim follows at once from the explicit expression of G. ✷

The following Theorem, which is a generalization of Theorem I in [4], is a sort of Moser-
Trudinger inequality and and it is crucial to prove Lemma 3.2 .

Theorem 3.1 There exist constants C1, C2 > 0 such that for any ε ∈ (0, π) one has

C1 ≤ sup
u=G∗f : ‖f‖L1(S1)≤1

ε

∫

S1

e(π−ε)|u|dθ ≤ C2, (54)

and in particular

C1 ≤ sup
u∈L1(S1): ‖(−∆)1/2u−α‖

L1(S1)
≤1

for some α∈R

ε

∫

S1

e(π−ε)|u−ū|dθ ≤ C2. (55)
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Proof of Theorems 3.1. Clearly the second inequality in (55) follows from the second inequal-
ity in (54) and (52). Let us now prove (54). Given f with ‖f‖L1(S1) ≤ 1and setting u = G ∗ f
we get

|u(t)| =

∣
∣
∣
∣

1

π

∫ t+π

t−π
log

(
π

|θ − t|

)

f(θ)dθ +

∫ t+π

t−π
H(θ − t)f(θ)dθ

∣
∣
∣
∣

≤
1

π

∫ t+π

t−π
log

(
π

|θ − t|

)

|f(θ)|dθ + C.

With Jenses’s inequality and Fubini’s theorem, and using that ‖f‖L1(S1) ≤ 1, it follows

∫ π

−π
e(π−ε)|u(t)−ū|dt ≤ C

∫ π

−π
exp

(
π − ε

π

∫ t+π

t−π
log

(
π

|θ − t|

)

|f(θ)|dθ

)

dt

≤ C

∫ π

−π

∫ t+π

t−π
exp

(
π − ε

π
log

(
π

|θ − t|

))

|f(θ)|dθdt

= C

∫ t+π

t−π
|f(θ)|

∫ π

−π

(
π

|θ − t|

)1− ε
π

dtdθ ≤
C2

ε
.

(56)

This proves the second inequality in (54).
To prove the first inequalities in (54) and in (55) fix ε ∈ (0, π), choose (fk) ⊂ C∞(S1)

non-negative such that fk → δ0 weakly in the sense of measures, ‖fk‖L1(S1) = 1 and let uk solve

(−∆)
1
2uk = fk −

1

2π
in S1, ūk = 0.

Such uk can be easily constructed using the Fourier formula for (−∆)
1
2 , see (123). Then by

Lemma 3.1

|uk(t)| ≥

∫

S1

G(t− θ)fk(θ)dθ ≥
1

π

∫ t+π

t−π
log

(
π

|θ − t|

)

fk(θ)dθ − C.

Multiplying by π− ε, exponentiating, integrating on S1 and taking the limit as k →∞ one gets

lim
k→∞

∫

S1

e(π−ε)|uk(t)|dt ≥ lim
k→∞

1

C

∫ π

−π
exp

(
π − ε

π

∫ t+π

t−π
log

(
π

|θ − t|

)

fk(θ)dθ

)

dt

=
1

C

∫ π

−π
exp

(
π − ε

π
log

(
π

|t|

))

dt

=
1

C

∫ π

−π

(
π

|t|

)1− ε
π

dt =
C1

ε
,

which proves (54) and also (55) since ūk = 0. �

Lemma 3.2 (ε-regularity Lemma) Let u ∈ L1(S1) be a solution of

(−∆)
1
2u = κeu − 1, (57)
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with κ ∈ L∞(S1) and eu ∈ L1(S1) and Λ := ‖κeu‖L1 . Assume that for some arc A ⊂ S1

∫

A
|κ|eudθ ≤ π − ε , (58)

for some ε > 0. Then for every arc A′ ⋐ A with dist(Ac, A′) = δ

‖u− ū‖L∞(A′) ≤ C(δ, ε,Λ). (59)

Proof. Set f := (−∆)
1
2u. We split f = f1 + f2 where

f1 = κeuχA, f2 = κeuχAc .

Let us now define

ui(t) := G ∗ fi(t) =

∫

S1

G(t− θ)fi(θ)dθ, i = 1, 2,

where G is as in Lemma 3.1. From (52) and (53) it follows that

u− ū = G ∗ (κeu − 1) = G ∗ (κeu) = u1 + u2.

Choose now an arc A′′ with A′ ⋐ A′′ ⋐ A and dist(A′′, Ac) = dist(A′, (A′′)c) = δ
2 . With (51)

we easily bound
‖u2‖L∞(A′′) ≤ C1 = C1(Λ, δ). (60)

It follows from (58) and Theorem 3.1 that ‖e|u1|‖Lp(S1) ≤ Cp,ε for some p > 1, and consequently
also eū ≤ C. Then for t ∈ A′ we have

u1(t) ≤

∫

A
G(t− θ)(|κ|eu1(θ)eu2(θ)+ū − 1)dθ

≤ ‖κ‖L∞

(

eC1+ū

∫

A′′

G(t− θ)eu1(θ)dθ

︸ ︷︷ ︸

(1)

+

∫

A\A′′

G(t− θ)eu(θ)dθ

︸ ︷︷ ︸

(2)

+C

)

≤ C,

where in (1) we use that G ∈ Lq(S1) for q ∈ [1,∞) and in (2) we use that G ∈ L∞(A′×(A\A′′)) .
�

Lemma 3.3 Let λ : S1 → S1 satisfy (−∆)
1
2λ ∈ L1(S1) and let λ̃ be the harmonic extension of

λ to D2. Then
‖∇λ̃‖L(2,∞)(D2) ≤ C‖(−∆)

1
2λ‖L1(S1), (61)

and for any ball Br(x0)

1

r

∫

Br(x0)∩D2

|∇λ̃|dx ≤ C‖∇λ̃‖L(2,∞)(Br(x0)∩D2). (62)
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Proof. Let λ : S1 → S1 satisfy (−∆)
1
2λ ∈ L1(S1) and let λ̃ be the harmonic extension of λ to

D2. Then we can write

λ̃(x) =

∫

S1

G(x, y)
∂λ̃

∂ν
(y)dy =

∫

S1

G(x, y)(−∆)
1
2λ(y)dy (63)

whereG is the Green function associated to the Neumann problem. It is know that∇x(G(x, y)) ∈
L(2,∞)(S1) (see e.g. [26]). Therefore ∇λ̃(x) ∈ L(2,∞)(D2) as well and (61) holds .

The proof of (62) follows from O’Neil’s inequality [35]

∫

A
|∇λ̃|dx ≤ ‖χA‖L(2,1)(A)‖∇λ̃‖L(2,∞)(A) =

√

|A|‖∇λ̃‖L(2,∞)(A)

for any A ⊂ D2. �

Theorem 3.2 Let (λk) be a sequence as in Theorem 1.2, and let (Φk) ⊂ C1(D̄2,C) be holo-
morphic immersions with λk(z) = log |Φ′

k(z)| for z ∈ S
1 and Φk(1) = 0 (compare to Theorem

1.3) Then, up to extracting a subsequence, the following set is finite

B :=

{

a ∈ S1 : lim
r→0+

lim sup
k→∞

∫

B(a,r)∩S1

|κk|e
λkdθ ≥ π

}

= {a1, . . . , aN} , (64)

and for functions v∞ ∈ L
1(S1,R) and Φ∞ ∈W

1,2(D2,C) we have for 1 ≤ p <∞

λk − λ̄k ⇀ v∞ in W 1,p
loc (S

1 \B) , λ̄k :=
1

2π

∫

S1

λkdθ , (65)

and
Φk ⇀ Φ∞ in W 2,p

loc (D̄
2 \B,C) and in W 1,2(D2,C). (66)

Moreover, one of the following alternatives holds:
1. The sequence (λk) ⊂ R is bounded and Φ∞ is a holomorphic immersion of D̄2 \B (i.e. it

is holomorphic in D2 and ∂zΦ∞ 6= 0 for z ∈ D̄2 \B).
2. λk → −∞ locally uniformly as k → +∞, and Φ∞ ≡ Q for some constant Q ∈ C.

Proof. The sequence of measures |κk|e
λkdθ on S1 is bounded (for the total variation norm),

hence up to extracting a subsequence we have |κk|e
λkdx

∗
⇀ µ weakly in the sense of measures

for a Radon measure µ ∈M(S1). Let B := {a ∈ S1 : µ({a}) ≥ π}. Then B is clearly finite, say
B = {a1, . . . , aN}, and is characterised by the first identity in (64). Indeed if µ({a}) ≥ π, for
every r > 0 and ϕ ∈ C0(S1) supported in B(a, r) ∩ S1 such that 0 ≤ ϕ ≤ 1 = ϕ(a) one has

lim sup
k→∞

∫

B(a,r)∩S1

|κk|e
λkdθ ≥ lim sup

k→∞

∫

S1

|κk|e
λkϕdθ =

∫

S1

ϕdµ ≥ πϕ(a) = π,

and conversely if µ({a}) < π, then µ(B(a, r0)∩S
1) < π for some r0 > 0, hence taking ϕ ∈ C0(S1)

supported in B(a, r0) ∩ S
1, with 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on B(a, r0/2) ∩ S

1, one gets

lim sup
k→∞

∫

B(a,r0/2)∩S1

|κk|e
λkdθ ≤ lim sup

k→∞

∫

S1

|κk|e
λkϕdθ =

∫

S1

ϕdµ ≤ µ(B(a, r0)) < π.

23



We now show that for every compact K ⊂ S1 \B there exits a constant cK depending on L̄
and κ̄ in (8)-(10) such that

‖eλk‖L∞(K) ≤ cK . (67)

and
‖λk − λ̄k‖L∞(K) ≤ cK . (68)

Indeed cover K with finitely many arcs Ai ∩ S1 so that

∫

Ai∩S1

|κk|e
λkdθ < π.

From Lemma 3.2 it follows that λk − λ̄k is bounded in each Ai, and (68) follows. Moreover,
considering that ‖eλk‖L1(S1) = Lk ≤ L̄, it follows that λ̄k and λk are upper bounded, and this

proves (67). Now writing λk − λ̄k = G ∗ (κke
λk − 1) as in (53) of Lemma 3.1 we can bootstrap

regularity and obtain that λk − λ̄k is bounded in W 1,p(K) for every p < ∞, and (65) follows
from weak compactness.

