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Abstract

A pair (a, b) of positive integers is a pythagorean pair if a2 + b2 = □ (i.e.,
a2 + b2 is a square). A pythagorean pair (a, b) is called a double-pythapotent
pair if there is another pythagorean pair (k, l) such that (ak, bl) is a pytha-
gorean pair, and it is called a quadratic pythapotent pair if there is another
pythagorean pair (k, l) which is not a multiple of (a, b), such that (a2k, b2l)
is a pythagorean pair. To each pythagorean pair (a, b) we assign an elliptic
curve Γa,b with torsion group Z/2Z×Z/4Z, such that Γa,b has positive rank
over Q if and only if (a, b) is a double-pythapotent pair. Similarly, to each
pythagorean pair (a, b) we assign an elliptic curve Γa2,b2 with torsion group
Z/2Z × Z/8Z, such that Γa2,b2 has positive rank over Q if and only if (a, b)
is a quadratic pythapotent pair. Moreover, in the later case we obtain that
every elliptic curve Γ with torsion group Z/2Z × Z/8Z is isomorphic to a
curve of the form Γa2,b2 , where (a, b) is a pythagorean pair. As a side-result
we get that if (a, b) is a double-pythapotent pair, then there are infinitely
many pythagorean pairs (k, l), not multiples of each other, such that (ak, bl)
is a pythagorean pair; the analogous result holds for quadratic pythapotent
pairs.

1 Introduction

A pair (a, b) of positive integers is a pythagorean pair if a2 + b2 is a square, denoted
a2 + b2 = □ . A pythagorean pair (a, b) is called a double-pythapotent pair if there is
another pythagorean pair (k, l) such that (ak, bl) is a pythagorean pair, i.e.,

a2 + b2 = □ , k2 + l2 = □ , and (ak)2 + (bl)2 = □ .

Notice that for positive integers a, b, the sum a4 + b4 is never a square (see [7, Oeuvres,
I, p. 327; III, p. 264], and hence (a2, b2) is never a pythagorean pair. Furthermore, a
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pythagorean pair (a, b) is called a quadratic pythapotent pair if there is another pytha-
gorean pair (k, l) which is not a multiple of (a, b), such that (a2k, b2l) is a pythagorean
pair, i.e.,

a2 + b2 = □ , k2 + l2 = □ , and (a2k)2 + (b2l)2 = □ .

To each pythagorean pair (a, b) we assign the elliptic curve

Γa,b : y2 = x3 + (a2 + b2)x2 + a2b2x ,

and show that the curve Γa,b has torsion group isomorphic to Z/2Z × Z/4Z and that
(a, b) is a double-pythapotent pair if and only if Γa,b has positive rank over Q. With the
points of infinite order on the curve Γa,b, we can generate infinitely many pythagorean
pairs (k, l), not multiples of each other, such that (ak, bl) are pythagorean pairs.

Similarly, for each pythagorean pair (a, b), the elliptic curve

Γa2,b2 : y2 = x3 + (a4 + b4)x2 + a4b4x ,

has torsion group isomorphic to Z/2Z×Z/8Z and (a, b) is a quadratic pythapotent pair
if and only if Γa2,b2 has positive rank over Q. Moreover, we can show that every elliptic
curve Γ with torsion group Z/2Z × Z/8Z is isomorphic to a curve of the form Γa2,b2 for
some pythagorean pair (a, b). Similar as above, with the points of infinite order on the
curve Γa2,b2 , we can generate infinitely many pythagorean pairs (k, l), not multiples of
each other, such that (a2k, b2l) are pythagorean pairs.

Remark 1. In a landmark article, Heegner [6] discovered the deep and far-reaching con-
nection between congruent numbers and elliptic curves: A given number is congruent if
and only if a certain elliptic curve has positive rank over Q. More precisely, to any positive
integer A, the elliptic curve

ΓA : y2 = x3 −A2x

with torsion group isomorphic to Z/2Z×Z/2Z is associated, and A is a congruent number
if and only if ΓA has positive rank over Q. Moreover, with the points of infinite order on
the curve ΓA, one can generate infinitely many rational triples (r, s, t) such that r2+s2 = t2

and rs
2 = A (an elementary proof of this result is given in [2]). It became a common theme

to relate properties of pythagorean or heronian triples with elliptic curves and to use their
arithmetic to gain insight in the diophantine solutions of the problem (see also [3]). Since
the pair of squares (a2, b2) of a pythagorean pair (a, b) is never a pythagorean pair, it was
natural to ask whether the Hadamard-Schur products (ak, bl) or (a2k, b2l) of two pairs
(a, b), (k, l) of pythagorean pairs can be a pythagorean pair or not. These questions lead,
indeed, again in a natural way to associated elliptic curves of positive rank over Q.

