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Cubature Formulas for Multisymmetric Functions and Applications to Stochastic
Partial Differential Equations˚
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Abstract. The numerical solution of stochastic partial differential equations and numerical Bayesian estimation
is computationally demanding. If the coefficients in a stochastic partial differential equation exhibit
symmetries, they can be exploited to reduce the computational effort. To do so, we show that
permutation-invariant functions can be approximated by permutation-invariant polynomials in the
space of continuous functions as well as in the space of p-integrable functions defined on r0, 1ss for
1 ď p ă 8. We proceed to develop a numerical strategy to compute cubature formulas that exploit
permutation-invariance properties related to multisymmetry groups in order to reduce computational
work. We show that in a certain sense there is no curse of dimensionality if we restrict ourselves
to multisymmetric functions, and we provide error bounds for formulas of this type. Finally, we
present numerical results, comparing the proposed formulas to other integration techniques that are
frequently applied to high-dimensional problems such as quasi-Monte Carlo rules and sparse grids.
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1. Introduction. When solving stochastic partial differential equations, the numerical
approximation of the solutions is, in general, very computationally demanding because of the
possibly large number of stochastic dimensions in addition to the spatial dimensions. If the
coefficients of a stochastic partial differential equation exhibit an additional structure such as
symmetries, the symmetries can be used to reduce the computational work significantly as
shown here.

Numerical multivariate integration suffers from the so-called curse of dimensionality,
meaning that for several classes of smooth functions the amount of function evaluations
needed to achieve an error less than ε for all functions of a class (i.e., in the worst case)
grows exponentially in dimension s (i.e., the number of arguments) [13, 14]. The efficient
numerical treatment of high-dimensional problems can, however, be achieved by assuming a
priori knowledge on the “importance” of the function arguments, for example, through the
use of quasi-Monte Carlo rules adapted to function spaces endowed with weighted norms; see
[9] for a survey. This a priori knowledge is often available if stochastic partial differential
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equations are to be solved. Recently, the idea to exploit permutation-invariance conditions as
another kind of a priori knowledge has been enunciated [25, 26], and it has been shown that
the complexity of such integration problems can be significantly reduced if the permutation-
invariance conditions are exploited in the construction of quasi-Monte Carlo rules [16]. In
[17], a component-by-component construction scheme for a quasi-Monte Carlo method uti-
lizing permutation-invariance properties has been proposed. This work also features a semi-
constructive scheme for cubature formulas that is built on the idea of variance reduction and
also makes use of permutation invariance.

We propose to develop interpolatory cubature formulas for permutation-invariance condi-
tions related to multisymmetry groups, motivated by the following example.

Let u be a real-valued function of s “ nm variables defined on Rs that represents a physical
attribute of a multiparticle system comprising n particles. Let the relevant parameters of the
physical state of the n particles necessary to compute the variable u be the vector px1, . . . , xsq,
where each particle is parametrized by an m-vector xi “ pxpi´1qm`1, . . . , ximq P Rm for i P
t1, . . . , nu. Assume that the particles are of the same type and are perfectly indistinguishable.
Interchanging the role of two such particles in a representation of a physical state then results
in a representation of the identical state. Translating this property to the function u means
that upx1, . . . , xsq “ upx1, . . . ,xnq “ upxπp1q, . . . ,xπpnqqq holds for any transposition π P Sn.
Examples are upx1, . . . , xsq being the gravitational or electrostatic force exerted on a particle
located at x “ 0 by n point masses with identical weight that are distributed in m-dimensional
space, where the coordinate vector of the ith particle is given by xi. Clearly, interchanging
the coordinate vectors of two such particles does not change the value of u. This motivates
the following definition.

Definition 1. Let m and n be natural numbers and s :“ mn. Let a, b, . . . , z be an alphabet
of n letters. We organize the arguments of a function u : r0, 1ss Ñ R in a matrix

X :“

¨

˚

˚

˚

˝

a1 . . . z1

a2 . . . z2
...

. . .
...

am . . . zm

˛

‹

‹

‹

‚

of indeterminates a1, . . . , zm P r0, 1s. The function u is called pn,mq-multisymmetric if u is
unchanged under permutations of the columns of X. We denote the corresponding group of
permutations of Rs by Sn,m.

This property is sometimes called MacMahon symmetry or vector symmetry. It is easy to
see that for any s-variate real-valued function u, the set tσ P Ss | u ˝ σ “ uu is a subgroup of
Ss, so the following notion is natural.

Definition 2. Let pG, ˝q be a subgroup of pSs, ˝q. A function u : r0, 1ss Ñ R is called
G-invariant if

(1) upσpx1, . . . , xsqq “ upx1, . . . , xsq @σ P G @px1, . . . , xsq P r0, 1s
s.

The ultimate goal of this paper is to develop interpolatory cubature formulas for multi-
symmetric functions and hence stochastic partial differential equations with multisymmetric
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coefficients, aiming to save function or sample evaluations by exploiting the property of permu-
tation invariance. The theoretical results are proven for the more general case of G-invariant
functions, while numerical results are presented for the case of multisymmetric functions.

Remark 3. The formulas developed here are different from what are called G-invariant/
symmetric cubature formulas in the literature. G-invariant cubature formulas are intended to
work for any kind of smooth function, and the nodes and weights of the formula are supposed
to satisfy G-invariance. In contrast, our formulas exclusively work for G-invariant functions,
while the cubature formulas do not necessarily satisfy G-invariance properties.

We would also like to mention that the notion of multisymmetric functions in the algebraic
sense refers to elements of an abstract, category-theoretical construction that is not canonically
related to real-valued functions. In this paper, whenever we refer to multisymmetric functions,
we consider real-valued functions defined on r0, 1ss that satisfy permutation-invariance prop-
erties related to a multisymmetry group as defined earlier.

The idea to exploit permutation-invariance properties to facilitate multivariate high-dimen-
sional numerical integration is still young, and the work performed so far [25, 26, 16, 17] has
been focused on a mathematical setting tailored to the Schrödinger equation, and as a con-
sequence employs different notions of permutation invariance. Our definition of G-invariance
includes the symmetry properties introduced in [25, 26], but not the respective antisymmetry
properties. It seems that quasi-Monte Carlo methods or variants thereof are usually employed
for high-dimensional problems. We will show in this paper that in the case of multisymmetric
integrands, interpolatory formulas (besides sparse grids) can be a reasonable alternative.

The rest of this paper is organized as follows: In section 2, we show that G-invariant
functions can be approximated by G-invariant polynomials in the space of continuous functions
as well as in Lp-spaces for 1 ď p ă 8. In section 3, we provide error bounds for cubature
formulas for multisymmetric functions with positive weights. In section 4, we outline a possible
approach to computing cubature formulas for G-invariant functions. In section 5, we introduce
results about bases of spaces of multisymmetric polynomials and slightly strengthen and
generalize them. In the second part of this section, we explain how to execute the algorithm
discussed in section 4 more explicitly and how the special structure of multisymmetry groups
proves to be advantageous. Finally, we present numerical results in section 6, comparing
the proposed formulas to quasi-Monte Carlo rules and adaptive sparse-grid schemes. The
conclusions follow in section 7.

2. Approximation of G-invariant functions by G-invariant polynomials. From now on,
G denotes a subgroup of Ss. We denote the s-dimensional unit cube by I :“ r0, 1ss. If X is
a vector space of real-valued functions defined on a subset of Rs, we denote its subspace of
G-invariant functions by XG, where G-invariance is to be understood in an almost-everywhere
sense if X “ Lp. We denote the space of polynomial functions defined on r0, 1ss by P, and
the space of polynomial functions of degree less than or equal to d by Pďd. Symmetrization
operators like the one considered in Proposition 4 are sometimes considered in invariant theory,
e.g., in the proof of the Hilbert basis theorem, and are also called Reynolds operators in the
literature. Analytical properties of such operators have been derived in [25, 26, 16], although
not for the precise setting we are interested in.
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Proposition 4. Let X :“ pCpIq, }.}8q or X :“ pLppIq, }.}pq for 1 ď p ď 8. Then the linear
averaging operator

S : X Ñ X,

f ÞÑ
1

|G|

ÿ

σPG

f ˝ σ

satisfies

Sp1q “ 1,(3a)

SpSpfqgq “ Spfq ¨ Spgq @f, g P X.(3b)

Furthermore, S is a continuous linear projection with range RpSq “ XG.