Let λ̃k be the harmonic extension of λk. From (68), (61) and (62) we get

‖λ̃k − λ̄k‖L∞(∂(D2\∪N
i=1B(ai,δ)))

≤ Cδ for every δ > 0,

hence
(λ̃k − λ̄k) is bounded in W 1,p

loc (D̄
2 \B). (69)

Since Φk is harmonic and conformal, the following estimate holds

∫

D2

|∇Φk(z)|
2 ≤

1

2
L2
k . (70)

Since Φk(1) = 0 it follows that the sequence (Φk) is bounded in W 1,2(D2) and, up to a subse-
quence, Φk ⇀ Φ∞ weakly in W 1,2(D2), where Φ∞ is holomorphic.

From (16) it follows that |∇Φk| is bounded inW 1,p
loc (S

1\B), hence Φk is bounded inW 2,p
loc (S

1\

B) and up to a subsequence one gets Φk ⇀ Φ∞ in W 2,p
loc (D

1 \B), as wished.
Further, if λ̄k → −∞, then (69) yields ∇Φk → 0 uniformly locally in D̄2 \ B, hence Φ∞

is constant. Similarly, if λk ≥ −C, then |∇Φk| is locally uniformly lower bounded on D2 \ B,
hence ∇Φ∞ 6= 0 in D2 \B. ✷

3.2 Blow-up Analysis

In this section we associate to a sequence (λk) satisfying (8)-(9)-(10) a sequence of curves
(γk) ⊂ W 2,∞(S1,C) with bounded lengths Lk ≤ L̄, curvatures bounded by κ̄, |γ̇k| ≡

Lk
2π , a

sequence (Φk) ⊂ C1(D̄2,C) of holomorphic immersions so that |(Φ′
k)|S1 | = eλk and a sequence

of diffeomorphisms σk : S1 → S1 such that Φk ◦σk = γk. Up to a translation we can assume that
Φk(1) = 0, and by Arzelà-Ascoli’s theorem γk → γ∞ in C1(S1,C) for a curve γ∞ ∈W

2,∞(S1,C).
Notice that (Φk) and (λk) satisfy the hypothesis of Theorem 3.2, and up to a subsequence

we can assume that (65) and (66) hold for a finite set B = {a1, . . . , aN} and functions v∞ ∈
L1(S1,R) and Φ∞ ∈W

1,2(D2,C). Moreover, either 1. or 2. in Theorem 3.2 holds.
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We introduce the following distance function Dk : S
1 × S1 → R+.

Dk(q, q
′) = inf

{(∫ 1

0
|Φ′

k(∆k(t))|
2|∆′

k(t)|
2dt

) 1
2

,

∆k ∈W
1,2([0, 1], D̄2), ∆k(0) = σk(q), ∆k(1) = σk(q

′)

}

, (71)

It is well-known that the infimum in (71) is attained by a path ∆k such that |Φ′
k(∆k(t))||∆

′
k(t)| =

const . For such path we then have

(∫ 1

0
|Φ′

k(∆k(t))|
2|∆′(t)|2dt

) 1
2

=

∫ 1

0
|Φ′

k(∆k(t))||∆
′
k(t)|dt =:

∫

∆k

|Φ′
k(z)||dz| .

In the sequel we sometimes identify the parametrization of a curve ∆ with its image .

Proposition 3.1 1) The function Dk is Lipschitz continuous with ‖∇Dk‖L∞ ≤ 1 and it con-
verges uniformly.

2) The infimum in (71) is attained by a curve ∆k in normal parametrization such that the
curvature of Φk ◦∆k is bounded by ‖κk‖L∞ .

Proof. 1. Let q, q′, q̃, q̃′ ∈ S1. The following estimate holds

Dk(q, q
′) ≤ Dk(q̃, q̃

′) + arc(γk(q), γk(q̃)) + arc(γk(q
′), γk(q̃

′))

≤ Dk(q̃, q̃
′) + |q − q̃|+ |q′ − q̃′|.

By exchanging (q, q′) and (q̃, q̃′) we get that

|Dk(q, q
′)−Dk(q̃, q̃

′)| ≤ |q − q̃|+ |q′ − q̃′| ,

and we conclude .
2. For a geodesic ∆ with respect to Dk, the curve Φk ◦ ∆ is a geodesic in C under the

constraint that Φk ◦∆ ⊂ Φk(D̄
2). This must be a union of segments (contained in Φk(D

2)) and
arcs of the curve γk, where the segments touch the curve γk tangentially. Hence the curvature
of Φk ◦∆ is bounded by ‖κk‖L∞ .

This completes the proof of Proposition 3.1 . ✷

We give next the definition of a pinched point for the curve γ∞ .

Definition 3.1 (Pinched point) A point p ∈ S1 is called pinched point for the sequence (γk)
if there exists p′ ∈ S1, p 6= p′ such that limk→+∞Dk(p, p

′) = 0 . We call p′ the “dual” of p
and we will show in Lemma 3.6 below that such dual is unique. We denote by P the sets of the
pinched points of γ∞ .

Remark 3.1 The definition of pinched point is independent of Φk and σk in the sense that if
Φ̃k = Φk ◦ fk where fk : D̄

2 → D̄2 is a Möbius transformation and if σ̃k = f−1
k ◦ σk, then

lim
k→+∞

∫ 1

0
|Φ′

k(∆(t))||∆′(t)|dt = 0, if and only if lim
k→+∞

∫ 1

0
|Φ̃′

k(∆̃(t))||∆̃′(t)|dt = 0 .
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Proposition 3.2 Assume that we are in case 2 of Theorem 3.2, i.e. Φk → Q in C1,α
loc (D̄

2 \
{a1, . . . , aN}) for a constant Q ∈ C. Then N ∈ {1, 2}. If N = 2, let C+ and C− be the connected
components of S1 \ {a1, a2}. Then σ−1

k → p± locally uniformly on C±, where p
+, p− ∈ P are

dual. Moreover Q = γ∞(p+) = γ∞(p−) and γ̇∞(p+) = −γ̇∞(p−), κke
λk

∗
⇀ π(δa1 + δa2) and

vk := λk− λ̄k ⇀ v∞ in W 1,p
loc (S

1 \{a1, a2}), where v∞ solves (12). If N = 1 then vk → v∞ where
v∞ solves (11).

Proof. By Theorem 3.2 we have λ̄k → −∞ and λk → −∞ uniformly locally in S1 \ B =
{a1, . . . , aN}. In particular, since the signed radon measures κke

λkdx are uniformly bounded,

we have µk
∗
⇀ µ for a Radon measure supported in B, which then we can write as µ =

∑N
i=1 αiδai .

Moreover, since ∫

S1

κke
λk dθ = 2π ,

we infer that
∑N

i=1 αi = 2π.
Let us assume that N ≥ 2. We want to prove that αi = π for every i, hence necessarily

N = 2. In order to prove that αi = π, up to a rotation we can reduce to proving that α1 = π
and assume that a1 = i. We can also assume that N = 2 and a2 = −i. If this is not the case, it
suffices to compose Φk with Möbius diffeomorphisms fk(z) =

z−itk
1+itkz

with tk ↑ 1 slowly enough

so that Φ̃k := Φk ◦ fk is still as in case 2 of Theorem 3.2, with B = {a1 = i, a2 = −i}.
Then let Φk be as above, with Φk ⇀ Q in W 2,p

loc (D̄
2 \ {i,−i}). Set

Vk(z) = e−λ̄k(Φk(z)− Φk(0)) , vk = log |V ′
k|S1 | = λk − λ̄k .

By Theorem 3.2 we have

vk ⇀ v∞ in W 1,p
loc (S

1 \ {i,−i}) and in D′(S1),

where v∞ solves
(−∆)

1
2 v∞ = αδi + (2π − α)δ−i − 1, (72)

for some α ∈ R. Similarly Vk ⇀ V∞ in W 2,p
loc (D̄

2 \ {i,−i}). Solutions to (72) can be computed
explicitly using Lemma 3.1, so that

v∞(eiθ) = −
α

2π
log(2(1 − sin θ))−

2π − α

2π
log(2(1 + sin θ)).

Notice that writing z = x+ iy, for z = eiθ ∈ S1 we have

2(1 − sin θ) = x2 + y2 − 2y + 1 = |z − i|2,

and similarly 2(1 + sin θ) = |z + i|2. In particular the v∞ can be extended to a holomorphic
function

ṽ∞(z) := −
α

2π
log(|z − i|2)−

2π − α

2π
log(|z + i|2), z ∈ D̄2 \ {i,−i}. (73)

The estimate (69) together with (16) implies that

c−1
δ ≤ |V

′
k| ≤ cδ on D̄2 \ (B(i, δ) ∪B(−i, δ)) for every δ > 0.

26



Therefore Vk ⇀ V∞ as k → +∞ in W 2,p
loc (D̄

2 \ {i,−i}), where V∞ is a conformal immersion of
D̄2 \ {i,−i} . Moreover, still using (16), from (73) we obtain

|V ′
∞(z)| =

1

|z − i|
α
π |z + i|2−

α
π

.

Since V ′
∞ is holomorphic in D2, up to a rotation (i.e. multiplication by a constant eiθ0) we

obtain

V ′
∞(z) =

1

(z − i)
α
π (z + i)2−

α
π

, V∞(z) =

∫ z

0

dz

(z − i)
α
π (z + i)2−

α
π

.

Up to possibly switching i with −i we may assume that α ≤ π. The function V∞ is also known
as Schwarz-Christoffel mapping1 and sends the two arcs of C+, C− ⊂ S

1 joining i and −i (chosen
so that ±1 ∈ C±) into two parallel straight lines if α = π and into two half-lines meeting at
V∞(i), forming there an angle of π − α if α < π.
Claim 1. As k → +∞ we have σ−1

k → p± in L∞
loc(C±), where p

+, p− ∈ S1, with p+ 6= p− .

Proof of Claim 1. Notice that Φk ⇀ Q in W 2,p
loc (D̄

2 \ {i,−i}) implies that

∂σ−1
k

∂θ
→ 0 uniformly locally in S1 \ {i,−i} as k → +∞ .

