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I Introduction

In [14] the second author discovered a compensation phenomenon for the linear elliptic
systems of the form

−∆u = Ω · ∇u in D2 , (I.1)

where u ∈ W 1,2(D2,Rn), D2 = B2(0, 1) denotes the open unit ball centered at (0, 0) and
Ω is an L2 map into the antisymmetric matrices of R2 vectors. That is to say there exists
a matrix (Ωj

i )i,j=1···n of L2 functions into R2 such that

∀ i = 1 · · ·n −∆ui =

n∑

j=1

Ωj
i · ∇uj and Ωj

i = −Ωi
j ∀ i, j = 1 · · ·n .

A-priori the system (I.1) is critical for the chosen norms, with a right hand side in L1.
Without the anti-symmetry of Ω no improved regularity has to be expected in general,
whileW 1,2 solutions to (I.1) for Ω ∈ L2(D2,R2⊗so(n)) are known to be in

⋂

p<2W
2,p
loc (D

2).

One of the main strategy introduced in [14] was to use the antisymmetry of Ω in order
to construct a “gauge” A ∈ L∞ ∩W 1,2(D2, Gln(R)) satisfying

div(∇ΩA) := div(∇A− AΩ) = 0

∗Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland.
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Taking a “primitive” ∇⊥B = (−∂x2
B, ∂x1

B) := ∇ΩA ∈ L2(D2,Mn(R) ⊗ R2) the system
(I.1) becomes equivalent to the conservation law

div(A∇u) = ∇⊥B · ∇u (I.2)

The Jacobian form of the right-hand-side of (I.2) permits to use now classical integrability
by compensation phenomena originally discovered by H.Wente [22] and related to the ones
by R.Coifman, Rochberg and Weiss [3] (see also [4]).

Following the main ideas of [14], extensions of this compensation phenomenon were
obtained in [15] for critical systems of the form (for m > 2)

∆v = Ω v in Bm , (I.3)

where Bm denote them-dimensional ball centered at 0 and with radius 1, Ω ∈ Lm/2(Bm, so(n))
and v ∈ Lm/(m−2)(Bm,Rn) as well as for systems of the form

(−∆)1/4v = Ω v in R (I.4)

where this time v ∈ L2(R,Rn) and Ω ∈ L2(R, so(n)) (see [5]). More recently the two
authors are extending their results to non local right-hand-side of the form

(−∆)1/4v =

∫

R

H(x, y) v(y) dy (I.5)

where pointwise antisymmetry has to be replaced by the more general notion of anti-
self-duality of the underlying non-local operator K(x, y) where K(x, y) := H(x, y) −
ω(x) δx=y ∈ L1

loc(R
2) (see [6]).

In the present work we are exhibiting a new compensation phenomenon which does
not enter in none of the previous existing ones. Our main result is the following

Theorem I.1. Let S ∈ Ẇ 1,2(R2, O(n)), 1 such that S2 = idn and let u ∈ L2(R2,Rn) be a
solution of the following linear elliptic system in divergence form

div (S∇u) =

n∑

j=1

div (Sij ∇uj) =
n∑

j=1

2∑

α=1

∂

∂xα

(
Siju

j
xα

)
= 0 (I.6)

Then u ∈
⋂

p<2

W 1,p
loc (R

2,Rn). ✷

1O(n) denotes the group of orthogonal n×n matrices, SO(n) is the group of orthogonal n×n matrices
with determinant 1. U(n) is the group of unitary n × n matrices and SU(n) is the Lie group of n × n

unitary matrices with determinant 1. The Lie algebra of U(n) consists of n×n skew-Hermitian matrices,
with the Lie bracket given by the commutator.
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Remark I.1. The system (I.6) is elliptic with principal symbol |ξ|2S. It is however not
strongly elliptic in the sense of Legendre Hadamard 2 since obviously < Sλ, λ > can change
sign as λ varies. ✷

Remark I.2. Structural conditions on S for the regularity are necessary in the following
sense. In [12] an L2 solution to

div (A∇u) = 0

is produced where A ∈ W 1,2(D2, Sym(2)) and A is satisfying the strong ellipticity condi-
tion3

< A(x)ξ, ξ >≃ |ξ|2

uniformly on D2 but u /∈ W 1,p
loc (D

2,R) for any p > 1.
We also observe that we cannot expect in Theorem I.1 that u ∈ W 1,2

loc (D
2). Actually

if we set w = Su, w solves ∆w = div(∇SSw). Such a PDE bootstraps in W 1,p
loc (D

2) for
p < 2 but not in W 1,2

loc (D
2). If w ∈ W 1,p

loc (D
2) for p < 2 then w ∈ Lp∗(D2) with p∗ = 2p

2−p
.

By injecting such an information into the equation we get that ∇SSw ∈ Lp
loc(D

2) (since
p = 2p∗

p∗+2
) and therefore we come back to the initial information that ∇w ∈ Lp

loc(D
2). This

is not the case if w ∈ W 1,2
loc (D

2). This would actually imply that w ∈ Lq
loc(D

2) for every

q ≥ 2 and from the equation we deduce that ∇w ∈ L
2q
q+2

loc which is a lost of information
from the initial one since 1 ≤ 2q

q+2
< 2.

Remark I.3. Contrary to the case of the systems (I.1) in [14], we have not found yet
striking applications in geometry or physics of systems (I.6) while nevertheless they look
very “natural” and enjoy numerous formulations that we are going to present in this work.
The system (I.6) is nothing but the Harmonic Map Equation into a pseudo-riemannian
manifold (see remark I.4). The formulation using Dirac operator below (see I.10) more-
over corresponds to the Weierstrass representation of Lagrangian surfaces in four-
dimensional space by Hélein and Romon ([11] Theorem 1). The assumption u ∈ L2 is also
faithful to the Hilbert Space framework in mathematical physics4 and makes this function
space natural in that sense. ✷

2We recall that a matrix of coefficients (Aα,β
ij )1≤α,β≤m

1≤i,j≤n satisfies the strong ellipticity condition, or the
Legendre-Hadamard condition if there exists λ > 0 such that

A
α,β
ij ξαξβη

iηj ≥ λ|ξ|2|η|2, for all ξ ∈ Rm, η ∈ Rn.

In the case of the system (I.6) the matrix of coefficients is given by A
α,β
ij := Sijδα,β where 1 ≤ α, β ≤ 2,

1 ≤ i, j ≤ n and δα,β denotes the Kronecker’s operator.
3The matrix A is acting on the different vertical components of ∇u, u is in fact scalar in this case

while in theorem I.1 the matrix S acts on the horizontal components of ∇u that is ∇u1, · · · ,∇un.
4Original works in mathematical physics which have nourish the growth of analysis with problems

from quantum mechanics, such as the study of Schrödinger semigroups for instance [19]...etc, take the L2

space and not the “energy space” W 1,2 as the ”configuration space”.
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Behind the proof of theorem I.1 there is an ǫ−regularity type of estimate which implies
the following concentration-compactness result

Theorem I.2. Let Sk ⇀ S∞ weakly in Ẇ 1,2(R2, Sym(n)) where S2
k = idn and let uk ⇀ u∞

weakly in L2(R2,Rn) and satisfy

div (Sk ∇uk) = 0 in D′(R2).

Then, modulo extraction of a subsequence, there exists finitely many points a1 . . . aQ ∈ R2

s.t.
uk −→ u∞ strongly in

⋂

p<2

W 1,p
loc (R

2 \ {a1 · · · aQ}) .

Moreover u∞ satisfies div (S∞∇u∞) = 0 in D′(R2). ✷

We shall call S ∈ Ẇ 1,2(R2, Sym(n)) where S2 = idn a chirality operator. Etymolog-
ically, in old greek χειρ (kheir) means “hand”. The word chirality refers to an intrinsic
disymmetry of the space where a left and a right directions are given. More precisely
almost everywhere on R2 we have the existence of two orthogonal projections, PR and
PL complementary to each other (PR + PL = idn), the left and the right, such that
S = PR − PL.

Remark I.4. The system (I.6) is then the Euler-Lagrange equation of the Dirichlet energy
into the pseudo-riemannian manifold (Rn, g) where

g(X, Y ) := 〈X,PRY 〉 − 〈X,PLY 〉

In other words (I.6) is the harmonic map equation from R2 into (Rn, g), it correspond
to critical points of

Eg(u) :=

∫

R2

|PR∇u|2 − |PL∇u|2 dx2 .

✷

As we will see theorem I.1 can be rephrased as follows.

Theorem I.3. Let PL ∈ W 1,2(R2, Sym(n)) such that PL ◦ PL = PL and denote PR :=
idn − PL and let f ∈ L2(R2,Cn) satisfying







PL
∂f

∂z
= 0

PR
∂f

∂z
= 0

(I.7)

then f ∈ ⋂p<2W
1,p
loc (R

2,Cn). ✷
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In the course of the paper we will give a third formulation of our main result. For
n = 2 it takes a simpler following form.

Theorem I.4. Let Ω ∈ L2(R2, so(2)⊗ C) and let f ∈ L2(R2,C) such that

∂f

∂z
= Ω f . (I.8)

Assume ℑ(∂zΩ) = 0, then f ∈ ⋂p<2W
1,p
loc (R

2,C2). ✷

The system
∂f

∂z
= Ω f , (I.9)

where Ω ∈ L2(R2, so(2) ⊗ C) and ℑ(∂zΩ) = 0 enjoys the same compensation property
as (I.8) for f ∈ L2(R2,C) but this last fact is a consequence of the theory in [14] while
theorem I.4 is new.

We will see that it can be recasted also in the following way. Recall first the definition
of the Dirac Operator in C2

D :=

(
0 ∂z

− ∂z 0

)

Then we have the following corollary

Corollary I.1. Let U ∈ L2(R2,C) such that ℑ(∂zU) = 0. Let Ψ ∈ L2(R2,C2) be a
solution of

DΨ =

(
U 0

0 U

)

Ψ , (I.10)

then Ψ ∈ ⋂p<2W
1,p
loc (R

2,C2). ✷

Throughout the paper we identify R2 with the complex number plane C and we will
use both notations.

We will denote by S(R2) the space of Schwarz functions and by S ′(R2) the space of
tempered distributions. For 1 < p < +∞ we will denote by Ẇ 1,p(R2) the homogeneous
Sobolev space defined as the space of f ∈ L1

loc(R
n) such that ∇f ∈ Lp(R2) and by

Ẇ−1,p′(R2) the corresponding dual space (p′ is the conjugate of p).
We also denote by L2,∞(R2) the space of measurable functions f such that

sup
λ>0

λ|{x ∈ R
2 : |f(x)| ≥ λ}|1/2 < +∞ ,

and L2,1(R2) is the space of measurable functions satisfying
∫ +∞

0

|{x ∈ R
2 : |f(x)| ≥ λ}|1/2dλ < +∞ .
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The spaces L2,∞(Rn) and L2,1(Rn) belongs to the family of Lorentz spaces and one can
check that they form a duality pair. For a nice introduction of Lorentz spaces we refer to
[9].

In the sequel we will often use the symbols a . b and a ≃ b instead of a ≤ Cb and
C1a ≤ b ≤ Cb, whenever the constants appearing in the estimates are not relevant for
the computations and therefore they are omitted.
Acknowledgments : A large part of the present work has been conceived while the two
authors were visiting the Institute for Advanced Studies in Princeton. They are very
grateful to the IAS for the hospitality. The authors are also very grateful to the anony-
mous referee and to Jerome Wettstein for useful remarks that permit us to improve the
presentation of the paper.

