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norbert.hungerbuehler@math.ethz.ch

key-words : conic sections, Poncelet theorem, conjugate conics, projective maps

2010 Mathematics Subject Classification: 51A05 51A10 51A20

Abstract

We investigate closed chains of conics which carry Poncelet triangles. In particular,
we show that every chain of conics which carries Poncelet triangles can be closed.
Furthermore, for k = 3 and k = 4 we show that there are closed chains of pairwise
conjugate conics which carry Poncelet k-gons such that the contact points of each
k-gon are the vertices of the next k-gon—such miraculous chains of conics do not
exist for 5 ≤ k ≤ 23.

1 Introduction

In 1813, while Poncelet was in captivity as war prisoner in the Russian city of Saratov,
he discovered his famous closing theorem which, in its simplest form, reads as follows
(see [21]): Let K and C be two conics in general position. Suppose there is a k-sided
polygon inscribed in K and circumscribed about C. Then for any point P on K which is
an exterior point of C, there exists a (possibly degenerate) k-sided polygon, also inscribed
in K and circumscribed about C, which has P as one of its vertices. See for example
Dragović and Radnović [10] or Flatto [12] for classical overviews about Poncelet’s Theorem,
or Halbeisen and Hungerbühler [14] for a new elementary proof based only on Pascal’s
Theorem.

Recent years have seen a flourishing revitalization of Poncelet’s closure theorem. We just
mention some of these developments: Bos, Kers, Oort, and Raven [2] gave a comprehen-
sive overview reaching from the pre-history of Poncelet’s Porism to the modern approaches
using elliptic curves. In their paper they use the language of algebraic geometry to analyze
steps in the proofs of Poncelet and Jacobi with the help of modern notation and methods.
Del Centina [8, 9] comments on the full range of the historical genesis of Poncelet’s Theo-
rem, its proofs, variants and relatives, and puts the results in a modern context. He does
not miss to mention lesser known aspects like Nicola Trudi’s approach or George Halphen’s
and Francesco Gerbaldi’s discovery of a relation to continued fractions, or the applications
of Poncelet’s closure theorem and its generalizations to the theory of integrable system,
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billiard dynamics, PDEs and statistical mechanics. In the further development of Pon-
celet’s Porism, even very classical results came to new life: Chapple [5] found a relation
for the radii and the distance of the centers of two nested circles which carry Poncelet
triangles. This was generalized to Poncelet n-gons without self-intersections for small val-
ues of n by Euler [11], Fuss [13] and Steiner [23, p. 96], [24, p. 289]. These results have
recently been extended by Cieślak, Martini, Mozgawa [6] who formulated a relation for
5-gons with self-intersections and found a link to the rotation index of bar billiards and
special functions leading to a new series expansion of π. Another approach to Poncelet’s
Porism uses measure theory: King [17] observed that there exists a measure on the conic
which carries the vertices, which is invariant under tangential projection with respect to
the inscribed conic. This easily proves Poncelet’s Theorem. A similar construction has
been proposed by Bryant [3], and Cieślak and Mozgawa [7] found a nice geometric in-
terpretation of the corresponding measure on the inscribed conic. Vallès [26] devised a
new proof of Poncelet’s Porism and of the related Darboux Theorem based upon vector
bundles by exploiting a link between Schwarzenberger bundles and Poncelet curves.

In the present paper we investigate chains of conics G0, . . . , Gn−1 such that for each
0 ≤ i ≤ n−2 there is a Poncelet triangle ∆i with vertices on Gi whose sides are tangent to
Gi+1. It will be shown in Section 4 that each such chain can be closed by adding a suitable
conic Gn, i.e., there is a Poncelet triangle ∆n−1 with vertices on Gn−1 and sides tangent
to Gn, and Gn carries the vertices of a Poncelet triangle ∆n whose sides are tangent to G0.
The crucial point in the proof will be, that in specific cases, two conics can be projectively
mapped simultaneously into two circles. This technical point is of some interest in its own
right and will be investigated in Section 3.

We then show in Section 5 that there are closed chains of arbitrary length of conics
G0, . . . , Gn−1 carrying Poncelet triangles, such that the contact points of the Poncelet
triangle ∆i (having its vertices on Gi) are the vertices of the Poncelet triangle ∆i+1 (hav-
ing its vertices on Gi+1, where indices are taken modulo n).

Finally, in Section 6 we investigate two very peculiar chains of conics carrying Poncelet
triangles or Poncelet quadrilaterals, respectively, which move synchronously while keeping
contact with the neighbouring polygons. We also show that, up to projective transforma-
tions, these two chains are unique. Moreover, we show that there are no such chains of
conics carrying k-gons for 5 ≤ k ≤ 23.

2 Preliminary

In order to make this text self-contained, we start with a brief description of the general
setting and establish the notation. An extensive survey about algebraic representations
of conics in the real projective plane can be found in [1] or [18].

2.1 Projective plane and conics

In this paper, we mostly work in the standard model of the real projective plane. For this,
we consider R3 and its dual space (R3)∗ of linear functionals on R

3. The set of points is
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P = R
3 \ {0}/ ∼, where x ∼ y ∈ R

3 \ {0} are equivalent, if x = λy for some λ ∈ R. The
set of lines is B = (R3)∗ \ {0}/ ∼, where g ∼ h ∈ (R3)∗ \ {0} are equivalent, if g = λh
for some λ ∈ R. Finally, we say a point [x] and a line [g] are incident if g(x) = 0, where
we denoted equivalence classes by square brackets. In the sequel we will identify R

3 and
(R3)∗ by the standard inner product 〈·, ·〉 which allows to express the incidence through
the relation 〈x, g〉 = 0.

As usual, a line [g] can be identified with the set of points which are incident with it. Vice
versa a point [x] can be identified with the set of lines which pass through it. The affine
plane R

2 is embedded in the present model of the projective plane by the map

(

x1
x2

)

7→









x1
x2
1







 .

The projective general linear group PGL(3,R) consists of equivalence classes [A] of reg-
ular matrices A ∈ R

3×3 representing maps P → P, [x] 7→ [Ax], where two matrices are
equivalent, A1 ∼ A2, if A1 = λA2 for some λ ∈ R.

A conic in the constructed model is an equivalence class of a regular, linear, selfadjoint
map A : R

3 → R
3 with mixed signature, i.e., A has eigenvalues of both signs. It is

convenient to say, a matrix A is a conic, instead of A is a representative of a conic. We
may identify a conic by the set of points [x] such that 〈x,Ax〉 = 0, or by the set of lines
[g] for which 〈A−1g, g〉 = 0 (see below). Notice that, in this interpretation, a conic cannot
be empty: Since A has positive and negative eigenvalues, there are points [p], [q] with
〈p,Ap〉 > 0 and 〈q,Aq〉 < 0. Hence a continuity argument guarantees the existence of
points [x] satisfying 〈x,Ax〉 = 0.

