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Abstract

In this note we explore the validity of Wente-type estimates for Neumann bound-
ary problems involving Jacobians. We show in particular that such estimates do
not in general hold under the same hypotheses on the data for Dirichlet boundary
problems.
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1 Introduction

Integrability by compensation has played a central role in the last decades in the geometric
analysis of conformally invariant problems. At the center of this theory there is Wente’s discovery
[10] that the distribution:

ϕ(x) = log |x| ⋆ [∂x1b∂x2a− ∂x2b∂x1a]

with ∇a,∇b ∈ L2(R2) is in (L∞ ∩W 1,2)(R2) and the following estimate holds true:

‖ϕ‖L∞(R2) ≤ C‖∇a‖L2(R2)‖∇b‖L2(R2).

It was observed by Brezis and Coron in [1] that a similar estimate holds also if we consider the
following Dirichlet problem:

Theorem 1.1. ([10]) Let Ω = {(x1, x2) ∈ R
2 : x21 + x22 < 1} and let a, b ∈ H1(Ω). Then the

solution u ∈W 1,1
0 (Ω) to the problem:







−∆u = ∂x1b ∂x2a− ∂x2b ∂x1a in Ω,

u = 0 on ∂Ω,

(1)
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is a continuous function in Ω and its gradient belongs to L2(Ω). Moreover there exists a constant
c0 = c0(Ω) such that

‖u‖L∞(Ω) + ‖∇u‖L2(Ω) ≤ c0‖∇a‖L2(Ω)‖∇b‖L2(Ω). (2)

Extensive investigation on the problem (1) and various generalizations has been conducted,
remarkably in [2].

The goal of the present work is to explore to which extent an inequality like (2) holds or not
if we replace the Dirichlet boundary condition with a Neumann boundary condition.

Our first main result gives a negative answer for general a and b. We consider for simplicity
the unit disk D2 := {(x1, x2) ∈ R

2 : x21+x22 < 1} and we denote by ν = ν(x1, x2) = (x1, x2) the
unit outward normal vector to ∂D2 at (x1, x2) ∈ ∂D2. Then:

Theorem 1.2. There are a, b ∈ (L∞ ∩ H1)(D2) with
∫

D2 ∇
⊥b · ∇a dy = 0 such that every

solution ϕ of:
{

−∆ϕ = ∇⊥b · ∇a in D2,
∂νϕ = 0 on ∂D2 (3)

is neither in H1(D2) nor in L∞(D2) and in particular (2) cannot hold.

We would like to mention that we came at the counter-example to Wente-type estimates for
the solutions to (3) in the following way. First of all by the conformal invariance of the problem
(3) we can transform it into an analogous problem in R

2
+ := {(y1, y2) ∈ R

2 : y2 > 0}:
{

−∆w = ∇⊥b · ∇a in R
2
+

∂νw = 0 in ∂R2
+.

(4)

If we extend w, a, b by even reflection with respect to ∂R2
+ = {y2 = 0} and if we denote by w̃, ã, b̃

the respective extensions, we realize that

−∆w̃ = ∇⊥b̃∇ã− 2(∇⊥b̃∇ã)11{y2<0} in D′(R2). (5)

For every ϕ ∈ C∞
0 (R2) we have

∫∫

R2

(∇⊥b̃∇ã)11{y2<0}ϕ(y)dy =

∫

R

[Trace(ã)∂τTrace(b̃)]ϕ(y1, 0)dy1

−

∫∫

R2

(∇⊥b̃∇ϕ)ã11{y2<0}dy

where τ = τ(y1, 0) = (1, 0) for every (y1, 0) ∈ ∂R2
+ and ∂τTrace(b̃)(y1, 0) denotes the tangential

derivative to ∂R2
+ at (y1, 0). It is straightforward that for arbitrary ã, b̃ ∈ Ḣ1(R2) ∩ L∞(R2)

the boundary term [Trace(ã)∂τTrace(b̃)] is not in H
−1/2(R) and therefore one can guess that an

estimate like (2) cannot in general hold.

