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Abstract

For n € w, the weak choice principle RC,, is defined as follows:
For every infinite set X there is an infinite subset Y C X with a choice function on
[Y]":={zCY: |z] =n}.

The choice principle C,; states the following:
For every infinite family of n-element sets, there is an infinite subfamily G C F with
a choice function.

The choice principles LOC,, and WOC,, are the same as C,,, but we assume that the family F
is linearly orderable (for LOC, ) or well-orderable (for WOC,, ).

In the first part of this paper, for m,n € w we will give a full characterization of when the im-
plication RC,,, = WOC,, holds in ZF. We will prove the independence results by using suitable
Fraenkel-Mostowski permutation models. In the second part, we will show some generalizations.
In particular, we will show that RCs = LOC; and that RC¢ = C3, answering two open ques-
tions from Halbeisen and Tachtsis [4]. Furthermore, we will show that RC¢ = Cgy and that
RC7 = LOC; .

1 Definitions and Terminology
The notation we use is standard and follows that of [5]. Now we list some definitions that shall be
used in the sequel:

DEFINITION 1.1. Let n be an arbitrary positive natural number.

1. C,, states that every infinite family F of sets of size n has an infinite subset G C F with a
choice function.

2. LOC,, states that every infinite, linearly orderable family F of sets of size n has an infinite
subset G C F with a choice function.

3. WOC,, states that every infinite, well-orderable family F of sets of size n has an infinite
subset G C F with a choice function.



4. RC,, states that every infinite set X has an infinite subset Y C X such that the set
Y"={zCY: [z] =n}
has a choice function.

5. Let F be an infinite family of n-element sets. A Kinna-Wagner selection function of F is a
function f with dom(f) = F such that for allp € F, 0 # f(p) C p.

6. KW states that every infinite family F of sets of size n has an infinite subset G C F with a
Kinna-Wagner selection function.

7. LOKW, states that every infinite, linearly orderable family F of sets of size n has an infinite
subset G C F with a Kinna-Wagner selection function.

In 1995, Montenegro proved in [6] that RC,, = C,; for all n € {2,3,4}. It is still unknown whether
this implication holds for any n > 5. In 2017, Halbeisen and Tachtsis found interesting results
concerning the implications RC,, = C,, and RC,, = RC,, for m,n € w \ {0,1} (see [4]). Among
other results they proved that the following statements are consistent with ZF or provable in ZF,
respectively:

(o) If myn € w\ {0,1} are such that there is a prime p with p{m and p | n, then

RC,, # RC,, and RC,, # C,, .

(8) RC5 % LOC; and RCj  LOC3 .

() For every n € w\ {0,1} we have that C,; = LOC,, = WOC,, but none of these implications
is reversible.

(6) For every n € w\ {0,1} the implication RCy,, = LOKW_ holds. In particular we have that
RC¢ = LOCj3 (notice that LOKWj3 < LOC3).

In Section of this paper, we will give a full characterization of when the implication RC,, = WOC,,
(for n,m € w\ {0,1}) is provable in ZF. To be more precise, it will be shown (see Theorem [2.10)
that for every m,n € w\{0, 1}, RC,, = WOC;, is provable in ZF if an only if the following condition
holds: Whenever we can write n in the form

=3 amn

i<k
where py, ..., pg—1 are prime numbers and ag,...,ax—1 € w \ {0}, then we find by,...,bx_1 € w
with

i<k

In order to prove the independence of this implication with ZF, we shall use permutation models
(see [5] for an introduction to permutation models and to models of ZFA). With Pincus’ trans-
fer theorems (see [7]), we are able to transfer the results obtained in ZFA to ZF. Furthermore,
Theorem [2.10] gives us the following three special cases:



1. For all n € w we have that RC,, = WOC, (see Corollary.

2. Let p be a prime number, m € w \ {0} and n € w\ {0,1}. Then
RC,m» = WOC,,
if and only if n | p™ or p =2, m =1 and n = 4 (see Corollary [2.12)).

3. If RC,, & WOC,,, we also have that RC,, # RC,, and RC,, # C; (see Corollary2.11].
This generalizes Halbeisens and Tachtsis’ result (o).

In Section[3] we will give some insights into the question what happens when we weaken the
assumption that our family of n-element sets is well-ordered. We will prove that RCg = C,; for
n € {3,9} and that RC,, = LOC,, for n € {5,7}.

2  On the implication RC,, = WOC_

2.1 When is RC,, = WOC_ provable in ZF?

In this section, we will characterise the values m and n for which the implication RC,, = WOC,,
is provable in ZF. However, before we state and prove the main result of this section, we introduce
some notation and prove an auxiliary result.

Two finite partitions {z; : 0 <i <[} and {y; : 0 < j < k} of sets of the same cardinality are of the
same type, if | = k and for each 0 < i <[ we have |z;| = |y

Let k be a positive integer and let n = ), _, a;p;, where po,...,pr—1 are prime numbers and
ag,...,ax—1 € w\ {0}. Furthermore, for an infinite, well-ordered set A, let F = {F,, : & € A\} be an
infinite family of pairwise disjoint n-element sets, where for each o € A, Fy, is partitioned into sets
Fa,i (Z < k}), where |Fa,i’ = a;p;, i.e.,

F, = U Fo; and F,;NF,; =0 whenever i # i'.
i<k
In particular, for any o, o’ € A, the partitions {F,; : @ < k} and {F ; : i < k} are of the same
type.
For a € A we say that d C F,, diagonalises F, if for all i < k, |F,; Nd| = 1. Let

Dy :={d C F, : d diagonalises F,}
and for each o € X let D, be a non-empty subset of D, such that for any a,a’ € A\ we have
[Da| = [Dar].

Finally, for some positive integer ¢ > 1 and some prime number p, for each a € A let {D? ;i< t}
be a partition of [Dy]P such that for any a,a’ € A, the partitions {DJ, ; : j <t} and {Df, ;: j <t}
are of the same type.



