A FRACTIONAL VERSION OF RIVIERE’S GL(N)-GAUGE

FRANCESCA DA LIO, KATARZYNA MAZOWIECKA, AND ARMIN SCHIKORRA

ABSTRACT. We prove that for antisymmetric vectorfield 2 with small L2-norm there
exists a gauge A € L™ N WY22(R', GL(N)) such that

div%(AQ — d%A) =0.
This extends a celebrated theorem by Riviere to the nonlocal case and provides conser-

vation laws for a class of nonlocal equations with antisymmetric potentials, as well as
stability under weak convergence.
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1. INTRODUCTION
In the celebrated work [27] Riviere showed that for two-dimensional disks D C R? for any

Qe L*(D,so(N) ® /\1 R?), ie., Q; =
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—Qji € L*(D, \' R?) there exists a GL(N)-gauge,
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namely a matrix-valued function A, A=t € L N W2?(D, GL(N)) such that
div(AQ2 — VA) = 0.
These are distortions of the orthonormal Uhlenbeck’s Coulomb gauges, [36], namely P €
L>®NWH2(D, SO(N)) which satisfy
div(PQP' — P'VP) = 0.

As Riviere showed in [27], the GL(N)-gauges have the advantage that they can transform
equations of the form

(1.1) —Au=Q-Vu
into a conservation law
div(AVu) = div((VA — AQ)u).
This is important since (1.1) is the structure of the equation for harmonic maps, H-surfaces,
and more generally the Euler-Lagrange equations of a large class of conformally invariant

variational functionals. The GL(N)-gauge transform allows for regularity theory and the
study of weak convergence [27], it also is an important tool for energy quantization, see

[16].

In recent years a theory of fractional harmonic maps has developed, beginning with the

work by Riviere and the first named author, [10, 9]. bubbling analysis was initiated in [0].
Fractional harmonic maps have a variety of applications: they appear as free boundary
of minimal surfaces or harmonic maps [24, 21, 31, &], they are also related to nonlocal
minimal surfaces [22] and to knot energies [2,

We recall that in [10] the first named author and Riviere considered nonlocal Schédinger
type systems of the form

(1.2) (~A)iv=Quv  in D'(R),

where ) is an antisymmetric potential in L*(R, so(N)), v € L?(R, RY). The main technique
to establish the sub-criticality of systems (1.2) is to perform a change of gauge by rewriting
them after having multiplied v by a well chosen rotation valued map P € W%%(R, SO(N))
which is "integrating” €2 in an optimal way. The key point in [10, 9] was the discovery of
particular algebraic structures (three-term commutators) that play the role of the Jacobians
in the case of local systems in 2-D with an antisymmetric potential and that enjoy suitable
integrability by compensations properties. In [17] the second and the third named authors
introduced a new approach to fractional harmonic maps by considering nonlocal systems
with an antisymmetric potential which is seen itself as a nonlocal operator. As we will
explain later such an approach is similar in the spirit to that introduced by Hélein in [15]
in the context of harmonic maps.

It begins with the definition of “nonlocal one forms”. F € LP(\',R") if F : R" x R* — R

and drd
/ / F(z,y)|Pf — Ty < 00.
n Jro |z —y["
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The s-differential, which takes function v : R®™ — R into 1-forms, is then given by

dou(z,y) = u(@) —uly)
|z —yl*
The scalar product for two 1-forms, F € LP(\l,R™) and G € L¥ (AL, R") is then given by
dy
F-G(z) :/ F(%?J)G(%y)m-

The fractional divergence divy, which takes 1-forms into functions, is then the formal
adjoint to d,, namely

divs Flp] = / F-dsp Voe CrR").

For more details we refer to Section 2. With this notation in mind we now consider
equations of the form
(1.3) divé(d;u):Q-d%u in R,

2

or in index form

N
divy (dsu') = > oy diw/ inR, i=1,.,N,

j=1
where u € (L? + L) N W%’2(R7 RY) and Q;; = —€; € LQ(/\id R).

The main observation in [17] is that the above notation and the above equation are not
merely some random definitions of only analytical interest. Rather it was shown that
the role of (1.3) for fractional harmonic maps is similar to the role of (1.1) for harmonic
maps. In [17] it was shown that there exists a div — curl Lemma in the spirit of [5], that
fractional harmonic maps into spheres satisfy a conservation law in the spirit of [15], and
that fractional harmonic maps into spheres essentially satisfy equations of the form (1.3), in
the spirit of [27], and that an analogue of Uhlenbeck’s gauge exist. In [20] this argument was
further pushed to equations of stationary harmonic map in higher dimensional domains.

We mention that in [7] the authors found quasi conservation laws for nonlocal Schrédinger
type systems of the form

(1.4) (=AY = Qu + g(x)

where v € L%(R), Q € L*(R, so(N)), and g is a tempered distribution. As we have already
pointed out above systems (1.4) represent a particular case of systems (1.3) studied in
the present paper in the sense that the antisymmetric potential 2 in (1.4) is a pointwise
function. The conservation laws found in [7] are a consequence of a stability property
of some three-term commutators by the multiplication of P € SO(N) and also of the
regularity results obtained previously for such commutators. The reformulation of (1.4) in
terms of conservation laws has permitted to get the quantization in the neck regions of the
L? norms of the negative part of sequences of solutions to systems of the type (1.4).
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The conservation laws that we obtain in the current paper are more similar in the spirit to
those found in the paper [27] for harmonic maps and concern nonlocal systems (1.3) where
the antisymmetric potential acts in general as a nonlocal operator. We hope this technique
to be as useful for the question of concentration compactness and energy quantization for
systems as it was in the local case in [16], a question we will study in a future work.

Applying a gauge A € L N W22 to the equation (1.3) we find (see Lemma 4.1),
divy (Agdsut) = (Anggk —d; Aik> s,
Our main result is then the existence of the nonlocal analogue of Riviere’s G L(N)-Coulomb
gauge [27], namely we have
Theorem 1.1. There exists a number 0 < o < 1 such that the following holds.
If Q€ L*(A\L,R) is antisymmetric, i.e., Q; = —Qj; and satisfies
||Q||L2(/\;dR) <0,

then there exists an invertible matriz valued function A € L NW22(R, GL(N)) such that
for Q4 = AQ — d%A we have

divy (2%) = 0.
Moreover we have

(1.5) (Al 2y 21U 2nt, my (Al @) 21418 22z1 m)-

As an immediate corollary we obtain

Corollary 1.2 (Conservation law). Assume u € W22(R,RY) N (L% + L®)(R,RY) and
fe W z2(R,RY) satisfy

divé(d%u) =Q-diutf, in D'(R)

and € satisfies the condition of Theorem 1.1. Then there exists a matriz A such that for

04 = AQ — d%A we have
div, (Ad%u - (QA)*u> = Af, inD'(R),
where (Q)*(x,y) = Q4 (y, x).

Theorem 1.1 is applicable to the half-harmonic map system as derived [17, Proposition
4.2], because of a localization result, see Proposition B.1.

With the methods of Theorem 1.1 we obtain the analogue of [27, Theorem 1.5, our second
main result.
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Theorem 1.3. Assume € € LQ(/\(l)d R) is a sequence of antisymmetric vector fields, i.e.,
(Qj)e = —(Qi)e, weakly convergent in L* to an Q € L*(\.,R). Assume further that
fo € W™22(R,RN) converges strongly to f in W22, and assume that ug € (L2+ L*(R))N
W22(R,RY) is a sequence of solutions to

(1.6) (=2)2ug = Q- dyug + fo in D'(R)

such that sup, (Hug\|Lz+Loo(R) + [Ug]W%Q(R)) < o0o0. Then, up to taking a subsequence uy

converges weakly in W22(R,RN) to some u € W22(R,RY) N (L2 + L®)(R,RY)), which
15 a solution to

Here, as usual, we denote

o = inf — Aillzem) -
1224 oo ) fléEQ(R)(Hflﬂm(R)Jer fill =)

Theorem 1.3 will be proven in Section 4.
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2. PRELIMINARIES AND USEFUL TOOLS

We follow the notation of [17] for the nonlocal operators. For readers convenience we recall
it here. We write M(R") for the space of all functions f: R" — R measurable with respect
to the Lebesgue measure dz and M(A., R") for the space of vector fields F': R x R” — R

measurable with respect to the % measure, where “od” stands for “off diagonal”.