A Wente-type estimate holds for (3) if Trace(a) = 0 or Trace(b) = 0. We call this the case
vanishing Jacobian at the boundary. If for instance Trace(a) = 0, we can extend w, b by even
reflection and a by odd reflection with respect to ∂R2

+. In this case we obtain

−∆w̃ = ∇⊥b̃∇ã in D′(R2), (6)

namely the right hand side is a Jacobian in R
2. Precisely, the following result holds.
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Theorem 1.3. Let Ω be a smooth bounded domain of R2. Let a ∈ W 1,2
0 (Ω) and b ∈ W 1,2(Ω)

and let u be a solution of (3). Then ∇2u ∈ L1(Ω) and one has:

‖∇2u‖L1(Ω) ≤ cΩ ‖∇a‖L2(Ω) ‖∇b‖L2(Ω). (7)

From estimate (7), by means of improved Sobolev embeddings (see e.g. [5]) we deduce that
the estimate (1) holds. Theorem 1.3 has been used by Rivière in [8] and the proof will be given
in [3]. We also refer to Theorem A.4 in [9].

In some applications such as for instance in the analysis of the Poisson problem for elastic
plates ([3]) the following Neumann boundary problem appears in a natural way:

{
−∆w = ∇⊥b · ∇a in D2,
∂νw = − ∂τ b · a on ∂D2 (8)

where for every (x1, x2) ∈ ∂D2, τ(x1, x2) = (−x2, x1) is the unit tangent vector to ∂D2 at the
point (x1, x2) ∈ ∂D2. We observe that H1(D2)-solutions of the problem (8) are critical points
of the following Lagrangian:

L(u; a, b) =
1

2

∫∫

D2

|∇u+ (∇⊥b)a|2dy1dy2 (9)

We will refer to the problem (8) as the case of compatible Neumann boundary conditions.
Also in the case of (8) the assumption a, b ∈ (L∞ ∩ H1)(D2) is not enough to guarantee the
boundedness of the solution in D2.

Theorem 1.4. There are a, b ∈ L∞(D2) ∩H1(D2) such that every solution ϕ of:
{

−∆ϕ = ∇⊥b · ∇a in D2

∂νϕ = − ∂τ b · a on ∂D2 (10)

is not in L∞(D2) and in particular the estimate (2) cannot hold.

The boundedness of the solution is however obtained if we assume a bit more on the data
a, b. More precisely we get the following result.

Theorem 1.5 (L2,1-case). Let ∇a,∇b ∈ L(2,1)(D2),1 with ā = −
∫

D2 a(y)dy = 0 and let w ∈

W 1,1(D2) be the solution with zero mean value to (8) . Then ∇w ∈ L(2,1)(D2) with:

‖∇w‖L(2,1)(D2) ≤ C‖∇a‖L(2,1)‖∇b‖L(2,1) . (11)

In particular:
‖w‖L∞(D2) ≤ C‖∇a‖L(2,1) |∇b‖L(2,1) . (12)

1We denote by L(2,1)(Rn) the Lorentz space of indices 2 and 1 as the space of measurable functions
satisfying:

∫ +∞

0

|{x ∈ R
n : |f(x)| ≥ λ}|1/2dλ < +∞ .

See [4] for properties on Lorentz spaces.
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We observe that the assumption ∇b ∈ L(2,1)(D2) is in particular satisfied if b ∈ W 2,1(D2),
see e.g [5]. We remark that the assumptions ∇a ∈ L(2,1)(D2) and ā = −

∫

D2 a(y)dy = 0 imply
a ∈ L∞(D2) with ‖a‖L∞ ≤ C‖∇a‖L(2,1) .

The paper is organized as follows. In Section 2 we prove Theorem 1.5 and in Section 3 we
prove Theorems 1.2 and 1.4.

2 Proof of Theorem 1.5.

Step 1. We start by observing that we can formulate problem (8) as follows:







div[∇w + (∇⊥b)a] = 0 in D2,

∂νw = −∂τ b · a in ∂D2.

(13)

Therefore there exists C ∈W 1,2(D2) such that:

∇⊥C = ∇w + (∇⊥b)a.

