Chapter 4
Maximally Consistent Extensions

Throughout this chapter we require that all formulae are written in Polish notation
and that the variables are among vg, v1, V2, . . . Recall that by the PRENEX NORMAL
FORM THEOREM 1.12 and by the VARIABLE SUBSTITUTION THEOREM 1.13, ev-
ery formula can be transformed into an equivalent formula of the required form.

Maximally Consistent Theories

Let .Z be an arbitrary signature and let T be an .Z-theory. We say that T is maxi-
mally consistent if T is consistent and for every .Z’-sentence o we have either o € T
or — Con(T + o). In other words, a consistent theory T is maximally consistent if
no proper extension of T is consistent.

The following fact is just a reformulation of the definition.

FACT 4.1. Let .Z be a signature and let T be a consistent .Z-theory. Then T is
maximally consistent iff for every £ -sentence o, eitherc € T or T - —o.

Proof. By THEOREM 1.14.(c)&(d) we have:
=Con(T+0) <= Tk —0

Hence, an .Z-theory is maximally consistent iff for every .Z-sentence o, either
ceTorTF —o. —

As a consequence of FACT 4.1 we get

LEMMA 4.2. Let £ be a signature and let T be a consistent £ -theory. Then T is
maximally consistent iff for every .£-sentence o, either c € T or —o € T.

Proof. We have to show that the following equivalence holds:
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44 4 Maximally Consistent Extensions
Vo(ceT or T —0) <= WVo(oceT or —0€T)

(=) Assume that for every .Z-sentence 0 we have 0 € Tor T - —o.If 0 €
T, then the implication obviously holds. If o ¢ T, then T - —o, and since T is
consistent, this implies T (£ o. Now, by TAUTOLOGY (F.0), this implies T (f ——oc
and by our assumption we finally get —o € T.

(<) Assume that for every .#-sentence 0 we haveoc € Tor —c € T.If 0 € T,
then the implication obviously holds. Now, if o ¢ T, then by our assumption we
have —o € T, which obviously implies T - —o. —

Maximally consistent theories have similar features as complete theories: Recall
that an .Z-theory T is complete if for every .Z-sentence o we have either T - o or
TF —o0o.

As an immediate consequence of the definitions we get

FACT 4.3. Let % be a signature, let T be a consistent £ -theory, and let Th(T) be
the set of all . -sentences which are provable from T.

(a) If T is complete, then Th(T) is maximally consistent.
(b) If T is maximally consistent, then Th(T) is equal to T.

The next lemma gives a condition under which a theory can be extended to max-
imally consistent theory.

LEMMA 4.4. If an £-theory T has a model, then T has a maximally consistent
extension.

Proof. Let M be a model of the .Z-theory T and let Ty be the set of .Z’-sentences
o such that M = o. Then Ty is obviously a maximally consistent theory which
contains T. —

Later we shall see that every consistent theory has a model. For this, we first
show how a consistent theory can be extended to a maximally consistent theory.

Universal List of Sentences

Let .Z be an arbitrary but fixed countable signature, where by “countable” we mean
that the symbols in .’ can be listedina FINITE or POTENTIALLY IN -
FINITE list L.

First, we encode the symbols of . corresponding to the order in which they
appear in the list L &: The first symbol is encoded with “2”, the second with “22”,
the third with “222”, and so on. For every symbol { € L ¢ let #( denote the code
of €. So, the code of a symbol of .Z is just a sequence of 2’s.

Furthermore, we encode the logical symbols as follows:
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Symbol ¢ Code #(
= 11
- 1111
A 111111
v 11111111
— 1111111111
3 111111111111
v 1111111111111
V0 1
V1 111
Un 1111 .0 11111
(2n + 1) 1’s

In the next step, we encode strings of symbols: Let { = (1(2(3 . . . ¢, be a finite
string of symbols, then

#( 1= #(0#0# s . .. 0#(,

For a string #( (i.e., a string of 0’s, 1’s, and 2’s) let |#(| be the length of #( (i.e.,
the number of 0’s, 1’s, and 2’s which appear in #().

Now, we order the codes of strings of symbols by their length and lexicograph-
ically, where 0 < 1 < 2. If, with respect to this ordering, #(; is less than #(2, we
write (1 < (a.

Finally, let Ao = [01, 02, .. .] be the potentially infinite list of all .£-sentences,
ordered by “<” (i.e., 0; < o iff i < j). We call Ag the universal list of .£-
sentences.

Lindenbaum’s Lemma

In this section we show that every consistent set of .Z-sentences T can be extended
to a maximally consistent set of .#-sentences T. Since the universal list of .-
sentences contains all possible .Z’-sentences, every set of .Z’-sentences can be can
be listed in a (finite or potentially infinite) list. So, we do not have to assume that
the (possibly infinite) set of .Z-sentences T is completed and definite.