For two vector fields F, G € M(A’,R") the scalar product is defined as

F-G(x) = /n F(z,y) G(z,y) w

lz —y|™

For any p > 1 the natural LP-space on vector fields F': R" x R” — R is induced by the
norm

dx dy ’
Flloiat mny = / F(x,y)lP )
Flog,en = ([ [ 1F@ar 22
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and for D C R™ we define

dz dy ,
Pl = (/[ PP )"
L7 (Noa D) (DxR™)U(R" x D) |z —y|"

Let s € (0,1). For f: R" — R we let the s-gradient d,: M(R") — M(AL,R") to be
ity T = 1)

|z —yl*
Observe that with this notation we have

||dsf||LP(/\L1)an) = [flwer@n),

is the Gagliardo—Slobodeckij seminorm.

where

Let s € (0.1) and F € M(A,R"). We define the fractional s-divergence in the distribu-
tional way

dx dy

|z —y[™’

div, Flg] = / / F(z,y) dsp(z,y) p € CZ(R"),

whenever the integrals converge.

With this notation we have div, ds = (—A)?, i.e.,

[ s dawyar= o [ oy i@t dn

where the fractional Laplacian is defined as

(_A)Sf(x) — Cn PV f(:l:) _ f(y) dy

Reo o=yl e -y
A simple observation is the following
Lemma 2.1. Let F' € M(\L,R") then we define
Fi(z,y) = F(y,z).
If divy F =0 then div, F* = 0.
Moreover, for any F € M(A\.,R") and u € M(R™) we have

(2.1) divs(Fu(z)) = divs(F)u + F* - dgu
and
(2.2) divs(Fu(y)) = divg(F)u — F - dsu

whenever each term is well-defined.
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Proof. We have
F(z,y)u(z)(p(z) — p(y) = F(z,y)(u(z)o(x) —u(y)e(y)) — Fz,y)(u(z) — u(y))e(y).

Thus,
divs(Fu(x /n /n (z.9) |q:—y|(”+)5 (v)) dy dz
. / / () |x_< |>n+s u(we)) 4 g,

(2, 9)( u(y))e(y)
dy dz.
// y:c— yn+s yer
As for the latter term we have

_/ / F(z,y)(u(z) —u(y))e(y) dy dz
n n |$_ |n+s

(2.4) / / |x & (z) |:+Z(y))so(:v) dy dz
/n /n F*(z,y)( 5 _)y|n+s(y))so(fv) dy de.

Combining (2.3) with (2.4) we obtain (2.1). The proof of (2.2) is similar.

o= ([ fE5 A )

We will be using the following “Sobolev embedding” theorem.

We also denote

Theorem 2.2. Let s € (0,1), t € (s,1), and let p, p* > 1 satisfy
n n

§—— =t——

p p

M_  Then we have
+sq

)

(2.5) I Psqf | o ny T N(=2)2 fll oem)
and for any r € [1, 0]
(2.6) 11Ds,q f1 | Lo my mny S N(=A)2 fll o) () -

For the proof see Appendix C.

We will also need the following Wente’s inequality from [17].
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Lemma 2.3 ([17, Corollary 2.3]). Let s € (0,1), p > 1, and let p’ be the Holder conjugate
of p. Assume moreover that F' € LP(\L,R) and g € W*¥ (R) with divy F = 0. Let R be
a linear operator such that for some A > 0 satisfies

B[l < All(=A)7 ¢l L ),

where L@®)(R) denote the weak L* space. Then any distributional solution u € Wz2(R)
to

(—A)%u: F-dg+R mR

is continuous. Moreover if lim, 1 |u(z)| = 0, then we have the estimate

(2.7) [l ooy + Nl ull o pr, vy S NE N oar, my ldsgll o 1, my + A

Our proof will also be based on the following choice of a good gauge.

Theorem 2.4 ([17, Theorem 4.4]). For Q; = —Q; € L*(A\L,R) there exists P €
Wz (R, SO(N)) such that

divy QF =0 foralli,je{l,...,N},

zj:

where

0 = (4P, y) (P (5) + P(2) ~ P@)0e, ) P () — P2, )P (2)
and
2.9 Plybag 3 1200

3. PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1. We will be looking for an A in the form A = (/+¢)P,
where P is chosen to be the good gauge from Theorem 2.4. The idea to take perturbation
of rotations of the form (7+4¢)P has been taken from [25] in the context of local Schrédinger
equations with antisymmetric potentials. This has been also exploited in [7].

Lemma 3.1. Assume that A= (I +¢)P.
Then for

O(x,y) = 5 (dy Pla,y) (PT(y) + P' (@) = P@)Qay) P (y) = Py)2a,y) P (x))

NO| —

we have

A)Q(z,y) —diA(z,y) = —(I +e(2)) Q7 (2,y) P(y) — die(z,y) P(y) + Re(2,y),
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where R, s given by the formula
(o) = 0+ =) (44 P ) 4P o)
(3.1) = P(2)Q(z,y) (P (x) — P (y))

T (P(2) - P(y)) Qa.y) PT(x))Pw).

Proof. Recall that
di(f9)(x,y) = dy f(z,y) g(y) + f(x)d1g(z,y).
Thus, applying this to di((I +¢)P)(z,y) we get
(3.2)
A@)z,y) — dy Az, y)
= (I + (@) P(2)Qx,y) —dy (I +¢)P) (2,y)

= (I +¢(x)) (P(x (x,y) — dyP(x, y)) = die(z,y) P(y)

(I + (@) (dy Ple,y) P (y) = P(2) Qa,y) P'()) Ply) — dye(a,y) Ply).
Next we observe that
di P(z,y) P (y) — P(z) Qz,y) P*(y)

= % (dép(x,y) (PT(:(:) + PT(y)) — P(x) Q(z,y) PT(y) — P(y) Q(z,7) PT(J:)>

(3-3) 1 T T T T
— 5 (dsPla.y) (P"() = P"(y)) = P(a) Qa.y) (P" (@) = P* (1))

+ (P(2) = P(y)) Qx,y) P"(x)).

1
2

That is, plugging in (3.3) nto (3.2) we get the claim for
(o) = (1 + £(o)) (dy Pl dy P
~ P)Qey) (PT(x) — P (y)
+(Pa) = PO) ) P ) Pl

O

Lemma 3.2. Assume that we have ¢ € L°NWY?2(R), a € W/?2(R), and B € L*(\.,R)
satisfying the equations

(34)  —(I+e(@)Q"(w,y) Ply) — die(w,y) P(y) + Re(z,y) = dra(z,y) + Bz, y)
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and

(35) —divy (I +e(z) Q% (z,y)) — div, (dég(x,y)) + div%(Rs(xay)PT@))
= divé (B(l’,y)PT(y)) ;

with

(36) [P]W1/272(R) < 0.

Then, for sufficiently small o we have a = const.

Proof. We multiply (3.4) by P*(y) from the right and take the 3-divergence on both sides,
then subtracting (3.5) we obtain

(3.7) divé(d%a(a:,y)PT(y)) = 0.

We use nonlocal Hodge decompostion Lemma A.1 and get the existence of functions a €
W22(R), B € L2(A\!,R) such that

(3.5) dya(z, y)PT(y) = d
and (recall |P|=1)
(39) divy B=0 and 1Bl a3 Idsallzns ay

a(z,y) + B(x,y),

1
2

Thus, taking the 3-divergence in (3.8) we obtain
0 = divi(dia(z,y) P (y)) = divi(dia(z,y) + B(z,y)) = divi(d

N|=

i) = (—=A)3a.