II Preliminaries

II.1 Bourgain-Brezis Inequalities

In [2] Bourgain and Brezis proved the following striking result:

Theorem II.5 (Lemma 1 in [2]). Let u be a 2π-periodic function in Rn such that
∫

Rn u =

0, and let ∇u = f + g, where f ∈ Ẇ−1, n
n−1 (Rn) and g ∈ L1(Rn) are 2π- periodic vector

valued functions. Then

‖u‖
L

n
n−1 (Rn)

≤ c
(

‖f‖
Ẇ

−1, n
n−1 (Rn)

+ ‖g‖L1(Rn)

)

. (II.11)

As a consequence of Theorem II.5 they get the following

Corollary II.2 (Theorem 1 in [2]). For every 2π-periodic function h ∈ Ln(Rn) with
∫

Rn h = 0 there exists a 2π-periodic v ∈ W 1,n ∩ L∞(Rn) satisfying

div v = h in Rn

and
‖v‖L∞(Rn) + ‖v‖W 1,n(Rn) ≤ C(n)‖h‖Ln(Rn).

II.2 Bourgain-Brezis inequality in 2 dimension revisited

For the convenience of the reader we provide a proof of (II.11) in 2-dimension which has
the advantage of not assuming periodicity. The proof is related to some compensation
phenomena observed first in [7] in the analysis of 2-dimensional perfect incompressible
fluids. This observation has also been used by the second author in the analysis of
isothermic surfaces [16] (see also [8, 13, 14]).

We start by showing the following preliminary Lemma.
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Lemma II.1. Let g ∈ L1(C,R2), f = (f1, f2) ∈ Ẇ−1,2(C,R2) and u ∈ S ′(C,R) be such
that

∇u = f + g ∈ (Ẇ−1,2 + L1)(C) in S ′(C). (II.12)

Then there is c ∈ R such that u− c ∈ L2,∞(C) and

‖u− c‖L2,∞(C) ≤ C(‖f‖Ẇ−1,2(C) + ‖g‖L1(C)). (II.13)

Proof of Lemma II.1. By assumption there exist akj ∈ L2(C,R) such that

fj =
2∑

k=1

∂xk
akj .

For k = 1, 2 we set ak = (ak1, a
k
2) . Hodge decomposition in L2 gives the existence of

αk, βk ∈ Ẇ 1,2(C) such that
ak = ∇αk +∇⊥βk (II.14)

and
‖∇αk‖L2 + ‖∇βk‖L2 ≤ ‖ak‖L2 (II.15)

5 We have {
∂x1

u−∑2
k=1 ∂xk

ak1 = g1
∂x2

u−∑2
k=1 ∂xk

ak2 = g2
(II.16)

We observe that

∂x1
a11 = ∂x1

(∂x1
α1 − ∂x2

β1) (II.17)

∂x2
a21 = ∂x2

(∂x1
α2 − ∂x2

β2) (II.18)

∂x1
a12 = ∂x1

(∂x2
α1 + ∂x1

β1) (II.19)

∂x2
a22 = ∂x2

(∂x2
α2 + ∂x1

β2). (II.20)

5 One can show (II.14) by using the Fourier transform and the theory of Fourier symbols associated
to a differential operator. If we denote by F [ak] the Fourier transform of ak we have

F [∂x1
(−∆)−1(div ak)] = −iξi|ξ|−2(iξ1F [ak

1
] + iξ2F [ak

2
])

F [−∂x2
(−∆)−1(curl ak)] = iξ2|ξ|−2(−iξ2F [ak

1
] + iξ1F [ak

2
])

F [∂x1
(−∆)−1(curl ak)] = −iξ1|ξ|−2(−iξ2F [ak1 ] + iξ1F [ak2 ]).

Then one observes that

F [ak1 ] = −iξ1|ξ|−2(iξ1F [ak1 ] + iξ2F [ak2 ]) + iξ2|ξ|−2(−iξ2F [ak1 ] + iξ1F [ak2 ])

= F [∂x1
αk − ∂x2

βk]

F [ak2 ] = −iξ2|ξ|−2(iξ1F [ak1 ] + iξ2F [ak2 ])− iξ1|ξ|−2(−iξ2F [ak1 ] + iξ1F [ak2 ])

= F [∂x2
αk + ∂x1

βk].

Since ak ∈ L2(C) we have that ∇αk = ∇((−∆)−1(div ak)) ∈ L2(C), ∇⊥βk = ∇⊥((−∆)−1(curl ak)) ∈
L2(C)
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Therefore we have






∂x1
u− ∂x1

(
∑2

k=1 ∂xk
αk) + ∂x2

(
∑2

k=1 ∂xk
βk) = g1

∂x2
u− ∂x2

(
∑2

k=1 ∂xk
αk)− ∂x1

(
∑2

k=1 ∂xk
βk) = g2

(II.21)

By multiplying first the second equation in (II.21) and summing up the first and second
one we get

(∂x1
+ i∂x2

)

(

u−
2∑

k=1

∂xk
αk − i(

2∑

k=1

∂xk
βk)

)

= g1 + ig2 =: gC (II.22)

By setting w1 :=
∑2

k=1 ∂xk
αk and w2 :=

∑2
k=1 ∂xk

βk we have

‖w1‖L2(C) + ‖w2‖L2(C) . ‖f‖Ẇ−1,2.

and the equation (II.22) becomes

∂z̄(u+ w1 + iw2) =
gC
2

(II.23)

We set v := 4π 1
z
∗ g. We have ∂z̄v = g in S ′(C). 6 Since 1

z
∈ L2,∞ and g ∈ L1, Young

Inequality yields that v ∈ L2,∞ and

‖v‖L2,∞ . ‖1
z
‖L2,∞‖g‖L1 . ‖g‖L1.

The function h = u+w1+iw2−v satisfies ∂z̄h = 0 in S ′(C) and therefore it is holomorphic.
This implies that ℑ(h),ℜ(h) are harmonic functions. By assumption ℑ(h) = w2−ℑ(v) ∈
L2,∞(R2) and thus w2−ℑ(v) = 0. Since ∇⊥(u+w1−ℜv) = ∇(w2−ℑ(v)) it follows that
there is a constant c ∈ R such that u + w1 − ℜv − c = 0. This yields in particular that
u− c ∈ L2,∞. The following estimate holds:

‖u− c‖L2,∞ = ‖w1 −ℜv‖L2,∞ . ‖w1‖L2,∞ + ‖v‖L2,∞ . ‖w1‖L2,∞ + C‖g‖L1

≤ C(‖f‖Ẇ−1,2(C) + ‖g‖L1(C)). (II.24)

We can conclude the proof. ✷

Lemma II.2. Let g ∈ L1(C) and let h ∈ L2,∞(C) satisfy ∂z̄h = g in S ′(C). If ℑh ∈ L2(C),
then ℜh ∈ L2(C) as well and

‖ℜh‖L2 ≤ C(‖g‖L1 + ‖ℑh‖L2). (II.25)

6We recall that 4

πz
satisfies ∂z̄(4π

1

z
) = δ0.
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Proof of Lemma II.2. Let χ ∈ C∞
c (C) such that χ = 1 on B(0, 1) and χ = 0 on

Bc(0, 2). For every k ≥ 1 we set χk(x) = χ(x
k
).We set hk = χk(x)ϕk∗h where ϕk ∈ C∞

c (C)
is a sequence of mollifiers such that

∫

R2 ϕkdx = 1. We have

∂z̄hk = χk∂z̄(ϕk ∗ h) + ∂z̄χkϕk ∗ h =: gk. (II.26)

where
gk = χk(∂z̄(ϕk ∗ h) + ∂z̄χkϕk ∗ h

and

‖gk‖L1 . ‖g‖L1 +
1

k
[k2]1/2‖ϕk ∗ h‖L2,∞

. ‖g‖L1 + ‖ϕk‖L1‖h‖L2,∞ . ‖g‖L1 + ‖g‖L1

∥
∥
∥
∥

1

z

∥
∥
∥
∥
L2,∞

. ‖g‖L1. (II.27)

For ψ ∈ S(C) we define

〈 1

(ξ̄)2
, ψ(ξ)〉 :=

∫

C

1

(ξ̄)2
(ψ(ξ)− ψ(0)− ∂ξ1ψ(0)ξ1 − ∂ξ2ψ(0)ξ2)dξ

+

∫

C

1

(ξ̄)2
ψ(ξ)dξ (II.28)

One can see that (II.28) defines a tempered distribution. We set ξ = ξ1 + iξ2. Observe
that

F−1

[
1

ξ̄2

]

= F−1

[
ξ2

|ξ|4
]

= F−1

[
(ξ21 − ξ22 + 2iξ1ξ2)

|ξ|4
]

.

Since ξ21 − ξ22 + 2iξ1ξ2 is homogeneous harmonic polynomial, we can apply Theorem 5 in
3.3 of [20] and deduce the existence of an universal constant c0 such that

F−1

[
(ξ21 − ξ22 + 2iξ1ξ2)

|ξ|4
]

= c0
x21 − x22 + 2 i x1x2

|x|2 .

Now we introduce the following tempered distribution

T̂k = − 1

(ξ̄)2
ĝk. (II.29)

We have

Tk = F−1

[

− 1

ξ̄2

]

∗ gk. (II.30)

It follows then from (II.30)

‖Tk‖L∞ . ‖gk‖L1

∥
∥
∥
∥

x21 − x22 + 2 i x1x2
|x|2

∥
∥
∥
∥
L∞

. ‖g‖L1 . (II.31)
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We also have

F [∂z̄Tk] =
i

ξ̄
F [gk] = F [hk]. (II.32)

Hence
∣
∣
∣
∣
ℜ
(∫

C

h2kdx1dx2

)∣
∣
∣
∣

=

∣
∣
∣
∣
ℜ
(∫

C

hk ∂z̄Tkdx1dx2

)∣
∣
∣
∣

=

∣
∣
∣
∣
−ℜ

(∫

C

∂z̄hk Tkdx1dx2

)∣
∣
∣
∣
=

∣
∣
∣
∣
−ℜ

(∫

C

gk Tkdx1dx2

)∣
∣
∣
∣

≤ ‖gk‖L1‖Tk‖L∞ ≤ C‖g‖2L1

(II.33)

We have
ℜ(h2k) = |ℜhk|2 − |ℑhk|2 (II.34)

and

‖ℑhk‖2L2 =

∫

C

|(ℑh ∗ ϕk)χk|2 . ‖ℑh‖2L2.

From (II.33) and (II.34) we deduce that

‖(ℜhk)‖2L2 ≤ ‖ℑhk‖2L2 + |
∫

C

ℜh2kdx| ≤ ‖ℑh‖2L2 + C‖g‖2L1. (II.35)

Up to a subsequence ℜhk converges weakly in L2 to h∞ ∈ L2(R2) as k → +∞. On the
other hand we have ℜhk → ℜh in S ′(C) and therefore ℜh = h∞ ∈ L2(C) and by the lower
semicontinuity of the L2 norm we have

‖(ℜh)‖2L2 ≤ ‖ℑh‖2L2 + C‖g‖2L1. (II.36)

We conclude the proof of Lemma II.2. ✷

By combining Lemmae II.1 and II.2 we can deduce the Brezis-Bourgain Inequality.

Lemma II.3. Let g ∈ L1(C,R2) and f ∈ Ẇ−1,2(C,R2) Let u ∈ S ′(C,R) be such that

∇u = f + g ∈ (Ẇ−1,2 + L1)(C) in S ′(C). (II.37)

Then there is c ∈ R such that u− c ∈ L2(C) and

‖u− c‖L2(C) ≤ C(‖f‖Ẇ−1,2(C) + ‖g‖L1(C)). (II.38)
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Proof of Lemma II.3.

