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Abstract. In this note we present Pohozaev-type identities that have been recently

established in [4] in the framework of half-harmonic maps defined either on R or on the

sphere S1 with values into a closed manifold Nn ⊂ Rm. Weak half-harmonic maps are

critical points of the following nonlocal energy

(1) L1/2
R (u) :=

∫

R
|(−∆)1/4u|2 dx or L1/2

S1 (u) :=

∫

S1

|(−∆)1/4u|2 dσ(z).

By using the invariance of (1) in 1-D with respect to the trace of the Möbius transfor-

mations we derive a countable family of relations involving the Fourier coefficients of

weak half-harmonic maps u : S1 → Nn. We also present a short overview of Pohozaev

formulas in 2-D in connection with Noether’s theorem.

Sunto. In questa nota presentiamo in maggior dettaglio alcune formule di tipo Pohozaev

trovate recentemente in [4] nell’ambito dello studio della mappe semi-armoniche definite

o sulla retta reale o su la sfera S1 e a valori in una varietà chiusa Nn ⊂ Rm. Le mappe

semi-armoniche sono punti critici del funzionale non locale (1). Usando l’invarianza

del funzionale (1) in dimensione 1 rispetto alla traccia delle trasformazioni di Möbius

deriviamo una famiglia numerabile di relazioni tra i coefficienti di Fourier delle mappe

semi-armoniche u : S1 → Nn. Presentiamo inoltre una breve panoramica sul legame tra

formule di Pohozaev in 2-D e il teorema di Noether.
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1. Introduction

The notion of weak 1/2-harmonic maps u : Rk → N n, where N n ⊂ Rm is a smooth n-

dimensional closed (compact without boundary) manifold, has been introduced by Tristan

Rivière and the author in [7, 8]. Since then the theory of fractional harmonic maps has

received a lot of attention in view of their application to important geometrical problems
3
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(see e.g [9] for an overview of the theory). The L2-regularity theory has been extended to

higher dimension [3, 11, 18], and to Lp-energies [10, 16, 17].

In the sequel we focus our attention to the 1-D case (k = 1).

We first introduce some notations and definitions. We denote by πNn the orthogo-

nal projection onto N n which happens to be a C l map in a sufficiently small tubular

neighborhood of N n if N n is assumed to be C l+1.

We define the homogeneous fractional Sobolev space Ḣ1/2(R,Rm) as follows

Ḣ1/2(R,Rm) :=

{
u ∈ L2

loc(R,Rm) : ‖u‖2
Ḣ1/2(R) :=

∫

R

∫

R

|u(x)− u(y)|2
|x− y|2 dx dy <∞

}
.

We also define

Ḣ1/2(R,N n) :=
{
u ∈ Ḣ1/2(R,Rm) ; u(x) ∈ N n for a.e. x ∈ R

}
.

We introduce the following nonlocal energy:

(2) L1/2(u) :=

∫

R
|(−∆)1/4u|2 dx

where for u ∈ S(R) (1) the fractional Laplacian (−∆)1/4u can be defined by means of the

the Fourier transform as follows

̂(−∆)1/4u(ξ) = |ξ|1/2û(ξ) .

(2)

We observe that if u ∈ Ḣ1/2(R,Rm), then (−∆)1/4u is well defined and lies in L2(R),

(see for instance Lemma B.5 in [6] and the references therein).

We now give the definition of a weak 1/2-harmonic map:

Definition 1.1. A map u ∈ Ḣ1/2(R,N n) is called a weak 1/2-harmonic map into N n if

for any φ ∈ Ḣ1/2(R,Rm) ∩ L∞(R,Rm) there holds

d

dt
L1/2(πNn(u+ tφ))|t=0 = 0. �

(1)We denote respectively by S(R) the space of (real or complex) Schwartz functions.
(2)Given a function ϕ ∈ S(R) we denote either by ϕ̂ or by Fϕ the Fourier transform of ϕ, i.e.

ϕ̂(ξ) = Fϕ(ξ) =

∫

R
v(x)e−iξx dx.
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In short we say that a weak 1/2-harmonic map is a critical point of L1/2 in Ḣ1/2(R,N n)

for perturbations in the target.

Weak 1/2-harmonic maps satisfy the Euler-Lagrange equation

(3) ν(u) ∧ (−∆)1/2u = 0 in D′(R),

where ν(z) is the Gauss Map at z ∈ N n taking values into the Grassmannian G̃rm−n(Rm)

of oriented m − n planes in Rm which is given by the oriented normal m − n-plane to

TzN n. We denote by the symbol ∧ the exterior or wedge product defined on the exterior

algebra (or Grassmann Algebra) of Rm,
∧

(Rm).

Equation (3) says roughly speaking that the vector (−∆)1/2u(x) is perpendicular to the

tangent plane Tu(x)N n at the point u(x).

