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Abstract. We prove that for antisymmetric vectorfield Ω with small L2-norm there
exists a gauge A ∈ L∞ ∩ Ẇ 1/2,2(R1, GL(N)) such that

div 1
2
(AΩ− d 1

2
A) = 0.

This extends a celebrated theorem by Rivière to the nonlocal case and provides conser-
vation laws for a class of nonlocal equations with antisymmetric potentials, as well as
stability under weak convergence.
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1. Introduction

In the celebrated work [27] Rivière showed that for two-dimensional disks D ⊂ R2 for any
Ω ∈ L2(D, so(N) ⊗

∧1 R2), i.e., Ωij = −Ωji ∈ L2(D,
∧1 R2) there exists a GL(N)-gauge,
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namely a matrix-valued function A,A−1 ∈ L∞ ∩W 1,2(D,GL(N)) such that

div(AΩ−∇A) = 0.

These are distortions of the orthonormal Uhlenbeck’s Coulomb gauges, [36], namely P ∈
L∞ ∩W 1,2(D,SO(N)) which satisfy

div(PΩP t − P t∇P ) = 0.

As Rivière showed in [27], the GL(N)-gauges have the advantage that they can transform
equations of the form

(1.1) −∆u = Ω · ∇u
into a conservation law

div(A∇u) = div((∇A− AΩ)u).

This is important since (1.1) is the structure of the equation for harmonic maps, H-surfaces,
and more generally the Euler-Lagrange equations of a large class of conformally invariant
variational functionals. The GL(N)-gauge transform allows for regularity theory and the
study of weak convergence [27], it also is an important tool for energy quantization, see
[16].

In recent years a theory of fractional harmonic maps has developed, beginning with the
work by Rivière and the first named author, [10, 9]. bubbling analysis was initiated in [6].
Fractional harmonic maps have a variety of applications: they appear as free boundary
of minimal surfaces or harmonic maps [24, 21, 31, 8], they are also related to nonlocal
minimal surfaces [22] and to knot energies [2, 3].

We recall that in [10] the first named author and Rivière considered nonlocal Schödinger
type systems of the form

(1.2) (−∆)
1
4v = Ωv in D′(R),

where Ω is an antisymmetric potential in L2(R, so(N)), v ∈ L2(R,RN). The main technique
to establish the sub-criticality of systems (1.2) is to perform a change of gauge by rewriting
them after having multiplied v by a well chosen rotation valued map P ∈ Ẇ 1/2,2(R, SO(N))
which is ”integrating” Ω in an optimal way. The key point in [10, 9] was the discovery of
particular algebraic structures (three-term commutators) that play the role of the Jacobians
in the case of local systems in 2-D with an antisymmetric potential and that enjoy suitable
integrability by compensations properties. In [17] the second and the third named authors
introduced a new approach to fractional harmonic maps by considering nonlocal systems
with an antisymmetric potential which is seen itself as a nonlocal operator. As we will
explain later such an approach is similar in the spirit to that introduced by Hélein in [15]
in the context of harmonic maps.

It begins with the definition of “nonlocal one forms”. F ∈ Lp(
∧1
odRn) if F : Rn×Rn → R

and ∫
Rn

∫
Rn
|F (x, y)|p dx dy

|x− y|n
<∞.
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The s-differential, which takes function u : Rn → R into 1-forms, is then given by

dsu(x, y) :=
u(x)− u(y)

|x− y|s
.

The scalar product for two 1-forms, F ∈ Lp(
∧1
odRn) and G ∈ Lp′(

∧1
odRn) is then given by

F ·G(x) =

∫
Rn
F (x, y)G(x, y)

dy

|x− y|n
.

The fractional divergence divs, which takes 1-forms into functions, is then the formal
adjoint to ds, namely

divs F [ϕ] :=

∫
Rn
F · dsϕ ∀ϕ ∈ C∞c (Rn).

For more details we refer to Section 2. With this notation in mind we now consider
equations of the form

(1.3) div 1
2
(d 1

2
u) = Ω · d 1

2
u in R,

or in index form

div 1
2
(d 1

2
ui) =

N∑
j=1

Ωij · d 1
2
uj in R, i = 1, . . . , N,

where u ∈ (L2 + L∞) ∩ Ẇ 1
2
,2(R,RN) and Ωij = −Ωji ∈ L2(

∧1
odR).

The main observation in [17] is that the above notation and the above equation are not
merely some random definitions of only analytical interest. Rather it was shown that
the role of (1.3) for fractional harmonic maps is similar to the role of (1.1) for harmonic
maps. In [17] it was shown that there exists a div − curl Lemma in the spirit of [5], that
fractional harmonic maps into spheres satisfy a conservation law in the spirit of [15], and
that fractional harmonic maps into spheres essentially satisfy equations of the form (1.3), in
the spirit of [27], and that an analogue of Uhlenbeck’s gauge exist. In [20] this argument was
further pushed to equations of stationary harmonic map in higher dimensional domains.

We mention that in [7] the authors found quasi conservation laws for nonlocal Schrödinger
type systems of the form

(1.4) (−∆)1/4v = Ωv + g(x)

where v ∈ L2(R), Ω ∈ L2(R, so(N)), and g is a tempered distribution. As we have already
pointed out above systems (1.4) represent a particular case of systems (1.3) studied in
the present paper in the sense that the antisymmetric potential Ω in (1.4) is a pointwise
function. The conservation laws found in [7] are a consequence of a stability property
of some three-term commutators by the multiplication of P ∈ SO(N) and also of the
regularity results obtained previously for such commutators. The reformulation of (1.4) in
terms of conservation laws has permitted to get the quantization in the neck regions of the
L2 norms of the negative part of sequences of solutions to systems of the type (1.4).
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The conservation laws that we obtain in the current paper are more similar in the spirit to
those found in the paper [27] for harmonic maps and concern nonlocal systems (1.3) where
the antisymmetric potential acts in general as a nonlocal operator. We hope this technique
to be as useful for the question of concentration compactness and energy quantization for
systems as it was in the local case in [16], a question we will study in a future work.

Applying a gauge A ∈ L∞ ∩ Ẇ 1
2
,2 to the equation (1.3) we find (see Lemma 4.1),

div 1
2
(Aikd 1

2
uk) =

(
Ai`Ω`k − d 1

2
Aik

)
· d 1

2
uk.

Our main result is then the existence of the nonlocal analogue of Rivière’s GL(N)-Coulomb
gauge [27], namely we have

Theorem 1.1. There exists a number 0 < σ � 1 such that the following holds.

If Ω ∈ L2(
∧1
odR) is antisymmetric, i.e., Ωij = −Ωji and satisfies

‖Ω‖L2(
∧1
od R) < σ,

then there exists an invertible matrix valued function A ∈ L∞∩ Ẇ 1
2
,2(R, GL(N)) such that

for ΩA := AΩ− d 1
2
A we have

div 1
2

(
ΩA
)

= 0.

Moreover we have

(1.5) [A]
W

1
2 ,2(R)

- ‖Ω‖L2(
∧1
od R), ‖A‖L∞(R) - 1 + ‖Ω‖L2(

∧1
od R).

As an immediate corollary we obtain

Corollary 1.2 (Conservation law). Assume u ∈ Ẇ
1
2
,2(R,RN) ∩ (L2 + L∞)(R,RN) and

f ∈ Ẇ− 1
2
,2(R,RN) satisfy

div 1
2
(d 1

2
u) = Ω · d 1

2
u+ f, in D′(R)

and Ω satisfies the condition of Theorem 1.1. Then there exists a matrix A such that for
ΩA := AΩ− d 1

2
A we have

div 1
2

(
Ad 1

2
u− (ΩA)∗u

)
= Af, in D′(R),

where (ΩA)∗(x, y) := ΩA(y, x).

Theorem 1.1 is applicable to the half-harmonic map system as derived [17, Proposition
4.2], because of a localization result, see Proposition B.1.

With the methods of Theorem 1.1 we obtain the analogue of [27, Theorem I.5], our second
main result.



A FRACTIONAL VERSION OF RIVIÈRE’S GL(N)-GAUGE 5

Theorem 1.3. Assume Ω` ∈ L2(
∧1
odR) is a sequence of antisymmetric vector fields, i.e.,

(Ωij)` = −(Ωji)`, weakly convergent in L2 to an Ω ∈ L2(
∧1
odR). Assume further that

f` ∈ Ẇ− 1
2
,2(R,RN) converges strongly to f in Ẇ− 1

2
,2, and assume that u` ∈ (L2 +L∞(R))∩

Ẇ
1
2
,2(R,RN) is a sequence of solutions to

(1.6) (−∆)
1
2u` = Ω` · d 1

2
u` + f` in D′(R)

such that sup`

(
‖u`‖L2+L∞(R) + [u`]W

1
2 ,2(R)

)
< ∞. Then, up to taking a subsequence u`

converges weakly in Ẇ
1
2
,2(R,RN) to some u ∈ Ẇ 1

2
,2(R,RN) ∩ ((L2 + L∞)(R,RN)), which

is a solution to

(−∆)
1
2u = Ω · d 1

2
u+ f in D′(R).

Here, as usual, we denote

‖f‖L2+L∞(R) = inf
f1∈L2(R)

(
‖f1‖L2(R) + ‖f − f1‖L∞(R)

)
.

Theorem 1.3 will be proven in Section 4.
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2. Preliminaries and useful tools

We follow the notation of [17] for the nonlocal operators. For readers convenience we recall
it here. We writeM(Rn) for the space of all functions f : Rn → R measurable with respect
to the Lebesgue measure dx andM(

∧1
odRn) for the space of vector fields F : Rn×Rn → R

measurable with respect to the dxdy
|x−y|n measure, where “od” stands for “off diagonal”.

For two vector fields F, G ∈M(
∧1
odRn) the scalar product is defined as

F ·G(x) :=

∫
Rn
F (x, y)G(x, y)

dy

|x− y|n
.

For any p > 1 the natural Lp-space on vector fields F : Rn × Rn → R is induced by the
norm

‖F‖Lp(
∧1
od Rn) :=

(∫
Rn

∫
Rn
|F (x, y)|p dx dy

|x− y|n

) 1
p
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and for D ⊂ Rn we define

‖F‖Lp(
∧1
odD) :=

(∫∫
(D×Rn)∪(Rn×D)

|F (x, y)|p dx dy

|x− y|n

) 1
p

.

Let s ∈ (0, 1). For f : Rn → R we let the s-gradient ds : M(Rn)→M(
∧1
odRn) to be

dsf(x, y) :=
f(x)− f(y)

|x− y|s
.

Observe that with this notation we have

‖dsf‖Lp(
∧1
od Rn) = [f ]W s,p(Rn),

where

[f ]W s,p(Rn) =

(∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+sp
dx dy

)1/p

is the Gagliardo–Slobodeckij seminorm.

Let s ∈ (0.1) and F ∈ M(
∧1
odRn). We define the fractional s-divergence in the distribu-

tional way

divs F [ϕ] :=

∫
Rn

∫
Rn
F (x, y) dsϕ(x, y)

dx dy

|x− y|n
, ϕ ∈ C∞c (Rn),

whenever the integrals converge.

With this notation we have divs ds = (−∆)s, i.e.,∫
Rn
dsf · dsg(x) dx =

2

Cn,s

∫
R
(−∆)sf(x)g(x) dx,

where the fractional Laplacian is defined as

(−∆)sf(x) := Cn,sP.V.

∫
Rn

f(x)− f(y)

|x− y|2s
dy

|x− y|n
.