From now on, we will only distinguish in the notation between an equivalence class and a
representative if necessary.

Fact 2.1. Let x be a point on the conic A. Then the line Ax is tangent to the conic A
with contact point x.

Proof. We show that the line Ax meets the conic A only in x. Suppose otherwise, that
y 6∼ x is a point on the conic, i.e., 〈y,Ay〉 = 0, and at the same time on the line Ax,
i.e., 〈y,Ax〉 = 0. By assumption, we have 〈x,Ax〉 = 0. Note, that Ax 6∼ Ay since A is
regular, and 〈Ay, x〉 = 0 since A is selfadjoint. Hence x and y both are perpendicular to
the plane spanned by Ax and Ay, which contradicts y 6∼ x. q.e.d.

In other words, the set of tangents of a conic A is the image of the points on the conic
under the map A. And consequently, a line g is a tangent of the conic iff A−1g is a point
on the conic, i.e., if and only if 〈A−1g, g〉 = 0.

Definition 2.2. If P is a point, the line AP is called its polar with respect to a conic A.
If g is a line, the point A−1g is called its pole with respect to the conic A.

Obviously, the pole of the polar of a point P is again P , and the polar of the pole of a
line g is again g. Moreover:
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Fact 2.3. If the polar of point P with respect to a conic A intersects the conic in a point
x, then the tangent in x passes through P .

Proof. For x, we have 〈x,Ax〉 = 0 since x is a point on the conic, and 〈x,AP 〉 = 0 since
x is a point on the polar of P . The tangent in x is the line Ax, and indeed, P lies on this
line, since 〈P,Ax〉 = 〈AP, x〉 = 0. q.e.d.

2.2 Coordinate transformations and projective maps

An element T ∈ PGL(3,R) can be interpreted as a change of coordinates x = Ty: If
for example 〈x,Ax〉 = 0 is a conic in x-coordinates, then 0 = 〈x,Ax〉 = 〈Ty,ATy〉 =
〈y, T⊤ATy〉 is the same conic in y-coordinates (i.e., the transformed conic is represented
by the matrix T⊤AT ). Similarly, if 〈g, x〉 = 0 is a line, then 0 = 〈g, x〉 = 〈T⊤g, y〉, i.e.,
the transformed line is represented by T⊤g.

Instead of considering T as a coordinate transformation, we can equivalently interpret
T : P → P as a projective map: Then, if y is a point on the conic T⊤AT , i.e., if 〈y, T⊤ATy〉 =
0, then the image x := Ty is a point of the conic 〈x,Ax〉 = 0.

2.3 Rank one and rank two matrices

For completeness we recall the following basic facts:

Lemma 2.4. Let A ∈ R
n×n be symmetric. Then:

• A is of rank 1 iffA = αaa⊤ for a unit vector a ∈ R
n and some α ∈ R\{0}. Moreover,

if A = αaa⊤ then, the vector a is an eigenvector and α the corresponding eigenvalue
of A, and 〈x,Ax〉 = α〈a, x〉2.

• A is of rank 2 iffA = αaa⊤ + βbb⊤ for two orthonormal vectors a, b ∈ R
n and some

α, β ∈ R\{0}. Moreover, if A = αaa⊤+βbb⊤ then, a and b are eigenvectors and α, β
the corresponding eigenvalues of A. Moreover, if A is of rank 2, A = uv⊤ + vu⊤ for
two vectors u, v ∈ R

n \ {0} iffA has mixed signature. Finally, if A = αaa⊤ + βbb⊤,
then 〈x,Ax〉 = α〈x, a〉2+β〈x, b〉2, and if A = uv⊤+vu⊤, then 〈x,Ax〉 = 2〈x, u〉〈x, v〉.

Proof. Since A is symmetric there exists an orthonormal eigenbasis t(1), . . . , t(n), i.e., if T
is the matrix with columns t(1), . . . , t(n), then T⊤AT = diag(λ1, . . . , λn) =: D, where λi
is the eigenvalue corresponding to t(i). Therefore A = TDT⊤. If A is of rank 1, exactly
one eigenvalue λi 6= 0, and hence A = λit

(i)t(i)⊤. If A is of rank 2, exactly two eigenvalues
λi, λj 6= 0, and hence A = λit

(i)t(i)⊤ + λjt
(j)t(j)⊤.

On the other hand, if A = αaa⊤ for a unit vector a and α ∈ R
n \ {0}, it is clear that

A = A⊤, that all columns of A are multiples of a and hence that A is of rank 1. Moreover,
Aa = αaa⊤a = αa. If A = αaa⊤ + βbb⊤ for orthonormal vectors a, b and α, β ∈ R \ {0},
then A = A⊤, Aa = (αaa⊤ + βbb⊤)a = αa and Ab = (αaa⊤ + βbb⊤)b = βb. Hence, A

4



has two orthonormal eigenvectors and therefore rankA ≥ 2. On the other hand, Ax = 0
whenever x⊥ span(a, b), i.e., rankA = 2.

Finally, let A be of rank 2, i.e., A = αaa⊤ + βbb⊤, and suppose α > 0 > β. Then, for
u = µa+ νb, v = µa − νb we have A = uv⊤ + vu⊤ if we choose µ =

√

α/2, ν =
√

−β/2.
On the other hand, if A = uv⊤ + vu⊤ for two non-zero vectors u 6= v ∈ R

n, then A has
the eigenvalues

0, 〈u, v〉 + ‖u‖‖v‖, 〈u, v〉 − ‖u‖‖v‖.
Thus, by the Cauchy-Schwarz inequality, the two non-zero eigenvalues have opposite sign.

The formulas for the quadratic forms follow immediately. q.e.d.

Lemma 2.5. Let A be a conic and C ∈ R
3×3 symmetric of rank 1. Suppose, A+C is also

a conic, and p a point on A and on A+ C. Then, A and A+ C have a common tangent
in p.

Proof. According to Lemma 2.4, C is of the form γcc⊤ for some c ∈ R
3 \ {0}, γ 6= 0. We

have
0 = 〈p, (A+ C)p〉 = 〈p,Ap〉+ 〈p,Cp〉 = 〈p,Cp〉 = γ〈c, p〉2,

hence 〈c, p〉 = 0. The tangent in p at A is given by 0 = 〈x,Ap〉. The tangent in p at A+C
is given by the same equation: 0 = 〈x, (A+ C)p〉 = 〈x,Ap + γcc⊤p〉 = 〈x,Ap〉. q.e.d.