Proof. The well-definedness of S in the case X “ LppIq follows from the fact that for any
measurable subset M Ă RN and any σ P Ss we have λpMq “ λpσ´1pMqq. We now prove
formula (3). Clearly, Sp1q “ 1. Let f, g P X. For any π P G, we have G˝π “ G and, therefore,

SpSpfqgq “ S

˜

g ¨
1

|G|

ÿ

σPG

f ˝ σ

¸

“
1

|G|

ÿ

πPG

˜

g ˝ π ¨
1

|G|

ÿ

σPG

f ˝ σ ˝ π

¸

“ Spfq ¨ Spgq

holds.
Setting g :“ 1 in (3) shows S2 “ S. For σ P SN , the application f ÞÑ f ˝ σ is an isometry

on X. By the triangle inequality, S is bounded with }S} “ 1 and therefore a continuous linear
projection. Note that Spfq P XG for f P X and Spgq “ g for any g P XG, so we must have
that RpSq “ XG.

Theorem 5 (G-invariant continuous functions). The set of continuous, G-invariant func-
tions pCpIqG, }.}8q is a Banach algebra. The G-invariant polynomials PpIqG form a dense
subalgebra of pCpIqG, }.}8q.

Proof. Consider the operator S defined in Theorem 4. As RpSq “ CpIqG and S is a
continuous projection, we see that CpIqG is a closed subalgebra of CpIq. For the second
part of the theorem, let f P CpIqG. Due to the classical Weierstrass approximation theorem,
there is a sequence of polynomials pn converging uniformly to f . As S is continuous, we have
Sppnq Ñ Spfq as nÑ8, and since Spfq “ f this proves the claim.

Theorem 6 (Lp-spaces of G-invariant functions.). For 1 ď p ă 8, the space LppIqG is a
Banach space. PpIqG is a dense subspace of LppIqG.

Proof. The proof is analogous to the proof of Theorem 5, making use of the fact that PpIq
is dense in LppIq.

Theorem 7. The Taylor polynomials of a (sufficiently smooth) G-invariant function f :
r0, 1ss Ñ R centered at a G-invariant point a P I (i.e., σpaq “ a for all σ P G) are G-
invariant.
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Proof. The Taylor polynomial of order k centered at a “ pa1, . . . , asq has the form

Tkpx1, . . . , xsq “
ÿ

|α|ďk
αPNs0

1

α!
Dαfpaq

s
ź

i“1

pxi ´ aiq
αi ,

whereby α! :“
śs
i“1 αi!. For σ P G, note that α! “ σpαq!, ai “ aσpiq, and

s
ź

i“1

pxi ´ aiq
αi “

s
ź

i“1

pxσpiq ´ aσpiqq
ασpiq .

Thus,

Tkpσpx1, . . . , xsqq “
ÿ

|α|ďk
αPNs0

1

α!
Dαfpaq

s
ź

i“1

pxσpiq ´ aiq
αi

“
ÿ

|α|ďk
αPNs0

1

σpαq!
Dσpαqfpaq

s
ź

i“1

pxσpiq ´ aσpiqq
ασpiq

“
ÿ

|α|ďk
αPNs0

1

α!
Dσpαqfpaq

s
ź

i“1

pxi ´ aiq
αi .

In order to show that Dαfpaq “ Dσpαqfpaq, we show the claim

Dαfpxq “ Dσpαqfpσpxqq @x P p0, 1qs

inductively on the order of the multi-index α: For α “ 0, the claim is trivial by the G-
invariance of f . Assume that Dαfpxq “ Dσpαqfpσpxqq and let ei P Rs such that eipjq “ δij .
This yields

Dei`αfpxq “ lim
hÑ0

Dαfpx` heiq ´D
αfpxq

h

“ lim
hÑ0

Dσpαqfpσpx` heiqq ´D
σpαqfpσpxqq

h
“ Dσpei`αqfpσpxqq,

which concludes the proof.

Remark 8. Without the assumption that the center of the Taylor polynomials be G-
invariant, Theorem 7 does not hold in general: Consider, for example, the first-order Taylor
polynomial of fpx, yq :“ xy centered at a “ p1, 0q.

3. Error bounds.

Definition 9 (cubature formula and error functional). An N -point cubature formula Q is a
linear functional on CpIq of the form

Qpfq “
k
ÿ

i“1

ωifpxiq,
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where ωi P R and xi P I for all i P t1, . . . , ku. The associated error functional E is defined by

Epfq “

ż

I
fpxqdx´Qpfq.

We say that a cubature formula is of degree d if Eppq “ 0 for all p P Pďd. Cubature
formulas satisfying Eppq “ 0 for all p P Pďd for a d P N are also called interpolatory or
monomial. Many different cubature rules for elementary regions such as the s-cube or s-sphere
have been developed in the past; see [23, 5] for compilations. In the monograph [6, p. 376],
it is stated that “Two properties of approximate integration rules are considered particularly
desirable: The abscissas should lie in the region and the weights should be positive.” The
cubature formulas we propose have nodes inside the unit cube and positive weights. In this
section, we will prove error bounds that apply to any kind of monomial rule for G-invariant
functions with positive weights and nodes inside the unit cube, although our error bounds are
not fully explicit.

Estimates for the optimal approximation of real-valued, smooth functions by polynomials
are known as Jackson theorems. In order to prove a priori estimates for multivariate cubature
formulas, we quote the following relatively recent Jackson-type theorem.

Theorem 10. Let K be a connected compact subset of Rs such that any two points a and
b of K can be joined by a rectifiable arc in K with length no greater than σ|a ´ b|, where σ
is a positive constant. Let f be a function of class Cm on an open neighborhood of K where
0 ď m ă 8. Then for each nonnegative integer n, there is a polynomial pn of degree at most
n on Rs with the following property: For each multi-index α with |α| ď minpm,nq, we have

(4) }Dαpf ´ pnq}8 ď
C

nm´|α|

ÿ

|γ|ďm

}Dγf}8,

where C is a positive constant depending only on s, m, and K and }.}8 denotes the supremum
norm on K.

Proof. See [1, Theorem 2] for the proof.

The following error bounds are a simple consequence of the properties of the symmetriza-
tion operator S and the above Jackson theorem.

Theorem 11 (error bounds). Let Q be an N -point cubature formula with positive weights
ωi and error functional E that integrates every G-invariant polynomial of degree at most n
exactly, i.e., ωi ě 0 for all i P t1, . . . , ku and Eppq “ 0 for all p P PG

ďn. It follows that there is
a constant K ą 0 depending only on s and m such that

|Epfq| ď
Kps,mq

nm

ÿ

|γ|ďm

}Dγf}8

holds for all G-invariant functions f : I Ñ R of class Cm.

Proof. Let f P CpIqG and Q be as stated in the assumptions. Consider again the linear
operator S introduced in Proposition 4. Let pn denote a polynomial approximation of f
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satisfying the error bound in Theorem 10. Setting sn :“ Sppnq, we obtain

(5) }sn ´ f}8 “ }Sppn ´ fq}8 ď }S} ¨ }pn ´ f}8 ď
C

nm

ÿ

|γ|ďm

}Dγf}8.

Note that sn is G-invariant and of degree at most n, thus Epsnq “ 0. Moreover, as Q integrates
constants exactly, we have

řk
i“1 ωi “ 1. This yields

|Epfq| “ |Epf ´ snq| ď

ż

I
|fpxq ´ snpxq|dx`

k
ÿ

i“1

ωi|fpxiq ´ snpxiq|

ď 2}sn ´ f}8 ď
2C

nm

ÿ

|γ|ďm

}Dγf}8,

which concludes the proof.

Remark 12. Setting G :“ tidu in Theorem 10, one obtains an error bound for the classical
case. Thus, the error bounds formulated above also apply to the formulas constructed in [7].
The same reasoning given in equation (5) shows that for X “ LppIq or X “ CpIq and f P XG,
one has

(6) distpPďd, fq “ dist
`

PG
ďd, f

˘

.

4. Computing cubature formulas for G-invariant functions. In this section, an approach
for computing cubature formulas with positive weights for G-invariant functions on r0, 1ss is
proposed. For the remainder of this section d is assumed to be odd (this is due to the fact
that an N -point univariate Gaussian quadrature rule has degree of exactness of 2N ´ 1). Let
B :“ tp1, . . . , pn˚u be a basis of PG

ďd and define n˚ :“ dimPG
ďd. Let N :“ tx1, . . . ,xNu be

a collection of points in r0, 1ss. A cubature formula based on the nodes N integrates every
G-invariant polynomial of degree at most d exactly if and only if the weights ω1, . . . , ωN satisfy
the system

(7)
N
ÿ

j“1

pipxjqωj “

ż

r0,1ss
pipxqdx @i P t1, . . . , n˚u.