Therefore C solves: 





−∆C = −div(∇b · a) in D2,

∂τC = 0 in ∂D2.

(14)

Since C is determined up to a constant, we can reduce to study the following Dirichlet problem:







−∆C = −div(∇b · a) in D2,

C = 0 in ∂D2.

(15)

Step 2. In this step and in the following we use basic facts about the theory of Calderón-
Zygmund operators and interpolation theory, for which we refer to [5, 7]. We first assume
b ∈W 1,p(D2) for a fixed but arbitrary 1 < p <∞. Let us set f = −∇b · a ∈ Lp(D2), we have:

‖f‖Lp(D2) ≤ Kp‖∇b‖Lp(D2)‖a‖L∞(D2).

We denote by f̃ = fχD2 its extension by 0 to R
2. We write C = C1 + C2 where:

C1(x) =

(

−
1

2π
log | · | ∗ div f̃

)

(x), x ∈ R
2,

and C2 = C −C1 which is the solution to:







−∆C2 = 0 in D2,

C2 = −C1 in ∂D2.

(16)

4



We have:

∇C1(x1, x2) =
1

2π

∫

R2

f̃(y)

[
y − x

|y − x|3

]

dy.

The function

K(x, y) =
y − x

|y − x|3

is a C-Z operator. Since f̃ ∈ Lp(R) for every p > 1 we have

T [f̃ ](x) :=
1

2π

∫

R2

f̃(y)

[
y − x

|y − x|3

]

dy ∈ Lp(R2)

and
‖T [f̃ ]‖Lp ≤ Kp‖f̃‖Lp .

(see e.g. [5, 7]).
As far as C2 is concerned, since C1 ∈W 1−1/p,p(∂D2), then C2 ∈W

1,p(D2) and:

‖∇C2‖Lp(D2) ≤ Kp‖C1‖W 1−1/p,p ≤ Kp‖f‖Lp(D2).

In particular we get:

‖∇C‖Lp(D2) ≤ Kp‖f‖Lp(D2),

and therefore:
‖∇w‖Lp(D2) ≤ Kp‖f‖Lp(D2) ≤ Kp‖∇b‖Lp(D2)‖a‖L∞(D2).

We remind that if p belongs to a compact interval I ⊂ (0,∞), the constant Kp is uniformly
bounded.

Now we define
Gp(D

2) := {X ∈ Lp(D2, R2) : curl(X) = 0 }.

2 Note that since D2 is simply connected, Poincaré’s lemma ensures that every X ∈ Gp(D
2)

is of the form X = ∇f for some f ∈ W 1,p(D2). By step 1, if we fix a ∈ L∞(D2), the linear
operator T̃ : Gp(D

2) → Lp(D2), which maps X = ∇b to ∇w, where w is the zero-mean solution
to (8), is continuous for each p > 1.

Step 3. If a ∈ L∞(D2) and ∇b ∈ L(2,1)(D2) then f ∈ L(2,1)(D2) with

‖f‖L(2,1)(D2) ≤ K‖∇b‖L(2,1)(D2)‖a‖L∞(D2).

By interpolation and the previous step, we get that ∇w ∈ L(2,1)(D2) with:

‖∇w‖
L(2,1)(D2) ≤ K‖f‖L(2,1)(D2) ≤ K‖a‖L∞(D2)‖∇b‖L(2,1)(D2)

≤ K‖∇a‖L(2,1)(D2)‖∇b‖L(2,1)(D2) (17)

for some K > 0.
We can conclude. ✷

2For X ∈ Lp(D2,R2), curl(X) = − X1

∂x2

+ X2

∂x1

.
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3 Proof of Theorems 1.2 and 1.4

In this Section we provides counter-examples to Wente-type estimates for solutions to (8) and
(3) even in the case a, b ∈ (H1 ∩ L∞)(D2).

3.1 A representation formula with estimates

Because of the conformal invariance of the problem (8) we can reduce to consider the analogous
problem in R

2
+ :

{
−∆w = ∇⊥b · ∇a in R

2
+

∂νw = − ∂τ b · a in ∂R2
+.