A simple observation is the following

Lemma 2.1. Let F ∈M(
∧1
odRn) then we define

F ∗(x, y) := F (y, x).

If divs F = 0 then divs F
∗ = 0.

Moreover, for any F ∈M(
∧1
odRn) and u ∈M(Rn) we have

(2.1) divs(Fu(x)) = divs(F )u+ F ∗ · dsu
and

(2.2) divs(Fu(y)) = divs(F )u− F · dsu
whenever each term is well-defined.
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Proof. We have

F (x, y)u(x)(ϕ(x)− ϕ(y)) = F (x, y)(u(x)ϕ(x)− u(y)ϕ(y))− F (x, y)(u(x)− u(y))ϕ(y).

Thus,

divs(Fu(x))[ϕ] =

∫
Rn

∫
Rn

F (x, y)u(x)(ϕ(x)− ϕ(y))

|x− y|n+s
dy dx

=

∫
Rn

∫
Rn

F (x, y)(u(x)ϕ(x)− u(y)ϕ(y))

|x− y|n+s
dy dx

−
∫
Rn

∫
Rn

F (x, y)(u(x)− u(y))ϕ(y)

|x− y|n+s
dy dx.

(2.3)

As for the latter term we have

−
∫
Rn

∫
Rn

F (x, y)(u(x)− u(y))ϕ(y)

|x− y|n+s
dy dx

= −
∫
Rn

∫
Rn

−F (y, x)(u(x)− u(y))ϕ(x)

|x− y|n+s
dy dx

=

∫
Rn

∫
Rn

F ∗(x, y)(u(x)− u(y))ϕ(x)

|x− y|n+s
dy dx.

(2.4)

Combining (2.3) with (2.4) we obtain (2.1). The proof of (2.2) is similar. �

We also denote

|Ds,qf |(x) :=

(∫
Rn

|f(x)− f(y)|q

|x− y|n+sq
dy

) 1
q

.

We will be using the following “Sobolev embedding” theorem.

Theorem 2.2. Let s ∈ (0, 1), t ∈ (s, 1), and let p, p∗ > 1 satisfy

s− n

p∗
= t− n

p
,

where q > 1 with p∗ > nq
n+sq

. Then we have

(2.5) ‖|Ds,qf |‖Lp∗ (Rn) - ‖(−∆)
t
2f‖Lp(Rn)

and for any r ∈ [1,∞]

(2.6) ‖|Ds,qf |‖L(p∗,r)(Rn) - ‖(−∆)
t
2f‖L(p,r)(Rn).

For the proof see Appendix C.

We will also need the following Wente’s inequality from [17].
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Lemma 2.3 ([17, Corollary 2.3]). Let s ∈ (0, 1), p > 1, and let p′ be the Hölder conjugate
of p. Assume moreover that F ′ ∈ Lp(

∧1
odR) and g ∈ W s,p′(R) with divs F = 0. Let R be

a linear operator such that for some Λ > 0 satisfies

|R[ϕ]| ≤ Λ‖(−∆)
1
4ϕ‖L(2,∞)(R),

where L(2,∞)(R) denote the weak L2 space. Then any distributional solution u ∈ Ẇ 1
2
,2(R)

to

(−∆)
1
2u = F · dsg +R in R

is continuous. Moreover if limx→±∞ |u(x)| = 0, then we have the estimate

(2.7) ‖u‖L∞(R) + ‖d 1
2
u‖L2(

∧1
od R) - ‖F‖Lp(

∧1
od R)‖dsg‖Lp′ (∧1

od R) + Λ.

Our proof will also be based on the following choice of a good gauge.

Theorem 2.4 ([17, Theorem 4.4]). For Ωij = −Ωji ∈ L2(
∧1
odR) there exists P ∈

Ẇ
1
2 (R, SO(N)) such that

div 1
2

ΩP
ij = 0 for all i, j ∈ {1, . . . , N},

where

ΩP =
1

2

(
d 1

2
P (x, y)

(
P T (y) + P T (x)

)
− P (x)Ω(x, y)P T (y)− P (y)Ω(x, y)P T (x)

)
and

(2.8) [P ]
W

1
2 ,2(R)

- ‖Ω‖L2(
∧1
od R).

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We will be looking for an A in the form A = (I+ε)P ,
where P is chosen to be the good gauge from Theorem 2.4. The idea to take perturbation
of rotations of the form (I+ε)P has been taken from [28] in the context of local Schrödinger
equations with antisymmetric potentials. This has been also exploited in [7].

Lemma 3.1. Assume that A = (I + ε)P .

Then for

ΩP (x, y) =
1

2

(
d 1

2
P (x, y)

(
P T (y) + P T (x)

)
− P (x)Ω(x, y)P T (y)− P (y)Ω(x, y)P T (x)

)
we have

A(x)Ω(x, y) − d 1
2
A(x, y) = −(I + ε(x)) ΩP (x, y)P (y)− d 1

2
ε(x, y)P (y) +Rε(x, y),
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where Rε is given by the formula

Rε(x, y) :=
1

2
(I + ε(x))

(
d 1

4
P (x, y) d 1

4
P T (x, y)

− P (x) Ω(x, y)
(
P T (x)− P T (y)

)
+ (P (x)− P (y)) Ω(x, y)P T (x)

)
P (y).

(3.1)

Proof. Recall that

d 1
2
(fg)(x, y) = d 1

2
f(x, y) g(y) + f(x)d 1

2
g(x, y).

Thus, applying this to d 1
2
((I + ε)P )(x, y) we get

A(x)Ω(x, y)− d 1
2
A(x, y)

= (I + ε(x))P (x)Ω(x, y) − d 1
2

((I + ε)P ) (x, y)

= (I + ε(x))
(
P (x) Ω(x, y) − d 1

2
P (x, y)

)
− d 1

2
ε(x, y)P (y)

= −(I + ε(x))
(
d 1

2
P (x, y)P T (y)− P (x) Ω(x, y)P T (y)

)
P (y)− d 1

2
ε(x, y)P (y).

(3.2)

Next we observe that

d 1
2
P (x, y)P T (y)− P (x) Ω(x, y)P T (y)

=
1

2

(
d 1

2
P (x, y)

(
P T (x) + P T (y)

)
− P (x) Ω(x, y)P T (y)− P (y) Ω(x, y)P T (x)

)
− 1

2

(
d 1

2
P (x, y)

(
P T (x)− P T (y)

)
− P (x) Ω(x, y)

(
P T (x)− P T (y)

)
+ (P (x)− P (y)) Ω(x, y)P T (x)

)
.

(3.3)

That is, plugging in (3.3) into (3.2) we get the claim for

Rε(x, y) :=
1

2
(I + ε(x))

(
d 1

4
P (x, y) d 1

4
P T (x, y)

− P (x) Ω(x, y)
(
P T (x)− P T (y)

)
+ (P (x)− P (y)) Ω(x, y)P T (x)

)
P (y).

�

Lemma 3.2. Assume that we have ε ∈ L∞∩Ẇ 1/2,2(R), a ∈ Ẇ 1/2,2(R), and B ∈ L2(
∧1
odR)

satisfying the equations

(3.4) − (I + ε(x)) ΩP (x, y)P (y)− d 1
2
ε(x, y)P (y) +Rε(x, y) = d 1

2
a(x, y) +B(x, y)
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and

− div 1
2

(
(I + ε(x)) ΩP (x, y)

)
− div 1

2

(
d 1

2
ε(x, y)

)
+ div 1

2
(Rε(x, y)P T (y))

= div 1
2

(
B(x, y)P T (y)

)
,

(3.5)

with

(3.6) [P ]W 1/2,2(R) < σ.

Then, for sufficiently small σ we have a = const.

Proof. We multiply (3.4) by P T (y) from the right and take the 1
2
-divergence on both sides,

then subtracting (3.5) we obtain

(3.7) div 1
2
(d 1

2
a(x, y)P T (y)) = 0.

We use nonlocal Hodge decompostion Lemma A.1 and get the existence of functions ã ∈
Ẇ

1
2
,2(R), B̃ ∈ L2(

∧1
odR) such that

(3.8) d 1
2
a(x, y)P T (y) = d 1

2
ã(x, y) + B̃(x, y),

and (recall |P | = 1)

(3.9) div 1
2
B̃ = 0 and ‖B̃‖L2(

∧1
od R) - ‖d 1

2
a‖L2(

∧1
od R).

Thus, taking the 1
2
-divergence in (3.8) we obtain

0 = div 1
2
(d 1

2
a(x, y)P T (y)) = div 1

2
(d 1

2
ã(x, y) + B̃(x, y)) = div 1

2
(d 1

2
ã) = (−∆)

1
2 ã.

This gives, (−∆)
1
2 ã = 0, thus ã is constant and without loss of generality we can take

ã = 0, see also [11, Theorem 1.1]. Thus (3.8) becomes

d 1
2
a(x, y)P T (y) = B̃(x, y).

That is
d 1

2
a(x, y) = B̃(x, y)P (y).

Taking the 1
2
-divergence we obtain by Lemma 2.1

(3.10) (−∆)
1
2a = −B̃ · d 1

2
P,

since on the righ-hand side we have a div-curl term we can apply fractional Wente’s in-
equality, Lemma 2.3, and obtain from (2.7)

‖d 1
2
a‖L2(

∧1
od R) - ‖B̃‖L2(

∧1
od R)‖d 1

2
P‖L2(

∧1
od R).

Combining this with (3.9) and (3.6) we get

‖d 1
2
a‖L2(

∧1
od R) - σ‖d 1

2
a‖L2(

∧1
od R),

which implies for sufficiently small σ that

‖d 1
2
a‖L2(

∧1
od R) = [a]W 1/2,2(R) = 0
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and thus a ≡ const. �

Now we will focus on showing that there exists a solution to the equations (3.4) and (3.5).
We will do this by using the Banach fixed point theorem.

Proposition 3.3. Let Ω ∈ L2(
∧1
odR) be anitsymmetric. There is a number 0 < σ � 1

such that the following holds:

Take P ∈ Ẇ 1
2
,2(R, SO(N)) and ΩP ∈ L2(

∧1
odR) from Theorem 2.4. Let us assume that

(3.11) [P ]W 1/2,2(R) + ‖Ω‖L2(
∧1
od R) < σ.

Then, there exist ε ∈ L∞ ∩ Ẇ 1/2,2(R), a ∈ Ẇ 1/2,2(R), and B ∈ L2(
∧1
odR) that solve the

equations
(3.12){
−(I + ε(x)) ΩP (x, y)P (y)−d 1

2
ε(x, y)P (y) +Rε(x, y) = d 1

2
a(x, y) +B(x, y)

− div 1
2

(
(I + ε(x))ΩP (x, y)

)
− div 1

2
(d 1

2
ε(x, y)) + div 1

2
(Rε(x, y)P T (y)) = div 1

2

(
BP T (y)

)
,

where Rε is defined in (3.1).

Moreover, ε satisfies the estimate

(3.13) ‖ε‖L∞(R) + [ε]
W

1
2 ,2(R)

- ‖Ω‖L2(
∧1
od R).

We will need the following remainder terms estimates.