2.4 Projective maps leaving a circle invariant

Let K = diag(1, 1,−1) be the affine unit circle and GK the subgroup of all projective
maps which leave K invariant, i.e.,

GK := {T ∈ PGL(3,R) | T⊤KT ∼ K}.

Lemma 2.6. If T ∈ GK has the fixed points (0, 0, 1)⊤ and (1, 0, 1)⊤, then T is the identity
or T = diag(1,−1, 1) =: S.

Proof. Since (0, 0, 1)⊤ is a fixed point of T , we have

T =





∗ ∗ 0
∗ ∗ 0
t31 ∗ t33



 .

Then, because (1, 0, 1)⊤ is also a fixed point, if follows

T =





t31 + t33 ∗ 0
0 ∗ 0
t31 ∗ t33





i.e., t11 = t31 + t33. On the other hand, from K ∼ T⊤KT , it now follows

K ∼





∗ ∗ −t31t33
∗ ∗ −t32t33
∗ ∗ −t233




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which implies t31 = t32 = 0. Using again K ∼ T⊤KT we find

K ∼





∗ t12t33 0
∗ ∗ 0
0 0 −t233





from which we deduce t12 = 0. Then, finally,

K ∼





t233 0 0
0 t222 0
0 0 −t233



 .

Hence t22 = ±1 and w.l.o.g. we may choose t33 = 1. q.e.d.

Lemma 2.7. If T ∈ GK has the fixed point (0, 0, 1)⊤ and

T (1, 0, 1)⊤ = (cos φ, sinφ, 1)⊤,

then T = Dφ or T = DφS =: Sφ, where S = diag(1,−1, 1) and

Dφ :=





cosφ − sinφ 0
sinφ cosφ 0
0 0 1



 .

Proof. Because of Lemma 2.6, we have D−1
φ T = I or D−1

φ T = S. q.e.d.

Lemma 2.8. If T ∈ GK has the fixed point (0, 0, 1)⊤ and T (cosφ, sinφ, 1)⊤ = (cosψ, sinψ, 1)⊤,
then T = DψD

−1
φ = Dψ−φ or T = SψD

−1
φ = Sψ+φ.

Proof. The projective map TDφ ∈ GK has the fixed point (0, 0, 1)⊤, and TDφ(1, 0, 1)
⊤ =

(cosψ, sinψ, 1)⊤. Therefore, by Lemma 2.7, TDφ = Dψ or TDφ = Sψ. q.e.d.

Summarizing, we have the following: If T 6= id is a projective map with fixed point
(0, 0, 1)⊤ which maps the unit circle K to itself, then T is either a rotation Dη (namely
if (0, 0, 1)⊤ is the only fixed point) or T is a reflection Sη. In particular: If T ∈ GK has
the fixed points (0, 0, 1)⊤ and (1, 0, 1)⊤, then T is either the identity or the reflection with
respect to the line (0, 1, 0)⊤.

A conic C divides the points P of the projective plane into three disjoint sets: The points
on C (for those points there is exactly one tangent to C), the exterior points (for those
points there are two tangents to C) and the inner points (which are not incident with
a tangent of C). Observe, that this classification is invariant under projective maps. In
particular, if T ∈ GK and if z is an inner point of K, then Tz is also inner point of K.
For example, with

Uψ :=





coshψ 0 sinhψ
0 1 0

sinhψ 0 coshψ



 ∈ GK ,
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we have Uψ(0, 0, 1)
⊤ ∼ (tanhψ, 0, 1)⊤.

Let T ∈ GK and T (0, 0, 1)⊤ = (tanhψ cosφ, tanhψ sinφ, 1)⊤ be an arbitrary inner point
of K. Then U−1

ψ D−1
φ T ∈ GK has the fixed point (0, 0, 1)⊤ and is hence either a rotation

Dη or a reflection Sη. Therefore, T = DφUψDη or T = DφUψSη. Thus, we have:

Theorem 2.9. The group GK is generated by





cosφ − sinφ 0
sinφ cosφ 0
0 0 1



 ,





coshψ 0 sinhψ
0 1 0

sinhψ 0 coshψ



 ,





1 0 0
0 −1 0
0 0 1





where φ ∈ [0, 2π[, ψ ∈ ]−∞,∞[.

For later use we add the following two lemmata:

Lemma 2.10. Let K = diag(1, 1,−1) be the affine unit circle and g a line which misses K.
Then, g can be written as g = (tanhψ cosφ, tanhψ sinφ, 1)⊤ for some ψ ≥ 0, φ ∈ [0, 2π[,
and T = U−1

−ψD
−1
φ ∈ GK maps g to the ideal line (0, 0, 1).

Proof. The pole P = K−1g ∼ (tanh(−ψ) cos φ, tanh(−ψ) sin φ, 1)⊤ of g with respect to K
is an inner point of K and T = U−1

−ψD
−1
φ ∈ GK maps P to the origin, and hence g to the

ideal line. q.e.d.

Lemma 2.11. Let P1, P2, P3 and Q1, Q2, Q3 be two triples of points on the affine unit
circle K. Then, there is a projective map T ∈ GK which maps Pi to Qi, i ∈ {1, 2, 3}.

Proof. It suffices to show the lemma for Q1 = (1, 0, 1)⊤, Q2 = (−1, 0, 1)⊤, Q3 = (0, 1, 1)⊤.
By using a suitable rotation Dφ we may assume, that P1 and P2 have the same x1
component: P1,2 = (cosφ,± sin φ, 1)⊤. Then, Uψ maps P1,2 to the points (0,±1, 1)⊤

for ψ = − artanh cosφ. Another rotation maps these points to Q1 = (1, 0, 1)⊤ and
Q3 = (−1, 0, 1)⊤, and the image of P3 under the previous operations is some point
(cos η, sin η, 1)⊤. Then, a suitable map Uξ maps this point to either (0, 1, 1)⊤ or (0,−1, 1)⊤

and leaves the points Q1 and Q2 invariant. If necessary, a reflection S with respect to the
x1 axis completes the proof. q.e.d.

The circle (x1 − a1x3)
2 + (x2 − a2x3)

2 − r3x23 = 0 with radius r and center (a1, a2) in the
affine plane corresponds to the matrix





1 0 −a1
0 1 −a2

−a1 −a2 a21 + a22 − r2



 .

Vice versa, the conic




1 0 α
0 1 β
α β γ




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corresponds to a circle with center (−α,−β) and radius r2 = α2 + β2 − γ if this number
is strictly positive.

For two different circles

Ki =





1 0 −ai
0 1 −bi

−ai −bi a2i + b2i − r2i



 ,

i ∈ {1, 2}, the difference

K1 −K2 =





0 0 a2 − a1
0 0 b2 − b1

a2 − a1 b2 − b1 a22 − a21 + b22 − b21 + r22 − r21





is a matrix of rank < 3 and represents two lines

〈x, (K1 −K2)x〉 = 〈





0
0
1



 , x〉〈





2(a2 − a1)
2(b2 − b1)

a21 − a22 + b21 − b22 + r22 − r21



 , x〉.