Examples. We give some examples of double-pythapotent pairs and of quadratic pytha-
potent pairs.

1. For m = 5 and n = 2, let a = m2 − n2 and b = 2mn. Then (a, b) = (21, 20) is a
pythagorean pair. Furthermore, let k = 96 and let l = 110. Then 962+1102 = 1462

and
(21 · 96)2 + (20 · 110)2 = 29842

which shows that (21, 20) is a double-pythapotent pair.
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2. Let a, b as above and let k = 805 and l = 6588. Then 8052 + 65882 = 66372 and

(212 · 805)2 + (202 · 6588)2 = 26590052

which shows that (21, 20) is also a quadratic pythapotent pair. However, as the
following examples show, it is not the case that double-pythapotent pairs are also
quadratic pythapotent pairs, or vice versa.

3. For m = 4 and n = 3, let a = m2 − n2 and b = 2mn. Then (a, b) = (7, 24) is a
pythagorean pair. Furthermore, let k = 320 and l = 462. Then 3202 + 4622 = 5622

and
(7 · 320)2 + (24 · 462)2 = 113122

which shows that (7, 24) is a double-pythapotent pair. On the other hand, since the
rank of the elliptic curve Γ72,242 is 0, (7, 24) is not a quadratic pythapotent pair.

4. For m = 4 and n = 1, let a = m2 − n2 and b = 2mn. Then (a, b) = (15, 8) is a
pythagorean pair. Furthermore, let k = 608 and l = 594. Then 6082 + 5942 = 8502

and
(152 · 608)2 + (82 · 594)2 = 1419842

which shows that (15, 8) is a quadratic pythapotent pair. On the other hand, since
the rank of the elliptic curve Γ15,8 is 0, (15, 8) is not a double-pythapotent pair.

Remark 2. Our parametrization Γa2,b2 for elliptic curves with torsion group Z/2Z ×
Z/8Z, where (a, b) is a pythagorean pair, we obtained by Schroeter’s construction of
cubic curves with line involutions (see [4]). Other new parametrizations obtained by
Schroeter’s construction for elliptic curves with torsion groups Z/10Z, Z/12Z, and Z/14Z
can be found in [5]. Furthermore, the curves Γa,b, where (a, b) is a pythagorean pair, were
obtained by replacing the 4th powers in the parametrization Γa2,b2 by squares.

2 Quadratic Pythapotent Pairs

In this section we consider quadratic pythapotent pairs— this case is slightly easier than
the case with double-pythapotent pairs. First we show that the curve Γa2,b2 has torsion
group isomorphic to Z/2Z × Z/8Z, and then we show how we obtain pythagorean pairs
(k, l) from a point on Γa2,b2 whose x-coordinate is a square such that (a2k, b2l) is a pytha-
gorean pair.

Proposition 1. If (a, b) is a pythagorean pair, then the elliptic curve Γa2,b2 has torsion
group Z/2Z× Z/8Z. Vice versa, if an elliptic curve Γ has torsion group Z/2Z× Z/8Z,
then there exists a pythagorean pair (a, b) such that Γ is isomorphic to Γa2,b2.

Proof. Kubert [8, p. 217] gives the following parametrization for elliptic curves with torsion
group Z/2Z×Z/8Z (see also Rabarison [9, 3.14]):

y2 + (1− c)xy − ey = x3 − ex2
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for

τ =
m̃

ñ
, d =

τ(8τ + 2)

8τ2 − 1
, c =

(2d− 1)(d− 1)

d
, e = (2d− 1)(d− 1) .

After a rational transformation we obtain the curve

y2 = x3 + ãx2 + b̃x

with

ã = 256m̃4(2m̃+ ñ)4 + (4m̃2 − (2m̃+ ñ)2)4 and b̃ = 256m̃4ñ4(2m̃+ ñ)4(4m̃+ ñ)4 .

Let m := m̃ and n := 2m̃+ñ
2 . Then we obtain the curve

y2 = x3 + 28
(
(2mn)4 + (m2 − n2)4)

)
x2 + 216

(
(2mn)4 · (m2 − n2)4

)
x ,

which is, for a := m2 − n2 and b := 2mn, equivalent to the curve

Γa2,b2 : y2 = x3 + (a4 + b4)x2 + a4b4x .