Lemma 3.4. We have the following estimates∣∣∣div 1
2
(RεP

T (y))[ϕ]
∣∣∣

- (1 + ‖ε‖L∞(R))(‖Ω‖L2(
∧1
od R) + [P ]W 1/2,2(R))[P ]W 1/2,2(R) ‖(−∆)

1
4ϕ‖L(2,∞)(R)

(3.14)

and ∣∣∣div 1
2

(
(Rε1 −Rε2)P

T (y)
)

[ϕ]
∣∣∣

- ‖ε1 − ε2‖L∞(R)(‖Ω‖L2(
∧1
od R) + [P ]W 1/2,2(R))[P ]W 1/2,2(R) ‖(−∆)

1
4ϕ‖L(2,∞)(R).

(3.15)
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Proof. We observe that for any ϕ ∈ C∞c (R) we have

∣∣∣div 1
2
(RεP

T (y))[ϕ]
∣∣∣

-

∣∣∣∣∫
R

∫
R
(I + ε(x))

(
d 1

4
P (x, y) d 1

4
P T (x, y)

)
d 1

2
ϕ(x, y)

dx dy

|x− y|

∣∣∣∣
+

∣∣∣∣∫
R

∫
R
(I + ε(x))

(
P (x) Ω(x, y)

(
P T (x)− P T (y)

)
d 1

2
ϕ(x, y)

dx dy

|x− y|

)∣∣∣∣
+

∣∣∣∣∫
R

∫
R
(I + ε(x)) (P (x)− P (y)) Ω(x, y)P T (x) d 1

2
ϕ(x, y)

dx dy

|x− y|

∣∣∣∣
- (1 + ‖ε‖L∞)

∫
R

∫
R

(
|d 1

4
P (x, y)|2 |d 1

2
ϕ(x, y)| + |Ω(x, y)| |d 1

4
P (x, y)| |d 1

4
ϕ(x, y)|

) dx dy

|x− y|
= (1 + ‖ε‖L∞) (I + II) .

(3.16)

Let M be the Hardy–Littlewood maximal function and let α ∈ (0, 1). We will use the
following fractional counterpart (for the proof see [31, Proposition 6.6])

(3.17) |f(x)− f(y)| - |x− y|α
(
M((−∆)

α
2 f)(x) +M((−∆)

α
2 f)(y)

)
of the well known inequality, see [4, 14]

|f(x)− f(y)| - |x− y| (M|∇f |(x) +M|∇f |(y)) .

We begin with the estimate of the first term on the right-hand side of (3.16).

We observe that by (3.17) and by the symmetry of the integrals we obtain

I :=

∫
R

∫
R
|d 1

4
P (x, y)|2|d 1

2
ϕ(x, y)| dx dy

|x− y|
-
∫
R
|M((−∆)

1
4ϕ)(x)|

∫
R
|d 1

4
P (x, y)|2 dy dx

|x− y|
.

(3.18)

Applying Hölder’s inequality (for Lorentz spaces) we obtain∫
R
|M((−∆)

1
4ϕ)(x)|

∫
R
|d 1

4
P (x, y)|2 dy dx

|x− y|
- ‖(−∆)

1
4ϕ‖L(2,∞)‖|D 1

4
,2P |2‖L(2,1)

= ‖(−∆)
1
4ϕ‖L(2,∞)‖|D 1

4
,2P |‖2

L(4,2) ,

(3.19)

where we used the notation from Section 2: for s ∈ (0, 1) and q > 1 we write

|Ds,qf |(x) :=

(∫
R

|f(x)− f(y)|q

|x− y|1+sq
dy

) 1
q

.

Applying Theorem 2.2, (2.6) for t = 1
2

we get

(3.20) ‖|D 1
4
,2P |‖2

L(4,2) - ‖(−∆)
1
4P‖2

L(2,2) - ‖(−∆)
1
4P‖2

L2 = [P ]2W 1/2,2 .
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Thus, combining (3.18), (3.19), and (3.20) we obtain

(3.21) I =

∫
R

∫
R
|d 1

3
P (x, y)|2|d 1

3
ϕ(x, y)| dx dy

|x− y|
- [P ]2W 1/2,2(R)‖(−∆)

1
4ϕ‖L(2,∞)(R).

As for the second term of (3.16) we have

II :=

∫
R

∫
R
|Ω(x, y)||d 1

4
P (x, y)||d 1

4
ϕ(x, y)| dx dy

|x− y|

- ‖Ω‖L2(
∧1
od R)

(∫
R

∫
R
|d 1

4
P (x, y)|2|d 1

4
ϕ(x, y)|2 dx dy

|x− y|

) 1
2

.

(3.22)

Applying once again (3.17) we obtain∫
R

∫
R
|d 1

4
P (x, y)|2|d 1

4
ϕ(x, y)|2 dx dy

|x− y|

-
∫
R

∫
R

(
M((−∆)

1
8ϕ)(x) +M((−∆)

1
8ϕ)(y)

)2

|d 1
4
P (x, y)|2 dx dy

|x− y|

-
∫
R

(
M((−∆)

1
8ϕ)(x)

)2
∫
R
|d 1

4
P (x, y)|2 dy dx

|x− y|
.

(3.23)

Using Hölder’s inequality and then Sobolev embedding we get∫
R

(
M((−∆)

1
8ϕ)(x)

)2
∫
R
|d 1

4
P (x, y)|2 dy dx

|x− y|
- ‖(M(−∆)

1
8ϕ)2‖L(2,∞)(R)‖|D 1

4
,2P |2‖L(2,1)(R)

- ‖(−∆)
1
8ϕ‖2

L(4,∞)(R)‖|D 1
4
,2P |‖2

L(4,2)(R)

- ‖(−∆)
1
4ϕ‖2

L(2,∞)(R)‖|(−∆)
1
4P‖2

L(2,2)(R),

(3.24)

where for the estimate of the last term we used again Theorem 2.2, (2.6), with t = 1
2
.

Combining (3.22), (3.23), and (3.24) we obtain

II =

∫
R

∫
R
|Ω(x, y)||d 1

4
P (x, y)||d 1

4
ϕ(x, y)| dx dy

|x− y|
- ‖Ω‖L2(

∧1
od R)‖(−∆)

1
4ϕ‖L(2,∞)(R)[P ]W 1/2,2(R).

(3.25)

Finally, from (3.16), (3.21), and (3.25) we get∣∣∣ div 1
2
(RεP

T (y))[ϕ]
∣∣∣

- (1 + ‖ε‖L∞(R))
(
‖Ω‖L2(

∧1
od R) + [P ]W 1/2,2(R)

)
[P ]W 1/2,2(R)‖(−∆)

1
4ϕ‖L(2,∞)(R).

This finishes the proof of (3.14).
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In order to prove (3.15) we observe∣∣∣div 1
2

(
(Rε1 −Rε2)P

T (y)
)

[ϕ]
∣∣∣ - ‖ε1 − ε2‖L∞(I + II).

Thus, in order to conclude it suffices to apply the estimates (3.21) and (3.25). �

Proof of Proposition 3.3. Let X = L∞ ∩ Ẇ 1
2
,2(R).

For any ε ∈ X we have A = (1+ε)P ∈ L∞∩Ẇ 1
2 (R), which implies AΩ−d 1

2
A ∈ L2(

∧1
odR)

and thus, from Lemma 3.1, we have

−
(
(I + ε(x, y)) ΩP (x, y)P (y)

)
−
(
d 1

2
ε(x, y)P (y)

)
+Rε(x, y) ∈ L2(

∧1

od
R).

We apply for this term the nonlocal Hodge decomposition, Lemma A.1: given ε ∈ X we
find a(ε) ∈ W 1

2
,2(R) and B(ε) ∈ L2(

∧1
odR) with div 1

2
B(ε) = 0 satisfying

−
(
(I + ε(x, y)) ΩP (x, y)P (y)

)
−
(
d 1

2
ε(x, y)P (y)

)
+Rε(x, y)

= d 1
2
a(ε)(x, y) +B(ε)(x, y)

(3.26)

with the estimates
‖B(ε)‖L2(

∧1
od R) + [a(ε)]

W
1
2 ,2(R)

- (1 + ‖ε‖L∞(R))([P ]W 1/2,2(R) + ‖Ω‖L2(
∧1
od R)) + [ε]W 1/2,2(R).

(3.27)

Similarly, if for any two ε1, ε2 ∈ X we consider the difference of the corresponding equations
(3.26) we get

‖B(ε1)−B(ε2)‖L2(
∧1
od R)

- ‖ε1 − ε2‖L∞(R)([P ]W 1/2,2(R) + ‖Ω‖L2(
∧1
od R)) + [ε1 − ε2]W 1/2,2(R).

(3.28)

Now we define the mapping T : X → X as the solution to

− div 1
2

(
(I + ε(x)) ΩP (x, y)

)
− div 1

2

(
d 1

2
T (ε)(x, y)

)
+ div 1

2
(Rε(x, y)P T (y))

= div 1
2

(
B(ε)(x, y)P T (y)

)(3.29)

with lim|x|→∞ T (ε)(x) = 0.

Using Lemma 2.1 equation (3.29) can be rewritten as

−(−∆)
1
2T (ε) = div 1

2

(
B(ε)P T (y)

)
+ div 1

2

(
(I + ε(x)) ΩP

)
− div 1

2
(RεP

T (y))

= −B(ε) · d 1
2
P T + d 1

2
(I + ε) · (ΩP )∗ − div 1

2
(RεP

T (y)).
(3.30)

We used in the second inequality Lemma 2.1.

We observe that on the right-hand we have fractional div-curl-terms: div 1
2
B(ε) = 0 and

div 1
2
(ΩP )∗ = 0. Let us denote

Λε := (1 + ‖ε‖L∞(R))(‖Ω‖L2(R) + [P ]W 1/2,2(R))[P ]W 1/2,2(R).
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By Lemma 3.4, (3.14), the rest term in (3.30) satisfies∣∣∣div 1
2
(RεP

T (y))[ϕ]
∣∣∣ - Λε‖(−∆)

1
4ϕ‖L(2,∞)(R).

Thus, we may apply the nonlocal Wente’s lemma, i.e., Lemma 2.3 and obtain

‖T (ε)‖L∞(R) + [T (ε)]W 1/2,2(R)

- ‖B(ε)‖L2(
∧1
od R)[P ]W 1/2,2(R) + [ε]W 1/2,2(R)‖(ΩP )∗‖L2(

∧1
od R) + Λε

= ‖B(ε)‖L2(
∧1
od R)[P ]W 1/2,2(R) + [ε]W 1/2,2(R)‖ΩP‖L2(

∧1
od R) + Λε.

(3.31)

Moreover, let ε1, ε2 ∈ X, then we have

−(−∆)
1
2 (T (ε1)− T (ε2))

= div 1
2

(
(B(ε1)−B(ε2))P T (y)

)
+ div 1

2

(
(ε1 − ε2)(x) ΩP

)
− div 1

2
((Rε1 −Rε2)P

T (y))

= −(B(ε1)−B(ε2)) · d 1
2
P T + d 1

2
(ε1 − ε2) · (ΩP )∗ − div 1

2
((Rε1 −Rε2)P

T (y)),

(3.32)

where in the last equality we have used again Lemma 2.1.

Again, we observe that

div 1
2
(B(ε1)− (B(ε2)) = 0 and div 1

2
(ΩP )∗ = 0,

and from Lemma 3.4, (3.15), we may estimate the reminder term in (3.32)

(3.33) | div 1
2
(Rε1 −Rε2)P

T (y))[ϕ]| - Λε1,ε2‖(−∆)
1
4ϕ‖L(2,∞)(R),

where

(3.34) Λε1,ε2 := ‖ε1 − ε2‖L∞(R)([P ]W 1/2,2(R) + ‖Ω‖L2(R))[P ]W 1/2,2(R).