LEMMA 2.1. Let n =73, _pa;p;, F ={Fy:ac A}, Fo = U{Fa;:1 <k}, Dy, and {Df;’j 1j <t}
be as above. Furthermore, let p := p;, for some p;, € {po,...,Pk—1}, and assume that for some
integer 1 > 0 there is a choice function

l+p
h: [U Da] — U D, .
aEN aEN

Then there is an infinite subset N C X such that we are in at least one of the following cases:

(a) There is a choice function
!
h [U Da] = |J Da.
ac)N ac)

(b) We can simultaneously refine the partitions on {F, : a € X'} to partitions of the same type
(and extend accordingly the corresponding sets D, ).

(¢c) We can simultaneously refine the partitions on {[Dy]P : a € N} to partitions of the same
type.

(d) For each a € X' we can choose a non-empty proper subset D! of D, i.e.,
@ # D,Oc g DOU
such that for all a, 3 € X we have |D;,| = [Dj.

Proof. Recall that for all a, o/ € A we have |D,| = |Dy/|. Now, assume that there is a jy < k such
that for nj, := a;,pj, and all @ € X\ we have

1o  |Dal -
For all « € X and all z € F,, define
H#Hz = ‘{XGDQ:ZGX}}.
Since ZzeFa,jo #2 = |Dal, |Fajo| = nj, and nj, 1 |Dal, it follows that
0+ {z € Fajy: V2 € Fojo(#2 < #2)} C Fajy.

Therefore, we can simultaneously refine the partition on each F, for « € A. Moreover, notice
that since nj, is finite, we find an infinite set A’ C A such that for each a € X, the block Fj j,
is partitioned into two non-empty blocks Fy, j, and Fy, j, where for all o, 3 € X, |Fyo;,| = |Fpj,|
and |Fy j,| = |F3,j,|.- This shows that all the refined partitions are of the same type and we are in

Case .

So, we can assume that for all i < k£ and all € A\ we have
ni | [Dal

where n; 1= a;p;.



We consider now the following four cases:

Case 1: There is a Zj € [Uae)\ Da]l and an infinite subset A’ C ) such that
Vo€ N VX € [DoJP (h(ZpU X) € X).

By shrinking X" if necessary, we may assume that Zo N J,cy Do = 0. For every a € X and all
d € D, define
deg,(d) == [{X € [Da)P : h(Zo U X) = d}|.

Note that e deg,(d) = |[Da]?| = <|’;a|> Since p = p;, and since n;, | | Dy, we have p | |Dy|.

| Dal

Hence, it follows that |D,| t ( » ) To see this, let D := |D,| and notice that if D = ap® for

some positive integers a, s where p t a, then

1-2- ... p 1-2-...-(p—1)

<D> Cap®-(apt—1)- ... (ap*—p+1) ap*t-(ap*—1)- ... (ap* —p+1)
P .
Hence, p® { (lz ) and in particular we have D ¢t (Z )

Thus, for each o € M we can choose
0 # D, :={d € Dy :Vd € Do(deg,(d) < deg,(d'))} C Da.

Moreover, notice that since D,, is finite, by shrinking X’ if necessary, we can assume that for all
a, B € X we have |Dy,| = |Dj|, and we are in Case @)

Case 2: There is a set Zy € [UaeA Da]l, a non-negative integer jo < ¢, and an infinite subset A’ C A
such that Zo NJ,cy Do = 0 and

Vae N 3X, X' € DP . (h(ZoU X) € Zo Ah(ZyU X') € X').

Ol,jo

In this case, we can simultaneously refine the partition on [D,]? for each o € X'. Moreover, since
[D,]P is finite (for all & € X'), by shrinking X if necessary, we can assume that for all o, 8 € X', the
partition on [D,]P has the same type as the partition on [Dg]?, and we are in Case (.

Case 3: Thereis aset Zy € [Uney Da]l, a non-negative integer jo < ¢, and an infinite subset A’ C A
such that Zo NJ,cy Do = 0 and

va e N((vX € D

a,jo

W(ZoUX) € Zo) AIX, X' € DX (h(Zo U X) # h(Zo U X’))).

In this case, we can simultaneously refine the partition on [D,]P for each a € X'. Moreover, by
shrinking X if necessary, we can assume that all partitions are of the same type and we are again

in Case .
Case 4: For all Z € [U aeN Da]l and for all but finitely many o € X\ we have

I <tvVX, X' eDp; (h(ZUX)=hnZUX') € Z). (%)



Then, for each Z € [Uae N Da}l let az € X\ be the least element with respect to the well-ordering
on A such that holds for a@ = az. Furthermore, for every Z € [Uae)\ Da}l let jz < t be the least
integer such that holds for a« = az and j = jz. So, for every Z € [Uaa Da]l we have

VX, X' eDl . (MZUX)=h(ZUX')ANNZUX)E€ Z). (%)

az,jz
Finally, we define a function A’ : [UaeA Da}l — Uaen Da by stipulating

1
W [Uae)\ Da] — UaG/\ Dq
A — h(ZUX)

xz,)z

where X is an arbitrary element of D? . . Note that by , h' is a well-defined choice function
and we are in Case @) -

Now, we are ready to prove the main result of this section.

PROPOSITION 2.2. Let m,n € w\ {0,1} and assume that whenever we can write n in the form

n= Zaipia

i<k
where po, . .., Pr—1 are prime numbers and ag, . . ., ax_1 are positive integers, then we find by, ..., b1 €
w with
i<k
Then, in ZF we have
RC,, = WOC,, .

Proof. Let F = {F, : o € A\} be an infinite, well-ordered family of pairwise disjoint n-element sets.
The goal is to construct an infinite subfamily of F with a choice function.

Applying RC,, to the set X¢ := (J,c) Fa» We obtain an infinite set Yy € X such that the set [Yp]™
has a choice function. For 1 < j < n, let

Ni={aeX: |[FanYyl =j}.

Since n is finite and A is infinite, there exists a jo with 1 < jo < n such that A\;; C A is infinite. If
Jjo = 1 we are done since {F, : @« € A1} C F has a choice function. If 1 < jy < n, we apply RC,,, to
the set

Xy = J{Fa\ Yo : 0 € \ji }

and obtain an infinite set Y3 C X such the set [Y7]™ has a choice function. As above, for 1 < j <
n — jo, let

/\jo,j = {Od S )‘jo : ‘Fa ﬁYl‘ Zj}
Then there exists a j; with 1 < j1 < n — jg such that A\ ;; C A is infinite. If j; = 1, then the
infinite family {F, : & € A\j;,1} € F has a choice function. Proceeding this way, we either find an

infinite subfamily of F with a choice function, or for an infinite subset \g C A, for all a € \g we
can simultaneously partition the sets [y, into sets F,; with ¢ < k for some k > 1. Since for each



i <k, |Fail > 2, we have |F ;| = a;p;, where p; is prime and a; > 0. Finally, for each o € Ao, let
let D, :={d C F, : d diagonalises Fj,}.