1
2

1
This gives, (—A)%a = 0, thus a is constant and without loss of generality we can take
a =0, see also [11, Theorem 1.1]. Thus (3.8) becomes

dya(z,y)P" (y) = B(z,y).
That is

dia(x,y) = Bz, y)P(y).
Taking the %—divergence we obtain by Lemma 2.1
(3.10) (~A)2a=—B-diP,

since on the righ-hand side we have a div-curl term we can apply fractional Wente’s in-
equality, Lemma 2.3, and obtain from (2.7)

||d%a||L2(/\},dR) N ||B||L2(/\})dR)||d%P||L2(/\},dR)-
Combining this with (3.9) and (3.6) we get

HdgaHL'z(/\;dR) N U”d%auy(/\})dn&)?
which implies for sufficiently small o that

||d%a||L2(/\‘l)dR) == [CL]W1/2,2(R) =0
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and thus a = const. [l

Now we will focus on showing that there exists a solution to the equations (3.4) and (3.5).
We will do this by using the Banach fixed point theorem.

Proposition 3.3. Let Q € LA(A\L,R) be anitsymmetric. There is a number 0 < o < 1
such that the following holds:

Take P € W22(R, SO(N)) and QF € L*(\!,R) from Theorem 2.4. Let us assume that
(311) [P}WI/QQ(R) _|‘ ||Q||L2(/\(17dR) < 0.

Then, there exist ¢ € L NW'22(R), a € W'/?2(R), and B € L*(\';R) that solve the
equations

(3.12)
—(I +&(2)) Q7 (2,y)P(y)—dye(x,y) P(y) + Re(z,y) = dra(z,y) + B(z,y)
—div, (I +¢e(2)QF(z,y)) —divi(die(z,y)) + div%(RE(cc,y)PT(y)) = divy (BPT(y)),

where R, is defined in (3.1).

Moreover, € satisfies the estimate

(3.13) lellzoe@ + [y 320y S MM 22 (AL, -

We will need the following remainder terms estimates.

Lemma 3.4. We have the following estimates

divi (R-P(y))[¢]

(3.14)
1
3+ Hlelle) (192 a, my + Plwsrze@) [Pz [(-2) 1@l sam @
and
divy (R, — Re,)P' (y) [90])
(3.15) : ( )

1
i H51 - €2HL°°(R)(HQHL2(/\idR) + [P]Wl/w(R))[P]Wl/m(R) ‘|(_A>490HL(2700)(R)'
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Proof. We observe that for any ¢ € C2°(R) we have
(3.16)
)dm RSPT(w)[w]\

[—1—5 iP(l’ y)d PT(x, y)) d;cp(w,y)%
T dx dy
(I +&(x ( PT(x) - PT(y)) dw(xy)| _y|)‘
Qf+awﬂpu»—P@»fmmwfﬁ@>@w@wﬁfﬁj
iﬂﬂMWﬁAéO%P@wW%M%M+KMWM%HLWWw@wD£%%

= (14 |lg||le=) (Z+ZIT).

Let M be the Hardy-Littlewood maximal function and let o € (0,1). We will use the
following fractional counterpart (for the proof see [31, Proposition 6.6])

(3.17) (@) = FW) 3 |z = y1* (M((=2)% f)(@) + M((=2)% f)(y))

of the well known inequality, see [/, 4]

(@) = F)l 2 o =yl MV fI(2) + MIV ()
We begin with the estimate of the first term on the right-hand side of (3.16).

We observe that by (3.17) and by the symmetry of the integrals we obtain

3 18
dzd dy dzx
//wﬁwy Fldyele. )] ;N/M4 \/umxwfy

[z =yl
Applying Holder’s inequality (for Lorentz spaces) we obtain
1 dy dx 1
[ MU= 0)@) [ 1y PP 318 el Dy PPl
3.19 R R |z — y| i

1
= [(=8)i¢ll pee D1 5 Plll7e2,

where we used the notation from Section 2: for s € (0,1) and ¢ > 1 we write

’Dsqfl (/ |f ‘1+sq y)q .

Applying Theorem 2.2, (2.6) for t = 1 we get

1 1
(3.20) D1 2Pl a2 S IH(=A)1P [ ee) 3 IN(=A)1P[72 = [Pi1/20.

NH
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Thus, combining (3.18), (3.19), and (3.20) we obtain

dx dy 1
21) T [ [ 10 Pa )Pl T S PR A el ),

-yl ™
As for the second term of (3.16) we have

dzd
17 = [ [ 10 llay P lid el S0
(3.22) e
S 2ot //ahPx,del z,y)|? acy)
HHLMMM(HRR|4 () Pl ol P
Applying once again (3.17) we obtain
dzd
//WJWWWWWQWW Y
R | —y|
; 1 2 dx dy
(323 3 [ [ (Mb)@ + M=)k 0) Pl
1 dydz
N/(M«ﬂMS ) [ laspep
R | y|

Using Holder’s inequality and then Sobolev embedding we get

[ (ieata)” [ peorges

||(M(— )g I [FCRSTEY [ 289 of b FYEREY
1

(= A)8@||L<4oo>(R |||Dl 2P|||L<42>

I(=4)

where for the estimate of the last term we used again Theorem 2.2, (2.6), with ¢ = %

OU\H

(3.24)

LA LA K

=

SOHL@ ) (R) H‘( )4PHL(272)(R)a

Combining (3.22), (3.23), and (3.24) we obtain

dzd
17 [ [ 106 p)llayPleg)lidyele.

|z =y
1
S Q2 Az, ) I(=D) 50l L@ ) [Plwr/22 ().
Finally, from (3.16), (3.21), and (3.25) we get

(3.25)

div, (R.P" (y))[¢

1
3 (1 fellm) (1920 ann, ) + Plwvas) ) [Pz (=) kel e

This finishes the proof of (3.14).
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In order to prove (3.15) we observe

divy (R, = Res) PT()) [¢]] 3 lle1 = eallze (T + ZT)

Thus, in order to conclude it suffices to apply the estimates (3.21) and (3.25). O

Proof of Proposition 3.3. Let X = L N W22(R).

For any £ € X we have A = (14¢)P € L®NW2(R), which implies AQ—diA e L*(A\L,R)
and thus, from Lemma 3.1, we have

~ (I + e y) Q@) PW) — (4@ 9) P)) + Rele,y) € LA R).

We apply for this term the nonlocal Hodge decomposition, Lemma A.1: given ¢ € X we
find a(c) € W22(R) and B(e) € L*(A\L,R) with divy B(e) = 0 satisfying

— (I +&(,9)) Q7 (2.9) P(y)) = (A=) P(y) ) + Rela.y)
= dya(e)(z.y) + BE)(.y)

1
3
with the estimates
o 1PN+ E e,
' Z (L4 [lellzeo®) ([Plwrzem) + HQHL?(/\})dR)) + [elwrr22)-

Similarly, if for any two 1, e € X we consider the difference of the corresponding equations
(3.26) we get

(3.26)

1B(e1) = Ble2)ll 22, )

(3.28)
3 ller = eallzeem) ([Plwrzemy + 1@ 12pL, v)) + €1 — 2lwrrzew)-

Now we define the mapping 7': X — X as the solution to
—divy (I +2(2)) 9 (2,9)) = divy (4,T()(2,9)) +divy (Rel,y) PT(y))

= divy (B(e)(z,y)P"(y))
with limy e 7'(€)(x) = 0.

(3.29)

Using Lemma 2.1 equation (3.29) can be rewritten as
—(=A)2T(e) = divy (B(e)P"(y)) +divy (I +£(2)) Q") — divi (R-P* (y))
= —B(e) di PT +di(I +¢) - ()" — divi (R-PT(y)).

We used in the second inequality Lemma 2.1.