In the univariate case, system (7) has a unique solution for any choice of distinct x1, . . . ,xd.
In the multivariate case, system (7) is not always solvable and if a solution exists, it is not
unique in general.

Definition 13. The natural action of G on a G-invariant set C Ď r0, 1ss is the group action
given by

φ : Gˆ C Ñ C,

pσ,xq ÞÑ σpxq.
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4.1. Basic scheme. We suggest the following algorithm, which is a variation of the ap-
proach presented in [7].

1. Generate a basis p1, . . . , pn˚ of PG
ďd.

2. Calculate the integrals pbqi :“
ş

I pipxqdx for all i P t1, . . . , n˚u.
3. Calculate the nodes of a univariate degree d Gaussian quadrature formula on r0, 1s,

denoted by N0. Let C :“
Śs

i“1 N0. Consider the natural action of G on C. Choose
elements x1, . . . ,xk such that the disjoint union of the orbits of the xi equals all of C.

4. Define A P Rn˚ˆk by pAqij :“ ppipxjqq. Solve the linear programming problem (LPP)
with a trivial objective function

minimize 0 ¨ ω

subject to Aω “ b

and ω ě 0.

This algorithm is guaranteed to terminate with a cubature formula with positive weights,
of whom at most n˚ are strictly positive. First off, notice that the LPP solved in the fourth
step is always feasible. To see this, note that the s-dimensional tensor product of a univariate
degree-d Gaussian quadrature rule solves system (7) with N “ C. Let yj denote the nodes
and wj denote the weights of the tensor product formula for j P t1, . . . , pd`1

2 q
su. If y P Ox,

where Ox denotes the orbit of x, there is a σ P G such that y “ σpxq, and as the pi are
G-invariant, we have ppxq “ ppyq. Let x1, . . . ,xk be defined as in the third step and set
Ji :“ tj : yj P Oxiu for i P t1, . . . , ku. Then, the vector ω defined by

ωi :“
ÿ

jPJi

wj

solves the system Aω “ b and we have ω ě 0. Therefore the LPP defined in step 4 is
feasible. Clearly, the feasible region is bounded as ω ě 0 and the zeroth-order equation gives
řk
i“1 ωk “ 1. Therefore, if the LPP is solved using an algorithm that produces extreme point

solutions (like the simplex method), the solution will have at most n˚ strictly positive weights,
as extreme point solutions correspond to basic feasible solutions for bounded LPPs.

We will proceed to present constructive algorithmic solutions to steps 1–3 of the funda-
mental algorithm. Step 4 can then be carried out using any LPP solver that produces extreme
point solutions. Although our algorithms are theoretically viable for any subgroup G of Ss,
they are not computationally efficient. We will present an optimized version of the basic
scheme for the multisymmetric case in section 5.

4.2. Generating a basis of PG
ďd. Let I be the set of all multi-indices α satisfying |α| ď d,

i.e., I “ tpα1, . . . , αsq | αi P N0,
řs
i“1 αi ď du. Consider the natural action of G on I.

Choose β1, . . . , βn˚ such that the disjoint union of the orbits of the βi is all of I. The fact that
tSpxβiq | i P t1, . . . , n˚uu is a basis of PG

ďd seems to be regarded as a basic fact and is often
mentioned without proof or reference. For the sake of completeness, we provide an elementary
proof.

Lemma 14. The family pSpxβiqqi“1,...,n˚ is a basis of PG
ďd, where S is the operator intro-

duced in Proposition 4.
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Proof. In order to show linear independence of the Spxβiq, note that

(8) Dβpxαq “ α!δαβ @β P Ns0 with |β| “ |α|

holds for all α P I. Let c1, . . . , cn˚ be real numbers such that

(9)
n˚
ÿ

i“1

ciSpx
βiq “

1

|G|

n˚
ÿ

i“1

ci
ÿ

σPG

xσpβiq “ 0.

Let βj be a multi-index of order d, i.e., |βj | “ d. Because Oβi X Oβj “ H for i ‰ j, we have
βj ‰ σpβiq for all σ P G and i ‰ j. Setting m :“ |tσ P G | σpβjq “ βju|, we obtain

(10) Dβj

˜

n˚
ÿ

i“1

ci
ÿ

σPG

xσpβiq

¸

“ cjmβj ! “ 0.

Repeating this reasoning inductively yields c1 “ ¨ ¨ ¨ “ cn˚ “ 0 and thus linear independence.
We proceed to prove that the vectors Spxβiq generate PG

ďd. As S : Pďd Ñ PG
ďd is surjective,

the family pSpxαqqαPI generates PG
ďd. If α P Oβ, we have Spxαq “ Spxβq. Since β1, . . . , βn˚

are chosen in a way such that
Ťn˚

i“1Oβi “ I, we obtain

(11) spantSpxαq | α P Iu “ span
!

S
´

xβi
¯

| i P t1, . . . , n˚u
)

,

which proves the claim.

Using Lemma 14, a basis of PG
ďd can be generated as follows.

Algorithm 4.1 Basis Generation.

Set I :“ tpα1, . . . , αsq | αi P N0,
řs
i“1 αi ď du

Set B :“ H
while I ‰ H do

Pick α P I
Update B :“ B Y tSpxαqu
Update I :“ Iztσpαq : σ P Gu

end while
return B

4.3. Calculating integrals of basis polynomials. Having generated a basis of the form
Spxβ1q, . . . , Spxβn˚ q as outlined in section 4.2, calculating the integrals is straightforward
because of the equality

ż

r0,1ss
Spxβiqdx “

ż

r0,1ss
xβidx.(12)



222 CLEMENS HEITZINGER, GUDMUND PAMMER, STEFAN RIGGER

Algorithm 4.2 Node Generation.

Set C :“
Śs

i“1 N0

Set N :“ H
while C ‰ H do

Pick x P C
Update N :“ N Y txu
Update C :“ Cztσpxq | σ P Gu

end while
return N

4.4. Generating nodes modulo G. Calculating univariate Gaussian quadrature formulas
is a prominent problem, and there are many mathematical software libraries that are able to
efficiently compute formulas of this type. Significant advances have been made recently in [2].
Let N0 denote the nodes of a univariate degree-d Gaussian quadrature formula. A naive way
to obtain a full representative system of C :“

Śs
i“1 N0 modulo G is given in Algorithm 4.2.

Steps 1 and 3 of the basic scheme require iterations over the group G. For large |G|, the
computational complexity of these steps will therefore be high and the proposed algorithms
will be impractical. We suggest an algorithm that scales well with dimension for the case of
multisymmetry groups in the next section.

5. The multisymmetric case.

5.1. Finding a suitable basis—some algebraic results. From now on, let n and m be
positive integers, and s :“ nm. As mentioned earlier, the generally applicable algorithms
proposed in section 4.2 are highly inefficient with respect to dimensional scaling. The study
of multisymmetric polynomials is an old and developed one, going back as far as 1852 [21].
A modern and extensive introduction to the topic can be found in [4]. (Minimal) generating
sets for spaces of multisymmetric polynomials have been exposed in [24, 20]. We begin by

exhibiting a basis of PSm,n
ďd .

Remark 15. We are only interested in P
Sm,n
ďd as an R-vector space; therefore, we will not

strictly distinguish between polynomials in the algebraical sense and polynomial functions
defined on Rs.

Definition 16. A vector partition is a finite multiset of elements of Nm0 zt0u.

Let α “ pαp1q, . . . , αpkqq be a vector of k elements of Nm0 . We denote the vector partition
that is obtained by dropping the 0-terms and the order of the terms in pαp1q, . . . , αpkqq by
rαs :“ rpαp1q, . . . , αpkqqs. Let p be a vector partition. We can find a vector of nonzero vectors
α “ pαp1q, . . . , αpkqq such that p “ rαs. We will refer to the terms αpiq in α as the parts of
p and to the integer k as the length of the vector partition and will denote it by `p. We call
αp1q ` ¨ ¨ ¨ ` αpkq the sum of p and will denote it by sppq. If we have sppq “ γ for γ P Nm0 zt0u,
we call p a partition of γ. Let Πm denote the set of vector partitions with parts in Nm0 zt0u.
For an integer vector γ, let |γ| denote the sum of its components.
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Example 17. The four vector partitions of p2, 1q are given by

rp1, 0q, p1, 0q, p0, 1qs,

rp2, 0q, p0, 1qs,

rp1, 1q, p1, 0qs,

rp2, 1qs.