One of the main result in [8] is the local Hölder continuity of weak 1/2-harmonic maps:

Theorem 1.1. Let N n be a C2 closed submanifold of Rm and let u ∈ Ḣ1/2(R,N n) be a

weak 1/2−harmonic map into N n. Then u ∈ ⋂0<δ<1C
0,δ
loc (R,N n). �

Finally a bootstrap argument leads to the following result (see [6] for the details of this

argument).

Theorem 1.2. Let N n ⊂ Rm be a C l closed submanifold of Rm , with l ≥ 2, and let

u ∈ Ḣ1/2(R,N n) be a weak 1
2
-harmonic. Then

u ∈
⋂

0<δ<1

C l−1,δ
loc (R,N n).

In particular, if N n is C∞ then u ∈ C∞(R,N n). �

Next we would like to clarify the connections between 1/2-harmonic maps defined in R

and 1/2-harmonic maps defined in S1 which are defined as critical points of the energy

(4) L1/2

S1 (u) :=

∫

S1

|(−∆)1/4u|2 dσ(z).

For u ∈ L1(S1) we define its Fourier coefficients as

û(n) =
1

2π

∫ 2π

0

u(eiθ)e−inθ dσ(z), n ∈ Z.
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If u is smooth we define for s ∈ R

(5) (−∆)su(θ) =
∑

n∈Z

|n|2sû(n)einθ.

If u ∈ L1(S1) we can define (−∆)su ∈ D′(S1) in a distributional sense as follows:

(6) 〈(−∆)su, ϕ〉 :=

∫

S1

u (−∆)sϕdσ(z), ϕ ∈ C∞(S1).

Notice that ϕ ∈ C∞(S1) implies that (−∆)sϕ ∈ C∞(S1) (here (−∆)sϕ is defined as in

(5)).

We define in S1 the Sobolev space:

H1/2(S1,Rm) :=

{
u ∈ L2(S1,Rm) :

∫

S1

∫

S1

|u(eiθ)− u(eiτ )|2
|eiθ − eiτ |2 dθ dτ <∞

}
.

If u ∈ H1/2(S1,Rm) then

∫

S1

∫

S1

|u(eiθ)− u(eiτ )|2
|eiθ − eiτ |2 dθ dτ = 4π

∑

k

|k||v̂(k)|2 < +∞.

We next consider the classical stereographic projection from S1 \ {−i} onto R:

(7) P−i : S1 \ {−i} → R, P−i(cos(θ) + i sin(θ)) =
cos(θ)

1 + sin(θ)
.

Its inverse is given by

(8) P−1−i (x) =
2x

1 + x2
+ i

(
−1 +

2

1 + x2

)
,

then the following relation between the 1/2-Laplacian in R and in S1 holds:

Proposition 1.1. Given u : R→ Rm, we set v := u◦P−i : S1 → Rm. Then u ∈ L 1
2
(R)(3)

if and only if v ∈ L1(S1). In this case

(9) (−∆)
1
2

S1v(eiθ) =
((−∆)

1
2
Ru)(P−i(eiθ))

1 + sin θ
in D′(S1 \ {−i}).

Observe that (1 + sin(θ))−1 = |P ′−i(θ)|, hence we have

∫ 2π

0

(−∆)
1
2v(eiθ)ϕ(eiθ) dσ(z) =

∫

R
(−∆)

1
2u(x) ϕ(P−1−i (x)) dx for every ϕ ∈ C∞0 (S1\{−i}).

(3)We recall that L 1
2
(R) :=

{
u ∈ L1

loc(R) :
∫
R
|u(x)|
1+x2 dx <∞

}
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For the proof of Proposition 1.1 we refer for instance to [5].

A key property of the Lagrangian (2) is its invariance under the trace of conformal

maps that keep invariant the half space R2
+ (the Möebius group). From the conformal

invariance and Proposition 1.1 it follows that u ∈ Ḣ1/2(R) is a 1/2-harmonic map in R if

and only if v := u ◦ P−i ∈ H1/2(S1) is a 1/2 harmonic map in S1, (see i.e. [2]).

In this note we are going to describe some Pohozaev-type identities for the half

Laplacian and the Laplacian respectively in one and two dimension.

We first consider the fundamental solution G of the fractional heat equation:

(10)





∂tG+ (−∆)1/2G = 0 x ∈ R, t > 0

G(0, x) = δ0 t = 0 .

It is given by

G(t, x) =
1

π

t

x2 + t2
.

The following equalities hold

∂tG =
1

π

x2 − t2
(t2 + x2)2

, ∂xG = − 1

π

2xt

(t2 + x2)2
.

Theorem 1.3. [Pohozaev Identity in R] Let u ∈ W 1,2
loc (R,Rm) be such that

(11)
du

dx
· (−∆)1/2u = 0 a.e. in R.

Assume that for some u0 ∈ R

(12)

∫

R
|u− u0|dx < +∞,

∫

R

∣∣∣∣
du

dx
(x)

∣∣∣∣ dx < +∞.

