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Abstract

In this paper we study magic sets for certain families H ⊆ RR which are subsets M ⊆ R such
that for all functions f, g ∈ H we have that g[M ] ⊆ f [M ]⇒ f = g. Specifically we are interested
in magic sets for the family G of all continuous functions that are not constant on any open
subset of R. We will show that these magic sets are stable in the following sense: Adding and
removing a countable set does not destroy the property of being a magic set. Moreover, if the
union of less than c meager sets is still meager, we can also add and remove sets of cardinality
less than c without destroying the magic set.

Then we will enlarge the family G to a family F by replacing the continuity with symmetry and
assuming that the functions are locally bounded. A function f : R → R is symmetric iff for
every x ∈ R we have that limh↓0

1
2 (f(x+ h) + f(x− h)) = f(x). For this family of functions

we will construct 2c pairwise different magic sets which cannot be destroyed by adding and
removing a set of cardinality less than c. We will see that under the continuum hypothesis
magic sets and these more stable magic sets for the family F are the same. We shall also see
that the assumption of local boundedness cannot be omitted. Finally, we will prove that for the
existence of a magic set for the family F it is sufficient to assume that the union of less than c
meager sets is still meager. So for example Martin’s axiom for σ-centered partial orders implies
the existence of a magic set.

1 Introduction

In 1993, Berarducci and Dikranjan proved [1, Theorem 8.5] that under the continuum hypothesis (CH) there
exists a magic set for the family of all nowhere constant, continuous (n.c.c.) functions. In other words there
is a set M ⊆ R such that for all functions f, g ∈ C(R,R) which are not constant on any open subset U ⊆ R

g[M ] ⊆ f [M ]⇒ f = g. (1)

The existence of such a set is not provable in ZFC, as shown in [3, Example 5.17] and in [5]. In this paper we
will show that we can weaken the requirements of [1, Theorem 8.5] by replacing CH by the assumption that
the union of less than c meager sets is meager, i.e. add(M) = c. Note that for example Martin’s axiom for
σ-centered partial orders implies add(M) = c. A proof of this fact can be found in [7, Chapter II, Theorem
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2.20]. Moreover, we will enlarge the family of all n.c.c. functions to the set F of all symmetric, locally
bounded, nowhere constant (s.l.b.n.c.) functions, where a function is called symmetric iff for every x ∈ R we
have that

lim
h↓0

f(x+ h) + f(x− h)

2
= f(x).

In F there are functions with discontinuities. Based on Berarducci’s and Dikranjan’s proof we will construct
2c pairwise different sets which are not only magic for the set F but also stay magic when we remove a set
Y0 ∈ [R]<c and add a set Y1 ∈ [R]<c to M . Such a set will be called strongly magic for the family F .

In 1999, Burke and Ciesielski proved the following Theorem:

Theorem 1.1. ([3, Theorem 5.10]) Every magic set M for the family of all n.c.c. is nowhere meager.
I.e. M ∩ U is not meager for every non-empty open set U ⊆ R.

Using this result we will be able to show that every magic set for the family F contains 2c pairwise different
strongly magic sets.

In Section 3 we will prove that there does not exist a set of range uniqueness for the family of all sym-
metric, nowhere constant functions. A set of range uniqueness for a family H ⊆ RR is a set M ⊆ R such
that for all f, g ∈ H

g[M ] = f [M ]⇒ f = g. (2)

Note that (2) is weaker than the corresponding condition (1) in the definition of a magic set. So the
assumption that the functions in F are locally bounded is necessary for the existence of a magic set.

Finally, in Section 4 we will show that if add(M) = c, a magic set for the family G of all n.c.c. functions
cannot be destroyed by adding and removing sets of cardinality less than c. So if add(M) = c, magic sets
and strongly magic sets are the same for the family G. Moreover, we will see that we cannot destroy a magic
set M for the family G by removing a meager set but we can destroy M by adding a meager set. Finally, we
prove that we can remove and add a countable set to a magic set for the family F or G and the resulting set
is still magic.

2 The existence of 2c pairwise different strongly magic sets

Definition 2.1. A function f : R→ R is called symmetric iff for all x ∈ R

lim
h↓0

f(x+ h) + f(x− h)

2
= f(x).