Therefore, we may apply the nonlocal Wente’s Lemma 2.3 for equation (3.32) and obtain

‖T (ε1)− T (ε2)‖L∞(R) + [T (ε1)− T (ε2)]W 1/2,2(R)

- ‖B(ε1)−B(ε2)‖L2(
∧1
od R)[P ]W 1/2,2(R) + [ε1 − ε2]W 1/2,2(R)‖Ωp‖L2(

∧1
od R) + Λε1,ε2 .

(3.35)

Combining (3.35) with (3.28) and (3.34) we get

‖T (ε1)− T (ε2)‖L∞(R) + [T (ε1)− T (ε2)]W 1/2,2(R)

- ‖ε1 − ε2‖L∞(R)

(
[P ]W 1/2,2(R) + ‖Ω‖L2(

∧1
od R)

)
[P ]W 1/2,2(R)

+ [ε1 − ε2]W 1/2,2(R)

(
[P ]W 1/2,2(R) + ‖Ω‖L2(

∧1
od R)

)
- (‖ε1 − ε2‖L∞(R) + [ε1 − ε2]W 1/2,2(R))σ,

where in the last inequality we used (3.11).

Thus, taking σ small enough we obtain

‖T (ε1)− T (ε2)‖L∞(R) + [T (ε1)− T (ε2)]W 1/2,2(R) ≤ λ
(
‖ε1 − ε2‖L∞(R) + [ε1 − ε2]W 1/2,2(R)

)
,
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for a 0 < λ < 1, which implies that T is a contraction. Consequently, by Banach fixed
point theorem, there exists a unique ε ∈ X, such that T (ε) = ε. That is we have a solution
T (ε) = ε, which is a solution to

−
(
(I + ε(x)) ΩPP (y)

)
−
(
d 1

2
ε P (y)

)
+Rε = d 1

2
a(ε) +B(ε)

− div 1
2

(
(I + ε(x)) ΩP

)
− div 1

2

(
d 1

2
ε
)

+ div 1
2
(Rε P

T (y)) = div 1
2

(
B(ε)P T (y)

)
.

Moreover, combining (3.31) with (3.27) and (3.11) we obtain the following estimate on ε

(3.36) ‖ε‖L∞(R) + [ε]
W

1
2 ,2(R)

- σ‖ε‖L∞(R) + σ[ε]
W

1
2 ,2(R)

+ ‖Ω‖L2(
∧1
od R) + [P ]

W
1
2 ,2(R)

,

which gives for sufficiently small σ

‖ε‖L∞(R) + [ε]
W

1
2 ,2(R)

- ‖Ω‖L2(
∧1
od R) + [P ]

W
1
2 ,2(R)

.

�

Proof of Theorem 1.1. By Proposition 3.3 we obtain the existence of an ε ∈ L∞∩Ẇ 1
2
,2(R),

a ∈ Ẇ 1
2
,2(R), B ∈ L2(

∧1
odR) with div 1

2
B = 0 satisfying the equations solution T (ε) = ε,

which is a solution to −
(
(I + ε(x)) ΩPP (y)

)
−
(
d 1

2
ε P (y)

)
+Rε = d 1

2
a+B

− div 1
2

(
(I + ε(x)) ΩP

)
− div 1

2

(
d 1

2
ε
)

+ div 1
2
(Rε P

T (y)) = div 1
2

(
BP T (y)

)
,

where P ∈ Ẇ
1
2
,2(R, SO(N)) and ΩP ∈ L2(

∧1
odR) are taken from Theorem 2.4 and

[P ]W 1/2,2(R) - ‖Ω‖L2(
∧1
od R) ≤ σ.

By Lemma 3.2 we have for sufficiently small σ

−
(
(I + ε(x)) ΩPP (y)

)
−
(
d 1

2
ε P (y)

)
+Rε = B.

Thus, defining for ε from Proposition 3.3, A := (I + ε)P , we have by Lemma 3.1

AΩ− d 1
2
A = B.

The invertibility of A follows from the invertibility of P and I + ε. Finally, since A =
(I + ε)P , we obtain from (3.13) and (2.8) the estimates

[A]
W

1
2 ,2(R)

- (1 + ‖ε‖L∞)[P ]
W

1
2 ,2(R)

+ [ε]
W

1
2 ,2(R)

- ‖Ω‖L2(
∧1
od R),

and

‖A‖L∞(R) - 1 + ‖Ω‖L2(
∧1
od R).

This finishes the proof.

�
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4. Weak convergence result — Proof of Theorem 1.3

Using Lemma 2.1 we obtain the following.

Lemma 4.1. Assume that Ω ∈ L2(
∧1
odR). Then u ∈ Ẇ 1

2
,2(R,RN) ∩ (L2 + L∞(R)) is a

solution to

(4.1) (−∆)
1
2ui = Ω · d 1

2
u

if and only if for any invertible matrix valued function A,A−1 ∈ L∞ ∩ Ẇ 1
2
,2(R, GL(N)),

div 1
2
(Aikd 1

2
uk) =

(
AijΩjk − d 1

2
Aik

)
· d 1

2
uk.

In a first step we prove the “local version” of Theorem 1.3.

Proposition 4.2. Let σ > 0 be the number from Theorem 1.1. Let {u`}`∈N be a sequence
as in Theorem 1.3 of solutions to

(−∆)
1
2u` = Ω` · d 1

2
u` + f` in D′(R).

Additionally let us assume that for some bounded interval D ⊂ R we have

(4.2) sup
`
‖Ω`‖L2(

∧1
odD) < σ.

Then
(−∆)

1
2u = Ω · d 1

2
u+ f in D′(D).

Proof. Let us define ΩD,` := χD(x)χD(y)Ω` ∈ L2(
∧1
odR). Then by (4.2) we have

(4.3) ‖ΩD,`‖L2(
∧1
od R) ≤ ‖Ω`‖L2(

∧1
odD) < σ.

By Theorem 1.1 for ΩD,` there exists a gauge A` such that

(4.4) div 1
2
(ΩA`

D,`) = 0,

where ΩA`
D,` := A`ΩD,` − d 1

2
A`.

Let D1 ⊂⊂ D be an open set.

By assumption and Lemma 4.1 we have for any ψ ∈ C∞c (D1) and for ΩA`
` = A`Ω` − d 1

2
A`∫

R
A`d 1

2
u` · d 1

2
ψ =

∫
R

ΩA`
` · d 1

2
u` ψ + f`[A`ψ].

Here with a slight abuse of notation we write for the matrix product (f [Aψ])i :=∑
k f

k[Aikψ].

Let us denote ΩDc,` := Ω` − ΩD,`. Then we have∫
R
A`d 1

2
u` · d 1

2
ψ =

∫
R

ΩA`
D,` · d 1

2
u` ψ +

∫
R
A`ΩDc,` · d 1

2
u` ψ + f`[A`ψ].
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By Lemma 2.1 and (4.4) we have div 1
2

((
ΩA`
D,`

)∗)
= 0, thus again by Lemma 2.1 we get

ΩA`
D,` · d 1

2
u` = div 1

2

((
ΩA`
D,`

)∗
u`(x)

)
. Therefore,

(4.5)

∫
R
A`d 1

2
u` · d 1

2
ψ =

∫
R

(
ΩA`
D,`

)∗
· u`d 1

2
ψ +

∫
R
A`ΩDc,` · d 1

2
u` ψ + f`[A`ψ].

We will pass with `→∞ in (4.5). Roughly speaking, the convergence of most of the terms
will be a result of a combination of weak-strong convergence. We first observe that by
Theorem 1.1 we have

‖A`‖Ẇ 1
2 ,2(R)

- ‖ΩD,`‖L2(
∧1
od R) ≤ σ and ‖A`‖L∞(R) - 1 + σ.

Thus, sup` ‖A`‖Ẇ 1
2 ,2(R)

< ∞ and sup` ‖A`‖L∞(R) < ∞. Up to taking a subsequence we

obtain

(4.6) A` ⇀ A weakly in Ẇ
1
2
,2(R,RN), A` → A locally strongly in L2,

where we used the Rellich–Kondrachov’s compact embedding theorem and A ∈ L∞ ∩
Ẇ

1
2
,2(R, GL(N)). By the pointwise a.e. convergence we have ‖A‖L∞(R) - 1 + σ.

By (4.3) we also have up to a subsequence

ΩD,` ⇀ ΩD weakly in L2(
∧1

od
R),

where ΩD ∈ L2(
∧1
odR).

By assumptions of the Theorem we also have, up to a subsequence,

u` ⇀ u weakly in Ẇ
1
2
,2(R), u` → u locally strongly in L2,

where u ∈ Ẇ 1
2
,2(R,RN).

Let us choose a large R� 1, such that in particular D1 ⊂ B(R). We begin with the first
term of (4.5).

Step 1. We claim that (up to a subsequence)

(4.7) lim
`→∞

∫
R
A`d 1

2
u` · d 1

2
ψ =

∫
R
Ad 1

2
u · d 1

2
ψ.

Indeed, we observe

∫
R
A`d 1

2
u` · d 1

2
ψ −

∫
R
Ad 1

2
u · d 1

2
ψ =

∫
R
(A` − A)d 1

2
u` · d 1

2
ψ +

∫
R
A(d 1

2
u` − d 1

2
u) · d 1

2
ψ.

(4.8)

By weak convergence of d 1
2
u` in L2(

∧1
odR) we have

(4.9) lim
`→∞

∫
R
A(d 1

2
u` − d 1

2
u) · d 1

2
ψ = 0.
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As for the first term on the right-hand side of (4.8) we observe that since suppψ ⊂ D1 ⊂
B(R), ∫

R

∫
R
(A`(x)− A(x))

(u`(x)− u`(y))(ψ(x)− ψ(y))

|x− y|2
dx dy

=

∫
B(R)

∫
B(R)

(A`(x)− A(x))
(u`(x)− u`(y))(ψ(x)− ψ(y))

|x− y|2
dx dy

+

∫
R

∫
B(R)

(A`(x)− A(x))
(u`(x)− u`(y))(ψ(x)− ψ(y))

|x− y|2
dx dy

+

∫
B(R)

∫
R\B(R)

(A`(x)− A(x))
(u`(x)− u`(y))(ψ(x)− ψ(y))

|x− y|2
dx dy.

(4.10)

By strong convergence in L2 of A` on compact domains, we have

lim
`→∞

∫
B(R)

∫
B(R)

(A`(x)− A(x))
(u`(x)− u`(y))(ψ(x)− ψ(y))

|x− y|2
dx dy

- lim
`→∞
‖A` − A‖L2(B(R))‖ψ‖Lip [u`]W

1
2 ,2(B(R))

= 0
(4.11)

and (noting once again that suppψ ⊂ D1)

lim
`→∞

∣∣∣∣∫
R\B(R)

∫
B(R)

(A`(x)− A(x))
(u`(x)− u`(y))(ψ(x)− ψ(y))

|x− y|2
dx dy

∣∣∣∣
- lim

`→∞
‖A` − A‖L2(B(R))[u`]W

1
2 ,2(R)

(∫
R\B(R)

sup
x∈D1

|ψ(x)− ψ(y)|2

|x− y|2
dy

) 1
2

- lim
`→∞
‖A` − A‖L2(B(R))[u`]W

1
2 ,2(R)

‖ψ‖L∞
(∫

R\B(R)

1

1 + |y|2
dy

) 1
2

= 0.

(4.12)

In the last inequality we used the fact that if x ∈ D1 and y ∈ R\B(R) then |x−y| % 1+|y|.