Then the following identity holds

(13)

∣∣∣∣
∫

R
∂tG(t, x)(u(x)− u0)dx

∣∣∣∣
2

=

∣∣∣∣
∫

R
∂xG(t, x)(u(x)− u0)dx

∣∣∣∣
2

for all t ∈ R. �

We get an analogous formula in S1. By identifying S1 with [−π, π) we consider the

following problem

(14)





∂tF + (−∆)1/2F = 0 θ ∈ [−π, π), t > 0

F (0, θ) = δ0(x) θ ∈ [−π, π].
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The solution of (14) is given by

F (θ, t) =
1

2π

+∞∑

n=−∞

e−t|n|einθ =
e2t − 1

e2t − 2et cos(θ) + 1
.

In this case we have

∂tF (t, θ) = −2et
e2t cos(θ)− 2et + cos(θ)

(e2t − 2et cos(θ) + 1)2

and

∂θF (t, θ) = −2et
sin(θ)(e2t − 1)

(e2t − 2et cos(θ) + 1)2
.

Then the following holds

Theorem 1.4. [Pohozaev Identity on S1] Let u ∈ W 1,2(S1,Rm) be such that

(15)
∂u

∂θ
· (−∆)1/2u = 0 a.e. S1.

Then the following identity holds

(16)

∣∣∣∣
∫

S1

u(z)∂tF (z) dσ(z)

∣∣∣∣
2

=

∣∣∣∣
∫

S1

u(z)∂θF (z) dσ(z)

∣∣∣∣
2

.

From (16) one deduces in particular (by letting t→ +∞) that

(17)

∣∣∣∣
∫ 2π

0

u(eiθ) cos(θ) dθ

∣∣∣∣
2

=

∣∣∣∣
∫ 2π

0

u(eiθ) sin(θ) dθ

∣∣∣∣
2

. �

For the proof of Theorem 1.3 and Theorem 1.4 and the derivation of the fundamental

solution of the nonlocal heat equation we refer the reader to [4].

We could have solved (10) by requiring G(0, x) = δx0 , with x0 ∈ R and we would have

obtained infinitely many corresponding Pohozaev-type formulas.

Next we explain the connection between 1/2-harmonic maps and the formulas (13) and

(16).

We observe that if u is a smooth critical point of (2) in R then it is stationary as well,

namely it is critical with respect to the variation of the domain:

(18)

(
d

da

∫

R
|(−∆)1/4(u(x+ aX(x))|2dx

)
∣∣
a=0

= 0

where X : R→ R is a C1
c (R) vector field.
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Actually any variation the form u(x+ aX(x)) = u(x) + a
du(x)

dx
X(x) + o(a) can be in-

terpreted as being a variation in the target with ϕ(x) =
du(x)

dx
X(x).

From (18) we get the so-called equation of stationarity:

0 =

∫

R
[(−∆)1/2(u(x+aX(x))· d

da
(u(x+aX(x)))]∣∣

a=0

dx =

∫

R
(−∆)1/2(u(x))·du(x)

dx
X(x)dx.

By the arbitrariness of X and the smoothness of u from (19) we deduce that

(19) (−∆)1/2u(x) · du
dx

(x) = 0 x ∈ R.

In an analogous way if u is a smooth critical point of the fractional energy (2) in S1, it

also satisfies

(20)

(
d

da

∫

S1

|(−∆)1/4(u(z + aX(z)))|2dσ(z)

)
∣∣
a=0

= 0

where X : S1 → R2 is a C1(S1) vector field. From (20) it follows that

(21) (−∆)1/2(u(z)) · ∂θu(z) = 0 z ∈ S1.

Therefore the assumptions of Theorem 1.3 and Theorem 1.4 are satisfied by sufficiently

smooth 1/2-harmonic maps.

We recall that one can derive the stationary equation for a certain Lagrangian before

knowing any regularity assumption of the critical point. For instance if the critical point

of is a local minimizer then weak solutions of the Euler Lagrange equation satisfies the

stationary equation as well. On the other hand there are examples in which solutions of

the Euler Lagrange equation are not solution of the stationary equation, (see [14]).

We have now to give some explanations why these identities belong to the Pohozaev

identities family. These identities are produced by the conformal invariance of the highest

order derivative term in the Lagrangian from which the Euler Lagrange is issued. For

instance the Dirichlet energy

(22) L(u) =

∫

R2

|∇u|2dx2
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is conformal invariant in 2-D. We recall that a map φ : R2 → R2 is conformal if it satisfies

(23)





|∂φ
∂x
| = |∂φ

∂y
|

〈∂φ
∂x
,
∂φ

∂y
〉 = 0

det∇φ ≥ 0 and ∇φ 6= 0 .

Then for every u ∈ W 1,2(R2,R) and every conformal map φ, deg(φ) = 1, the following

holds

L(u) = L(u ◦ φ) =

∫

φ−1(R2)

|∇(u ◦ φ)(x)|2dx2 .