Notice that by definition of a and b, (a, b) is a pythagorean pair.

For the other direction, recall that for every pythagorean pair (a, b) we find positive
integers λ,m, n such thatm and n are relatively prime and {a, b} =

{
λ(m2−n2), λ(2mn)

}
.

So, by the substitutions m̃ := m and ñ := 2(n − m), we see that every elliptic curve Γ
with torsion group Z/2Z × Z/8Z is isomorphic to a curve of the form Γa2,b2 for some
pythagorean pair (a, b). q.e.d.

Remark 3. Let a := m2 − n2 and b := 2mn. If we replace m and n by m̄ := m + n
and n̄ := m−n, respectively, even though we obtain another pythagorean pair (a′, b′), the
corresponding elliptic curves Γa2,b2 and Γā2,b̄2 are equivalent.

Theorem 2. The pythagorean pair (a, b) is a quadratic pythapotent pair if and only if the
elliptic curve Γa2,b2 has positive rank over Q.

In order to prove Theorem 2, we first transform the curve Γa2,b2 to a another curve on
which we carry out our calculations.

Lemma 3. If x2 is the x-coordinate of a rational point on Γa2,b2, then

x0 :=
a2b2

x2

is the x-coordinate of a rational point on the curve

y2x = a2b2 + (a4 + b4)x+ a2b2x2 .

Proof. We work with homogeneous coordinates (x, y, z). Consider the following transfor-
mation: x

y
z

 :=

 0 0 1
0 1 0
1

a2b2
0 0

 ·

X
Y
Z


4



The the point (x, y, z) belongs to the homogenized curve Γa2,b2 if and only if the point
(X,Y, Z) belongs to the curve Y 2X = a2b2Z3 + (a4 + b4)XZ2 + a2b2X2Z. Hence, by
dehomogenizing, we obtain the curve y2x = a2b2+(a4+ b4)x+a2b2x2, which is equivalent
to Γa2,b2 , where the rational point (x2, y2) belongs to Γa2,b2 if and only if there is a rational
y′ such that (x0, y

′) belongs to y2x = a2b2 + (a4 + b4)x+ a2b2x2. q.e.d.

Let x0 = p2

q2
be a rational square and assume that x0 is the x-coordinate of a rational

point on y2x = a2b2 + (a4 + b4)x + a2b2x2. Then, by dividing through x0 and clearing
square denominators we obtain

a2b2 · q4 + (a4 + b4) · p2 · q2 + a2b2 · p4 = □ ,

and since

a2b2 · q4 + (a4 + b4) · p2 · q2 + a2b2 · p4 = (a2q2 + b2p2) · (a2p2 + b2q2) ,

this is surely the case when

a2q2 + b2p2 = □ and a2p2 + b2q2 = □ . (1)

Lemma 4. Let P = (x1, y1) be a rational point on Γa2,b2 and let x2 be the x-coordinate

of the point 2 ∗ P . Then x0 :=
a2b2

x2
= p2

q2
, where p and q satisfy (1).

Proof. By Silverman and Tate [10, p.27],

x2 =
(x21 −B)2

(2y1)2
for B := a4b4,

and therefore

x0 =
a2b2

x2
=

a2b2(2y1)
2

(x21 −B)2
=

a2b2
(
4x31 + 4Ax21 + 4Bx1

)
(x21 −B)2

=
p2

q2
for A := a4 + b4.

Now, for p and q (with a = m2 − n2 and b = 2mn) we obtain

a2q2 + b2p2 = a2
(
a4b4 + 2b4x1 + x21

)2
= □

and
a2p2 + b2q2 = b2

(
a4b4 + 2a4x1 + x21

)2
= □

which completes the proof. q.e.d.

The next result gives a relation between rational points on Γa2,b2 with square x-coordinates
and pythagorean pairs (k, l) such that (a2k, b2l) is a pythagorean pair.