Now, since n = ), ;. a;p;, by our assumption we find bo,...,bx_1 € w with m = >, _, b;ip;, and
since m > 2, there is an i9 < k with b;, # 0. In particular, we have m > p;,. Let p := p;, and
l := m — p, where [ > 0. Furthermore, for t = 1, {D,; : j < t} = [D4]? is the trivial partition
of [Dy]P. Thus, by RC,,, there is an infinite set A C Ay and a choice function

h: [U Da]l+p—> U Da-

aEA aEA

So, we have all the requirements to apply Lemma [2.1|iteratively until — after finitely many steps —
the partitions of the F,’s or of the [D,]P’s contain a block with just one element, or the sets D,
are singletons: To see this, notice first that if we are in one of the cases (]ED, , or @, orifl =0,
then we can either refine the partition of the F,’s or of the [Dy]P’s. Now, if we are in case (@) for
[ > 0, then, by the properties of

m = Z bipi

i<k
and since we start with [ =m — p, | > p; (for some i < k) and we can proceed with I’ := [ — p;.

So, after finitely many steps—in particular after finitely many choices of sets Zy—we are in the
situation where the partitions of the F,’s or of the [D,|P’s contain a block with just one element,
or the D,’s are reduced to singletons, which gives us an algorithm to select an element from each
of the remaining F,,’s — where in the case when |D,| = 1, we choose the element in D, N Fyo.

COROLLARY 2.3. For every n € w we have that

RC, = WOC;, .

2.2 When is RC,, # WOC_ consistent with ZF?

In this section we will show that for all n,m € w\ {0,1} which do not satisfy the conditions of
Proposition 2.2 we get that
RC,, # WOC,

is consistent with ZF. In a first step we will construct suitable Fraenkel-Mostowski permutation
models — similar to those constructed in [2 Sec. 6] —in which we have RC,, A WOC, . We will
then see that both statements, RC,, and WOC, are injectively boundable. So, by [7, Theorem
3A3] the result is transferable to ZF.

Let pg and p; be two prime numbers. We start with a ground model M, ,, of ZFA 4+ AC with a
set of atoms

A::U{Ai:iew}UU{Bj 1j € wl,
where for all 7, j € w the sets A; and B; are called blocks. These blocks have the following properties:
e Foralli e w, A; = {aiyk k< po} and B; = {bi,l < pl} with |Az’ = pg and |Bz‘ = Pp1.

e The blocks are pairwise disjoint.



For all 4, j € w we define a permutation on A as follows:

e For all i € w and all k£ < pg let

a;,0 if k=po—1,

ai(ai’k) = .
aip+1 ik <po—1,

and «a;(a) = a for all a € A\ A;. Analogously for all j € w and all I < p; let

bi o ifl=p1 —1,

Bilbja) =1, .
5 +1 ifl < P11 — 1,

and ;(b) =b for all b€ A\ Bj.

Now we define an abelian group G of permutations of A by requiring
peEG <= ¢dp=aof,

where
a= Haf" with k; < pg for each ¢ € w
1EW
and
I . .
8= Hﬁjj with I; < p; for each j € w.
JEW

Let F be the normal filter on G generated by the subgroups
fixg(E) ={¢p € G:Va € E(¢(a) =a)}
with E € fin(A) := {A C A: |A| € w}. Let V), p, be the class of all hereditarily symmetric sets.

REMARK 2.4. We can also work with k blocks of size po,...,px—1, where p; is a prime number for
every i < k. The corresponding permutation model is denoted by Vi, . pp .-

DEFINITION 2.5. A set E € fin(\A) is closed if and only if for all i,j € w we have that

A20E¢@:>AZ§E and BjﬂE#@#ngE.

We now define a well-ordering on the set of closed sets.
DEFINITION 2.6. Let C and Cy be two blocks in {A; :i € wyU{Bj:jcw}. We define
Ci1=A4A; N Ca =By, or

Ci < (Cy: <= ClZAi/\CQZAj/\i<j, or
ClzBi/\CQIBin<j.

Moreover, for distinct closed sets E = | J{Fv, ... F,} € fin(A) and E' = | J{F},...,F],} € fin(A)
with blocks Fy, ..., Fy,, Fy,...,F}, let

E < E' : <= The <-least block in the symmetric difference
{Fy,...,F,}A{F],...,F].} belongs to E.



Note that this defines a well-ordering on the set of closed sets and therefore on the set of all closed
supports.

LEMMA 2.7. Letn € w\ {0,1} and let pg and p1 be two prime numbers such that
n = cpo + dp1 # 0

for c,d € w. Then we have that
Vpo,p1 IZ - WOC,, .

Proof. Define
F = {AlUAl+1U“'UAl+c—1UBl+cU"‘UBH-c-i-d—l tl=k(c+d)forak EW}-

Then F is an infinite family of pairwise disjoint n-element sets. Since the empty set is a support of
F, we have that F € V), ,,,. Moreover, F is well-orderable in V,, ,,. Assume towards contradiction
that there is an infinite subset G C F with a choice function

g:g—>Ug

in Vp,p,- Let E, € fin(A) be a closed support of g. Since Fj is finite, there is a Gy € G such that
GoN Ey = (. Then there are ¢, j € w with

9(Go) € A14i U Bigeyj-

Define vy := aj4; © Bi4ctj. We have that

9(10(Go)) = 9(Go) # 10(9(Go)).

So Ej is not a support of g which is a contradiction. —

LEMMA 2.8. Let m € w\ {0,1} and let po, p1 be prime numbers such that

m # cpo + dp1

for all ¢,d € w. Then we have:
mepl ): RCm

Proof. Let x € Vp, ;,, be an infinite set with closed support E, € fin(A). If there is an E € fin(A)
such that

Y= {z € x : F is a support of z}
is an infinite set, then y can be well-ordered in V,, ,, and we can define a choice function on [y]™
by choosing the least element with respect to that well-ordering.