Whereas the following fractional energy

(24) L1/2
R (u) =

∫

R
|(−∆)1/4u|2 dx

is conformal invariant in 1-D with respect to the trace of conformal maps that keep

invariant R2
+. The infinitesimal perturbations issued from the dilations produce in (22)

and (24) respectively the following infinitesimal variations of these highest order terms

2∑

i=1

xi
∂u

∂xi
·∆u in 2-D and x

du

dx
· (−∆)1/2u in 1-D

Such kind of perturbations play an important role in establishing Pohozaev-type identities.

We will explain in more detail in section 2 the link between Pohozaev formulas and the

conformal invariance of some specific Lagrangians in 2-D. If u is a smooth critical point

of (22) then it satisfies the following stationary equation

(25)
2∑

i=1

∂u

∂xi
·∆u(x) = 0, x ∈ R2.

Integrating the identity (25) on a ball B(x0, r) (x0 ∈ R2, r > 0) gives a balancing law

between the radial part and the angular part of the energy classically known as Pohozaev

identity. Precesely it holds:(4)

Theorem 1.5. Let u ∈ W 2,2
loc (B(0, 1),Rm) such that

(26)
∂u

∂xi
(x) ·∆u(x) = 0 a.e. in B(0, 1)

(4)In section 3 we will prove a more general version of Theorem 1.5.
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for i = 1, 2. Then it holds

(27)

∫

∂B(x0,r)

∣∣∣∣
1

r

∂u

∂θ

∣∣∣∣
2

dθ =

∫

∂B(x0,r)

∣∣∣∣
∂u

∂r

∣∣∣∣
2

dθ

for all r ∈ [0, 1].

In 1 dimension one might wonder what corresponds to the 2 dimensional dichotomy

between radial and angular parts. Figure 1 is intended to illustrate the following corre-

spondence of dichotomies respectively in 1 and 2 dimensions.

∫

∂B(0,r)∩R2
+

∂ũ

∂θ
dθ = (u(r) − u(0)) − (u(−r) − u(0)) = (u − u(0))−(r)

∫

B(0,r)∩{y=0}

∂ũ

∂r
dr = u(r) + u(−r) − 2u(0) = (u − u(0))+(r)

0

2-D ←→ 1-D

radial :
∂u

∂r
←→ symmetric part of u : u+(x) := u(x)+u(−x)

2

angular :
∂u

∂θ
←→ antisymmetric part of u : u−(x) := u(x)−u(−x)

2

In this note we make the observation that by exploiting the invariance of the equation

(15) with respect to the trace of Möbius transformations of the disk in R2 of the form

Mα,a(z) := eiα z−a
1−az , α ∈ R, a ∈ (−1, 1) (5) we can derive from (17) a countable family of

(5)We recall that since Mα,a(z) is conformal with M ′α,a(z) 6= 0 we have

(28) (−∆)1/2(u ◦Mα,a(z)) = eλα,a((−∆)1/2u) ◦Mα,a(z),
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b

c

a

Figure 1. Link between the symmetric and antisymmetric part of u and

the integral of the radial and tangential derivative of any extension ũ of u

on upper half plane R2
+

relations involving the Fourier coefficients of solutions of (15). This fact has been already

announced in the paper [4]. We heard that the proof of this property has been recently

obtained also in the work of preparation [1] by using a different approach.

Given u : S1 → Rm we define its Fourier coefficients for every k ≥ 0 :




ak :=
1

2π

∫ 2π

0

u(eiθ) cos kθ dθ

bk =
1

2π

∫ 2π

0

u(eiθ) sin kθ dθ.

The following result holds.

Proposition 1.2. [Relations of the Fourier coefficients on S1] Let u ∈ W 1,2(S1,Rm)

satisfy (15). Then for every n ≥ 2 it holds

(29)
n−1∑

k=1

(n− k)k(akan−k − bkbn−k) = 0

and

(30)
n−1∑

k=1

(n− k)k(akbn−k + bkan−k) = 0. �

where λα,a(z) = log(|∂Mα,a

∂θ (z)|), z ∈ S1
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We conclude this introduction by mentioning that in the paper [15] the authors obtains

a different Pohozaev identity for bounded weak solutions to the following problem

(31)





(−∆)su = f(u) in Ω

u = 0 in Rn \ Ω

where s ∈ (0, 1) and Ω ⊂ Rn is a bounded domain. As a consequence of their Pohozaev

identity they get nonexistence results for problem (31) with supercritical nonlinearitis in

star-shaped domains.

This paper is organized as follows. In section 2 we present a short overview of the

connection between Pohozaev formulas in 2-D and the existence of conservation laws. In

section 3 we obtain infinite many Pohozaev formulas for stationary harmonic maps in 2-D

in correspondence to conformal vector fields in C generated by holomorphic functions.The

strategy consistes in multiplying the stationary equation associated to Dirichlet energy by

a conformal vector field and the fundamental solution. This method avoids to use suitable

cut-off functions and it turns out to be useful also in the nonlocal case to get formula 13.

In section 4 we prove Proposition 1.2.