LINDENBAUM’S LEMMA 4.5. Let £ be a countable signature and let T be a con-
sistent set of . -sentences. Furthermore, let oy be an £ -sentences which cannot
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be proved from T, i.e., T £ 0. Then there exists a maximally consistent set T of
% -sentences which contains —o as well as all the sentences of T.

Proof. Let Ay = [01,02,...] be the universal list of .Z-sentences. First we extend
A g with the Z-sentence —oy; let A% = [—00, 01,09, ...].

Now, we go through the list Agf; and define step by step a list T of .Z-sentences:
For this, we define Ty as the empty list, i.e., Ty := [ ]. If T}, is already defined, then

Tn + [0n] if Con(T + T, + on),
Tn+1 = .
T, otherwise.

LetT = [04,,0i,,...] be the resulting list, i.e., T is the union of all the 7},’s.

Notice that the construction only works if we assume the LAW OF EX -
CLUDED MIDDLE: Even in the case when we cannot decide whether T" +
T, + o, is consistent or not, we assume, from a metamathematical point of view,
that either T' + T,, + oy, is consistent or T' + T}, + o, is inconsistent (and neither
both nor none).

CLAIM. T is a maximally consistent set of #-sentences which contains —cq as
well as all the sentences of T.

Proof of Claim. First we show that —o( belongs to T, then we show that T + T
is consistent (which implies that T is consistent), in a third step we show that T
contains T, and finally we show that for every .#-sentence o we have either o € T
or = Con(T + o).

—0oq belongs to T: Since T £ 0¢, by PROPOSITION 1.14.(c) we have Con(T +
—0y), and since Ty = [ ], we also have Con(T + Ty + —oy). Thus, —og € T} (in
fact Ty = [—0g]) which shows that —oq € T.

T + T is consistent: By the COMPACTNESS THEOREM 1.15 it is enough to show
that every finite subset of T + T is consistent. So, let T’ + T} be a finite subset of
T +T, where T’ is a finite subset of T and T}, is some finite initial segment of the list
T. Notice that since T+ —oy is consistent, also T’ + —oy is consistent. If T}, = [ ] or
Ty = [—o0], this implies that also T" + T}, is consistent. Otherwise, T, = [...,0,]
for some o, in A%, which implies that T, = T}, + [0,,]. Now, by construction we
get Con(T + T, + o,), which implies the consistency of T/ + T.

T contains all sentences of T: For every o € T there is a 0,, € A% such that
o = o,. By Con(T + T, + 0,) we get 0, € Ty41, hence, 0, € T and therefore
oceT.

For every o, either o € T or — Con(T + o): For every .#-sentence o there is
ao, € /1?? such that 0 = 0,. By the law of excluded middle, we have either
Con(T + T), + 0,,), which implies ¢, € T, ;1 and therefore o € T, or — Con(T +
T,, + o,), which implies — Con(T + o,,), i.e., = Con(T + o). A Claim
Thus, the list T has all the required properties, which completes the proof. —

The following fact summarises the main properties of T.
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FACT 4.6. Let T, T, and o be as above, and let o and ¢’ be any £ -sentences.

(a) —opeT.

(b) EitheroceTor —oceT.

(c) IfTHo,thenoeT.

d Tro iff ceT.

(e) Ifo < o', then o €T iff o’ €T.

Proof. (a) follows by construction of T.

Since T is maximally consistent, (b) follows by LEMMA 4.2.

For (c), notice that T |- ¢ implies — Con(T + —0), hence —o ¢ T and by (b) we
geto € T.

For (d), let us first assume T |~ o. This implies Con(T + o), hence Con(T + o),
and by construction of T we get ¢ € T. On the other hand, if o € T, then we
obviously have T I o.

For (e), recall that ¢ < ¢’ is just an abbreviation for - o <> ¢’. Thus, () follows
immediately from (d). —

Of course, this can work out only when the .Z-sentences in T “behave” like valid
sentences in a model, which is indeed the case—as the following proposition shows.

PROPOSITION 4.7. Let T be as above, and let o, o1, 05 be any .£-sentences.
(a) —0eT <> NOT o€l

(b) ANO1092 eT <= 0 €T AND UQET
(c) Voo €T <—> o01€T OR 09€T
(d —>o0109€T <> IFo €T THEN oo€T

Proof. (a) Follows immediately from FACT 4.6.(b).

(b) First notice that by FACT 4.6.(d), Acios € T iff T — A0c109. Thus,
by Ls &L, and (MP) we get T — o7 and T  o5. Thus, by FACT 4.6.(d), we
get oy € T AND 05 € T. On the other hand, if 0; € T AND oy € T, then, by
FACT 4.6.(d), we get T I~ o1 and T I 09. Now, by TAUTOLOGY (B), this implies
T+ Ao109, and by by FACT 4.6.(d) we finally get Acj03 € T.

(c) & (d) follow from FACT 4.6.(e) and the fact that for each formula o there is an

w9

equivalent formula ¢’ which contains neither “v” nor “—” (see THEOREM ??). —