Lemma 5. Every pythagorean pair (k, l) such that (a2k, b2l) is a pythagorean pair corre-
sponds to a rational point on Γa2,b2 whose x-coordinate is a square, and vice versa.
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Proof. Let x2 = □ be the x-coordinate of a rational point on Γa2,b2 . Then, by Lemma 4,
a2b2

x2
= p2

q2
, where p and q satisfy (1), i.e., a2q2 + b2p2 = □. So, a2

b2
+ p2

q2
= ρ2 for some

ρ ∈ Q. In other words, we have (a
b

)2
+
(p
q

)2
= ρ2 ,

which implies that

a

b
=

2ρt

t2 + 1
and

p

q
=

ρ(t2 − 1)

t2 + 1
for some t ∈ Q.

In particular, we have

ρ =
a · (t2 + 1)

b · (2t)
.

Now, since a2p2 + b2q2 = □, we have
(
a
b

)2
+

( q
p

)2
= □, hence, a2

b2
+ (t2+1)2

ρ2(t2−1)2
= □, which

implies that
a4 · (t2 − 1)2 + b4 · (2t)2 = □ .

For t = r
s , we obtain

a4 · (r2 − s2)2

s4
+

b4 · 4r2

s2
= □ ,

which implies that
a4 · (r2 − s2)2 + b4 · (2rs)2 = □ ,

and for k := r2 − s2, l := 2rs, we finally obtain

(a2k)2 + (b2l)2 = □ where k2 + l2 = □ ,

which shows that (a, b) is a quadratic pythapotent pair.

Assume now that we find a pythagorean pair (k, l) such that (a2k, b2l) is a pythagorean
pair. Without loss of generality we may assume that k and l are relatively prime. Thus,
we find relatively prime positive integers r and s such that k = r2 − s2 and l = 2rs. With
t := r

s , a, and b, we can compute p and q, and finally obtain a rational point on Γa2,b2

whose x-coordinate is a square. q.e.d.

We are now ready for the

Proof of Theorem 2. For every rational point P on Γa2,b2 whose x-coordinate is a square,
let (kP , lP ) be the corresponding pythagorean pair. By Lemma 5 it is enough to show
that (kP , lP ) is a multiple of (a, b) if and only if P is a torsion point. Notice that if P is
a point of infinite order, then for every integer i, 2i ∗ P is a rational point on Γa2,b2 with
square x-coordinate, and not all of the corresponding pythagorean pairs (k2i∗P , l2i∗P ) can
be multiples of (a, b).

Let us consider the x-coordinates of the torsion points on the curve Γa2,b2 . For simplicity,
we consider the 16 torsion points on the equivalent curve

y2 =
a2b2

x
+ (a4 + b4) + a2b2x .
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The two torsion points at infinity are (0, 1, 0) (which is the neutral element of the group)

and (1, 0, 0) (which is a point of order 2). The other two points of order 2 are (−a2

b2
, 0)

and (− b2

a2
, 0), and the two points of order 4 are

(
1,±(a2 + b2)

)
. The x-coordinates of the

other 10 torsion points are m(m+n)
n(m−n) ,

n(m−n)
m(m+n) , −

m(m−n)
n(m+n , − n(m+n)

m(m−n) , and −1. Obviously, −1,

−a2

b2
, and − b2

a2
are not squares of rational numbers. Furthermore, 0 would lead to p = 0,

q = 1, t = 1, r = 1, s = 0, k = 1 and l = 0, and therefore, (k, l) is not a pythagorean pair.

If m(m+n)
n(m−n) = □, then, by multiplying with n2(m−n)2, also mn(m2−n2) = □, which would

imply that A := mn(m2 − n2) is a congruent number with A = □. But this is impossible,
since otherwise 1 would be a congruent number, which is not the case (see also [7, Oeuvres,
I, p. 340] or [11, p. 163] for an annotated version of Fermat’s proof). Similarly, one can

show that also n(m−n)
m(m+n) , −

m(m−n)
n(m+n and − n(m+n)

m(m−n) cannot be squares. Thus, the only value
of x-coordinates of torsion points on the curve Γa2,b2 which is a square is x = 1. This
leads to k = 2b and l = 2a, i.e., to the pythagorean pair (2b, 2a), which is a multiple of
(a, b)—notice that for c := a2 + b2, (2a2b)2 + (2ab2)2 = (2abc)2. q.e.d.

Corollary 6. If (a, b) is a quadratic pythapotent pair, then there are infinitely many
pythagorean pairs (k, l), not multiples of each other, such that (ak, bl) is a pythagorean
pair.