From Lemma II.1 it follows that there is c ∈ R such that u− c ∈ L2,∞(C) with

‖u− c‖L2,∞(C) ≤ C(‖f‖Ẇ−1,2(C) + ‖g‖L1(C)). (II.39)

Claim 1: u− c ∈ L2 and (II.38) holds.
Proof of Claim 1

In the proof of Lemma II.1 we have seen the existence of αk, βk ∈ Ẇ 1,2(C) (k = 1, 2)
such that if we set w1 =

∑2
k=1 ∂xk

αk and w2 =
∑2

k=1 ∂xk
βk we have

∂z̄((u− c)− w1 − iw2) =
gC
2

in S ′(C)

and
‖w1‖L2(C) + ‖w2‖L2(C) ≤ C‖f‖Ẇ−1,2(C).

The function h = (u−c)−w1−iw2 satisfies the assumptions of Lemma II.2. Therefore
we have that (u− c)− w1 ∈ L2 with

∫

C

|u− c− w1|2dx ≤
∫

C

|w2|2dx+ C‖g‖2L1 (II.40)

and
∫

C

|u− c|2dx . 2‖w1‖2L2(C) + 2‖w2‖2L2(C) + C‖g‖2L1

≤ C(‖f‖2
Ẇ−1,2(C)

+ ‖g‖2L1). (II.41)

We conclude the proof. ✷

Remark II.5. We observe that if in the Lemma II.3 ∇u = ∇⊥v + g with g ∈ L1 and
v ∈ L2 then we simply get the estimate

∫

C

|u− c|2dx ≤ ‖v‖2L2(C) + C‖g‖2L1 (II.42)

namely the constant in front of ‖v‖2L2(C) is 1.

III Regularity of solutions to div(S∇u) = 0 : Proof of

theorem I.1.

In this section we are going to investigate the regularity of L2 solutions to the following
system

div(S∇u) = 0 in D′(C) (III.43)
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where S ∈ Ẇ 1,2(C, O(n)) with S2 = Id.
It has been shown in [12] that there exists solutions u ∈ W 1,1

loc (B(0, 1)) of div(A∇u) = 0
in D′(B(0, 1)) where A is a uniformly elliptic and continuous matrix which is in none of
the spaces W 1,p

loc (B(0, 1)) for any p > 1.

Actually they construct a counter-example of a matrix A which turns out to be also
in W 1,2(B(0, 1)). The matrix A(x) = (aij(x))1≤i≤n

1≤j≤n
is defined as follows

aij(x) = δij + α(|x|)
(

δij −
xixj
|x|2

)

where

α(r) =
−βn

(n− 1)
(
log r0

r

) +
β(β + 1)

(n− 1)
(
log r0

r

)2 . (III.44)

where r0 is large enough so that α ≥ −1
2
and β > 1.

Clearly aij ∈ L2(B(0, 1)). A direct computation for any i, j, k gives

∂aij
∂xk

= α′(|x|)xk|x|

(

δij −
xixj
|x|2

)

− α(|x|)
(
( δik xj + δjk xi)|x|2 − 2 xk xixj

|x|4
)

. (III.45)

Therefore ∣
∣
∣
∣

∂aij
∂xk

(x)

∣
∣
∣
∣
≤ C

1

r

1

log( r0
r
)
.

Since 1
r

1
log(

r0
r
)
∈ L2(B(0, 1)) then ∇aij ∈ L2(B(0, 1)) as well. It is proved in [12] that

u(x) = x1
1

r2 log( r0
r
)β

∈ L2(B(0, 1)) solves
2∑

ij=1

∂xi
(aij ∂xj

u) = 0. (III.46)

The function u defined in (III.46) is not in the spaces W 1,p
loc (B(0, 1)) for any p > 1.

We are now proving the following result

Theorem III.6. There is an ε0 > 0 such that if S ∈ Ẇ 1,2(C, O(n)) with S2 = In and
‖∇S‖L2(C) ≤ ε0 then there is Q ∈ Ẇ 1,2(C, SO(n)) such that

S = QS0Q−1

where

S0 =

(
Im×m 0m×n−m

0n−m×m −In−m×n−m

)

(III.47)

with m ≤ n and
‖∇Q‖L2 ≤ C ‖∇S‖L2 (III.48)

where C > 0 only depends on n. ✷
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Proof of Theorem III.6. Let S ∈ Ẇ 1,2(R2, O(n)) be with S2 = In.
We have detS, Trace(S) ∈ Ẇ 1,2(R2,Z). Precisely

detS = (−1)n−m, and Trace(S) = 2m− n (III.49)

where m = # positive eigenvalues and n − m = # negative eigenvalues (we recall that
the eigenvalues of S can be either 1 or −1). Since detS,Trace(S) ∈ Ẇ 1,2(R2) it follows
that detS and Trace(S) are both constant a.e. in R2.

We set

PR :=
I − S

2
and PL =

I + S

2
(III.50)

PL, PR are idempotent since (I − S)2 = S2 − 2S + I = 2(I − S) and (I + S)2 = 2(I + S)
and the ranks of PL and PR are constant.

We can see PL (resp. PR) as Ẇ
1,2 maps with values into the Grassmanian Grm(R

n)
(resp. Grn−m(R

n)) of nonoriented m-planes (resp. n−m-planes) in Rn.
By applying Lemma 5.1.4 in Hélein book [10] there is an ε0 > 0 such that one can find

two Ẇ 1,2(R2) orthonormal basis e = e1, . . . , em and f1, . . . , fn−m of Im(PL) and Im(PR)
respectively such that

‖∇ei‖L2 ≤ C‖∇PL‖L2 and ‖∇fj‖L2 ≤ C‖∇PR‖L2 (III.51)

for i = 1, . . . , m and j = 1, . . . , n−m.
Let (ǫk)k=1,...,n be the canonical basis of Rn. Let QL ∈ Ẇ 1,2(R2,Mn×n) and QR ∈

Ẇ 1,2(R2,Mn×n) be defined by

QL =

(
QL 0n×n−m

0n−m×m 0

)

(III.52)

and

QR =

(
0 0n×n−m

0n−m×m QR

)

(III.53)

with QL ∈ SO(m), QR ∈ SO(n−m) and

{QLǫk, k = 1, . . . , m} = {ej, j = 1, . . .m}

and
{QRǫk, k = m+ n, . . . , n} = {ej, j = 1, . . . n−m}.

Moreover
PL = Q−1

L PLQL and PR = Q−1
R PRQR

where

PL =

(
Im×m 0m×n−m

0n−m×m 0n−m×n−m

)

(III.54)
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and

PR =

(
0m×m 0m×n−m

0n−m×m In−m×n−m

)

(III.55)

We define

Q =

(
QL 0n×n−m

0n−m×m QR

)

. (III.56)

By construction we have QtQ = Id, S0 = Q−1SQ and

‖∇Q‖L2 ≤ C‖∇S‖L2 . (III.57)

This concludes the proof of Theorem III.6. ✷

Next we show how theorem I.1 implies theorem I.3. More precisely we establish that
(III.43) is equivalent to (I.7) for a suitable choice of f .

Proposition III.1. Let S ∈ W 1,2(C, O(n)) with S2 = In and let u ∈ L2(C,Rn) be a
solution of

div(S∇u) = 0 in D′(C) (III.58)

Then there exists v ∈ L2(C,Rn) such that ∇⊥v = S∇u in D′(C). Moreover the function
f = u+ iv satisfies







PL
∂f

∂z
= 0 in D′(C)

PR
∂

∂z̄
f = 0 in D′(C).

, (III.59)

where PL, PR are given by (III.50).

Proof of Proposition III.1. Let v ∈ D′(C) be such that ∇⊥v = S∇u in D′(C). It
holds ∇⊥v = ∇(Su)−∇S u ∈ Ẇ−1,2 + L1. Lemma II.3 gives that v ∈ L2(C). We have







S ∂x1
u = −∂x2

v

S ∂x2
u = ∂x1

v .
(III.60)

Therefore
S ∂x1

(u+ iv) = i ∂x2
(u+ iv) . (III.61)

Let us introduce f : C → Cn given by f = u+ iv. Obviously f satisfies:






S∂x1
f − i ∂x2

f = 0

S i ∂x2
f − ∂x1

f = 0 .
(III.62)

By first subtracting and then summing the two equations in (III.62) we deduce that

(S + I)∂zf = 0, (S − I)∂z̄f = 0 (III.63)

Therefore f satisfies (III.59) and we conclude the proof. ✷
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III.1 Proof of theorem I.1 : the case n = 2

In this section we focus our attention to the case where the function u takes values in R2,
since as we will see the formulation will become simpler and maybe more enlightening .

Let Q ∈ Ẇ 1,2(C, SO(2)) then a classical result by Carbou gives the existence of
α ∈ Ẇ 1,2(C,R) such that

Q(x) =





cos(α(x)) − sin(α(x))

sin(α(x)) cos(α(x))



 . (III.64)

We also set

S0 =





1 0

0 −1



 (III.65)

Next we re-formulate the system (I.6) in the n = 2 case. Precisely we have

Proposition III.2. Let S ∈ Ẇ 1,2(C, O(2)) with S2 = Id and ‖∇S‖L2(C) ≤ ε0 (with
ε0 > 0 as in Theorem III.6). Let Q ∈ SO(2) as in (III.64) such that S = Q−1S0Q and
let u, v be as in the statement of Proposition III.1. Then function f : C → (C2)

f := S0Qu+ iQv (III.66)

satisfies the following equation

∂zf =





0 1

−1 0



 ∂zαf̄ . (III.67)

Proof of proposition III.2 Let u ∈ L2(R2) be a solution of (III.58) and v ∈ L2(C) be
such that

∇⊥v = S∇u. (III.68)

Since S = Q−1 S0Q we can write (III.68) as

Q∇⊥v = S0Q∇u . (III.69)

We set fℜ := S0Qu and fℑ := Qv. From the fact that S0Q∇u−Q∇⊥v = 0 it follows

∇(fℜ)−∇⊥(fℑ) = ∇(S0Q)u−∇⊥Q v = S0∇Q Q−1 S0fℜ −∇⊥Q Q−1fℑ . (III.70)

Therefore






∂x1
fℜ + ∂x2

fℑ = S0 (∂x1
Q)Q−1 S0fℜ + ∂x2

QQ−1 fℑ

∂x2
fℜ − ∂x1

fℑ = S0 (∂x2
Q)Q−1 S0fℜ − ∂x1

QQ−1 fℑ .

15



We have

∇QQ−1 =

(
0 −1
1 0

)

∇α

S0∇QQ−1S0 =

(
0 1
−1 0

)

∇α .

We have






∂x1
fℜ + ∂x2

fℑ =

(
0 1
−1 0

)

∂x1
αfℜ +

(
0 −1
1 0

)

∂x2
αfℑ

−∂x2
fℜ + ∂x1

fℑ =

(
0 −1
1 0

)

∂x2
αfℜ +

(
0 −1
1 0

)

∂x1
αfℑ .

(III.71)

From (III.71) it follows

∂x1
fℜ + ∂x2

fℑ − i(∂x2
fℜ − ∂x1

fℑ) =

(
0 1
−1 0

)

(∂x1
α− i∂x2

α)(fℜ − ifℑ) .

