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Abstract

In this paper we study magic sets for certain families # C ®R which are subsets M C R such
that for all functions f, g € H we have that g[M] C f[M] = f = g. Specifically we are interested
in magic sets for the family G of all continuous functions that are not constant on any open
subset of R. We will show that these magic sets are stable in the following sense: Adding and
removing a countable set does not destroy the property of being a magic set. Moreover, if the
union of less than ¢ meager sets is still meager, we can also add and remove sets of cardinality
less than ¢ without destroying the magic set.

Then we will enlarge the family G to a family F by replacing the continuity with symmetry and
assuming that the functions are locally bounded. A function f : R — R is symmetric iff for
every x € R we have that limpyo 3 (f(z + h) + f(z — h)) = f(z). For this family of functions
we will construct 2¢ pairwise different magic sets which cannot be destroyed by adding and
removing a set of cardinality less than ¢. We will see that under the continuum hypothesis
magic sets and these more stable magic sets for the family F are the same. We shall also see
that the assumption of local boundedness cannot be omitted. Finally, we will prove that for the
existence of a magic set for the family F it is sufficient to assume that the union of less than ¢
meager sets is still meager. So for example Martin’s axiom for o-centered partial orders implies
the existence of a magic set.

1 Introduction

In 1993, Berarducci and Dikranjan proved [1, Theorem 8.5] that under the continuum hypothesis (CH) there
exists a magic set for the family of all nowhere constant, continuous (n.c.c.) functions. In other words there
is a set M C R such that for all functions f, g € C(R,R) which are not constant on any open subset U C R

gIM] C fIM]= f=g. (1)

The existence of such a set is not provable in ZFC, as shown in [3, Example 5.17] and in [5]. In this paper we
will show that we can weaken the requirements of [1, Theorem 8.5] by replacing CH by the assumption that
the union of less than ¢ meager sets is meager, i.e. add(M) = c¢. Note that for example Martin’s axiom for
o-centered partial orders implies add(M) = ¢. A proof of this fact can be found in [7, Chapter II, Theorem
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2.20]. Moreover, we will enlarge the family of all n.c.c. functions to the set F of all symmetric, locally
bounded, nowhere constant (s.l.b.n.c.) functions, where a function is called symmetric iff for every = € R we

have that L L
L @b+ fa—h)
hl0 2

= f().

In F there are functions with discontinuities. Based on Berarducci’s and Dikranjan’s proof we will construct
2¢ pairwise different sets which are not only magic for the set F but also stay magic when we remove a set
Yy € [R]< and add a set Y7 € [R]<¢ to M. Such a set will be called strongly magic for the family F.

In 1999, Burke and Ciesielski proved the following Theorem:

THEOREM 1.1. (/3, Theorem 5.10]) Every magic set M for the family of all n.c.c. is nowhere meager.
Le. M NU is not meager for every non-empty open set U C R.

Using this result we will be able to show that every magic set for the family F contains 2¢ pairwise different
strongly magic sets.

In Section 3 we will prove that there does not exist a set of range uniqueness for the family of all sym-
metric, nowhere constant functions. A set of range uniqueness for a family H C R is a set M C R such
that for all f,g € H

gM] = fIM] = f =g. (2)
Note that (2) is weaker than the corresponding condition (1) in the definition of a magic set. So the
assumption that the functions in F are locally bounded is necessary for the existence of a magic set.

Finally, in Section 4 we will show that if add(M) = ¢, a magic set for the family G of all n.c.c. functions
cannot be destroyed by adding and removing sets of cardinality less than ¢. So if add(M) = ¢, magic sets
and strongly magic sets are the same for the family G. Moreover, we will see that we cannot destroy a magic
set M for the family G by removing a meager set but we can destroy M by adding a meager set. Finally, we
prove that we can remove and add a countable set to a magic set for the family F or G and the resulting set
is still magic.

2 The existence of 2° pairwise different strongly magic sets

DEFINITION 2.1. A function f: R — R is called symmetric iff for all x € R

S (CRRORiCa))
hl0 2

= f().

