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I Introduction

In [14] the second author discovered a compensation phenomenon for the linear elliptic

systems of the form
~Au=Q-Vu in D?, (L.1)

where v € W2(D?* R"), D?> = B?(0,1) denotes the open unit ball centered at (0,0) and
Qis an L? map into the antisymmetric matrices of R? vectors. That is to say there exists
a matrix (Q); j—1.., of L? functions into R? such that

Vi=1---n —Aui:ZQg-Vuj and Qg:—Qé- Vij=1---n.
j=1

A-priori the system (I.1) is critical for the chosen norms, with a right hand side in L'.
Without the anti-symmetry of {2 no improved regularity has to be expected in general,
while W12 solutions to (I.1) for Q € L?(D? R>®so0(n)) are known to be in (), _, W2*(D?).

p<2 oc

One of the main strategy introduced in [14] was to use the antisymmetry of 2 in order
to construct a “gauge” A € L NW'(D? GI,(R)) satisfying

div(VqA) :=div(VA - AQ) =0
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Taking a “primitive” V1B = (-0,,B,0,,B) := VoA € L?*(D? M,(R) ® R?) the system
(I.1) becomes equivalent to the conservation law

div(AVu) = VB - Vu (1.2)

The Jacobian form of the right-hand-side of (I.2) permits to use now classical integrability
by compensation phenomena originally discovered by H.Wente [22] and related to the ones
by R.Coifman, Rochberg and Weiss [3] (see also [4]).

Following the main ideas of [14], extensions of this compensation phenomenon were
obtained in [15] for critical systems of the form (for m > 2)

Av=Quv in B™, (L.3)

where B™ denote the m-dimensional ball centered at 0 and with radius 1, Q € L™/2(B™, so(n))
and v € L"™/(m=2)(B™ R") as well as for systems of the form

(=AY =Qv IR (L.4)

where this time v € L?*(R,R") and Q € L*(R,so(n)) (see [5]). More recently the two
authors are extending their results to non local right-hand-side of the form

A)iy = / H(z,y) v(y) dy (1.5)

where pointwise antisymmetry has to be replaced by the more general notion of anti-
self-duality of the underlying non-local operator K(z,y) where K(x,y) := H(z,y) —
W (w) o=y € Line(R?) (see [6]).

In the present work we are exhibiting a new compensation phenomenon which does
not enter in none of the previous existing ones. Our main result is the following

Theorem L.1. Let S € W'2(R2,0(n)), * such that S* = id,, and let u € L>(R?,R") be a
solution of the following linear elliptic system in divergence form

div (S Vu) Z div (Si; Vu?) Z Z S,ju =0 (1.6)

jlal

Then u € () Wil (R, R™). O

p<2

1O(n) denotes the group of orthogonal n x n matrices, SO(n) is the group of orthogonal n x n matrices
with determinant 1. U(n) is the group of unitary n x n matrices and SU(n) is the Lie group of n x n
unitary matrices with determinant 1. The Lie algebra of U(n) consists of n x n skew-Hermitian matrices,
with the Lie bracket given by the commutator.



Remark I.1. The system (1.6) is elliptic with principal symbol |{|%S. It is however not
strongly elliptic in the sense of Legendre Hadamard ? since obviously < S\, X > can change
sign as A varies. O

Remark 1.2. Structural conditions on S for the regqularity are necessary in the following
sense. In [12] an L* solution to

div(AVu) =0

is produced where A € W12(D? Sym(2)) and A is satisfying the strong ellipticity condi-
tion?

A(x)€, & >~ [¢]
uniformly on D? but u ¢ W,-P(D? R) for any p > 1.

loc
We also observe that we cannot expect in Theorem I.1 that u € VVl1 2(DQ). Actually
if we set w = Su, w solves Aw = dlv(VSSw) Such a PDE bootstmps in W,oP(D?) for
p < 2 but not in Wo*(D?). If w € WLP(D?) for p < 2 then w € L (D?) with p* = pp.
By mjectmg such an information into the equation we get that VSSw € L (D?) (smce

p= +2) and therefore we come back to the initial information that Vw € LY (D?). This
is not the case if w € W?(D?). This would actually zmply that w € L} (D?) for every

loc

q > 2 and from the equation we deduce that Vw € Lq+2 which 1s a lost of information
from the initial one since 1 < ;32 < 2.

Remark 1.3. Contrary to the case of the systems (I.1) in [14], we have not found yet
striking applications in geometry or physics of systems (1.6) while nevertheless they look
very “natural” and enjoy numerous formulations that we are going to present in this work.
The system (1.6) is nothing but the Harmonic Map Equation into a pseudo-riemannian
manifold (see remark 1.4). The formulation using Dirac operator below (see 1.10) more-
over corresponds to the Weierstrass representation of Lagrangian surfaces in four-
dimensional space by Hélein and Romon ([11] Theorem 1). The assumption u € L* is also
faithful to the Hilbert Space framework in mathematical physics* and makes this function
space natural in that sense. O

*We recall that a matrix of coefficients (Ajy B )izla J5<<nm satisfies the strong ellipticity condition, or the

Legendre-Hadamard condition if there exists )x > 0 such that
AZPeEan'n? > NEP[nf?, for all € € R™, n e R™,

In the case of the system (I.6) the matrix of coefficients is given by Aa B = Sij0a,3 where 1 < a, 8 < 2,
1 <i,5 <nand d, 3 denotes the Kronecker’s operator.
3The matrix A is acting on the different vertical components of Vu, u is in fact scalar in this case
while in theorem I.1 the matrix S acts on the horizontal components of Vu that is Vuq, -+, Vu,.
4Original works in mathematical physics which have nourish the growth of analysis with problems
from quantum mechanics, such as the study of Schrodinger semigroups for instance [19]...etc, take the L2
space and not the “energy space” W12 as the ”configuration space”.



Behind the proof of theorem 1.1 there is an e—regularity type of estimate which implies
the following concentration-compactness result

Theorem 1.2. Let S, — S weakly in WH2(R?, Sym(n)) where S? = id,, and let ugp — sy
weakly in L*(R?,R™) and satisfy

div (Sk Vug) =0 in D'(R?).

Then, modulo extraction of a subsequence, there exists finitely many points a; . ..ag € R?
S.1.
Up — U StrOngly in n WP (R?\ {a; ---ag}).

p<2

Moreover us, satisfies div(Sa V) = 0 in D'(R?). O

We shall call S € W2(R2, Sym(n)) where S? = id,, a chirality operator. Etymolog-
ically, in old greek xeip (kheir) means “hand”. The word chirality refers to an intrinsic
disymmetry of the space where a left and a right directions are given. More precisely
almost everywhere on R? we have the existence of two orthogonal projections, Pr and
Pp, complementary to each other (Pg + P, = id,), the left and the right, such that
S — PR - PL.

Remark 1.4. The system (1.6) is then the Euler-Lagrange equation of the Dirichlet energy
into the pseudo-riemannian manifold (R™, g) where

g(X,Y) = (X, PRY) — (X, PLY)

In other words (I.6) is the harmonic map equation from R? into (R", g), it correspond
to critical points of

E,(u) == /R \PaVul — |PyVul? da®.

(I
As we will see theorem 1.1 can be rephrased as follows.
Theorem 1.3. Let P, € WH2(R? Sym(n)) such that Py, o P, = Pr, and denote Pp :=
id, — Py, and let f € L*(R? C") satisfying
0
PL 8—£ - O
of (L.7)
Pr—=0
"oz
then f € (), Wil (R?,C"). O



In the course of the paper we will give a third formulation of our main result. For
n = 2 it takes a simpler following form.

Theorem 1.4. Let Q € L*(R? s0(2) @ C) and let f € L*(R? C) such that
of _

5 Qf. (1.8)
Assume I(0:Q) =0, then f €, WLP(R?, C?). O
The system
of
T _ay, (1.9)

where Q € L?(R? s0(2) @ C) and $(9:Q2) = 0 enjoys the same compensation property
as (I.8) for f € L*(R? C) but this last fact is a consequence of the theory in [14] while
theorem [.4 is new.

We will see that it can be recasted also in the following way. Recall first the definition

of the Dirac Operator in C?
0 0,
D = L
-0, 0

Then we have the following corollary

Corollary I.1. Let U € L*(R* C) such that $(3:U) = 0. Let ¥ € L*(R* C?) be a

solution of
U 0
DU = R (1.10)
0 U
WhP(R2, C2). O

p<2 "' loc

then ¥ € N

Throughout the paper we identify R? with the complex number plane C and we will
use both notations.