Let a, b, . . . , z denote an alphabet of n letters as in the introduction. As was shown in
section 4.2, we can find a basis of PSm,n

ďd by taking the symmetrizations of the standard
monomial basis. Using the notions we just introduced, we are now able to write the basis
obtained in this way in a more explicit fashion.

Definition 18. Let p be a vector partition with parts in Nm0 of length at most n. The
monomial multisymmetric function with index p is defined as

mp “
ÿ

pαpaq,...,αpzqqPIppq

aα
paq
bα
pbq
¨ ¨ ¨ zα

pzq
,

where Ippq is the set of all α “ pαpaq, . . . , αpzqq such that rαs “ p.

Example 19. Let m :“ 2, n :“ 3, and p :“ rp1, 0q, p1, 0q, p1, 1qs. Then we have

mrp1,0q,p1,0q,p1,1qs “ a
p1,0qbp1,0qcp1,1q ` ap1,0qbp1,1qcp1,0q ` ap1,1qbp1,0qcp1,0q

“ a1b1c1c2 ` a1b1b2c1 ` a1a2b1c1.

Theorem 20. The monomial multisymmetric functions mp, where p is a vector partition
with parts in Nm0 of length at most n, together with the constant function 1 form a basis of
PSm,n.

Similarly to Lemma 14, Theorem 20 appears to be seen as a basic fact and is often
mentionend without proof or reference. Again, we include a proof for the sake of completeness.

Proof. We may write any monomial in the form xα “ aα
paq
bα
pbq
¨ ¨ ¨ zα

pzq
. We associate

the vector partition rαs “ rαpaq, αpbq, . . . , αpzqs with the multiindex α P Ns0. Letting Sm,n act
naturally on Ns0, we see that the orbit of an element α P Ns0 can be described by Iprαsq, i.e., all
the sequences β “ pβpaq, . . . , βpzqq such that rβs “ rαs. In particular, Spxαq agrees with mrαs
up to a nonzero factor; here, S is the symmetrization operator introduced in Proposition 4.
As p runs through the vector partitions of length at most n with parts in Nm0 zt0u, Ippq runs
through the orbits of Ns0zt0u under Sm,n. Thus, the claim follows from Lemma 14.

As a corollary of Theorem 20, we find that

dimPpIqSm,n
ďd “ 1` |tp P Πm | |sppq| ď d, `p ď nu|.(13)

Formula (13) exhibits a property that will prove to be advantageous for our endeavor: If
n ě d, the condition `p ď n is implied by |sppq| ď d. Therefore, we see that the dimension

of PSm,n
ďd is constant in n for n ě d. Recall that dim PpIqSm,n

ďd gives an upper bound on the
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amount of weights needed to integrate all polynomials of PpIqSm,n
ďd exactly using our method,

therefore, this quantity can be bounded independently of n. In other words, there is no curse
of dimensionality on the amount of nodes needed to integrate all multisymmetric polynomials
of a given maximal degree exactly.

For the practical calculation of the cubature formulas, we prefer working with elementary
multisymmetric functions instead of monomial multisymmetric functions. They are defined
as follows. (We choose a definition similar to the one in [24].)

Definition 21. Let P P RrX1, . . . , Xms be of positive degree. We define the elementary
multisymmetric functions associated with P over the following generating function:

(14)
n
ÿ

k“0

tkekpP q :“ p1` tP paqq ¨ p1` tP pbqq ¨ ¨ ¨ p1` tP pzqq.

It follows easily from this definition that

(15) e1pP q “ P paq ` P pbq ` ¨ ¨ ¨ ` P pzq

holds.
Polynomials of the type e1px

αq are usually referred to as power sum multisymmetric mono-
mials and denoted by pα.

Example 22. Let n :“ 3,m :“ 2, and µ :“ X2
1X2. Then we have

e1pµq “ a2
1a2 ` b

2
1b2 ` c

2
1c2.

We will only need functions e1pP q with P P RrX1, . . . , Xms
`, where the ` means that we

only take polynomials of positive degree. Similarly, let M`
m denote the set of monomials in

RrX1, . . . , Xms of positive degree.

Proposition 23. The R-algebra PSm,n is generated by the elementary symmetric polynomials
of the form e1pµq with µ PM`

m and total degree of µ smaller than or equal to n.

Proof. See [24, Theorem 1] for this proof.

We introduce a multigrading with values in Nm0 on PSm,n : For x in the alphabet a, b . . . , z,
we give the variable xi the multidegree ξi, where ξi is the ith vector of the canonical basis of
Zm. We write mdegpPq for the multidegree of a polynomial that is homogeneous relative to
this multigrading.

Example 24. Let m :“ 2 and n :“ 2. We have mdegpa1q “ mdegpb1q “ p1, 0q. Further-
more,

mdegpa1 ` b1q “ p1, 0q,

mdegpa1b1q “ p2, 0q,

mdegpa2b2q “ p0, 2q.
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Theorem 25. Define the set Bn,m
ďd as

Bn,m
ďd :“

#

k
ź

i“1

e1pµiq
ˇ

ˇ

ˇ
k P N, µi PM`

m, |mdegpµiq| ď n,

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1

mdegpµiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď d

+

.

For n ă d, the set Bn,m
ďd is a generating system for PSn,m

ďd as an R-vector space. For n ě d,

the set Bn,m
ďd is a basis of PSn,m

ďd as an R-vector space.

Proof. We begin by enumerating the elements of Bn,m
ďd . Observe that for any collection of

pµiq
k
i“1 with µi PM`

m, we have

(16) mdeg

˜

k
ź

i“1

e1pµiq

¸

“

k
ÿ

i“1

mdegpe1pµiqq “
k
ÿ

i“1

mdegpµiq.

Given α a part of p P Πm, the sum of its entries is called the norm of α. We establish the
mapping

ϕ : tp P Πm | parts of p have norm less than n, |sppq| ď du Ñ Bn,m
ďd zt1u,

p “ rα1, . . . , αks ÞÑ
k
ź

i“1

e1px
αiq,

where we take all the αi in the definition to be nonzero. It is straightforward to see that ϕ
is a bijection. The fact that Bn,m

ďd is a generating system for PSn,m
ďd , as an R-vector space, is

only a rewording of Proposition 23, which is all there was to show for the case n ă d.
If n ě d, the condition |sppq| ď d implies that all of the parts of p have norm not greater

than n, so in that case this condition is obsolete. We obtain
ˇ

ˇBn,m
ďd

ˇ

ˇ “ 1` |tp P Πm | |sppq| ď du| ,

which shows that Bn,m
ďd is in fact a basis by formula (13).

Remark 26. In the case m “ 1, the set Bn,m
ďd is in fact also a basis of Pn,m

ďd if n ă d. This
follows from the well-known fact that the number of integer partitions of k P N into exactly l
parts is equal to the number of integer partitions of k, where the largest part has size exactly l.
However, for m ą 1, this is not true in general. The smallest counterexample we could find

occured for the parameters m “ n “ 2 and d “ 4. Because the dimension of PS2,2

ď4 is equal to
38, it would be cumbersome to write down the full counterexample.

At this point, we are just one small step away from the basis that we will actually use to
compute the cubature formulas. We will slightly generalize the ideas behind Theorem 25.

Definition 27. Let pqiq
8
i“0 with qi P RrXs be a collection of univariate polynomials such that

qi is of degree i for i P N0. Define

Tm :“ tqj1 b qj2 b ¨ ¨ ¨ b qjm | pj1, . . . , jmq P Nm0 u.

We view Tm as a subset of RrX1, . . . , Xms. Again, denote by T `m the elements of Tm of positive
degree.
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Corollary 28. Define the set Cn,m
ďd as

Cn,m
ďd :“

#

k
ź

i“1

e1pPiq
ˇ

ˇ

ˇ
k P N, Pi P T `m , |mdegpPiq| ď n,

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1

mdegpPiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď d

+

.

For n ă d, the set Cn,m
ďd is a generating system for PSn,m

ďd as an R-vector space. For n ě d,

the set Cn,m
ďd is a basis of PSn,m

ďd as an R-vector space.

Proof. From the definition of Tm, it is easy to see that |Cn,m
ďd | “ |Bn,m

ďd |, so by Theo-

rem 25 it is sufficient to show that Cn,m
ďd is a generating system for PpIqSn,m

ďd . Let
µ1, . . . , µk˚ (P1, . . . , Pk˚) be an enumeration of all polynomials µ P M`

m (P P T `m q such
that |mdegpµq| ď minpn, dq (|mdegpP q| ď minpn, dq), respectively. We show that

te1pP1q, . . . , e1pPk˚qu generates PSm,n
ďd as an R-algebra. Let M P PpIqSn,m

ďd . By Theorem 25,
there is a polynomial Q P RrX1, . . . , Xk˚s such that

M “ Qpe1pµ1q, . . . , e1pµk˚qq.