(3.30)

We observe that on the right-hand we have fractional div-curl-terms: div 1 B(e) = 0 and
diV%(QP>* = 0. Let us denote

Ac = (1 [lell o)) (20| 2@y + [Plw/za) [Plwr/za)-
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By Lemma 3.4, (3.14), the rest term in (3.30) satisfies

divy (RPT (1)) 3 Acll (=) 7| Lzor gy
Thus, we may apply the nonlocal Wente’s lemma, i.e., Lemma 2.3 and obtain
1T ()| oo @) + [T(e)lwrr22
(3.31) S IBE 2z, vy [Plwirzem + [E]Wl/Q»Q(R)H(QP)*”LQ(/\}M]R) + A
= ||B(5)||L2(/\},dR) [P]Wl/z?(R) + [E]Wl/w(R)||QP||L2(/\}MR) + A

Moreover, let €1, €5 € X, then we have
(3.32)

~(=8)x(T(e1) ~ T(e2))

:(ﬁv%((BQQ)——E%&ﬁ)PT@0)+wﬁV%(@@——sg(x)ﬁp)—wﬁV%«fQI——R@)PT@D)

— (B(=) — B(e2)) - dy P74 dy (21 — ) - (27 — divy (R, — Rey) PT (1),
where in the last equality we have used again Lemma 2.1.
Again, we observe that

diV%(B(&l) — (B(e2)) =0 and diV%(QP)* =0,

and from Lemma 3.4, (3.15), we may estimate the reminder term in (3.32)

) 1
(3.33) |divi (Rey = Rey)PT(0))[0)] 3 At o (= 2)10] 2o )
where

(3.34) As e = ller — a2l oo @) ([Plwrzewy + 12| 2@) [Plwrzew)-

15

Therefore, we may apply the nonlocal Wente’s Lemma 2.3 for equation (3.32) and obtain

1T (1) = T(e2)|[ e (r) + [T'(e1) — T(€2)lw1/22(m)

3.35
(3:35) 3 1B(e1) — B(Z_:Q)HL?(/\})dR) [Plwi/22m) + 61— 52]W1/2’2(R)”QPHLQ(/\})dR) + Mgy,

Combining (3.35) with (3.28) and (3.34) we get
1T (e1) — T(e2)ll Loy + [T(e1) — T(€2)lwrr22(m)
3 ller = allzem ([Plwaag + 190200 ) Plwee
+ o1 — ealwrnaqe (Plwiee + 19020, 5 )

3 (ler — e2llzoowy + [e1 — 52]W1/2,2(R))0,

where in the last inequality we used (3.11).

Thus, taking ¢ small enough we obtain

IT(e1) = T(2) | ooy + [T(€1) = T(e2)lprreamy < A(ller — allomy + [e1 — alwiragm))

Y
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for a 0 < A < 1, which implies that T is a contraction. Consequently, by Banach fixed
point theorem, there exists a unique € € X, such that 7'(¢) = . That is we have a solution
T'(e) = ¢, which is a solution to

— (T +2(2) 9" P(y)) = (442 Py)) + R. = dyale) + B(e)

—divy ((I +¢(2)) QF) —divy <d%g> +divy (R. P(y)) = divy (B(e) P"(y)) -

Moreover, combining (3.31) with (3.27) and (3.11) we obtain the following estimate on

(3:36)  llellzoem +[el g S olleliem +olel g2 + 1ML + [Pl 5

W32(R) 22 (R)’

which gives for sufficiently small o
lellzoo ) + [g]W%’Q(R) N ||Q||L2(/\})dua) + [P]W%,z(R)-
0

Proof of Theorem 1.1. By Proposition 3.3 we obtain the existence of an ¢ € L*> ﬂW%’Q(R)
acW22(R), B e LQ(/\id R) with divi B = 0 satisfying the equations solution T(e)=¢
which is a solution to

—((I +e(2) QP P(y)) — (dég P(y)) +R.=dia+B

—divy (I +&(2)) Q) — div, (d%s> +divy (R PT(y)) = divy (BPT(y)) |

)
)

where P € W2?2(R,SO(N)) and QF e L?*(\',R) are taken from Theorem 2.4 and
[Plwize@ 3 1@ 2z, m) < 0

By Lemma 3.2 we have for sufficiently small o
— (I +(2)Q°P(y)) — (dés P(y)) + R. = B.
Thus, defining for ¢ from Proposition 3.3, A := (I + )P, we have by Lemma 3.1
AQ — d%A =B.

The invertibility of A follows from the invertibility of P and I + €. Finally, since A =
(I +¢)P, we obtain from (3.13) and (2.8) the estimates

Al 3 (0 el )Pl ey + Elybagey = 19020
and

[Allzee) T 1+ 12 2 (p2, my-
This finishes the proof.
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4. WEAK CONVERGENCE RESULT — PROOF OF THEOREM 1.3

Using Lemma 2.1 we obtain the following.

Lemma 4.1. Assume that Q@ € L2(\),R). Then u € W22(R,RY) N (L2 + L®(R)) is a
solution to

(4.1) (—A)ul = Q- dyu
if and only if for any invertible matriz valued function A, A1 € L>*nN W%’Q(R, GL(N)),

In a first step we prove the “local version” of Theorem 1.3.

Proposition 4.2. Let 0 > 0 be the number from Theorem 1.1. Let {u;}ien be a sequence
as in Theorem 1.3 of solutions to

(‘A)%W = d%u@ + f¢ in D'(R).
Additionally let us assume that for some bounded interval D C R we have
(4.2) U [l 2 1, ) < 0

Then

(=A)2u=Q-diu+ f inD(D).

1
2

Proof. Let us define Qp == xp(2)xp(y)% € L*(A\L,R). Then by (4.2) we have
(4.3) 12Dl 2pr vy < €2l 221, D)y < O

By Theorem 1.1 for €2p, there exists a gauge A, such that

(4.4) div (Q5) =0,

where Q3 = A Qp, — d1 Ay.

Let Dy CC D be an open set.

By assumption and Lemma 4.1 we have for any ¢ € C°(D;) and for Qf‘f = A,y — d%Ag

/Aed;U@d;@D:/Q?[d;Ugﬁ/)—i-fg[Ag’(ﬁ]
R R

Here with a slight abuse of notation we write for the matrix product (f [Ay))’ =
> fRATY).

Let us denote Qpe =y — Qp,. Then we have

[ Adyur- o= [0 dyui s [ A0 dyuo+ fiaw
R R R
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By Lemma 2.1 and (4.4) we have divé ((Qé‘:» ) = 0, thus again by Lemma 2.1 we get
Qé‘jg : d%ue = diV% ((Qg@ W(:)s)> Therefore,

(4.5) / Agdyug - dyip = / (ngg) updsth + / Afpes - dyugt) + fo[Ag].
R R R

We will pass with £ — oo in (4.5). Roughly speaking, the convergence of most of the terms
will be a result of a combination of weak-strong convergence. We first observe that by
Theorem 1.1 we have

Al

whem ~ I20lapn,z <o and - [[Adle@ S 1+0.

Thus, sup, ||Ag||W%}2( < oo and supy, || A¢||z=(R) < co. Up to taking a subsequence we

R)
obtain

(4.6) Ay — A weakly in W%’Q(R, RM), A, — A locally strongly in L?,

where we used the Rellich-Kondrachov’s compact embedding theorem and A e L>*n
W22(R, GL(N)). By the pointwise a.e. convergence we have | Al eemy 2140

By (4.3) we also have up to a subsequence
Qp¢—Qp  weakly in LX(A\ ),
where Qp € L2(A\.,R).
By assumptions of the Theorem we also have, up to a subsequence,
up — u  weakly in W%Q(R), ug — u locally strongly in L?,
where u € W22(R,RY).

Let us choose a large R > 1, such that in particular D; C B(R). We begin with the first
term of (4.5).

STEP 1. We claim that (up to a subsequence)

(4.7) lim Agd1w~d11/):/Ad1u-d1¢.
R 2 2 R 2 2

l—o0

Indeed, we observe

(4.8)
/Aedlue iy — / Advu - dig) = /(Ag — A)dug - ditp + / Aldvug — dan) - du.
R 2 2 R 2 2 R 2 2 R 2 2 2
By weak convergence of dyu, in L*(A\,R) we have

(4.9) lim A(déﬂg—d%u)-d%wzo.