So, assume that for all E € fin(A) there are only finitely many z € x with support E. For every
closed set E € fin(A) with E, C E define

Mg = {z € x : I is the minimal closed support of z with E, C E}



Since F is a support of Mg, the sets Mp belong to V,, ,,, and by our assumption, the sets Mg are
finite. Now, for each z € Mg define

[2] :={¢(2) : ¢ € fixq(Ez)} C Mg.
To see that [z] C Mg, notice that since E € fin(A) is closed, for all ¢ € G we have ¢p(E) = E.

We consider the following two cases:

Case 1: For infinitely many Mg there is a z € Mg with

Let y :=U{MEg : E, C EN3z € Mg(Mg = [z])}. The set y is in V), , because E, is a support of

=

y. Let t C y with |¢| = m and let E be a smallest closed set such that Mg C y and |t N Mg| is not
of the form kopo + ki1p1 with ko, k1 € w. To see that such a set ¢ exists, notice that for [z] = Mg
and [2'] = Mg, if [2] N [2/] # 0, then Mg = Mp:.

Define t_1 :=t N Mg. Since E \ E, # () there are blocks 4;,,..., A Bj,,-..,Bj,,,_; with

Ty—17

E\E :U{AioaAil“'7A Bju’Bju-O—l""’Bj““'”_l}‘

Ty —19

Define

~ Kj Aj,
G = {Haik’“ oHﬁj;‘jl Ve <uVl<w (ﬁik <po ANy, <p1>}.

keu lev

i Riuf Aj )\u v— ~
Let ¢ = O‘foo o--- ooziuﬂ1 oﬁj:“ o--- Oﬁj;;ll € G. Define
¢lr == ry, if r <wand ¢|, ;==\, ifu<r <u+o.

The elements in G can be ordered lexicographically. We call this well-ordering < o Foralls,s" <t_y
and all » < u + v define

dist,({s,s)) := ¢,

where ¢ is the <z-smallest element in G with ¢(s) = 5.

The rest of the proof can be done as in [2, Proposition 6.6]. For the sake of completeness, we will
redo it here:

Claim 1: For all s,s',s” < t_1 and all r < u + v we have that

dist, ((s, s')) +p dist,.((s', s")) = dist,((s, s")),
where p = pg if r <w and p = py if w <r <wu+ v. Moreover, +, denotes addition modulo p.
Proof of Claim 1. Let ¢g, ¢1,6 € G be <g-minimal with

¢o(s) = ', d1(s") = s" and ¢(s) = 5"
Assume that ¢ # ¢1 o ¢g. So we have that ¢~! o ¢y o ¢y # id and
¢~ o ¢10do(s) = s.

10



Let I < u+ v be the largest number such that

¢~ 1o ¢y ool #0.

Without loss of generality we assume that [ < w. Then let m € w with

(07 o ¢y 0 do)™|1 = 1.

Note that (¢~ o ¢1 0 ¢9)™ # «y, because otherwise we would have that a;,(s) = s which is a
contradiction to the fact that F is the minimal support of s with £, C E. So there is a ¢ € G\ {id}
with

(0 togrogy)™ =po a;, and @ <& ).
Then ¢ o a;,(s) = s = ;,(s) = ¢~ *(s). Note that ¢! <z a;,. We have that ¢o|; # 0 or ¢1]; # 0
or ¢|; # 0. Without loss of generality we assume that ¢g|; # 0. Then

%o Oa{ll ot <ado
and
dooa; ! op™l(s) = doo ;" o ails) = dols) = 5"

This contradicts the minimality of ¢g. —Claim 1
For all £ C t_q,all s < t and all » < u + v define

xr(s,1) := {dist,((s,5")) : s’ € t}.

These sets have the following properties:

Claim 2: For all £ C t_; and all s,s" < t we have that

—

1< xe(5,8)| < po for all r < wand 1 < |x,(s, )] < pp for all u <7 < u +v.

2. for all r < u + v there is a k, € w such that x,(s,t) = x,(s',%) +, k., where p = pg if r < u
andp=prifu<r<u+o.

- xe(s, D) =[x (s D).

4. if s # s’ there is an r < u + v such that x,(s,t) # x,(s',1).

w

Proof of Claim 2. 1. Note that 0 < x,(s,t) since dist,((s,s)) = 0.

2. Set k, := ¢|, where ¢ is <z-minimal with ¢(s) = s" and use Claim 1.

3. This follows from 2.

4. Let 5,5’ <t and let ¢ be <z-minimal with ¢(s) = 5. If x,(s,1) = x; (s, 1) for all r < u+ v it
follows that ¢|, = k, = 0 for all r < u+v. So ¢ = id and therefore s = s'. —Claim 2
We define an ordering < on the sets x,(s,?) as follows: x.(s,#) < x,(s',?) if and only if x,.(s,t) =
X (8',%) or the smallest integer in the symmetric difference x(s,?)Ax,(s’,t) belongs to x,(s,?).

11



For all non-empty sets t C t_1, all » < u + v and all natural numbers n define Ar,n(tN) as follows:
Let A\ro(f) := 0 and for every n € w \ {0} let

Arn () := {set\U)\m . Vs et\UAm (xr(s,) = xr (s, t))}

Note that |J,c,, Arn(f) = ¢ and only finitely many A, () are non-empty. Assume that ¢,_; is
defined for an » < w4 v. Then let

tr = Arng (tr—1),
where ng € w is the smallest natural number such that A, ,,(f,—1) is not of the form
cpo + dps
with ¢,d € w. By Claim 2, t,,4,_1 is a one-element set, i.e., there is an s < ¢t with
tutv—1 = {s}.
So we choose s from t. This shows that RC,,, holds in V) ;.

Case 2: There are infinitely many Mg such that there are z, 2’ € Mg with
[2] N [2] = 0.
Our goal is to reduce this case to Case 1. For every E € fin(A) with E; C E define
(M) == {[2] : = € Mp}.
Furthermore, choose a wg in the ground model My, ,, = ZFA 4+ AC such that

’wo\ U

E € fin(A)
E, CFE

=

and

for all closed sets E € fin(A) with E, C F and Mg # 0 we have |wo N [Mg]| = 1.