For the last term of (4.10), we similarly use that if y ∈ suppψ and x ∈ R \B(R), then we
have |x− y| % 1 + |x| with a constant independent of R.∣∣∣∣∫

B(R)

∫
R\B(R)

(A`(x)− A(x))
(u`(x)− u`(y))(ψ(x)− ψ(y))

|x− y|2
dx dy

∣∣∣∣
- (‖A`‖L∞ + ‖A‖L∞) ‖ψ‖L∞

∫
D1

∫
R\B(R)

|u`(x)|+ |u`(y)|
1 + |x|2

dx dy

- (‖A`‖L∞ + ‖A‖L∞) ‖ψ‖L∞
(
‖u`‖L2(D1)

∫
R\B(R)

1

1 + |x|2
dx

)
+ (‖A`‖L∞ + ‖A‖L∞) ‖ψ‖L∞

(
‖u`‖L∞+L2(R)

(∫
R\B(R)

dx

1 + |x|2
+

(∫
R\B(R)

dx

(1 + |x|2)2

) 1
2

))
- (‖A`‖L∞ + ‖A‖L∞) ‖ψ‖L∞

(
‖u‖L2(D1) + ‖u`‖L∞+L2(R)

)
R−

1
2 .
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So we have

(4.13) lim
R→∞

sup
`

∣∣∣∣∫
B(R)

∫
R\B(R)

(A`(x)− A(x))
(u`(x)− u`(y))(ψ(x)− ψ(y))

|x− y|2
dx dy

∣∣∣∣ = 0.

By (4.10), (4.11), (4.12), and (4.13) we obtain the convergence of the first term on the
right-hand side of (4.8), i.e.,

(4.14) lim
`→∞

∫
R

∫
R
(A`(x)− A(x))

(u`(x)− u`(y))(ψ(x)− ψ(y))

|x− y|2
dx dy = 0.

Thus, combining (4.8), (4.9), and (4.14) we obtain the claim (4.7).

Step 2. We claim that (up to a subsequence)

(4.15) lim
`→∞

∫
R

(
ΩA`
D,`

)∗
· u`d 1

2
ψ =

∫
R

(
ΩA
D

)∗ · ud 1
2
ψ,

where ΩA
D := AΩD − d 1

2
A.

Indeed, we write∫
R

(
ΩA`
D,`

)∗
· u`d 1

2
ψ −

∫
R

(
ΩA
D

)∗ · ud 1
2
ψ

=

∫
R

∫
R

((
ΩA`
D,`

)∗
(x, y)u`(x)−

(
ΩA
D

)∗
(x, y)u(x)

) ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

=

∫
R

∫
R

(A`(y)ΩD,`(y, x)u`(x)− A(y)ΩD(y, x)u(x))
ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

−
∫
R

∫
R

(
d 1

2
A`(y, x)u`(x)− d 1

2
A(y, x)u(x)

) ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|
.

(4.16)

Now, in order to obtain

(4.17) lim
`→0

∫
R

∫
R

(A`(y)ΩD,`(y, x)u`(x)− A(y)ΩD(y, x)u(x))
ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|
= 0

we split the integral in two∫
R

∫
R

(A`(y)ΩD,`(y, x)u`(x)− A(y)ΩD(y, x)u(x))
ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

=

∫
R

∫
R

(A(y)u(x)(ΩD,`(y, x)− ΩD(y, x)))
ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

+

∫
R

∫
R

(A`(y)u`(x)− A(y)u(x)) ΩD,`(y, x)
ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|
.

(4.18)

The first term on the right-hand side of (4.18) converges to zero as ` → ∞. This follows
from the weak convergence of ΩD,` ⇀ ΩD in L2(

∧1
odR), the fact that ΩD,`−ΩD is supported
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on D × D, and that A(y)u(x)d 1
2
ψ(x, y)χD(x)χD(y) ∈ L2(

∧1
odR) (the easy verification of

the latter is left to the reader).

As for the second term on the right-hand side of (4.18) we begin with the observation that∫
R

∫
R

(A`(y)u`(x)− A(y)u(x)) ΩD,`(y, x)
ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

=

∫
R

∫
R

(A`(y)− A(y))u`(x)ΩD,`(y, x)
ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

+

∫
R

∫
R
A(y)(u`(x)− u(x))ΩD,`(y, x)

ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|
.

(4.19)

To estimate the first term of the right-hand side of (4.19) we first note that the support of
ΩD,` is D ×D and then we use Hölder’s inequality

lim
`→∞

∣∣∣∣∣
∫
R

∫
R
(A`(y)− A(y))u`(x)ΩD,`(y, x)

ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

∣∣∣∣∣
≤ lim

`→∞

∫
D

∫
D

|A`(y)− A(y)| |u`(x)| |ΩD,`(y, x)| |ψ(x)− ψ(y)|
|x− y| 12

dx dy

|x− y|
≤ lim

`→∞
‖A` − A‖L2(D)‖u`‖L2(D)‖ΩD,`‖L2(

∧1
od R)‖ψ‖Lip = 0.

(4.20)

Now we verify the convergence of the second term of the right-hand side of (4.19). Again
we use that the support of ΩD,` is D ×D and thus by the strong convergence in L2 of u`
on compact domains we have

lim
`→∞

∣∣∣∣∣
∫
R

∫
R
A(y)(u`(x)− u(x))ΩD,`(y, x)

ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

∣∣∣∣∣
≤ lim

`→∞

∫
D

∫
D

|A(y)(u`(x)− u(x))ΩD,`(y, x)| |ψ(x)− ψ(y)|
|x− y| 12

dx dy

|x− y|
- lim

`→∞
‖A‖L∞‖u` − u‖L2(D)‖ΩD,`‖L2(

∧1
od R)‖ψ‖Lip = 0.

(4.21)

We also claim that

(4.22) lim
`→∞

∫
R

∫
R

(
d 1

2
A`(y, x)u`(x)− d 1

2
A(y, x)u(x)

) ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|
= 0.
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To verify this statement we divide the integral in two∫
R

∫
R

(
d 1

2
A`(y, x)u`(x)− d 1

2
A(y, x)u(x)

) ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

=

∫
R

∫
R
d 1

2
A`(y, x)(u`(x)− u(x))

ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

+

∫
R

∫
R
(d 1

2
A`(y, x)− d 1

2
A(y, x))u(x)

ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|
.

(4.23)

The second term on the right-hand side of (4.23) converges to zero as ` → ∞, because
d 1

2
A ⇀ d 1

2
A weakly in L2(

∧1
odR) and u(x)d 1

2
ψ(x, y) ∈ L2(

∧1
odR).

We verify the convergence of the first term on the right-hand side of (4.23). First we note
that by the strong convergence of u` in L2 on compact domains we have

lim
`→∞

∫
B(R)

∫
B(R)

d 1
2
A`(y, x)(u`(x)− u(x))

ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|
≤ ‖u` − u‖L2(B(R))‖ψ‖Lip [A`]W

1
2 ,2(R)

= 0

(4.24)

and

lim
`→∞

∫
R\B(R)

∫
B(R)

d 1
2
A`(y, x)(u`(x)− u(x))

ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

- lim
`→∞
‖u` − u‖L2(B(R))[A`]W

1
2 ,2(R)

‖ψ‖L∞
(∫

R\B(R)

1

1 + |y|2
dy

) 1
2

= 0.

(4.25)

Finally, we have since suppψ ⊂ D1 ⊂ B(R)

∫
B(R)

∫
R\B(R)

d 1
2
A`(y, x)(u`(x)− u(x))

ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

- [A`]W
1
2 ,2(R)

‖ψ‖L∞
(∫

R\B(R)

|u`(x)− u(x)|2

1 + |x|2
dx

) 1
2

- [A`]W
1
2 ,2(R)

‖ψ‖L∞‖u` − u‖L2+L∞(R) max

{(∫
R\B(R)

1

1 + |x|2
dx

) 1
2

,

(
1

1 +R2

) 1
2

}
- R−

1
2 [A`]W

1
2 ,2(R)

‖ψ‖L∞‖u` − u‖L2+L∞(R).

(4.26)

This gives

(4.27) lim
R→∞

sup
`

∣∣∣∣∣
∫
B(R)

∫
R\B(R)

d 1
2
A`(y, x)(u`(x)− u(x))

ψ(x)− ψ(y)

|x− y| 12
dx dy

|x− y|

∣∣∣∣∣ = 0.

Thus the convergence of the first term of (4.23) follows from (4.24), (4.25), and (4.27). We
proved (4.22).
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Now (4.15) follows from (4.16) combined with (4.17) and (4.22).

Step 3. We claim that

(4.28) div 1
2

(
ΩA
D

)∗
= 0.

That is, we claim that for any ϕ ∈ C∞c (R) we have

0 = lim
`→∞

∫
R

∫
R

(
ΩA`
D,`

)∗ ϕ(x)− ϕ(y)

|x− y| 12
dx dy

|x− y|
=

∫
R

∫
R

(
ΩA
D

)∗ ϕ(x)− ϕ(y)

|x− y| 12
dx dy

|x− y|
.

We write ∫
R

∫
R

(
ΩA`
D,`

)∗ ϕ(x)− ϕ(y)

|x− y| 12
dx dy

|x− y|
−
∫
R

∫
R

(
ΩA
D

)∗ ϕ(x)− ϕ(y)

|x− y| 12
dx dy

|x− y|

=

∫
R

∫
R

(A(y)ΩD(y, x)− A`(y)ΩD,`(y, x)) d 1
2
ϕ(x, y)

dx dy

|x− y|

+

∫
R

∫
R

(
d 1

2
A(y, x)− d 1

2
A`(y, x)

)
d 1

2
ϕ(x, y)

dx dy

|x− y|
.

(4.29)

As for the second term of (4.29) we observe that by weak convergence of d 1
2
A` in L2(

∧1
odR)

we have

lim
`→∞

∫
R

∫
R

(
d 1

2
A(y, x)− d 1

2
A`(y, x)

)
d 1

2
ϕ(x, y)

dx dy

|x− y|
= 0.

As for the first term of (4.29) we proceed exactly as in Step 1 and obtain

lim
`→∞

∫
R

∫
R

(A(y)ΩD(y, x)− A`(y)ΩD,`(y, x)) d 1
2
ϕ(x, y)

dx dy

|x− y|
= 0.

This finishes the proof of (4.28).

Step 4. We claim that (up to a subsequence)

(4.30) lim
`→∞

A`ΩDc,` · d 1
2
u`ψ =

∫
R
AΩDc · d 1

2
uψ,

where ΩDc = Ω−ΩD and Ω ∈ L2(
∧1
odR) is the one given in the assumptions of the theorem.

Indeed, since ΩDc,`(x, y) = 0 whenever both x, y ∈ D we have by the support of ψ,

∫
R
A`ΩDc,` · d 1

2
uψ =

∫
R

∫
R
(A`(x))ij(ΩDc,`)jk(x, y)

(
uk` (x)− uk` (y)

)
|x− y| 12

ψ(x)χ|x−y|≥dist (D1,∂D)
dx dy

|x− y|

=

∫
R

∫
R
(ΩDc,`)jk(x, y)(A`(x))ij

(
uk` (x)− uk` (y)

)
|x− y| 12

ψ(x)χ|x−y|≥dist (D1,∂D)
dx dy

|x− y|
.

(4.31)

We set

F`(x, y) := χ|x−y|≥dist (D1,∂D)
(u`(x)− u`(y))

|x− y| 12
A`(x)ψ(x)
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and

F (x, y) := χ|x−y|≥dist (D1,∂D)
(u(x)− u(y))

|x− y| 12
A(x)ψ(x).