This proves the first part of the claim. Assume by contradiction that p+ = p−. Set p±k =
σ−1
k (±1) → p±. By assumption |arc(p+k , p

−
k )| → 0 (here arc(p+k , p

−
k ) denotes the shortest arc

connecting p+k to p−k ). Since σk is a diffeomorphism, for small δ > 0, σk(arc(p
+
k , p

−
k )) contains

either S1 ∩B(i, δ) or S1 ∩B(−i, δ) . Suppose it contains S1 ∩B(i, δ) . Then
∫

S1∩B(i,δ)
eλkdθ =

∫

S1∩B(i,δ)
|Φ′

k(e
iθ)|dθ

≤

∫

arc(p+k ,p−k )
|γ̇k|dθ

=
Lk

2π
|arc(p+k , p

−
k )| → 0 ,

(74)

as k →∞. This contradicts that i ∈ B, and concludes the proof of the claim 1. �

Claim 2. p+ is a pinched point and p− is dual to it.
Proof of Claim 2. Let p±k = σ−1

k (±1) be as above. Consider the path

∆k = arc(σk(p
+), 1) ∪ arc(σk(p

−),−1) ∪ [−1, 1],

where [−1, 1] is the segment in D̄2 joining −1 to 1. Since as k →∞ we have

∫

arc(σk(p±),±1)
|Φ′

k(e
iθ)|dθ =

∫

arc(p±k ,p±)
|γ̇k|dθ =

Lk|arc(p
±
k , p

±)|

2π
→ 0 (75)

and ∫

[−1,1]
|Φ′

k||dz| ≤ 2 sup
[−1,1]

|Φ′
k||dz| → 0,

1up to composition with a conformal transformation, since Schwarz-Christoffel maps are usually de-
fined on the half plane {z ∈ C : ℜz > 0} instead of the unit disk.
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we immediately infer that ∫

∆k

|Φ′
k||dz| → 0,

hence p+ is dual to p−. This proves claim 2. �

Now

2π

Lk
γ̇k(p

±
k ) =

∂Φk(±1)
∂θ

|∂Φk(±1)
∂θ |

=
∂Φk(±1)

∂θ

eλ̄keλk(±1)−λ̄k
=
∂V∞(±1)

∂θ
eλ̄k−λk(±1) + o(1) as k →∞. (76)

In particular, denoting by (v,w)∧ the angle between two vectors, we have

(γ̇k(p
+
k ), γ̇k(p

−
k ))

∧ →

(
∂V∞(1)

∂θ
,
∂V∞(−1)

∂θ

)∧

= α. (77)

We consider now different cases.
Case 1: 0 < α < π. Since p±k → p± and p+ is pinched to p−, and since

|γk(p
+
k )− γk(p

−
k )| ≤ Dk(p

+
k , p

−
k )

≤ Dk(p
+, p−) +

Lk

2π
(|arc(p+, p+k )|+ |arc(p

−, p−k )|)

→ 0 as k →∞

and taking (77) and the bound κ̄ on the curvature of γk into account, we see that for positive
numbers δ±k → 0 as k →∞ we have

γk(p
+
k e

iδ+k ) = γk(p
−
k e

−iδ−k ), (78)

i.e. the two curves t 7→ γk(p
±
k e

±it) cross in short time (see Figure 6). Because δ±k → 0 we have

Dk(p
+
k e

iδ+k , p−k e
−iδ−k ) ≤ Dk(p

+
k , p

−
k ) +

Lk(δ
+
k + δ−k )

2π
→ 0, as k →∞. (79)

Let now ∆k : [0, 1]→ D̄2 be a geodesic realising the distance on the left-hand side of (79). Then

(78) implies that Φk ◦∆k is a closed curve (non-constant, since p+k e
iδ+k 6= p−k e

−iδ−k for k large)
so that the integral of its curvature is at least π (see Lemma 3.4 below). On the other hand
Proposition 3.1 implies that the curvature of Φk ◦∆k is bounded by κ̄, and since the length of
such geodesic is going to 0 according to (79), we get a contradiction.
Case 2: α = 0. Similar to case 1, if the curves γk(p

±
k e

±it) cross for small times δ±k → 0, we
conclude as before. If not, we can at least say that up to a rotation of the axis

V∞(D2) = {x+ iy : y < 0} (80)

and that for small times δ±k → 0 we have

ℜ(γk(p
+
k e

iδ+k )) = ℜ(γk(p
−
k e

−iδ−k )) (81)

and without loss of generality

ℑ(γk(p
+
k e

iδ+k )) > ℑ(γk(p
−
k e

−iδ−k )), (82)
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Figure 6: Case 1

where for x, y ∈ R we used the notation ℜ(x+ iy) = x, ℑ(x+ iy) = y (see Figure 7). Moreover
since the curvature of γk is uniformly bounded and δ±k → 0, using (76) and (80) we infer

γ̇k(p
±
k e

±iδ±k )

|γ̇k(p
±
k e

±iδ±k )|
=

γ̇k(p
±
k )

|γ̇k(p
±
k )|

+ o(1) = −1 + o(1), 2 (83)

i.e. the curves t 7→ γk(p
±
k e

±it) at the time t = δ±k are almost horizontal and pointing into opposite
directions (notice that change of orientation between the curves t 7→ γk(e

it) and t 7→ γk(p
−
k e

−it)).
As before (79) holds, so let ∆k : [0, 1] → D̄2 be geodesic realising the distance in (79), with

∆k(0) = γk(p
+
k e

iδ+k ) and ∆k(1) = γk(p
−
k e

−iδ−k ). Up to a reparametrization we can assume that

∆̃k := Φk ◦ ∆k : [0, L] → C satisfies | ˙̃∆k(t)| ≡ 1. Since the map Φk preserves the orientation,
from (83) we infer

ℑ( ˙̃∆k(0)) ≤ 0 + o(1), ℑ( ˙̃∆k(1)) ≥ 0 + o(1),

i.e. up to a o(1) → 0 as k → ∞ we have that ˙̃∆k(0) points downwards, while ˙̃∆k(1) points
upwards. Now using (81) we see that the curve ∆̃k has total curvature at least π

2 − o(1) (see
Lemma 3.5 below) again contradicting Proposition 3.1 and (79).

2the symbol γ̇k(p
±
k
e±iδ

±

k ) denotes the derivative of the curve t 7→ γk(e
it) evaluated for eit = p±

k
e±iδ

±

k ,
and not the derivative of the curve t 7→ γk(p

±
k
e±it) evaluated for t = δ±

k
.
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Figure 7: Case 2
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Case 3: α < 0. Let ∆ be the straight segment in D̄2 (seen as a smooth path) joining −1 to 1.
Since ∆ ⊂ D̄2 \{i,−i} we have that Vk ◦∆→ V∞ ◦∆, and by the explicit form of V∞ we deduce
that the unit tangent vector of the curve V∞ ◦∆ describes an arc in S1 of lenght at least |α|+π
(we are using that ∆ touches S1 perpendicularly, and V∞ is conformal). This implies that for k
large enough, any C1-curve of the form Φk ◦ ∆̃ for a curve ∆̃ ∈ C1([0, 1], D̄2) with ∆̃(0) = −1,
∆̃(1) = 1 has a unit tangent vector describing an arc of length no less than |α| − o(1). If such
a curve is minimizing Dk, since by Proposition 3.1 its curvature is bounded by κ̄, its length
cannot go to zero as k → ∞. But this contradicts that p+ and p− are pinched points , since
if ∆k is a geodesic minimizing Dk(σk(p

+), σk(p
−)) (with lenght going to 0 since p+ and p− are

pinched), then joining ∆k with the two arcs arc(σk(p
±),±1) and using (75) one would obtain

paths joining −1 to 1 of Dk-length going to 0.

The only case left is α = π, and this completes the proof. ✷

In the proof of Proposition 3.2 we have used the following.

Lemma 3.4 Let ∆ ∈ W 2,∞([0, L],C) be a curve satisfying |∆̇(t)| = 1 for every t ∈ [0, L] and
∆(0) = ∆(L). Then

∫ L

0
|κ(t)|dt > π,

where κ is the curvature of ∆.

Proof. Let θ : [0, L] → R be a continuous function such that ∆̇(t) = eiθ(t) for t ∈ [0, L]. Then
it is easy to see that θ̇ = κ. We have θ([0, L]) = [θ−, θ+] ⊂ R for some θ−, θ+ ∈ R. Assume now
that

θ+ − θ− ≤ π, (84)

and set

θ̄ :=
θ+ − θ−

2
, v := eiθ̄.

Then since |θ(t)− θ̄| ≤ π
2 for every t ∈ [0, L], we have

d

dt
〈∆(t), v〉 = 〈∆̇(t), v〉 = 〈eiθ(t), eiθ̄〉 ≥ 0,

with identity possible only for a proper subset of [0, L], where |θ(t)− θ̄| = π
2 . But this contradicts

that ∆(0) = ∆(L). In particular (84) cannot hold, and we get

∫ L

0
|κ(t)|dt =

∫ L

0
|θ̇(t)|dt ≥ osc(θ) = θ+ − θ− > π.

�

Lemma 3.5 Let ∆ ∈W 2,∞([0, L],C) be a curve satisfying ∆̇(t) = 1 for every t ∈ [0, L]. Assume
that

ℜ(∆(0)) = ℜ(∆(L)), (85)

and that for some (small) ε > 0 one has

ℑ(∆̇(0)) < ε, ℑ(∆̇(L)) > −ε. (86)
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Then ∫ L

0
|κ(t)|dt >

π

2
− Cε,

where κ is the curvature of ∆ and C is a universal constant.

Proof. Let θ ∈W 1,∞([0, L],R) be as in the proof of Lemma 3.4. Then (85) implies that for some
t1, t2 ∈ [0, L] one has ℜ(eiθ(t1)) ≤ 0, ℜ(eiθ(t2)) ≥ 0 (otherwise ∆̇ would be pointing always right
or always left). Condition (86) implies that ℑ(eiθ(0)) ≤ ε, ℑ(eiθ(L)) > −ε. Then we immediately
infer that the oscillation of θ is at least π

2 −Cε, and we conclude as in the proof of Lemma 3.4,

using that κ = θ̇. �

Next we prove some properties concerning the set P .

Lemma 3.6 Let p+, p− be dual pinched points, and assume that σk(p
±) = ±1. Then Φk is as

in case 2 of Theorem 3.2, B = {a1, a2} and ±1 6∈ B. Moreover every pinched point p has only
one dual p′ and |arc(p, p′)| ≥ C

κ̄ .