{—00 R



A FRACTIONAL VERSION OF RIVIERE’S GL(N)-GAUGE 19

As for the first term on the right-hand side of (4.8) we observe that since suppy) C Dy C

B(R)a
(4.10) B(R) JB(R) |z —y/?
' o (@) w0 — )
g RCICREE) R d dy
o (@) — ) @) — )
+/ R /]R\B(R)<AZ($) Ale)) |z —y|? de dy.

By strong convergence in L? of A, on compact domains, we have
(4.11) t=oc JB(R) JB(R) |z —y
3 i (| A = All 2 gy ¥l [uel g2 gy ), = O

and (noting once again that suppvy C D)

[ ] e ey et = elooke) v -

|z —y|?

lim
f—o0

| @) =) )
) Al Aol ([ op MO=E,

\B(R) €D |z — yl?

1
1 2
< Tim ||A; — A 2 T+ 1y -
3 lim | Ae = All s el g o g 1912 (/R\B T+ yP )

In the last inequality we used the fact that if x € Dy and y € R\ B(R) then |z—y| 77 1+]yl.

For the last term of (4.10), we similarly use that if y € supp¢ and x € R\ B(R), then we
have |z — y| 77 1 + |z| with a constant independent of R.

R\B(R) [z — |

uﬁ | ‘ué( )|
([ Al [ Allze) [[¥1]2 R\ B(R 1+ |z? Yy

1
3 (1Aellze + Al zoe) 19| Loe <||W||L2 D / —dﬁ)
oy R\B(R) 1+ [7[?

dx dz :
+ A oo + Al oo oo U 0o 2 / —+(/ —>
(1Al HMWMLOMMH®<MB1Hﬂ rsr) (1 +[7]%)2

3 (1Al + JAN o) 1 llzoe (llull 2oy + Nuell oot r2ery) R

B(R)
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So we have

(4.13) hm sup

—>oo€

[ e ey )~ )W) )
B(R) JR\B(R)

|z —y|?

By (4.10), (4.11), (4. 12) and (4.13) we obtain the convergence of the first term on the
right-hand side of (4.8),

(4.14) lim / / (A (W(x) —uw(y)(W(z) —¥) dy — 0,

=00 |z —y|?

Thus, combining (4.8), (4.9), and (4.14) we obtain the claim (4.7).

STEP 2. We claim that (up to a subsequence)

(4.15) lim (Qg‘{z)*-wd%w: /R ()" - ud, o,

l—oo Jp
where Q4 == AQp — d1 A.
2

Indeed, we write

/(ng) updy 1 — /QA udyy

<// Q% (2, y)ue(w) = @@(%wm@ymw—%wdmw

lz—ylz |z =yl

— /R/R(AE(Q)QD,Z(?J, x)ue(x) — A(y)QUp (y, 2)u(z)) ¢(|Z)——y1|ﬁ%(y) |:jx_d;j|

- /R /R (4 Ay, 2)l@) — dy Ay, pua)) L) drdy,

v —y|z [z =Yl

(4.16)

Now, in order to obtain

(4.17) hm// (Ad(y) .oy, )ue(z) — A(y)Qp(y, 2)u(x)) V() —dly) dedy

lz—ylz |z -yl B

we split the integral in two

/ / (Ae(0) oy, 2)ue() — Al (y, )u(x))
(4.18) // 2)(Qp,e(y, ) — Up(y, 7))
+ / / (Ay)us(x) — Aly)u(z)) Qpo(y, 7)

Y(x) —P(y) dedy
lz—ylz |-yl
Y(z) —¢(y) dedy
lz—ylz |z —yl
V() —(y) dedy
|x—y|é lz—y|

The first term on the right-hand side of (4.18) converges to zero as £ — oo. This follows
from the weak convergence of Qp, — Qp in LQ(/\id R), the fact that Qp ,—p is supported
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on D x D, and that A(y)u(z)di(z,y)xp(x)xp(y) € L*(\,R) (the easy verification of
the latter is left to the reader).

As for the second term on the right-hand side of (4.18) we begin with the observation that

/R/R(Af(y)“‘(x)_A(y)“(x))ﬁp,e(y,x)wz)_¢1(9) dz dy

lz—ylz [z —yl

(4.19) =1A;4(Aay>—fﬂyﬂudxﬂhthfoI)_dfw do dy

lx—y|z [z —yl

i /R /R Ay)(we(x) = u(x))2p ey, x)w(:c) - wl(y) dx dy |

lz—y|z |z —yl

To estimate the first term of the right-hand side of (4.19) we first note that the support of
Qpyis D x D and then we use Holder’s inequality

| U(z) — ¥ly) dody
i | [ C4e) — A @0ty )
(4.20) . Y(z) — ( Y(y)| dady
< lim | ’Ag AHLQ(D el 2oy €20 el L2 A2, ) ¥l Lip = 0.

Now we verify the convergence of the second term of the right-hand side of (4.19). Again
we use that the support of Qp, is D x D and thus by the strong convergence in L? of uy
on compact domains we have

[ [ A0~ st ) L=V

o —ylz |r—yl
(4.21) _ ) — u(z () — ( )| dzdy
Selggo//lA (el (@), ) |x—y| [z =yl

3 Jim Al e flue = wll20)[[20,ell 2 p1, my ¥ lip = 0.

lim
l—00

We also claim that

(4.22) hm// d Ae (y, z)ug(x) — d%A(y,x)u(x)> ¢(:U)_¢l(y) dx dy _

lz—ylz [z —yl




22 FRANCESCA DA LIO, KATARZYNA MAZOWIECKA, AND ARMIN SCHIKORRA

To verify this statement we divide the integral in two

/R/]R (d%AK(va)ue(iﬂ) — d%A(y,x)u(x» o(z) — w1(y> dz dy

lz—ylz |z —yl

(4.23) = /R/Rd;Ag(y, x)(ug(x) — u(x))w(x) - wfy) dzdy

v —ylz2 |z =yl
Y(z) —Y(y) dedy
+//(d1Ag(y,$> —di1 Ay, x))u(x) (z) ;( ) )
RJR 2 2 v —y|z [z -yl
The second term on the right-hand side of (4.23) converges to zero as £ — 00, because
dyA = di A weakly in L*(\,,R) and u(2)d1¢(z,y) € L*(A,,R).

We verify the convergence of the first term on the right-hand side of (4.23). First we note
that by the strong convergence of u, in L? on compact domains we have

_ Y(r) —Y(y) dedy
lim / /B(R) d%Ag(y,x)(u@(x) —u(x)) T

(4.24) =00 JB(R) lz—ylz |z —y
< Nue = ullezsry 19l [Ad 4.2 ) =0
and
lim / / di Ay, ) (ue(x) — u(m))dj(z) _ 1/J1(y) dz dy
(=0 JR\B(R) JB(R) * lz—ylz |z —y
(4.25)

1
1 2
< 1i - A o dy | =0,
3 Jm e =l (Ao 0l ([ )
Finally, we have since suppvy C Dy C B(R)

(4.26)
Lo ) - ) U g
R\B(R |z — yl2 |z — y|

1
wle) —u@) | \}
Syl ([ P

1 1
1 > L\

=< A oo - el

R Ay g Il llue = ull i <R>max{(A\B(R)1+‘x,z dx) ’<1+R2) }

_1
3 R A g el — w21y

This gives

/ / 4y Ay, 2) () — ufa)) L= ) drdy
R\B(R o —ylz |z -yl

Thus the convergence of the first term of (4.23) follows from (4.24), (4.25), and (4.27). We
proved (4.22).

(4.27) lim sup

—>oog

=0.
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Now (4.15) follows from (4.16) combined with (4.17) and (4.22).
STEP 3. We claim that
(4.28) divs (2p)" = 0.