The line that corresponds to the first factor is the ideal line, the second line is the radical
axis of the two circles (which is different from the ideal line if K1 and K2 have different
centers). Vice versa, we have:

Theorem 2.12. Let K be the affine unit circle

K =





1 0 0
0 1 0
0 0 −1



 ,

and A a conic. Suppose, the pencil K + λA of K and A contains the ideal line (0, 0, 1)⊤,
then A is a circle.

Proof. Let e = (0, 0, 1)⊤. Then, for certain λ, µ ∈ R and a line g, the quadratic form

〈x, (K + λA)x〉 = 2µ〈e, x〉〈g, x〉 = 2µx3(g1x1 + g2x2 + g3x3) (1)

is represented by

K + λA = µ





0 0 g1
0 0 g2
g1 g2 2g3



 .

Obviously, λ 6= 0 and

A ∼





1 0 −µg1
0 1 −µg2

−µg1 −µg2 −1− 2µg3



 .

which is a circle in the affine plane with radius r2 = 1 + 2µg3 + µ2(g21 + g22) and center
µ(g1, g2). q.e.d.

As a consequence of Lemma 2.10 and Theorem 2.12 we get:
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Corollary 2.13. Let K be the unit circle and A a conic such that the pencil of K and
A contains a line g which misses both K and A. Then, the projective map T which leaves
K invariant and sends g to the ideal line maps A to a circle.

Proof. According to Lemma 2.10 there exists a map T ∈ GK which sends g to the ideal
line. Observe, that T maps the pencil of K and A to the pencil of their images, K and
T̃ := T−⊤AT−1. Therefore, the ideal line belongs to the pencil of K and T̃ and thus,
according to Theorem 2.12, T̃ is a circle. q.e.d.

3 How to transform two conics into two circles

Let us first recall, how one can find coordinates for which one given conic is a circle.
For this, consider a conic A ∈ R

3×3, symmetric, regular and with mixed signature. The
signature of A can be determined from the characteristic polynomial:

Lemma 3.1. Let A ∈ R
3×3 be regular and symmetric with characteristic polynomial

pA(λ) = det(A− λI) = a0 + a1λ+ a2λ
2 − λ3. Then the following holds:

• If all eigenvalues of A are positive, we have a0 > 0, a1 < 0, a2 > 0.

• If all eigenvalues of A are negative, we have a0 < 0, a1 < 0, a2 < 0.

• If A has two negative and one positive eigenvalue, then a0 > 0, and if a1 < 0 then
a2 < 0.

• If A has two positive and one negative eigenvalue, then a0 < 0, and if a1 < 0 then
a2 > 0.

Proof. Since A is symmetric, all eigenvalues λ1, λ2, λ3 are real and pA(λ) = (λ1 − λ)(λ2 −
λ)(λ3 − λ). Hence, a0 = λ1λ2λ3 6= 0, a1 = −(λ1λ2 + λ1λ3 + λ2λ3) and a2 = λ1 + λ2 + λ3.
It is then easy to check the four cases. q.e.d.

The transformation of A to a unit circle is then as follows:

Lemma 3.2. Let A ∈ R
3×3 be a conic. Without less of generality, A has two positive and

one negative eigenvalue (otherwise take the representative −A). Then there is a regular
matrix T such that T⊤AT = diag(1, 1,−1). This corresponds to the unit circle in the
affine plane.

Proof. Let λ1, λ2 > 0 be the positive eigenvalues, λ3 < 0 the negative eigenvalue, and
x1, x2, x3 be the corresponding orthonormal eigenvectors. Then the matrix T with columns
1√
λ1
x1,

1√
λ2
x2,

1√
−λ3

x3 has the desired property. q.e.d.

In his seminal work [21, Section I, Chapitre III, no. 121, p. 59] Poncelet claims that two
conics can, in general, be considered as projective image of two circles. Actually, referring
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to this statement, he reduces the proof of Poncelet’s Porism to the case of a pencil of
circles in [21, Section IV, Chapitre II, no. 530, p. 311 ff.] The question whether two conics
are the projective image of two circles also occurs in [22] as a proposed problem, with
alleged solution in [25]. However, it is clear that for example two conics which intersect
in four points cannot be the projective image of two circles.

It turns out that two conics can lie in 8 different positions relative to each other (see [20]):

Case 1: four intersections Case 2: no intersections Case 3: two intersections

Case 4: two intersections,
one 1st order contact

Case 5: one 1st order contact Case 6: two 1st order
contacts

Case 7: one intersection, one
2nd order contact

Case 8: one 3rd order contact

Projective transformations do not change the number of intersections nor the order of
contact, hence the cases 1, 4, 6, 7 and 8 cannot be the projective image of two circles. In
fact we have:

Theorem 3.3. Two conics are the projective image of two circles if and only if they
(i) intersect in two points, (ii) have one 1st order contact, or (iii) are disjoint.

Proof. By the remark above, we only need to show one implication. Without loss of
generality, we may assume that one of the conics is the circle A = diag(1, 1,−1). B ∈ R

3×3

is an arbitrary conic different from A. According to Corollary 2.13, it suffices to show in
each of the three cases (i)–(iii) that the pencil of A and B contains a line that misses both
conics.
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(i) Suppose A and B intersect in two points z1, z2. The line g = z1 × z2 is the common
secant of A and B. Let p be a point on g different from z1, z2 and

r = −〈p,Ap〉
〈p,Bp〉 6= 0. (2)

Then, z1, z2 and p are solutions of 〈x, (A + rB)x〉 = 0. Since z1, z2 and p are collinear,
we conclude rank(A + rB) < 3. On the other hand, A and B are different conics, hence
rank(A + rB) > 0. Moreover, rank(A + rB) 6= 1, because otherwise, −A and −A +
(A + rB) = rB would be tangential in z1 and z2 (see Lemma 2.5). Thus, rankA = 2
and by Lemma 2.4, we have A + rB = αaa⊤ + βbb⊤ for two orthonormal vectors a, b
and α, β ∈ R

3 \ {0}. If the eigenvalues α, β would both be positive or both be negative,
〈x, (A + rB)x〉 = 0 would have only one solution (see Lemma 2.4), but we have at least
three, namely z1, z2, p. Therefore, A + rB has mixed signature and hence, according to
Lemma 2.4, A+rB = uv⊤+vu⊤ for two non-zero vectors u 6= v ∈ R

3, and 〈x, (A+rB)x〉 =
2〈x, u〉〈x, v〉 = 0 consists of two lines: One of them is g = u, the other, v 6= u, has no
common point with the conics A and B: Indeed, suppose we have a point p on v and A
or B, then p would solve 〈p,Ap〉 = 0 and 〈p,Bp〉 = 0. Hence, w.l.o.g., p = z1. But then,
v cuts A or B in a second point, which then is necessarily z2. This contradics u 6= v.