2. Pohozaev Identity in the light of Noether Theorem

In this section we would like to describe the relation between Pohozaev identities with

Noether’s theorem in 2-D. Noether’s theorem is a very general result in the calculus of

variations. It enables to construct a divergence-free vector field on the domain space,

from a solution of a variational problem, provided we are in the presence of a continuous

symmetry. Here we will consider the case of symmetries in the domain and Lagrangians

of the type:

(32) E(u) =

∫

B(0,1)

f(u,∇u)(x)dx

where f ∈ C1(Rm,Rm × R2), |f(z, p)| ≤ C(1 + |p|2) and u ∈ W 1,2(B(0, 1), Rm. Given

X ∈ C1
c (B(0, 1),R2) we compute the stationary equation for the Lagrangian (32):

d

dt
E(u(x+ tX(x)))|t=0 = δE(u) ·X = 0.
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We observe that for t small and for k = 1, 2 we have

(33) ∂xk(u(x+ tX(x))) = ∂xku(x+ tX(x)) + t

2∑

`=1

∂x`u(x)∂xkX
`(x) + o(t).

Therefore:

E(u(x+ tX(x))) =

∫

B(0,1)

f(u,∇u)(x+ tX(x))dx(34)

+ t

∫

B(0,1)

m∑

j=1

2∑

k,`=1

∂pkj f(u,∇u)(x)∂x`u
j(x)∂xkX

`(x) + o(t)

We derive with respect to t and get

0 =
d

dt
E(u(x+ tX(x)))|t=0 =

∫

B(0,1)

2∑

`=1

∂x`f(u,∇u)X`dx(35)

+
m∑

j=1

2∑

k,`=1

∫

B(0,1)

∂xk [∂pkj f(u,∇u)(x)∂x`u
j(x)X`(x)]dx

︸ ︷︷ ︸
(1)

−
m∑

j=1

2∑

k,`=1

∫

B(0,1)

∂xk [∂pkj f(u,∇u)(x)∂x`u
j(x)]X`(x)dx.

Since X has compact support the term (1) is zero. Hence the system of stationary

equations for the Lagrangian (32) is given by:

(36)





∂x1f(u,∇u)−∑m
j=1

∑2
k=1 ∂xk [∂pkj f(u,∇u)(x)∂x1u

j(x)] = 0

∂x1f(u,∇u)−∑m
j=1

∑2
k=1 ∂xk [∂pkj f(u,∇u)(x)∂x2u

j(x)] = 0.

Next we assume that for every conformal diffeomorphism φ : B(0, 1)→ R2 we have for

a.e x ∈ B(0, 1) :

(37) f(u ◦ φ,∇(u ◦ φ))(x) = f(u ◦ φ, (∇u) ◦ φ)(x)
|∇φ(x)|2

2
.

The relation (37) implies that E is conformal invariant. Let φt be a family of conformal

diffeomorphisms which is C1 with respect to t. Set Y (x) =
dφt(x)

dt |t=0

We derive (37) with

respect to t:

d

dt
(f(u ◦ φt,∇(u ◦ φt))(x)) |t=0 =

d

dt
[f(u ◦ φ, (∇u) ◦ φ)]|t=0 + f(u,∇u)∂xkY

k(x)

= ∂xk [f(u,∇u)]Y k(x) + f(u,∇u)divY = div[f(u,∇u)Y ].(38)
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By combining (35) and (38) we get

2∑

`=1

∂x`f(u,∇u)Y ` −
m∑

j=1

2∑

k,`=1

∂xk [∂pkj f(u,∇u)(x)∂x`u
j(x)]Y ` =

2∑

k=1

∂xk

[
m∑

j=1

2∑

`=1

[−∂pkj f(u,∇u)(x)∂x`u
j(x)Y `(x)] + f(u,∇u)Y k

]

From above it follows that:

Theorem 2.1 (Noether (’18)). Let u ∈ W 1,2(B(0, 1),Rm) be a stationary point of the La-

grangian (32), namely it satisfies (36) in D′(B(0, 1)). If f satisfies (37) then the following

vector field (Noether’s current):

JY [u] =

(
m∑

j=1

2∑

`=1

[∂pkj f(u,∇u)(x)∂x`u
j(x)Y `(x)]− f(u,∇u)Y k

)

k=1,2

is divergence free, where Y is the infinitesimal generator of conformal transformations.

We apply theorem 2.1 to f(z, p) = |p|2
2

. In this case we have ∂pkj f(u,∇u)(x) = pkj and

JY (x) =

(
m∑

j=1

2∑

`=1

[∂xku
j(x)∂x`u

j(x)Y `(x)]− |∇u|
2

2
Y k

)

k=1,2

The stationary system of equations is:

(39)





∂x1

[
u2x1
2
− u2x2

2

]
+ ∂x2 [ux1ux2 ] = 0,

∂x2

[
u2x1
2
− u2x2

2

]
− ∂x1 [ux1ux2 ] = 0.