=

In other words, wg picks exactly one element from each non-empty [Mg]. Note that E, is a support
of wg. So wy € Vpy,p,- Choose
MIIE = Mg N wy.

This reduces Case 2 to Case 1. —
PROPOSITION 2.9. Let myn € w\{0,1}, k € w, and let po,...,px—1 be prime numbers such that
m# Yy e
i<k

forallc; e w, i <k, and

n= Z d;p;
i<k
for some d; € w, i € k. Then
RC,, A WOC,,

is consistent with ZF.

12



Proof. Similar as in Lemma[2.7] and Lemma [2.§ we can prove that
VPO»~~-,Pk71 ’: RC,, A WOC; . (1)

In order to transfer this statement to ZF, we have to show that RC,, and WOC, are injectively
boundable for all n € w. Then we can use Pincus’ transfer theorem [7, Theorem 3A3]. The terms
“boundable” and “injectively boundable” are defined in [7].

For a set x we define the injective cardinality
|z|— = {& € @ : there is an injection from « into =},
where € is the class of all ordinal numbers. Moreover let ¢(x) denote the following property:
if © is an infinite set, there is an infinite y C x with a choice function on [y]™.
Note that ¢(x) is boundable. Since ¢(x) holds when |z|- > w, it follows that
RC, <= Vz(|lz|- <w = p(x)).

So, RC,, is injectively boundable. Furthermore, we have that = WOC, is boundable. So, is
transferable into ZF. —

Propostion [2.2] together with Propostion [2.9] gives us the following result:

THEOREM 2.10. Let m,n € w\{0,1}. Then RC,, implies WOC,, if an only if the following condition

holds: For all prime numbers py, . ..,pr_1 such that there are positive integers ag, ... ,ap_1 with
n=Y am
i<k
we can find by, ..., by_1 € w with
m="> bp.
i<k

We conclude this section by giving a few consequences. Since ~WOC, = = RC,, Proposition
gives us:

COROLLARY 2.11. Let m,n € w\ {0,1} and let po,...,pr—1 be k € w prime numbers such that

m # Z Cipi

i<k
forallc; e w, i <k, and
n= Z d;p;
i<k
for some d; € w, i < k. Then
RC,, # RC,

i ZF.

13



Proof. This follows from RC,, = WOC,, (Corollary [2.3) and RC,,, # WOC,, (Proposition[2.9).

COROLLARY 2.12. Let p be a prime number, let m € w\ {0} andn € w\{0,1}. Then we have that
RC,m = WOC,,
if and only if n | p™ orp=2, m=1 and n = 4.

Proof. If n is divisible by a prime q # p we have that
Vg E RCpm A WOC,, .
Therefore, RCpm # WOC,, in ZF. So we can assume that n = p* for a k € w \ {0}.

Case 1: m >k

Let r € w and let pg,p1 ..., pr—1 be prime numbers such that there are ag, ai,...,a,—1 € w with
n=pt =Y ap.
<r
Then
p™ =p"FpF =D Faps.
i <r
So by Proposition [2.2] we have that
RCpm = WOC,, .

Case 2: m <k
First, assume that p # 2. By Bertrand’s postulate there is a prime number gy with

Pt < qo < 2p™.
Note that p* — gg > p* — 2p™ > p and qg # p. So there is a prime number ¢; # p with
@ | (0" = ).

By construction, p* can be written as a sum of multiples of gy and ¢;. Since ¢; 1 p™ and p™ < qo,
we have that

p" # aqo + b1
for all a,b € w. So by Proposition 2.9 we have that
RCpm # WOC;k .
Now, let p =2 and k > 3. Then there is a prime number gy with
2Pl 1< gg<2F—2.

It follows that
2 <2< gyg <2k —2.

So, 2% — g9 > 2 and with the same argumentation as above we see that
RCan A WOCy .

Now we assume that p = 2 and k¥ = 2 (i.e., m = 1). This is the only remaining case. By
Proposition [2.2] we have that
RCe = WOC; .

14



3 Results provable in ZF

In this section we shall prove four results which are provable in ZF. The first two results are about
the implications RCg = C,, for n € {3,9}, and the second two results are about the implications
RC,, = LOC,, for m € {5,7}.

3.1 RCg implies C3

In the proof of the next result, we will closely follow the proof of RC4y = C; given in [6].

ProrosiTiON 3.1. ZF = RCg = Cg, i.e., it is provable in ZF that RCg implies Cy .

Proof. Let F be an infinite family of pairwise disjoint sets of size 3. We apply RCg to the set | F.
This gives us an infinite subset Y C |JF with a choice function on [Y]%. For every i € {1,2,3} we
define

G ={ueF:|lunY|=i}.

Without loss of generality we can assume that G := G is infinite, since otherwise, we can easily
define a choice function on an infinite subset of F. So, there is a choice function

fr [UQ}G%UQ.

We define a directed graph on G by putting a directed edge from v to u i.e., v — u), if and only
if f(uUw) € u. If there is direct edge from v to u we will say that the edge points from v to w.
With this graph we carry out the same construction as in [6]. So, there is an infinite subset H C G
which is partitioned into finite sets (Aj,)new such that for every n € w, all elements in A, have
outdegree n. Moreover, for all n € w we have that |A,| is odd, and for all n < m, the edges between
A, and A,, all point from A,, to A,. We can assume that we are in one of the following two cases:

Case 1: There are infinitely many n € w with 31 |A4,]|.
In this case we follow the proof of the Claim in [6, p. 60]: Without loss of generality we can assume
that 31 |A,| for every n € w. Let ng € w and pg = {xg, z1, 22} € Ap,. For each i <2 we define

deg(x;) := [{q € Angt1: fqUpo) = z;}].

Since 3 t |Any+1| we have that 3 1 (deg(zo) + deg(z1) + deg(z2)). Therefore, we can choose one
element from pg.

Case 2: For all n € w we have that 3 | |A,|.