We will denote by S(R?) the space of Schwarz functions and by &'(R?) the space of
tempered distributions. For 1 < p < +oo we will denote by W'» (R?) the homogeneous
Sobolev space defined as the space of f € L} (R™) such that Vf € LP(R?) and by
W17 (R?) the corresponding dual space (p is the conjugate of p).

We also denote by L?*(R?) the space of measurable functions f such that

sup M {z € R? : |f(z)| > A\}Y? < 400,
A>0

and L*!(IR?) is the space of measurable functions satisfying
+oo
[ e R 1) 2 A < oo
0
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The spaces L>*°(R") and L*!(R") belongs to the family of Lorentz spaces and one can
check that they form a duality pair. For a nice introduction of Lorentz spaces we refer to
[9].

In the sequel we will often use the symbols @ < b and a ~ b instead of a < Cb and

C'a < b < Cb, whenever the constants appearing in the estimates are not relevant for
the computations and therefore they are omitted.
Acknowledgments : A large part of the present work has been conceived while the two
authors were visiting the Institute for Advanced Studies in Princeton. They are very
grateful to the IAS for the hospitality. The authors are also very grateful to the anony-
mous referee and to Jerome Wettstein for useful remarks that permit us to improve the
presentation of the paper.

II Preliminaries

II.1 Bourgain-Brezis Inequalities

In [2] Bourgain and Brezis proved the following striking result:

Theorem IL5 (Lemma 1 in [2]). Let u be a 2m-periodic function in R™ such that [, u =
0, and let Vu = f + g, where f € W™V 1(R") and g € LY(R") are 27- periodic vector
valued functions. Then

ol e gy < € (1l gy + Nl ) (1L11)
As a consequence of Theorem I1.5 they get the following

Corollary I1.2 (Theorem 1 in [2]). For every 2m-periodic function h € L™(R™) with
Jn b =0 there exists a 2m-periodic v € W™ N L>(R™) satisfying

divve=h inR"

and
V]| zoo @y + Jollwim@gny < C(n)||R]Ln@n).-

I1.2 Bourgain-Brezis inequality in 2 dimension revisited

For the convenience of the reader we provide a proof of (II.11) in 2-dimension which has
the advantage of not assuming periodicity. The proof is related to some compensation
phenomena observed first in [7] in the analysis of 2-dimensional perfect incompressible
fluids. This observation has also been used by the second author in the analysis of
isothermic surfaces [16] (see also [8, 13, 14]).

We start by showing the following preliminary Lemma.
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Lemma I1.1. Let g € L'(C,R?), f = (f1, f2) € W1(C,R?) and u € S'(C,R) be such
that
Vu=f+ge W2+ LYHYC) inS(C). (I1.12)

Then there is ¢ € R such that u — ¢ € L**(C) and
lu = ell 2oy < CU vir-12(c) + 9l 21c))- (IL.13)

Proof of Lemma II.1. By assumption there exist a¥ € L*(C,R) such that

For k = 1,2 we set a* = (a},a}) . Hodge decomposition in L? gives the existence of

of, % € W'2(C) such that

a* = Var 4+ v*sk (IL.14)

and

Va2 + V5|2 < [la¥||z2 (I1.15)
> We have . ZQ .

R o e
We observe that

Opay = 05y (0 — 0y 5Y) (I1.17)

0p,07 = 0y (0r,0° — 01, 8%) (I.18)

Opay = Opy (O’ + 0, 5Y) (I11.19)

Opyty = 00y (0,0° + 0, 57) (11.20)

® One can show (I1.14) by using the Fourier transform and the theory of Fourier symbols associated
to a differential operator. If we denote by F[a*] the Fourier transform of a* we have

Fl0z, (—A) 7} (div a¥)] —i&|¢| 72 (i Flat] + i&2 Flas])
Fl=0s,(=A) Heurla®)] = i&o)é|"(—i&Flak] + i& Flah))
FlOz, (—A) Hewrla®)] = —i&|¢| 72 (—i&Fla] + i&1 Flah)).

Then one observes that

Flai] = —i&|¢|7?(i&1Fa] + i&F[a5]) + i&e|€| " (—i&aFlaf] + i& Flas])
= ‘F[ailak_a:vzﬁk]
Fla§] = —i&|¢| 216 F[a}] + i&F[af)) — i& (€| 2 (—i&aF[a] + i&1 Flaj))

= F[Ou,a + 0., "]

Since a® € L?(C) we have that Vaof = V((=A)~!(div a*)) € L?(C), V+pk = VL ((-A)"H(curla®)) €
L*(C)



Therefore we have

D tt — Dy (S B 0F) 4 0y (Sa_ 00, BY) = i1

Oyt — Dy (S0 By 0®) — 0, (S0, 00, 8%) = g9

By multiplying first the second equation in (I1.21) and summing up the first and second
one we get

(I1.21)

2 2
(O, + 10s,) (u =Y O —i(> axkﬁ’f)> = g1 +igs = gc (11.22)
k=1 k=1

By setting w; := Zizl Oy, and wy = 22:1 Oy, B we have

lwillz2c) + lwellz2e) S [ f 112
and the equation (I1.22) becomes

Oz (u + wy + iwq) = géc (I1.23)

We set v := 47‘(‘% * g. We have ;v = g in S'(C). ® Since % € L?>>* and g € L', Young
Inequality yields that v € L?* and

1
[l 22 S -2z lgllze S Ngllor
z

The function h = u+w; +iwy —wv satisfies 0;h = 0 in §’(C) and therefore it is holomorphic.
This implies that $(h), R(h) are harmonic functions. By assumption S(h) = wy — S (v) €
L#*(R?) and thus wy — S(v) = 0. Since V*(u+w; —Rv) = V(wy — F(v)) it follows that
there is a constant ¢ € R such that u + w; — Rv — ¢ = 0. This yields in particular that
u — c € L*»*. The following estimate holds:

lu—cllrzee = Jlwr = R|[r2ee S [Jwillrzee + J0)l2200 S [[willr2e + Cllgl L
< CUlAllw-r2c) + lgllzr@)- (I1.24)
We can conclude the proof. O

Lemma I1.2. Let g € L'(C) and let h € L*>*°(C) satisfy d:h = g in S'(C). If Sh € L*(C),
then Rh € L*(C) as well and

[RA[lz2 < C(llgller + [Sh]L2). (I1.25)

SWe recall that - satisfies 9s(4m L) = do.




Proof of Lemma II.2. Let y € C2°(C) such that x =1 on B(0,1) and x = 0 on
B(0,2). For every k > 1 we set xx(z) = x(%)- We set by = xx(x)prxh where @), € C°(C)
is a sequence of mollifiers such that fR2 prdr = 1. We have

Ozhi = x10:(¢r * h) + Ozxnr * h = g (I1.26)

where
Ik = Xk (0z(pr * h) + Ozxxpr * h

and

1
lgelle S Ngllz + 2B o 5 Bl o

S Mol + el < Nl + gl 2]
S gz (11.27)
For ¢ € §(C) we define
1 1
(V) = /@ O — 0(0) = B U (0)&s — D 0)6o)e
1
[ e (11.28)

One can see that (I1.28) defines a tempered distribution. We set & = & + i&. Observe
that ) s .
-1 [i] _ 71 [f_] _ 71 [(51 — & +2i66)
& &1 N
Since &2 — €2 + 2i&,&, is homogeneous harmonic polynomial, we can apply Theorem 5 in
3.3 of [20] and deduce the existence of an universal constant ¢y such that

F-1 (& — & + 2i6:6) . 22— 23+ 203179
IS8 ! |]? '

Now we introduce the following tempered distribution

. 1.
We have .
T = F {_5—} . (11.30)

It follows then from (I1.30)

2 2 :
r] — T5 + 217129

1Tkl < Nlgkllze S gl (IL.31)




We also have
Flo:Th] = é—}—[gk] = Flhy]. (11.32)

Hence

C C
= ’—?R (/ Oshy, dexld@)' = ’—?R (/ I dexld@)'
C C

< Mgell Tl < Clgllzs

(I1.33)
We have
R(hT) = |Rh]? — |Shy)? (11.34)
and
9l = [ IS puxel S IS
C
From (I1.33) and (I1.34) we deduce that
[(Rhk) 72 < [|She |72 + | /c%hidxl < ||Sh)[7: + CllgllZs- (I1.35)

Up to a subsequence Rhy, converges weakly in L? to hy, € L*(R?) as k — +o00. On the
other hand we have Rh;, — Rh in §'(C) and therefore Rh = h,, € L*(C) and by the lower

semicontinuity of the L? norm we have
IRR)Z2 < IISRIIZ2 + CligllL. (11.36)

We conclude the proof of Lemma I1.2. O

By combining Lemmae II.1 and II.2 we can deduce the Brezis-Bourgain Inequality.
Lemma IL.3. Let g € L'(C,R?) and f € W12(C,R?) Let u € S'(C,R) be such that
Vu=f+gec (W LYHYC) inS(C). (I1.37)
Then there is ¢ € R such that u — ¢ € L*(C) and

lu = ellize) < O llip-raqey + lgllzace)). (IL38)
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Proof of Lemma II.3.
From Lemma II.1 it follows that there is ¢ € R such that u — ¢ € L*»*°(C) with

[u = cllz200c) < CUf 120y + N9l 22 (0))- (1L.39)

Claim 1: v — ¢ € L? and (I1.38) holds.