(18)

In this case ν = (0,−1) and τ = (1, 0). Therefore ∂νw = −∂y2w and ∂τw = ∂y1w.
The Green function associated to the Neumann problem in the half-plane G : R2

+ ×R
2
+ → R

is the solution, for every x ∈ R
2
+ of the problem:

{

−∆yG(x, ·) = δx in R
2
+,

∂νyG(x, ·) = 0 in ∂R2
+,

given by:

G(x, y) = −
1

2π
{log(|x− y|) + log(|y − x̃|)} ,

where x = (x1, x2), y = (y1, y2), x̃ = (x1,−x2).
We are going to consider the solution w to (18) obtained through the representation formula:

w(x) =

∫ ∫

R2
+

G(x, y)(−∆w) dy +

∫

∂R2
+

G(x, y)∂νw dσ(y)

= −
1

2π

∫ ∫

R2
+

{log(|x− y|) + log(|y − x̃|)}∇⊥b · ∇a dy (19)

−
1

π

∫ +∞

−∞
log((y1 − x1)

2 + x22)
1/2∂y1b · a dy1

and deduce a representation formula for its trace at the boundary ∂R2
+.

Step 1: We assume for the moment that a, b are in C∞
c (R2). We integrate by parts (19)
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and get:

w(x) = −
1

2π

∫ ∫

R
2
+

div
(

{log(|x− y|) + log(|y − x̃|)}∇⊥b · a
)

dy

+
1

2π

∫ ∫

R
2
+

∇({log(|x− y|) + log(|y − x̃|)})(∇⊥b · a)dy

−
1

π

∫ +∞

−∞
log((y1 − x1)

2 + x22)
1/2[∂y1b · a]dy1

=
1

2π

∫

∂R2
+

{log(|x− y|) + log(|y − x̃|)} ∂y1b · a dσ(y) (20)

+
1

2π

∫ ∫

R
2
+

∇({log(|x− y|) + log(|y − x̃|)})∇⊥b · a)dy

−
1

π

∫ +∞

−∞
log((y1 − x1)

2 + x22)
1/2∂y1b · a]dy1

=
1

2π

∫ ∫

R
2
+

∇({log(|x− y|) + log(|y − x̃|)})∇⊥b · ady.

If x = (x1, 0) ∈ ∂R2
+, then:

w(x1, 0) =
1

π

∫ ∫

R
2
+

∇(
{

log((x1 − y1)
2 + y22)

1/2
}

) · [∇⊥b · a]dy. (21)

By translation invariance we evaluate (21) at (0, 0) and use polar coordinates. For every r > 0
we set

ār =
a(r, π) + a(r, 0)

2
=
a(x1, 0) + a(−x1, 0)

2
.

We have

w(0, 0) =
1

π

∫ ∫

R2
+

∇(log |y|) · [∇⊥b · a]dy

= −
1

π

∫ ∞

0

∫ π

0
∂θb

(
1

r
(a− ār)

)

dθdr −
1

π

∫ ∞

0

∫ π

0

1

r
ār∂θbdθdr (22)

We analyse the last two terms of (22).

Estimate of 1
π

∫∞
0

∫ π
0 ∂θb

(
1
r (a− ār)

)
dθdr.

Note first of all that in Cartesian coordinates it reads as:

1

π

∫ ∞

0

∫ π

0
∂θb

(
1

r
(a− ār)

)

dθdr =
1

π

∫ ∫

R2
+

∇
(

log((y1 − x1)
2 + y22)

1/2
)

· [∇⊥b · (a−
a(y1, 0) + a(−y1, 0)

2
)]dy.
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Moreover we have the estimate:

1

π

∫ +∞

0

∫ π

0
∂θb

(
1

r
(a− ār)

)

dr dθ ≤
1

π

(∫ +∞

0

∫ π

0

1

r2
|∂θa|

2rdr dθ

)1/2 (∫ +∞

0

∫ π

0

1

r2
|∂θb|

2rdr dθ

)1/2

≤ C‖∇a‖L2(R2
+)‖∇b‖L2(R2

+).