REMARK 2.2. The set of all symmetric functions is closed under multiplication with scalars and addition.
REMARK 2.3. The function
&R —- R
{sin (%) if x # 0
0 ifx =0;

T

is symmetric and bounded but neither the left- nor the right-sided limit exists at x = 0.

DEFINITION 2.4. A function f: R — R is locally bounded iff for every x € R there is a neighborhood U of x
such that fly is bounded.

LEMMA 2.5. Let g and h be two symmetric, locally bounded functions in *R and let D C R be a dense set.
Then
g|D:h|D s g=h.



Proof. Let D be a dense subset of R and assume that there are two different symmetric, locally bounded
functions g and h such that g|p = h|p. Let f := g — h and choose an o € {—1,1} such that there is an

zo € R with af(xo) > 0. Note that the function f = af is symmetric and locally bounded. Let I C R be
an arbitrary open interval containing xy. By induction we will show that for every positive integer m there
is a 2, € I such that f(z,) > 3 f(2o).

m=1: Choose z1 :=xg € I.
m +— m +1: Let z, € I such that f(z,) > % f(zo). Choose a sequence (hy)nen € R such that
limy, o0 by =0 and z,, + h,, € D for all n € N. Since f is symmetric we have that

ﬂf(‘xO) < f(zm) = % lim (f(an + hn) + .f(z’rn - hn)) - } lim f(z’m - hn)~

2 n— 00 2 n—oo

So there is an ng € N such that f(z, — hn,) > mf(zg) > mT“f(xO). Define 2y 11 1= 2m — hing-

We proved that f is not locally bounded. This is a contradiction. —

COROLLARY 2.6. The family of all symmetric, locally bounded functions in ®*R has cardinality c.

Proof. Use Lemma 2.5 with D = Q. —

COROLLARY 2.7. Let f and g be symmetric, locally bounded functions. If f # g, there exists a non-empty
interval I such that f(x) # g(z) for all x € I.

Proof. Assume that for all open, non-empty intervals I C R there is an = € I such that f(z) = g(x).
I.e. there is a dense subset D C R with

flp =4lp.
Therefore by Lemma 2.5 we have that f = g. —

DEFINITION 2.8. We define F C BR to be the set of all symmetric, locally bounded, nowhere constant
(s.l.b.n.c.) functions.

LEMMA 2.9. Let f € F. Then every fiber of f is nowhere dense. Le. the set f~1({x}) is nowhere dense for
every x € R.

Proof. Let f € F and assume that there is an « € R and a non-empty interval (a,b) C R such that

(a,0) \ [~ ({z}) = 0.

Similarly to Lemma 2.5 we can show that then f|(, ) is identically equal to . But f is nowhere constant.
This is a contradiction. —

DEFINITION 2.10. Let H C RR. A set M C R is a strongly magic set for the family H if and only if for all
frg € H and all subsets Yy and Yy of R with cardinality less than |M| we have that

gl(M\Yo) UNi] C fFIIM\Yo) U] = f=g.

REMARK 2.11. Note that there is a model of ZFC in which there exists a magic set and all these magic sets
are of cardinality less than c. (See [4, p.22].)

By modifying the proof of [1, Theorem 8.1 and Theorem 8.5] we can prove the following Theorem:

THEOREM 2.12. Let add(M) = ¢ and let N C R be a nowhere meager set. Then N contains 2¢ = |P(R)|
pairwise different strongly magic sets for the family F.



Proof. Tt suffices to prove that N contains 2¢ pairwise different magic sets to which we can add and remove
a set of cardinality less than ¢ without destroying them. Let C := {(f,g) € F x F | f # g}. Note that by
Corollary 2.6 we have that |C| = ¢. For every function v € 2 we construct a magic set M, C N by transfinite
induction. Let a € ¢ and assume that we have already constructed m%, m% € R for every 8 € a. By Lemma
2.7 there is a non-empty open interval I, C R such that

fa(x) # ga(x) for every x € I,.