(ii) Suppose, A and B have one contact point, say z0, in common. Let p 6= z0 be a
point on the tangent g in z0 and r as above in (2). Then, p and z0 are solutions of
〈x, (A+ rB)x〉 = 0. Suppose A+ rB has full rank. Then, the tangent g in z0 at the conic
A+rB does not contain another point of that same conic. But this is not true, since p is a
point of g. Hence, rank(A+ rB) < 3. Since, by assumption, A and B are different conics,
rank(A+ rB) > 0. Suppose, rank(A+ rB) = 1. We may assume, that z0 = (0, 1, 1)⊤ and
thus g = (0,−1, 1)⊤. According to Lemma 2.4 A+ rB ∼ aa⊤ for a unit vector a. Hence,
g ∼ (A+ rB)z0 ∼ aa⊤z0 ∼ a, and we conclude

B ∼ A+ µgg⊤ ∼ A+ µ





0 0 0
0 1 −1
0 −1 1



 ∼





1 0 0
0 µ+ 1 −µ
0 −µ µ− 1





and 〈x,Bx〉 = x21 + x22(1 + µ) − x23(1 − µ) − 2x2x3µ. It is then easy to check, that A
and B have a 3rd order contact in z0, which, by assumption, is not the case. Therefore,
rank(A+ rB) = 2, and, by the same reasoning as above in (i), we conclude, that 〈x, (A+
rB)x〉 = 2〈x, g〉〈x, v〉 = 0 consists of two lines, g 6= v, and that v has no common point
with A or B.

(iii) Suppose, A and B are disjoint. Then, there exist coordinates for which both conics
are diagonal (see for example [19] or [16]): W.l.o.g.

A =





1 0 0
0 1 0
0 0 −1



 , B =





1 0 0
0 a 0
0 0 b





where a, b 6= 0 are not both positive. Then, for the values r ∈ {−1,− 1
a
, 1
b
}, we have for

A+ rB:

A−B =





0 0 0
0 1− a 0
0 0 −1− b



 , A− 1

a
B =





1− 1
a

0 0
0 0 0

0 0 −1− b
a



 ,
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A+
1

b
B =





1 + 1
b

0 0
0 1 + a

b
0

0 0 0



 .

For all values of a and b one of these three matrices has mixed signature and is of rank 2.
The corresponding quadratic form 〈x, (A+ rB)x〉 = 2〈x, g〉〈x, h〉 = 0 represents two lines
which both miss A and B. q.e.d.

4 Weakly connected closed chains of Poncelet triangles

Let us first recall the Cayley criterion for Poncelet polygons:

Theorem 4.1 (Cayley criterion, see [4]). Let A, H be conics, D(λ) = det(A+ λH), and
√

D(λ) = c0 + c1λ+ c2λ
2 + c3λ

3 + . . .

Then, there exists a Poncelet k-gon with vertices on H and tangent to A if and only if

det









c3 c4 . . . cp+1

c4 c5 . . . cp+2

. . .
cp+1 cp+2 . . . c2p−1









= 0 for k = 2p,

or

det









c2 c3 . . . cp+1

c3 c4 . . . cp+2

. . .
cp+1 cp+2 . . . c2p









= 0 for k = 2p + 1.

In this section, we will consider chains of conics, where each pair of consecutive conics is
a Poncelet pair for triangles. The main result of this section is that every such chain can
be closed. Let us start with the following definition:

A chain of conics G0, G1, . . . , Gn, n ≥ 1, is called weakly connected Poncelet chain

for triangles if, for i ∈ {0, 1, . . . , n − 1}, (Gi, Gi+1) is a Poncelet pair for triangles, i.e.,
Gi carries verticies of triangles whose sides are tangential to Gi+1. The chain is called
closed and of length n, if Gn = G0.

The central lemma which allows to close a chain is the following:

Lemma 4.2. Let G and H be conics. Then, there exists a conic A such that (H,A) and
(A,G) are Poncelet pairs for triangles: H carries vertices of triangles that are tangent to
A, and A carries vertices of triangles that are tangent to G.

We call A a lock between G and H.

The six coefficients of A have to satisfy two polynomial equations of oder 2 and 4 respec-
tively (the Cayley conditions), A needs to have mixed signature, and it has to have points
outside of G and inside of H.
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Proof of Lemma 4.2. We have to consider the 8 cases listed in Section 3.

Case 1. G and H have four intersections P1, P2, P3, P4. By Lemma 3.2 we may assume,
that G is the unit circle K. Let P be the intersection of the lines P1P3 and P2P4 joining
opposite points. Then we choose T ∈ GK such that T maps P to (0, 0, 1)⊤ (see Theo-
rem 2.9). Thus, the image of H is a conic with center (0, 0, 1)⊤, either a hyperbola or
an ellipse. By a suitable rotation Dφ, we may further assume that H is symmetric with
respect to the x1- and x2-axis.

Case 1a. A circle and a concentric hyperbola:

G =





1 0 0
0 1 0
0 0 −1



 and H =





a2 0 0
0 −b2 0
0 0 −1





We choose

A =





0 x x
x 1 −1
x −1 1



 with x =
4a√
b2 + 1

.

Then a direct computation shows that

d2

dλ2

√

det(G+ λA)

∣

∣

∣

∣

λ=0

= 0 and
d2

dλ2

√

det(A+ λH)

∣

∣

∣

∣

λ=0

= 0 (3)

which shows that the Cayley criterion in Theorem 4.1 for triangles is satisfied for both
pairs H,A and A,G.

The eigenvalues of A are {2,
√
2x,−

√
2x}, i.e., A has mixed signature. As A is a hyperbola,

it has points outside G. A passes through the point (0, 1, 1) and has the asymptote
(0, 1, 1)⊤. Therefore, the intersections of this asymptote with H are outer points of A.

Case 1b. A circle and a concentric ellipse:

G =





1 0 0
0 1 0
0 0 −1



 and H =





a2 0 0
0 b2 0
0 0 −1



 , b2 6= 1.

We choose

A =





y x x
x y 0
x 0 0





with

x =

√

1 + 2a2 + b2 + 2
√

(1 + a2)(a2 + b2), y = b2 − 1.

Again, the Cayley criterion (3) for triangles is easily verified. By Lemma 3.1 it can be
checked, that A has mixed signature. In fact, A is a hyperbola through (0, 0, 1)⊤ and has
therefore points outside G, and H has points outside A.
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G

AH

G

H

A

Lock in Case 1a (left) and 1b (right): H carries vertices of Poncelet triangles that
are tangent to A, A carries vertices of Poncelet triangles that are tangent to G.