Let pp € H and let n € w be the unique natural number with py € A,,. There is an s € w with
|An| = 2s+ 1. We want to find the number of elements in A,, with edges pointing to py. There are
(|‘42”|) edges in A,. Since the number of edges in A,, that point to an element in A, is the same for
every element of A,, we have that the indegree of pg in A, is given by

1

indegree 4 (po) = A ‘<

|[Anl
2

> _ %(|An| )=

15



By assumption we have that 3 | |A,| = 2s + 1. Therefore, 3 1 s. Assume that po = {0, x1,z2}. For
every ¢ < 2 we define
Avi={ve Ay: f(vUpo) = i}

Since 31 (JAZ0| + |AZt| + |A¥2|) = s, we can choose an element from py. —

3.2 RCg implies Cg

LEMMA 3.2. Let F be an infinite family of pairwise disjoint 4-element sets. If there is a choice

function
6
o [U f} -~ JF
then there is a function h with h(p U q) € pUq for all p # q in F.

Proof. Let p # q be elements of F. We will show that we can choose exactly one element from

pUq. There are
8

6-element subsets of p U q. From each of these subsets we can choose one point with the choice
function f. Let A be the set of all elements in p U ¢ which are chosen the most times. Note that
1 < |A| <7, because 8 does not divide 28.

- If |A| = 1 we are done.
- If |A| =2, choose f((pUq) \ A).

- If [Al] =3 and A C p or A C g we are done because we can choose the point in p \ A or in
g\ A. Otherwise, [pN A| =1 or |¢gN A| =1 and we are also done.

- If |A| € {5,6,7}, replace A by (pU¢q) \ A. So we are in one of the cases above.

- If |A] = 4, the set [(pUq) \ A)? contains = 6 elements. For each B € [(pUq) \ A]? choose

4
2
f(AU B). Let Cy and C be the sets of all elements in p U ¢ which are chosen the most and
the least often. Note that either Cy or C does not contain 4 elements. By the cases above

we are done.

So there is a choice function
h:{pUq:p,qe F} — U]:.

-
LEMMA 3.3. Let {An:n € w} be a countable family of pairwise disjoint non-empty finite sets

of pairwise disjoint sets of size 2, and let F = |, .., An be the corresponding infinite family of
2-element sets. If

new

f: [U]—"F%U}".

18 a choice function, then there is an infinite subfamily G C F with a choice function.
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Proof. By using a bijection between w and an infinite subset of w, without loss of generality we are
in one of the following four cases:

Case 1: For all n € w we have that 21 |A,|.
Let k € w. Then there are natural numbers lg, [; and l5 such that

‘Agk‘ =2lp+1, ‘A3k+1’ =21 +1 and ‘A3k+2| = 2ls + 1.
For every a € Asp U Aspi1 U Asgio define

#a = |{(ao, a1,a2) € Az X Azpy1 X Azpr2: flagUar Uag) € a}.

If #a is odd, we can choose an element from a, for example the element in a we choose more often
than the other. Since

2] +1) and > #a  =]JCL+1),

i<2 a€A3UA3L+1UA3R 2 052

we have that for every k € w there is at least one a € Az U Asgy1 U Askio such that #a is odd.
So, we can find a choice function on the infinite set

G = {a € F: #a is odd}.

Case 2: For all n € w we have that |4, | = 2.
For every k € w let Aoy, = {agg, bax} and By := {agx} U Agk11 and By := {bax} U Agg11. For every
a € Ao U Asgp1 we define

sq — Hz € {0,1}: f(UBi) Ga}‘.

Note that if #a = 1, we can choose an element from a and we are done. So, if there are infinitely
many a € F such that #a is odd, we are done. Otherwise, there is an infinite subset I C w such
that for all k£ € I there is a unique ap € Aggx U Agg+1 with #ax = 2. Then we are in the first case
for the family {{ax}: k € I}.

Case 3: For all n € w we have that |A,| > 3, 41 |Ay,| and 2 | |A,].

Let n € w. Then, by the properties of |A,| we have |4,,| = 2t for some odd ¢, and therefore we have
A,
2
elements in Aoy, and two elements in Agiy1. Note that the number of such subsets, as the product
of two odd numbers, is odd. Let h be the choice function we found in Lemma 3.2l Then for every

k € w there is at least one a € Ao U Ag1q such that

that is odd. For every k € w we look at the 4-element subsets of Ao U Agkiq with two

#a = [{({ao, a1}, {bo, b1}) € [Aak]? X [Agr11]* : h(ag Uar Ubg U by) € a}

is odd. So again we found a choice function on the infinite set

G = {a € F: #ais odd}.
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Case 4: For all n € w we have that |A4,| > 3 and 4 | |A,].
Let n € w. Then there is a k € w with |A,| = 4k. We have that

244,01 () @

since otherwise we would have that

[ Anl(|An| = 1)(JAn| —2) _ 2(4K* —3k) +1 cw
214,23 B 2-3 ’

but this is not the case since the numerator is odd. We define
#a = |{{ag,a1,a2} € [A,)? : flapUai Uay) € a}|
and for all y € |J A, let
#(y) = [{{ao, a1, a2} € [An]® : flao Uar Uaz) = y}.

Note that by

Hy e JAn: #(y) = max{#(z) - UAn}H < 2/4,).

If there is an a = {ap, a1} € A,, with

#(ao) # #(a1)

choose the element a; with lower #(a;). Otherwise we have that
B, ={a€ Ay, :#a=max{#b:be A,}} C A,.

Repeat the procedure with A, := B,, until either 4 1 |A,| or there is an a = {ag,a;} € A, with

#(a0) # #(a1).
Note that we have to repeat the procedure at most |4, | times. In the end we either found a choice
function on an infinite subset of F or we reduced Case 4 to one of the other cases. —

COROLLARY 3.4. Let F be an infinite family of pairwise disjoint 4-element sets. If

f [Uf]ﬁ SUF

is a choice function, then there is an infinite subset G C F with a choice function on G.

Proof. Let h be the choice function we found in Lemma[3.2] We can define a complete, directed
graph on F by putting an edge from p to ¢ if and only if h(p U q) € q. With this graph we can do
the same construction as in [6]. So, we can find an infinite subset G C F such that we can choose
exactly 1 or 2 elements from each G € G. So either we found a choice function on an infinite subset
of G or we can find an infinite family of 2-element sets H. Then we apply Lemma[3.3]to H and we
are done. —
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LEMMA 3.5. Let F := {F\ : A\ € A} be an infinite family of 10-element sets. Assume that each
F\ € F is a disjoint union of five 2-element sets F;, 0 <1 < 4. Moreover, assume that

6
r Uz - Ur
is a choice function. Then there is an infinite subset G C F with a Kinna-Wagner selection
function.