Remark 2.2. The set of all symmetric functions is closed under multiplication with scalars and addition.

Remark 2.3. The function

ξ : R → R

x 7→

{
sin
(
1
x

)
if x 6= 0;

0 if x = 0;

is symmetric and bounded but neither the left- nor the right-sided limit exists at x = 0.

Definition 2.4. A function f : R→ R is locally bounded iff for every x ∈ R there is a neighborhood U of x
such that f |U is bounded.

Lemma 2.5. Let g and h be two symmetric, locally bounded functions in RR and let D ⊆ R be a dense set.
Then

g|D = h|D ⇐⇒ g = h.
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Proof. Let D be a dense subset of R and assume that there are two different symmetric, locally bounded
functions g and h such that g|D = h|D. Let f̂ := g − h and choose an α ∈ {−1, 1} such that there is an

x0 ∈ R with αf̂(x0) > 0. Note that the function f = αf̂ is symmetric and locally bounded. Let I ⊆ R be
an arbitrary open interval containing x0. By induction we will show that for every positive integer m there
is a zm ∈ I such that f(zm) > m

2 f(x0).

m = 1: Choose z1 := x0 ∈ I.
m 7→ m + 1: Let zm ∈ I such that f(zm) > m

2 f(x0). Choose a sequence (hn)n∈N ⊆ R≥0 such that
limn→∞ hn = 0 and zm + hn ∈ D for all n ∈ N. Since f is symmetric we have that

m

2
f(x0) < f(zm) =

1

2
lim
n→∞

(f(zm + hn) + f(zm − hn)) =
1

2
lim
n→∞

f(zm − hn).

So there is an n0 ∈ N such that f(zm − hn0) > mf(x0) ≥ m+1
2 f(x0). Define zm+1 := zm − hn0 .

We proved that f is not locally bounded. This is a contradiction. a

Corollary 2.6. The family of all symmetric, locally bounded functions in RR has cardinality c.

Proof. Use Lemma 2.5 with D = Q. a

Corollary 2.7. Let f and g be symmetric, locally bounded functions. If f 6= g, there exists a non-empty
interval I such that f(x) 6= g(x) for all x ∈ I.

Proof. Assume that for all open, non-empty intervals I ⊆ R there is an x ∈ I such that f(x) = g(x).
I.e. there is a dense subset D ⊆ R with

f |D = g|D.

Therefore by Lemma 2.5 we have that f = g. a

Definition 2.8. We define F ⊆ RR to be the set of all symmetric, locally bounded, nowhere constant
(s.l.b.n.c.) functions.

Lemma 2.9. Let f ∈ F . Then every fiber of f is nowhere dense. I.e. the set f−1({x}) is nowhere dense for
every x ∈ R.

Proof. Let f ∈ F and assume that there is an x ∈ R and a non-empty interval (a, b) ⊆ R such that

(a, b) \ f−1({x}) = ∅.

Similarly to Lemma 2.5 we can show that then f |(a,b) is identically equal to x. But f is nowhere constant.
This is a contradiction. a

Definition 2.10. Let H ⊆ RR. A set M ⊆ R is a strongly magic set for the family H if and only if for all
f, g ∈ H and all subsets Y0 and Y1 of R with cardinality less than |M | we have that

g[(M \ Y0) ∪ Y1] ⊆ f [(M \ Y0) ∪ Y1]⇒ f = g.

Remark 2.11. Note that there is a model of ZFC in which there exists a magic set and all these magic sets
are of cardinality less than c. (See [4, p.22].)

By modifying the proof of [1, Theorem 8.1 and Theorem 8.5] we can prove the following Theorem:

Theorem 2.12. Let add(M) = c and let N ⊆ R be a nowhere meager set. Then N contains 2c = |P(R)|
pairwise different strongly magic sets for the family F .
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Proof. It suffices to prove that N contains 2c pairwise different magic sets to which we can add and remove
a set of cardinality less than c without destroying them. Let C := {〈f, g〉 ∈ F × F | f 6= g}. Note that by
Corollary 2.6 we have that |C| = c. For every function γ ∈ c2 we construct a magic set Mγ ⊆ N by transfinite
induction. Let α ∈ c and assume that we have already constructed m0

β ,m
1
β ∈ R for every β ∈ α. By Lemma

2.7 there is a non-empty open interval Iα ⊆ R such that

fα(x) 6= gα(x) for every x ∈ Iα.