That is, we claim that for any <p € C°°( ) we have

) dzd dzd
O:lim//QgQ el f’f_y // ()x_y.
(=00 |:c—y| |z =y I:B—yl 2 =yl

We write
// QAZ 90 d:z:dy // A*SD ()dxdy
|93—y| |9”_?J| Ix—yl |z =y
dzd
a2 = [ [awe.a AAy)QD,g(y,x))d;so(x?y)ﬁ
dx dy
d Ay, ) ) dip(x,y :
<[ [ (a4 () dyele ) S
As for the second term of (4.29) we observe that by weak convergence of d1 1A¢in L*(A\L,R)
we have ed
lim// d 1A(y, z) d;Ag(y,x)> dip(z,y) i A—}
£—00 | y|

As for the first term of (4.29) we proceed exactly as in Step 1 and obtain

. dzd
i [ [ (AW (0.2) ~ Aey)a(0,2)) dypla. ) T

P |z — y
This finishes the proof of (4.28).

=0.

STEP 4. We claim that (up to a subsequence)
(430) th A[QDc,g : d;u%/) = / AQDC . d;mﬁ,
— 00 2 R 2

where Qpe = Q2—Qp and (2 € LQ(/\id R) is the one given in the assumptions of the theorem.

Indeed, since Qpe(z,y) = 0 whenever both =,y € D we have by the support of 1,
(4.31)
k

ok
/RAZQDC,K'd;Uw://(Af(x))ij(QDC,é)jk(x7y) (ut(@) uﬁ(y»Wx)xlw—ylzdist(f’lv@fj)%

|z —yl|2

—Uk i
// QDCE ]lc € y AZ( )) ( ( ) €<y))w(x)X|ac—y|2dist(D1,6D)|;1ﬂ

—y|

We set
Fi(,y) = Xja—y|>dist (D1,0D) () = uﬁ(y))Ae(l‘W(Uﬁ)
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and

(u(z) = uly))

F(:p,y) = X|r—y\2dist (D1,0D) 1 A(I‘)@/J(l’)
|z =yl
We claim that we have the strong convergence
Indeed, we have
(4.33)
dxd
/ [ 1) = PP 2=
|z —y]
dxd
< [ [ Jdyunte. o) - dyute ) A@] 100 P o, o
R J D,
2 dxd
3 [ Jtyute.) - dyute )] (A@F + 1A @)y i)
RJD, ! 2 2 ’3‘3 yl
2 dx dy
i [ [ fayute )] 14do) - AP @P - 000
RJD; ! 2 |z —yl

For the first term of the right-hand side of (4.33) we take R > 1, such that in particular
suppy C Dy CC D C B(R) and estimate

(4.34)
2
| [ Jagutas) = dyutea] (A@F +1400)R) 1) P or0m

sy
o)
B(R) J D,

Now, for the second term of the right-hand side of (4.34) we have

oo o

|ue()
3 (AR oy + 1A wo) 10 [ f
B(R) J D,

dx dy
|z =yl

2
dyur(e,y) — dyu(e )| (AP + | A@)P) [0()PXje-yizain (0,00

dx dy
e =yl
dx dy
z =yl

2
dyue(z,y) — dyule, )| (AP + [ Ad@)P) [9) PXje-yizain 0,00

2 9 dz dy
dyute.y) = dyue. )| (A@)F + 1AW 1) iz ono [

uWF o

) — w(@)]® + |ug(y) —
|z —y?

3 ANz oy + IAel e 01)) |I¢H%oodist_2(D1,3D)</B(R)/D lue(x) — u(z)|* dz dy

T / luely) — u(y)|? de dy)
B(R) J Dy
< C(D1, D, R) (| AR ) + [ Ael 2oy e — llZam.
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Thus, by the strong convergence on compact sets of u, in L? we obtain

(4.35)
lim / /
£—00 B(R) D;

Now we estimate the first term of the right-hand side of (4.34). We observe that for all
large R, whenever x € suppv and y € B(R), we have |z — y| 7~ 1 + |y|. Therefore,

2 dx dy
/ / déw(:c,y) N d%u(x,y)’ (IA@) [+ [Ae(2)?) [0 (2) 2 X —y) 2dist (D1, oD) T 7
R\B(R) /D, |z —
|ue(z) — w(@)” + [ue(y) — u(y)l?
S (1A o + 1A oo) W [ f ol dady
E\B(R) J Dy + [yl

1
3 (AT oy + 1A ) N0 e =l /R\B(m TP

dr dy

= 0.
|z —yl

2
déw(x, y) — d%u(%y)‘ (|A($)|2 + |A£($)|2> |¢($)|2X\z—y\zdist (D1,0D)

1 1
A 200 A 200 200 - 2 o / d
+ (I1AlI7 (oy) + 1AL (Dl)) [0 lee — wl| 724 g0 () max s L+ 0P Y1 R

S R (1AL oy + 1Al o) 1011 Zee llwe — T2y poe gy -

Thus,
(4.36)

lim sup / /
R—oo ¢ JrR\B(R) /D,

Combining (4.34) with (4.35) and (4.36) we obtain the convergence of the first term of the
right-hand side of (4.33)
(4.37)

lim / /
{—o0 RJD;

As for the second term of the right-hand side of (4.33) we observe that since A, — A
pointwise almost everywhere, we have

dx dy

7 .
|z — 9

Ay, ) — dyu(e, )| (JA@F + | A)P) [9(@) Xoyizane o0

2 ) dx dy
d%w(x,y)—d%U(m,y)‘ (A@)° + [Ae(@)]*) [ (@) Xja-yaist (D1, D)=y =0

lim
{—o0

|AZ(SC) — Az)] (2 )PX'x y|>d15t;[|)1 D) — 0 pointwise a.e. in Dy x R.

d1u(q: )

Moreover, we have

) 1
d%u(:c, y)‘ | Ag(z) — A(;U)|2|w(x)‘2)(\a:—y|2dist (D1,0D) 'lx —y|

1
o —y]

3 (sup Al + 1A ) [yt )] 100Dt o100
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and the right-hand side is independent of £ and integrable. Thus, by dominated convergence
theorem we have

(4.38)  lim / /
{—00 R Dl

Now, plugging (4.38) and (4.37) into (4.33) we establish (4.32).

dedy

2 .
o =y

2
d%u(x,y)‘ |Az($) - A(@PW(@PX@—dem (D1,0D

Thus, (4.32) and a combination of the weak convergence of € pe and the strong convergence
of Fy implies

dedy
|z =yl

dx dy
z =yl

Zlgglo RngDc(:c,y)Fg(x,y) /RQDc(x,y)F(x,y)
This establishes (4.30).

STEP 5. We claim that

(4.39) Jim folAp] = fAY].

2

N

Indeed, this holds because A is uniformly bounded in W
A in W%’Q, and by assumption f; — f in W22,

, App converges weakly to
STEP 6. Passing to the limit.

Passing with ¢ — oo in (4.5), using (4.7), (4.15), (4.30), and (4.39), we obtain

(4.40) /RAdéu-d%@b:/R(Qg)*-ud;@b+/RAQDc-d%ug/)+f[A@b].

By (4.15) we know that ()" is 3-divergence free and thus by Lemma 2.1 we have

[(©@8) -ty = [ oy,
R R
which combined with (4.40) and formulas Q3 = AQp — di A and Qpe = Q — Qp gives

(4.41) / Adiu - dirp = / QY daup + flAY).

R 2 2 R 2
This holds for any ¢ € C'°(D;). By density we can invoke Lemma 4.1, which leads to the
claim. 0

Corollary 4.3. Let ug, 2y, and f; be as in Theorem 1.3. Let D C R. Then there exits a
locally finite > C D such that

(—=A)u=Q-diu+f inD\.