Cases 2 and 3. G and H have either no common points or two intersections. By Theo-
rem 3.3, we may assume, that G is the affine unit circle, and H another circle having its
center on the x1-axis:

G =





1 0 0
0 1 0
0 0 −1



 and H =





1 0 −a
0 1 0
−a 0 a2 − r2



 with a ≥ 0.

We choose

A =





0 0 x
0 1 0
x 0 y





with

x =
√

1 + (1 + a− r)2 + r − 1− a, y = 2
√

1 + (1 + a− r)2 + 2r − 3− 2a.

Then the Cayley criterion (3) for triangles is easily verified. A is a parabola symmetric
to the x1-axis with vertex inside H and has therefore points outside G, and H has points
outside A.

Case 4. G and H have two intersections and one first order contact. We may again
assume that G is the affine unit circle diag(1, 1,−1), and, by Lemma 2.11, that the first
order contact is in (1, 0, 1)⊤ and that the two intersections are (0,±1, 1)⊤. Then, the
pencil of G and H contains two lines (1,±1,−1)⊤, and according to Lemma 2.4

H = G+ µ





1 0 −1
0 −1 0
−1 0 1



 =





µ+ 1 0 −µ
0 1− µ 0
−µ 0 µ− 1



 , µ /∈ {0, 1}.
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We choose

A =





0 0 p
0 1 0
p 0 q





with

p =
2µ −

√

1 + 3µ2

µ− 1
, q =

1 + 3µ− 2
√

1 + 3µ2

µ− 1
.

A direct calculation shows that the Cayley criterion (3) is satisfied. A is a parabola which
is symmetric to the x1-axis. Its vertex (x1, 0, 1)

⊤ satisfies x1 < 1. In particular, A has
points outside G. H is also symmetric to the x1-axis: For µ < −1 and µ > 1 it is a
hyperbola, for −1 < µ < 1 an ellipse, and for µ = −1 a parabola. In each case, H has
points outside A.

Case 5. G and H have one first order contact: See Cases 2 and 3.

Case 6. G and H have two first order contacts. As above, we may assume, that G
is the affine unit circle diag(1, 1,−1), and, by Lemma 2.11, that the contact points are
(±1, 0, 1)⊤. The pencil of G and H contains the double line (0, 1, 0)⊤ and according to
Lemma 2.4:

H = G− µ





0 0 0
0 1 0
0 0 0



 =





1 0 0
0 1− µ 0
0 0 −1



 , µ 6= 0.

If µ > 0, we choose

A =





0 q q
q 1 −1
q −1 1



 with q =
4√
µ
.

If µ < 0, we choose

A =





p 0 0
0 0 −1
0 −1 2− q



 with p = 1− 1√
1− µ

+

√

µ− 3 + 2
√
1− µ

µ− 1
.

In both cases, it is easy to check, that the Cayley criterion (3) is satisfied, that A has
mixed signature and has points outside G. Moreover, H has points outside A.

Case 7. G and H have one intersection and one first order contact. We may again assume,
that G is the affine unit circle K. By Lemma 2.11 we may assume, that the first order
contact is in (1, 0, 1)⊤ and the intersection in (−1, 0, 1)⊤. Then the lines (−1, 0, 1)⊤ and
(0, 1, 0)⊤ belong to the pencil of G and H and according to Lemma 2.4:

H = K − µ





0 −1 0
−1 0 1
0 1 0



 =





1 −µ 0
−µ 1 µ
0 µ −1



 , µ 6= 0.

Then, the choice

A =





0 q q
q 1 −1
q −1 1



 with q =
2

µ

(

2 + µ+
√

4− 2µ+ µ2
)
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yields the desired lock.

Case 8. G and H have one third order contact. We may assume that G is the affine
unit circle (1, 1,−1)⊤, and, by a suitable rotation, that the point of contact is (0, 1, 1)⊤.
As discussed in the proof of Theorem 3.3 the pencil of G and H contains the double line
(0,−1, 1)⊤. Thus, by Lemma 2.4,

H = G+ µ





0 0 0
0 1 −1
0 −1 1



 =





1 0 0
0 µ+ 1 −µ
0 −µ µ− 1



 .

Here, if µ 6= −1, we choose

A =





1 0 a
0 −1 b
a b 0



 with a =

√

1 + µ+ 4µ2 − 2µ

1 + µ
, b =

2µ

1 + µ
−

√

1 + µ+ 4µ2

1 + µ
− 2

and, if µ = −1,

A =





1 0 −1
0 −1 0
−1 0 0





q.e.d.

Using the above lemma, we are now able to prove the following

Theorem 4.3. Let G0, G1, . . . , Gn−2 be a weakly connected Poncelet chain for triangles.
Then, there exists a conic Gn−1 such that G0, G1, . . . , Gn−1, Gn = G0 is a closed weakly
connected Poncelet chain for triangles.

Proof. Choose Gn−1 to be a lock between Gn−2 and G0, as described in Lemma 4.2.
q.e.d.

As an immediate consequence we get

Corollary 4.4. There are closed weakly connected Poncelet chains for triangles of arbi-
trary length n ≥ 2.

Proof. For n ≥ 3, this follows directly form Theorem 4.3. For n = 2, the two conics

G0 =





1 0
√
3/2

0 1 0√
3/2 0 −1/4



 , G1 =





1 0 −
√
3/2

0 1 0

−
√
3/2 0 −1/4



 ,

form a closed chain of length 2. q.e.d.
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5 Rigid closed chains of Poncelet triangles

In a closed weakly connected Poncelet chain G0, G1, . . . , Gn−1 of length n for triangles,
as seen in Section 4, the Poncelet triangles ∆i sitting between two consecutive conics
(Gi, Gi+1) of the chain are not related to the neighbouring triangles. In this section, we
will require, that the contact points of the sides of ∆i on Gi+1 are the vertices of the
next triangle ∆i+1. Then, the problem of finding closed chains G0, . . . , Gn−1 with a chain
of Poncelet triangles ∆0, . . . ,∆n−1 satisfying this additional requirement, becomes more
subtle.

A closed chain of triangles ∆0, . . . ,∆n−1 of length n is called a rigid chain of Poncelet

triangles if there are conics G0, . . . , Gn−1 such that ∆i has its vertices on Gi and is
tangent to Gi+1, where the contact points are the vertices of ∆i+1 (where we take indices
modulo n).