Divide I,, into two disjoint intervals I0 and I} with non-empty interior. Now we choose m? € R and m}, € R
such that the following conditions are satisfied:

(1)o m2 € ISN N and m! € IL N N;

D 1 ¢ Usea F5" (195(m3)1) U Uy 5" ([as(mb)}) = A for every 5 € 2
()a My & Upea 9o ({fa(m3)}) UUpeq 9o ({fa(mp)}) =: B for every § € 2;
(W % # Upen 077 (190 0m2)}) UUjcn 027 ({9a(mb)}) = C for every § € 2 and
()

5)a m ¢ Upea {3} U Usea {mp} =: D for every § € 2.

Note that m? and m] exist since A, B,C and D are all unions of less than ¢ meager sets by Lemma 2.9.
Since add(M)=c¢ we have that A, B,C and D are meager. So (N NI1%)\ (AU BUC U D) is non-empty for
every d € 2 because N is nowhere meager.

For every v € 2 let
M, :={m)® |aec} CN.

Note that by construction M, # M, for every v,~" € ‘2 with v # /. So there are 2° = |2| pairwise different
sets M. Now let v € ‘2 and let Yj and Y7 be two subsets of R with cardinality less than c.

CLAIM 1: For every a € ¢ we have that g, (ml(a)) ¢ folM,].

Proof of Claim 1. Let o € ¢ and suppose for a contradiction that there is an mg(ﬁ ) e M., such that

g (M) = fa (m}®) 3)

There are three cases:

CASE 1: a=p

Then g, (ml(a)> = fa (ml(o‘)) . So m® ¢ I,. This is a contradiction to (1),.
CASE 2: a € f

By (3) we have that mg(ﬁ) e fit ({ga (mg(a)) }) This is a contradiction to (2)g.
CASE 3: e

By (3) we have that mi® e gt ({fa (mg(ﬂ)) }) . This is a contradiction to (3)q.

Therefore, g, (mg(a)) ¢ falM,]. K

CLAIM 2: For every a € ¢ we have that go[(M \ Yo) UY1] € fol[(M, \ Yo) U Y],

Proof of Claim 2. Let « € ¢. For every k € R\ {0} there is a unique €; € ¢ such that

(k:fa,k’ga> = <f6k’g€k>'



Then we define my, := mZ,fe’“). Let k,1 € R\ {0} with k& # . Without loss of generality assume that ¢ € ¢;.
Then by (4),

(lga)(ml) # (lga)(mk)-
Therefore, gq(my) # go(mg). So the set {go(mi) | K € R\ {0}} has cardinality ¢ and there is an [ € R\ {0}
with
ga(mi) € {ga(my) [ k€ RA{0}}\ (fa[Y1] U ga[Yo0])

since | fo[Y1]] < |Y1] < ¢ and |g[Yo]| <|Yo| < ¢. Note that by Claim 1 go(my) ¢ fo[M,] for every k € R\ {0}.
So

Ga(my) ¢ fa[Mv \ YO] U fa[Yl] = foz[(Mv \ Yp) U Y1]~
But goz(ml) € Ja [M“/} \goz [YO] and therefore ga(ml) € ga[(M“/ \ }/0) U Yl] _|

So for every v € ‘2 the set M, C N is strongly magic. —
COROLLARY 2.13. If add(M) = ¢ there are 2° = |P(R)| pairwise different strongly magic sets for the family
F.

Proof. Use Theorem 2.12 with N = R. —
COROLLARY 2.14. Let add(M) = ¢ and let M C R be a magic set for the family F. Then M contains
2¢ = |P(R)| pairwise different strongly magic sets.

Proof. Let M C R be a magic set. By Theorem 1.1 the set M is nowhere meager. Now apply Theorem 2.12
with NV = M. —

3 There is no magic set for all nowhere constant, symmetric func-
tions

DEFINITION 3.1. ([6, p. 384]) Let H C ®R. A set M C R is a set of range uniqueness for the family H if
and only if for all f,g € H we have that

fIM]=g[M] = f=g.
REMARK 3.2. Every magic set is a set of range uniqueness.

DEFINITION 3.3. A function f: R — R is additive if for all x,y € R

flx+y) = fl=)+ f(y)

LEMMA 3.4. There exists no set of range uniqueness for the family of all nowhere constant, additive functions.