1
2

Proof. We follow in spirit the covering argument of Sacks—Uhlenbeck [30, Proposition 4.3
& Theorem 4.4].
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By assumptions there is a number A > 0 such that supyey [|[| z2(p1 gy < A

Let @ € N and let B, == {B(2;0,27%): Z;o € D} be a family of balls such that D C |J B,
and each point x € D is covered at most A times, and such that for a smaller radius we
still have D C |, B(@j0,27*""). Then

dzd
S [t <
7 JB(zi0,27%) JR lz — |

Now, let ¢ > 0 be the number from Theorem 1.1, then there exists at most % balls in B,

on which Lo d
T dy
/ /KM%MP > 0.
B(z.0,2-%) JR [z —y|

Thus, by Proposition 4.2, we obtain that except for K < % + 1 balls from B, we have

(4.42) / dyu-dypi = / Q-dyugi+ flo]  for all o € CF(Blwia,27°7)).
R R

Let us denote those balls by B(y;4,27%) for i = 1,..., K. Then by (4.42) we get

(4.43) /Rd;u Y= /Q “dyup+ f[Y], forall g € CX(D\ | Blyia, 27°7Y).

1<K

SHmeLLmN<L)\U£¥Zﬂ%a,?ﬂ_ﬂ)::D\{xb.“,xKL(443)hddsﬁmanyw<EC?KD\
Y)), where ¥ := {xy,..., 2k }. This gives the claim. O

In order to conclude we will need a removability of singularities lemma, compare with [18,
Proposition 4.7].

Lemma 4.4. Let u € W22(R,RY), f € L*(R,RY), and g € W—22(R). Assume that for
some locally finite set ¥ C D we have

(~A)2u=f+g inD\X.
Then X
(=A)2u=f+g inD.

Proof. For simplicity of presentation let us assume that ¥ = {z,}. By definition we have
for any p € C°(D \ {3:0})

[ Sy [ 110

Let {C}oen € C(D,[0,1]) be the sequence from Lemma D.1, i.e., such that for all £ € N
we have
(4.44) ¢ =1on B,,(xy), ¢ =0outside Bg,(zy), and th [ 2y = 0

—00

fora0<py < Ry — 0asl— oo.
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Now let ¢ € C2°(D) and then 1y == (1 —-{;) € C(X\ {xo}) is an admissible test function
and we have

We have
Y)W (@)¢e(x) — ¥(y)G(y))
Iy = / / =y dx dy
/ / ’;ﬂ(_ 2/(;4( z) — G(y)) da dy
(4.46)
Y)W (x) — ¥(y))G(y)
/ / Irc —yl? drdy
u(z) — u(y)|[P(x) — P(y)]
S llzemyluly g Sl a2 /BR[/ P dz dy.
Thus, by (4.44) and by the absolute continuity of the integral we have lim,_,., Z, = 0.
Secondly,
(4.47) 12, = [ Jew@eE < el 1] =5

by the absolute continuity of the integral.
Thus, passing with ¢ — oo in (4.45) we get for any Y € C(D)

oo e = [ st

IIT, = gl ¢ == 0,

{—00

because, by (4.44), we have [¢ Q]W%g —— 0.

Lastly,

This finishes the proof.
O

Proof of Theorem 1.3. Combining Corollary 4.3 and Lemma 4.4 we obtain the claim. [

APPENDIX A. NONLOCAL HODGE DECOMPOSITION

Lemma A.1. Letp > 1, s € (0,1), G € LP(\L,R™) then there exists a decomposition
G =dsa+ B,

IThe decomposition is unique if we normalize a
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where a € W*P(R") and B € LP(\},R") with div, B = 0. Moreover,
(A1) ||B||Lp(/\}7an) + [a]Ws’p(R”) N ||G||LP(/\},an)-

Proof. Since G € LP(A\,,R") we have div, G € (W*# (R"))", namely
divs Gly] 3 ||G||Lp(/\})an) [SO]WS’P/(R")‘
Recall that for 0 < s < 1 and 1 < p < oo we have W”’(R”) = FS H(R™) [34, 2.3.5].

Moreover, div,G € Fp;, since (—A)™% : F;’p(R”) — F S(R") is an 1somorphlsm [29,

§2.6.2, Proposition 2, p.95]. In particular, there is a umque unique solution a € F;p(R")
to the distributional equation
(—A)%a =divs G.
with
[G]F;,p(ﬂen) 3 [divs G]Fp’,fp,(R") 3 ||G||Lp(/\})an)-

We have found a € F;p(R”) — W*P(R"), and we have

/dsa-dsgpz/ Fo VYo e CXR").

The uniqueness of a up to a normalization assumption would follow by considering a
difference of two solutions and an application of nonlocal Liouville theorem [11, Theorem
1.1].

Now define B .= G — dsa. We have
divy B = divg G — divg(dsa) = divy G — (=A)°a = 0,
which finishes the proof. O

APPENDIX B. LOCALIZATION

The next Proposition follows from a relatively straight-forward localization results, see,
e.g., [19].

Proposition B.1. Assumq D, cc Dy cc D' € D C R open intervals and let u €
LR, RY) 4 L=(R,RN) N W22(D,RY) be a solution to

1

That 1is, assume

// ! _(s;ff)—w(y)) dz dy
:/D/DQ(x,y)d;u(x,y)go( T) ——= dvdy /fso, Vo € C(D').

o=yl

(B.1)



30 FRANCESCA DA LIO, KATARZYNA MAZOWIECKA, AND ARMIN SCHIKORRA
Let n € C®(Dy) and set v = nu and Qi;(z,y) = Xp,(x) X0y (), (x,y). Then
(—A)20 = - div+nf+G(u,-) nR,
where G is a bilinear form with the following estimates for any s € (0, %) and € > 0
G(u )| < Cn, 5,6, D1, D2) (1+ 1€l pt, )
(lull 2oy 20y + [ulw=2(0s))

o Il + Wl )

) (HSOHL2(D)+L°°(D)

In particular we have

||Q||L2(/\§dR) < ||Q||L2(/\},dD2)-

Proof. Let ¢ € C2°(R). We have

(n(x)u(x) —n(y)u(y)) (¢(r) —¢(y))
= (u(z) —u(y))(n(@)p(z) = n(y)e(y)) + (n(z) —n(y)) (w(y)e(r) —ul@)e(y)) .

Since np € C°(D’) it is an admissible test function and we have from the equation (B.1)

/ / ! _szg) —v®) 4, dy

-/ /D e, )dyule (o) o(o) T+ [ g+ Gl

Gr(u o) /D JRLGELOICOLCETCED) P

lz —y|?

Here,

Moreover, we have

/ / |x_§|<§>—so<y>> dody
// \x—i\(f)_go(y)) da dy + Ga(u, ¢),

where, because suppv C Dy,

lz —y|?

That is we have

/ / ! _sﬁ;‘) — ) 4. dy

:/[)/[)Q(x,y)d;u(x,y)n(x)w( T) —— do dy /fngoJrQl(u @) + Ga(u, p).

o=yl
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Furthermore, since

diu(z,y)n(z) = di(nu)(z,y) — uly)din(z,y)

1
2

and suppv C Dy, we have

| [ o ndute et S

|z —y|

= [ [ oyt ew 20 - [ [ oGyt e g

= [ [ e ) o) |iaid5|

dxd
A e
D\Dy J D, 2 |z —yl
dxd

w [ o) ) S
Dy J D\Ds 2 |z —yl

- [ [ it S

So if we set

dxd dzd
3(u, ) / / xydwxy Y // xydlv(xy)() el
D\D3 J Dy |x—y| Dy J D\D» |x—y|

and
dx dy
// z, y)uly)din(z, y)p(z )—|x—y|’

then we have shown for any ¢ € C°(R),

// D(e(x) — ¢(y)) dxdy:/Rg.d%er/angwigi(u,@-

Ix —yl?

It remains to estimate each G;(u, ¢).
Estimate of G;: By the support of 7 we have
T) — u x) — u(z
g = [ [ W00l o)
Dy J Dy |z —y|

(n(z) —ny)) (u(y)e(r) — ulz)p(y))
—i-Q/D1 /D\D2 dx dy.

|z —y|?

