
Chapter 4

Maximally Consistent Extensions

Throughout this chapter we require that all formulae are written in Polish notation
and that the variables are among v0, v1, v2, . . . Recall that by the PRENEX NORMAL

FORM THEOREM 1.12 and by the VARIABLE SUBSTITUTION THEOREM 1.13, ev-
ery formula can be transformed into an equivalent formula of the required form.

Maximally Consistent Theories

Let L be an arbitrary signature and let T be an L -theory. We say that T is maxi-

mally consistent if T is consistent and for every L -sentenceσ we have either σ P T
or  ConpT ` σq. In other words, a consistent theory T is maximally consistent if
no proper extension of T is consistent.

The following fact is just a reformulation of the definition.

FACT 4.1. Let L be a signature and let T be a consistent L -theory. Then T is
maximally consistent iff for every L -sentence σ, either σ P T or T $  σ.

Proof. By THEOREM 1.14.(c)&(d) we have:

 ConpT` σq ÎùùùÏ T $  σ

Hence, an L -theory is maximally consistent iff for every L -sentence σ, either
σ P T or T $  σ. %

As a consequence of FACT 4.1 we get

LEMMA 4.2. Let L be a signature and let T be a consistent L -theory. Then T is
maximally consistent iff for every L -sentence σ, either σ P T or  σ P T.

Proof. We have to show that the following equivalence holds:
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A σ
`
σ P T or T $  σ

˘
ÎùùùÏ A σ

`
σ P T or  σ P T

˘

(ñ) Assume that for every L -sentence σ we have σ P T or T $  σ. If σ P
T, then the implication obviously holds. If σ R T, then T $  σ, and since T is
consistent, this implies T & σ. Now, by TAUTOLOGY (F.0), this implies T &   σ
and by our assumption we finally get  σ P T.

(ð) Assume that for every L -sentence σ we have σ P T or  σ P T. If σ P T,
then the implication obviously holds. Now, if σ R T, then by our assumption we
have  σ P T, which obviously implies T $  σ. %

Maximally consistent theories have similar features as complete theories: Recall
that an L -theory T is complete if for every L -sentence σ we have either T $ σ or
T $  σ.

As an immediate consequence of the definitions we get

FACT 4.3. Let L be a signature, let T be a consistent L -theory, and let ThpTq be
the set of all L -sentences which are provable from T.

(a) If T is complete, then ThpTq is maximally consistent.

(b) If T is maximally consistent, then ThpTq is equal to T.

The next lemma gives a condition under which a theory can be extended to max-
imally consistent theory.

LEMMA 4.4. If an L -theory T has a model, then T has a maximally consistent
extension.

Proof. Let M be a model of the L -theory T and let TM be the set of L -sentences
σ such that M ( σ. Then TM is obviously a maximally consistent theory which
contains T. %

Later we shall see that every consistent theory has a model. For this, we first
show how a consistent theory can be extended to a maximally consistent theory.

Universal List of Sentences

Let L be an arbitrary but fixed countable signature, where by “countable” we mean
that the symbols in L can be listed in a F I N I T E or P O T E N T I A L L Y I N -
F I N I T E list LL .

First, we encode the symbols of L corresponding to the order in which they
appear in the list LL : The first symbol is encoded with “2”, the second with “22”,
the third with “222”, and so on. For every symbol ζ P LL let #ζ denote the code
of ζ. So, the code of a symbol of L is just a sequence of 2’s.

Furthermore, we encode the logical symbols as follows:
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Symbol ζ Code #ζ

“ 11

 1111

^ 111111

_ 11111111

Ñ 1111111111

D 111111111111

@ 11111111111111

v0 1

v1 111

...
...

vn 1111 . . . 11111looooooooomooooooooon
p2n ` 1q 1’s

In the next step, we encode strings of symbols: Let ζ̄ ” ζ1ζ2ζ3 . . . ζn be a finite
string of symbols, then

#ζ̄ :“ #ζ10#ζ20#ζ3 . . . 0#ζn

For a string #ζ (i.e., a string of 0’s, 1’s, and 2’s) let |#ζ| be the length of #ζ (i.e.,
the number of 0’s, 1’s, and 2’s which appear in #ζ).

Now, we order the codes of strings of symbols by their length and lexicograph-
ically, where 0 ă 1 ă 2. If, with respect to this ordering, #ζ1 is less than #ζ2, we
write ζ1 ă ζ2.

Finally, let ΛL “ rσ1, σ2, . . .s be the potentially infinite list of all L -sentences,
ordered by “ă” (i.e., σi ă σj iff i ă j). We call ΛL the universal list of L -

sentences.

Lindenbaum’s Lemma

In this section we show that every consistent set of L -sentences T can be extended
to a maximally consistent set of L -sentences T. Since the universal list of L -
sentences contains all possible L -sentences, every set of L -sentences can be can
be listed in a (finite or potentially infinite) list. So, we do not have to assume that
the (possibly infinite) set of L -sentences T is completed and definite.

LINDENBAUM’S LEMMA 4.5. Let L be a countable signature and let T be a con-
sistent set of L -sentences. Furthermore, let σ0 be an L -sentences which cannot
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be proved from T, i.e., T & σ0. Then there exists a maximally consistent set T of
L -sentences which contains  σ0 as well as all the sentences of T.