Hence

∂zf =

(
0 1
−1 0

)

∂zαf̄ . (III.72)

This concludes the proof of proposition III.2. ✷

Now we present the regularity of the equation (III.67) and therefore of (III.58). We
would like first to explain the reasons why the equation (III.72) does not fall within the
classical theory of systems with a L2 potential.

Let us represent a function f = u+ iv with u = (u1, u2), v = (v1, v2) as

f =

(
u1 + iv1
u2 + iv2

)

.

We observe that the equation (III.67) can be written as







∂z(u1 + iv1) = ∂zα (u2 − iv2)

∂z(u2 + iv2) = −∂zα (u1 − iv1) .
(III.73)

The system (III.73) is of the form







∂zφ = ω ψ̄

∂zψ = −ω φ̄ .
(III.74)
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where ω = ∂zα ∈ L2(C,C). The difficulty is that in the right hand side of (III.74) there
are the conjugate of the unknows (φ, ψ). Suppose we would have instead a system of the
form 





∂zφ = ∂zα ψ

∂zψ = −∂zα φ .
(III.75)

Then the function Φ := (φ1, φ2) solves

∂zΦ = Ω Φ (III.76)

where

Ω =

(
0 ∂zα

− ∂zα 0

)

= ∂zQQ
−1

Hence we would deduce ∂z(QΦ) = 0 which would imply that Φ ∈ W 1,2
loc . Unfortunately

the multiplication of Φ solving (III.74) by a matrix in SO(2) does not permit to absorb
the potential Ω which is the case of interest in the present work. Therefore we have to
find a different Lie group that permits us to absorb the potential.

To this purpose we introduce the algebra of Quaternions. We recall standard notations
regarding this algebra that we denote by H :

H := {a + b i+ c j + d k, (a, b, c, d) ∈ R
4},

where i, j and k are the fundamental quaternion units satisfying i2 = j2 = k2 = −1 and
ij = −ji = k, jk = −kj = i and ki = −ik = j. The set H of all quaternions is a vector
space over the real numbers with dimension 4. The conjugate of q ∈ H is the quaternion
q∗ = a − b i − c j − d k. The reciprocal of q ∈ H

∗ is q−1 = q∗

|q|
, where |q| = √

qq∗ is the
norm of q.

Given q ∈ H, q = q1 + q2i+ q3j + q4k we set

Πi(q) = q2i and Πjk(q) = q3j + q4k .

We also denote by Hp the quaternion of the form q = q2i+q3j+q4k (the pure quaternions)
and U(H) := {q ∈ H : |q| = 1}. Hp is the Lie Algebra of the Lie Group U(H).

Finally given f : C → H we introduce the following differential operators (Cauchy-
Riemann-Fueter operators):

∂Lf := 2−1(∂x1
f− i ∂x2

f) (III.77)

∂Rf := 2−1(∂x1
f− ∂x2

f i). (III.78)

and

∂̄Lf := 2−1(∂x1
f+ i ∂x2

f) (III.79)

∂̄Rf := 2−1(∂x1
f+ ∂x2

f i). (III.80)
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We observe that if f takes values in C then

∂Lf = ∂Rf = ∂zf and ∂̄Lf = ∂̄Rf = ∂z̄f.

We are going to rewrite the equation (III.67) and therefore (III.73) using the quaternion
valued functions.

Lemma III.4. Let

f =





u1 + iv1

u2 + iv2





be a solution of (III.67) then the quaternion

f = u1 + v1i+ u2j + v2k

satisfies

∂Lf = − ∂zα j f . (III.81)

Proof of lemma III.4. We have seen that the equation (III.67) is equivalent to the
system (III.73). Such a system can also be written using the ∂L operator, which coincides
with ∂R at this stage since the variables u1 + iu2 and v1 + iv2 are C-valued.







∂L(u1 + iv1) = ∂zα (u2 − iv2)

∂L(u2 + iv2) = −∂zα (u1 − iv1) .
(III.82)

We multiply from the right the second equation in (III.82) by j and we get (recall that
ij = k = −ji)

∂L(u2j + v2k) = −∂zαj(u1 + iv1) . (III.83)

On another hand we can write the first equation in (III.82) as follows:

∂L(u1 + iv1) = − ∂zα j
2 (u2 − iv2) = − ∂zαj (u2 j + v2 k). (III.84)

By summing (III.83) and (III.84) we find

∂L(u1 + v1i+ u2j + v2k) = −∂zαj (u1 + v1i+ u2j + v2k) . (III.85)

Hence we get (III.81) and we can conclude. ✷
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III.2 Bootstrap test for ∂Lf = ∂zαj f

In the sequel up to exchange α and −α we study the following equation

∂Lf = ∂zαj f (III.86)

Actually all that is proved in this section also holds for a system of the form

∂Lf = Ωj f (III.87)

where Ω ∈ L2(C,C).
The first main goal of this section is to show that the operator

f ∈ L2(C,H) 7→ ∂Lf− ∂zαj f

is injective if the L2 norm of ∂zα is sufficiently small. This is what we call the “bootstrap
test”.

Theorem III.7. There exists ε0 > 0 such that for every α ∈ Ẇ 1,2(C,R) satisfying
‖∇α‖L2 ≤ ε0 and every f ∈ L2(C,H) solving

∂Lf = ∂zα j f , (III.88)

then f ≡ 0.

Before going to the proof of theorem III.7 we will introduce a nonlinear operator N.

Let q ∈ U(H). We multiply the equation (III.88) on the left by q :

q[∂x1
f− i ∂x2

f] = q[∂x1
α− ∂x2

α i]jf. (III.89)

Observe that

q[∂x1
f− i∂x2

f] = ∂x1
[qf]− ∂x2

[q if]− ∂x1
q f+ ∂x2

q i f. (III.90)

By combining (III.89) and (III.90) we get

∂x1
[qf]− ∂x2

[q if] = q[∂x1
α− ∂x2

α i]jf

+ ∂x1
q f− ∂x2

q i f (III.91)

= q[∂x1
αj − ∂x2

αk + q−1∂x1
q− q−1∂x2

q i]f.

We observe that since |q| = 1 then q−1∂xi
q ∈ Hp,.

We introduce the following operator

N : Ẇ 1,2(C,U(H)) → Ẇ−1,2(C, Span{i})× L2(C, Span{j, k})

q 7→ (Πi(∂x1
(q−1∂x1

q) + ∂x2
(q−1∂x2

q)),Πjk(q
−1∂x1

q− q−1∂x2
q i) (III.92)

We shall prove the following result.

19



Lemma III.5. There is ε0 > 0 and C > 0 such that for any choice of ω ∈ Ẇ−1,2(C, iR)
and g ∈ L2(C, Span{j, k}) satisfying

‖ω‖Ẇ−1,2 ≤ ε0, ‖g‖L2 ≤ ε0 (III.93)

then there is q ∈ Ẇ 1,2(C,U(H)).
N(q) = (ω, g) (III.94)

and
‖∇q‖L2 ≤ C(‖ω‖Ẇ−1,2 + ‖g‖L2) . (III.95)

In order to prove lemma III.5 we shall need to introduce some notations and establish
some intermediate results.

As in [5, Proof of Theorem 1.2, Step 4], by an approximation argument it suffices to
prove Lemma III.5 assuming that ω and g are slightly more regular.

We fix 2 < p < +∞ and for ε > 0 we introduce

Uε :=







(ω, g) ∈ Ẇ−1,p ∩ Ẇ−1,p′(C, iR)× Lp ∩ Lp′(C, Span{j, k})

‖ω‖Ẇ−1,2 + ‖g‖L2 ≤ ε






(III.96)

where
1

p
+

1

p′
= 1.

For constants ε,Θ > 0 let Vε,Θ ⊆ Uε be the set where we have the decomposition
(III.94) with the estimates

‖∇q‖2 ≤ Θ(‖ω‖Ẇ−1,2 + ‖g‖L2) (III.97)

‖∇q‖p ≤ Θ(‖ω‖Ẇ−1,p + ‖g‖Lp) , (III.98)

‖∇q‖p′ ≤ Θ(‖ω‖Ẇ−1,p′ + ‖g‖Lp′ ) . (III.99)

That is

Vε,Θ :=






ω, g ∈ Uε :

there exists q ∈ (Ẇ 1,p ∩ Ẇ 1,p′)(R2,U(H)), so that q− 1 ∈ L
2p
p−2

and (III.94), (III.97), (III.98), (III.99) hold.







7 The strategy to prove lemma III.5 follows the one K. Uhlenbeck introduced in [21] to
construct Coulomb gauges in critical dimensions. Precisely lemma III.5 is going to be a
consequence of the following proposition.

Proposition III.3. There exist Θ > 0 and ε > 0 so that Vε,Θ = Uε. ✷

7Note that (III.97) could actually be deduced from (III.98), (III.99) by interpolation.
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Proof of Proposition III.3. Proposition III.3 follows, once we show the following four
properties

(i) Uε is connected.

(ii) Vε,Θ is nonempty.

(iii) For any ε,Θ > 0, Vε,Θ is a relatively closed subset of Uε.

(iv) There exist Θ > 0 and ε > 0 so that Vε,Θ is a relatively open subset of Uε.

Property (i) is clear, since Uε is obviously starshaped with center 0.

Property (ii) is also obvious since : (0, 0) ∈ Vε,Θ.

The closedness property (iii) follows almost verbatim as in [5, Proof of Theorem 1.2,
Step 1, p.1315]: there one replaces (−∆)1/4 by ∇. Observe that a uniform bound of the
Lp-norm as in (III.99) implies by Sobolev embedding in particular a uniform bound of

q− 1 in L
2p
p−2 (R2).

We show now the openness property (iv). For this let ω0, g0 be arbitrary in Vε,Θ, for
some ε,Θ > 0 chosen below.

Let q0 ∈ Ẇ 1,p ∩ Ẇ 1,p′(C,U(H)), q0 − 1 ∈ L
2p
p−2 (C) so that the decomposition (III.94)

as well as the estimates (III.97), (III.98) and (III.99) are satisfied for ω0 and g0.

We consider perturbations of q0 of the form q = q0e
u where u ∈ (Ẇ 1,p ∩ Ẇ 1,p′ ∩

L
2p
p−2 )(C,Hp). Observe that the exponent p > 2 has been chosen in particular to ensure

u ∈ (C0 ∩ L∞)(C) with uniform estimates and q0e
u − 1 ∈ L

2p
p−2 .
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We set

Ñq0 : (Ẇ
1,p ∩ Ẇ 1,p′ ∩ L

2p
p−2 )(C,Hp) →

(

i(Ẇ−1,p ∩ Ẇ−1,p′)(C), Lp ∩ Lp′(C, span{j, k})
)

u 7→ Ñq0(u) := N(q0e
u). (III.100)

We will write u = u1i+ u2j + u3k.

We have Ñq0 ∈ C1 and we can compute DÑq0(0) as

DÑq0(0) =
d

dt
Ñq0(tu)

∣
∣
∣
t=0

=: Lq0(u),

where for u ∈ L
2p
p−2 ∩ Ẇ 1,p ∩ Ẇ 1,p′(C,Hp)

Lq0(u) :=
(
Πi

(
∆u+ ∂x1

[q−1
0 ∂x1

q0u− uq−1
0 ∂x1

q0] + ∂x2
[q−1

0 ∂x2
q0u− uq−1

0 ∂x2
q0]
)
,

Πjk(∂x1
u− ∂x2

ui+ [q−1
0 ∂x1

q0u− uq−1
0 ∂x1

q0]− [q−1
0 ∂x2

q0u− uq−1
0 ∂x2

q0]i)
)
.