Proof of Claim 1

In the proof of Lemma II.1 we have seen the existence of o, 3 € W2(C) (k = 1,2)
such that if we set w; = Eizl Oy, and wy = Eizl Oy, B we have

0-((u — ¢) — wy — iws) = %C in §'(C)

and
w2y + lwell 2y < Cll fllv-12c)-

The function h = (u—c¢) —w; —iw, satisfies the assumptions of Lemma I1.2. Therefore
we have that (u — ¢) —w; € L? with

/ lu — ¢ —w|*de < / \ws|*dz + Cllg||3 (I1.40)
C C
and
/C ju—cl’de S 2llwill7ac) + 2lwallza ) + Cllgllz
< Oy rne + Ila). (11.41)
We conclude the proof. O

Remark I1.5. We observe that if in the Lemma 1.3 Vu = V+v + g with g € L' and
v € L? then we simply get the estimate

Aw—qug|m@@+0mml (11.42)

namely the constant in front of HUH%Q(C) is 1.

IIT Regularity of solutions to div(S Vu) =0 : Proof of
theorem I.1.

In this section we are going to investigate the regularity of L? solutions to the following
system

div(S Vu) = 0 in D'(C) (I11.43)

11



where S € W42(C,O(n)) with S? = Id.
It has been shown in [12] that there exists solutions u € W' (B(0,1)) of div(AVu) = 0
in D'(B(0,1)) where A is a uniformly elliptic and continuous matrix which is in none of

the spaces W,2"(B(0, 1)) for any p > 1.

Actually they construct a counter-example of a matrix A which turns out to be also
in W'?(B(0,1)). The matrix A(z) = (a;;(2))1<i<n is defined as follows
155<n

T;X;
(o) =y + alal) (3 - )

where
—pn B(B+1)
(n—1) (log%o) (n—1) (log %0)2

where rq is large enough so that oo > —% and > 1.

a(r) = (I1T1.44)

Clearly a;; € L*(B(0,1)). A direct computation for any 4, j, k gives

. e Lo o 2 _ .
S = (a7 (0, - ) (i) (LB E RS EEEIAAG ) g
k

|| |z [? |zt

Therefore
8&2‘]' 1 1

x)| < C- .
Oxy, rlog(™)

Since %log(lr—o) € L*(B(0,1)) then Va;; € L*(B(0,1)) as well. It is proved in [12] that

u(x) ==z

2
1m S LQ(B(O, 1)) solves Z 8%.((1”» @Ju) = 0. (11146)
r2log(™®) =
The function u defined in (IT1.46) is not in the spaces W,2"(B(0, 1)) for any p > 1.
We are now proving the following result

Theorem II1.6. There is an g9 > 0 such that if S € Wh2(C,0(n)) with S*> = I,, and
VS| 12y < €0 then there is Q@ € W*(C, SO(n)) such that

S=0Q8" Q!
where ‘
I Opxn—
SO — mxXm mxXn—m III47
( On—mxm ‘ _In—mxn—m ) ( )
with m <n and
IVQllz < C[IVS||L2 (I11.48)
where C' > 0 only depends on n. a

12



Proof of Theorem IIIL.6. Let S € Wh2(R2,0(n)) be with S? = I,,.
We have det S, Trace(S) € W2(R?, Z). Precisely

det S = (—=1)""™, and Trace(S) =2m —n (I11.49)

where m = # positive eigenvalues and n — m = # negative eigenvalues (we recall that
the eigenvalues of S can be either 1 or —1). Since det S, Trace(S) € W12(R?) it follows
that det S and Trace(S) are both constant a.e. in R?.

We set I_g I4g
Pp = % and PL:% (I11.50)

Py, P are idempotent since (I — S)? =52 —2S+1=2(I —S) and (I +S5)*=2(I +5)
and the ranks of P, and Pr are constant.

We can see P (resp. Pg) as W2 maps with values into the Grassmanian Gr,,(R")
(resp. Gr,_p(R™)) of nonoriented m-planes (resp. n — m-planes) in R™.

By applying Lemma 5.1.4 in Hélein book [10] there is an £y > 0 such that one can find
two W12(R?) orthonormal basis e = e1,. .., ey and fi, ..., fu_m of Im(Py) and Im(Pg)
respectively such that

IVeill: < CI|VPLe  and ||V fillz2 < OV Pl (IIL.51)

fore=1,...,mand j=1,...,n—m.

.....

W2(R?, M) be defined by

_ QL Onxn—m
QL = < o T 0 (I11.52)
and
_ 0 Onxn—m
Qr = ( N —T ) (I11.53)

with Q* € SO(m), Q" € SO(n —m) and

{Qrex, k=1,....m}={e;, j=1,...m}

and
{Qréx, k=m+n,....,n}={e;, j=1,...n—m}.
Moreover
Pt = QZlPLQL and Pf= Q;}lPRQR
where

n—mxm ‘ Onfmxnfm
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and

0 Omxcn—
R _ mxm mxXn—m
Pr= ( On—mxm [nfmxnfm ) (11155)
We define 0
L Onxnfm
_ . I11.56
Q ( On—mxm QR ) ( )
By construction we have Q'Q = Id, S° = Q71SQ and
IVQ|lz2 < CIVS||z - (IT1.57)
This concludes the proof of Theorem III.6. O

Next we show how theorem 1.1 implies theorem 1.3. More precisely we establish that
(II1.43) is equivalent to (1.7) for a suitable choice of f .

Proposition IIL.1. Let S € W'2(C,O(n)) with S* = I, and let w € L*(C,R") be a
solution of
div(SVu) =0 in D'(C) (IT1.58)
Then there exists v € L*(C,R") such that V*v = SVu in D'(C). Moreover the function
f = u+iv satisfies
of o
Py 3, = 0 in D'(C)
- , (I11.59)
0

PR%.]EZO in D'(C).

where Pr, Pr are given by (I111.50).

Proof of Proposition IIL.1. Let v € D'(C) be such that V*v = SVu in D'(C). It
holds Vv = V(Su) — VSu € W2 + L. Lemma I1.3 gives that v € L?(C). We have

S Oyt = —0p,v
(I11.60)
S Op,u = Oy, v .
Therefore
S Oz, (u 4+ iv) =10, (u+iv). (IT1.61)
Let us introduce f: C — C" given by f = u + iv. Obviously f satisfies:
SOu f—10,f=0
(I11.62)

Si0p,f—0:f=0.
By first subtracting and then summing the two equations in (II11.62) we deduce that
(S+1)0,f=0, (S=1)0:f=0 (I11.63)
Therefore f satisfies (II1.59) and we conclude the proof. a
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III.1 Proof of theorem 1.1 : the case n =2

In this section we focus our attention to the case where the function u takes values in R?,
since as we will see the formulation will become simpler and maybe more enlightening .

Let Q € W'3(C,SO(2)) then a classical result by Carbou gives the existence of
o € WH2(C,R) such that

cos(a(x)) —sin(a(z))

Qz) = : (I11.64)
sin(a(z))  cos(a(z))
We also set
1 0
SO = (I11.65)
0 —1

Next we re-formulate the system (1.6) in the n = 2 case. Precisely we have

Proposition ITL.2. Let S € WY(C,0(2)) with S* = Id and ||VS||2c) < o (with
g0 > 0 as in Theorem II1.6). Let Q € SO(2) as in (I11.64) such that S = Q~'S°Q and
let u,v be as in the statement of Proposition III.1. Then function f: C — (C?)

f=5Qu +iQu (I11.66)
satisfies the following equation
0 1 )
o,.f = d.af . (II1.67)
-1 0

Proof of proposition II1.2 Let u € L*(R?) be a solution of (II1.58) and v € L*(C) be
such that
V+o = S V. (I11.68)

Since S = Q' 5°Q we can write (II1.68) as
QV+tv=5"QVu. (I11.69)
We set fy := S°Qu and fg := Quv. From the fact that S°QVu — QV+v = 0 it follows
V(fp) =V (fs) =V(S*Qu—-VQuv=5"VQ Q' S°fr — V*Q Q' fs. (IIL.70)
Therefore
Oy fr+0nyfs = S°(0,,Q)Q7" S fr + 0,Q Q7" fo
Orsfr = Onfs = 5°(0,Q)Q7 ' S fr — 0,QQ 7" f5.
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We have

vQQ - (? _Ol)w

0 “1a0
STVQQ S —(_IO)VOz.
We have

0 1 0 —1
8$1f§R+amzf\S = ( 1 0 ) 8:1:104.]0%‘1‘ ( 1 0 ) a:vzafﬁ
(IIL71)

0 —1 0 —1
—Opo [ + Oy fo = ( 1 0 )al‘gaf?ﬁ+ ( 10 )axlafs-

From (II1.71) it follows

amlfm—i_a:mf%_i<8:v2f§ﬁ_a$1f§> = (_01 é)(@ml&—lama)(fm—lfg)

Hence
o.f = ( ol ) d.af. (I11.72)

This concludes the proof of proposition I11.2. O

Now we present the regularity of the equation (II1.67) and therefore of (II1.58). We
would like first to explain the reasons why the equation (II1.72) does not fall within the
classical theory of systems with a L? potential.