Proof. Let us start from the first claim. If Φk is as in case 1 of Theorem 3.2, then
∫

∆k

|Φ′
k(z)||dz| ≥ C for every ∆k with ∆k(0) = −1, ∆k(1) = 1, (87)

in contrast with the fact that p+ and p− are pinched. Then we are in case 2 of Theorem 3.2
and by Proposition 3.2 we have N ∈ {1, 2}. Assume now that a1 = 1 = σk(p

+) (the reasoning
is similar if a1 = −1). Then we compose Φk with Möbius diffeomorphism fk(z) =

z−tk
1−tkz

where
tk ↑ 1 is chosen so that for a fixed small δ > 0 we have for k large enough

∫

S1∩Bδ(1)
|(Φk ◦ fk)

′(z)||dz| =
π

2κ̄
. (88)

In other words the effect of fk is to stretch the disk to remove the concentration at the point
a1 = 1, concentrating the disk towards −1. Then Φ̃k := Φk ◦ fk is necessarily as in case 1
of Theorem 3.2. Moreover the corresponding σ̃k := f−1

k ◦ σk still satisfies σ̃k(p
±) = ±1, since

fk leaves ±1 fixed. This together with (88) contradicts that p+ and p− are pinched, since by
conformality and convergence of Φ̃k, in a neighborhood Bδ/2(1) we have |Φ̃′

k| ≥ C, hence (87)

holds with Φ̃k instead of Φk. Therefore, going back to the original maps Φk we have proven that
±1 6∈ B.

To rule out the case N = 1 it suffices to observe that in this case σk(p
+) and σk(p

−) would
belong to the same connected component of S1 \B, hence, since Φk is as in case 2 of Theorem
3.2, we would get |arc(σ−1

k (1), σ−1
k (1))| → 0, which is absurd, since σ−1

k (±1) = p± and p+ 6= p−.

Claim 1: every pinched point p has a unique dual p′.
Proof of the claim 1. It suffices to prove that given any 2 pinched points p+, p− dual

to each other, then γ̇∞(p+) = −γ̇∞(p−) (since then a third point p̃ dual to p+ would be also
dual to p− hence γ̇∞(p̃) would have to coincide both with γ̇∞(p+) and its opposite, which is
impossible). Let us therefore consider two pinched points p+, p− dual to each other. Up to
considering Φ̃k := Φk ◦ fk and σ̃k = f−1

k ◦ σk for suitable Möbius transformations fk, we can

assume that σ̃k(p
±) = ±1. Then, by the previous part of the lemma, Φ̃k blows up at two points

32



a1, a2 different from ±1. To such Φ̃k we can then apply Proposition 3.2 with C± being the
connected component of S1 \ {a1, a2} containing ±1. We then infer that γ̇∞(p+) = −γ̇∞(p−).

Claim 2: |arc(p, p′)| ≥ C
κ̄ .

Proof of the claim 2. Claim 2 follows from the fact that both arcs A1, A1 joining
σ̃k(p

±) = ±1 contain a blow up point a1 or a2, for which
∫

Ai

|κ̃k|e
λ̃k |dz| =

∫

fk(Ai)
|κk|e

λk |dz| ≥ π − o(1).

�

Lemma 3.7 The set P is closed.

Proof. Let {pn} and {p′n} be respectively a sequence of pinched points and their duals, with
pn → p∞ and p′n → p′∞ as k → +∞ .

We first observe that |pn − p
′
n| ≥ C > 0 for all n ≥ 0, hence p∞ 6= p′∞ .

For all pn there exists curves ∆n,k ⊆ D̄
2 with ∂∆n,k = {σk(pn), σ(p

′
n)} and

lim
k→+∞

∫

∆n,k

|Φ′
k(z)||dz| = 0 .

Since γk → γ∞ in C1(S1) as k → +∞ , we have

lim
k→+∞

lim
n→+∞

∫

arc(pn,p∞)
|γ̇k(t)|dt = 0

lim
k→+∞

lim
n→+∞

∫

arc(p′n,p
′
∞)
|γ̇k(t)|dt = 0 .

(89)

We set
∆̃n,k := ∆n,k ∪ arc(σk(pn), σk(p∞)) ∪ arc(σk(pn), σk(p∞)) .

For all k, we have ∆̃n,k → ∆̃∞,k as n → +∞ with ∂∆̃k,∞ = {σk(p∞), σk(p
′
∞)} and since

Φk ◦ σk = γk on S1 from (89) we have

lim
k→+∞

∫

∆̃k,∞

|Φ′
k(z)||dz| = lim

k→+∞
lim

n→+∞

∫

∆̃n,k

|Φ′
k(z)||dz| = 0 .

Hence p∞ is by definition a pinched point and p′∞ is its dual. �

We introduce now the following equivalence relation on the set S1 \ {P} .

Definition 3.2 Given p, q ∈ S1 \ {P} we say that p ∼ q if and only if there exists a sequence
of paths ∆k : [0, 1]→ D̄2 with ∆k(0) = σk(p),∆k(1) = σk(q) such that

lim inf
k→+∞

dk(∆k, σk(P)) > 0 , (90)

where dk : D̄2 × D̄2 → R+ is the distance defined as

dk(z, w) = inf

{(∫ 1

0
|Φ′

k(∆(t))|2|∆̇(t)|2dt

) 1
2

,

∆ ∈W 1,2([0, 1], D̄2), ∆(0) = z, ∆(1) = w

}

.
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Proposition 3.3 Let q ∈ S1 \ {P}, Aq and Bq be respectively the equivalence class and the
connected component containing q . Then Bq ⊆ Aq .

Proof of Proposition 3.3 . Let q ∈ S1 \{P}. We show that Aq ∩Bq is open and closed in Bq .
1. Aq ∩ Bq is open in Bq. Let δ > 0 small enough so that eitq ∈ S1 \ {P} for t ∈ [−2δ, 2δ]

and ∫

σk(arc(e−2δiq,e2δiq))
|Φ′

k(z)||dz| <
π

2κ̄
. (91)

Now set q0 = e−iδq, q1 = q and q2 = eiδq. Let fk be the sequence of Möbius transformations of

D̄2 such that σ̃k(q0) = 1, σ̃k(q1) = e
2πi
3 , σ̃k(q2) = e

4πi
3 . We apply Theorem 3.2 to Φ̃k := Φk ◦ fk

and notice that if we are in case 2 of Theorem 3.2, then there are one or two blow-up points. In
the latter case away from the blow-up points {a1, a2} we have that σ−1

k locally converges to two
pinched points, which implies that one of the qi’s lies in P, contradiction. In the former case for
one couple of points, say q1 and q2 one has

∫

arc(q1,q2)
|γ̇(t)|dt =

∫

arc(σ̃k(q1),σ̃k(q2))
|Φ̃′

k(z)||dz| → 0,

contradicting that |γ̇k| is bounded away from 0 and |arc(q1, q2)| = δ.
Therefore we are in case 1 of Theorem 3.2 and Φ̃k ⇀ Φ̃∞ in W 1,2(D̄2) and in W 2,p

loc (D̄
2 \B),

where Φ̃∞ is a holomorphic immersion in D̄2 \B, B = {a1, . . . , aN} and e
j2πi
3 6∈ B for i = 0, 1, 2.

Since |Φ̃′
∞| > Cδ > 0 in D̄2 \ ∪Ni=1Bδ(ai), for every p ∈ arc(q0, q2), choosing as ∆k the segment

joining σk(p) to σk(q) satisfies (90), showing that Bδ(q) ∩ S
1 ⊂ Aq.

2. Aq ∩ Bq is closed in Bq . Let qn ∈ Aq ∩ Bq be such that qn → q∞ ∈ Bq. For every n
there exists ∆k

n with ∆k
n(0) = σk(qn) and ∆k

n(1) = σk(q). and

lim inf
k→+∞

dk(∆
k
n, σk(P)) > 0 . (92)

Consider now the path Σk
n = arc(σk(q∞), σk(qn)) ∪∆k

n, joining σk(q∞) to σk(q) . We claim that

lim inf
k→+∞

dk(Σ
k
n, σk(P)) > 0 .

Indeed, considering (92), it suffices to prove that for n sufficiently large

lim inf
k→+∞

dk(arc(σk(q∞), σk(qn)), σk(P)) > 0 . (93)

Assume by contradiction that the liminf in (93) is zero.
For every k and n, let qkn ∈ arc(q∞, qn) and p

k
n ∈ P such that

lim inf
k→+∞

Dk(q
k
n, p

k
n) = 0.

Up to subsequence qkn → q∞ and pkn → p∞ ∈ P as n, k →∞ and

lim
k→+∞

lim
n→+∞

Dk(q
k
n, p

k
n) = lim

k→+∞
Dk(q∞, p∞) = 0 ,

but this contradicts that q∞ /∈ P . This contradiction proves that q∞ ∈ Aq ∩ Bq , hence Aq ∩ Bq
is closed in Bq . ✷
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Proposition 3.4 Let A be an equivalence class in S1 \ {P} . Then there exists a sequence
fk : D̄

2 → D̄2 of Möbius transformations such that Φ̃k := Φk ◦ fk ⇀ Φ̃∞ in W 2,p
loc (D̄

2 \ B),

B = {a1, . . . , aN}, and letting as usual σ̃k be such that γk = Φ̃k ◦ σ̃k, one has σ̃−1
k ⇀ ψ∞ in

W 2,p
loc (S

1 \B),
ψ∞(S1 \B) = A (94)

and γ∞(A) = Φ̃∞(S1 \B) . In fact (γ∞)∗[A] = (Φ̃∞)∗[S
1 \B].

Proof. Given q ∈ A take fk as in the proof of Proposition 3.3 and set Φ̃k := Φk ◦ fk. We have
shown that Φ̃k ⇀ Φ̃∞ in W 1,2(D̄2) and in W 2,p

loc (D̄
2 \B) for a finite set B = {a1, . . . , aN}, where

Φ̃∞ is a holomorphic immersion (Theorem 3.2, case 1). In particular this implies that ψk := σ̃−1
k

is bounded in W 2,p
loc (S

1 \B) and up to a subsequence ψk ⇀ ψ∞ in W 2,p
loc (S

1 \B). Clearly

ψ∞(S1 \B) ⊂ A.

Conversely, given p 6∈ ψ∞(S1\B), we want to show that p 6∈ A. Given such p we have σ̃k(p)→ ai
for some ai ∈ B, since otherwise we would have p = ψk ◦ σ̃k(p)→ ψ∞(p∗) for p∗ ∈ S

1 \B. Since
∇Φ̃∞ ∈ L

2(D2), from Fubini’s Theorem we can find a sequence δin → 0 such that

lim
n→+∞

∫

∂B(ai,δin)∩D̄
2

|∇Φ̃∞(z)|2|dz| = 0 . (95)

For every ai, set {p
i,−
k,n, p

i,+
k,n} = σ̃−1

k (∂B(ai, δ
i
n) ∩ S

1) . We have |pi,−k,n − p
i,+
k,n| > C0 for any n and

k large enough, since by definition of the blow-up points one has for k large enough

∫

arc(pi,−k,n,p
i,+
k,n)
|γ̇k(t)|dt =

∫

B(ai,δin)∩S
1

eλk(z)|dz| >
π

2
.