(III.101)
In order to use a fixed-point argument for Ñq0 , we will show that Lq0 is an isomorphism.
More precisely we prove the following lemma.

Lemma III.6. For any Θ > 0 there exists a ε > 0 so that the following holds for any
ω0, g0 and q0 as above.

For any ω ∈ (Ẇ−1,p ∩ Ẇ−1,p′)(C, iR), g ∈ (Lp ∩ Lp′)(C, span{j, k}) there exists a

unique u ∈ L
2p
p−2 ∩ Ẇ 1,p ∩ Ẇ 1,p′(C,Hp) so that

(ω, g) = Lq0(u)

and for some constant C = C(ω0, α0,Θ) > 0 it holds

‖u‖
L

2p
p−2

+ ‖∇u‖Lp(C) + ‖∇u‖Lp′(C) ≤ C
[(

‖ω‖Ẇ−1,p(C) + ‖ω‖Ẇ−1,p′(C)

)

+
(

‖g‖Lp(C) + ‖g‖Lp′(C)

)]

. (III.102)

8Indeed for a Schwartz function one has

u(x) =
1

2π

∫

C

∇x log |x− y| · ∇u(y) dy ⇒ ‖u‖∞ ≤ (2π)−1‖∇x log |x− y|‖L2,∞ ‖∇u‖L2,1

Generalized Hölder inequality (see [9]) gives moreover

‖∇u‖L2,1 ≤ C ‖∇u‖αLp ‖∇u‖1−α

Lp′
.

where 2−1 = αp−1 + (1− α)p′
−1

. If u ∈ Ẇ 1,p ∩ Ẇ 1,p′ ∩ L
2p

p−2 then ũ(x) = 1

2π

∫

C
∇x log |x− y| · ∇u(y) dy

satisfies ∆ũ = ∆u in S ′(C). One has ‖ũ‖∞ ≤ (2π)−1‖∇x log |x−y|‖L2,∞ ‖∇u‖L2,1 and moreover ũ ∈ L
2p

p−2 .

ũ− u is a harmonic function belonging to L
2p

p−2 , hence ũ− u = 0.
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Proof of lemma III.6.

Claim 1. L1(u) is invertible (q0 = 1) as a map

L1 : (Ẇ
1,p′ ∩ L

2p
p−2 )(C,Hp) →

(

Ẇ−1,p′(iR)× (Lp ∩ Lp′)(C, span{j, k})
)

The operator L1 is given by

L1(u) =
d

dt
N(etu)t=0 = (Πi(∆u),Πjk (∂x1

u− ∂x2
ui))

= (∆u1 i, (∂x1
u2 − ∂x2

u3)j + (∂x1
u3 + ∂x2

u2)k) .

(III.103)

Given f ∈ Ẇ−1,p′(C,R), a, b ∈ Lp′(C,R) there is a unique triple u1, u2, u3 ∈ Ẇ 1,p∩Ẇ 1,p′ ∩
L

2p
p−2 (C,R) such that

L1(u) = (fi, aj + bk) .

More precisely the following system should be satisfied:







∆u1 = f

∂z(u2 − u3 i) = a− bi
(III.104)

u1(x) =
1

2π
log(|x|) ∗ f(x) , u2 − u3i =

1

4π
(a− bi) ∗ 1

z̄
.

Classical estimates give

‖u1‖
L

2p
p−2

+ ‖∇u1‖Lp′ . ‖f‖Ẇ−1,p′ , ‖u2 − u3 i‖
L

2p
p−2

+ ‖∇(u2 − u3 i)‖Lp′ . ‖a− b i‖Lp′ .

The Claim 1 is proved.

Observe that

Lq0(u)− L1(u) =
(
Πi(∂x1

[q−1
0 ∂x1

q0u− uq−1
0 ∂x1

q0] + ∂x2
[q−1

0 ∂x2
q0u− uq−1

0 ∂x2
q0]),

Πjk([q
−1
0 ∂x1

q0u− uq−1
0 ∂x1

q0]− [q−1
0 ∂x2

q0u− uq−1
0 ∂x2

q0]i)
)
.

We have

‖∂xℓ

(
q−1
0 ∂xℓ

q0 u− u q−1
0 ∂xℓ

q0
)
‖Ẇ−1,p′ ≤ ‖q−1

0 ∂xℓ
q0 u− u q−1

0 ∂xℓ
q0‖Lp′

≤ ‖∇q0‖L2 ‖u‖
L

2p
p−2

≤ ε Θ ‖u‖
L

2p
p−2

(III.105)

Choosing ε > 0 small enough (depending on Θ) we obtain that Lq0 is an invertible map

from Ẇ 1,p′ ∩ L
2p
p−2 to Ẇ−1,p′(C, iR)× Lp′(C, span{j, k}),
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Claim 2. Assuming now ω ∈ (Ẇ−1,p ∩ Ẇ−1,p′)(C, iR), g ∈ (Lp ∩ Lp′)(C, span{j, k}) we
prove that the unique solution u of Lq0(u) is in Ẇ

1,p.
From the fact that (w, g) = Lq0 it follows:







∆u1i = ω − Πi(∂x1

(
q−1
0 ∂x1

q0u− uq−1
0 ∂x1

q0
)
)−Πi(∂x2

(
q−1
0 ∂x2

q0u− uq−1
0 ∂x2

q0
)
)

(∂x1
u2 − ∂x2

u3)j + (∂x1
u3 + ∂x2

u2)k = g

+ Πjk

(
−[q−1

0 ∂x1
q0u− uq−1

0 ∂x1
q0] + [q−1

0 ∂x2
q0u− uq−1

0 ∂x2
q0]i
)
.
(III.106)

We observe that

(∂x1
u2 − ∂x2

u3)j + (∂x1
u3 + ∂x2

u2)k = 2∂z̄(u2 + u3 i)j.

Therefore we can write the second equation in (III.106) in the following way:

2∂z̄(u2 + u3 i) = −gj +Πjk[q
−1
0 ∂x1

q0u− uq−1
0 ∂x1

q0]j +
(
Πjk([q

−1
0 ∂x2

q0u− uq−1
0 ∂x2

q0]i
)
j.

(III.107)

Let p′ < r < 2, since ∇q0 ∈ Lp we have for ℓ = 1, 2

‖q−1
0 ∂xℓ

q0u‖Lt . ‖∇q0‖Lp‖u‖
L

2r
2−r

(III.108)

for 1
t
= 1

p
+ 2−r

2r
. Observe that p > t > 2, since r > p′.

From (III.106) and (III.108) it follows ∇u ∈ Lt. We have also ∇u ∈ Lt′ . This implies
that u ∈ L∞ (see previous footnote). Therefore

‖q−1
0 ∂xℓ

q0u‖Lp . ‖∇q0‖Lp‖u‖∞ (III.109)

From (III.106) it follows that ∇u ∈ Lp and the Claim 2 is proved. This concludes the
proof of lemma III.6. ✷

Proof of proposition III.3 continued.

For ε = ε(Θ) > 0 chosen small enough, and for any (ω0, g0) ∈ Vε,Θ the local inversion
theorem applied to N gives the existence of some δ > 0 (that might depend on (ω0, g0))
such that, for every (ω, g) ∈ Uε with

‖ω − ω0‖Ẇ−1,p(C) + ‖ω − ω0‖Ẇ−1,p′(C) < δ (III.110)

‖g− g0‖Lp(C) + ‖g− g0‖Lp′ (C) < δ, (III.111)

we find q = q0e
u ∈ Ẇ 1,p ∩ Ẇ 1,p′(C,U(H)), so that q − 1 ∈ L

2p
p−2 (C,H) and (III.94) is

satisfied.
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It remains to prove (III.97), (III.98) and (III.99). The local inversion theorem does not
imply the estimates (III.97), (III.98) and (III.99). Anyway for every ω, g ∈ Uε satisfying
(III.110) and (III.111) and for every σ we can choose ε and δ small enough so that

‖∇q‖L2(C) ≤ σ. (III.112)

The next lemma shows that if σ is small enough then (III.97), (III.98) and (III.99)
hold for a uniform constant Θ.

Lemma III.7. There exists a Θ > 0 and a σ > 0 so that whenever q ∈ Ẇ 1,p ∩
Ẇ 1,p′(C, (U(H)) and q− 1 ∈ L

2p
p−2 (C,H) so that (III.94) is satisfied and it holds

‖∇q‖L2(C) ≤ σ, (III.113)

then (III.97), (III.98) and (III.99) hold. ✷

Proof of Lemma III.7.

Let us write ω = ∆µ with ∇µ ∈ Lp ∩ Lp′. Let ξ ∈ Ẇ 1,p ∩ Ẇ 1,p′(C,R) be such that







Πi(q
−1∂x1

q− ∂x1
µ) = −∂x2

ξi

Πi(q
−1∂x2

q− ∂x2
µ) = ∂x1

ξi.
(III.114)

Then
−∆ξi = Πi(∂x2

(q−1∂x1
q))− Πi(∂x1

(q−1∂x2
q)). (III.115)

For every q ∈ [p′, p] it holds 9

‖∇ξ‖Lq . ‖∇q‖L2,∞‖∇q‖Lq . σ‖∇q‖Lq (III.116)

We can write

q−1∂x1
q− q−1∂x2

qi = Πi(q
−1∂x1

q)− Πi(q
−1∂x2

q)i

+ Πjk(q
−1∂x1

q)− Πjk(q
−1∂x2

q)i

= (∂x1
ξ − ∂x2

ξi) + Πi(∂x1
µ− ∂x2

µ) + g (III.117)

or equivalently

∂x1
q− ∂x2

qi = q((∂x1
ξ − ∂x2

ξi) + Πi(∂x1
µ− ∂x2

µ) + g). (III.118)

Therefore by combining (III.116) and (III.118) we get for every q ∈ [p′, p]

9We use the fact that if ∇a ∈ L2,∞, ∇b ∈ Lq, with q ∈ [p′, p] and if −∆φ = ∇a · ∇⊥b, in C then
∇φ ∈ Lq with ‖∇φ‖Lq ≤ Cq‖∇b‖Lq‖∇a‖L2,∞. The constant Cq is uniformly bounded if q ∈ [p′, p] (see
[10]).

25



‖∇q‖Lq ≤ C[|∇ξ‖Lq + ‖∇µ‖Lq + ‖g‖Lq ]

≤ Cσ‖∇q‖Lq + C‖ω‖Ẇ−1,q + C‖g‖Lq . (III.119)

Choosing Θ = C
1−Cσ

we have

‖∇q‖Lq ≤ Θ(‖ω‖Ẇ−1,q + ‖g‖Lq).

This concludes the proof of lemma III.7. ✷

End of the proof of Proposition III.3. As we have already observed if ε is small
enough the fact that ω, g ∈ Uε implies that q ∈ Vε,Θ, it satisfies ‖∇q‖L2 ≤ σ where σ is
the constant appearing in Lemma III.7. Therefore thanks to lemma III.7 the openness
property (iv) is proven and Proposition III.3 is then established. ✷

Proof of Theorem III.7.

Let f solve (III.91) with q ∈ N−1(0,−∂x1
αj + ∂x2

αk) and ‖∇q‖L2 ≤ Θ‖∇α‖L2. By
definition q satisfies







Πi(∂x1
(q−1∂x1

q) + ∂x2
(q−1∂x2

q)) = 0

Πjk(q
−1∂x1

q− q−1∂x2
q i) = −∂x1

αj + ∂x2
αk .