Proof. By Theorem 2, there exists a point P on Γa2,b2 of infinite order. Now, for every
integer i, 2i ∗ P is a rational point on Γa2,b2 with square x-coordinate, and each of the
corresponding pythagorean pairs (k2i∗P , l2i∗P ) can be a multiple of just finitely many other
such pythagorean pair. Thus, there are infinitely many integers j, such that the pytha-
gorean pairs (k2j∗P , l2j∗P ) are not multiples of each other.

q.e.d.

Algorithm 1. The following algorithm decribes how to construct pythagorean pairs (k, l)
from rational points on Γa2,b2 of infinite order.

• Let P be a rational point on Γa2,b2 of infinite order and let x2 be the x-coordinate
of 2 ∗ P .

• Let p and q be relatively prime positive integers such that

q

p
=

√
x2
ab

.

• Let r and s be relatively prime positive integers such that

r

s
=

bp+
√
a2q2 + b2p2

aq
.

• Let k := r2 − s2 and let l := 2rs.

Then (a2k, b2l) is a pythagorean pair.
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Example. For m = 17 and n = 1, let a = m2 − n2 and b = 2mn. Then (a, b) = (288, 34)
is a pythagorean pair. Now, the curve Γa2,b2 , with torsion group Z/2Z×Z/8Z, has rank 2
with generators

P = (248223744, 21013140234240) and P ′ = (2105708544,−199666455920640) .

The x-coordinate of 2 ∗ P is 845105135616
543169 which leads to (k, l) = (212993, 229824) with

(2882 · 212993)2 + (342 · 229824)2 = 176684889602,

and x-coordinate of 2 ∗ P ′ is 10707037334317433880576
87206592371809 which leads to

(k′, l′) = (2698811183, 25868703744)

with
(2882 · 2698811183)2 + (342 · 25868703744)2 = 2258388189849602.

Of course, we can also start with any other rational point on Γ2882,342 , e.g., we can start
with the point Q = P +P ′. The x-coordinate of 2∗Q is 40012254481826306304

79121251225 which leads to

(k, l) = (81291365, 1581381012)

with
(2882 · 81291365)2 + (342 · 1581381012)2 = 69860529642722.

3 Double-Pythapotent Pairs

Below we consider double-pythapotent pairs. As above, we first show that the curve Γa,b

has torsion group isomorphic to Z/2Z× Z/4Z, and then we show how we obtain pytha-
gorean pairs (k, l) from a point on Γa,b with square x-coordinate such that (ak, bl) is a
pythagorean pair. Since the calculations are similar, we shall omit the details.

Proposition 7. If (a, b) is a pythagorean pair, then the elliptic curve

Γa,b : y2 = x3 + (a2 + b2)x2 + a2b2x ,

has torsion group Z/2Z×Z/4Z.

Proof. Kubert [8, p. 217] gives the following parametrization for elliptic curves with torsion
group Z/2Z×Z/4Z:

y2 + xy − ey = x3 − ex2

for
e = v2 − 1

16 where v ̸= 0, ±1
4 .

After a rational transformation we obtain the curve

y2 = x3 + ãx2 + b̃x

with
ã = 2 · (16v2 + 1) and b̃ = (16v2 − 1)2 .
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For v = p
q , a = m2 − n2, b = 2mn, let p := 1

8(a − b) and q := 1
2(a + b). Then the curve

y2 + xy − ey = x3 − ex2 is equivalent to the curve

Γa,b : y2 = x3 + (a2 + b2)x2 + a2b2x .

q.e.d.

Remark 4. Notice that there are p and q which are not of the above form, which implies
that there are curves with torsion group Z/2Z×Z/4Z which are not equivalent to some
curve Γa,b.

Theorem 8. The pythagorean pair (a, b) is a double-pythapotent pair if and only if the
elliptic curve Γa,b has positive rank over Q.

In order to prove Theorem 8, we again transform the curve Γa,b to a another curve on
which we carry out our calculations.

Lemma 9. If x2 is the x-coordinate of a rational point on Γa,b, then

x0 :=
ab

x2

is the x-coordinate of a rational point on the curve

y2x = ab+ (a2 + b2)x+ abx2 .

Proof. We can just follow the proof of Lemma 3, using the transformation 0 0 1
0 1 0
1
ab 0 0

 .

q.e.d.

Let x0 = p
q be the x-coordinate of a rational point on y2x = ab + (a2 + b2)x + abx2,

where q = q̃2 and p = ab · p̃2 for some integers q̃, p̃. Then

ab · y2 · p
q

= ab · y2 · abp̃
2

q̃2
= y2 ·

(ab · p̃
q̃

)2
= □ .