We claim that we have the strong convergence

(4.32) lim
`→∞
‖F` − F‖L2(

∧1
od R) = 0.

Indeed, we have

∫
R

∫
R
|F`(x, y)− F (x, y)|2 dx dy

|x− y|

≤
∫
R

∫
D1

∣∣∣d 1
2
u`(x, y)A`(x)− d 1

2
u(x, y)A(x)

∣∣∣2 |ψ(x)|2χ|x−y|≥dist (D1,∂D)
dx dy

|x− y|

-
∫
R

∫
D1

∣∣∣d 1
2
u`(x, y)− d 1

2
u(x, y)

∣∣∣2 (|A(x)|2 + |A`(x)|2
)
|ψ(x)|2χ|x−y|≥dist (D1,∂D)

dx dy

|x− y|

+

∫
R

∫
D1

∣∣∣d 1
2
u(x, y)

∣∣∣2 |A`(x)− A(x)|2|ψ(x)|2χ|x−y|≥dist (D1,∂D)
dx dy

|x− y|
.

(4.33)

For the first term of the right-hand side of (4.33) we take R � 1, such that in particular

suppψ ⊂ D1 ⊂⊂ D ⊂ B(R) and estimate

∫
R

∫
D1

∣∣∣d 1
2
u`(x, y)− d 1

2
u(x, y)

∣∣∣2 (|A(x)|2 + |A`(x)|2
)
|ψ(x)|2χ|x−y|≥dist (D1,∂D)

dx dy

|x− y|

=

∫
R\B(R)

∫
D1

∣∣∣d 1
2
u`(x, y)− d 1

2
u(x, y)

∣∣∣2 (|A(x)|2 + |A`(x)|2
)
|ψ(x)|2χ|x−y|≥dist (D1,∂D)

dx dy

|x− y|

+

∫
B(R)

∫
D1

∣∣∣d 1
2
u`(x, y)− d 1

2
u(x, y)

∣∣∣2 (|A(x)|2 + |A`(x)|2
)
|ψ(x)|2χ|x−y|≥dist (D1,∂D)

dx dy

|x− y|
.

(4.34)

Now, for the second term of the right-hand side of (4.34) we have∫
B(R)

∫
D1

∣∣∣d 1
2
u`(x, y)− d 1

2
u(x, y)

∣∣∣2 (|A(x)|2 + |A`(x)|2
)
|ψ(x)|2χ|x−y|≥dist (D1,∂D)

dx dy

|x− y|

-
(
‖A‖2

L∞(D1) + ‖A`‖2
L∞(D1)

)
‖ψ‖2

L∞

∫
B(R)

∫
D1

|u`(x)− u(x)|2 + |u`(y)− u(y)|2

|x− y|2
dx dy

-
(
‖A‖2

L∞(D1) + ‖A`‖2
L∞(D1)

)
‖ψ‖2

L∞dist −2(D1, ∂D)

(∫
B(R)

∫
D1

|u`(x)− u(x)|2 dx dy

+

∫
B(R)

∫
D1

|u`(y)− u(y)|2 dx dy

)
≤ C(D1, D,R)

(
‖A‖2

L∞(D1) + ‖A`‖2
L∞(D1)

)
‖u` − u‖2

L2(B(R)).
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Thus, by the strong convergence on compact sets of u` in L2 we obtain
(4.35)

lim
`→∞

∫
B(R)

∫
D1

∣∣∣d 1
2
u`(x, y)− d 1

2
u(x, y)

∣∣∣2 (|A(x)|2 + |A`(x)|2
)
|ψ(x)|2χ|x−y|≥dist (D1,∂D)

dx dy

|x− y|
= 0.

Now we estimate the first term of the right-hand side of (4.34). We observe that for all
large R, whenever x ∈ suppψ and y 6∈ B(R), we have |x− y| % 1 + |y|. Therefore,∫

R\B(R)

∫
D1

∣∣∣d 1
2
u`(x, y)− d 1

2
u(x, y)

∣∣∣2 (|A(x)|2 + |A`(x)|2
)
|ψ(x)|2χ|x−y|≥dist (D1,∂D)

dx dy

|x− y|

-
(
‖A‖2

L∞(D1) + ‖A`‖2
L∞(D1)

)
‖ψ‖2

L∞

∫
R\B(R)

∫
D1

|u`(x)− u(x)|2 + |u`(y)− u(y)|2

1 + |y|2
dx dy

-
(
‖A‖2

L∞(D1) + ‖A`‖2
L∞(D1)

)
‖ψ‖2

L∞‖u` − u‖2
L2(D1)

∫
R\B(R)

1

1 + |y|2
dy

+
(
‖A‖2

L∞(D1) + ‖A`‖2
L∞(D1)

)
‖ψ‖2

L∞‖u` − u‖2
L2+L∞(R) max

{∫
R\B(R)

1

1 + |y|2
dy,

1

1 +R2

}
- R−1

(
‖A‖2

L∞(D1) + ‖A`‖2
L∞(D1)

)
‖ψ‖2

L∞‖u` − u‖2
L2+L∞(R).

Thus,
(4.36)

lim
R→∞

sup
`

∫
R\B(R)

∫
D1

∣∣∣d 1
2
u`(x, y)− d 1

2
u(x, y)

∣∣∣2 (|A(x)|2 + |A`(x)|2
)
|ψ(x)|2χ|x−y|≥dist (D1,∂D)

dx dy

|x− y|
= 0.

Combining (4.34) with (4.35) and (4.36) we obtain the convergence of the first term of the
right-hand side of (4.33)
(4.37)

lim
`→∞

∫
R

∫
D1

∣∣∣d 1
2
u`(x, y)− d 1

2
u(x, y)

∣∣∣2 (|A(x)|2 + |A`(x)|2
)
|ψ(x)|2χ|x−y|≥dist (D1,∂D)

dx dy

|x− y|
= 0.

As for the second term of the right-hand side of (4.33) we observe that since A` → A
pointwise almost everywhere, we have

lim
`→∞

∣∣∣d 1
2
u(x, y)

∣∣∣2 |A`(x)− A(x)|2|ψ(x)|2
χ|x−y|≥dist (D1,∂D)

|x− y|
= 0 pointwise a.e. in D1 × R.

Moreover, we have∣∣∣d 1
2
u(x, y)

∣∣∣2 |A`(x)− A(x)|2|ψ(x)|2χ|x−y|≥dist (D1,∂D)
1

|x− y|

-

(
sup
`
‖A`‖2

L∞ + ‖A‖2
L∞

) ∣∣∣d 1
2
u(x, y)

∣∣∣2 |ψ(x)|2χ|x−y|≥dist (D1,∂D)
1

|x− y|
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and the right-hand side is independent of ` and integrable. Thus, by dominated convergence
theorem we have

(4.38) lim
`→∞

∫
R

∫
D1

∣∣∣d 1
2
u(x, y)

∣∣∣2 |A`(x)− A(x)|2|ψ(x)|2χ|x−y|≥dist (D1,∂D)
dx dy

|x− y|
= 0.

Now, plugging (4.38) and (4.37) into (4.33) we establish (4.32).

Thus, (4.32) and a combination of the weak convergence of Ω`,Dc and the strong convergence
of F` implies

lim
`→∞

∫
R

Ω`,Dc(x, y)F`(x, y)
dx dy

|x− y|
=

∫
R

ΩDc(x, y)F (x, y)
dx dy

|x− y|
.

This establishes (4.30).

Step 5. We claim that

(4.39) lim
`→∞

f`[A`ψ] = f [Aψ].

Indeed, this holds because A`ψ is uniformly bounded in Ẇ
1
2
,2

, A`ψ converges weakly to
Aψ in Ẇ

1
2
,2, and by assumption f` → f in W− 1

2
,2.

Step 6. Passing to the limit.

Passing with `→∞ in (4.5), using (4.7), (4.15), (4.30), and (4.39), we obtain

(4.40)

∫
R
Ad 1

2
u · d 1

2
ψ =

∫
R

(
ΩA
D

)∗ · ud 1
2
ψ +

∫
R
AΩDc · d 1

2
uψ + f [Aψ].

By (4.15) we know that
(
ΩA
D

)∗
is 1

2
-divergence free and thus by Lemma 2.1 we have∫

R

(
ΩA
D

)∗ · ud 1
2
ψ =

∫
R

ΩA
D · d 1

2
uψ,

which combined with (4.40) and formulas ΩA
D = AΩD − d 1

2
A and ΩDc = Ω− ΩD gives

(4.41)

∫
R
Ad 1

2
u · d 1

2
ψ =

∫
R

ΩA · d 1
2
uψ + f [Aψ].

This holds for any ψ ∈ C∞c (D1). By density we can invoke Lemma 4.1, which leads to the
claim. �

Corollary 4.3. Let u`, Ω`, and f` be as in Theorem 1.3. Let D ⊂ R. Then there exits a
locally finite Σ ⊂ D such that

(−∆)
1
2u = Ω · d 1

2
u+ f in D \ Σ.

Proof. We follow in spirit the covering argument of Sacks–Uhlenbeck [30, Proposition 4.3
& Theorem 4.4].
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By assumptions there is a number Λ > 0 such that sup`∈N ‖Ω`‖L2(
∧1
od R) < Λ.

Let α ∈ N and let Bα := {B(xi,α, 2
−α) : xi,α ∈ D} be a family of balls such that D ⊂

⋃
Bα

and each point x ∈ D is covered at most λ times, and such that for a smaller radius we
still have D ⊂

⋃
iB(xi,α, 2

−α−1). Then∑
i

∫
B(xi,α,2−α)

∫
R
|Ω`(x, y)|2 dx dy

|x− y|
< Λλ.

Now, let σ > 0 be the number from Theorem 1.1, then there exists at most Λλ
σ

balls in Bα
on which ∫

B(xi,α,2−α)

∫
R
|Ω`(x, y)|2 dx dy

|x− y|
> σ.

Thus, by Proposition 4.2, we obtain that except for K < Λλ
σ

+ 1 balls from Bα we have

(4.42)

∫
R
d 1

2
u · d 1

2
ϕi =

∫
R

Ω · d 1
2
uϕi + f [ϕi] for all ϕi ∈ C∞c (B(xi,α, 2

−α−1)).

Let us denote those balls by B(yi,α, 2
−α) for i = 1, . . . , K. Then by (4.42) we get

(4.43)

∫
R
d 1

2
u · d 1

2
ψ =

∫
R

Ω · d 1
2
uψ + f [ψ], for all ψ ∈ C∞c (D \

⋃
i≤K

B(yi,α, 2
−α−1)).

Since
⋃
α∈N

(
D \

⋃K
i=1B(yi,α, 2

−α−1)
)

= D\{x1, . . . , xK}, (4.43) holds for any ψ ∈ C∞c (D\
Σ), where Σ := {x1, . . . , xK}. This gives the claim. �

In order to conclude we will need a removability of singularities lemma, compare with [18,
Proposition 4.7].

Lemma 4.4. Let u ∈ Ẇ 1
2
,2(R,RN), f ∈ L1(R,RN), and g ∈ W− 1

2
,2(R). Assume that for

some locally finite set Σ ⊂ D we have

(−∆)
1
2u = f + g in D \ Σ.

Then
(−∆)

1
2u = f + g in D.