(III.120)

We analyze the first equation in (III.120).
We have 





Πi(∂x1
(q−1∂x1

q) + ∂x2
(q−1∂x2

q)) = 0

m

∂x1
(Πi(q

−1∂x1
q)) + ∂x2

(Πi(q
−1∂x2

q)) = 0 .

(III.121)

Therefore there exists ζ ∈ Ẇ 1,2(C, iR) such that







Πi(q
−1∂x1

q) = −∂x2
ζ

Πi(q
−1∂x2

q) = ∂x1
ζ .

(III.122)

From (III.122) it follows in particular that

−∆ζ = ∂x2

(
Πi(q

−1∂x1
q)
)
− ∂x1

(
Πi(q

−1∂x2
q)
)

= Πi

(
∂x2

(q−1∂x1
q)− ∂x1

(q−1∂x2
q)
)
. (III.123)

26



The right hand side of (III.124) is a sum of jacobians, hence it is in the Hardy space
H1(C). It follows in particular that ∇ζ ∈ L2,1(C), with

‖∇ζ‖L2,1 . ‖∇q‖2L2 .

We have

q−1∂x1
q− q−1∂x2

q i = Πi(q
−1∂x1

q) + Πjk(q
−1∂x1

q)−Πi(q
−1∂x2

q) i− Πjk(q
−1∂x2

q) i

= −∂x2
ζ − ∂x1

ζ i+Πjk(q
−1∂x1

q− q−1∂x2
q i) (III.124)

= −2i(∂zζ)− ∂x1
α j + ∂x2

α k .

In (III.124) we use the fact that Πjk(ai) = Πjk(a)i for a ∈ H. By combining (III.91),

(III.120) and (III.124) we get

∂x1
[qf]− ∂x2

[qi f] = − 2 q i [∂zζ ] f . (III.125)

We set
−∆A = 2 q i [∂zζ ]f . (III.126)

Observe that

‖∇A‖L2,∞ . ‖qf ∇ζ‖L1 . ‖∇ζ‖L2,1‖q f‖L2,∞ (III.127)

. ‖∇q‖2L2 ‖f‖L2,∞ . ε20 ‖q f‖L2,∞ .

Since
∂x1

(qf− ∂x1
A)− ∂x2

(q if+ ∂x2
A) = 0 ,

there exists B ∈ Ẇ 1,(2,∞) such that






qf− ∂x1
A = −∂x2

B

−qi f− ∂x2
A = ∂x1

B .
(III.128)

Therefore 





f = q−1(∂x1
A− ∂x2

B)

f = iq−1(∂x2
A+ ∂x1

B) .
(III.129)
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From (III.129) it follows







∂x1
A− ∂x2

B = qiq−1(∂x2
A + ∂x1

B)

−∂x2
A− ∂x1

B = qiq−1(∂x1
A− ∂x2

B)

−∂x2
B = qiq−1(∂x2

A+ ∂x1
B)− ∂x1

A

−∂x1
B = qiq−1(∂x1

A− ∂x2
B) + ∂x2

A

−∆B = ∂x1
(qiq−1(∂x1

A− ∂x2
B)) + ∂x2

(qiq−1(∂x2
A + ∂x1

B)) .

(III.130)

We observe that −∂x1
[qiq−1∂x2

B] + ∂x2
[qiq−1∂x1

B] is sum of Jacobians and therefore we
can apply Wente’s Lemma (case L2 − L2,∞) :

‖∇B‖L2,∞ . ‖∇A‖L2,∞ + ‖∇q‖L2‖∇B‖L2,∞

. ‖∇A‖L2,∞ + ε0‖∇B‖L2,∞ . (III.131)

Estimate (III.131) implies that

‖∇B‖L2,∞ . ‖∇A‖L2,∞

‖qf‖L2,∞ . ‖∇A‖L2,∞ + ‖∇B‖L2,∞

. ε20‖q f‖L2,∞ . (III.132)

If ε0 is small enough then f ≡ 0. This concludes the proof of Theorem III.7. ✷

III.3 Morrey-Type Estimates

In this section we prove Morrey-type estimates for solutions to (III.43) in the case n = 2.

Proposition III.4. Let S ∈ W 1,2(C, O(2)) with S2 = Id and u ∈ L2(C) be a solution of
(III.43). Then u ∈ W 1,p

loc for every p ∈ [1, 2). ✷

Proof of Proposition III.4. Step 1. Assume that ‖∇S‖L2(B(0,1)) ≤ ε0.

Claim: There is 0 < ε0 < 1 and S̃ ∈ Ẇ 1,2(C, Sym(2)) with S̃2 = Id such that S̃ = S
in B(0, 1) and ‖∇S̃‖L2(R2) ≤ C‖∇S‖L2(B(0,1)).

For the proof of the claim we refer to [17].
Now let v ∈ L2(R2) be such that

∇⊥v = S∇u in S ′(R2).

28



By arguing as in the previous section we can find q ∈ Ẇ 1,2(C,U(H)) with ‖∇q‖L2(C) ≤
C‖∇S̃‖L2(C) and ζ ∈ Ẇ 1,(2,1)(C) with ‖∂zζ‖L2,1(C) ≤ ε20 such that

∂x1
[qf]− ∂x2

[qi f] = −2q i [∂zζ ]f in D′(B(0, 1)) (III.133)

1. Let x ∈ B(0, 1/2) and 0 < r < 1/4. We consider

{
−∆A = 2 q i [∂zζ ] f in B(x, r)

A = 0 on ∂B(x, r).
(III.134)

We have
‖∇A‖L2,∞(B(x,r)) . ε20 ‖f‖L2,∞(B(x,r)) . (III.135)

2. Since
∂x1

(qf− ∂x1
A)− ∂x2

(q if+ ∂x2
A) = 0 ,

there exists B ∈ Ẇ 1,(2,∞)(B(x, r)) such that







qf− ∂x1
A = −∂x2

B

−qi f− ∂x2
A = ∂x1

B .
(III.136)

We have

−∆B = ∂x1

(
qiq−1(∂x1

A− ∂x2
B)
)
+ ∂x2

(
qiq−1(∂x2

A + ∂x1
B)
)

in D′(B(x, r)) (III.137)

We decompose B = β1 + β2 in B(x, r) where β1 and β2 satisfy respectively







∆β1 = 0 in B(0, r)

β1 = B on ∂B(0, r)
and







∆β2 = ∆B in B(0, r)

β2 = 0 on ∂B(0, r)
(III.138)

The following estimates hold:

Estimate of β2:
Wente inequality (L2,∞−L2 case) combined with classical Calderon Zygmund inequal-

ities give

‖∇β2‖L2,∞(B(x,r)) ≤ ‖∇A‖L2,∞(B(x,r)) + ε0‖∇B‖L2,∞(B(x,r)) . (III.139)

Estimate of β1:
Since β1 is harmonic, for every 0 < δ < 3

4
we have

‖∇β1‖2L2,∞(B(x,δr)) ≤ ‖∇β1‖2L2(B(x,δr)) (III.140)

≤
(
4δ

3

)2

‖∇β1‖2L2(B(x,3/4r)) ≤ C

(
4δ

3

)2

‖∇β1‖2L2,∞(B(x,r)),

29



where C is a constant independent of r. In (III.140) we use the fact that the L2,∞ of the
gradient of a harmonic function on the ball B(x, r) controls all its other norms in balls
B(x, ηr) with η < 3/4.

Estimate of B:

Combining the previous estimates we obtain

‖∇B‖L2,∞(B(x,δr)) . ‖∇β1‖L2,∞(B(x,δr) + ‖∇β2‖L2,∞(B(x,δr)

.

(
4δ

3

)

‖∇β1‖L2,∞(B(x,r) + ‖∇A‖L2,∞(B(x,r)) + ε0‖∇B‖L2,∞(B(x,r))

.

(
4δ

3

)
[
‖∇β2‖L2,∞(B(x,r) + ‖∇B‖L2,∞(B(x,r))

]

+ ‖∇A‖L2,∞(B(x,r)) + ε0‖∇B‖L2,∞(B(x,r))

.

(
4δ

3

)
[
‖∇A‖L2,∞(B(x,r)) + ε0‖∇B‖L2,∞(B(x,r)) + ‖∇B‖L2,∞(B(x,r))

]

+ ‖∇A‖L2,∞(B(x,r)) + ε0‖∇B‖L2,∞(B(x,r))

.

[(
4δ

3

)

ε20 + ε20

]

‖f‖L2,∞(B(0,r)) (III.141)

+

[(
4δ

3

)

ε0 +

(
4δ

3

)

+ ε0

]

‖∇B‖L2,∞(B(x,r))

Since ‖∇B‖L2,∞(B(x,r)) ≤ ‖∇A‖L2,∞(B(x,r))+ ‖f‖L2,∞(B(x,r)) from (III.141) one deduces that

‖∇B‖L2,∞(B(x,δr)) .

[(
4δ

3

)

ε20 + ε20

]

‖f‖L2,∞(B(0,r)) (III.142)

+

[(
4δ

3

)

ε0 +

(
4δ

3
+ ε0

)]

(1 + ε20)‖f‖L2,∞(B(0,r)).

By combining (III.136) and (III.142) we obtain

‖f‖L2,∞(B(x,δr)) . ‖∇A‖L2,∞(B(x,δr)) + ‖∇B‖L2,∞(B(x,δr))

. γ‖f‖L2,∞(B(0,r)) . (III.143)

where γ = γ(δ, ε0) < 1. By iterating (III.143) we get the existence of a constant 0 < α < 1
such that

sup
x∈B(0,1/2),0<r<1/4

r−α‖f‖L2,∞(B(x,r)) < +∞ . (III.144)

Now we plug the estimate (III.144) into (III.134) and we get

sup
x∈B(0,1/2),0<r<1/4

r−α‖∆A‖L1(B(x,r)) < +∞ . (III.145)
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and therefore
sup

x∈B(0,1/2),0<r<1/4

r−α‖∇A‖L2,∞(B(x,r)) < +∞ . (III.146)

From (III.145) it follows in particular that ∇A ∈ Lq(B(0, 1/4)) for all q < 2−α
1−α

(See again
Adams [1], Remark after Proposition 3.2).

From (III.136), (III.144), (III.146) it follows that

sup
x∈B(0,1/2),0<r<1/4

r−α‖∇B‖L2,∞(B(x,r)) < +∞. (III.147)

By plugging (III.147) into (III.137) and (III.138) one gets that

sup
x∈B(0,1/2),0<r<1/4

r−α‖∆B‖L2,∞(B(x,r)) < +∞. (III.148)

which implies that∇B ∈ Lq(B(0, 1/4)) for all q < 2−α
1−α

as well. Therefore f ∈ Lq(B(0, 1/4))

for all q < 2−α
1−α

as well. Actually one can show by bootstrap arguments that f ∈ Lq
loc for

all q < +∞.

Step 2. From Step 1 it follows that Su ∈ Lq
loc(C) for all q < +∞. Since u solves (III.43)

we have
∆(Su) = div(∇(Su)) = div(∇SS Su) in D′(C). (III.149)

From (III.149) one gets that ∇(Su) ∈ L
2q
q+2

loc for all q < +∞ and therefore ∇u = ∇S(Su)+
S∇(Su) ∈ Lp

loc for all p < 2. This concludes the proof of proposition III.4 which itself
implies theorem I.1 in the case of 2-D codomains. ✷

IV Proof of theorem I.1 : the general case n ≥ 2

We are going to present here another approach to study the regularity of the equation
(III.43) which works for every n ≥ 2. We start by showing the bootstrap test:

Theorem IV.8. Let S ∈ Ẇ 1,2(C, O(n)) with S2 = Id and u ∈ L2(C,Rn) be a solution
to the equation (III.43). There is ε0 > 0 such that if ‖∇S‖L2(C) ≤ ε0, then u ≡ 0.