Estimate of 1
π

∫∞
0

∫ π
0 ∂θb

(
1
r ār

)
dθdr.

The expression in Cartesian coordinates of the integral is:

1

π

∫ ∞

0

∫ π

0
∂θb

(
1

r
ār

)

dθdr =
1

π

∫ ∞

0
b(r, π) − b(r, 0))

(
1

r
ār

)

dr

=
1

π

∫ ∞

0

1

y1

(

(b(−y1, 0)− b(y1, 0))
a(y1, 0) + a(−y1, 0)

2

)

dy1.

We deduce that the desired representation formula in (0, 0) is:

w(0, 0) =
1

π

∫ ∫

R
2
+

∇(log(|y|)) ·

[

∇⊥b ·

(

a−
a(y1, 0) + a(−y1, 0)

2

)]

dy

+
1

π

∫ ∞

−∞

1

y1

(

(b(−y1, 0)− b(y1, 0)
(a(y1, 0) + a(−y1, 0))

2

)

dy1 (23)

By translation invariance, we then deduce the following representation formula for a generic
point (x1, 0) ∈ ∂R2

+:

w(x1, 0) =
1

π

∫ ∫

R
2
+

∇(
{

log((y1 − x1)
2 + y22)

1/2)
}

) · [∇⊥b · (a−
a(x1 + y1, 0) + a(x1 − y1, 0)

2
)]dy

+
1

π

∫ ∞

−∞

1

y1

[

(b(x1 − y1, 0)− b(x1 + y1, 0))
a(x1 + y1, 0) + a(x1 − y1, 0)

2

]

dy1. (24)

Step 2. If a, b ∈ (H1 ∩ L∞)(R2
+) then we get the previous formula by approximation

arguments.

3.2 A Counter-Example to L∞-Estimates

In this Section we will provide a counter-example to Wente type estimates for the problem (8).
Precisely we will show that even in the case a, b ∈ (H1 ∩ L∞)(R2

+) the solution given by (19)
needs not to be bounded.

Let ψ : R2 → [0,+∞) be a radial smooth function such that:

ψ(x, y) =

{
1 (x, y) ∈ B(0, 1/4),
0 (x, y) ∈ Bc(0, 1/2),

(25)
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Let χ : R → R be a Lipschitz continuous function such that:

χ(x) =

{
1 if x ≥ 1,
0 if x ≤ −1.

Take for instance

χ(x) =







2
π [arctan(x) +

π
4 ] if − 1 ≤ x ≤ 1,

1 if x ≥ 1,
0 if x ≤ −1,

We observe that χ(xε ) converges as ε→ 0 to the Heaviside function:

H(x) =

{
1 if x ≥ 0,
0 if x < 0.

Proposition 3.1. Let β ∈ R and consider the function:

f(x) = (− log |x|)−βψ(x). (26)

Then

i) if β ≥ 0, f(x) ∈ (H1/2 ∩ L∞)(R);

ii) if 1/2 < β, f(x)H(x) ∈ (H1/2 ∩ L∞)(R).

Proof of Proposition 3.1. We prove only ii). The proof of i) is similar and even simpler.
It is clear that f(x)H(x) ∈ L∞(R).
f(x)H(x) can be seen as the trace of the following function:

f̃(x, y) = (−1/2 log(x2 + y2))−βψ(
√

x2 + y2))χ

(
x

y

)

Claim: f̃(x, y) ∈ H1(R2
+), (this implies that f(x)H(x) ∈ H1/2(R)).

Proof of the Claim. We estimate the L2 norm of its partial derivatives.