Divide Iα into two disjoint intervals I0α and I1α with non-empty interior. Now we choose m0
α ∈ R and m1

α ∈ R
such that the following conditions are satisfied:

(1)α m0
α ∈ I0α ∩N and m1

α ∈ I1α ∩N ;

(2)α mδ
α /∈

⋃
β∈α f

−1
β ({gβ(m0

β)}) ∪
⋃
β∈α f

−1
β ({gβ(m1

β)}) =: A for every δ ∈ 2;

(3)α mδ
α 6∈

⋃
β∈α g

−1
α ({fα(m0

β)}) ∪
⋃
β∈α g

−1
α ({fα(m1

β)}) =: B for every δ ∈ 2;

(4)α mδ
α 6∈

⋃
β∈α g

−1
α ({gα(m0

β)}) ∪
⋃
β∈α g

−1
α ({gα(m1

β)}) =: C for every δ ∈ 2 and

(5)α mδ
α /∈

⋃
β∈α {m0

β} ∪
⋃
β∈α {m1

β} =: D for every δ ∈ 2.

Note that m0
α and m1

α exist since A,B,C and D are all unions of less than c meager sets by Lemma 2.9.
Since add(M)=c we have that A,B,C and D are meager. So (N ∩ Iδα) \ (A ∪B ∪ C ∪D) is non-empty for
every δ ∈ 2 because N is nowhere meager.

For every γ ∈ c2 let
Mγ := {mγ(α)

α | α ∈ c} ⊆ N.

Note that by construction Mγ 6= Mγ′ for every γ, γ′ ∈ c2 with γ 6= γ′. So there are 2c = |c2| pairwise different
sets Mγ . Now let γ ∈ c2 and let Y0 and Y1 be two subsets of R with cardinality less than c.

Claim 1: For every α ∈ c we have that gα

(
m
γ(α)
α

)
/∈ fα[Mγ ].

Proof of Claim 1. Let α ∈ c and suppose for a contradiction that there is an m
γ(β)
β ∈Mγ such that

gα

(
mγ(α)
α

)
= fα

(
m
γ(β)
β

)
(3)

There are three cases:
Case 1: α = β

Then gα

(
m
γ(α)
α

)
= fα

(
m
γ(α)
α

)
. So m

γ(α)
α /∈ Iα. This is a contradiction to (1)α.

Case 2: α ∈ β
By (3) we have that m

γ(β)
β ∈ f−1α

({
gα

(
m
γ(α)
α

)})
. This is a contradiction to (2)β .

Case 3: β ∈ α
By (3) we have that m

γ(α)
α ∈ g−1α

({
fα

(
m
γ(β)
β

)})
. This is a contradiction to (3)α.

Therefore, gα

(
m
γ(α)
α

)
/∈ fα[Mγ ]. a

Claim 2: For every α ∈ c we have that gα[(Mγ \ Y0) ∪ Y1] 6⊆ fα[(Mγ \ Y0) ∪ Y1].

Proof of Claim 2. Let α ∈ c. For every k ∈ R \ {0} there is a unique εk ∈ c such that

〈kfα, kgα〉 = 〈fεk , gεk〉.
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Then we define mk := m
γ(εk)
εk . Let k, l ∈ R \ {0} with k 6= l. Without loss of generality assume that εk ∈ εl.

Then by (4)εl
(lgα)(ml) 6= (lgα)(mk).

Therefore, gα(ml) 6= gα(mk). So the set {gα(mk) | k ∈ R \ {0}} has cardinality c and there is an l ∈ R \ {0}
with

gα(ml) ∈ {gα(mk) | k ∈ R \ {0}} \ (fα[Y1] ∪ gα[Y0])

since |fα[Y1]| ≤ |Y1| < c and |gα[Y0]| ≤|Y0| < c. Note that by Claim 1 gα(ml) /∈ fα[Mγ ] for every k ∈ R\{0}.
So

gα(ml) /∈ fα[Mγ \ Y0] ∪ fα[Y1] = fα[(Mγ \ Y0) ∪ Y1].