If we choose Y1(x) = (x1, x2) (the infinitesimal generator of the dilations) and Y2(x) =

(−x2, x1) (the infinitesimal generator of the rotations) we respectively get

JY1(x) =

([
u2x1
2
− u2x2

2

]
x1 + ux1ux2x2,

[
u2x2
2
− u2x1

2

]
x2 + ux1ux2x1

)
,

JY2(x) =

([
u2x2
2
− u2x1

2

]
x2 + ux1ux2x1,

[
u2x2
2
− u2x1

2

]
x1 − ux1ux2x2

)
.

Theorem 2.1 yields:

0 = divJY1(x) = ∂x1(
u2x1
2
− u2x2

2
)x1 − ∂x2(

u2x1
2
− u2x2

2
)x2(40)

+x2∂x1 [ux1ux2 ] + x1∂x2 [ux1ux2 ].
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and

0 = divJY2(x) = ∂x1(
u2x2
2
− u2x1

2
)x2 + ∂x2(

u2x2
2
− u2x1

2
)x2(41)

+x1∂x1 [ux1ux2 ]− x2∂x2 [ux1ux2 ].

By multiplying (40) and (41) respectively by x1 and x2 and then by subtracting (41)

to (40) we obtain

(42)

(
∂x1

[
u2x1
2
− u2x2

2

]
+ ∂x2 [ux1ux2 ]

)
(x21 + x22) = 0

By multiplying (40) and (41) respectively by x2 and x1 and then summing (41) and (40)

we obtain

(43)

(
∂x2

[
u2x2
2
− u2x1

2

]
+ ∂x1 [ux1ux2 ]

)
(x21 + x22) = 0.

Equations (42) and (43) are exactly the equations (39). In the particular case of the

Dirichlet energy Noether theorem implies the stationary equation and therefore the Po-

hozaev formulas that we describe in section 3.

3. Pohozaev Identities for the Laplacian in R2

In this section we derive Pohozaev identities in 2-D (Theorem 3.1) by combining ideas

from [13] and [19]. Precisely we multiply the stationary equation (39) which is satisfied

for instance by sufficiently smooth harmonic maps by the fundamental solution of the

heat equation and a holomorphic vector field X : C→ C.

We mention that the use of the fundamental solution to get Pohozaev-type identities and

monotonicity formulas has been performed in [19] to study the heat flow. In Chapter 9 of

[13] the authors derived in the context of Ginzurg-Landau equation generalized Pohozaev

identities for the so-called ρ-conformal vector fields X = (X1, . . . , Xn), where ρ is a given

function defined in a 2 dimensional domain. In the case ρ ≡ 1 then the ρ-conformal vector

fields are exactly conformal vector fields generated by holomorphic functions.

We recall that the fundamental solution of the heat equation

(44)





∂tG−∆G = 0 t > 0

G(0, x) = δx0 t = 0 .



POHOZAEV-TYPE IDENTITIES 17

is given by G(x, t) = (4πt)−1/2e−
|x−x0|

2

4t .

Theorem 3.1. [Pohozev in R2] Let u ∈ W 1,2
loc (R2,Rm) be a solution of

(45) ∂x`

( |∇u|2
2

)
−

2∑

k=1

∂xk [∂xku∂x`u] = 0 in D′(R2),

` = 1, 2. Assume that

(46)

∫

R2

|∇u(x)|2dx < +∞.

Then for all x0 ∈ R2, t > 0 and every X = X1 + iX2 : C → C holomorphic function the

following identity holds

(47) 2

∫∫

R2

e−
|x−x0|

2

4t |x− x0|
(
∂u

∂ν
· ∂u
∂X

)
dx =

∫∫

R2

e−
|x−x0|

2

4t ((x− x0) ·X) |∇u|2dx.

If X = x− x0 with x0 ∈ R2 then for all t > 0 the following identity holds

(48)

∫∫

R2

e−
|x−x0|

2

4t |x− x0|2
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dx2 =

∫∫

R2

e−
|x−x0|

2

4t

∣∣∣∣
∂u

∂θ

∣∣∣∣
2

dx2.
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Proof. We multiply the equation (45) by X`(x)e−
|x−x0|

2

4t and we integrate(6)

0 =

∫∫

R2

[
∂x`

( |∇u|2
2

)
− ∂xk (∂xku∂x`u)

]
X`e−

|x−x0|
2

4t dx

=

∫∫

R2

∂x`

[ |∇u|2
2

X`e−
|x−x0|

2

4t

]
dx

︸ ︷︷ ︸
=0

−
∫∫

R2

|∇u|2
2

∂x`

(
X`e−

|x−x0|
2

4t

)
dx

−
∫∫

R2

∂xk

[
∂xku∂x`uX

`e−
|x−x0|

2

4t

]
dx

︸ ︷︷ ︸
=0

+

∫∫

R2

∂xku∂x`u∂xk [X`e−
|x−x0|

2

4t ] dx

= −
∫∫

R2

|∇u|2 ∂X1

∂x1︸︷︷︸
∂X1

∂x1
= ∂X2

∂x2

e−
|x−x0|

2

4t dx+
1

4t

∫∫

R2

|∇u|2X · (x− x0)e−
|x−x0|

2

4t dx(49)

+

∫∫

R2

e−
|x−x0|

2

4t




∂X1

∂x1︸︷︷︸
∂X1
∂x1

=
∂X2
∂x2

|∇u|2 + (
∂X1

∂x2
+
∂X2

∂x1︸ ︷︷ ︸
=0

)(
∂u

∂x1

∂u

∂x2
)




− 1

2t

∫∫

R2

e−
|x−x0|

2

4t (X · ∇u)
∂u

∂ν
|x− x0|dx.