As both Mm and Tm are bases of RrX1, . . . , Xms, we may write any µi as a linear combination
of P1, . . . , Pk˚ as

µi “
k˚
ÿ

j“1

ai,jPj @i P t1, . . . , k˚u,

where ai,j P R. This implies

e1pµiq “
k˚
ÿ

j“1

ai,j ¨ e1pPjq @i P t1, . . . , k˚u.

We define Q̂ P RrX1, . . . , Xk˚s as

Q̂pX1, . . . , Xk˚q :“ Q

˜

k
ÿ̊

j“1

a1,jXj , . . . ,
k
ÿ̊

j“1

ak˚,jXj

¸

,

which implies

Q̂pe1pP1q, . . . , e1pPk˚qq “ Qpe1pµ1q, . . . , e1pµk˚qq “M,

concluding the proof.

5.2. Implementation of the basic scheme.

5.2.1. Basis generation. For the remainder of this section d is assumed to be odd. As
indicated earlier, we will work with a “basis” of the form Cn,m

ďd (as in Corollary 28) from now
on. The fact that Cn,m

ďd is not a basis if n ă d is of no concern, as it is sufficient to integrate all

polynomials of a generating system of PpIqSn,m
ďd exactly in order to integrate all polynomials

of PpIqSn,m
ďd exactly.
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Furthermore, in the cases we are interested in, d is typically small, so the additional
computational overhead of having a larger A-matrix than necessary when n ă d is not prob-
lematic. For the assembly of the matrix A (as defined in subsection 4.1), we only have to
evaluate polynomials of the form e1pP q with P P T `m , that means we only evaluate

`

m`d
d

˘

´ 1
polynomials consisting of n terms. This is a significant advantage compared to monomial
multisymmetric polynomials, which could have a length of d!

`

n
d

˘

terms in the worst case.
We introduced the Cn,m

ďd -polynomials to alleviate a flaw of the Bn,m
ďd -polynomials: None of

the polynomials of the form e1pµq with µ P M`
m evaluate to 0 on Izt0u, resulting in a fully

dense A-matrix. To force more entries of A to be 0, we make the following choice for the
qi (as defined in Definition 27): Let yj denote the nodes of the univariate degree-d Gaussian
quadrature formula on r0, 1s for j P t1, . . . , d`1

2 u. Define

qj :“

j
ź

i“1

px´ yiq, j P

"

0, . . . ,
d` 1

2

*

.

We chose qj for j ą d`1
2 to be a multiple of qpd`1q{2. The precise form of the multiples of

qpd`1q{2 does not have a great impact on the sparsity of A. Using this particular basis, we
obtained 30% to 72% zero entries, decreasing as n and d increase.

5.2.2. Calculating integrals of basis polynomials. The usage of a basis like Cn,m
ďd increases

the difficulty of calculating the integrals of basis polynomials (the right-hand side vector b in
section 4.1). However, we can still find closed forms for the integrals whose complexity with
respect to n is essentially constant, assuming that d is small.

Definition 29. Let l be a positive integer. Define the set Ppt1, . . . , luq to be the set of all
(set-)partitions of t1, . . . , lu.

Lemma 30. Let Pi P T `m for all i P t1, . . . , lu. Then the equation

ż

r0,1ss

l
ź

i“1

e1pPiqdx “
ÿ

DPPpt1,...,luq
|D|ďn

npn´ 1q ¨ ¨ ¨ pn´ |D| ` 1q
ź

BPD

ż

r0,1sm

ź

iPB

Pipyqdy

holds.

Proof. We calculate

ż

r0,1ss

l
ź

i“1

e1pPiq dx “

ż

r0,1ss

l
ź

i“1

pPipaq ` ¨ ¨ ¨ ` Pipzqq dx

“

ż

r0,1ss

ÿ

px1,...,xlqPta,...,zul

l
ź

i“1

Pipxiqdx.

We can treat a, . . . ,z as dummy variables for integration; therefore, we can partition t1, . . . , lu
into parts that have the same integral without having to remember the variable name. For
example, if l “ 4, then the term P1paqP2paqP3pbqP4pcq has the same integral as
P1pcqP2pcqP3paqP4pbq. Both terms would induce the partition tt1, 2u, t3u, t4uu. For any
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partition D of t1, . . . , lu into at most n parts, there are npn ´ 1q ¨ ¨ ¨ pn ´ |D| ` 1q terms as-
sociated with this partition and, therefore, they have the same integral, which is equal to
ś

BPD
ş

r0,1sm
ś

jPB Pjpyqdy. Hence we conclude

ż

r0,1ss

l
ź

i“1

e1pPiq dx

“
ÿ

DPPpt1,...,luq,
|D|ďn

npn´ 1q ¨ ¨ ¨ pn´ |D| ` 1q
ź

BPD

ż

r0,1sm

ź

iPB

Pipyq dy.

Using Lemma 30, we only have to calculate integrals of products of Pi P T `m in m dimen-
sions in order to integrate the basis polynomials of Cn,m

ďd . This comes at the cost of iterating
over partitions of t1, . . . , lu, but as l ď d and d typically is small, this is usually inexpensive.

5.2.3. Generating nodes modulo Sm,n. Let N0 denote the nodes of a univariate degree-d
Gaussian quadrature formula. Then, taking all n-combinations of

Śm
i“1 N0 with repetitions

gives a full representative system of the nodes modulo Sm,n. Therefore, the number of orbits
k of

Śs
i“1 N0 under the natural action of Sm,n is equal to

(17) k “

ˆ

n`
`

d`1
2

˘m
´ 1

n

˙

.

5.2.4. Saving memory. The limiting factor when the algorithm is applied in the way
we propose is memory consumption. For large n, the number k of columns in the matrix
A P Rn˚ˆk is usually very large (see (17)), and executing the simplex algorithm with a large
constraint matrix uses sizable amounts of memory. Observe that in the critical cases we have
k " n˚, and n˚ is an upper bound for the number of nonzero entries in a solution. Leaving out
columns of A corresponds to searching for solutions that have entries equal to 0 at the nodes
associated with the columns that were left out. Heuristically, as k " n˚, we should be able to
leave out a lot of columns and still obtain results. This motivates the following algorithm.

Algorithm 5.1 Reduction of Columns.

Initialize A0 :“ H
while A0 infeasible according to the basic scheme in subsection 4.1 do

Add a small subset of columns of A to A0

end while
Compute solution of the system

This procedure proved to be very efficient, enabling us to calculate lots of formulas that
would otherwise have been out of reach.

6. Numerical results. We would like to preface this section with a quote [18, section 11,
Paragraph 2]:

“When good results are obtained in integrating a high-dimensional function,
we should conclude first of all that an especially tractable integrand was tried
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Table 1
The left table shows the required amount of cubature nodes for a fully symmetric cubature formula pm “ 1q

of degree d. The right table shows the required amount of cubature nodes for a multisymmetric cubature formula
pm “ 2q of degree d.

degree d

n 3 5 7 9 11

1 2 3 4 5 6
2 3 6 10 15 21
3 4 9 18 30 48
4 3 9 24 46 46
5 3 11 28 38 51
6 4 12 30 38 57
7 4 12 24 43 52
8 4 12 25 42 56

degree d

n 3 5 7 9

1 4 9 16 25
2 6 30 100 225
3 8 67 248 714
4 13 84 367 1196
5 13 90 432 1659
6 13 90 457 1581
7 13 90 465 1618
8 13 90 465 1564

and not that a generally successful method has been found. A secondary
conclusion is that we might have made a very good choice in selecting an
integration method to exploit whatever features of f made it tractable.”

In this section, we compare the cubature formula for multisymmetric functions obtained
with the method presented in section 5 to other numerical integration methods such as quasi-
Monte Carlo methods, e.g., the Sobol sequence [3, 15], the Clenshaw–Curtis sparse grid, and
tensor-product formulas. There are quasi-Monte Carlo methods that exploit smoothness of
functions better than the Sobol sequence [8]. However, for ease of implementation we chose
the Sobol sequence, which is well known and implementations are readily available in many
different software libraries.

The code for generating the cubature formulas (written in the Julia language) for multi-
symmetric functions as well as the cubature formulas themselves can be found in a GitHub
repository [19].