But gα(ml) ∈ gα[Mγ ] \ gα[Y0] and therefore gα(ml) ∈ gα[(Mγ \ Y0) ∪ Y1]. a

So for every γ ∈ c2 the set Mγ ⊆ N is strongly magic. a

Corollary 2.13. If add(M) = c there are 2c = |P(R)| pairwise different strongly magic sets for the family
F .

Proof. Use Theorem 2.12 with N = R. a

Corollary 2.14. Let add(M) = c and let M ⊆ R be a magic set for the family F . Then M contains
2c = |P(R)| pairwise different strongly magic sets.

Proof. Let M ⊆ R be a magic set. By Theorem 1.1 the set M is nowhere meager. Now apply Theorem 2.12
with N = M . a

3 There is no magic set for all nowhere constant, symmetric func-
tions

Definition 3.1. ([6, p. 384]) Let H ⊆ RR. A set M ⊆ R is a set of range uniqueness for the family H if
and only if for all f, g ∈ H we have that

f [M ] = g[M ]⇒ f = g.

Remark 3.2. Every magic set is a set of range uniqueness.

Definition 3.3. A function f : R→ R is additive if for all x, y ∈ R

f(x+ y) = f(x) + f(y).

Lemma 3.4. There exists no set of range uniqueness for the family of all nowhere constant, additive functions.

Proof. Let B be a Hamel basis of R. I.e. every x ∈ R has a unique representation of the form

x =
∑
b∈B

ab(x)b,

where ab(x) ∈ Q for every b ∈ B and ab(x) = 0 for all but finitely many b ∈ B. Assume that there is a set
of range uniqueness M ⊆ R for the family of all additive functions. For every b ∈ B we define

Ab := {x ∈ R | ab(x) 6= 0}.

Claim: For every b ∈ B we have that
Ab ∩M 6= ∅.
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Proof of the Claim. Assume that there is a b0 ∈ B such that

Ab0 ∩M = ∅.

We define two nowhere constant, additive functions f and g as follows: Let f(b0) := 1, let g(b0) := −1 and
f(b) = g(b) = 0 for all b ∈ B \ {b0}. We define

f : R→ R and g : R→ R

x 7→
∑
b∈B

ab(x)f(b) x 7→
∑
b∈B

ab(x)g(b).

Note that f 6= g and
(f(x) 6= 0 ⇐⇒ x ∈ Ab0) ∧ (g(x) 6= 0 ⇐⇒ x ∈ Ab0).

But since Ab0 ∩M = ∅ we have that
f [M ] = g[M ] = {0}.

This is a contradiction. a

Now we define two nowhere constant, additive functions f and g such that f [M ] = g[M ] = Q. Let Q = {qn |
n ∈ N} and

f : R→ R

x 7→
∑
b∈B

ab(x)f(b),

where we define f(b) ∈ R for every b ∈ B by induction on n:

n = 0: Let b0 ∈ B and choose an x0 ∈ Ab0 ∩ M . We define f(b0) := q0
ab0 (x0)

∈ Q and f(b) := 0 for

all b ∈ B \ {b0} with ab(x0) 6= 0. Then f(x0) = ab0(x0)f(b0) = q0. Moreover, let

B0 := B \ {b ∈ B | ab(x0) 6= 0}.

n− 1 7→ n: Let bn ∈ Bn−1 and choose an xn ∈ Abn ∩M . Note that by construction xn /∈ {xk | k < n}. We
define

f(bn) :=
qn −

∑
k<n abk(xn)f(bk)

abn(xn)

and f(b) := 0 for all b ∈ Bn−1 \ {bn} with ab(xn) 6= 0. Then f(xn) = qn. Moreover let Bn := Bn−1 \ {b ∈
B | ab(xn) 6= 0}.

For all b ∈ B \
⋃
n∈NBn let f(b) := 0. Note that f is nowhere constant and f [M ] = Q. Moreover,

let

g : R→ R

x 7→ 1

2
f(x).

Then f [M ] = g[M ] = Q but f 6= g. This is a contradiction. a

Since every additive function is symmetric, the following corollary follows directly from Lemma 3.4:

Corollary 3.5. There exists no set of range uniqueness for the family of all nowhere constant, symmetric
functions.
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4 Magic sets and strongly magic sets

In this section let G ⊆ RR be the family of all nowhere constant, continuous (n.c.c.) functions and let F ⊆ RR
be the family of all symmetric, locally bounded, nowhere constant (s.l.b.n.c.) functions.