Let us represent a function f = u + iv with u = (uy,us),v = (v, v2) as

f= Uy + 10y
 \ugtivg )7
We observe that the equation (II1.67) can be written as

0.(uy + iv1) = O, (ug — ivy)

(I11.73)
0.(ug + ivg) = =0, (ug — ivy) .
The system (II1.73) is of the form
0.0 = w1
) (II1.74)
0, =—w ¢.
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where w = d,a € L?(C,C). The difficulty is that in the right hand side of (II1.74) there
are the conjugate of the unknows (¢, ). Suppose we would have instead a system of the

form
0.0 =0.a ¢
(IT1.75)
0.9 = —=0.a ¢.
Then the function ® := (1, ¢o) solves
0.b=0Q (II1.76)
where

- 0 azOé . 1

Hence we would deduce 9, (Q) ®) = 0 which would imply that ® € T/Vl})f Unfortunately
the multiplication of ® solving (II1.74) by a matrix in SO(2) does not permit to absorb
the potential €2 which is the case of interest in the present work. Therefore we have to
find a different Lie group that permits us to absorb the potential.

To this purpose we introduce the algebra of Quaternions. We recall standard notations

regarding this algebra that we denote by H :
H:={a+bi+cj+dk, (abc,d) cR},

where 4, j and k are the fundamental quaternion units satisfying i> = j? = k* = —1 and
1] = —ji =k, jk = —kj =i and ki = —ik = j. The set H of all quaternions is a vector
space over the real numbers with dimension 4. The conjugate of ¢ € H is the quaternion
¢ =a—bi—cj—d k. The reciprocal of ¢ € H* is ¢** = %, where |q] = 1/qq* is the
norm of q.

Given q € H, q = ¢1 + ¢21 + ¢35 + quk we set

i(q) = q2i and ILj(q) = g3j + @ik .

We also denote by Hl, the quaternion of the form q = g2i+¢sj +quk (the pure quaternions)
and U(H) :={qge H: |q| =1}. H, is the Lie Algebra of the Lie Group U (H).

Finally given §f: C — H we introduce the following differential operators (Cauchy-
Riemann-Fueter operators):

orf = 2740w, F — i Opf) (I11.77)

Orf = 271(0nf — 0.f ). (I1L.78)
and

oLf == 2710, +1 Ouf) (I11.79)

Orf = 271(0uf + 0uf i) (I11.80)
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We observe that if § takes values in C then
Opf = Opf = 0.f and O] = Orf = 0.

We are going to rewrite the equation (I11.67) and therefore (II1.73) using the quaternion
valued functions.

Lemma I11.4. Let
U1 + 11

Uy + 102
be a solution of (I11.67) then the quaternion
f=uy + vt + ugj + vok
satisfies
of = —d.ajf. (II1.81)

Proof of lemma III.4. We have seen that the equation (II1.67) is equivalent to the
system (II1.73). Such a system can also be written using the 9y, operator, which coincides
with Jr at this stage since the variables u; + ius and vy + ivy are C-valued.

Op(uy +ivy) = O,cv (ug — 1vg)
(I11.82)

Or(ug + ive) = =0, (uy — ivy) .
We multiply from the right the second equation in (II1.82) by j and we get (recall that
ij = k = —ji)
Op(ugj + vok) = —0.aj(uy +ivy). (IT1.83)
On another hand we can write the first equation in (II11.82) as follows:
Op(uy +ivy) = — 0. j? (up — ivg) = — .0 (ug j +va k). (I11.84)
By summing (II1.83) and (II1.84) we find
Op(uy + v1i + ugj + vok) = —0,af (ug + vii + ugj + vok). (IT1.85)

Hence we get (II1.81) and we can conclude. O
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IT1.2 Bootstrap test for 0.f = 0.7 |
In the sequel up to exchange o and —a we study the following equation

oLf = 0,7 f (I11.86)
Actually all that is proved in this section also holds for a system of the form

oLf=Q7 § (IT1.87)
where Q € L*(C,C).
The first main goal of this section is to show that the operator
fe L*(C,H) > 0rf — 0.aj |

is injective if the L? norm of d,« is sufficiently small. This is what we call the “bootstrap
test”.

Theorem IIL.7. There exists ¢g > 0 such that for every a € Wl’Q(C,R) satisfying
Va2 < e and every f € L*(C,H) solving

of=0ajf, (IT1.88)
then f = 0.
Before going to the proof of theorem II1.7 we will introduce a nonlinear operator IN.
Let q € U(H). We multiply the equation (II1.88) on the left by q :

A[0u,f — i O, f] = a0, — Oy v 4. (I11.89)
Observe that

By combining (II1.89) and (II1.90) we get

afl'l [qﬂ - 82132 [q Zﬂ = q[@mla - 81204 Z]jf
+ 0:,9f—0wqif (I11.91)

= q[amaj - amak + qilamq - q—lamq Z]f

We observe that since |q| = 1 then q7'0,,q € H,,.
We introduce the following operator

N: WY(C,U(H)) — WH(C, Span{i}) x L*(C, Span{j, k})

q = (I(00y (07 0209) + 000 (47 02,0) ), Tjn(q ' 0009 — 97 0rpq i) (I11.92)
We shall prove the following result.
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Lemma IIL.5. There is ¢o > 0 and C' > 0 such that for any choice of w € W~2(C,iR)
and g € L*(C, Span{j, k}) satisfying

[wllyi-12 < g0, lgllz2 < €0 (I11.93)
then there is q € WH2(C,U(H)).
N(q) = (w,9) (I11.94)
and
IVallze < Cllwllyi-12 + llgllz2) (I11.95)

In order to prove lemma II1.5 we shall need to introduce some notations and establish
some intermediate results.

As in [5, Proof of Theorem 1.2, Step 4], by an approximation argument it suffices to
prove Lemma III.5 assuming that w and g are slightly more regular.

We fix 2 < p < 400 and for € > 0 we introduce

(w,g) € WP QW19 (C,iR) x LP N L” (C, Span{j, k})
U. = (I11.96)
-1z + [lgllze < e
1 1
where — + — = 1.
p P

For constants €,© > 0 let V.o C U. be the set where we have the decomposition
(II1.94) with the estimates

IValla < ©([lwllyiy-12 + llgl£2) (IT1.97)
IVally < ©lwllyi-1» + llollze) , (IT1.98)
IVally < Olwlliy-10 + gl 1) - (1T1.99)

there exists q € (W' N W)(R2, U(H)), so that q — 1 € Lot
and (IT1.94), (IIL.97), (I1L98), (I11.99) hold.

V.o = w,g€U.:

" The strategy to prove lemma IIL.5 follows the one K. Uhlenbeck introduced in [21] to
construct Coulomb gauges in critical dimensions. Precisely lemma IIL.5 is going to be a
consequence of the following proposition.

Proposition I11.3. There exist © > 0 and € > 0 so that V. e = U.. O

"Note that (II1.97) could actually be deduced from (II1.98), (I11.99) by interpolation.
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Proof of Proposition II1.3. Proposition II1.3 follows, once we show the following four
properties

(i) U. is connected.
(ii) V. e is nonempty.
(iii) For any €,© > 0, V. ¢ is a relatively closed subset of U..
(iv) There exist © > 0 and € > 0 so that V. g is a relatively open subset of U..

Property (i) is clear, since U. is obviously starshaped with center 0.
Property (ii) is also obvious since : (0,0) € V. g.

The closedness property (iii) follows almost verbatim as in [5, Proof of Theorem 1.2,
Step 1, p.1315]: there one replaces (—A)Y* by V. Observe that a uniform bound of the
LP-norm as in (II1.99) implies by Sobolev embedding in particular a uniform bound of
q—1in L2 (R?).