The amount of function evaluations for a proposed cubature formula of degree d can be
looked up in Table 1. We refer by N to the number of function evaluations of the Monte Carlo
methods and sparse grid method. As a reminder, we have s “ mn, where s is the dimension, n
corresponds to the number of exchangeable m-tuples. In this section, we compare the proposed
formulas of a given degree d to the other techniques which have the amount of evaluations
fixed at some number N .

In the implementation it became apparent that the numerically most costly parts of the
algorithm proposed in section 5 were finding a feasible solution to the possibly large system
of linear equations (7), e.g., via linear programming and the computation of the integrals of
the basis polynomials as described in Lemma 30. In section 5.2.4, an efficient work-around
for the former problem was proposed using that the system is greatly overdetermined. The
computational cost to calculate the integrals of the basis polynomials increases exponentially
in the maximal degree d—which is, in fact, a weakness of this algorithm. Indeed, this was
the major restriction while computing formulas of higher degree. The great advantage of this
approach is that the amount of necessary evaluations, e.g., the amount of cubature nodes,
can be bounded by a constant for fixed m and d and all n. This can be observed in Table 1.
However, in our implementation, the system tends to become numerically unstable as n or d
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Figure 1. Relative error of g1 (left) and g2 (right) as a function of dimension n compared to tensor-product
quadrature formulas indicated by circles. The degree of the formulas used is denoted by d.

grows large, e.g., for n ě 100 (resp., d ě 11 and m “ 1), since the value range of (7) becomes
wider and wider.

6.1. Low-dimensional test cases. In the multisymmetric case (m “ 2), we computed
formulas up to a maximal degree of d “ 9. The following multisymmetric test integrands

g1px1, y1, . . . , xn, ynq :“
n
ÿ

i

˜

exp
´xi

10

¯

` exppyiq `
1

2

n
ÿ

j‰i

exp
´xixj

10

¯

` exppyiyjq

¸

,

g2px1, y1, . . . , xn, ynq :“ sin

˜

n
ÿ

i

xi
10
` yi

¸

,

g3px1, y1, . . . , xn, ynq :“ exp

˜

n
ÿ

i

´
x2
i

10
´ y2

i

¸

,

g4px1, y1 . . . , xn, ynq :“
1

b

řn
i
xi
10 ` yi

were examined, whose integrals can be derived easily analytically.
Figures 1 and 2 show a comparison of Gauss–Legendre tensor-product formulas and the

proposed cubature rules. It is to expect that the proposed formulas fare worse than the
tensor-product rule, since more (multisymmetric) polynomials are exactly integrated by the
latter one. For example, if n “ 2, m “ 1, and d “ 2, the polynomial x2y2 would be exactly
integrated by the product rule but not by the proposed one. As shown in Theorem 7, the
Taylor expansion of a G-invariant function at a G-invariant expansion point is G-invariant,
again. This fact stands out particularly for g1 and g3, where the dominant terms in the
expansion are integrated exactly by the proposed formulas as well. The results show that the
proposed formulas yield comparably good results for the functions g1 and g3.

We attribute the fact that the error does not converge in a better fashion, as shown in
Figures 3 and 4, to a numerical instability of our approach and the choice of polynomials which
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Figure 2. Relative error of g3 (left) and g4 (right) as a function of dimension n compared to tensor-product
quadrature formulas indicated by circles.The degree of the formulas used is denoted by d.
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Figure 3. Relative error of g1 (left) and g2 (right) as a function of dimension n. The degree of the formulas
used is denoted by d.
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Figure 4. Relative error of g3 (left) and g4 (right) as a function of dimension n. The degree of the formulas
used is denoted by d.
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Table 2
Comparison of the relative error of a quasi-Monte Carlo method of N samples and the multisymmetric

cubature formula of degree d. The test integrand is g1.

Sym. cubature Quasi-Monte Carlo

n d “ 5 d “ 9 N “ 102 N “ 103 N “ 104

1 2.9 ¨ 10´7 2.7 ¨ 10´13 4.3 ¨ 10´4 1.6 ¨ 10´4 4.8 ¨ 10´5

2 2.3 ¨ 10´7 1.8 ¨ 10´13 2.9 ¨ 10´4 4.0 ¨ 10´4 4.3 ¨ 10´5

3 2.0 ¨ 10´7 1.5 ¨ 10´13 1.2 ¨ 10´3 1.4 ¨ 10´4 3.0 ¨ 10´5

4 1.8 ¨ 10´7 8.8 ¨ 10´11 8.6 ¨ 10´4 1.4 ¨ 10´4 4.2 ¨ 10´6

5 1.7 ¨ 10´7 1.2 ¨ 10´13 1.5 ¨ 10´3 1.5 ¨ 10´4 4.7 ¨ 10´6

Table 3
Comparison of the relative error of a quasi-Monte Carlo method of N samples and the multisymmetric

cubature formula of degree d. The test integrand is g2.

Sym. cubature Quasi-Monte Carlo

n d “ 5 d “ 9 N “ 102 N “ 103 N “ 104

1 5.1 ¨ 10´7 2.4 ¨ 10´13 1.3 ¨ 10´3 3.1 ¨ 10´4 1.0 ¨ 10´4

2 6.7 ¨ 10´7 7.2 ¨ 10´12 3.9 ¨ 10´3 5.3 ¨ 10´4 1.2 ¨ 10´5

3 1.1 ¨ 10´5 9.8 ¨ 10´9 3.9 ¨ 10´3 1.6 ¨ 10´3 1.3 ¨ 10´4

4 2.8 ¨ 10´5 1.1 ¨ 10´7 2.5 ¨ 10´3 3.9 ¨ 10´3 2.4 ¨ 10´4

5 3.2 ¨ 10´5 3.1 ¨ 10´9 3.4 ¨ 10´3 9.6 ¨ 10´3 9.5 ¨ 10´4

Table 4
Comparison of the relative error of a quasi-Monte Carlo method of N samples and the multisymmetric

cubature formula of degree d. The test integrand is g3.

Sym. cubature Quasi-Monte Carlo

n d “ 5 d “ 9 N “ 102 N “ 103 N “ 104

1 1.2 ¨ 10´5 8.1 ¨ 10´9 1.4 ¨ 10´3 2.7 ¨ 10´4 7.4 ¨ 10´5

2 2.4 ¨ 10´5 1.5 ¨ 10´8 2.3 ¨ 10´3 3.1 ¨ 10´4 1.2 ¨ 10´4

3 5.7 ¨ 10´5 2.1 ¨ 10´8 1.1 ¨ 10´4 4.3 ¨ 10´4 5.0 ¨ 10´5

4 7.7 ¨ 10´5 3.3 ¨ 10´7 7.7 ¨ 10´4 1.7 ¨ 10´3 9.7 ¨ 10´4

5 1.5 ¨ 10´4 8.8 ¨ 10´8 6.8 ¨ 10´3 2.0 ¨ 10´3 1.7 ¨ 10´4

are exactly integrated. When comparing to the tensor-product rule, one has to note that the
active dimension ranges from 4 (in the case of n “ 2) to 12 (in the case of n “ 6), which leads to
a required number of evaluations of 34 up to 312 for the tensor-product formula of degree d “ 5,
which is significantly more than the number of evaluations needed for the multisymmetric
cubature formula considering that the (worst-case) amount of necessary evaluations remains
constant for n ě d as shown in Table 1.

Tables 2, 3, 4, and 5 show a comparison of multisymmetric cubature formulas to a quasi-
Monte Carlo method. Considering error and number of evaluations, the multisymmetric
cubature formula seems to be superior to the quasi-Monte Carlo method in both aspects.
Tables 6, 7, 8, and 9 show a comparison of multisymmetric cubature formulas to a Clenshaw–
Curtis sparse grid. The sparse grid was constructed adaptively [12], where the algorithm
stopped after the first iteration step when N evaluations are exceeded. This is not a very
natural way of applying an adaptive sparse grid method, but otherwise the runtime and
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Table 5
Comparison of the relative error of a quasi-Monte Carlo method of N samples and the multisymmetric

cubature formula of degree d. The test integrand is g4.