In 1981 Diamond, Pomerance and Rubel proved in [6, Theorem 0] that we can remove and add finitely many
points to a set of range uniqueness for the family of all entire functions without destroying it. By slightly
modifying their proof, we see that we can add and remove finitely many points to a magic set for the family
G and the resulting set is still magic. In this section we will generalize this result. We will prove that if
add(M) = c, strongly magic sets and magic sets are the same for the family G but that we cannot add
arbitrary meager sets to a magic set for the family G without destroying it. Moreover, we will prove that a
magic set for the family F cannot be destroyed by adding and removing countable sets.

Lemma 4.1. ([3, Lemma 5.3]) Let f ∈ RR be a continuous function and let g ∈ RR be a n.c.c. function.
Then g ◦ f is a n.c.c. function.

Proof. See [3, Lemma 5.3]. a

Lemma 4.2 (Cantor’s Theorem on countable dense orders). Let I, J ⊆ R be open intervals and let A ⊆ I
and B ⊆ J be countable dense sets such that both A and B have neither a maximum nor a minimum. Then
there is a monotonically increasing homeomorphism

ξ : I → J

such that ξ[A] = B. Moreover, there is a monotonically decreasing homeomorphism η : I → J such that
η[A] = B.

Definition 4.3. ([2]) An uncountable, closed subset of R without isolated points is called a perfect set.

Definition 4.4. ([3, p.2], [2]) An s0-set is a set S ⊆ R with the property that for every perfect set P ⊆ R
there is a perfect set Q ⊆ P such that Q ∩ S = ∅. S is a strong s0-set, if f [S] is an s0-set in R for every
f ∈ C(R,R).

Lemma 4.5. ([3, Theorem 5.6(5)]) Every set of range uniqueness is a strong s0-set.

Proof. See [3, Theorem 5.6(5)]. a

Remark 4.6. ([3, p.13]) Every set of cardinality less than c is a strong s0-set.

Lemma 4.7. ([3, Lemma 5.9]) Let M ⊆ R be a meager strong s0-set and let x, y ∈ R such that x 6= y. Then
there is a n.c.c. function η : R→ R such that η[M ] is countable and η(x) 6= η(y).

Proof. The proof is similar to the proof of [3, Lemma 5.9]. a

Proposition 4.8. Assume that add(M) = c. Let M ⊆ R be a magic set for the family G and let D ⊆ R be
a set of cardinality less than c. Then M ∪D is still a magic set for the family G.

Proof. Let M ⊆ R be a magic set for the family G, let D ⊆ R be a set of cardinality less than c and assume
that M ∪D is not a magic set for the family G. So there are functions f, g ∈ G such that

g[M ] 6⊆ f [M ] and g[M ∪D] ⊆ f [M ∪D]. (4)

Since add(M) = c and by Remark 4.6, both f [D] and g[D] are meager strong s0-sets and therefore, f [D]∪g[D]
is a meager strong s0-set. By Lemma 4.7 there is a n.c.c. function η : R → R such that η(f [D] ∪ g[D]) is
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countable and such that η ◦ f 6= η ◦ g. Note that by Lemma 4.1, f̃ := η ◦ f ∈ G and g̃ := η ◦ g ∈ G.

Since f̃ and g̃ are n.c.c. functions, there is an interval [a, b] = H ⊆ R with non-empty interior and endpoints
in M such that

f̃ [H] ∩ g̃[H] = ∅.

Then there is a n.c.c. function ζ : R→ R such that

(i) ζ[f̃ [H]] ⊆
[
1
2 , 1
]

and ζ[g̃[H]] ⊆
[
0, 12
]
;

(ii) ζ(f̃(a)) = ζ(f̃(b)) = ζ(g̃(a)) = ζ(g̃(b)) = 1
2 ;

(iii) ζ[f̃ [R]] ⊆ [0, 1] and ζ[g̃[R]] ⊆ [0, 1].