We show now the openness property (iv). For this let wy, go be arbitrary in V. o, for
some ¢, © > 0 chosen below.

Let qo € WP N W' (C,U(H)), qo— 1 € L%(C) so that the decomposition (I11.94)
as well as the estimates (I11.97), (II1.98) and (I11.99) are satisfied for wy and go.

We consider perturbations of qg of the form q = qoe* where u € (Wl’p N W N
L%)(C,Hp). Observe that the exponent p > 2 has been chosen in particular to ensure
u € (C°N L*>®)(C) with uniform estimates and qoe* — 1 € L2,
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8
We set

Ny : (W AW 0 Li%)(C,H,) — <¢<W*1’p N W=1)(C), L? N L (T, span{J, k;}))
u = Ny (u) == N(qoe"). (I11.100)
We will write u = uy7 + usj + uszk.

We have N,, € C" and we can compute DN, (0) as

DNqo(O) = @Nﬁlo(tu) = qu(u)>

where for u € L2 0 W N Wi'(C, H,)

Lo (u) := (IL; (Au + 8y, [ag ' 0z, qott — uqy 0y, do] + 9a[40 Oy dott — udgg " 9sq0])

ij(all?lu - amui + [%_189:1 Jou — uqalaxl qO] - [qalam JoU — uqo_lam qO]Z)) .
(11.101)

In order to use a fixed-point argument for qu we will show that L, is an isomorphism.

More precisely we prove the following lemma.

Lemma II1.6. For any © > 0 there exists a € > 0 so that the following holds for any
wo, @0 and qo as above.

For any w € (W= nW=5)(C,iR), g € (L? N L”)(C, span{j, k}) there exists a
unique u € L2 AWr 0 W'(C,H,) so that

(w,8) = Loo (1)

and for some constant C' = C(wo, g, ©) > 0 it holds

lull 2, + IVullne) + IVullirey < C [ (Iolhmrae) + Il )

+ (”9HLP(<C) + Hg!\m@))] . (111.102)

8Indeed for a Schwartz function one has
wa) = 3= [ Volole—ul-Vu@)dy >l < (2m) [V loB o ol zam [Vt
Generalized Holder inequality (see [9]) gives moreover
IVl p2n < CIVU|IE [Vull;5"
where 271 = ap~t 4+ (1 —a)p’ ™" Ifue WP W' N L7 then u(z) = 5= [ Veloglz —y|- Vu(y) dy
satisfies At = Au in §(C). One has ||it]|oc < (27) 71|V, log|z—y||| p2. || V|| 21 and moreover it € Loz,

~ . . . . 2p_ ~
u — u is a harmonic function belonging to L?-2, hence u —u = 0.
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Proof of lemma III.6.
Claim 1. L;(u) is invertible (qo = 1) as a map

Lz (WY A Li%)(C, H,) — (W*Lp’(m) x (LP N LP)(C, span{j, k;}))

The operator L is given by
d

Li(w) = 2 N(")imo = (T(Au), T (0ry 1 — Douid)) (I11.103)

= (Au1 i, (0mlu2 — 8;,;2U3)j —+ (8mlu3 -+ &Bng)k) .

Given f € Wﬁl’p/(C, R), a,b € LP (C,R) there is a unique triple u, uy, us € Whrawte' n
2p
L»=2(C,R) such that
Ly(u) = (fi,aj + bk) .

More precisely the following system should be satisfied:
Auy = f
(I11.104)
8z(u2 — ug’i) =a—bi
1 o1 1
w(z) = o log(|z]) % f(x), uy—ugi= E(a — bi) * =
Classical estimates give
ell ) ey + 1Vl S Al (Jue =g ill 2o, + V(2 —ug2)l[ 1 S lla = bl -
The Claim 1 is proved.
Observe that
Lo (0) = Ly (1) = (IL(8ay [d " Oy dott — udlg 'z, Go] + Doy [0 ot — 16ty 0ay o)),
Ik (a0 " Oz, qott — udy 'O, o] — [dg " DapGott — 10y D, q0i)) -
We have
10, (a6 Oxpott — ey e 0) [lyir—10r < [l ey o 1t — Wil D, o]l 1

(I11.105)
<IVaollz2 [[ull 2o, <€ O Jlull 2

Choosing € > 0 small enough (depending on ©) we obtain that L, is an invertible map
. ’ 2p_ . ’ ’
from WP N Ly=2 to W1 (C,iR) x L¥ (C,span{j, k}),
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Claim 2. Assuming now w € (W= 0 W=1#)(C,iR), g € (L? N L’')(C,span{j, k}) we
prove that the unique solution u of Ly, (u) is in W2,
From the fact that (w,g) = Lg, it follows:

Awi = w — 1105, (9505, g0u — uay 92, d0) ) — 1i(0a (dg " Dy dott — 1y 0zy0))
(amug - 8x2u3)j + (amug + 8x2u2)k =49

+ T, (—[ag ' Ouy dott — uggy ' Oy do] + [ag Oy Gott — g Dy qo)i) -

(111.106)
We observe that
(8331112 - 8$2u3)j + (al'lu3 + 8$2u2)k = 265(”[2 + us Z).]
Therefore we can write the second equation in (II1.106) in the following way:
20:(uz +uzi) = —gj + Mlay ' Or,qou — udg ' 9, dolj + (Mjn([dg ' Ouott — 405" Dy o) .
(I11.107)
Let p/ < r < 2, since Vqo € L” we have for £ = 1,2
lag "0z qortll e < Va0l o lfull | 2o (II1.108)

for % = % + % Observe that p >t > 2, since r > p/.

From (I11.106) and (II1.108) it follows Vu € L*. We have also Vu € L¥. This implies
that u € L™ (see previous footnote). Therefore

lag ' 9z, q0ull e < Vol 2o [lullo (I11.109)

From (II1.106) it follows that Vu € L? and the Claim 2 is proved. This concludes the
proof of lemma III.6. O

Proof of proposition II1.3 continued.

For ¢ = £(0) > 0 chosen small enough, and for any (wy, go) € V-.e the local inversion
theorem applied to N gives the existence of some § > 0 (that might depend on (wy, go))
such that, for every (w, g) € U. with

lw = wollyir-1.p(c) + llow — wollyy—1cy <0 (1I1.110)

g — gollrrc) + 18 — Goll () <9, (IT1.111)

we find q = qoe* € W N W (C,U(H)), so that q — 1 € L%(C,H) and (II1.94) is
satisfied.
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It remains to prove (I11.97), (II1.98) and (I11.99). The local inversion theorem does not
imply the estimates (I11.97), (II1.98) and (I11.99). Anyway for every w, g € U. satisfying
(II1.110) and (II1.111) and for every o we can choose € and ¢ small enough so that

1Vallr2c) < o (I1.112)

The next lemma shows that if ¢ is small enough then (I11.97), (I11.98) and (I11.99)
hold for a uniform constant ©.

Lemma IIL.7. There exists a © > 0 and a 0 > 0 so that whenever q € W N
W' (C, (U(H)) and q — 1 € Lv-2(C,H) so that (I11.94) is satisfied and it holds

IVallz2c) < o, (I11.113)
then (111.97), (I11.98) and (111.99) hold. O

Proof of Lemma III.7. ‘ '
Let us write w = Ap with Vi € LP N LY. Let £ € W' 0 W' (C,R) be such that

Hi(qilaﬂmq - aﬂmu) - _896252.