Derivatives of f̃ :

∂y f̃(x, y) = χ′

(
x

y

)(

−
x

y2

)

(−1/2 log(x2 + y2))−βψ(
√

x2 + y2))

+ χ

(
x

y

)

∂y

(

(−1/2 log(x2 + y2))−βψ(
√

x2 + y2)
)

∂xf̃(x, y) = χ′

(
x

y

)
1

y
(−1/2 log(x2 + y2))−βψ(

√

x2 + y2))

+ χ

(
x

y

)

∂x

(

(−1/2 log(x2 + y2))−βψ(
√

x2 + y2)
)

.
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L2-estimate of ∂y f̃(x, y) :

∫ ∫

R
2
+

|∂y f̃(x, y)(x, y)|
2dxdy

/

∫ 1/2

−1/2

∫ 1/2

|x|
(χ′

(
x

y

)2(x2

y4

)

(−1/2 log(x2 + y2))−(2β)ψ2(
√

x2 + y2)) dxdy

︸ ︷︷ ︸

(1)

+

∫ ∫

(x2+y2)1/2<1/2
|∂y

(

(−1/2 log(x2 + y2))−βψ(
√

x2 + y2)
)

|2 dxdy

︸ ︷︷ ︸

(2)

.

Les us prove that (1) and (2) are convergent integrals.
• We estimate (2).

(2) =

∫ ∫

(x2+y2)1/2<1/2

∣
∣
∣
∣
ψ′(

√

x2 + y2)
y

(x2 + y2)1/2
(−1/2 log(x2 + y2))−β

+ ψ(
√

x2 + y2)β(−1/2 log(x2 + y2))−(β+1) 2y

x2 + y2

∣
∣
∣
∣

2

dxdy

≤ C

∫ ∫

(x2+y2)1/2<1/2
(−1/2 log(x2 + y2))−2β

+ (−1/2 log(x2 + y2))−2(β+1) 4y2

(x2 + y2)2
dxdy < +∞.

• We estimate (1), by recalling that χ′

(
x

y

)

6= 0 iff
|x|

|y|
≤ 1 and that

∂y(−
1

y
(−1/2 log(x2 + y2))−β)

=
1

y2
(−1/2 log(x2 + y2))−β)−

1

y
∂y((−1/2 log(x2 + y2))−β)

=
1

y2
(−1/2 log(x2 + y2))−β)− β

1

y

y

x2 + y2
(−1/2 log(x2 + y2))−(1+β)).

We observe that

β
1

y

y

x2 + y2
(−1/2 log(x2 + y2))−(1+β)) = o(

1

y2
(−1/2 log(x2 + y2))−β)) as (x, y) → (0, 0).

Therefore if (x, y) ∈ B(0, 1/2) we have

1

y2
(−1/2 log(x2 + y2))−β) ≤ C∂y(−

1

y
(−1/2 log(x2 + y2))−β).
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Hence:

(1) =

∫ 1/2

−1/2

∫ 1/2

|x|
(χ′

(
x

y

)2 (x2

y4

)

(−1/2 log(x2 + y2))−2βψ2(
√

x2 + y2))

/

∫ 1/2

−1/2

∫ 1/2

|x|
(χ′

(
x

y

)2 (x2

y4

)(

(−1/2 log(x2 + y2))−β
)

dxdy

≤

∫ 1/2

−1/2

∫ 1/2

|x|
∂y(−

1

y
(−1/2 log(x2 + y2))−β) dydx

≤

∫ 1/2

−1/2

[
1

|x|
(−1/2 log(x2 + x2))−β

]

− 2(−1/2 log(x2 +
1

4
))−βdx < +∞.

Observe that since β > 1/2, the last integral is convergent.

L2-estimate of ∂xf̃(x, y).

∫ ∫

R
2
+

|∂xf̃(x, y)|
2dxdy

/

∫ 1/2

−1/2

∫ 1/2

|x|
(χ′

(
x

y

)2( 1

y2

)

(−1/2 log(x2 + y2))−βψ2(
√

x2 + y2)) dxdy

︸ ︷︷ ︸

(3)

+

∫ ∫

(x2+y2)1/2<1/2
|∂x

(

(−1/2 log(x2 + y2))−βψ(
√

x2 + y2)
)

|2 dxdy

︸ ︷︷ ︸

(4)

.

The estimate of (3) is similar to (1) and the estimate of (4) is similar to the estimate of (2).
We can conclude the proof of Proposition 3.1. ✷

Estimate of w(0, 0).

