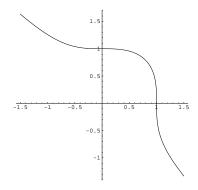
Elliptische Kurven & Kryptologie

Serie 2

Abgabe: 10. März

Projektive Transformationen algebraischer Kurven

- 1. Gegeben seien die beiden Geraden g_1 : y 2x 1 = 0 und g_2 : -2y + 3x + 4 = 0. Finde eine projektive Transformation, so dass die Geraden \tilde{g}_1 und \tilde{g}_2 im neuen Koordinatensystem parallel sind.
- 2. Die drei Punkte $P_0=(-1,1,0),\ P_1=(3,2,1),\ P_2=(0,-2,1),$ bilden die Ecken des Referenzdreiecks des neuen Koordinatensystems. Zeichne die Geraden $\tilde{X}=0,\ \tilde{Y}=0,\ \tilde{Z}=0,$ in die affine Ebene \mathbb{A}^2 mit den alten Koordinaten.
- **3.** Gegeben sei die Ellipse K_f : $f(x,y) = 2x^2 + y^2 2 = 0$.
 - (a) Finde eine rationale projektive Transformation, welche die Ellipse K_f in eine Parabel $K_{\tilde{f}}$: $\tilde{f}(\tilde{x}, \tilde{y}) = \tilde{y} c\tilde{x}^2 = 0$ überführt.
 - (b) Bestimme damit $K_f(\mathbb{Q})$, d.h. die Menge der rationalen Punkte auf K_f .
- **4.** Finde eine rationale projektive Transformation, welche den Einheitskreis $K_f: f(x,y) = x^2 + y^2 1 = 0$ in eine Hyperbel $K_{\tilde{f}}: \tilde{f}(\tilde{x},\tilde{y}) = \tilde{x}\tilde{y} c = 0$ überführt.
- **5.** Gegeben sei die cubische Kurve C_f : $f(x,y) = x^3 + y^3 1 = 0$ auf der xy-Ebene.



In der affinen Ebene \mathbb{A}^2 seien die neuen Koordinatenachsen gegeben durch

$$\tilde{X} = 0: X + Y - Z = 0, \quad \tilde{Y} = 0: X - Y, \quad \tilde{Z} = 0: X + Y = 0.$$

Wie sieht die Kurve $C_{\tilde{f}}$ in den neuen Koordinaten aus?