(I11.114)
Then
_Agl = Hl(aﬂm(qilaﬂclq)) - Hl(aﬂm(qilaﬂmq)) (111'115)
For every ¢ € [p/, p| it holds ?
IVElle < IVallze=|[Vallee S ol|Val e (1I1.116)

We can write

q 00— q '0pqi = ILi(q'0sq) — ILi(q ' 0s,q)i
+ e(q7'05,9) — ("0, q)s
= (89615 - 893252) + Hi(aﬂﬁhu - axgﬂ) +9 (111'117)

or equivalently

Therefore by combining (II1.116) and (I11.118) we get for every g € [p/, p]

We use the fact that if Va € L?*, Vb € L%, with ¢ € [p/,p] and if —A¢ = Va - V+b, in C then
Vo € L1 with ||V¢| ra < Cq||Vb||1e||Va| L2.. The constant Cj is uniformly bounded if ¢ € [p’, p] (see
[10]).
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IVallee < ClUVElLe + [[VallLe + llgllze]

IN

Col|Vql|ze + Cllwllyi-1.0 + Cllg] La- (I11.119)
Choosing © = % we have

IValle < O(llwllyiy-1.0 + [lgllza)-

This concludes the proof of lemma II1.7. a

End of the proof of Proposition III.3. As we have already observed if ¢ is small
enough the fact that w, g € U. implies that q € V. g, it satisfies |Vq||2 < o where o is
the constant appearing in Lemma III.7. Therefore thanks to lemma III.7 the openness
property (iv) is proven and Proposition I11.3 is then established. a

Proof of Theorem I11.7.
Let f solve (II1.91) with ¢ € N=1(0, —0,,aj + Op,ak) and ||Vql[z2 < O|Va|re. By
definition q satisfies

Hl(aﬂcl (qilaﬂmq) + a$2(q718x2q)) =0

(I11.120)
ij(qilamq —q'0,,q 1) = =0y 0 + Op,ak .
We analyze the first equation in (I11.120).
We have . .
Hl(aﬂcl (qi aﬂmq) + a@(qf 8ﬂc2q)) =0
i (ITL.121)
O, (i(a7"0x,9)) + Oy (i(a7'0s,9)) = 0.
Therefore there exists ¢ € W2(C,4R) such that
(97" 02,9) = —0n,C
(IT1.122)
(471 00,9) = 0, -
From (II1.122) it follows in particular that
_AC = 8962 (Hl(qilaﬂmq)) - a961 (Hl(qilaﬂczq))
= 11 (00, (971 02,9) — 00, (07" 02,)) - (111.123)
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The right hand side of (II1.124) is a sum of jacobians, hence it is in the Hardy space
H'(C). Tt follows in particular that V¢ € L*»!(C), with

V¢ r2a S 11Vl
We have
47000 —q 0nqi = IL(q '0uq) + k(a7 00 q) — Ti(q ' 00yq) i — Tk(q 7' 0yq) i

= _amzc - amlc i+ ij<q718:v1q - qilalmq Z) (IIIl24>

= —2i(0,() — Op,a j + Op,a k.

In (II1.124) we use the fact that I1;;(ai) = [Lj;(a)i for @ € H. By combining (II1.91),
(II.120) and (IIL.124) we get

We set
—AA =2qi[0.C]f. (T11.126)
Observe that
VAl 2o S llaf VClIzr SIVC[ 21 lla fll 2o (II1.127)

S IVallze [flzee < €6 llafllzee.

Since

afl'l (qf - 8331‘4) - 8332<q Zf + a$2A> =0 )
there exists B € W1(2>) guch that
qf — 0,,A = —0,,B

(I11.128)
—qi f — Oy A = 0y, B.

Therefore
f = q_l(a’mA - a:sz)
(111.129)
f = iqil(amA + 89613) .
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From (II1.129) it follows

(0, A — 0,,B = qiq (0, A+ 0,, B)

—0py A — 0B = qiq~4(0,, A — 0,,B)

—0p, B = qiq Y (0,, A+ 0, B) — 0, A (I11.130)

—0p, B = qiq 4 (0,,A — 0,,B) + 0,,,A

. —AB = 8961 (qzqil(axlA - aJCQB)) + 8932 (qlqil(amA + aﬂmB)) .

We observe that —0,, [qiq~ 0., B] + 0.,[qiq~'0,, B] is sum of Jacobians and therefore we
can apply Wente’s Lemma (case L? — L) :

VB2 < VAl 20 + [IVall 2]V B 2.0

S O |IVA| 2 + €0l| VB[ L2 (T11.131)
Estimate (II1.131) implies that

IVBllize S IIVAll2
lafllzzee S VA2 + [VB] 12

S ella fllzees (I11.132)

If gy is small enough then § = 0. This concludes the proof of Theorem III.7. a

I11.3 Morrey-Type Estimates

In this section we prove Morrey-type estimates for solutions to (II1.43) in the case n = 2.

Proposition 1I1.4. Let S € WY2(C,0(2)) with S? = Id and u € L*(C) be a solution of
(I11.43). Then u € WP for every p € [1,2). O

loc

Proof of Proposition III.4. Step 1. Assume that ||V S||12(p(0,1)) < €o.

Claim: There is 0 < g9 < 1 and S € W'*(C, Sym(2)) with 5% = Id such that S = 5
n B(O, 1) and ||VS||L2(R2) S C||VS||L2(B(O71)).

For the proof of the claim we refer to [17].

Now let v € L*(R?) be such that

V+o = SVu in S'(R?).
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By arguing as in the previous section we can find q € W2(C, U (H)) with | Vq||z2c) <
CIVS| 12y and ¢ € WHED(C) with ||0.¢]|r21(c) < €2 such that

O, [af] = Oz, [q0 ] = =292 [0.C]f in D'(B(0,1)) (IT.133)
1. Let z € B(0,1/2) and 0 < r < 1/4. We consider
—AA=2qi[0,C]f in B(z,r)
{ A=0 on 0B(xz,r). (IIL.134)
We have
IVA|| 200 (B S €0 11 2200 (B@r) - (IIL.135)
2. Since
a$1(qf - 8961A) - 8x2(q if + aﬂCQA) =0,
there exists B € W(2°)(B(z,r)) such that
qf — 0y, A= —0,,B
(I11.136)

—qt f— 0z, A= 0., B.

We have
—AB = 0y, (qiq " (04, A — 0,,B)) + 0u, (qiq " (05, A+ 0, B)) in D'(B(z,r)) (IIL137)

We decompose B = 31 + (2 in B(x,r) where ; and (3, satisfy respectively

Apy =0 in B(0,r) APy =AB  in B(0,r) ( |
I11.138

and
fr=B ondB(0,r) B =0 on 0B(0,r)

The following estimates hold:

Estimate of S;:
Wente inequality (L**° — L? case) combined with classical Calderon Zygmund inequal-

ities give
HV/B2HLQ’°°(B($J’)) S HVAHLQ,oo(B(xJ,)) + EOHVB”LQ,OO(B(:L"T‘)) . (IHl39)

Estimate of (;:
Since f3; is harmonic, for every 0 < § < % we have
(I11.140)

< VB2 5o

Hvﬁl”%Qv“(B(m,ér)) =
46

45 2 2 ? 2
EY ”vﬁlHLQ(B(m,B/élr))SC 3 ”vﬁlHLQ’“(B(wvr))’

3
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where C is a constant independent of r. In (IT1.140) we use the fact that the L*> of the
gradient of a harmonic function on the ball B(z,r) controls all its other norms in balls
B(z,nr) with n < 3/4.

Estimate of B:
Combining the previous estimates we obtain

VB 2@y S IVBillLze@s + IV B2llL2e (8,5

46
< ( )HV@ﬂpwwmr+HVAmprm,+amVBmpr@m
S (%) U98lmoon + IV Blmiaen)
+ [[VA| 200 (B@r)) + €0llV B[ 1200 (B(@.r))

46
5 <§) HVAHLQ,OO(B(;L'J‘)) + 8OHVBHL2’OO(B(:B,T)) -+ HVB”LQ’OO(B(ZB,T))}
+ VA 200 (B@r)) + 0llV Bl 1200 (B@.r))
S {( ) 80 + 80} Hf”poo (B(0,r)) (I11.141)
+ |:( ) €o + ( ) -+ 80:| HVB”LQ’OO(B(:B,T))

Since |VB| 2008y < [|VA| L2002y + ||l 2200(B(@,r)) from (II1.141) one deduces that

49
||VB||L2,OO(B(1"6T)) 5 |:( 3 ) EO + EO:| ||f||L2 < (B(0,r)) (111142)

46 46
{(3)%+<§H€O}O+%Wﬂmﬂmw»

By combining (II1.136) and (II1.142) we obtain

{20 Bory S NIVAlL2eoB@sr) + IV B L2 (Basr)
S Fllzzee o) - (I11.143)

where v = 7(d,e9) < 1. By iterating (I11.143) we get the existence of a constant 0 < o < 1
such that

sup T_Oé||f||L2,oo(B(m7r)) < 400. (111.144)
2€B(0,1/2),0<r<1/4

Now we plug the estimate (I11.144) into (II1.134) and we get

sup r @ HAAHLl(B(m)) < +o00. (I11.145)
z€B(0,1/2),0<r<1/4
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and therefore
sup 1 VA p200 (B(a)) < +00. (I11.146)
2€B(0,1/2),0<r<1/4
From (I11.145) it follows in particular that VA € L9(B(0,1/4)) for all ¢ < 222 (See again
Adams [1], Remark after Proposition 3.2).
From (II1.136), (I11.144), (II1.146) it follows that

sup 1 VB p200(B(wr)) < +00. (I11.147)
2€B(0,1/2),0<r<1/4

By plugging (I11.147) into (II11.137) and (III1.138) one gets that

sup T AB| 200 (B(a,r)) < F00. (I11.148)
2€B(0,1/2),0<r<1/4

which implies that VB € L7(B(0,1/4)) for all ¢ < 2=2 as well. Therefore f € L(B(0,1/4))

for all ¢ < f:—g as well. Actually one can show by bootstrap arguments that § € L}  for

all ¢ < +o0.