Therefore up to subsequence pi,−k,n → pi,−∞ and pi,+k,n → pi,+∞ with pi,+∞ 6= pi,−∞ and

lim
k→∞

Dk(σ̃k(p
i,−
∞ ), σ̃k(p

i,+
∞ )) = 0

In particular pi,−∞ and pi,+∞ are pinched. Then condition (95) implies that any path ∆k joining
σ̃k(q) and σ̃k(p) for k large enough it close to σ̃k(p

i,−
∞ ) ∈ σ̃k(P), hence p ∈ S

1 \ A.
Finally

(γ∞)∗[A] = lim
δ→0

(γ∞)∗[ψ∞(S1 \ ∪ai∈BB(ai, δ))]

= lim
δ→0

lim
k→∞

(γk)∗[σ̃
−1
k (S1 \ ∪ai∈BB(ai, δ))]

= lim
δ→0

lim
k→∞

(Φ̃k)∗[S
1 \ ∪ai∈BB(ai, δ)]

= lim
δ→0

(Φ̃∞)∗[S
1 \ ∪ai∈BB(ai, δ)]

= (Φ̃∞)∗[S
1 \B].

�
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3.3 Quantization result: Proof of Theorems 1.2 and 1.4

In this section we prove Theorems 1.2 and 1.4. In Theorem 1.2 we will show that under the
hypothesis of Theorem 3.2 κke

λk ⇀ µ weakly in the sense of Radon measures where µ is a Radon
measure which is the sum of a locally bounded (possibly vanishing) function and a (possibly
empty) sum of Dirac masses. We also give precise estimates on the coefficients of the Dirac
masses. In the Theorem 1.4 we show that up to a suitable choice of Möbius transformations we
can “detect” all the connected components arising in the limit.

Proof of Theorem 1.2 . From Theorem 3.2 there is a (possibly empty) set B = {a1, . . . , aN} ⊂

S1 such that (65) holds. Moreover from (8) and (10) it follows that ‖(−∆)
1
2λk‖L1(S1) ≤ C.

Therefore (53) implies
‖λk − λ̄k‖Lq(S1) ≤ C for every q < +∞.

Up to extracting a further subsequence we have vk := λk − λ̄k ⇀ v∞ in Lq(S1) and

κke
λk

∗
⇀ µ, (−∆)

1
2 vk

∗
⇀ (−∆)

1
2 v∞ = µ− 1 inM(S1), (96)

whereM(S1) denotes the space of finite signed measures on S1. Up to a subsequence we also

have κk
∗
⇀ κ∞ in L∞(S1) . We now distinguish three cases.

Case 1. Suppose that we are in case 2 of Theorem 3.2 and N = 1, i.e. λk → −∞ locally
uniformly in S1 \ {a1}. Then µ = c1δa1 , and since

∫

S1

κke
λkdθ = 2π,

it follows at once that c1 = 2π. The explicit form of v∞ follows from Lemma 3.1.
Case 2. Suppose that we are in case 2 of Theorem 3.2 and N > 1. Then we conclude applying
Proposition 3.2, which in particular implies that N = 2 and µ = πδa1 +πδa2 . Again the explicit
form of v∞ follows from Lemma 3.1.
Case 3. Suppose that we are in case 1 of Theorem 3.2, i.e. λk ≥ −C. Then λk ⇀ λ∞ weakly
in W 1,p

loc (S
1 \B) and for every ϕ ∈ C∞

c (S1 \B) we have

0 = lim
k→∞

∫

S1

(λk(−∆)
1
2ϕ− (κke

λk − 1)ϕ)dθ = lim
k→∞

∫

S1

(λ∞(−∆)
1
2ϕ− (µ− 1)ϕ)dθ.

In particular the distribution

T∞ := (−∆)
1
2λ∞ − µ+ 1

is supported in B, and since by (96) T∞ ∈ M(S1), the order of T∞ (as distribution) is 0, hence

T∞ =

N∑

j=1

cjδaj .

In order to compute the coefficients cj let χδ : S
1 → R be 1 on S1∩∪nj=1B(aj , δ) and 0 otherwise.

We rewrite the equation (9) as follows:

(−∆)
1
2λk = (1− χδ)κke

λk + χδκke
λk − 1 . (97)
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Since
lim
k→∞

(1− χδ)κke
λk = (1− χδ)κ∞e

λ∞ in D′(S1) ,

testing (97) with ϕ ∈ C∞(S1) and letting k →∞ we get

∫

S1

(λ∞(−∆)
1
2ϕ− (1− χδ)κ∞e

λ∞ϕ+ ϕ)dθ = lim
k→∞

∫

S1

χδκke
λkϕdθ ,

and letting δ → 0 we infer

〈T∞, ϕ〉 = lim
δ→0

lim
k→∞

∫

S1

χδκke
λkϕdθ.

By choosing ϕ = 1 in a neighborhood of aj for a fixed j, and ϕ = 0 in a neighborhood of B \{aj}
we get

cj = lim
δ→0

lim
k→∞

∫

S1∩B(aj ,δ)
κke

λkdθ.

We now want to compute cj for a fixed j ∈ {1, . . . , N}. Consider the Möbius transformation

fk(z) =
z−tkaj
1−tk ājz

, and Φ̃k := Φk ◦ fk, for a sequence tk ↑ 1 to be chosen. By Corollary 2.2 we have

λ̃k := log |Φ̃′
k| = λk ◦ fk + log |f ′k|, κ̃k := κk ◦ fk,

and
(−∆)

1
2 λ̃k = κ̃ke

λ̃k − 1.

Since log |f ′k| → −∞ locally uniformly in D̄2 \ {aj}, and log |f ′k(aj)| → ∞ it is not difficult to
see that if tk ↑ 1 slowly enough, then λ̃k → −∞ uniformly locally in D̄2 \ {aj ,−aj} and we can
apply Proposition 3.2 to Φ̃k, and obtain that

κ̃ke
λ̃k

∗
⇀ π(δaj + δ−aj ).

With a change of variable we then get

π = lim
δ→0

lim
k→∞

∫

S1∩B(aj ,δ)
κ̃ke

λ̃kdθ = lim
δ→0

lim
k→∞

∫

fk(S1∩B(aj ,δ))
κke

λkdθ = cj ,

where the last identity holds up to having tk ↑ 1 slowly enough. �

Proof of Theorem 1.4 . From Proposition 3.3 it follows that S1 \ {P} = ∪j∈JAi where J is
an at most countable set and Aj is an equivalence class generated by the relation in Definition
3.2 . From Proposition 3.4 it follows that for every class Aj there is a sequence of Möbius

transformations f jk(z) such that

Φ̃j
k := Φk ◦ f

j
k ⇀ Φ̃j

∞, in W 2,p
loc (D̄

2 \Bj), Bj = {b
j
1, . . . b

j
Nj
} ,

where Φ̃j
∞ : D̄2 \Bj → R2 is a conformal immersion and γ∞(Aj) = Φ̃j

∞(S1 \Bj) . Moreover we
have

(γ∞)∗[S
1 \ P] =

∑

j∈J

(Φ̃j
∞)∗[S

1 \Bj ].
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We have ∑

j∈J

(γ∞)∗[Aj] =
∑

j∈J

(Φ̃j
∞)∗[S

1 \Bj],

and it remains to prove that
(γ∞)∗[P] = 0.

In order to do that let τ : P → P be the bijection which to a pinched point p associates its dual.
For a differential form φ : C→ L(C,C) we have

(γ∞)∗[P](φ) =

∫

P
φ(γ∞(t))(γ̇∞(t))dt. (98)

Now recall that
γ∞(t) = γ∞(τ(t)), γ̇∞(t) = −γ̇∞(τ(t)). (99)

For a sequence tn ∈ P
+ with tn → t ∈ P+ as n→∞ we have

γ∞(tn) = γ∞(t) + γ̇∞(t)(tn − t) + o(tn − t),

γ∞(τ(tn)) = γ∞(τ(t)) + γ̇∞(τ(t))(τ(tn)− τ(t)) + o(τ(tn)− τ(t)),
(100)

where for simplicity of notation we identified S1 with the interval [0, 2π], with zero corresponding
to a point in S1 \ P. Using (99) and (100) we infer that

lim
n→∞

τ(tn)− τ(t)

tn − t
= −1.

Then at a density point of P we have dτ
dt = −1 in the sense of approximate differentials (if the

density of P is everywhere 0 then |P| = 0 and we are done). Therefore

∫

P
φ(γ∞(t))(γ̇∞(t))dt = −

∫

P
φ(γ∞(τ(t)))(γ̇∞(τ(t)))dt

= −

∫

τ(P)=P
φ(γ∞(t))(γ̇∞(t))dt,

where in the first identity we used (99) and in the second identity we made a change of variable.
This proves that the integral in (98) vanished for every differential form φ, hence (γ∞)∗[P] = 0.

Since for every j ∈ J the sequence (Φ̃j
k) is as in case 1 of Theorem 3.2, i.e. setting λjk :=

log |(Φ̃j
k)

′|S1 | we have |λ̄jk| ≤ C, we can apply Theorem 1.2, part iii, and it follows at once that

the blow-up set of λjk is Bj. ✷

4 Relation between the Liouville equations in R and

S1

Consider the conformal map G : D2 → R2 given by

G(z) =
iz + 1

z + i
=
z + z̄ + i(|z|2 − 1)

1 + |z|2 + i(z̄ − z)
.
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We will use on the domain D2 the coordinate z = ξ + iη and on the target R2 the coordinates
(x, y) or x+ iy. Writing G in components,

G1(z) = ℜG(z) =
2ξ

(1 + η)2 + ξ2
, G2(z) = ℑG(z) =

ξ2 + η2 − 1

(1 + η)2 + ξ2

and using the polar coordinates (r, θ) on D2 one easily verifies

∂G1

∂r

∣
∣
∣
∣
r=1

= 0,
∂G2

∂r

∣
∣
∣
∣
r=1

=
1

1 + η
,

∂G1

∂θ

∣
∣
∣
∣
r=1

= −
1

1 + η
,

∂G2

∂θ

∣
∣
∣
∣
r=1

= 0 .