If we move one of the triangles, say ∆0, such that two of its sides are still tangent to G1,
then, by Poncelet’s Theorem, also the third side is tangent to G1. However, the contact
points of the new triangle, which are points on G1, are not necessarily the vertices of
a triangle whose sides are tangent to G2. So, in general we cannot move a rigid chain
of Poncelet triangles (i.e., the Poncelet triangles sit rigidly in the corresponding chain of
conics).

By Corollary 4.4 we know that there are closed weakly connected Poncelet chains for
triangles of arbitrary length; a similar result we get also for rigid closed chains of Poncelet
triangles.

Theorem 5.1. There are rigid closed chains of Poncelet triangles of arbitrary length n ≥ 3.

Proof. We first give an example of a rigid chain of Poncelet triangles of length n = 3. Let

G0 =





1 0 0
0 1 1
0 1 0



 , G1 =





1 0 0
0 −1 0
0 0 −1



 , G2 =





1 0 0
0 0 −1
0 −1 1



 .

It is not hard to see that the three triangles ∆ABC, ∆PQR, ∆UVW on G0, G1, G2,
respectively, where

A =





0
0
1



 B =





−1
−1
1



 C =





1
−1
1





P =





0
−1
1



 Q =





1
1
0



 R =





1
−1
0





U =





0
1
0



 V =





−1
0
1



 W =





1
0
1




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A rigid chain of Poncelet triangles of length n = 3.

form a rigid closed chain of Poncelet triangles of length n = 3.

Now, if we enlarge the parabola and pinch the circle to an ellipse, we can plug in two
additional ellipses between the parabola and the pinched circle in such a way, that the
two additional triangles we get fit in the chain of pairwise Poncelet triangles. Notice that
the hyperbola and the two triangles which are tangent to the hyperbola and the parabola
respectively remain unchanged.

Two ellipses between the parabola and the pinched circle.

By a similar construction, we can plug in as many pairs of ellipses as we like. So, we can
construct rigid closed chains of Poncelet triangles of arbitrarily odd length n ≥ 3.

In order to construct rigid chains of Poncelet triangles of even length, we proceed as
follows: We start with the same closed chain of Poncelet triangles as above. Then we
enlarge and reflect the parabola and pinch the circle to an ellipse, such that we can plug
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in an additional ellipse between the parabola and the pinched circle in such a way, that
the additional triangle fits in the chain of pairwise Poncelet triangles. Notice that the
hyperbola and the two triangles which are tangent to the hyperbola and the parabola
respectively remain unchanged (see figure below).

An ellipse between the reflected parabola and the pinched circle.

Like above, we can now plug in arbitrarily many pairs of ellipses. So, we can construct
rigid chains of Poncelet triangles of arbitrarily even length n ≥ 4. q.e.d.

6 Miraculous chains of Poncelet polygons

In general, the triangles ∆i in a closed rigid chain of Poncelet triangles satisfy the condi-
tion, that the contact points of ∆i on Gi+1 are the vertices of ∆i+1, only in one particular
position. In this section, we investigate the question, whether closed rigid chains exist
such that the contact condition is satisfied in every position. For this, we first recall some
relevant facts and notations.

If a point x moves along a conic G0, then each polar of x with respect to a second conic G1

is tangent to one particular conic G2, which is called the conjugate of G0 with respect

to G1 (see [15, Theorem 1.5]). In particular, if K0 is a Poncelet k-gon, inscribed in G0

and circumscribed about G1, then the k-gon K1 whose vertices are the contact points of
K0 on G1 is tangent to the conjugate conic G2 of G0 with respect to G1. Hence K1 is
itself a Poncelet k-gon for the pair G1 and G2. Obviously, this process can be iterated.
Astonishingly, there are very particular configurations, where this process closes after a
finite number of steps, i.e., the n-th k-gon Kn is equal to K0.

For an integer k ≥ 3, a closed chain of pairwise conjugate conics G0, . . . , Gn−1 (i.e., Gi and
Gi+2 are conjugate with respect to Gi+1) is a miraculous chain for Poncelet k-gons
if for each 0 ≤ i < n, Gi carries the vertices of a k-gon Ki which is tangent to Gi+1, where
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the contact points are the vertices of Ki+1 (where we take indices modulo n).

Since we require that the conics G0, . . . , Gn−1 are pairwise conjugate, we can move the
vertices of the k-gons without losing the property that the contact points of a k-gon are
the vertices of the next k-gon.

We shall see that up to projective transformations, there is exactly one miraculous chain
of Poncelet triangles and one miraculous chain for Poncelet quadrilaterals.

6.1 Closed chains of conjugate conics

From [15, Theorem 2.1&2.2]), we infer the following: Let G0, G1, . . . be a sequence of
conics such that Gi+2 is the conjugate of Gi with respect to Gi+1, for all indices i ≥ 0.
Then, Gi+2 ∼ G1(G

−1
0 G1)

i+1.

Let I denote the 3 × 3 identity matrix. A chain G0, G1, G2, . . . , Gn−1, Gn = G0 of length
n of conjugate conics is closed iff there are representatives of the conics such that

(G−1
0 G1)

n = I.

and n is minimal with this property.

We now want to investigate, in which of the 8 cases listed in Section 3, closed chains may
exist. For this, let G0, . . . , Gn−1, for some n ≥ 3, be a closed chain of conjugate conics.
We may assume, that G0, G1 are in standard form, as in the proof of Lemma 4.2.

Case 1a and b.

G0 =





1 0 0
0 1 0
0 0 −1



 and G1 =





a2 0 0
0 ±b2 0
0 0 −1



 , a, b > 0.

Then, (G−1
0 G1)

n = diag(a2n, (±b2)n, 1). This is the identity matrix only for a = b = 1
which is excluded. Thus, if G0, G1 have four intersections, they cannot be part of a closed
chain of conjugate conics.

Cases 2. By Theorem 3.3 we may assume that

G0 =





1 0 0
0 1 0
0 0 −1



 and G1 =





1 0 −a
0 1 0
−a 0 a2 − r2





for some 0 ≤ a and r > 0. So, G0 is the unit circle and G1 is a circle with center (a, 0, 1)
and radius r. Observe, that for any k the second element of the diagonal of (G−1

0 G1)
k

equals 1, and det(G−1
0 G1) = r2. Hence, it follows from (G−1

0 G1)
n = I, that r = 1 and

hence a > 2. But then, Gi+1 is nested inside Gi for each i > 1 and the chain cannot be
closed.

Case 3. As in Case 2, we may assume

G0 =





1 0 0
0 1 0
0 0 −1



 and G1 =





1 0 −a
0 1 0
−a 0 a2 − r2



 , a ≥ 0
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and as above, we conclude that r = 1, and therefore a 6= 0. Hence,

G1 =





1 0 −a
0 1 0
−a 0 a2 − 1



 .