Proof of theorem IV.8 From Lemma II.3 we can find v ∈ L2(C,Rn) such that ∇⊥v =
S∇u.

Assume that ‖∇S‖L2(C) ≤ ε0 where ε0 is the constant appearing in Theorem III.6.

Then there is Q ∈ Ẇ 1,2(C, SO(n)) such that

S = Q−1 S0Q

where S0 is the matrix (III.47) and ‖∇Q‖L2(C) . ε0.
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We set
f = fℜ + ifℑ = S0Qu+ iQv.

Equation (III.67) is equivalent to the system:






∂x1
fℜ + ∂x2

fℑ = S0∂x1
QQ−1S0fℜ + ∂x2

QQ−1fℑ

−∂x2
fℜ + ∂x1

fℑ = −S0∂x2
QQ−1S0fℜ + ∂x1

QQ−1fℑ .
(IV.150)

We can write
S0 = ((−1)min(2m+1,2i)δij)1≤i,j≤n .

Let Ω = (ωij)1≤i,j≤n be an anti-symmetric real matrix (i.e. ωij = −ωji), then

Ω̃ = S0ΩS0 =
(
ωij(−1)min(2m+1,2i)+min(2m+1,2j)

)
.

Therefore 





ω̃ij = ωij ⇐⇒ i, j ≤ m and i, j > m

ω̃ij = −ωij ⇐⇒ otherwise .
(IV.151)

Observe that the matrix Ω̃ is still anti-symmetric. We set Ωℓ := ∂xℓ
QQ−1 and Ω̃ℓ =

S0 ∂xℓ
QQ−1 S0.







∂x1
fℜ + ∂x2

fℑ = Ω̃1 fℜ + Ω2 fℑ

∂x2
fℜ − ∂x1

fℑ = Ω̃2 fℜ − Ω1 fℑ .

(IV.152)

Then we get

(∂x1
− i∂x2

)(fℜ + ifℑ) = Ω̃1 fℜ + Ω2 fℑ − i(Ω̃2 fℜ − Ω1 fℑ)

=
(

Ω̃1 − iΩ̃2
)

fℜ + i
(
Ω1 − iΩ2

)
fℑ

=

(

Ω̃1 − iΩ̃2

2

)

((fℜ + ifℑ) + (fℜ − ifℑ))

+

(
Ω1 − iΩ2

2

)

((fℜ + ifℑ)− (fℜ − ifℑ)) . (IV.153)

Which gives

(∂x1
− i∂x2

)(fℜ + ifℑ) =
1

2

[

(Ω̃1 + Ω1)− i(Ω̃2 + Ω2)
]

(fℜ + ifℑ)

+
1

2

[

(Ω̃1 − Ω1)− i(Ω̃2 − Ω2)
]

(fℜ − ifℑ) . (IV.154)
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From (IV.151) it follows for ℓ = 1, 2

Ω̃ℓ + Ωℓ

2
=







ωℓ
ij 0m×n−m

0n−m×m ωℓ
ij







(IV.155)

and

Ω̃ℓ − Ωℓ

2
=







0m×m −ωℓ
ij

−ωℓ
ij 0n−m×n−m






. (IV.156)

We can write the system (IV.154) as

∂Lf =
1

2
Ω+f +

1

2
Ω−f̄ , (IV.157)

where

Ω+ =
(Ω̃1 + Ω1)− i(Ω̃2 + Ω2)

2
(IV.158)

Ω− =
(Ω̃1 − Ω1)− i(Ω̃2 − Ω2)

2
. (IV.159)

We observe that by construction for every i, j we have

ℑ(∂z̄Ω+
ij) = ∂x2

(Ω+
ij)

ℜ + ∂x1
(Ω+

ij)
ℑ ∈ H1(R2) (IV.160)

ℑ(∂z̄Ω−
ij) = ∂x2

(Ω−
ij)

ℜ + ∂x1
(Ω−

ij)
ℑ ∈ H1(R2) (IV.161)

with
‖ℑ(∂z̄Ω+

ij)‖H1(R2) . ‖∇Q‖2L2(R2), ‖ℑ(∂z̄Ω−
ij)‖ . ‖∇Q‖2L2(R2),

since these quantities are linear combinations of Jacobians of functions (the components
of the matrix Q) with gradient in L2.

Let M be defined as follows:

M =

(
MR 0m×n−m

0n−m×m ML

)

(IV.162)

where MR ∈ Ẇ 1,2(R2, SO(m)) and ML ∈ Ẇ 1,2(R2, SO(n − m)). The following identity
holds

∂L(Mf) = ∂LMf +M∂zf = (∂LMM−1)(Mf) +
1

2
M
(
Ω+f + Ω−f̄

)

=

(

∂LMM−1 +
1

2
MΩ+M−1

)

Mf +
1

2
(MΩ−M−1)Mf . (IV.163)
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Claim 1: There are two constants ε(n) > 0 and C(n) > 0 depending only on n such that if
‖Ω+‖L2 < ε(n) there exists a matrixM of the form (IV.162) and η ∈ Ẇ 1,(2,1)(R2)∩L∞(R2)
such that

∂LMM−1 +
1

2
MΩ+M−1 = −i∂zη

an
‖∇M‖L2(R2), ‖∇η‖L2,1(R2) . ‖Ω+‖L2 .

Proof of Claim 1. By the same arguments in Lemma A.3 in [14] we can find M ∈
Ẇ 1,2(C, SO(n)) of the form (IV.162) with ‖∇M‖L2(R2) . ‖Ω+‖L2 and η ∈ Ẇ 1,2(C, so(n))
such that 





−∂x2
η = ∂x1

MM−1 +M [Ω̃1 + Ω1]M
−1

∂x1
η = ∂x2

MM−1 +M [Ω̃2 + Ω2]M
−1 .

(IV.164)

It follows that

−∆η = ∂x2
(∂x1

MM−1)− ∂x1
(∂x2

MM−1)
︸ ︷︷ ︸

(1)

(IV.165)

+ ∂x2

(

M
(

Ω̃1 + Ω1

)

M−1
)

− ∂x1

(

M
(

Ω̃2 + Ω2

)

M−1
)

︸ ︷︷ ︸

(2)

. (IV.166)

The first term (1) on the right hand side of (IV.165) is in the Hardy Space H1(R2) since
it is a linear combination of Jacobians of functions with derivative in L2.

Claim 2: The second term (2) is in Ẇ−1,(2,1)(R2).
Proof of the Claim 2. Indeed we observe that each component of (2) can be written

in the form
∂x2

(aω1)− ∂x1
(aω2) (IV.167)

where a ∈ (Ẇ 1,2 ∩ L∞)(R2) and ω1, ω2 ∈ L2(R2) satisfy

∂x2
ω1 − ∂x1

ω2 ∈ H1(R2) . (IV.168)

Actually we have

∂x2

(

M
(

Ω̃1 + Ω1

)

M−1
)

ij
− ∂x1

(

M
(

Ω̃2 + Ω2

)

M−1
)

ij

= ∂x2
(Mik(Ω̃1 + Ω1)ktM

−1
tj )− ∂x1

(Mik(Ω̃2 + Ω2)ktM
−1
tj ). (IV.169)

One sets
a =MikM

−1
tj , ω1 = (Ω̃1 + Ω1)kt, ω2 = (Ω̃2 + Ω2)kt.
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Let c, b ∈ Ẇ 1,2(R2) be such that

(
ω1

ω2

)

= ∇⊥c+∇b .

We can deduce from (IV.168) that ∆c ∈ H1(R2) hence c ∈ Ẇ 1,(2,1)(R2). We can now
rewrite (IV.167) as follows

∂x2
[a(∂x1

b− ∂x2
c)]− ∂x1

[a(∂x2
b+ ∂x1

c)] = ∂x2
a∂x1

b− ∂x1
a∂x2

b

− (∂x1
[a∂x1

c] + ∂x2
[a∂x2

c]). (IV.170)

We observe that ∂x2
a∂x1

b−∂x1
a∂x2

b ∈ H1(R2) and ∂x1
[a∂x1

c]+∂x2
[a∂x2

c] ∈ Ẇ−1,(2,1)(R2).
This gives that (2) is in Ẇ−1,(2,1)(R2) and this concludes the proof of Claim 1 and

Claim 2. ✷.

The system (IV.163) can then be written as

∂L(Mf) = A (Mf) + BMf (IV.171)

with A = −i∂zη ∈ L2,1(R2,Mn×n(C)) and B = 1
2
(MΩ−M−1) ∈ L2(R2,Mn×n(C)) with

‖∇A‖L2,1(R2), ‖∇B‖L2(R2) . ‖∇M‖2L2 .

B satisfies for every i, j Bij = −Bji and

∂x2
(Bℜ

ij) + ∂x1
(Bℑ

ij) ∈ Ẇ−1,(2,1)(R2). (IV.172)

Proof of the Claim 3. For every ij we have Bij = 1
2
(MikΩ

−
ktM

−1
tj ). We know from

(IV.161) that

ℑ(∂z̄Ω−
kt) = ∂x2

(Ω−
kt)

ℜ + ∂x1
(Ω−

kt)
ℑ ∈ H1(R2) (IV.173)

‖ℑ(∂z̄Ω−
kt)‖H1(R2) . ‖∇Q‖2L2(R2) (IV.174)

We proceed as in the proof of Claim 2: let c, b ∈ Ẇ 1,2(R2) be such that
(

(Ω−
kt)

ℜ

−(Ω−
kt)

ℑ

)

= ∇⊥c+∇b .

We can deduce from (IV.174) that ∆c ∈ H1(R2) hence c ∈ Ẇ 1,(2,1)(R2). Then setting
a =MikM

−1
tj we have

∂x2
(aΩ−

kt)
ℜ) + ∂x1

(aΩ−
kt)

ℑ = ∂x2
(a(∂x1

b− ∂x2
c) + ∂x1

(a(−∂x2
b− ∂x1

c))

= ∂x2
a∂x1

b− ∂x1
a∂x2

b− (∂x2
(a∂x2

c) + ∂x1
(a∂x1

c). (IV.175)
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We then conclude as in the proof of Claim 3. ✷

In the sequel we can focus our attention to a system of the type:

∂L g = Ag +B g (IV.176)

where A ∈ L2,1(R2,Mn×n(C)) and B ∈ L2(R2,Mn×n(C)) satisfying Bij = −Bji and
(IV.172).

Step 1. We first observe that
∂L g = Ag − Bj g j (IV.177)

where j is the quaternion number satisfying j2 = −1 and ij = −ji.
Step 2. The function gj satisfies the system

∂L gj = Agj + Bj g. (IV.178)

Step 3. We set

G =












g1

...
gn

g1j
...
gnj












(IV.179)

G satisfies
∂LG = ΓG+ Γ1G , (IV.180)

where

Γ1 = Γℜ
1 − iΓℑ

1 =






A 0n×n

0n×n A




 , (IV.181)

and

Γ = Γℜ + iΓℑ =






0n×n −Bj

Bj 0n×n




 , (IV.182)

where we have set B = Bℜ + iBℑ and

Γℜ :=







0n×n (−B)ℜj

Bℜj 0n×n







and Γℑ :=







0n×n (−B)ℑj

Bℑj 0n×n






.
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Observe that

Γℜ :=







0n×n Bℜj

−Bℜj 0n×n







and then

(Γℜ)t =







0n×n −(Bt)ℜj

(Bt)ℜj 0n×n







= −Γℜ

Therefore
(Γℜ)t + Γℜ = 0. (IV.183)

Similarly (Γℑ)t + Γℑ = 0.
Since the coefficients of Γℑ are in j R, we obtain iΓℑ = −Γℑ i = iΓℑ. Hence finally

we have established
(iΓℑ)t = i (Γℑ)t = − iΓℑ

The matrix Γ = Γℜ + iΓℑ satisfies then (Γ)t + Γ = 0 which means that it belongs to
the Lie algebra u(2n,H) of the hyper-unitary group U(2n,H). This is the compact Lie
group of invertible 2n× 2n quaternions matrices D satisfying D̄tD = DD̄t = Idn.