(B.2)
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As for the first term we have

(B.3)
[ [ ) )=l
Dy J Dy |l‘—y|2
<lnlhsy | / Jole) ~ e .,
Sl ([ ot [ EDZE N gy [ o [ D=1 sy
Sl [ 1) = hp,] [ = gy

p(r) —ply
+ Inluio lell 21 o) / / lete) = owll 4, 4,
D, |£E yl

u(x) ~ u(y)|
el [ el [ M gy

We observe that for any p € (1,00) and any € > 0 we have

[0, St o (] ) o

dz
=< —
= lelwe sup T =y
el ”D”yem(m' | |x—y|)

3 C(Do)[@lw=r(Dy)-

Thus, for any € > 0 and any s € (0, ) we have

o [ @l lo(a) — o)l
gy o0~ 000 [, I bt il | ] E ey
3 C(Ds) (Jlu = (),

[ T=2s 2 (Dy )I:(p:lWE’zsil(DQ) + HUHU(DQ)[SD]

o2 .
W 25T (Dy)

We also have

fu(z) — u(y)|
(B.5) /D o) [ D= dady X lplaaon e,

lz — |

Combining (B.3) with (B.4) (in which we use Poincare inequality) and (B.5) we obtain

/ / (n(x) = n(w) (uy)e(x) — u@)eW) 4 g,

|z —y|?

(B.6)
Sl (el o) + [Wlws2m,) (||90||L2(D2) + [SO]WE,Q%(DQQ :



A FRACTIONAL VERSION OF RIVIERE’S GL(N)-GAUGE 33

For the second term of (B.2) observe that for x € Dy and y € D\ Dy we have |[z—y| = 1+|y|,

so we have
(n(z) —n(y)) (u(y)p(z) — u(@)e(y))
2 /[)1 /D\D2 dy dx

Iﬂf—y|2
®.7) Sl |[ [ MOl 0,
Dy JD\D, 1+ |y
S Anllzee llull 2y poe oy 1@l 4 2oe (D)

Thus, by (B.2), (B.6), and (B.7) we get

B8 16100.9)| 3 (lullorsooy + [ulweeion) (lelleoso + [yemtr ) )

Estimate of Gy: Similarly as in (B.7), if z € Dy and y € R\ D we have |z — y| = 1 + |y,
and thus

1Ga(u, 0)| 3 lnull 2oy (lelle2oy) + lellprem®) 3 lull2oyy (lell2srem) + lellisrem) -

Estimate of G3: Using the support of v, observing again that |z —y| 22 1+ |y| if y € R\ D,
and x € D we get

|Gs(u, )]

1
dxdy drdy \?
=< |2 1 (/ / u(z)|? |p(x)]? / / 2—)
|| ||L2(/\odD) D\Ds D1| ( )| | 1+|y|2 Dy D\D2 )| 1+|I’|2

3190 apt, oy (luellzzon + Illee sz lullz2eo,)
219z, oy (lellzon el +lu = @il 2 g 1003 oy, + 1ol lullzeon)
3120 p, ) (lallzson 19l + lwsaon 1911 ) + Iellz2s o) el z200))

D)
3192 at, oy (lellzzeon + lalwezeon) (

This argument works for any s € (0, ).

oy T ||90||L2+L°°<D)>

Estimate of G4: We have

drdy
G400 31, [ [ oty et 2% )

Now observe that [din(z,y)|* < |[nl|t;, |z — |, thus

dz dy 2
( [ [ gt pstar ) < lallzaoy Illz2o.
DJD 2 \x—y\
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On the other hand

dz dy
([ [ magamptr S y|) 2 1l y el o

We also have

dz dy @) =0 | \?
; ) <l Int@) = nw)l” 4
([ [ gt moto) ,x_y,> lull=o el sup ([ L=,
d
@) —n@)? . \*
sup (/—2013/) 2 lInlleip -
xzeD D ]x—y!

Thus combining the estimates on G, we obtain

|Galu, @) 2 ”QHLQ(/\idD)Hu|’L2+L°°(D)HSO||L2+L°°(D)'

APPENDIX C. A SOBOLEV INEQUALITY
Theorem C.1. Let s € (0,1), p,q € (1,00) and f € LP(R™) then

(1)
[f]F;yq(]Rn) 3 [f]W;,q(R”)§

(2) if p> 3L then

<

[f]W;,q(R") ~ [f]F;’q(R")'

The constants depend on s,p,q,n and are otherwise uniform.

While characterizations such as Theorem C.1 are well-known for Besov spaces, for Triebel
spaces this seems to have been known only for ¢ = p (where it follows from the Besov-space
characterization), ¢ = 2 where it is a result due to Stein and Fefferman, [33, 12]. It was also
known “for large s” [34, Section 2.5.10]. Although a conjecture that Theorem C.1 holds is
very natural, quite surprisingly, to the best of our knowledge, the first time Theorem C.1
has been proven was recently by Prats and Saksman [20, Theorem 1.2] (see also [25] for
further development), but see also [32, 35].

Corollary C.2. Let s € (0,1), t € (s,1) and p,p* € (1,00) where
(C.1) s———t— 2
p p

If g € (1,00) such that p* > 2L we have

t
|||Ds,qf|||Lp*(Rn) S I(=A)2 fllzen)-
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More precisely, in terms of Lorentz spaces we have for any r € [1, 0],
t
|||Ds,qf|||L<p*w>(Rn) N H(_A)QJCHUW)(RH)-

Proof. From Theorem C.1 we have
11D, Qf|||LP*(R" ~ [f]F;* (R7)-

We recall the Sobolev-embedding theorem for Triebel-Lizorkin spaces F}f i F > 4 for any
¢,4 € (1,00) and s, t, p, p* satisfying (C.1) (see, e.g., [34, Theorem 2.7.1 (i )]) Thus

D5 f o gy 3 U1ty 3 (D)2 Flloogen).

As for the Lorentz-space estimate we can argue by real interpolation. Indeed, fix s, q, p, p*.
Observe that f — |Ds,f| is a sublinear operator.We can find p; < p < ps such that p; and
po are still admissible, and thus we have

s flll os gy 3 [fEe ) S N(=A)2 Flliri@ny 0= 1,2,

From real interpolation we now obtain the Lorentz space claim. O

APPENDIX D. A SEQUENCE OF CUT-OFF FUNCTIONS IN THE CRITICAL SOBOLEV
SPACE

For readers convenience we present here a proof of a well known result, which essentially
says that in the critical Sobolev space a point has zero capacity. See for example [1,
Theorem 5.1.9], compare also with a similar construction [23, Lemma 3.2].

Lemma D.1. There exists a sequence of functions with the following properties:

{C}een € CX(R,[0,1]) and for all £ € N we have

(D.1) ¢ =1 on B, (xy), ¢ =0 outside Bg,(x¢), and elggo[@] 2q) = 0

for a sequence of radit 0 < py < Ry — 0 as { — o0.

Proof. Let f(x) = loglog (1 + #) € W'%(B2,R) be an unbounded function. We define

] 1 if f(z) > k+1,
Zi(x) =< flo)—k ifk<f(x)<k+1,
0 if f(z) <k
Then,
0 if f(z) > k+1,
VZ(x)={ Vf(x) ifk<flz)<k+1,
0 if f(z) <k.

The support of VZj, is the set
By, = {?L’ c B% Ak-i—l < |I‘| < Ak}7
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where

1
Ak = k—l, Ak+1 S Ak, and lim Ak = 0.

ee” — k—o00
Now,

/ V2|2 dz = / IV Z,|2 de 2222 0,
B App1<|z|<Ag

which follows from the fact that VZ, € L?*(B?) and that [{z € B?: Apyy < |z| < A}
shrinks to zero.

Thus, we obtained a sequence of functions for which

Z,=1on Ba,.., Z, = 0 outside B,,, and klim ||VZ;€||L2(B%) = 0.
— 00

By extending by zero we obtain a sequence Z;, € Wh?*(R2) with the properties
(D.2) Zr=1on By, ,, Zp=0outside By, and klim IV Z|| 22y = 0.
—00

Defining now (; = Z’f|R in the trace sense we obtain by the trace inequality, [13]

k—ro0
[Ck]wé,z(R) S IVZel p2@zy — 0.

Approximating {(x tren by smooth functions we obtain the desired sequence. O
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