Next, we move the two unit circles a
2 to the left and exchange the axes x2 and x3. Then,

since we assume that the two conics intersect in two points, we have a < 2 and by a
suitable scaling of the x1 and x2 axes, we arrive at the following form:

G̃0 =







√
4−a2
2

a
2 0

a
2 −

√
4−a2
2 0

0 0 1






and G̃1 =







√
4−a2
2 −a

2 0

−a
2 −

√
4−a2
2 0

0 0 1






.

Finally, a rotation in the first two variables leads to the final form of two hyperbolas

H0 =





−1 0 0
−0 1 0
−0 0 1



 and Hα =







−(1− a2

2 )
a
2

√
4− a2 0

a
2

√
4− a2 1− a2

2 0
0 0 1






=





− cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1





where 0 < α < π. Now, the condition (H−1
0 Hα)

n = I, and n minimal with this property,
is equivalent to α = 2π

n
. So, this is the standard form if the two initial conics have two

points of intersection.

Case 4. Here,

G0 =





1 0 0
0 1 0
0 0 −1



 and G1 =





µ+ 1 0 −µ
0 1− µ 0
−µ 0 µ− 1



 , µ /∈ {0, 1}.

Then, for each n, (G−1
0 G1)

n =: Hn 6= I, since the third element of the first column of Hn

equals nµ.

Case 5. By the same reasoning as in Case 2 above, we may exclude that a closed chain of
conjugate conics exist such that two consecutive conics have one first order contact.

Case 6. Here,

G0 =





1 0 0
0 1 0
0 0 −1



 and G1 =





1 0 0
0 1− µ 0
0 0 −1



 , µ 6= 0.

Then, (G−1
0 G1)

n = diag(1, (1 − µ)n, 1) = I iff (1 − µ)n = 1. Then either µ = 0 (which is
excluded) or µ = 2 and n = 2. (Recall that n is supposed to be minimal). By exchanging
the x2- and the x3-axis, we find

G0 =





1 0 0
0 −1 0
0 0 1



 and G1 =





1 0 0
0 −1 0
0 0 −1




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which as standard form of the only existing closed chain of conjugate conics such that two
consecutive conics have two first order contacts. Such a chain has necessarily length 2.

Case 7. Here,

G0 =





1 0 0
0 1 0
0 0 −1



 and G1 =





1 −µ 0
−µ 1 µ
0 µ −1



 , µ 6= 0.

Here, the second element of the first row of (G−1
0 G1)

n equals −nν 6= 0. Hence in this
situation, no closed chain of conjugate conics exists.

Case 8. For

G0 =





1 0 0
0 1 0
0 0 −1



 and G1 =





1 0 0
0 µ+ 1 −µ
0 −µ µ− 1



 , µ 6= 0.

Here, the third element of the second row of (G−1
0 G1)

n equals −nν 6= 0. Hence in this
situation, no closed chain of conjugate conics exists either.

6.2 Miraculous chains of Poncelet triangles and quadrilaterals

It is geometrically easy to see that the closed chain of conjugate conics of length 2 in
Case 6 in the previous section cannot carry Poncelet polygons. Hence, the only chance to
find closed chains of conjugate conics which carry Poncelet polygons are H0 and H1 from
Case 3 in the previous section.

For D(λ) = det(H0 + λH1) and
√

D(λ) = c0 + c1λ+ c2λ
2 + c3λ

3 + . . . we compute

c0 = 1 , c1 =
1

2
+ cos(α) , c2 = −1

8
+

cos(α)

2
+

sin(α)2

2
,

c3 =
1

16
− cos(α)

8
+

sin(α)2

4
− cos(α) sin(α)2

2
, . . .

In order to get a miraculous chain of Poncelet triangles, we must find 0 < α < π such that
α = 2π

n
(for some n ≥ 3) and c2 = 0. If we replace cos(α) with t, then the equation c2 = 0

is equivalent to the equation
(−3 + 2t)(1 + 2t) = 0.

As solutions we get t1 = 3
2 and t2 = −1

2 . Since −1 ≤ cos(α) ≤ 1, there is no 0 < απ
such that t1 = cos(α). On the other hand, for α = 2π

3 we get t2 = cos(α). Hence, up
to projective transformations, there is exactly one miraculous chain of Poncelet triangles.
The figure below shows the canonical miraculous chain with three hyperbolas and three
triangles.

In order to get a miraculous chain of Poncelet quadrilateral, we must find 0 < α < π such
that α = 2π

n
(for some n ≥ 3) and c3 = 0. If we replace cos(α) again with t, then the

equation c3 = 0 is equivalent to the equation

(−1 + 2t)(−5 + 4t2) = 0.
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Canonical miraculous chain of Poncelet triangles

Canonical miraculous chain of Poncelet quadrilaterals

The only solution with −1 < t < 1 is t = 1
2 , which gives us α = π

3 . Hence, up to projective
transformations, there is exactly one miraculous chain of Poncelet quadrilaterals. The
figure above shows the canonical miraculous chain with six hyperbolas and two of the six
quadrilaterals.
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6.3 Are there other miraculous chains of Poncelet polygons?

In order to get a miraculous chain of Poncelet pentagons, we must find 0 < α < π such
that α = 2π

n
(for some n ≥ 3) and c2c4 − c23 = 0. For t = cos(α), the latter equation is

equivalent to the equation

(17 − 10t− 20t2 + 8t3)(−11 + 6t− 4t2 + 8t3) = 0

where the two factors are irreducible. Now, if cos(α) is a root of one of these factors,
where α = 2π

n
(for some n ≥ 3), then, since cyclotomic polynomials are irreducible, all

roots of that factor must be in the open interval (−1, 1). With Sturm’s Theorem one can
now count, how many roots of the factors 17− 10t− 20t2 + 8t3 and −11 + 6t− 4t2 + 8t3

respectively, belong to [−1, 1]. Since this number is less than 3 (which is the degree of
the factors), we can be sure that the factor does not have a root of the form cos(2π

n
), i.e.,

there is no miraculous chain of Poncelet pentagons.

In order to show that there is no miraculous chain of Poncelet hexagons, we consider the
equation c3c5 − c24 = 0, which is equivalent to the equation

(−3 + 2t)(1 + 2t)(−7 + 4t+ 4t2)(−41 + 64t− 8t2 − 64t3 + 48t4) = 0.

Since the root of the factor 1 + 2t leads to α = 2π
3 , the hexagon is just a triangle run

through twice. Thus, we have just to consider the other three factors and with the same
arguments as above we can show that there are no miraculous chains of Poncelet hexagons.

With this technique, we have shown that except for k = 3 and k = 4, there are no
miraculous chains of Poncelet k-gons for k ≤ 23. This motivates the following

Conjecture: There are no miraculous chains of Poncelet k-gons for k ≥ 5.
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