LetG be a L2 solution of (IV.180) with Γ ∈ L2(R2, u(2n,H)),Γ1 ∈ L2,1(R2,M2n×2n(H)).
Let us take P ∈ L2(R2, U(n,H)) (to be fixed later), then the following estimates hold

∂x1
(PG)− ∂x2

(PiG) = P
[
(∂x1

G− i∂x2
G) + P−1∂x1

P − P−1∂x2
Pi
]
G

= P
[
2(Γ1 + Γ) + (P−1∂x1

P − P−1∂x2
Pi)
]
P−1(PG). (IV.184)

The key point is to choose P in order to absorb in (IV.184) the term 2Γ.
We first observe that if P ∈ U(2n,H) then P−1∇P ∈ u(2n,H). Actually since P−1 =

P
t
and P−1∇P = −∇P−1P one has

(P−1∇P )t = (∇P t
)P−1

t
= ∇P−1P = −P−1∇P.

10 We also recall that every matrix U ∈ u(2n,H) can be represented as

U = U0 + U1i+ U2j + U3k,

10We recall that the standard Hermitian form in Hn is defined by 〈x, y〉 :=∑n

i=1
x̄iyi. Therefore given

A,B two n× n matrices with entries in H we have

〈ABx, y〉 = 〈Bx, Āty〉 = 〈x, B̄tĀty〉

and therefore (AB)
t
= B̄tĀt, (see e.g. [23], Section 4).
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where Ui are real 2n× 2n matrices such that U t
0 = −U0 and U t

i = Ui. for i = 1, 2, 3.
Now we are going to proceed as in Section III.2.
In the sequel we will denote by MSpan{1, i} the space of n×n matrices A+ iB where

A,B a real-valued 2n × 2n matrices, with At = −A and Bt = B and MSpan{j, k} will
denote the space of 2n×2n matrices jC+kD where C,D a real-valued 2n×2n matrices,
with Ct = C and Dt = D.

We are going to show first an analogous of Theorem III.7.

Theorem IV.9. There exists ε0 > 0 such that for every Γ ∈ Ẇ 1,2(C,MSpan{1, i}) sat-
isfying ‖Γ‖L2 ≤ ε0, every Γ1 ∈ Ẇ 1,(2,1)(C,M2n×2n(H)) with ‖Γ1‖L2,1 ≤ ε0 and every
G ∈ L2(C,H) solving

∂LG = (Γ + Γ1)G , (IV.185)

then G ≡ 0. ✷

As in the case of 2D codomains the key step to prove Theorem IV.9 is the following
result.

Proposition IV.5. Let G ∈ L2(C,H2n) be a solution of (IV.185). There exists an ε0 > 0
such that if ‖Γ‖L2 ≤ ε0 and ‖Γ1‖L2,1 ≤ ε0, then there is a P ∈ Ẇ 1,2(R2, u(2n,H)) and
χ ∈ Ẇ 1,(2,1)(R2,MSpan{1, i}) such that ‖∇χ‖L2,1 ≤ ε0 and

∂x1
(PG)− ∂x2

(PiG) = P (−∂x2
χ− ∂x1

χi+ 2Γ1)G = 2P (−i∂Lχ+ Γ1)G. (IV.186)

Proof of Proposition IV.5. If G solves (IV.185) then as we have seen in (IV.184)
for every P ∈ u(2n,H) we have

∂x1
(PG)− ∂x2

(PiG) = P
[
2Γ + 2Γ1 + (P−1∂x1

P − P−1∂x2
Pi)
]
G (IV.187)

Step 1. We introduce the following operator

N : Ẇ 1,2(C, U(2n,H)) → Ẇ−1,2(C,MSpan{1, i})× L2(C,MSpan{j, k})

P 7→ (Π1i(∂x1
(P−1∂x1

P ) + ∂x2
(P−1∂x2

P )),Πjk(P
−1∂x1

P − P−1∂x2
P i)

Claim 1: N satisfies the following property: there is ε0 > 0 and C > 0 such that for
any choice of V ∈ Ẇ−1,2(C,MSpan{1, i}) and T ∈ L2(C,MSpan{j, k}) satisfying

‖V ‖Ẇ−1,2 ≤ ε0, ‖T‖L2 ≤ ε0, (IV.188)

then there is P ∈ Ẇ 1,2(C, U(2n,H)) with

N(P ) = (V, T ) (IV.189)

and
‖∇P‖L2 ≤ C(‖V ‖Ẇ−1,2 + ‖T |L2) . (IV.190)
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Proof of Claim 1. The proof of Claim 1 is very similar to that of Lemma III.5, therefore
we will sketch only the main arguments. For every P0 ∈ U(n,H) we consider perturbations
of the type: P = P0e

tU where U ∈ u(2n,H) and we set ÑP0
(U) = N(P0e

U) and

DÑP0
(0) =

d

dt
ÑP0

(tU)
∣
∣
∣
t=0

=: LP0
(U)

We have

LP0
(U) :=

(
Π1i

(
∆U + ∂x1

[P−1
0 ∂x1

P0U − UP−1
0 ∂x1

P0] + ∂x2
[P−1

0 ∂x2
P0U − UP−1

0 ∂x2
P0]
)
,

Πjk(∂x1
U − ∂x2

Ui+ [P−1
0 ∂x1

P0U − UP−1
0 ∂x1

P0]− [P−1
0 ∂x2

P0U − UP−1
0 ∂x2

P0]i)
)
.

In the case P0 = Id we get

LId(U) := (Π1i (∆U) ,Πjk(∂x1
U − ∂x2

Ui))

= (∆(U0 + iU1), (∂x1
U2 − ∂x2

U3)j + (∂x1
U3 + ∂x2

U2)k) .

Now by arguing exactly as in the proof of Theorem III.7 one can prove that if ε0 in
(IV.188) is small enough then LP0

with ‖∇P0‖L2 < ε0 is invertible, therefore the Claim

1 holds.
Step 2. From Step 1 it follows that if ‖Γ‖L2 < ε0 then there is P ∈ Ẇ 1,2(C, U(2n,H))

such that 





Π1i(∂x1
(P−1∂x1

P ) + ∂x2
(P−1∂x2

P )) = 0

Πjk(P
−1∂x1

P − P−1∂x2
P i) = −2Γ .

(IV.191)

From the first equation in (IV.191) it follows the existence of χ ∈ Ẇ 1,2(C,MSpan{1, i})
such that 





Π1i(P
−1∂x1

P ) = −∂x2
χ

Π1i(P
−1∂x2

P ) = ∂x1
χ .

(IV.192)

From (IV.192) it follows in particular that

−∆χ = ∂x2

(
Π1i(P

−1∂x1
P )
)
− ∂x1

(
Π1i(P

−1∂x2
P )
)

= Π1i

(
∂x2

(P−1∂x1
P )− ∂x1

(P−1∂x2
P )
)
. (IV.193)

The right hand side of (III.124) is a sum of Jacobians, hence it is in the Hardy space
H1(C). This implies that ∇χ ∈ L2,1(C), with ‖∇χ‖L2,1 . ‖∇P‖2L2.

We have

P−1∂x1
P − P−1∂x2

P i = Π1i(P
−1∂x1

P ) + Πjk(P
−1∂x1

P )− Π1i(P
−1∂x2

P ) i−Πjk(P
−1∂x2

P ) i

= −∂x2
χ− ∂x1

χ i+Πjk(P
−1∂x1

P − P−1∂x2
P i) (IV.194)

= −∂x2
χ− ∂x1

χ i− 2Γ .
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By combining (IV.187) (IV.192) and (IV.194) we get

∂x1
(PG)− ∂x2

(PiG) = P (2Γ1 − ∂x2
χ− ∂x1

χi)G = 2P (−i∂Lχ+ Γ1)G (IV.195)

and we conclude the proof of the proposition IV.5. ✷

Proof of Theorem IV.9. By arguing as in the end of the proof of Theorem III.7
from (IV.195) we deduce that

‖PG‖L2,∞ . (‖∇χ‖L2,1 + ‖Γ1‖L2,1)‖PG‖L2,∞

. ε0 ‖PG‖L2,∞. (IV.196)

If ε0 is small enough then G ≡ 0. This concludes the proof of theorem IV.9 and therefore
of theorem IV.8. ✷

From theorem IV.9 it follows theorem I.1 in the general case n ≥ 2. The proof is the
same of that of Proposition III.4 and therefore we omit it.

V Proof of theorem I.2

A standard covering argument gives that, modulo extraction of a subsequence, there exist
finitely many points a1 . . . aQ such that, for any δ > 0

lim
k→+∞

inf

{

ρ > 0 ;

∫

Bρ(x)

|∇Sk|2(y) dy =
ε20
2

where x ∈ R
2 \ ∪Q

i=1Bδ(ai)

}

> 0

(V.197)

where ε0 > is given by the epsilon-regularity theorem IV.8. Theorem I.1 implies then
that uk → u∞ strongly in L2

loc(R
2 \ {a1 . . . aQ}) hence we can pass in the limit in the

equation away from the points and one gets

div (S∞∇u∞) = 0 in D′(R2 \ {a1 . . . aQ}) .
It remains to establish the point removability. Since S∞∇u∞ = ∇(S∞ u∞)−∇S∞ u∞ ∈
W−1,2+L1(R2) a classical result on distributions supported by points gives the existence
of α1 . . . αQ ∈ Rn such that

div (S∞ ∇u∞) =

H∑

i=1

αi δai in D′(R2) .

We pick a point ai0 arbitrary and we consider an axially symmetric function χ centered
at ai0 such that χ ≡ 1 in a neighborhood of ai0 and Suppχ ⊂ B(ai0 , r) where 0 < r <
inf i 6=j |ai − aj|. We have

0 =

∫

B(ai0 ,r)

∇χ · Sk ∇uk dx
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Because of the weak convergence of ∇uk towards ∇u∞ in Lq for any q < 2 away from the
points a1 . . . aQ and the strong convergence of Sk towards S∞ in any Lp

loc for p < +∞ we
have

0 =

∫

B(ai0 ,r)

∇χ · S∞∇u∞ dx

which gives αi0 = 0. This concludes the proof of theorem I.2. ✷
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[19] Simon, B. Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3,
447-526.

[20] Stein, E. M. Singular integrals and differentiability properties of functions. Prince-
ton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970

[21] Uhlenbeck, K. Connections with Lp bounds on curvature. Comm. Math. Phys. 83
(1982), no. 1, 31-42.

[22] Wente, H. C. An existence theorem for surfaces of constant mean curvature. J. Math.
Anal. Appl. 26 1969 318-344.

[23] Zhang, F. Quaternions and matrices of quaternions. Linear Algebra and its Appli-
cations, Volume 251, 15 January 1997, 21–57.

42