Notice that G|S1(ξ + iη) = ξ
1+η , i.e. Π := G1|S1 is the classical stereographic projection from

S1 \ {−i} onto R. Its inverse is

Π−1(x) =
2x

1 + x2
+ i

(

−1 +
2

1 + x2

)

. (101)

If we write Π−1(x) = eiθ(x) we get the following useful relation

1 + sin(θ(x)) =
2

1 + x2
,

2

1 + Π(θ)2
= 1 + sin θ, (102)

which follows easily from sin(θ(x)) = ℑ(Π−1(x)) = 1−x2

1+x2 .

Proposition 4.1 Given u : R→ R set v := u◦Π : S1 → R, where Π := G1|S1 . Then u ∈ L 1
2
(R)

if and only if v ∈ L1(S1). In this case

(−∆)
1
2 v(eiθ) =

((−∆)
1
2u)(Π(eiθ))

1 + sin θ
in D′(S1 \ {−i}), (103)

i.e.
〈(−∆)

1
2 v, ϕ〉 = 〈(−∆)

1
2u, ϕ ◦ Π−1〉 for every ϕ ∈ C∞

0 (S1 \ {−i}).

Further if (−∆)
1
2u ∈ L1(R), or equivalently (−∆)

1
2 v|S1\{−i} ∈ L

1(S1), then

(−∆)
1
2 v(eiθ) =

((−∆)
1
2u)(Π(eiθ))

1 + sin θ
− γδ−i in D′(S1), γ =

∫

R

(−∆)
1
2udx . (104)

Proof of Proposition 4.1 . Since

∫

S1

|v|dθ =

∫

R

2|v(Π−1(x))|

1 + x2
dx

it is clear that v ∈ L1(S1) if and only if u ∈ L 1
2
(R).

Given now ϕ ∈ C∞
c (S1 \ {−1}) set ψ := ϕ ◦ Π−1 ∈ C∞

c (R) and let ϕ̃ ∈ C∞(D̄2) and
ψ̃ ∈ C∞ ∩ L∞(R̄2

+) be the harmonic extensions of ϕ and ψ given by the Poisson formulas (125)

and (132) respectively. It is not difficult to see that ψ̃ ◦G|D̄2 is continuous, harmonic in D2 and
it coincides with ϕ̃ on S1. Then by the maximum principle ϕ̃ = ψ̃ ◦G in D̄2 \ {−i}.
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Using polar coordinates we compute

∂ϕ̃

∂r

∣
∣
∣
∣
r=1

◦Π−1 = −
∂(ϕ̃ ◦G−1)

∂x

∂G1

∂r

∣
∣
∣
∣
r=1

−
∂(ϕ̃ ◦G−1)

∂y

∂G2

∂r

∣
∣
∣
∣
r=1

= −
∂ψ̃

∂y

∣
∣
∣
∣
y=0

1 + x2

2
.

Then using Propositions A.1 and (A.3) we get

〈(−∆)
1
2 v, ϕ〉 =

∫

S1

v
∂ϕ̃

∂r

∣
∣
∣
∣
r=1

dθ

=

∫

R

(v ◦ Π−1(x))

(
∂ϕ̃

∂r

∣
∣
∣
∣
r=1

◦Π−1(x)

)
2

1 + x2
dx

= −

∫

R

u
∂ψ̃

∂y

∣
∣
∣
∣
y=0

dx

= 〈(−∆)
1
2u, ψ〉,

so that (103) is proven.

In order to prove (104) set f := ((−∆)
1
2 v)|S1\{−i} ∈ D

′(S1 \ {−i}) and notice that

‖f‖L1(S1) = ‖(−∆)
1
2u‖L1(R) = γ.

Since f ∈ L1(S1) ⊂ D′(S1), we have

T := (−∆)
1
2 v − f ∈ D′(S1) (105)

and supp(T ) ⊂ {−i}. We claim that T = cδ−i for some constant c. Up to a rotation of S1, it is
convenient to assume that T is supported at {1}. In this case we can write

T =
N∑

k=0

ckD
kδ0,

for some N ∈ N and c0, . . . , cN ∈ C, which leads to

〈T, ϕ〉 =
N∑

k=0

ck(−1)
kDkϕ0 =

N∑

k=0

ck
∑

n∈Z

(−in)kϕ̂(n), for ϕ ∈ D(S1). (106)

On the other hand according to (124) we have for ϕ ∈ D(S1)

〈(−∆)
1
2 v, ϕ〉 =

∫

S1

v(θ)
∑

n∈N

|n|ϕ̂(n)e−inθ dθ

=
∑

n∈N

|n|ϕ̂(n)

∫

S1

v(θ)e−inθdθ

= 2π
∑

n∈N

|n|v̂(n)ϕ̂(n),

(107)
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where the sum can be moved outside the integral because
∑

n∈N |n||ϕ̂(n)| <∞. Similarly

〈f, ϕ〉 = 2π
∑

n∈N

f̂(n)ϕ̂(n), for ϕ ∈ D(S1). (108)

Clearly (105), (106), (107) and (108) are compatible only if ck = 0 for k = 1, . . . , N , hence
proving (up to rotating back) that T = c0δ−i, as claimed. Finally, testing with ϕ = 1 we obtain

0 = 〈(−∆)
1
2 v, 1〉 = 〈f, 1〉+ 〈T, 1〉 = ‖(−∆)

1
2u‖L1 + c0,

which implies that c0 = −‖(−∆)
1
2u‖L1 . ✷

Given now u ∈ L 1
2
(R) we want to define a function λ ∈ L1(S1) such that

Π∗(e2u|dx|2) = e2λ|dθ|2,

where Π∗ denotes the pull-back of the stereographic projection, while |dx|2 and |dθ|2 are the
standard metrics on R and S1 respectively. Since

Π∗(e2u|dx|2) =

(
∂Π

∂θ

)2

e2u(Π(θ))|dθ|2

we find

λ(θ) = u(Π(θ)) + log

∣
∣
∣
∣

∂Π

∂θ

∣
∣
∣
∣
= u(Π(θ))− log (1 + sin θ) , (109)

or equivalently and using (102)

u(x) = λ(Π−1(x)) + log

(
2

1 + x2

)

. (110)

Using Proposition 4.1 we can now easily relate (−∆)
1
2u and (−∆)

1
2λ.

Proposition 4.2 Given u : R→ R set λ as in (109). Then u ∈ L 1
2
(R) if and only if λ ∈ L1(S1),

and (−∆)
1
2u ∈ L1(R) if and only if (−∆)

1
2λ ∈ L1(S1 \ {−i}). In this case u solves (20) if and

only if λ solves

(−∆)
1
2λ = κ eλ − 1 + (2π − c) δ−i in S1. (111)

with κ = V ◦ Π and c = ‖(−∆)
1
2u‖L1(R).

Proof. This follows at once from Proposition 4.2 and Lemma 4.1 below. �

Lemma 4.1 We have
(−∆)

1
2 log(1 + sin θ) = 1− 2πδ−i.
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Proof. Notice that by (102) we can write

log(1 + sin θ) = u1,0(Π(θ)), u1,0(x) = log

(
2

1 + x2

)

.

Then Propositions 5.1 and 4.1 imply

(−∆)
1
2 log(1 + sin θ) =

(−∆)
1
2u(Π(θ))

1 + sin θ
− ‖(−∆)

1
2u‖L1δ−i

=
eu1,0(Π(θ))

1 + sin θ
− δi

∫

R

eu1,0(x)dx

= 1− 2πδ−i.

�

5 Proof of Theorem 1.6 and Proposition 1.1

Before proving Theorem 1.6 we show that the functions defined in (27) are indeed solutions of
(24)-(25).

Proposition 5.1 For every µ > 0 and x0 ∈ R the function uµ,x0 defined in (27) belongs to
L 1

2
(R) satisfies (25) with L = 2π and solves (24).

Proof . That uλ,x0 ∈ L 1
2
(R) and

∫

R
euλ,x0dx = 2π is elementary. The equation is invariant

under translations and dilations in the sense that for all x0 ∈ R and λ > 0 if u is a solution
of (24) then u(λ(x + x0)) + log(λ) is a solution of (24) as well, hence it suffices to prove that
u1,0(x) = log

(
2

1+x2

)
is a solution. From Proposition A.3 we get with integration by parts

π(−∆)
1
2u1,0(x) = lim

ε→0

∫

R\[x−ε,x+ε]

log
(
1+y2

1+x2

)

(x− y)2
dy

= lim
ε→0

{

−
log
(
1+y2

1+x2

)

y − x

∣
∣
∣
∣

x−ε

−∞

−
log
(
1+y2

1+x2

)

y − x

∣
∣
∣
∣

∞

x+ε

+

∫

R\[x−ε,x+ε]

2y

(y − x)(1 + y2)
dy

}

= lim
ε→0

{2 arctan(y) + x log
(
(y−x)2

1+y2

)

1 + x2

∣
∣
∣
∣

x−ε

−∞

+
2arctan(y) + x log

(
(y−x)2

1+y2

)

1 + x2

∣
∣
∣
∣

∞

x+ε

}

=
2π

1 + x2
= πeu1,0(x).
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Theorem 5.1 There exist constants C1, C2 > 0 such that for any ε ∈ (0, π) one has

C1 ≤ sup

u∈H̃1,1
∆ (I), ‖(−∆)

1
2 u‖L1(I)≤1

ε

|I|

∫

I
e(π−ε)|u|dθ ≤ C2, (112)

where H̃1,1
∆ (I) := {u ∈ L1(R) : supp(u) ⊂ Ī , (−∆)

1
2u ∈ L1(R)}.

Lemma 5.1 The Green function of (−∆)
1
2 on the interval I = (−1, 1) can be decomposed as

G 1
2
(x, y) = F 1

2
(|x− y|) +H 1

2
(x, y),

where F 1
2
(x) := 1

π log 1
|x|and H 1

2
is upper bounded.

Proof. This follows from the explicit expression of G(x, y) (see e.g [3] or [5]), namely

G(x, y) =
1

2π

∫ r0(x,y)

0

1
√

r(r + 1)
dr =

1

π
log(

√

r0(x, y) +
√

r0(x, y) + 1),

where

r0(x, y) :=
(1− |x|2)(1 − |y|2)

|x− y|2
.