Sym. cubature Quasi-Monte Carlo

n d “ 5 d “ 9 N “ 102 N “ 103 N “ 104

1 2.6 ¨ 10´2 7.6 ¨ 10´3 2.7 ¨ 10´2 5.6 ¨ 10´3 6.8 ¨ 10´4

2 1.3 ¨ 10´3 5.6 ¨ 10´5 1.0 ¨ 10´2 1.9 ¨ 10´3 2.9 ¨ 10´4

3 3.6 ¨ 10´5 1.0 ¨ 10´5 6.8 ¨ 10´3 1.7 ¨ 10´3 2.0 ¨ 10´4

4 1.4 ¨ 10´4 7.9 ¨ 10´6 4.9 ¨ 10´3 1.2 ¨ 10´3 1.9 ¨ 10´4

5 8.0 ¨ 10´6 1.8 ¨ 10´6 4.1 ¨ 10´3 1.0 ¨ 10´3 1.3 ¨ 10´4

Table 6
Comparison of the relative error of a classical sparse grid method of at least N evaluations and the multi-

symmetric cubature formula of degree d. The test integrand is g1.

Sym. cubature Sparse grid

n d “ 5 d “ 9 N “ 102 N “ 5 ¨ 102 N “ 103

1 2.9 ¨ 10´7 2.7 ¨ 10´13 4.8 ¨ 10´16 6.9 ¨ 10´13 1.8 ¨ 10´13

2 2.3 ¨ 10´7 1.8 ¨ 10´13 4.9 ¨ 10´6 6.9 ¨ 10´8 7.5 ¨ 10´13

3 2.0 ¨ 10´7 1.5 ¨ 10´13 8.5 ¨ 10´4 1.0 ¨ 10´7 7.2 ¨ 10´8

4 1.8 ¨ 10´7 8.8 ¨ 10´11 1.3 ¨ 10´3 6.2 ¨ 10´6 2.4 ¨ 10´6

5 1.7 ¨ 10´7 1.2 ¨ 10´13 1.6 ¨ 10´3 9.4 ¨ 10´6 6.3 ¨ 10´6

Table 7
Comparison of the relative error of a classical sparse grid method of at least N evaluations and the multi-

symmetric cubature formula of degree d. The test integrand is g2.

Sym. cubature Sparse grid

n d “ 5 d “ 9 N “ 102 N “ 5 ¨ 102 N “ 103

1 5.1 ¨ 10´7 2.4 ¨ 10´13 1.9 ¨ 10´15 2.8 ¨ 10´14 9.6 ¨ 10´13

2 6.7 ¨ 10´7 7.2 ¨ 10´12 9.2 ¨ 10´6 1.3 ¨ 10´8 8.2 ¨ 10´12

3 1.1 ¨ 10´5 9.8 ¨ 10´9 1.1 ¨ 10´4 6.5 ¨ 10´7 6.3 ¨ 10´7

4 2.8 ¨ 10´5 1.1 ¨ 10´7 5.9 ¨ 10´3 2.9 ¨ 10´4 9.1 ¨ 10´6

5 3.2 ¨ 10´5 3.1 ¨ 10´9 1.4 ¨ 10´2 9.6 ¨ 10´4 7.4 ¨ 10´4

amount of function evaluations would not have been comparable to that of our formulas or a
quasi-Monte Carlo method. Increasing the dimensionality of the problem seems to drastically
decrease the accuracy of the sparse grid, whereas the multisymmetric cubature formula does
not expose this behavior as much. In terms of efficiency, the multisymmetric cubature rule
seems to be superior to both the quasi-Monte Carlo and sparse-grid methods.

6.2. High-dimensional test cases. For the high-dimensional comparison, we use Genz
functions [11]. In the Genz functions, u is a location parameter and a is an effective param-
eter, which is normed according to Table 10. The norming ensures that the difficulty of the
integration problems remains more or less constant with respect to the number of dimensions
[11, 22]. The parameters are chosen randomly under the conditions that the functions remain
multisymmetric and that the norm of a satisfies the value prescribed in Table 10. Since these
parameters are chosen randomly, we use the standard Monte Carlo method for computing the
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Table 8
Comparison of the relative error of a classical sparse grid method of at least N evaluations and the multi-

symmetric cubature formula of degree d. The test integrand is g3.

Sym. cubature Sparse grid

n d “ 5 d “ 9 N “ 102 N “ 5 ¨ 102 N “ 103

1 1.2 ¨ 10´5 8.1 ¨ 10´9 6.9 ¨ 10´13 3.6 ¨ 10´13 1.3 ¨ 10´12

2 2.4 ¨ 10´5 1.5 ¨ 10´8 4.6 ¨ 10´5 3.0 ¨ 10´7 1.6 ¨ 10´9

3 5.7 ¨ 10´5 2.1 ¨ 10´8 2.9 ¨ 10´4 4.9 ¨ 10´6 4.5 ¨ 10´6

4 7.7 ¨ 10´5 3.3 ¨ 10´7 8.4 ¨ 10´3 6.3 ¨ 10´5 5.6 ¨ 10´5

5 1.5 ¨ 10´4 8.8 ¨ 10´8 2.1 ¨ 10´2 1.9 ¨ 10´3 1.3 ¨ 10´3

Table 9
Comparison of the relative error of a classical sparse grid method of at least N evaluations and the multi-

symmetric cubature formula of degree d. The test integrand is g4.

Sym. cubature Sparse grid

n d “ 5 d “ 9 N “ 102 N “ 5 ¨ 102 N “ 103

1 2.6 ¨ 10´2 7.6 ¨ 10´3 1.8 ¨ 10´3 9.9 ¨ 10´3 1.2 ¨ 10´3

2 1.3 ¨ 10´3 5.6 ¨ 10´5 3.6 ¨ 10´3 8.4 ¨ 10´4 2.2 ¨ 10´4

3 3.6 ¨ 10´5 1.0 ¨ 10´5 1.8 ¨ 10´3 3.8 ¨ 10´4 3.8 ¨ 10´4

4 1.4 ¨ 10´4 7.9 ¨ 10´6 2.5 ¨ 10´3 7.0 ¨ 10´4 2.3 ¨ 10´4

5 8.0 ¨ 10´6 1.8 ¨ 10´6 2.0 ¨ 10´3 4.7 ¨ 10´4 3.9 ¨ 10´4

relative root mean square error (rRMSE),

(18) rRMSE :“

g

f

f

f

f

f

e

E
„

´

ş

r0,1snm fpxqdx´Qpfq
¯2


E
„

´

ş

r0,1snm fpxqdx
¯2
 .

The number of samples is chosen sufficiently large such that we obtain a 99% confidence
interval for a computation error of less than 1%.

The calculation of the exact integral for f3, Genz’s corner-peak function, demands a
significant amount of computational work, and is numerically unstable for n ą 20. Therefore,
we chose to omit this function.

In this test case, we chose m :“ 1. Figures 5, 6, 7, 8, and 9 compare the fully symmetric
cubature rule to standard Monte Carlo and quasi-Monte Carlo with 104 samples each and
a sparse grid with more than 103 evaluations. We would like to point out that the worst-
case bound on the number of evaluations for the multisymmetric cubature rules is 19 in the
case d “ 5 and 45 in the case d “ 7, a comparably small amount. The Genz functions
are used as test integrands. These results should be taken with a grain of salt, since even
though the free parameters are chosen in a way such that the difficulty to integrate remains
constant, the integrands essentially converge to a constant as n grows. It is notable that the
standard and quasi-Monte Carlo methods show better results for smaller dimensions. For
smaller dimensions, the test integrands are less regular (e.g., the oscillatory function oscillates
very quickly for small n and the Gaussian function has a very small variance), which favors
Monte Carlo methods. This explanation is consistent with the observation that sparse grids
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Table 10
Genz functions.

Integrand family ‖a‖1

f1pxq :“ cos
`

2πu1 `
ř

i aixi
˘ 110

a

pnmq3

f2pxq :“
ś

i
1

a´2
i `pxi´uiq

2

600

pnmq2

f3pxq :“
`

1`
ř

i aixi
˘pn¨m`1q 600

pnmq2

f4pxq :“ exp
`

´
ř

i a
2
i pxi ´ uiq

2
˘ 100

nm

f5pxq :“ exp
`

´
ř

i ai|xi ´ ui|
˘ 150

pnmq2

f6pxq :“

#

0, x1 ą u1 or x2 ą u2,

exp
`
ř

i aixi
˘

, otherwise

100

pnmq2
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Figure 5. Relative error of different integration methods for Genz’s n-dimensional oscillatory function f1.

and multisymmetric cubature formulas outperform Monte Carlo methods for very regular
integrands, while less regular integrand families (see Figures 8 and 9) seem to favor Monte
Carlo methods.