Therefore,

ab ·
(
ab+ (a2 + b2) · p

q + ab · p2

q2

)
= □ ,

and by clearing square denominators we obtain

ab ·
(
aq + bp

)
·
(
ap+ bq

)
= □ ,

which is surely the case when

a · (aq + bp) = □ and b · (ap+ bq) = □ . (2)
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Lemma 10. Let P = (x1, y1) be a rational point on Γa,b and let x2 be the x-coordinate of
the point 2 ∗ P . Then x0 := ab

x2
= p

q , where q = q̃2 and p = ab · p̃2 for some integers q̃, p̃
and p and q satisfy (2).

Proof. By Silverman and Tate [10, p.27],

x2 =
(x21 −B)2

(2y1)2
for B := a4b4,

and therefore

x0 =
ab

x2
=

ab
(
4x31 + 4Ax21 + 4Bx1

)
(x21 −B)2

=
p

q
for A := a4 + b4.

So, q = □ and p = ab · p̃2 for some integer p̃.

Now, for x1 =
u
v and x0 =

p
q (with a = m2 − n2 and b = 2mn) we obtain

a · (aq + bp) =
1

v4

(
a2 ·

(
a2b2v2 + u(u+ 2b2v)

))2
= □

and

b · (ap+ bq) =
1

v4

(
b2 ·

(
a2b2v2 + u(u+ 2a2v)

))2
= □

which completes the proof. q.e.d.

The next result gives a relation between rational points on Γa,b with square x-coordinate
and pythagorean pairs (k, l) such that (a2k, b2l) is a pythagorean pair.

Lemma 11. Every pythagorean pair (k, l) such that (a2k, b2l) is a pythagorean pair cor-
responds to a rational point on Γa,b whose x-coordinate is a square, and vice versa.

Proof. Let x2 = □ be the x-coordinate of a rational point on Γa,b. Then, by Lemma 10,
ab
x2

= ab·f2

g2
, where p = ab · f2 and q = g2 satisfy (2), i.e., a2g2 + a2b2f2 = □. So,( g

f

)2
+ b2 = ρ2 for some ρ ∈ Q and

( g
f

)2
+ a2 = □. Let g

f = 2ρt
t2+1

and b = ρ(t2−1)
t2+1

. Then

ρ = b(t2+1)
t2−1

and g
f = 2bt

t2−1
, which gives us

t =
bf ±

√
g2 + b2f2

g
.

Since
g2 + b2f2 = q + b2p

ab = q + bp
a ,

by multiplying with a2 we get

a2 · (g2 + b2f2) = a2 · q + ab · p = a(aq + bp) .

Hence, by Lemma 10, g2 + b2f2 = □ and therefore t is rational, say t = r
s . Finally, since( g

f

)2
+ a2 = □, we obtain

a2 · (r2 − s2)2 + b2 · (2rs)2 = □ ,
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and for k := r2 − s2, l := 2rs, we finally get

(ak)2 + (bl)2 = □ where k2 + l2 = □ ,

which shows that (a, b) is a double-pythapotent pair.

Assume now that we find a pythagorean pair (k, l) such that (ak, bl) is a pythagorean
pair. Without loss of generality we may assume that k and l are relatively prime. Thus,
we find relatively prime positive integers r and s such that k = r2 − s2 and l = 2rs. With
t := r

s , a, and b, we can compute p and q, and finally obtain a rational point on Γa,b whose
x-coordinate is a square. q.e.d.

We are now ready for the

Proof of Theorem 8. For every rational point P on Γa,b with square x-coordinate let
(kP , lP ) be the corresponding pythagorean pair. By Lemma 11 it is enough to show that
no rational point with square x-coordinate has finite order.

Let us consider the x-coordinates of the torsion points on the curve Γa,b. For simplicity,
we consider the 8 torsion points on the equivalent curve

y2 =
ab

x
+ (a2 + b2) + abx .

The two torsion points at infinity are (0, 1, 0) (which is the neutral element of the group)
and (1, 0, 0) (which is a point of order 2). The other two points of order 2 are (−a

b , 0) and

(− b
a , 0), and the four points of order 4 are

(
1,±(a+ b)

)
and

(
−1,±(a− b)

)
. Now, we have

that none of the values

1

ab
,

−1

ab
,

−a
b

ab
= − 1

b2
,

− b
a

ab
= − 1

a2
,

is a rational square. For example, if 1
ab = □, then ab = □, and since b = 2mn, this implies

that ab = 4 ·□. So, we have ab
2 = 2 ·□, which is impossible (see [1, p. 175]). Thus, there

is no pythagorean pair (k, l) such that (ak, bl) is a pythagorean pair. q.e.d.

