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Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by August 31, 2021,
via the same link. More detailed instructions are available online. Proposed prob-
lems must not be under consideration concurrently at any other journal nor be posted
to the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12244. Proposed by Rob Pratt, SAS Institute Inc., Cary, NC, Stan Wagon, Macalester Col-
lege, St. Paul, MN, Douglas B. West, University of Illinois, Urbana, IL, and Piotr Zielinski,
Cambridge, MA. A polyomino is a region in the plane with connected interior that is the
union of a finite number of squares from a grid of unit squares. For which integers k and
n with 4 ≤ k ≤ n does there exist a polyomino P contained entirely within an n-by-n grid
such that P contains exactly k unit squares in every row and every column of the grid?
Clearly such polyominos do not exist when k = 1 and n ≥ 2. Nikolai Beluhov noticed that
they do not exist when k = 2 and n ≥ 3, and his Problem 12137 [2019, 756; 2021, 381],
whose solution appears at the end of this column, shows that they do not exist when k = 3
and n ≥ 5.

12245. Proposed by Jiahao Chen, Tsinghua University, Beijing, China. Suppose that two
circles α and β, with centers P and
Q, respectively, intersect orthogo-
nally at A and B. Let CD be a diam-
eter of β that is exterior to α. Let E

and F be points on α such that CE

and DF are tangent to α, with C and
E on one side of PQ and D and F

on the other side of PQ. Let S be
the intersection of CF and QA, and
let T be the intersection of DE and
QB. Prove that ST is parallel to CD

and is tangent to α.

12246. Proposed by Seán Stewart, Bomaderry, Australia. Let ζ be the Riemann zeta func-
tion, defined for n ≥ 2 by ζ(n) = ∑∞

k=1 1/kn. Let Hn be the nth harmonic number, defined
by Hn = ∑n

k=1 1/k. Prove

∞∑

n=2

ζ(n)

n2
+

∞∑

n=2

(−1)n
ζ(n)Hn

n
= π2

6
.

doi.org/10.1080/00029890.2021.1877020

376 c⃝ THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 128