�

Proof of Theorem 5.1. Up to a translation and dilation we can assume that I = (−1, 1). With

Lemma 5.1 we write for u ∈ H̃1,1
∆ (I) and f := (−∆)

1
2u

|u(x)| =

∣
∣
∣
∣

∫

I
G(x, y)f(y)dy

∣
∣
∣
∣
,

and we bound

G(x, y) ≤
1

π
log

(
2

|x− y|

)

+ C, x, y,∈ I,

hence

|u(x)| ≤
1

π

∫

I
log

(
2

|x− y|

)

|f(y)|dy + C, (113)

and exactly as in (56) one gets

∫

I
e(π−ε)|u(x)|dx ≤ C

∫

I
|f(y)|

∫

I

(
2

|x− y|

)1− ε
π

dxdy ≤
C

ε
.

The rest of the proof is also similar to the proof of Theorem 3.1. �

Remark 5.1 A slight modification of (112) is

C1 ≤ sup
u=F 1

2
∗f, supp(f)⊂Ī , ‖f‖L1(I)≤1

ε

|I|

∫

I
e(π−ε)|u|dθ ≤ C2, (114)
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where F 1
2
is as in Lemma 5.1. The proof of (114) is similar to the proof of (112), since u = F 1

2
∗f

obviously satisfies (113). An alternative proof of a non-sharp version of (114), namely

sup
u=F 1

2
∗f, supp(f)⊂Ī , ‖f‖L1(I)≤1

∫

I
eδ|u−ū|dθ ≤ C2, for some δ > 0, ū :=

∫

I
udx,

can be obtained noticing that for u = F 1
2
∗ f one has [u]BMO(I) ≤ C[F 1

2
]BMO(R)‖f‖L1(I), and

one can apply the John-Niremberg inequality.

Proposition 5.2 Let u ∈ L 1
2
(R) satisfy (24)-(25). Then there is a constant C0 ∈ R such that

u(x) =
1

π

∫

R

log

(
1 + |y|

|x− y|

)

eu(y)dy + C0. (115)

In the proof of Proposition 5.2 we use two lemmata.

Lemma 5.2 For any f ∈ L1(R) the function

w(x) := I[f ](x) :=
1

π

∫

R

log

(
1 + |y|

|x− y|

)

f(y)dy (116)

is well defined, belongs to L 1
2
(R) and satisfies

(−∆)
1
2w = f in S ′. (117)

Proof of Lemma 5.2 . Let us first assume that f belongs to the Schwartz space S. Remember

that for F (x) := 1
π log

(
1
|x|

)

we have (see e.g. [39, page 132])

F̂ (ξ) = P
1

|ξ|
+ Cδ0 in S ′, (118)

where P 1
|ξ| ∈ S

′ is the tempered distribution defined by

〈

P
1

|ξ|
, ϕ

〉

=

∫

|ξ|≤1

ϕ(ξ)− ϕ(0)

|ξ|
dξ +

∫

|ξ|>1

ϕ(ξ)

|ξ|
dξ, ϕ ∈ S. (119)

For every f ∈ C∞
c (R) one easily sees that F ∗ f ∈ C∞(R) and F ∗ f ∈ L 1

2
(R). Then

〈(−∆)
1
2 (F ∗ f), ϕ〉 :=

∫

R

(F ∗ f)F−1(|ξ|ϕ̂)dx

=

∫

R

F (f̃ ∗ F−1(|ξ|ϕ̂))dx

=

∫

R

F F(F−1(f̃ ∗ F−1(|ξ|2σϕ̂)))dx

=
1

2π

∫

R

F F(f̂ |ξ| ˆ̃ϕ)dx

=
1

2π

∫

R

f̂ ˆ̃ϕdξ =

∫

R

fϕdx,

(120)
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where in order to apply (119) in the fifth identity can approximate the function ψ(ξ) = f̂ |ξ|ϕ̂
by a sequence of functions ψε = f̂ηε ˆ̃ϕ ∈ S(R) with ηε ∈ C

∞(R) suitably chosen (see for instance

[24]). Hence (−∆)
1
2 (F ∗f) = f in D′(R), and since f ∈ D(R) the indentity also holds in a strong

sense. Moreover, since obviously

(−∆)
1
2

(
1

π

∫

R

log(1 + |y|)f(y)dy

)

= 0

we see that (117) is satisfied when f ∈ D(R).
For a general function f ∈ L1(R) we can find a sequence (fk) ⊂ D(R) with fk → f in L1(R)

and take ϕ ∈ S(R). Then

(I)k :=
〈

(−∆)
1
2I[fk], ϕ

〉

= 〈fk, ϕ〉 → 〈f, ϕ〉,

as k →∞, while

(I)k =
〈

I[fk], (−∆)
1
2ϕ
〉

=

∫

R

I[fk](x)ψ(x)dx

where ψ := (−∆)
1
2ϕ satisfies

|ψ(x)| ≤ C(1 + |x|2). (121)

It remains to show that
∫

R

I[fk − f ](x)ψ(x)dx→ 0 as k →∞.

Define gk := fk − f → 0 in L1(R). Then from ‖h1 ∗ h2‖L1 ≤ ‖h1‖L1 ‖h2‖L1 we get

∣
∣
∣
∣
∣

∫

B(x,1)
log

(
1 + |y|

|x− y|

)

gk(y)dy

∣
∣
∣
∣
∣
≤ log(2 + |x|)‖gk‖L1(R) + C‖gk‖L1 ,

and using that for |x− y| ≥ 1 we have log
(
1+|y|
|x−y|

)

≤ C(1 + log(|x|))

∣
∣
∣
∣
∣

∫

R\B(x,1)
log

(
1 + |y|

|x− y|

)

gk(y)dy

∣
∣
∣
∣
∣
≤ C(1 + log |x|)‖gk‖L1 .

Therefore, taking (121) into account, we see that

(I)k →
〈

I[f ], (−∆)
1
2ϕ
〉

as k →∞,

hence conclude that (−∆)
1
2w = f in S ′(R). �

Lemma 5.3 Let f ∈ L 1
2
(R) satisfy (−∆)

1
2 f = 0. Then f is constant.

Proof. This is identical to the proof of Lemma 14 in [24]. �

Proof of Proposition 5.2. Set w(x) as in (116) with f(y) := eu(y). Then (−∆)
1
2 (u − w) = 0 by

Lemma 5.2, hence by Lemma 5.3 u− w ≡ C0 for some C0 ∈ R. �
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Proposition 5.3 Let u ∈ L 1
2
(R) satisfy (24)-(25). Then u ∈ C∞(R).

Proof. Up to scaling, assume that
∫ 1

−1
eu(x)dx < ε,

where ε will be fixed later.
Let us split u = u1 + u2, where

u1(x) =
1

π

∫ 1

−1
log

(
1 + |y|

|x− y|

)

eu(y)dy + C0 =
1

π

∫ 1

−1
log

(
1

|x− y|

)

eu(y)dy + C1. (122)

Then (115) implies that u2 is defined by the same formula, integrating over R \ [−1, 1] instead
of R. It is easy to see that

‖u2‖L∞([−1/2,1/2]) ≤ C

∫

R

eu(x)dx <∞.

From (114) if follows that given p <∞, choosing ε > 0 small enough (depending on p) we have
e|u1| ∈ Lp([−1, 1]), hence eu ∈ Lp[−1/2, 1/2].

The same argument, together with translations and dilations, can be performed in a neigh-
borhood of every point in R, giving eu ∈ Lp

loc(R) for 1 < p <∞. Going back to (115) it is easy
to bootstrap regularity and prove that u is actually smooth. �

Corollary 5.1 Every function λ ∈ L1(S1) solving (33) with (−∆)
1
2λ ∈ L1(S1) is smooth.

Proof. By Proposition 4.2 the function u : R→ R given by (110) is in L 1
2
(R) and it solves (24).

Then by Proposition 5.3 u is smooth, hence λ ∈ C∞(S1 \ {−i}). Since (33) is invariant under
rotations we have that actually λ ∈ C∞(S1). �

Lemma 5.4 For u ∈ L 1
2
(R) ∩ C1(R) solving (24)-(25) set

α :=

∫

R

eu(x)dx.

Then α = 2π.

Proof. This argument is taken from [42] and is based on a Pohozaev-type identity. Differenti-
ating (115) (for instance by splitting the domain of integration into [−a, a] and R \ [−a, a] for
some a > |x| and using elementary calculus) we obtain

x
∂u

∂x
= −

1

π
P.V.

∫

R

x

x− y
eu(y)dy.

Multiplying by eu(x) and integrating with respect to x on the interval [−R,R] we get

(I) :=

∫ R

−R
x
∂u

∂x
eu(x)dx = −

1

π

∫ R

−R
P.V.

∫

R

x

x− y
eu(y)dy eu(x)dx =: (II).
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Integrating by parts we find

(I) =

∫ R

−R
x
∂eu(x)

∂x
dx = R(eu(R) + eu(−R))−

∫ R

−R
eu(x)dx→ −α, as R→∞,

where we used that at least on a sequence R(eu(R) − eu(−R)) → 0 as R → ∞, otherwise (25)
would be violated. As for (II) we compute

(II) = −
1

2π

∫ R

−R

∫

R

eu(y)dy eu(x)dx−
1

2π

∫ R

−R
P.V.

∫

R

x+ y

x− y
eu(y)dy eu(x)dx→ −

α2

2π
+ 0,

as R→∞. Therefore from (I) = (II) we infer α = α2

2π , i.e. α = 2π. �

Proof of Theorem 1.6. Given u ∈ L 1
2
(R) satisfying (24)-(25), by Proposition 4.2 the function

λ(θ) := u(Π(θ))− log(1 + sin θ) solves

(−∆)
1
2λ = eλ − 1 + (2π − α)δ−i in S1.

and by Lemma 5.4 α = 2π, hence

(−∆)
1
2λ = eλ − 1 in S1.

By Corollary 2.1 λ is of the form given by (34) for some a ∈ D2.
To complete the proof write a = αeiθ0 = α(t+ is) with α, t, s ∈ R. We have

u(x) = λ ◦ Π−1(x) + log

(
2

1 + x2

)

= log

(
2(1 − α2)

|1− α(t+ is)Π−1(x)|2(1 + x2)

)

.

The right-hand side can be computed using (101):

u(x) = log






2(1 − α2)
∣
∣
∣1 + α−2tx+s(1−x2)

1+x2 − iα2sx+t(1−x2)
1+x2

∣
∣
∣

2
(1 + x2)






= log

(
2(1− α2)

x2(1− 2αs+ α2)− 4αtx+ 1 + 2αs + α2

)

.