Proof. Let B be a Hamel basis of R. I.e. every x € R has a unique representation of the form
x = Z ap(x)b,
beB

where ap(x) € Q for every b € B and ap(x) = 0 for all but finitely many b € B. Assume that there is a set
of range uniqueness M C R for the family of all additive functions. For every b € B we define

Ay ={z e R | ap(z) # 0}.

CrAamMm:  For every b € B we have that
Ay N M # 0.



Proof of the Claim. Assume that there is a by € B such that

Abo NM=0.
We define two nowhere constant, additive functions f and g as follows: Let f(bo) := 1, let g(bg) := —1 and
f(b) =g(b) =0forall b e B\ {by}. We define
fR—=R and g:R—=R
x>y ap(x)f(b) z Y ap(x)g(b).
beB beB

Note that f # g and
(f(2) 20 <= x € Ap,) N (g(x) #0 <= z € Ap,).

But since Ay, N M = () we have that
fIM] = g[M] = {0}.

This is a contradiction. —

Now we define two nowhere constant, additive functions f and g such that f[M] = g[M] = Q. Let Q = {q,, |
n € N} and

fR—=R
T Zab(x)f(b),

beB

where we define f(b) € R for every b € B by induction on n:

n = 0: Let by € B and choose an zy € Ay, N M. We define f(bg) := abq(“wo) € Q and f(b) := 0 for
0

all b€ B\ {bg} with ap(zo) # 0. Then f(z¢) = ap,(x0)f(by) = qo. Moreover, let
By := B\ {be B ap(zg) # 0}.
n—1~n: Let b, € B,_1 and choose an x,, € A, N M. Note that by construction x,, ¢ {zx | k <n}. We

define S () F(5)
L qn — k<n Ap \Tn k
fbn) = o, (o)

and f(b) :=0 for all b € B,_1 \ {b,} with ap(x,) # 0. Then f(x,) = ¢,. Moreover let B, := B,_1 \ {b €
B | ap(zn) # 0}.

For all b € B\ U, cny Bn let f(b) := 0. Note that f is nowhere constant and f[M] = Q. Moreover,

neN
let
g:R—R
1
Then f[M] = g[M] = Q but f # g. This is a contradiction. —

Since every additive function is symmetric, the following corollary follows directly from Lemma 3.4:

COROLLARY 3.5. There exists no set of range uniqueness for the family of all nowhere constant, symmetric
functions.



4 Magic sets and strongly magic sets

In this section let G C ®R be the family of all nowhere constant, continuous (n.c.c.) functions and let F C ®*R
be the family of all symmetric, locally bounded, nowhere constant (s.l.b.n.c.) functions.

In 1981 Diamond, Pomerance and Rubel proved in [6, Theorem 0] that we can remove and add finitely many
points to a set of range uniqueness for the family of all entire functions without destroying it. By slightly
modifying their proof, we see that we can add and remove finitely many points to a magic set for the family
G and the resulting set is still magic. In this section we will generalize this result. We will prove that if
add(M) = ¢, strongly magic sets and magic sets are the same for the family G but that we cannot add
arbitrary meager sets to a magic set for the family G without destroying it. Moreover, we will prove that a
magic set for the family F cannot be destroyed by adding and removing countable sets.

LeEMMA 4.1. ([3, Lemma 5.3]) Let f € BR be a continuous function and let g € *R be a n.c.c. function.
Then go f is a n.c.c. function.

Proof. See [3, Lemma 5.3]. —

LEMMA 4.2 (Cantor’s Theorem on countable dense orders). Let I,J C R be open intervals and let A C I
and B C J be countable dense sets such that both A and B have neither a mazimum nor a minimum. Then
there is a monotonically increasing homeomorphism

E:I—J

such that §[A] = B. Moreover, there is a monotonically decreasing homeomorphism n : I — J such that
n[A] = B.

DEFINITION 4.3. ([2]) An uncountable, closed subset of R without isolated points is called a perfect set.

DEFINITION 4.4. ([3, p.2], [2]) An so-set is a set S C R with the property that for every perfect set P C R
there is a perfect set Q C P such that QNS = 0. S is a strong sg-set, if f[S] is an sg-set in R for every
feCR,R).