From (49) we obtain that

(50) 2

∫∫

R2

e−
|x−x0|

2

4t (X · ∇u)
∂u

∂ν
|x− x0|dx =

∫∫

R2

e−
|x−x0|

2

4t (x− x0) ·X|∇u|2dx.

In particular if X = (x− x0) by using that ∇u = (∂u
∂ν
, |x− x0|−1 ∂u∂θ ), from (50) we get the

identity

(51)

∫∫

R2

e−
|x−x0|

2

4t |x− x0|2
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dx =

∫∫

R2

e−
|x−x0|

2

4t

∣∣∣∣
∂u

∂θ

∣∣∣∣
2

dx

and we conclude. �

We observe that if u is smooth then equation (45) is equivalent to the equations

∂u

∂xi
·∆u = 0, x ∈ R2, i = 1, 2.

(6)We use the Einstein summation convention
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In Theorem 3.2 we get infinite many Pohozaev identities over balls in correspondence

to holomorphic vector fields X = X1 + iX2 : C→ C for maps u ∈ W 1,2
loc (R2,Rm) satisfying

(45)

Theorem 3.2. [Pohozev in R2- Ball Case] Let u ∈ W 1,2
loc (R2,Rm) be a solution of

(52) ∂x`

( |∇u|2
2

)
−

2∑

k=1

∂xk [∂xku∂x`u] = 0 in D′(R2), ` = 1, 2

Then for all x0 ∈ R2, r > 0 and every X = X1 + iX2 : C → C holomorphic function the

following identity holds

(53) 2

∫

∂B(x0,r)

∂u

∂ν
∇u ·Xdx =

∫

∂B(x0,r)

X · ν|∇u|2dx

In the particular case X = x− x0 with x0 ∈ R2, then for all r > 0 the following identity

holds

(54) 2

∫

∂B(x0,r)

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dσ =

∫

∂B(x0,r)

|∇u|2 dσ.

or

(55)

∫

∂B(x0,r)

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dσ =
1

r2

∫

∂B(x0,r)

∣∣∣∣
∂u

∂θ

∣∣∣∣
2

dσ

Proof. We multiply the equation (52) by X` and we integrate over B(x0, r). By using

the Cauchy Riemann equations we get

0 =

∫

B(x0,r)

X`

[
∂

∂x`

( |∇u|2
2

)
− ∂xk [∂xku∂x`u]

]
dx

=

∫

B(x0,r)

∂

∂x`

[
X` |∇u|2

2

]
dx−

∫

B(x0,r)

|∇u|2
2

[
∂X1

∂x1
+
∂X2

∂x2

]
dx

−
∫

B(x0,r)

∂xk
[
X`∂xku∂x`u

]
dx+

∫

B(x0,r)

∂X`

∂xk
[∂xku∂x`u] dx

= − 1

2r

∫

∂B(x0,r)

X · (x− x0)|∇u|2dσ −
∫

B(x0,r)

|∇u|2dx

+
1

r

∫

∂B(x0,r)

(X · ∇u)(
∂u

∂ν
)dσ +

∫

B(x0,r)

|∇u|2dx(56)

It follows that
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∫

∂B(x0,r)

(X · ∇u)(∇u · (x− x0))dσ =
1

2

∫

∂B(x0,r)

X · (x− x0)|∇u|2dσ.

and we conclude. �

4. Proof of Proposition 1.2.

From Theorem 1.4 it follows that u satisfies in particular

(57)

∣∣∣∣
∫ 2π

0

u(eiθ) cos(θ) dθ

∣∣∣∣
2

=

∣∣∣∣
∫ 2π

0

u(eiθ) sin(θ) dθ

∣∣∣∣
2

We can rewrite (57) as follows

(58)

∣∣∣∣
∫ 2π

0

u(eiθ)<(deiθ)

∣∣∣∣
2

=

∣∣∣∣
∫ 2π

0

u(eiθ)=(deiθ)

∣∣∣∣
2

.

Given a ∈ R with |a| < 1 and α ∈ R we consider the Möbius map Mα,a(z) := eiα z−a
1−az

and we define

ua,α(eiθ) := u ◦Mα,a(z).

Since the condition (15) is invariant with respect to Möbius transformations for every

α ∈ R and for every a ∈ (−1, 1) we get

(59)

∣∣∣∣
∫ 2π

0

u

(
eiα

z − a
1− az

)
<(deiθ)

∣∣∣∣
2

=

∣∣∣∣
∫ 2π

0

u

(
eiα

z − a
1− az

)
=(deiθ)

∣∣∣∣
2

.

or equivalently

(60)

∣∣∣∣<
(∫ 2π

0

u

(
eiα

eiθ − a
1− aeiθ

)
deiθ

)∣∣∣∣
2

=

∣∣∣∣=
(∫ 2π

0

u

(
eiα

eiθ − a
1− aeiθ

)
deiθ

)∣∣∣∣
2

.