Note that ζ ◦ f̃ 6= ζ ◦ g̃ and (ζ ◦ g̃)[M ∪ D] ⊆ (ζ ◦ f̃)[M ∪ D]. Let c, d ∈ (a, b) such that c < d. Let
h0 : [a, c] →

[
0, 12
]

be a strictly monotonically decreasing function with h0(a) = 1
2 and h0(c) = −1 and let

h2 : [d, b] →
[
1
2 , 2
]

be a strictly monotonically decreasing function with h2(d) = 2 and h2(b) = 1
2 . Define

F := ((ζ ◦ f̃)[D] ∪ (ζ ◦ g̃)[D] ∪Q) ∩ (−1, 2). Note that (ζ ◦ f̃)[D] ∪ (ζ ◦ g̃)[D] ⊆ F by property (iii) and that
F is a countable, dense subset of (−1, 2) that has neither a maximum nor a minimum. Let N ⊆ M be a
countable dense subset of (c, d). By Lemma 4.2 there is a monotonically increasing homeomorphism

h1 : (c, d)→ (−1, 2)

such that h1[N ] = F . We define

f0 : R → R

x 7→


(ζ ◦ f̃)(x) if x /∈ H;

h0(x) if x ∈ [a, c];

h1(x) if x ∈ (c, d);

h2(x) if x ∈ [d, b];

and

g0 : R → R

x 7→

{
(ζ ◦ g̃)(x) if x ∈ H;

f0(x) otherwise.

Note that by construction f0 6= g0 and f0, g0 ∈ G. So since M is a magic set for the family G

g0[M ] 6⊆ f0[M ]. (5)

By construction we have that

g0[(M ∪D) ∩H] = (ζ ◦ g̃)[(M ∪D) ∩H] ⊆ (ζ ◦ f̃)[(M ∪D) \ int(H)] = f0[(M ∪D) \ int(H)].

Therefore,

g0[M ] = g0[M ∩H] ∪ g0[M \H] = g0[M ∩H] ∪ f0[M \H] ⊆ g0[M ∩H] ∪ f0[M ]

⊆ g0[(M ∪D) ∩H] ∪ f0[M ] ⊆ f0[(M ∪D) \ int(H)] ∪ f0[M ]

⊆ f0[M \ int(H)] ∪ f0[D \ int(H)] ∪ f0[M ] ⊆ f0[M ] ∪ (ζ ◦ f̃)[D] ⊆ f0[M ].

This is a contradiction to (5) and therefore, M ∪D is a magic set for the family G. a

Remark 4.9. Note that Diamond, Pomerance and Rubel have already used the idea to compose f and g with
a suitable function in their proof of [6, Theorem 0].
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Proposition 4.10. Assume that add(M) = c. Let M ⊆ R be a magic set for the family G. Let D ⊆ R be a
set of cardinality less than c. Then M \D is still a magic set for the family G.

Proof. Let M ⊆ R be a magic set for the family G, let D ⊆ R be a set of cardinality less than c and assume
that M \D is not a magic set for the family G. Without loss of generality we assume that D ⊆ M . Then
there are functions f, g ∈ G such that

g[M ] 6⊆ f [M ] and g[M \D] ⊆ f [M \D].

Let g0, f0, f̃ , g̃ ∈ G and ζ be the function we get when we do the same construction as in the proof of
Proposition 4.8. Since f0 6= g0 and M is a magic set for the family G

g0[M ] 6⊆ f0[M ]. (6)

Moreover, we have that
(ζ ◦ g̃)[M \D] ⊆ (ζ ◦ f̃)[M \D].

Therefore,

g0[M ] = g0[(M \D) ∩H] ∪ g0[(M \D) \H] ∪ g0[D ∩H] ∪ g0[D \H]

= (ζ ◦ g̃)[(M \D) ∩H] ∪ (ζ ◦ f̃)[(M \D) \H] ∪ (ζ ◦ g̃)[D ∩H] ∪ (ζ ◦ f̃)[D \H]

⊆ (ζ ◦ f̃)[(M \D) \ int(H)] ∪ f0[M ] ∪ (ζ ◦ g̃)[D] ∪ (ζ ◦ f̃)[D]

⊆ f0[M ]

This is a contradiction to (6) and therefore, M \D is a magic set for the family G. a

Remark 4.11. Since every Cantor set is nowhere dense and not a strong s0-set, by Lemma 4.5 we cannot
add arbitrary meager sets to a magic set without destroying it.