Similar as above, we get the following

Corollary 12. If (a, b) is a double-pythapotent pair, then there are infinitely many pytha-
gorean pairs (k, l), not multiples of each other, such that (ak, bl) is a pythagorean pair.

Remark 5. Let (a, b) be a double-pythapotent pair and let (k1, l1) be a pythagorean pair
such that (ak1, bl1) is a pythagorean pair. Then (k1, l1) is a double-pythapotent pair and
we find a pythagorean pair (k2, l2), which is not a multiple of (a, b) such that (k1k2, l1l2) is
a pythagorean pair, which implies that (k2, l2) is a double-pythapotent pair. Proceeding
this way, we can construct an infinite family of double-pythapotent pairs which are not
multiples of each other.

Algorithm 2. The following algorithm decribes how to construct pythagorean pairs (k, l)
from rational points on Γa,b of infinite order.
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• Let P be a rational point on Γa,b of infinite order and let x2 be the x-coordinate of
2 ∗ P .

• Let f and g be relatively prime positive integers such that

g

f
=

√
x2 .

• Let r and s be relatively prime positive integers such that

r

s
=

bf +
√
g2 + b2f2

g
.

• Let k := r2 − s2 and let l := 2rs.

Then (ak, bl) is a pythagorean pair.

Example. Let again m = 17, n = 1, a = m2−n2, and b = 2mn, hence, (a, b) = (288, 34).
Now, the curve Γa,b, with torsion group Z/2Z×Z/4Z, has rank 2 with generators

P = (−81600, 2970240) and P ′ = (−58752, 9047808) .

The x-coordinate of 2 ∗ P is 5156388864
4225 which leads to (k, l) = (65, 2112) with

(288 · 65)2 + (34 · 2112)2 = 742082,

and x-coordinate of 2 ∗ P ′ is 4161600
121 which leads to (k′, l′) = (11, 60) with

(288 · 11)2 + (34 · 60)2 = 37682.

Acknowledgment

We would like to thank the referee for his or her careful reading and useful comments and
suggestions, which helped to improve the quality of the article.

References

[1] Bernhard Frénicle de Bessy. Memoires de l’Academie royale des sciences, volume tome
V. La compagnie des libraires, Paris, 1729.

[2] Lorenz Halbeisen and Norbert Hungerbühler. A theorem of Fermat on congruent
number curves. Hardy-Ramanujan Journal, 41:15–21, 2018.

[3] Lorenz Halbeisen and Norbert Hungerbühler. Heron triangles and their elliptic curves.
Journal of Number Theory, 213:232–253, 2020.

[4] Lorenz Halbeisen and Norbert Hungerbühler. Constructing cubic curves with involu-
tions (submitted). arxiv.org/abs/2106.08154

12



[5] Lorenz Halbeisen, Norbert Hungerbühler, and Arman Shamsi Zargar. New parametri-
sations of elliptic curves with torsion groups Z/10Z, Z/12Z, and Z/14Z (submitted).
arxiv.org/abs/2106.06861

[6] Kurt Heegner. Diophantische Analysis und Modulfunktionen. Mathematische
Zeitschrift, 56:227–253, 1952.

[7] Charles Henry and Paul Tannery. Œuvres de Fermat, volume I–III. Gauthier-Villars
et Fils, Paris, 1891.

[8] Daniel Sion Kubert. Universal bounds on the torsion of elliptic curves. Proceedings of
the London Mathematical Society (3), 33(2):193–237, 1976.

[9] F. Patrick Rabarison. Structure de torsion des courbes elliptiques sur les corps quadra-
tiques. Acta Arith., 144(1):17–52, 2010.

[10] Joseph H. Silverman and John Tate. Rational Points on Elliptic Curves. Springer-
Verlag, New York, 2nd edition, 2015.

[11] Hieronymus Georg Zeuthen and Raphael Meyer. Geschichte der Mathematik im
XVI. und XVII. Jahrhundert. B.G. Teubner, Leipzig, 1903.

13


	Introduction
	Quadratic Pythapotent Pairs
	Double-Pythapotent Pairs