Completing the square in the denominator on the right-hand side we get

u(x) = log






2(1 − α2)

(1− 2αs + α2)
(

x− 2αt
1−2αs+α2

)2
+ (1−α2)2

1−2αs+α2




 = log

(
2µ

1 + µ2(x− x0)2

)

with

x0 =
2αt

1− 2αs + α2
, µ =

1− 2αs + α2

1− α2
.

�

The following can been seen as a non-local version of the classical mean-value property of
harmonic functions. It appears in [37, Prop. 2.2.6] in a slightly different case, but with a proof
which readily extends to the following case.
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Proposition 5.4 There exists a positive function γ1 ∈ C1,1(R) with
∫

R
γ1dx = 1 such that,

setting γλ(x) :=
1
λγ1

(
x
λ

)
, we have

u(x0) ≥ u ∗ γλ(x0)

for every λ > 0 and every u ∈ L 1
2
(R) satisfying (−∆)

1
2u ≥ 0.

Proof of Proposition 1.1. Since (−∆)
1
2u ≤ 0 we have by Proposition 5.4 below

u(0) ≤ u ∗ γλ(0) for every λ > 0,

where γλ is as in Proposition 5.4. Since dµλ(x) := γλ(−x)dx satisfies
∫

R
dµλ = 1, from Jensen’s

inequality we get
∫

R

eudµλ ≥ exp

(∫

R

udµλ

)

= eu∗γλ(0) ≥ eu(0).

On the other hand, since dµλ ≤
C
λ dx, we estimate

∫

R

eudx ≥
λ

C

∫

R

eudµλ ≥
λ

C
eu(0) →∞ as λ→∞,

contradicting (25). �

A The fractional Laplacian

A.1 The half-Laplacian on S1

Given u ∈ L1(S1) we define its Fourier coefficients as

û(n) =
1

2π

∫

S1

u(θ)e−inθdθ, n ∈ Z.

If u is smooth we can define
(−∆)

1
2u(θ) =

∑

n∈Z

|n|û(n)einθ. (123)

For u ∈ L1(S1) we can define (−∆)
1
2u ∈ D′(S1) as distribution as

〈(−∆)
1
2u, ϕ〉 :=

∫

S1

u(−∆)
1
2ϕdθ, ϕ ∈ C∞(S1). (124)

Notice that ϕ ∈ C∞(S1) implies that (−∆)
1
2ϕ ∈ C∞(S1) (here (−∆)

1
2ϕ is defined as in (123)).

In fact, given ϕ ∈ L1(S1), we have ϕ ∈ C∞(S1) if and only if ϕ̂(n) = o(|n|−k) for every k ≥ 0.

We can also give a definition of (−∆)
1
2u in terms of harmonic extensions. If u ∈ L1(S1), let

ũ(r, θ) be its harmonic extension in D2, explicitly given by the Poisson formula

ũ(r, θ) =
1

2π

∫ 2π

0
P (r, θ − t)u(t)dt, P (r, θ) =

∑

n∈Z

r|n|einθ =
1− r2

1− 2r cos θ + r2
(125)
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Then one can define (using polar coordinates)

(−∆)
1
2u =

∂ũ

∂r

∣
∣
∣
∣
r=1

in D′(S1) (126)

where the distribution ∂ũ
∂r

∣
∣
r=1

is defined as

〈
∂ũ

∂r

∣
∣
∣
∣
r=1

, ϕ

〉

:=

∫

S1

u
∂ϕ̃

∂r

∣
∣
∣
∣
r=1

dθ,

where ϕ ∈ C∞(S1) and ϕ̃ is the harmonic extension of ϕ in D2 .
Notice that if u ∈ C∞(S1) the equivalence of (123), (124) and in fact (126) is elementary,

and (126) holds pointwise. For instance the equivalence of (123) and (126) follows at once from

ũ(r, θ) =
∑

n∈Z

û(n)r|n|einθ.

Proposition A.1 The definitions (124) and (126) are equivalent.

Proof. Since (126) holds pointwise for smooth functions, one has for u ∈ L1(S1) and ϕ ∈
C∞(S1)

〈(−∆)
1
2u, ϕ〉 :=

∫

S1

u(−∆)
1
2ϕdx =

∫

S1

u
∂ϕ̃

∂θ
dθ =:

〈
∂ũ

∂r

∣
∣
∣
∣
r=1

, ϕ

〉

.

�

For u ∈ C1,α(S1) there is also the following pointwise definition of (−∆)
1
2u:

Proposition A.2 If u ∈ C1,α(S1) for some α ∈ (0, 1], then (−∆)
1
2u ∈ C0,α(S1) and

(−∆)
1
2u(eiθ) =

1

π
P.V.

∫ 2π

0

u(eiθ)− u(eit)

2− 2 cos(θ − t)
dt, (127)

where the principal value is well-defined because 2 − 2r cos(θ − t) = (θ − t)2 + O((θ − t)4) as
t→ θ.

Proof. Considering Proposition A.1 it suffices to show the equivalence of (126) and (127). Set
ũ as in (125). Then

∂ũ(r, θ)

∂r

∣
∣
∣
∣
r=1

= lim
r↑1

ũ(r, θ)− u(eiθ)

r − 1

= lim
r↑1

1

2π(r − 1)

∫ 2π

0

(1− r2)(u(eiθ)− u(eit))

1− 2r cos(θ − t) + r2
dt

= lim
r↑1

1

2π

∫ 2π

0

(1 + r)(u(eiθ)− u(eit))

1− 2r cos(θ − t) + r2
dt

=
1

π
P.V.

∫ 2π

0

u(eiθ)− u(eit)

2− 2r cos(θ − t)
dt.

�
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A.2 The half-Laplacian on R

For u ∈ S (the Schwarz space of rapidly decaying functions) we set

̂
(−∆)

1
2u(ξ) = |ξ|û(ξ), f̂(ξ) :=

∫

R

f(x)e−ixξdx. (128)

One can prove that it holds (see e.g.)

(−∆)
1
2u(x) =

1

π
P.V.

∫

R

u(x)− u(y)

(x− y)2
dy :=

1

π
lim
ε→0

∫

R\[−ε+x,x+ε]

u(x)− u(y)

(x− y)2
dy, (129)

from which it follows that

sup
x∈R
|(1 + x2)(−∆)

1
2ϕ(x)| <∞, for every ϕ ∈ S .

Then one can set

L 1
2
(R) :=

{

u ∈ L1
loc(R) :

∫

R

|u(x)|

1 + x2
dx <∞

}

, (130)

and for every u ∈ L 1
2
(R) one defines the tempered distribution (−∆)

1
2u as

〈(−∆)
1
2u, ϕ〉 :=

∫

R

u(−∆)
1
2ϕdx =

∫

R

uF−1(|ξ|ϕ̂(ξ)) dx, for every ϕ ∈ S. (131)

An alternative definition of (−∆)
1
2 can be given via the Poisson integral. For u ∈ L 1

2
(R) define

the Poisson integral

ũ(x, y) :=
1

π

∫

R

yu(y)

(y2 + (x− ξ)2)
dξ, y > 0, (132)

which is harmonic in R× (0,∞) and whose trace on R× {0} is u. Then we have

(−∆)
1
2u = −

∂ũ

∂y

∣
∣
∣
∣
y=0

, (133)

where the identity is pointwise if u is regular enough (for instance C1,α
loc (R)), and has to be read

in the sense of distributions in general, with

〈

−
∂ũ

∂y

∣
∣
∣
∣
y=0

, ϕ

〉

:=

〈

u,−
∂ϕ̃

∂y

∣
∣
∣
∣
y=0

〉

, ϕ ∈ S, ϕ̃ as in (132). (134)

More precisely:

Proposition A.3 If u ∈ L 1
2
(R)∩C1,α

loc ((a, b)) for some interval (a, b) ⊂ R and some α ∈ (0, 1),

then the tempered distribution (−∆)
1
2u defined in (131) coincides on the interval (a, b) with the

functions given by (129) and (133). For general u ∈ L 1
2
(R) the definitions (131) and (133) are

equivalent, where the right-hand side of (133) is defined by (134).
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Proof. Assume that u ∈ L 1
2
(R) ∩ C1,α

loc ((a, b)). Following [10] we have for x ∈ (a, b)

∂ũ(x, y)

∂y

∣
∣
∣
∣
y=0

= lim
y→0

ũ(x, y)− ũ(x, 0)

y

= lim
y→0

1

π

∫

R

u(ξ)− u(x)

y2 + (ξ − x)2
dξ

=
1

π
P.V.

∫

R

u(ξ)− u(x)

(ξ − x)2
dξ,

where the last convergence follows from dominated convergence outside B1(x) and by a Tay-
lor expansion in a neighborhood of x. This proves the equivalence of (129) and (133). The
equivalence between (129) and (131) amounts to showing that

∫

R

uF−1(|ξ|ϕ̂(ξ))dx =
1

π

∫

R

PV

∫

R

u(x)− u(y)

(x− y)2
dy ϕ(x)dx, (135)

whenever ϕ ∈ S is supported in (a, b). When u ∈ S then the equivalence is shown e.g. in
[10] (passing through the definition given in (128)). In the general case one approximate u
with functions uk ∈ S converging to u uniformly locally in (a, b) and in L 1

2
(R), as shown in

Proposition 2.1.4 of [37] (in order to have convergence in (135) as uk → u, it is convenient to
consider ϕ compactly supported first, in case (a, b) is not bounded).

The last statement follows at once by noticing that applying (133) to ϕ ∈ S, one gets

〈

u,−
∂ϕ̃

∂y

∣
∣
∣
∣
y=0

〉

= 〈u, (−∆)
1
2ϕ〉.

�

B Useful results from complex analysis

Lemma B.1 Let h ∈ C0(D̄2,C) be holomorphic in D2 with h(S1) ⊂ S1 and 0 6∈ h(D2). Then
h is constant.

Proof. Since h never vanishes, log |h| is well defined, harmonic and vanishes on S1, hence
everywhere. This implies that |h| ≡ 1 and from the conformality of h it follows that h is
constant. �

The following is a generalization of Lemma B.1.

Lemma B.2 (Burckel [6]) Let h ∈ C0(D̄2,C) be holomorphic in D2 with h(S1) ⊂ S1 and
degh|S1 = n ≥ 0. Then h is a Blaschke product of degree n, i.e.

h(z) = eiθ0
n∏

k=1

z − ak
1− ākz

, a1, . . . , an ∈ D
2, θ0 ∈ R.
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