Proof. For simplicity of presentation let us assume that Σ = {x0}. By definition we have
for any ϕ ∈ C∞c (D \ {x0})∫

D

∫
D

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|2
dx dy =

∫
D

f(x)ϕ(x) dx+ g[ϕ].

Let {ζ`}`∈N ⊂ C∞c (D, [0, 1]) be the sequence from Lemma D.1, i.e., such that for all ` ∈ N
we have

(4.44) ζ` ≡ 1 on Bρ`(x0), ζ` ≡ 0 outside BR`(x0), and lim
`→∞

[ζ`]W
1
2 ,2(D)

= 0

for a 0 < ρ` < R` → 0 as `→∞.
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Now let ψ ∈ C∞c (D) and then ψ` := ψ(1−ζ`) ∈ C∞c (Σ\{x0}) is an admissible test function
and we have

(4.45)

∫
D

∫
D

(u(x)− u(y))(ψ(x)− ψ(y))

|x− y|2
dx dy−I` =

∫
D

f(x)ψ(x) dx+g[ψ]−II`−III`.

We have

I` :=

∫
D

∫
D

(u(x)− u(y))(ψ(x)ζ`(x)− ψ(y)ζ`(y))

|x− y|2
dx dy

=

∫
D

∫
D

(u(x)− u(y))ψ(x)(ζ`(x)− ζ`(y))

|x− y|2
dx dy

+

∫
D

∫
D

(u(x)− u(y))(ψ(x)− ψ(y))ζ`(y)

|x− y|2
dx dy

≤ ‖ψ‖L∞(D)[u]
W

1
2 ,2(D)

[ζ`]W
1
2 ,2(D)

+

∫
BR`

∫
D

|u(x)− u(y)||ψ(x)− ψ(y)|
|x− y|2

dx dy.

(4.46)

Thus, by (4.44) and by the absolute continuity of the integral we have lim`→∞ I` = 0.

Secondly,

(4.47) II` :=

∫
D

f(x)ψ(x)ζ`(x) dx ≤ ‖ψ‖L∞
∫
BR`

|f(x)| dx `→∞−−−→ 0,

by the absolute continuity of the integral.

Thus, passing with `→∞ in (4.45) we get for any ψ ∈ C∞c (D)∫
D

∫
D

(u(x)− u(y))(ψ(x)− ψ(y))

|x− y|2
dx dy =

∫
D

f(x)ψ(x) dx.

Lastly,

III` := g[ψ ζ`]
`→∞−−−→ 0,

because, by (4.44), we have [ψ ζ`]W
1
2 ,2

`→∞−−−→ 0.

This finishes the proof.

�

Proof of Theorem 1.3. Combining Corollary 4.3 and Lemma 4.4 we obtain the claim. �

Appendix A. Nonlocal Hodge decomposition

Lemma A.1. Let p > 1, s ∈ (0, 1), G ∈ Lp(
∧1
odRn) then there exists a decomposition1

G = dsa+B,

1The decomposition is unique if we normalize a
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where a ∈ Ẇ s,p(Rn) and B ∈ Lp(
∧1
odRn) with divsB = 0. Moreover,

(A.1) ‖B‖Lp(
∧1
od Rn) + [a]W s,p(Rn) - ‖G‖Lp(

∧1
od Rn).

Proof. Since G ∈ Lp(
∧1
odRn) we have divsG ∈

(
W s,p′(Rn)

)∗
, namely

divsG[ϕ] - ‖G‖Lp(
∧1
od Rn) [ϕ]W s,p′ (Rn).

Recall that for 0 < s < 1 and 1 ≤ p < ∞ we have Ẇ s,p(Rn) = Ḟ s
p,p(Rn) [34, 2.3.5].

Moreover, divsG ∈ Ḟ−sp,p , since (−∆)−s : Ḟ s
p,p(Rn) → Ḟ−sp,p (Rn) is an isomorphism [29,

§2.6.2, Proposition 2, p.95]. In particular, there is a unique unique solution a ∈ Ḟ s
p,p(Rn)

to the distributional equation

(−∆)sa = divsG.

with

[a]Ḟ sp,p(Rn) - [divsG]F−s
p′,p′ (R

n) - ‖G‖Lp(
∧1
od Rn).

We have found a ∈ Ḟ s
p,p(Rn) = Ẇ s,p(Rn), and we have∫

Rn
dsa · dsϕ =

∫
Rn
Fϕ ∀ϕ ∈ C∞c (Rn).

The uniqueness of a up to a normalization assumption would follow by considering a
difference of two solutions and an application of nonlocal Liouville theorem [11, Theorem
1.1].

Now define B := G− dsa. We have

divsB = divsG− divs(dsa) = divsG− (−∆)sa = 0,

which finishes the proof. �

Appendix B. Localization

The next Proposition follows from a relatively straight-forward localization results, see,
e.g., [19].

Proposition B.1. Assume D1 ⊂⊂ D2 ⊂⊂ D′ ⊆ D ⊆ R open intervals and let u ∈
L1(R,RN) + L∞(R,RN) ∩ Ẇ 1

2
,2(D,RN) be a solution to

(−∆)
1
2
Du = Ω ·D d 1

2
u+ f in D′.

That is, assume∫
D

∫
D

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|2
dx dy

=

∫
D

∫
D

Ω(x, y)d 1
2
u(x, y)ϕ(x)

dx dy

|x− y|
+

∫
D

fϕ, ∀ϕ ∈ C∞c (D′).

(B.1)
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Let η ∈ C∞c (D1) and set v := ηu and Ω̃ij(x, y) = χD2(x)χD2(y)Ωij(x, y). Then

(−∆)
1
2v = Ω̃ · d 1

2
v + ηf + G(u, ·) in R,

where G is a bilinear form with the following estimates for any s ∈ (0, 1
2
) and ε > 0

|G(u, ϕ)| ≤ C(η, s, ε,D1, D2)
(

1 + ‖Ω‖L2(
∧1
odD)

)
·
(
‖u‖L2(D)+L∞(D) + [u]W s,2(D2)

)
·
(
‖ϕ‖L2(D)+L∞(D) + ‖ϕ‖

L
1
s (D2)

+ ‖ϕ‖L1+L∞(R) + [ϕ]
W
ε, 2

2s+1 (D2)

)
.

In particular we have

‖Ω̃‖L2(
∧1
od R) ≤ ‖Ω‖L2(

∧1
odD2).

Proof. Let ϕ ∈ C∞c (R). We have

(η(x)u(x)− η(y)u(y)) (ϕ(x)− ϕ(y))

= (u(x)− u(y))(η(x)ϕ(x)− η(y)ϕ(y)) + (η(x)− η(y)) (u(y)ϕ(x)− u(x)ϕ(y)) .

Since ηϕ ∈ C∞c (D′) it is an admissible test function and we have from the equation (B.1)∫
D

∫
D

(v(x)− v(y))(ϕ(x)− ϕ(y))

|x− y|2
dx dy

=

∫
D

∫
D

Ω(x, y)d 1
2
u(x, y)η(x)ϕ(x)

dx dy

|x− y|
+

∫
R
fηϕ+ G1(u, ϕ).

Here,

G1(u, ϕ) =

∫
D

∫
D

(η(x)− η(y)) (u(y)ϕ(x)− u(x)ϕ(y))

|x− y|2
dx dy.

Moreover, we have∫
R

∫
R

(v(x)− v(y))(ϕ(x)− ϕ(y))

|x− y|2
dx dy

=

∫
D

∫
D

(v(x)− v(y))(ϕ(x)− ϕ(y))

|x− y|2
dx dy + G2(u, ϕ),

where, because supp v ⊂ D1,

G2(u, ϕ) = 2

∫
D1

v(x)

∫
R\D

(ϕ(x)− ϕ(y))

|x− y|2
dy dx.

That is we have∫
R

∫
R

(v(x)− v(y))(ϕ(x)− ϕ(y))

|x− y|2
dx dy

=

∫
D

∫
D

Ω(x, y)d 1
2
u(x, y)η(x)ϕ(x)

dx dy

|x− y|
+

∫
R
fηϕ+ G1(u, ϕ) + G2(u, ϕ).
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Furthermore, since

d 1
2
u(x, y)η(x) = d 1

2
(ηu)(x, y)− u(y)d 1

2
η(x, y)

and supp v ⊂ D1, we have∫
D

∫
D

Ω(x, y)d 1
2
u(x, y)η(x)ϕ(x)

dx dy

|x− y|

=

∫
D

∫
D

Ω(x, y)d 1
2
v(x, y)ϕ(x)

dx dy

|x− y|
−
∫
D

∫
D

Ω(x, y)u(y)d 1
2
η(x, y)ϕ(x)

dx dy

|x− y|

=

∫
R

∫
R
χD2(x)χD2(y)Ω(x, y)d 1

2
v(x, y)ϕ(x)

dx dy

|x− y|

+

∫
D\D2

∫
D2

Ω(x, y)d 1
2
v(x, y)ϕ(x)

dx dy

|x− y|

+

∫
D2

∫
D\D2

Ω(x, y)d 1
2
v(x, y)ϕ(x)

dx dy

|x− y|

−
∫
D

∫
D

Ω(x, y)u(y)d 1
2
η(x, y)ϕ(x)

dx dy

|x− y|
.

So if we set

G3(u, ϕ) :=

∫
D\D2

∫
D2

Ω(x, y)d 1
2
v(x, y)ϕ(x)

dx dy

|x− y|
+

∫
D2

∫
D\D2

Ω(x, y)d 1
2
v(x, y)ϕ(x)

dx dy

|x− y|

and

G4(u, ϕ) := −
∫
D

∫
D

Ω(x, y)u(y)d 1
2
η(x, y)ϕ(x)

dx dy

|x− y|
,

then we have shown for any ϕ ∈ C∞c (R),∫
R

∫
R

(v(x)− v(y))(ϕ(x)− ϕ(y))

|x− y|2
dx dy =

∫
R

Ω̃ · d 1
2
v ϕ+

∫
R
fηϕ+

4∑
i=1

Gi(u, ϕ).

It remains to estimate each Gi(u, ϕ).

Estimate of G1: By the support of η we have

G1(u, ϕ) =

∫
D2

∫
D2

(η(x)− η(y)) (u(y)ϕ(x)− u(x)ϕ(y))

|x− y|2
dx dy

+ 2

∫
D1

∫
D\D2

(η(x)− η(y)) (u(y)ϕ(x)− u(x)ϕ(y))

|x− y|2
dx dy.

(B.2)
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As for the first term we have

∫
D2

∫
D2

(η(x)− η(y)) (u(y)ϕ(x)− u(x)ϕ(y))

|x− y|2
dx dy

≤ ‖η‖Lip

∫
D2

∫
D2

|u(y)ϕ(x)− u(x)ϕ(y)|
|x− y|

dx dy

- ‖η‖Lip

(∫
D2

|u(y)|
∫
D2

|ϕ(x)− ϕ(y)|
|x− y|

dx dy +

∫
D2

|ϕ(y)|
∫
D2

|u(x)− u(y)|
|x− y|

dx dy

)
- ‖η‖Lip

∫
D2

|u(y)− (u)D2|
∫
D2

|ϕ(x)− ϕ(y)|
|x− y|

dx dy

+ ‖η‖Lip ‖u‖L1(D2)

∫
D2

∫
D2

|ϕ(x)− ϕ(y)|
|x− y|

dx dy

+ ‖η‖Lip

∫
D2

|ϕ(y)|
∫
D2

|u(x)− u(y)|
|x− y|

dx dy.