Let us come back to the situation of subsection 3.1 and consider:

a(x) = ψ(x) and b(x) = (− log |x|)−βψ(x)H(x).

where 1/2 < β < 1 and ψ is defined in (25).
Since b ≡ 0 in y1 ≤ 0 and a is symmetric we have, from (23)

w(0, 0) =
1

π

∫ ∫

R2
+

∇(log(|y|)) ·

[

∇⊥b ·

(

a−
a(y1, 0) + a(−y1, 0)

2

)]

dy

−
1

π

∫ +∞

0

1

y1
(b(y1, 0)a(y1, 0)) dy1 (27)

We already know that the first integral is finite. As for the second one, since we have chosen
β < 1 we see that:

1

π

∫ +∞

0

1

y1
(b(y1, 0)a(y1, 0)) dy1 =

1

π

∫ +∞

0

1

y1
(− log |y1|)

−βψ2(y1)dy1

11



is divergent. Hence w(0, 0) is not finite.
One can also show that w is continuous in R̄

2
+ \ {(0, 0)}. Therefore ‖w‖L∞(R2) = +∞.

3.3 A Counter-Example to H1-estimates

Consider now the solution of the problem with vanishing Neumann boundary conditions:
{

−∆v1 = ∇⊥b · ∇a in R
2
+

∂νv1 = 0 on ∂R2
+

(28)

given by the representation formula: v1(x) =
∫

D G(x, y)∇⊥b(y) · ∇a(y) dy. By the same compu-
tations in subsection 3.2 we find that:

v1(x1, 0) =
1

π

∫ ∫

R2
+

∇(log((y1 − x1)
2 + x22)

1/2)) ·

[

∇⊥b ·

(

a−
a(x1 + y1, 0) + a(x1 − y1, 0)

2

)]

dy

+
1

π

∫ ∞

−∞

1

y1

[

(b(x1 − y1, 0) − b(x1 + y1, 0))
a(x1 + y1, 0) + a(x1 − y1, 0)

2

]

dy1

−
1

π

∫ +∞

−∞
log(|y1 − x1|)[∂y1b · a]dy1 (29)

We take:
a(x) = ψ(x) and b(x) = (− log |x|)−βψ(x), (30)

with 0 < β < 1/2 and ψ defined as in (25). In this case the solution v1 is not in H
1/2(R). Indeed

if 0 < β < 1/2, we have that:

a∂x1b = ψ(x)[(−β)(− log |x|)−(β+1) 1

x
ψ(x) + ψ′(x)(− log |x|)−β /∈ H−1/2(R)

One can check this fact by putting it in duality with f(x) = [(log |x|)−]β ∈ H1/2(R).
Now we observe that in the representation of v(x1, 0) the sum of the first two terms gives a

function in H1/2(R) (it is the trace of a solution of the problem Neumann problem (18) which
is in H1(R2

+)), the third term:

1

π

∫ +∞

−∞
log(|y1 − x1|)[∂y1b · a]dy1

cannot be in H1/2(R) since [∂x1b · a] /∈ H−1/2(R). Therefore v1(x1, 0) /∈ H1/2(R) and therefore
v1 /∈ H1(R2

+).
Let Φ: D2 → R

2
+ be a Möbius transformation such that Φ(∂D2) = R and let ṽ1 = v1 ◦ Φ,

b̃ = b ◦ Φ, ã = a ◦ Φ.
Claim: There cannot be an uniform L∞ bound for the solution ṽ1.
Proof of the claim. Suppose by contradiction that ‖ṽ1‖L∞(D2) < +∞. We multiply both

sides of the equation −∆ṽ1 = ∇⊥b̃ · ∇ã by ṽ1. An integration by parts gives
∫

D2

|∇ṽ1|
2dy =

∫

D2

ṽ1(∇
⊥b̃ · ∇ã)dy

≤ ‖ṽ1‖L∞(D2)‖∇
⊥b̃ · ∇ã‖L1(D1) < +∞

12



and this is in contradiction with the fact that ṽ1 /∈ H1(D2). ✷
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the literature. While completing this work we heard of the existence of a work in preparation
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