Proof. For all 4-element sets A C | JF, we define the degree of A by
deg(A) :=={F\i: FA€ FANiI<4ANF\;NA=0Af(AUF\;) € Fx;}|
If there is an Ay € [|JF]* with infinite degree we are done, because then the set
G:={F\eF:3 <4 (f(AgUFyx;) € F\;)}
is infinite and from every G € G we can choose the set
{f(AQUG;) i <4} NG CG.

Thus, we can assume that each A € [|JF]* has finite degree. Define F2 = {Fy; : F) € F Ai < 4}
and for all F € F let Ff ={F\;:i <4}

Case 1: There is an n € w such that for infinitely many A € A there are distinct A, B € F /\2 with
deg(AU B) = n.

Let G := {F\ € F : 3A, B € F(deg(AU B) = n)}. By assumption this is an infinite set. Choose
an (n+3)-element set {X; : i <n+2} C F2. Forall G € G and all A, B € G? with deg(AUB) =n
put an edge pointing from A to B if and only if

f(AUBUX;,) € B,

where
ip:=min{i <n+2: f(AUBUX;) ¢ X,}.

Notice that this gives us a directed graph with at least one edge in each G? with G € G. If for
infinitely many G' € G not all elements of G? have the same outdegree, we are done. So, we either
have a cycle on infinitely many G? or we have a complete graph in which every node has outdegree
2. In the former case we can choose a point in each AU B, where A, B € G? are neighbours. Thus,
we can choose 5 elements in each G € G. In the latter case, we can choose 5 edges as follows: For
the node A € G2, let B,C € G? be the two successors of A in the graph. Consider the edge which
connects B and C' (see Figure. If this edge points to C, then we go to B and consider the two
successors of B. Proceeding this way, we obtain a cycle on infinitely many G?’s and can again
choose 5 elements from G.

Case 2: For all n € w there are only finitely many A € A such that there are A,B € F f with
deg(AU B) = n.
Let A_1 := 0 and for every n € w define

Ap:={AcF?:3B € F*(deg(AUB) =n)}\ A,_1.

Note that these sets are pairwise disjoint families of 2-element sets. So we can apply Lemma (3.3
and we are done. —
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Figure 1: How to choose the edges

Now, we are ready to prove the following:

PROPOSITION 3.6. ZF = RCg = Cy .

Proof. Let F be an infinite family of pairwise disjoint sets of size 9. Since RCg holds, there is an
infinite set Y C |JF with a choice function

f:Y]* =Y.
For all 0 <7 <9 let
G ={FNY:FeFAN|FNY|=i}.
There is a 1 < i < 9 such that G; is an infinite set.

Case 1: Gi or Gg is infinite.
In the case Gg is infinite, we look at the complements.

Case 2: Gz or Gg is infinite.
Use Proposition [3.1}

Case 8: G4 is infinite.
Use Corollary [3.4]

Case 4: Gy is infinite.

Apply RCg to the complements. Then we are either in one of the preceding cases or the comple-
ments are partitioned into two sets of size two. We look at the 10 edges between the first 5 elements
and the second two elements and use Lemma [3.5

Case 5: G7 is infinite.
For all G € G; let G be the complement of G in the sense that for the F € F with G C F we have
that

G:=F\G.
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Note that |G| = 2. Let B
E:={{x,y} 3G € G7(x € G and y € G)}.

Apply RCg4 to £. Without loss of generality we can assume that we find a choice function
g:[€° =€,

because otherwise we are in one of the preceding cases. So, for every G € G7 there are 14 edges
between G and G. Hence, there are
<1gl> =3-7-11-13

6-element subsets. From each of them g chooses one element. Since <1§ ) is not divisible by 14,

we can choose less than 14 edges and we are in one of the preceding cases.

Case 6: Gg is infinite.
With the choice function f we can choose an element from each 6-element subset of a G € Gy.

There are <9> subsets of size 6. Since 9 1 <9

6 6) we can reduce this case to one of the cases above.

Case 7: Gs is infinite.
We iteratively apply RCg to the complements. So, we can reduce this case to one of the cases
above. —

3.3 RCj implies LOC,

We will now show that RCs implies LOC; . The beginning of the proof will be as usual: Let F
be an infinite, linearly orderable family of 5-element sets. We apply RCs to | JF. This will give
us an infinite subfamily G C F such that each p € G is partitioned into two parts. If one of these
parts is of size one, we have a choice function and we are done. Otherwise, the two parts are of
size 2 and 3. So if we could show that RCs implies LOC; or LOCj3, the proof would be finished.
However, Halbeisen’s and Tachtsis’ result shows that this idea will not lead to success — which
is the reason why we will work with the set of edges between the two parts.

THEOREM 3.7. ZF = RC5 = LOC; .

Proof. Let F be an infinite, linearly orderable collection of pairwise disjoint sets of size 5. We fix
a linear order on F and apply RCs on the set X = |JF to find an infinite subset Y C X with a
choice function f : [Y]> — Y. For every i < 5 we define

Fi={peF:|pnY|=i}.

The only non-trivial case is when the elements p of an infinite subfamily G C F are partitioned
into a set with two elements and a set with three elements, namely p = {ay, by, ¢, } U {xp, yp}.
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Now we look at the set Z of all non-directed edges between a point in {ay, by, ¢, } and one in {xp, yp }.
For every p € G let p* be the set of all edges in Z belonging to p and for each subset H C F we
define H* == {p* : p € H}.

Claim 1: Assume that there is an infinite subset H C G such that we can choose between 1 and 5
elements from each p* € H*. Then there is a choice function

MH%U%

Proof of Claim 1. Let p € ‘H and assume that we can choose k € {1,2,3,4,5} elements from p*.
We look at p as a graph with k edges. If 21 k, x;, and y, do not have the same degree and we can
choose the element with lower degree. Otherwise we have that 3 { k£ and we can choose an element

from {a,, by, cp}. AClaim 1

Now we apply RCs5 on the set Z. Then there is an infinite subset ) C Z with a choice function
g:[Q]° — Q. By Claim 1 we can without loss of generality assume that p* C @ for every p in some
infinite H C G.