(B.3)

We observe that for any p ∈ (1,∞) and any ε > 0 we have∫
D2

(∫
D2

|ϕ(x)− ϕ(y)|
|x− y|

dx

)p
dy =

∫
D2

(∫
D2

|ϕ(x)− ϕ(y)|
|x− y|ε

|x− y|ε dx

|x− y|

)p
dy

- [ϕ]W ε,p(D2) sup
y∈D2

(∫
D2

|x− y|εp′ dx

|x− y|

) p
p′

- C(D2)[ϕ]W ε,p(D2).

Thus, for any ε > 0 and any s ∈ (0, 1
2
) we have∫

D2

|u(y)− (u)D2|
∫
D2

|ϕ(x)− ϕ(y)|
|x− y|

dx dy + ‖u‖L1(D2)

∫
D2

∫
D2

|ϕ(x)− ϕ(y)|
|x− y|

dx dy

- C(D2)
(
‖u− (u)D2‖L 2

1−2s (D2)
[ϕ]

W
ε, 2

2s+1 (D2)
+ ‖u‖L1(D2)[ϕ]

W
ε, 2

2s+1 (D2)

)
.

(B.4)

We also have

(B.5)

∫
D2

|ϕ(y)|
∫
D2

|u(x)− u(y)|
|x− y|

dx dy - ‖ϕ‖L2(D2) [u]W s,2(D2).

Combining (B.3) with (B.4) (in which we use Poincarè inequality) and (B.5) we obtain∫
D2

∫
D2

(η(x)− η(y)) (u(y)ϕ(x)− u(x)ϕ(y))

|x− y|2
dx dy

- ‖η‖Lip

(
‖u‖L1(D2) + [u]W s,2(D2)

) (
‖ϕ‖L2(D2) + [ϕ]

W
ε, 2

2s+1 (D2)

)
.

(B.6)
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For the second term of (B.2) observe that for x ∈ D1 and y ∈ D\D2 we have |x−y| ≈ 1+|y|,
so we have

2

∣∣∣∣∫
D1

∫
D\D2

(η(x)− η(y)) (u(y)ϕ(x)− u(x)ϕ(y))

|x− y|2
dy dx

∣∣∣∣
- ‖η‖L∞

∣∣∣∣∫
D1

∫
D\D2

|u(y)| |ϕ(x)|+ |u(x)| |ϕ(y)|
1 + |y|2

dy dx

∣∣∣∣
- ‖η‖L∞‖u‖L1+L∞(D) ‖ϕ‖L1+L∞(D).

(B.7)

Thus, by (B.2), (B.6), and (B.7) we get

(B.8) |G1(u, ϕ)| -
(
‖u‖L1+L∞(D) + [u]W s,2(D2)

) (
‖ϕ‖L2+L∞(D) + [ϕ]

W
ε, 2

2s+1 (D2)

)
.

Estimate of G2: Similarly as in (B.7), if x ∈ D1 and y ∈ R \D we have |x − y| ≈ 1 + |y|,
and thus

|G2(u, ϕ)| - ‖ηu‖L2(D)

(
‖ϕ‖L2(D1) + ‖ϕ‖L1+L∞(R)

)
- ‖u‖L2(D1)

(
‖ϕ‖L2+L∞(D) + ‖ϕ‖L1+L∞(R)

)
.

Estimate of G3: Using the support of v, observing again that |x− y| % 1 + |y| if y ∈ R \D2

and x ∈ D1 we get

|G3(u, ϕ)|

- ‖Ω‖L2(
∧1
odD)

(∫
D\D2

∫
D1

|u(x)|2 |ϕ(x)|2 dx dy

1 + |y|2
+

∫
D1

∫
D\D2

|u(y)|2|ϕ(x)|2 dx dy

1 + |x|2

) 1
2

- ‖Ω‖L2(
∧1
odD)

(
‖uϕ‖L2(D1) + ‖ϕ‖L2+L∞(D) ‖u‖L2(D1)

)
- ‖Ω‖L2(

∧1
odD)

(
‖u‖L1(D1)‖ϕ‖L2(D1) + ‖u− (u)D1‖L 2

1−2s (D1)
‖ϕ‖

L
1
s (D1)

+ ‖ϕ‖L2+L∞(D) ‖u‖L2(D1)

)
- ‖Ω‖L2(

∧1
odD)

(
‖u‖L1(D1)‖ϕ‖L2(D1) + [u]W s,2(D1) ‖ϕ‖L 1

s (D1)
+ ‖ϕ‖L2+L∞(D) ‖u‖L2(D1)

)
- ‖Ω‖L2(

∧1
odD)

(
‖u‖L2(D1) + [u]W s,2(D1)

) (
‖ϕ‖

L
1
s (D1)

+ ‖ϕ‖L2+L∞(D)

)
.

This argument works for any s ∈ (0, 1
2
).

Estimate of G4: We have

|G4(u, ϕ)| - ‖Ω‖L2(
∧1
odD)

(∫
D

∫
D

|u(y)d 1
2
η(x, y)ϕ(x)|2 dx dy

|x− y|

) 1
2

.

Now observe that |d 1
2
η(x, y)|2 ≤ ‖η‖2

Lip |x− y|, thus(∫
D

∫
D

|u(y)d 1
2
η(x, y)ϕ(x)|2 dx dy

|x− y|

) 1
2

- ‖u‖L2(D) ‖ϕ‖L2(D).
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On the other hand(∫
D

∫
D

|u(y)d 1
2
η(x, y)ϕ(x)|2 dx dy

|x− y|

) 1
2

- [η]
W

1
2 ,2
‖u‖L∞(D) ‖ϕ‖L∞(D).

We also have(∫
D

∫
D

|u(y)d 1
2
η(x, y)ϕ(x)|2 dx dy

|x− y|

) 1
2

- ‖u‖L∞(D) ‖ϕ‖L2(D) sup
x∈D

(∫
D

|η(x)− η(y)|2

|x− y|2
dy

) 1
2

and

sup
x∈D

(∫
D

|η(x)− η(y)|2

|x− y|2
dy

) 1
2

- ‖η‖Lip .

Thus combining the estimates on G4 we obtain

|G4(u, ϕ)| - ‖Ω‖L2(
∧1
odD)‖u‖L2+L∞(D)‖ϕ‖L2+L∞(D).

�

Appendix C. A Sobolev inequality

Theorem C.1. Let s ∈ (0, 1), p, q ∈ (1,∞) and f ∈ Lp(Rn) then

(1)

[f ]Ḟ sp,q(Rn) - [f ]W s
p,q(Rn);

(2) if p > nq
n+sq

then

[f ]W s
p,q(Rn) - [f ]Ḟ sp,q(Rn).

The constants depend on s, p, q, n and are otherwise uniform.

While characterizations such as Theorem C.1 are well-known for Besov spaces, for Triebel
spaces this seems to have been known only for q = p (where it follows from the Besov-space
characterization), q = 2 where it is a result due to Stein and Fefferman, [33, 12]. It was also
known “for large s” [34, Section 2.5.10]. Although a conjecture that Theorem C.1 holds is
very natural, quite surprisingly, to the best of our knowledge, the first time Theorem C.1
has been proven was recently by Prats and Saksman [26, Theorem 1.2] (see also [25] for
further development), but see also [32, 35].

Corollary C.2. Let s ∈ (0, 1), t ∈ (s, 1) and p, p∗ ∈ (1,∞) where

(C.1) s− n

p∗
= t− n

p
.

If q ∈ (1,∞) such that p∗ > nq
n+sq

we have

‖|Ds,qf |‖Lp∗ (Rn) - ‖(−∆)
t
2f‖Lp(Rn).
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More precisely, in terms of Lorentz spaces we have for any r ∈ [1,∞],

‖|Ds,qf |‖L(p∗,r)(Rn) - ‖(−∆)
t
2f‖L(p,r)(Rn).

Proof. From Theorem C.1 we have

‖|Ds,qf |‖Lp∗ (Rn) ≈ [f ]F s
p∗,q(R

n).

We recall the Sobolev-embedding theorem for Triebel-Lizorkin spaces Ḟ t
p,q̃ ↪→ Ḟ s

p∗,q for any
q, q̃ ∈ (1,∞) and s, t, p, p∗ satisfying (C.1) (see, e.g., [34, Theorem 2.7.1 (ii)]). Thus,

‖|Ds,qf |‖Lp∗ (Rn) - [f ]F tp,2(Rn) - ‖(−∆)
t
2f‖Lp(Rn).

As for the Lorentz-space estimate we can argue by real interpolation. Indeed, fix s, q, p, p∗.
Observe that f 7→ |Ds,qf | is a sublinear operator.We can find p1 < p < p2 such that p1 and
p2 are still admissible, and thus we have

‖|Ds,qf |‖Lp∗i (Rn)
- [f ]F tp,2(Rn) - ‖(−∆)

t
2f‖Lpi (Rn) i = 1, 2.

From real interpolation we now obtain the Lorentz space claim. �

Appendix D. A sequence of cut-off functions in the critical Sobolev
space

For readers convenience we present here a proof of a well known result, which essentially
says that in the critical Sobolev space a point has zero capacity. See for example [1,
Theorem 5.1.9], compare also with a similar construction [23, Lemma 3.2].

Lemma D.1. There exists a sequence of functions with the following properties:

{ζ`}`∈N ⊂ C∞c (R, [0, 1]) and for all ` ∈ N we have

(D.1) ζ` ≡ 1 on Bρ`(x0), ζ` ≡ 0 outside BR`(x0), and lim
`→∞

[ζ`]W
1
2 ,2(R)

= 0

for a sequence of radii 0 < ρ` < R` → 0 as `→∞.

Proof. Let f(x) = log log
(

1 + 1
|x|2

)
∈ W 1,2(B2

1 ,R) be an unbounded function. We define

Z̃k(x) :=

 1 if f(x) ≥ k + 1,
f(x)− k if k ≤ f(x) ≤ k + 1,
0 if f(x) < k.

Then,

∇Z̃k(x) :=

 0 if f(x) ≥ k + 1,
∇f(x) if k ≤ f(x) ≤ k + 1,
0 if f(x) < k.

The support of ∇Z̃k is the set

Bk :=
{
x ∈ B2

1 : Ak+1 ≤ |x| ≤ Ak
}
,
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where

Ak =

√
1

eek − 1
, Ak+1 ≤ Ak, and lim

k→∞
Ak = 0.

Now, ∫
B1

|∇Z̃k|2 dx =

∫
Ak+1≤|x|≤Ak

|∇Z̃k|2 dx
k→∞−−−→ 0,

which follows from the fact that ∇Z̃k ∈ L2(B2
1) and that |{x ∈ B2

1 : Ak+1 ≤ |x| ≤ Ak}|
shrinks to zero.

Thus, we obtained a sequence of functions for which

Z̃k ≡ 1 on BAk+1
, Z̃k ≡ 0 outside BAk , and lim

k→∞
‖∇Z̃k‖L2(B2

1) = 0.

By extending by zero we obtain a sequence Zk ∈ W 1,2(R2
+) with the properties

(D.2) Zk ≡ 1 on BAk+1
, Zk ≡ 0 outside BAk , and lim

k→∞
‖∇Zk‖L2(R2

+) = 0.

Defining now ζk := Zk
∣∣
R in the trace sense we obtain by the trace inequality, [13]

[ζk]W
1
2 ,2(R)

- ‖∇Zk‖L2(R2
+)

k→∞−−−→ 0.

Approximating {ζk}k∈N by smooth functions we obtain the desired sequence. �
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