We set

eiϕ := eiα
eiθ − a
1− aeiθ ,

which implies that

(61) eiθ =
ei(ϕ−α) + a

1 + aei(ϕ−α)

(62) d(eiθ) =
1− a2

(1 + aei(ϕ−α))2
d(ei(ϕ−α))
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By plugging (61) and (62) into (60) and dividing by (1− a2) we get

(63)

∣∣∣∣<
(∫ 2π

0

u(eiϕ)
e−iα

(1 + aei(ϕ−α))2
d(eiϕ)

)∣∣∣∣
2

=

∣∣∣∣=
(∫ 2π

0

u(eiϕ)
e−iα

(1 + aei(ϕ−α))2
d(eiϕ

)∣∣∣∣
2

.

Observe that for all |z| < 1 we have

z

(1 + z)2
=
∞∑

n=1

n(−1)n−1zn

In particular

(64)
ei(ϕ−α)

(1 + aei(ϕ−α))2
=
∞∑

n=1

n(−1)n−1an−1ein(ϕ−α)

and

(65) <
(

ei(ϕ−α)

(1 + aei(ϕ−α))2

)
=
∞∑

n=1

n(−1)n−1an−1 cos(n(ϕ− α))

(66) =
(

ei(ϕ−α)

(1 + aei(ϕ−α))2

)
=
∞∑

n=1

n(−1)n−1an−1 sin(n(ϕ− α))

We can write

∣∣∣∣<
(∫ 2π

0

u(eiϕ)
ei(ϕ−α)

(1 + aei(ϕ−α))2
dϕ

)∣∣∣∣
2

(67)

=
∞∑

n=1

(−1)n−1an−1
n−1∑

k=1

(n− k)k

(∫ 2π

0

u(eiϕ) cos(k(ϕ− α))dϕ

)(∫ 2π

0

u(eiϕ) cos((n− k)(ϕ− α))dϕ

)

and

∣∣∣∣=
(∫ 2π

0

u(eiϕ)
ei(ϕ−α)

(1 + aei(ϕ−α))2
dϕ

)∣∣∣∣
2

(68)

=
∞∑

n=1

(−1)nan−1
n−1∑

k=1

(n− k)k

(∫ 2π

0

u(eiϕ) sin(k(ϕ− α))dϕ

)(∫ 2π

0

u(eiϕ) sin((n− k)(ϕ− α))dϕ

)
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The identity (63) and the relations (67), (68) imply that for every n ≥ 2 we obtain the

following identities

n−1∑

k=1

(n− k)k

(∫ 2π

0

u(eiϕ) cos(k(ϕ− α))dϕ

)(∫ 2π

0

u(eiϕ) cos((n− k)(ϕ− α))dϕ

)
(69)

=
n−1∑

k=1

(n− k)k

(∫ 2π

0

u(eiϕ) sin(k(ϕ− α))dϕ

)(∫ 2π

0

u(eiϕ) sin((n− k)(ϕ− α))dϕ

)
.

From (69) we can deduce a countable family of relations between the Fourier coefficients

of the map u. Precisely if we set for every n ≥ 1




an :=
1

2π

∫ 2π

0

u(eθ) cosnθ dθ

bn =
1

2π

∫ 2π

0

u(eθ) sinnθ dθ,

we get

n−1∑

k=1

(n− k)k [(cos(kα)ak + sin(kα)bk) (cos((n− k)α)an−k + sin((n− k)α)bn−k)

− (cos(kα)bk − sin(kα)ak) (cos((n− k)α)bn−k − sin((n− k)α)an−k)] = 0(70)

The identity (70) can be rewritten as follows

cos(nα)(
n−1∑

k=1

(n− k)k(akan−k − bkbn−k)) + sin(nα)(
n−1∑

k=1

(n− k)k(akbn−k + bkan−k)) = 0.

(71)

The relation (71) yields (29) and (30) because of the linear dependence of cos(nα) and

sin(nα).

We observe that for n = 2 we obtain:

(72) (|a1|2 − |b1|2) cos(2α)− 2a1 · b1 sin(2α) = 0.

Since α ∈ R is arbitrary we get





|a1| = |b1|

a1 · b1 = 0
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If n = 3 we get

(73) 4(a1 · a2 − b1 · b2) cos(3α)− 4(a1 · b2 + b1 · a2) sin(3α) = 0.

The relation (73) gives 



a1 · a2 = b1 · b2

a1 · b2 = −a2 · b1.
If n = 4 we get





|a2|2 − |b2|2 =
3

2
(b1 · b3 − a1 · a3)

a2 · b2 = −3

4
(a1 · b3 + b1 · a3).

We can conclude the proof. �
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