6.3. A stochastic partial differential equation. In this section, we compute the expec-
tation of the solution of a stochastic elliptic partial differential equation using our proposed
formulas as well as a quasi-Monte Carlo method and compare the accuracy of the results
obtained this way.
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Figure 6. Relative error of different integration methods for Genz’s n-dimensional product-peak function f2.
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Figure 7. Relative error of different integration methods for Genz’s n-dimensional Gaussian function f4.

Again, we let m :“ 1 and define D :“ r0, 1s2 and a probability space Ω. We consider the
problem

´∆upx, y, ωq “ fpx, y, ωq in D ˆ Ω,(19a)

upx, y, ωq “ gpx, yq on BD ˆ Ω,(19b)

where we assume that f and g are sufficiently smooth in px, yq such that the solution is classic.
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Figure 8. Relative error of different integration methods for Genz’s n-dimensional continuous function f5.
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Figure 9. Relative error of different integration methods for Genz’s n-dimensional discontinuous function f6.

Integrating with respect to dP pωq, we obtain

´

ż

Ω
∆upx, y, ωqdP pωq “

ż

Ω
fpx, y, ωqdP pωq in D,

ż

Ω
upx, y, ωqdP pωq “ gpx, yq on BD.

Since we assumed u to be sufficiently smooth, we may exchange the order of integration with
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respect to dP pωq and taking derivatives with respect to the spatial variables, yielding

´∆Erus “ Erf s in D,(20)

Erus “ g on BD,(21)

which allows us to compute the expectation of the solution of the original linear problem by
solving the deterministic problem for the expectation above.

In order to numerically solve the deterministic elliptic problems for fixed ω in (19), we
use the open-source Julia programming language [10]. For testing purposes, we consider the
right-hand side

fpx, y, ωq :“
1

n

n
ÿ

i“1

exp
`

´Uipωq
`

x2 ` y2
˘˘

,

where Ui „ Up0, 1q, i.e., we choose pUiq
n
i“1 to be an independent and identically distributed se-

quence of uniformly distributed random variables. We choose g :“ 1 such that the expectation
of (19) satisfies the equation

´∆Erus “
1´ exp

`

´
`

x2 ` y2
˘˘

x2 ` y2
in D,(22)

Erus “ 1 on BD.(23)

In this numerical example, we set n :“ 15. Figure 10 shows the absolute error of the
exact expectation obtained by solving (20) compared to the approximation obtained by using
a multisymmetric cubature formula. The accuracy of the approximation of the expectation
increases with the degree d of the cubature formula, where d P t3, 5, 7, 9, 11u. For d “ 11, the
full accuracy of the floating-point numbers is reached and one can observe the numerical error
of the finite-element solver.

Figure 11 shows the absolute error of the exact expectation compared to the approxima-
tion obtained by using the Sobol sequence, a quasi-Monte Carlo method. Since the integrand
is highly regular, the error converges much more slowly for the quasi-Monte Carlo method
compared to the multisymmetric cubature formula. For d “ 3, a total amount of four evalua-
tions is needed, resulting in an L2-error of 5 ¨ 10´5, whereas the L2-error for the quasi-Monte
Carlo method with 102 samples is 8.7 ¨10´4. By taking 103 samples, the L2-error improves by
two orders of magnitude to 6.9¨10´6, whereas the multisymmetric cubature formula for d “ 11
requires only 48 solver calls to reach an L2-error of 5 ¨ 10´15, i.e., the computational accuracy.

7. Conclusions. By making use of a priori knowledge of the integrand, we have developed
a general setting for creating cubature formulas for the broad class of G-invariant functions in
Definition 2. These cubature formulas are of immediate importance for the numerical approx-
imation of solutions of stochastic partial differential equations. Theoretical results for spaces
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Figure 10. The first plots show the absolute error of the exact expectation obtained by solving (20) compared
to the approximation obtained by using a multisymmetric cubature rule of degree d. The exact expectation is
shown in the last plot.
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Figure 11. The first plots show the absolute error of the exact expectation obtained by solving (20) compared
to the approximation obtained by using a quasi-Monte Carlo method with N samples. The exact expectation is
shown in the last plot.



CUBATURE FORMULAS FOR MULTISYMMETRIC FUNCTIONS 241

of G-invariant functions were shown in section 2 as well as standard error bounds in section 3.
In the following, a general scheme for computing cubature formulas of G-invariant functions
was developed in section 4. Based on that, a special kind of G-invariance, the notion of multi-
symmetry (see Definition 1) and the corresponding polynomial spaces were further examined
in section 5. Finally, the algorithms were implemented and numerical results were shown
in section 6, comparing the obtained multisymmetric cubature formulas to other, conven-
tional multivariate integration techniques such as tensor-product Gauss–Legendre quadrature,
quasi-Monte Carlo (the Sobol sequence), and Clenshaw–Curtis sparse grid. In the last part
of section 6, the expectation of a stochastic elliptic partial differential equation was computed
by using the proposed cubature formula and a quasi-Monte Carlo method.

The numerical results show that this newly developed integration method can prevail even
against the computationally expensive tensor-product rule in terms of relative error to a cer-
tain extent. In both cases examined, namely, the fully symmetric and the multisymmetric
one for m “ 2, it was found that the proposed multisymmetric cubature formulas require
far fewer evaluations for comparable accuracy than common methods such as quasi-Monte
Carlo and Clenshaw–Curtis sparse grid. The effectiveness of our approach seems to increase
with the regularity of the integrand. The results for the stochastic partial differential equa-
tion reinforce our conviction that the proposed formulas perform well for smooth integrands,
beating the accuracy of the quasi-Monte Carlo method by orders of magnitude, again with far
fewer function evaluations. This result suggests that multisymmetric cubature formulas can
successfully be applied to more complex high-dimensional problems, e.g., in a stochastic dis-
crete projection method or for the computation of the posterior density function in Bayesian
parameter estimation.

In particular, we want to point out that the required number of evaluations scales very
well with the number of dimensions for multisymmetric cubature formulas, being constant
for fixed m, d, and n ě d. This can be interpreted as actually overcoming the curse of
dimensionality in the case of multisymmetry. Following the scheme of section 4, it may be
possible to develop efficient algorithms for a multitude of groups G to compute dimensionally
well-scaling cubature formulas. A logical next step might be to consider Cartesian products
of multisymmetry groups, representing the case where there are several types of particles that
are not mutually interchangeable.

Nonetheless, we encountered a limitation in the multisymmetric case. From a numerical
perspective, the system to be solved becomes numerically unstable and thus the formulas
obtained may lose precision as the dimension n increases.

Finally, we want to mention that natural applications of this low-cost integration method
arise, e.g., in computational physics and, in particular, in computational quantum physics as
well as in uncertainty quantification, when function evaluations are computationally expensive
such as when solving stochastic partial differential equations. Whenever one has multisym-
metric, smooth integrands and efficiency is a priority, the formulas presented here seem to be
the integration technique of choice.

Acknowledgments. We would like to thank N. Levenberg, R. Schürer, and D. Toneian
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archives-ouvertes.fr/tel-00002085.

[5] R. Cools, An encyclopaedia of cubature formulas, J. Complexity, 19 (2003), pp. 445–453.
[6] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Dover, Mineola, NY, corrected 2nd

ed., 2007.
[7] E. A. Devuyst and P. V. Preckel, Gaussian cubature: a practitioner’s guide, Math. Comput. Model.,

45 (2007), pp. 787–794, https://doi.org/10.1016/j.mcm.2006.07.021.
[8] J. Dick, Walsh spaces containing smooth functions and quasi–Monte Carlo rules of arbitrary high order,

SIAM J. Numer. Anal., 46 (2008), pp. 1519–1553, https://doi.org/10.1137/060666639.
[9] J. Dick, F. Y. Kuo, and I. H. Sloan, High-dimensional integration: The quasi-Monte Carlo way, Acta

Numer., 22 (2013), pp. 133–288, https://doi.org/10.1017/S0962492913000044.
[10] C. Geiersbach, C. Heitzinger, G. Pammer, S. Rigger, and G. Tulzer, A 2D Finite Element Method

Solver for Drift-Diffusion-Poisson Systems and Semilinear Poisson Equations, https://github.com/
Stivanification/DriftDiffusionPoissonSystems.jl (2016).

[11] A. Genz, A package for testing multiple integration subroutines, in Numerical Integration, Dordrecht, the
Netherlands, 1987, pp. 337–340.

[12] T. Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature, Computing, 71 (2003),
pp. 65–87.

[13] A. Hinrichs, E. Novak, M. Ullrich, and H. Woźniakowski, The curse of dimensionality for numer-
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