LEMMA 4.5. ([3, Theorem 5.6(5)]) Every set of range uniqueness is a strong so-set.

Proof. See [3, Theorem 5.6(5)]. —
REMARK 4.6. ([3, p.13]) Every set of cardinality less than ¢ is a strong so-set.

LEMMA 4.7. ([3, Lemma 5.9]) Let M C R be a meager strong so-set and let x,y € R such that x # y. Then
there is a n.c.c. function n: R — R such that n[M] is countable and n(x) # n(y).

Proof. The proof is similar to the proof of [3, Lemma 5.9]. —

PROPOSITION 4.8. Assume that add(M) =¢. Let M C R be a magic set for the family G and let D C R be
a set of cardinality less than ¢. Then M U D 1is still a magic set for the family G.

Proof. Let M C R be a magic set for the family G, let D C R be a set of cardinality less than ¢ and assume
that M U D is not a magic set for the family G. So there are functions f, g € G such that

g[M] £ fIM] and g[MUD]C f[MUD]. (4)

Since add(M) = ¢ and by Remark 4.6, both f[D] and g[D] are meager strong so-sets and therefore, f[D]Ug[D]
is a meager strong sg-set. By Lemma 4.7 there is a n.c.c. function 1 : R — R such that n(f[D] U g[D]) is



countable and such that 7o f # o g. Note that by Lemma 4.1, f:=no f € Gand j:=nogegG.

Since f and g are n.c.c. functions, there is an interval [a,b] = H C R with non-empty interior and endpoints
in M such that

fIH] N glH] = 0.
Then there is a n.c.c. function ¢ : R — R such that

(i) CIFIHN) € [3.1] and ¢[g[H]) < [0, 5];

(i) ¢(f(a)) =<(f(b) = ¢(g(a) = <(GO) = 53

(i) ¢[f[R]] < [0,1] and ¢[g[R]] < [0, 1]-
Note that ¢ o f # (o g and (o §)[MUD] C (o f)[MUD]. Let ¢,d € (a,b) such that ¢ < d. Let
ho : [a,c] — [0, ] be a strictly monotonically decreasing function with hg(a) = § and ho(c) = —1 and let

h [d b] — [4,2] be a strictly monotonically decreasing function with ha(d) = 2 and ha(b) = 3. Define

= ((Co f)[D]U (¢ 0 §)[D]UQ) N (—1,2). Note that (o f)[D]U (¢ o §)[D] C F by property (iii) and that
F is a countable, dense subset of (—1,2) that has neither a maximum nor a minimum. Let N C M be a

countable dense subset of (¢, d). By Lemma 4.2 there is a monotonically increasing homeomorphism
hi: (¢, d) — (—1,2)
such that hi[N] = F. We define

fo R — R
(Cof)x) ifz¢ H;
ho(x) if x € [a,c];
v ha(z) if x € (¢, d);
ho(z) if x € [d,b];
and
g:R — R
. {@o@@)ﬁxeﬂ;
folx) otherwise.

Note that by construction fy # gg and fy, g0 € G. So since M is a magic set for the family G

g90[M] Z fo[M]. ()
By construction we have that

gol(MUD)NH] = (Cog)[(MUD)NH]C (Co f)I(MUD)\int(H)] = fo[(MU D)\ int(H)].

Therefore,
golM] = go[M 1 H U go[M\ H] = go[M 1 H] U fo[M\ H] € golM 1 H]U fo[M]
€ go(MUD)NH]U fo[M] € fol(M U D)\ int(H)]U fo[M]
C fo[M \ int(H)] U fo[ D\ int(H)] U fo[M] C fo[M] U (¢ o f)[D] € fo[M].
This is a contradiction to (5) and therefore, M U D is a magic set for the family G. —

REMARK 4.9. Note that Diamond, Pomerance and Rubel have already used the idea to compose f and g with
a suitable function in their proof of [6, Theorem 0].



PROPOSITION 4.10. Assume that add(M) = c¢. Let M C R be a magic set for the family G. Let D CR be a
set of cardinality less than c. Then M \ D is still a magic set for the family G.