Corollary 4.12. If add(M) = c, every magic set for the family G is a strongly magic set.

Proof. We can apply Proposition 4.8 and Proposition 4.10. a

Corollary 4.13. Let M be a magic set for the family G and let D ⊆ R be a countable set. Then M \D
and M ∪D are both magic sets for the family G.

Proof. The proof is the same as the proofs of Proposition 4.8 and Proposition 4.10. a

Lemma 4.14. Let f be a s.l.b.n.c. function and let I ⊆ R be a non-empty, open interval such that f [I] is
bounded and there is a z < supx∈I f(x) in R with

∀x ∈ I (f(x) > z ⇒ f is not continuous at x).

Then for every λ > 0 we can find a non-empty, open interval J ⊆ I such that

f [J ] ⊆
(

sup
x∈I

f(x)− λ, sup
x∈I

f(x)

]
.

Proof. Let z, f and I be as in the lemma and let λ > 0. Choose a sequence (xn)n∈N ⊆ I with

lim
n→∞

f(xn) = sup
x∈I

f(x) and f(xn) > z for all n ∈ N.

By assumption f is not continuous at every xn. So for every n ∈ N we have that

En := {λn > 0 | ∀δ > 0∃x ∈ R (|x− xn| < δ ∧ |f(x)− f(xn)| ≥ λn} 6= ∅.
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For every n ∈ N we define εn := supEn

2 > 0.

Case 1: limn→∞ εn 6= 0.

Choose a β > 0 such that
∀N ∈ N∃n ≥ N (εn > β).

Let m ∈ N with εm > β and

0 ≤ sup
x∈I

f(x)− f(xm) <
β

23
.

By definition of εm there is a sequence (yn)n∈N ⊆ I converging to xm such that for all n ∈ N

|f(xm)− f(yn)| ≥ εm > β.

Note that if f(xm) ≤ f(yn) we have that f(yn) > supx∈I f(x). This is a contradiction. Therefore,

f(xm)− f(yn) ≥ εm > β.

Without loss of generality we assume that yn < xm for all n ∈ N and we define

hn := xm − yn

for every n ∈ N. Since f is symmetric, there is an n ∈ N such that

A := 2f(xm)− f(xm + hn)− f(xm − hn) <
β

23
and xm + hn ∈ I.

Moreover we get that

A = 2f(xm)− f(xm + hn)− f(yn) > f(xm)− f(xm + hn) + β > sup
x∈I

f(x)− f(xm + hn) +
22

23
β.

Therefore,

sup
x∈I

f(x) +
21

23
β < f(xm + hn).

This is a contradiction.

Case 2: limn→∞ εn = 0

There is an n0 ∈ N such that 0 < εn0
≤ λ

23 . By definition of εn0
we have that there is a δ > 0 such that

∀x ∈ R
(
|x− xn0

| < δ ⇒ |f(x)− f(xn0
)| < λ

3

)
.

Define J := (xn0 − δ, xn0 + δ) ∩ I and note that by construction f [J ] ⊆ (supx∈I f(x)− λ, supx∈I f(x)]. a

Lemma 4.15. Let f be a s.l.b.n.c. function and let I ⊆ R be a non-empty, open interval such that f [I] is
bounded and there is a z > infx∈I f(x) in R with

∀x ∈ I (f(x) < z ⇒ f is not continuous at x).

Then for every λ > 0 we can find a non-empty, open interval J ⊆ I such that

f [J ] ⊆
[

inf
x∈I

f(x), inf
x∈I

f(x) + λ

)
.
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Proof. The proof of this Lemma is similar to the proof of Lemma 4.14. a

Lemma 4.16. Let I ⊆ R be a bounded, non-empty, open interval and let f and g be s.l.b.n.c. functions.
Then there are non-empty, open intervals Jn ⊆ R \ I, n ∈ N, and I0 ⊆ I such that:

(i) ∀n ∈ N (Jn ∩ I0) = ∅);

(ii) for all natural numbers n 6= m we have that dist(Jn, Jm) ≥ 1 and

(iii) ∀n ∈ N (g[I0] ∩ f [Jn] = ∅).

Proof. Without loss of generality we can assume that g|I is bounded. Let z := 1
2 (supx∈I g(x) + infx∈I g(x)).