Step 2. From Step 1 it follows that Su € L] (C) for all ¢ < +o00. Since u solves (II1.43)
we have

A(Su) = div(V(Su)) = div(VSS Su) in D'(C). (111.149)

2q_
From (II1.149) one gets that V(Su) € L2 ? for all ¢ < 400 and therefore Vu = V.S(Su)+

loc

SV (Su) € LY  for all p < 2. This concludes the proof of proposition II11.4 which itself

loc
implies theorem 1.1 in the case of 2-D codomains. O

IV  Proof of theorem 1.1 : the general case n > 2

We are going to present here another approach to study the regularity of the equation
(IT1.43) which works for every n > 2. We start by showing the bootstrap test:

Theorem IV.8. Let S € W2(C,0(n)) with S*> = Id and v € L*(C,R") be a solution
to the equation (I11.43). There is €9 > 0 such that if ||V.S||12c) < €0, then u = 0.

Proof of theorem IV.8 From Lemma I1.3 we can find v € L?(C,R") such that Vv =
S Vu.
Assume that ||V.S||2c) < o where g is the constant appearing in Theorem III.6.

Then there is Q € W?(C, SO(n)) such that
S=Q'5°Q

where S is the matrix (IIL47) and [|[VQ| 12c) S €o-
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We set
f=fr+ifs =5"Qu+iQu.

Equation (II1.67) is equivalent to the system:
8331ng + amgf\s = SoamQQ_lSOf% + &szQ_lf%

(IV.150)
_amf?]? + aﬂmf\s - _SoangQilsofﬂ? + 8x1QQ71fS .
We can write _ '
SO — <<_1)mm(2m+1’2l)5ij)lgi,jgn )
Let Q = (wjj)1<ij<n be an anti-symmetric real matrix (i.e. w;; = —wj;), then
Q — SO 0 SO — (wij(_1)min(2m+1,2i)+min(2m+1,2j)) )
Therefore
Wij =wij = 1,j <mandi,j>m

(IV.151)

Wij = —w;; <= otherwise.

Observe that the matrix Q is still anti-symmetric. We set Q¢ := 9,,QQ~" and Q' =
$99,,0Q" 5.

Oy fro + Oy fs = QU fio + Q2 fg
(IV.152)

Oy 1t — Ouy fo = 02 fo — Q' [
Then we get

(0p, —i00,)(fr +ifs) = Q' fa+ Q% fo—i(Q? fr— Q' fo)

Which gives
(Ony —i0,)(fr +ifs) = % [(Ql +QY) — (9 + 92)] (fr +ifs)
by (@ =0 i@~ )] (fa—ifs) . (IV.154)
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From (IV.151) it follows for £ = 1,2

5 ij ‘ Omxn—m
Qf 4+ Qf
; = (IV.155)
On—mxm ij
and
Om><m _ij
Qf—Qf
5 = (IV.156)
_w@'gj On—mxn—m
We can write the system (IV.154) as
1 1 -
oLf = §Q+f + §Q_f, (IV.157)
where
Q1 Ol — Q2 02
of = W F2) 22( + ) (IV.158)
Q' — Q) —i(Q? - 0?2
o - | ) 2Z< ). (IV.159)
We observe that by construction for every ¢, 7 we have
I(0:9F) = Oup (U + 05, ()% € HU(R?) (IV.160)
S(0:95) = 00, ()" + 0,,(Q3;)° € H'(R?) (IV.161)

with

IS(0:25) ey < IVQIZamey ISO2)1 S IVQIZ2 e,
since these quantities are linear combinations of Jacobians of functions (the components
of the matrix Q) with gradient in L2

Let M be defined as follows:

M = < . M| Onxn-m ) (IV.162)

n—mxm ‘ ML

where My € W2(R?, SO(m)) and My, € WH2(R2, SO(n — m)). The following identity
holds

oL(Mf) = 8LMf+M8Zf:(8LMM1)(Mf)+%M(Q+f+Qf)

_ (aLMM1 + %MQ*MI) Mf+ %(MQMI)Mf. (IV.163)
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Claim 1: There are two constants £(n) > 0 and C'(n) > 0 depending only on n such that if
27|22 < £(n) there exists a matrix M of the form (IV.162) and n € W& (R?)N L>(R?)
such that

1
O MM + 5MQ+M—1 = —id.n

an
VM| 2@2), [Vl 2r@ey S92z -

Proof of Claim 1. By the same arguments in Lemma A.3 in [14] we can find M €
W12(C, SO(n)) of the form (IV.162) with ||V M|| 2@z < |24 22 and n € WH2(C, so(n))
such that ~

—0pyn = Opy MM ™" + My + M}
(IV.164)
Dpy1) = Oy MM ™ 4 M[Q + Qo] ML

It follows that

~An = 04, (0e, MM ™) — 0, (0p, MM ™) (IV.165)

(1)

+ O, (M (Ql + Ql) M‘1> — 0y, (M (QQ n QQ) M—1> . (IV.166)

(2)

The first term (1) on the right hand side of (IV.165) is in the Hardy Space H!(R?) since
it is a linear combination of Jacobians of functions with derivative in L2

Claim 2: The second term (2) is in W52 (R?).

Proof of the Claim 2. Indeed we observe that each component of (2) can be written
in the form

O, (awr) — Oy, (aws) (IV.167)
where a € (W2 N L™)(R?) and wy, wy € L*(R?) satisfy

Opywy — Op,wo € H(R?). (IV.168)

Actually we have

O,y (M (Ql + Ql) M‘1>Z_j — Oy (M (Qz + Qz) M_1>_

ij

= Oy, (M (Qy + Q) M) — 0s, (M1, (Qy + Qo) e M 1). (IV.169)

One sets 3 3
a= MyM:' w = (Q + Q)kes wo = (2 + Qo) ke

tj
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Let ¢,b € W2(R?) be such that

w1
= Vie+ Vb.
)

We can deduce from (IV.168) that Ac € H'(R?) hence ¢ € WHZD(R?). We can now
rewrite (IV.167) as follows

Oy [0(04, b — Opy0)] — Oy, [a(Opyb 4 Opy€)] = 0100y, b — Oy a0y, b

(Oy, [a0y, €] + O, [ady,c]). (IV.170)

We observe that 0,,a0,,b— 0,,a0,,b € H'(R?) and 9y, [a0y, ] 4 Oy, [0y, ] € W-LED(R?),
This gives that (2) is in W12 (R?) and this concludes the proof of Claim 1 and
Claim 2. 0.

The system (IV.163) can then be written as
O(Mf)=A(MFf)+BMf (IV.171)
with A = —id.n € L*!(R*, M,x,(C)) and B = $(MQ" M) € L*(R? M,,«,(C)) with
IVA z212), [V Bllz2@ey S VM2
B satisfies for every i, j B;; = —Bj; and
0wy (BY) + 0,,(B) € WHED(R?). (IV.172)

(Mix$4, M;'). We know from

Proof of the Claim 3. For every ij we have B;; = %

(IV.161) that
S0.05) = (05 + 0 (05)° € H () (V173
ISO: ) @2y S HVQH%Q(RQ) (IV.174)
We proceed as in the proof of Claim 2: let ¢, b € W'?(R?) be such that
()™
( ) =Vt v
—(Q)”

We can deduce from (IV.174) that Ac € H'(R?) hence ¢ € WD (R?). Then setting
a= MikMtEI we have

Or, (aQ,;t)%) + 8x1(aQ,;t)% = O, (a(0p, 0 — 0py¢) + O, (a(—0pyb — 0y, 0))
= 03,00, b — 03,00,,b — (0, (a0y,¢) + 0y, (a0, c). (IV.175)
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We then conclude as in the proof of Claim 3. O

In the sequel we can focus our attention to a system of the type:
oLg=Ag+Bg (IV.176)
where A € L*'(R* M,,,,(C)) and B € L*(R?* M,,«,(C)) satisfying B;; = —Bj; and
(IV.172).

Step 1. We first observe that
0,g=Ag—Bjgj (IV.177)

where j is the quaternion number satisfying j2 = —1 and ij = —ji.