Proof. Let M C R be a magic set for the family G, let D C R be a set of cardinality less than ¢ and assume
that M \ D is not a magic set for the family G. Without loss of generality we assume that D C M. Then
there are functions f, g € G such that

glM] & f[M] and g[M \ D] C f[M \ D].

Let go, fo, f, g € G and ¢ be the function we get when we do the same construction as in the proof of
Proposition 4.8. Since fy # go and M is a magic set for the family G

go[M] Z fo[M]. (6)
Moreover, we have that R
(Cog)IM\ D] C (Co f)IM\D].
Therefore,
go[M] = go[(M \ D) N H] U go[(M \ D)\ H] U go[D N H] U go[D \ H]
= (Co @M\ D)NH]U(¢Co N[(M\D)\HU (o dDNH]U (o fD\ H]

C (Co HM\ D)\ int(H)] U fo[M]U (¢ 0 §)[D]U (¢ o f)[D]
C fo[M]

This is a contradiction to (6) and therefore, M \ D is a magic set for the family G. —

REMARK 4.11. Since every Cantor set is nowhere dense and not a strong so-set, by Lemma 4.5 we cannot
add arbitrary meager sets to a magic set without destroying it.

COROLLARY 4.12. If add(M) = ¢, every magic set for the family G is a strongly magic set.

Proof. We can apply Proposition 4.8 and Proposition 4.10. =

COROLLARY 4.13. Let M be a magic set for the family G and let D C R be a countable set. Then M \ D
and M U D are both magic sets for the family G.

Proof. The proof is the same as the proofs of Proposition 4.8 and Proposition 4.10. —

LEMMA 4.14. Let f be a s.l.b.n.c. function and let I C R be a non-empty, open interval such that f[I] is
bounded and there is a z < sup,¢; f(z) in R with

Ve €I (f(x) >z = [ is not continuous at x).

Then for every X > 0 we can find a non-empty, open interval J C I such that

flC <sup F(2) — Asup f()] -

zel xel

Proof. Let z, f and I be as in the lemma and let A > 0. Choose a sequence (z,)nen C I with

lim f(xz,)=sup f(z) and f(z,) >z foralln eN.
n—oo zel

By assumption f is not continuous at every x,,. So for every n € N we have that

E,={\,>0|V¥5>03z €R (Jz — 2| <IA|f(x) — f(zn)] > A} # 0.



For every n € N we define €, := %E” > 0.
CASE 1: lim,_, €, # 0.

Choose a 3 > 0 such that
VYN € Ndn > N (e, > ).

Let m € N with ¢, > 3 and

\ B
0< Zlélf)f(x) — flzm) < 93"

By definition of €,, there is a sequence (y,)nen € I converging to x,, such that for all n € N
[f(@m) = f(yn)| = €m > B
Note that if f(2,) < f(yn) we have that f(y,) > sup,c; f(x). This is a contradiction. Therefore,
f(@m) = f(yn) = €m > B.
Without loss of generality we assume that y,, < z,, for all n € N and we define
hp == Zm — yn

for every n € N. Since f is symmetric, there is an n € N such that

A:=2f(xm) — f@m + hn) — f(@m — hp) < % and z,, + h, € I.
Moreover we get that
A=2f(xm) — f(@m +hn) = (W) > f(@m) — f(@m + hn) + 5> SLéII) f@) = f(@m + hn) + %ﬁ

Therefore,

Sup f(2) + 525 < flam + ha).
xel

This is a contradiction.
CASE 2: lim,, oo €, =0
There is an ng € N such that 0 < €,, < % By definition of €,, we have that there is a § > 0 such that

Vo € R <|:c—xn0| < 0= |f(x) — flzn,)] < ;)),\> .

Define J := (z,,, — 8, Zn, + J) N I and note that by construction f[J] C (sup,c; f(x) — A\, sup,e; f(x)]. -

LEMMA 4.15. Let f be a s.l.b.n.c. function and let I C R be a non-empty, open interval such that f[I] is
bounded and there is a z > infyey f(x) in R with

Ve €I (f(x) < z= [ is not continuous at x).