Proof. Let ΛL “ rσ1, σ2, . . .s be the universal list of L -sentences. First we extend
ΛL with the L -sentence σ0; let Λ0

L
“ r σ0, σ1, σ2, . . .s.

Now, we go through the list Λ0

L
and define step by step a list T of L -sentences:

For this, we define T0 as the empty list, i.e., T0 :“ r s. If Tn is already defined, then

Tn`1 :“

#
Tn ` rσns if ConpT ` Tn ` σnq,

Tn otherwise.

Let T “ rσi0 , σi1 , . . .s be the resulting list, i.e., T is the union of all the Tn’s.
Notice that the construction only works if we assume the L A W O F E X -

C L U D E D M I D D L E: Even in the case when we cannot decide whether T `
Tn ` σn is consistent or not, we assume, from a metamathematical point of view,
that either T ` Tn ` σn is consistent or T ` Tn ` σn is inconsistent (and neither
both nor none).

CLAIM. T is a maximally consistent set of L -sentences which contains  σ0 as
well as all the sentences of T.

Proof of Claim. First we show that  σ0 belongs to T, then we show that T ` T

is consistent (which implies that T is consistent), in a third step we show that T
contains T, and finally we show that for every L -sentence σ we have either σ P T
or  ConpT` σq.

 σ0 belongs to T: Since T & σ0, by PROPOSITION 1.14.(c) we have ConpT `
 σ0q, and since T0 “ r s, we also have ConpT ` T0 `  σ0q. Thus,  σ0 P T1 (in
fact T1 “ r σ0s) which shows that  σ0 P T.

T`T is consistent: By the COMPACTNESS THEOREM 1.15 it is enough to show
that every finite subset of T `T is consistent. So, let T1 ` Tk be a finite subset of
T`T, where T1 is a finite subset of T and Tk is some finite initial segment of the list
T. Notice that since T` σ0 is consistent, also T1` σ0 is consistent. If Tk “ r s or
Tk “ r σ0s, this implies that also T1 ` Tk is consistent. Otherwise, Tk “ r. . . , σns
for some σn in Λ0

L
, which implies that Tk “ Tn ` rσns. Now, by construction we

get ConpT` Tn ` σnq, which implies the consistency of T1 ` Tk.
T contains all sentences of T: For every σ P T there is a σn P Λ0

L
such that

σ ” σn. By ConpT ` Tn ` σnq we get σn P Tn`1, hence, σn P T and therefore
σ P T.

For every σ, either σ P T or  ConpT ` σq: For every L -sentence σ there is
a σn P Λ0

L
such that σ ” σn. By the law of excluded middle, we have either

ConpT` Tn ` σnq, which implies σn P Tn`1 and therefore σ P T, or  ConpT`
Tn ` σnq, which implies  ConpT` σnq, i.e.,  ConpT` σq. % Claim

Thus, the list T has all the required properties, which completes the proof. %

The following fact summarises the main properties of T.
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FACT 4.6. Let T,T, and σ0 be as above, and let σ and σ1 be any L -sentences.

(a)  σ0 P T.

(b) Either σ P T or  σ P T.

(c) If T $ σ, then σ P T.

(d) T $ σ iff σ P T.

(e) If σ ô σ1, then σ P T iff σ1 P T.

Proof. (a) follows by construction of T.
Since T is maximally consistent, (b) follows by LEMMA 4.2.
For (c), notice that T $ σ implies ConpT` σq, hence σ R T and by (b) we

get σ P T.
For (d), let us first assumeT $ σ. This implies ConpT` σq, hence ConpT` σq,

and by construction of T we get σ P T. On the other hand, if σ P T, then we
obviously have T $ σ.

For (e), recall that σ ô σ1 is just an abbreviation for$ σ Ø σ1. Thus, (e) follows
immediately from (d). %

Of course, this can work out only when the L -sentences inT “behave” like valid
sentences in a model, which is indeed the case—as the following proposition shows.

PROPOSITION 4.7. Let T be as above, and let σ, σ1, σ2 be any L -sentences.

(a)  σ P T ÎùùùÏ NOT σ P T

(b) ^σ1σ2 P T ÎùùùÏ σ1 P T AND σ2 P T

(c) _σ1σ2 P T ÎùùùÏ σ1 P T OR σ2 P T

(d) Ñ σ1σ2 P T ÎùùùÏ IF σ1 P T THEN σ2 P T

Proof. (a) Follows immediately from FACT 4.6.(b).
(b) First notice that by FACT 4.6.(d), ^σ1σ2 P T iff T $ ^σ1σ2. Thus,

by L3 & L4 and (MP) we get T $ σ1 and T $ σ2. Thus, by FACT 4.6.(d), we
get σ1 P T AND σ2 P T. On the other hand, if σ1 P T AND σ2 P T, then, by
FACT 4.6.(d), we get T $ σ1 and T $ σ2. Now, by TAUTOLOGY (B), this implies
T $ ^σ1σ2, and by by FACT 4.6.(d) we finally get ^σ1σ2 P T.

(c) & (d) follow from FACT 4.6.(e) and the fact that for each formula σ there is an
equivalent formula σ1 which contains neither “_” nor “Ñ” (see THEOREM ??). %