Step 2. The function gj satisfies the system

0L gj = Agj+ Bj g. (IV.178)
Step 3. We set
1
g
a=|9 (IV.179)
g
q"j
G satisfies
0,G=TG+T11G, (IV.180)
where
A Oan
O =TI} = : (IV.181)
Oan A
and
D =T% 447 = : (IV.182)
Bj Oan
where we have set B = B® +iB% and
.= and s .=
B ‘ O BYj ‘ O
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Observe that

Onxn | B™j
™=

and then

0n><n ‘ _(Bt)gRj

(T®) = — %

(B")%j ‘ O
Therefore o

(TR + T = 0. (IV.183)

Similarly (IS)! +I'S = 0. - o o
Since the coefficients of I'Y are in j R, we obtain i['S = —I'S¢ = i I'S. Hence finally
we have established

(GIS) = (I9) = —iT¥

The matrix I' = I'* + 4T'¥ satisfies then (T')! + ' = 0 which means that it belongs to
the Lie algebra u(2n,H) of the hyper-unitary group U(2n,H). This is the compact Lie
group of invertible 2n x 2n quaternions matrices D satisfying D'D = DD! = Id,,.

Let G be a L? solution of (IV.180) with ' € L*(R? u(2n,H)),T'; € L* (R?, My, 2, (H)).
Let us take P € L*(R? U(n,H)) (to be fixed later), then the following estimates hold

02, (PG) = 0, (PiG) = P [(0,,G — i0,,G) + P~'0,, P — P~'0,,Pi] G

= P[2([1+T)+ (P '0,,P— P '0,,Pi)] P (PG). (IV.184)

The key point is to choose P in order to absorb in (IV.184) the term 2T
We first observe that if P € U(2n,H) then P!V P € u(2n,H). Actually since P! =

P’ and P~'VP = —VP~'P one has
(PVP) = (VPP =VP'P=_pP VP
10"We also recall that every matrix U € u(2n, H) can be represented as

U = Uy + Uyi + Usj + Usk,

19We recall that the standard Hermitian form in H" is defined by (z,y) := >, Z;y;. Therefore given
A, B two n X n matrices with entries in H we have

(ABz,y) = (Bz, A'y) = (z, B'A'y)

and therefore (AB)t = B'A!, (see e.g. [23], Section 4).
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where U; are real 2n x 2n matrices such that U} = —Uy and U} = U;. for i = 1,2, 3.

Now we are going to proceed as in Section II1.2.

In the sequel we will denote by MSpan{1,i} the space of n X n matrices A+ iB where
A, B a real-valued 2n x 2n matrices, with A' = —A and B' = B and MSpan{j, k} will
denote the space of 2n x 2n matrices jC' + kD where C, D a real-valued 2n x 2n matrices,
with C* = C and D' = D.

We are going to show first an analogous of Theorem III.7.

Theorem IV.9. There exists ey > 0 such that for every T' € W'2(C, MSpan{1,i}) sat-
isfying |2 < €0, every Ty € WHCD(C, Mapyon(H)) with ||Ty]|20 < g0 and every
G € L*(C,H) solving

.G =T+1I)G, (IV.185)

then G = 0. O

As in the case of 2D codomains the key step to prove Theorem IV.9 is the following
result.

Proposition IV.5. Let G € L*(C,H*") be a solution of (IV.185). There exists an go > 0
such that if T2 < eo and |Ty||p2n < €0, then there is a P € WH(R? u(2n,H)) and
x € WHED(R? MSpan{1,i}) such that || Vx| 21 < &0 and

Oa, (PG) — 84, (PiG) = P(—0y,x — Oy, xi + 2I'1)G = 2P(—idpx +T1)G.  (IV.186)

Proof of Proposition IV.5. If G solves (IV.185) then as we have seen in (IV.184)
for every P € u(2n,H) we have

O, (PG) — 0,,(PiG) = P [2T + 2Ty + (P'0,, P — P7'0,,Pi)| G (IV.187)
Step 1. We introduce the following operator
N: WY(C,U(2n, H)) — W13(C, MSpan{1,i}) x L*(C, MSpan{j, k})

P (I14(9,, (P04, P) + 00, (P10, P)), U (P10, P — P10, Pi)

Claim 1: N satisfies the following property: there is £ > 0 and C' > 0 such that for
any choice of V € W~12(C,MSpan{1,i}) and T € L*(C, MSpan{j, k}) satisfying

IVIli-12 <o, [Tz < €0, (IV.188)
then there is P € W2(C,U(2n, H)) with
N(P) = (V,T) (IV.189)

and

VP2 < C(|V =12 + |T]12) - (IV.190)
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Proof of Claim 1. The proof of Claim 1 is very similar to that of Lemma IIL.5, therefore
we will sketch only the main arguments. For every Iy € U(n, H) we consider perturbations
of the type: P = Pye'V where U € u(2n, H) and we set Np, (U) = N(PyeV) and
. d -
DNp, (0) = d_NPO (tU) = LPO(U)
t t=0
We have
Lp,(U) == (I (AU + O, [Py 1 0py PoU — UPy 0y, Po] + 0y [Py 0y PoU — UPJlﬁxQPO]) :

11400, U — 05, Ui + [Py 10y, PoU — UPy ' 0y, Po) — [Py ' 0y, PoU — UFy ' 0,, P)i))
In the case Py = Id we get
L[d<U) = (le (AU) ,ij(&le - 8;,32[]2))
= <A<U0 + iUl)? (afl'l Us — 85132U3)j + (afl'l Us + amz UQ)k) :

Now by arguing exactly as in the proof of Theorem III.7 one can prove that if ¢y in
(IV.188) is small enough then Lp, with ||V F|[12 < g¢ is invertible, therefore the Claim
1 holds.

Step 2. From Step 1 it follows that if ||| 2 < o then there is P € W2(C, U(2n, H))

such that
Hli(&:l (P’lﬁwlP) +8$2(P’18x2P)) =0
(IV.191)
ij(P*IOxIP — P*18z2P i)=—2I".

From the first equation in (IV.191) it follows the existence of y € W2(C, MSpan{1,i})

such that
Hli(P_lﬁmP) = _8902X

(IV.192)
Hli(Pilang) = lex
From (IV.192) it follows in particular that
—AX = 8332 (HM(PflamP)) - 311 (HlZ(Pila:mP))
= Iy (04, (P10, P) — 0, (P10, P)) . (IV.193)

The right hand side of (III.124) is a sum of Jacobians, hence it is in the Hardy space
H'(C). This implies that Vx € L*}(C), with | Vx||r21 S [|[VP]3..
We have

P'0,,P—P'0,,Pi = (P 0, P)+ (P 0, P) — Ty, (P10, P) i — (P10, P) i
= —0pX — Onx i + 1 (P710,, P — P7'0,,P i) (IV.194)
= —Op,X — Opyx 1 — 21,
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By combining (IV.187) (IV.192) and (IV.194) we get
Oy (PG) — 04, (PiG) = P(2I'y — Oy, X — 02, x1)G = 2P(—i0x + 1T'1)G (IV.195)
and we conclude the proof of the proposition IV.5. O

Proof of Theorem IV.9. By arguing as in the end of the proof of Theorem III.7
from (IV.195) we deduce that

PG| 20 IV xllzx + 1T 2 ) [ PGl 2o

~

eo [|PG| 2. (IV.196)

~Y

If £¢ is small enough then G' = 0. This concludes the proof of theorem 1V.9 and therefore
of theorem IV.8. O

From theorem IV.9 it follows theorem I.1 in the general case n > 2. The proof is the
same of that of Proposition I11.4 and therefore we omit it.

V Proof of theorem 1.2

A standard covering argument gives that, modulo extraction of a subsequence, there exist
finitely many points a; ... ag such that, for any 6 > 0

2
lim inf {p >0 ; / o IVSu2(y) dy = 62—0 where x € R?\ UZ.QlB(g(ai)} >0
By(x

k—+o00
(V.197)

where g9 > is given by the epsilon-regularity theorem IV.8. Theorem 1.1 implies then
that u, — e strongly in L (R*\ {a;...ag}) hence we can pass in the limit in the
equation away from the points and one gets

div (Sa Vue) =0 in D'(R*\ {a;...aq}).

It remains to establish the point removability. Since Sy Ve, = V(Sx tso) — VSeo Use €
W12 4+ LY(R?) a classical result on distributions supported by points gives the existence
of ay...ag € R" such that

div (Soo Vo) = ZO‘Z s in D'(R?).

We pick a point a;, arbitrary and we consider an axially symmetric function y centered
at a;, such that x = 1 in a neighborhood of a;, and Suppx C B(a;,,r) where 0 < r <
inf; ., |a; — a;]. We have

0:/ Vx - Sk Vuy dx
B(alo )
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Because of the weak convergence of Vuy towards Vus, in L? for any ¢ < 2 away from the

points a; ...ag and the strong convergence of Sy, towards S, in any L

have

p
loc

for p < +00 we

0= / Vx - Sec Vi dx
Blaig,r)

which gives «;, = 0. This concludes the proof of theorem I.2. O
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