Then we are in at least one of the following two cases:

Case 1: ∀k ∈ N∃x ≥ k (f(x) > z).

Case 2: ∀k ∈ N∃x ≥ k (f(x) < z).

The Lemma can be proved similarly in both cases, so we will assume that we are in Case 1. We can find
non-empty, open intervals J̃n, n ∈ N, with properties (i), (ii) (with J̃n instead of Jn) and

∀n ∈ N∃x ∈ J̃n (f(x) > z).

Let n ∈ N. We want to find a non-empty, open interval Jn ⊆ J̃n such that

f [Jn] ⊆

(
z, sup
x∈J̃n

f(x)

]
.

If there is an x ∈ J̃n with f(x) > z and such that f is continuous at x, we find such an interval by definition
of continuity. Else we can find such an interval by Lemma 4.14. Analogously we can find an interval I0 ⊆ I
such that

g[I0] ⊆
[

inf
x∈I

g(x), z

)
.

By construction we have that for every n ∈ N

g[I0] ∩ f [Jn] = ∅.

a

Proposition 4.17. Let M ⊆ R be a magic set for the family F of all s.l.b.n.c. functions and let D ⊆ R be
a countable set. Then M ∪D is still a magic set for the family F .

Proof. Let M ⊆ R be a magic set for the family F and let D ⊆ R be a countable set. Moreover, we assume
that M ∪D is not magic for the family F . So there are functions f, g ∈ F such that

g[M ] 6⊆ f [M ] and g[M ∪D] ⊆ f [M ∪D].

By Corollary 2.7 there is a non-empty, bounded, open interval I ⊆ R such that

∀x ∈ I (g(x) 6= f(x)).

Moreover, choose intervals (a, b) = I0 ⊆ I and Jn ⊆ R \ I, n ∈ N as described in Lemma 4.16. Since
R \ (M ∪D) is dense in R, we can assume that the endpoints of all these intervals are outside of M ∪D. Let

11



f [D]∪ g[D] = {dn | n ∈ N}. For every n ∈ N choose a jn ∈ Jn ∩M . Let E be the set of all endpoints of the
intervals I0 and Jn, n ∈ N. We define

f1 : R \ E → R

x 7→

{
f(x) + dn − f(jn) if x ∈ Jn for an n ∈ N;

f(x) otherwise.

Moreover, we define

f0 : R → R

x 7→

{
f1(x) if x ∈ R \ E;
1
2 (limh↓0 f1(x+ h) + f1(x− h)) otherwise;

and

g0 : R → R

x 7→


f0(x) if x ∈ R \ I0;

g(x) if x ∈ I0;
1
2 (limh↓0 f0(x− h) + g(x+ h)) if x = a;
1
2 (limh↓0 f0(x+ h) + g(x− h)) if x = b.

Note that f0, g0 ∈ F and f0 6= g0. So since M is a magic set we have

g0[M ] 6⊆ f0[M ].

By construction we have

g0[(M ∪D) ∩ I0] = g[(M ∪D) ∩ I0] ⊆ f

[
(M ∪D) \

⋃
n∈N

Jn

]
= f0

[
(M ∪D) \

⋃
n∈N

Jn

]
.

Therefore,

g0[M ] = g0[M ∩ I0] ∪ g0[M \ I0] = g0[M ∩ I0] ∪ f0[M \ I0] ⊆ g0[M ∩ I0] ∪ f0[M ]

⊆ g0 [(M ∪D) ∩ I0] ∪ f0[M ] ⊆ f0

[
(M ∪D) \

⋃
n∈N

Jn

]
∪ f0[M ]

= f0

[
M \

⋃
n∈N

Jn

]
∪ f0

[
D \

⋃
n∈N

Jn

]
∪ f0[M ] ⊆ f0

[
D \

⋃
n∈N

Jn

]
∪ f0[M ] = f

[
D \

⋃
n∈N

Jn

]
∪ f0[M ]

⊆ f [D] ∪ f0[M ] = f0[M ].

This is a contradiction. a
Proposition 4.18. Let M ⊆ R be a magic set for the family F and let D ⊆ R be a countable set. Then
M \D is still a magic set for the family F .

Proof. The proof is similar to the proof of Proposition 4.17. a
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