Then for every A > 0 we can find a non-empty, open interval J C I such that

£ € [int £(o). ink (o) + A) |

zel
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Proof. The proof of this Lemma is similar to the proof of Lemma 4.14. —

LEMMA 4.16. Let I C R be a bounded, non-empty, open interval and let f and g be s.l.b.n.c. functions.
Then there are non-empty, open intervals J, CR\ I,n € N, and Iy C I such that:

(i) Yn e N (J, NIp) =0);
(i) for all natural numbers n # m we have that dist(Jy,, Jn) > 1 and
(iii) ¥Yn € N (g[Io] N f[Jn] = 0).

Proof. Without loss of generality we can assume that g|; is bounded. Let z := £ (sup,¢; (@) + infzer g(2)).
Then we are in at least one of the following two cases:

Case 1: Vke N3z >k (f(z) > 2).
CASE 2: Vke N3z >k (f(x) < 2).

The Lemma can be proved similarly in both cases, so we will assume that we are in Case 1. We can find
non-empty, open intervals J,,,n € N; with properties (i), (ii) (with J, instead of J,,) and
vn € N3z € J, (f(z) > 2).
Let n € N. We want to find a non-empty, open interval J,, C J,, such that
fla) € ( sup f<x>] .

zeJy,

If there is an @ € J,, with f (x) > z and such that f is continuous at x, we find such an interval by definition
of continuity. Else we can find such an interval by Lemma 4.14. Analogously we can find an interval Iy C I
such that

Iy] C |inf .
gllo] € [3};19(1‘),2)
By construction we have that for every n € N
g[[o] n f[Jn] = (D
4

PROPOSITION 4.17. Let M C R be a magic set for the family F of all s.l.b.n.c. functions and let D C R be
a countable set. Then M U D is still a magic set for the family F.

Proof. Let M C R be a magic set for the family F and let D C R be a countable set. Moreover, we assume
that M U D is not magic for the family F. So there are functions f, g € F such that

g[M] Z fIM] and g[MUD]C f[MUD]
By Corollary 2.7 there is a non-empty, bounded, open interval I C R such that

Ve el (g(x) # f(x)).

Moreover, choose intervals (a,b) = Iy C I and J, € R\ I,n € N as described in Lemma 4.16. Since
R\ (M UD,) is dense in R, we can assume that the endpoints of all these intervals are outside of M U D. Let
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fID]U g[D] = {d,, | n € N}. For every n € N choose a j, € J, N M. Let E be the set of all endpoints of the
intervals Iy and J,,,n € N. We define

fi:R\E — R

. f@)+dn— f(jn) ifz € J, forann e N;
f(x) otherwise.

Moreover, we define

fo R — R
. fi(x) ifx e R\ E;
1 (limpyo fi(z + h) + fi(x — h)) otherwise;
and
Jgo : R — R
fo(z) if € R\ Iop;
if Iy;
N g(x) if x € Io;

% (limpyo fo(x —h) +g(z+h)) if x = qa;
% (limhw fo(x + h) + g(ac - h)) ifx=0.

Note that fo, g0 € F and fy # go. So since M is a magic set we have
go[M] £ fo[M].
By construction we have

gol(MUD)NIo) = g[(MUD)NIo) C f [(Mum\ UJn] = fo [(Mum\ UJn]-

neN neN

Therefore,
go[M] = go[M N Io] U go[M \ Io] = go[M N Io] U fo[M \ Io] € go[M N Io] U fo[M]

Cgo[(MUD)NIo]U fo[M] C fo [(MUD)\ U Jn‘| U fo[M]
neN

= fo lM\ UJnl U fo [D\ UJn‘| U fo[M] C fo [D\ UJn‘| Ufo[M]:le\ UJn‘| U fo[M]

neN neN neN neN
C f[D]U fo[M] = fo[M].

This is a contradiction. —

PRrROPOSITION 4.18. Let M C R be a magic set for the family F and let D C R be a countable set. Then
M\ D is still a magic set for the family F.

Proof. The proof is similar to the proof of Proposition 4.17. —
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