We can partition each p* € H* as follows into two sets 72 and ~7 of size three:

Y0 = {{ap, 2p}, {bp, 2}, {ep, wp}} and A7 = {{ap, yp}, {bp, Up > {cp, Up } -

Analogously we can partition p* into three sets Sy, 81, 82 of size two as follows:

86 = {{ap, zp} {ap, yp}}, A7 = {{bp 2p} . {bp, yp}} and B3 = {{cp, 2p}, {cp, yp}}-

Figure 2: The partitions of a p* into {/, 7/ on the left and into 5, 5] and ) on the right.

Let
Hy={1:i<1lApeH}

be the sets of size three appearing in the partition of a p* € H* and let

MWy = {BPi<2ApeH)
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be the family of sets of size two which appear in the partition of a p* € H*. If there is a v € H3
such that for infinitely many 5 € #Hj

g(yUpB) € B, (3)

we are done by Claim 1. Otherwise, for every v € Hj there are only finitely many 8 € H3 with
and we define

deg(v) =|{B € H3: g(yUB) € B}| € w.

We are in one of the following two cases:

Case 1: There is an n € w such that deg(vy) = n for infinitely many v € H3.
Let Z5 := {vy € Hj : deg(y) = n}. Choose an (n + 4)-element set {3; : ¢ <n + 3} C H35. For every
v € I3 we define

Jj(y) =min{i <n+3:9(yUpi) €}
So from every v € 73 we choose the element

9(vU Bjy)) €7

and we are done by Claim 1.

Case 2: For each n € w there are only finitely many v € H3 with deg(y) = n.
For every n € w we define

A, ={y€eHz:deg(y) =n} and B, ={f e Hy:Iyc A,Fp" e H (v Cp" N5 Cp")}.

If there are infinitely many p € H such that v} € A, and 7} € A,, with n # m we are done by
Claim 1 since we can choose three edges from each of these infinitely many p’s. So we can assume
that for every p € ‘H both, ’yg and 17, have the same degree and we define

Cpn={peM: {177} C A}

for every n € w. Moreover, let

out(f) = {7 € |J An:g(BUry) 67}-

m>n

for every n € w and every 8 € By,. If there is a 8 € |, ¢, Bn with |out(3)| = oo we are done by

Claim 1. So assume that |out(3)| € w for all 3 € J,,c,, Bn-

Claim 2: We can find an infinite subset I C H with a partition K = (J, ., K where each K, is
finite and non-empty. Moreover, we can assume that for all natural numbers n > m, all p € K,,,
all ¢ € K, and all j <2

9(v6 U B) = g(1 U B]) € B}

Proof of Claim 2. For every n € w we define R, to be the set of all p € (J;~,, Cx such that there
area g€ Cp,ani € {0,1} and a j € {0,1,2} with

g U B ey
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Since |out(f)| is finite for all 3 € (U, c,, Bn, the set R, is finite. .J,, := Cy \ U,.,, Rn- Define S, to
be the set of all p € |J,.~,, Jx such that there are a ¢ € J,,, and a j € {0,1,2} with

g6 U BY) # g(f U By).

First of all assume that there is an ng € w such that S, is infinite. Since .J,,, is finite, we can then
find a g0 € Jp, and a jp € {0, 1,2} such that for infinitely many p € Sy,

T 29000 U B # 9(0 U B € B

and we can choose the set of edges 7§ or 7} depending on the choice in Bfg. With Claim 1 we are
done. Therefore, we can assume that each S, is finite. In this case we define K, := J, \ Uj<,, Sn
for all n € w. Infinitely many sets K, are non-empty. By renumbering the sets K,, we can assume
that each K, is non-empty. —Claim 2

With the same construction we did in the proof of Claim 2 we can find an infinite subset Z C
with a partition Z = |J,,¢,, In, where each I, is finite and non-empty. Moreover, we can assume
that for all natural numbers n > m, all p € I,, all ¢ € I;, and all j <2

9(16 U B) = g(1 U B]) € B].

Note: Up to now we nowhere used the assumption that our infinite family F of sets of size five is
linearly ordered. In the last step we will need this assumption.

For each n € w, let p, € I, be the smallest element in I, with respect to the linear order on F.
Note that such a smallest element exists since each I, is finite and non-empty. We define

3
r* Ap;, ine€wl — [Upﬁ]

new
Py {g (75"“ U ﬂﬁ-’”) 1j < 2} :

By Claim 1 we are done. —

3.4 RCy; implies LOC;

Before we prove our last result, we shall prove three lemmata.

LEMMA 3.8. Let F be a linearly orderable family of pairwise disjoint 6-element sets. Assume that
we can partition each p € F in a unique way into three 2-element sets S5, 87 and 85 and in a
unique way into two 3-element sets v,~). Further assume that there is a choice function

I [U}"}?%U}".

Then there is an infinite subfamily G C F with a Kinna-Wagner selection function.
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Proof. We define
Fz:={":ie{0,1} Ap e F}

and
Fai={Brupl:{i,j} e B’ rpe F}.

For every v € F3 let
deg(y) == [{6 € Fa:6ny=0Af(6U~) € 6}

If there is a v € F3 with deg(y) = oo, then we are done because we can choose between one
and three elements from infinitely many p € F. The rest of the proof is similar to the proof of
Theorem B.7 —

LEMMA 3.9. Let F be a linearly orderable family of pairwise disjoint 12-element sets. Assume that
we can partition each p € F in a unique way into three 4-element sets dg, 01 and §2 and in a unique
way into four 3-element sets v, v1,v2 and 3. Further assume that there is a choice function

7 [U}'}7—>UF

Then there is an infinite subset G C F with a Kinna-Wagner selection function.

Proof. The proof is similar to the proof of Theorem 3.7 —

LEMMA 3.10. Let F be a linearly orderable family of pairwise disjoint 10-element sets. Assume
that we can partition each p € F in a unique way into two 5-element sets eg and €1 and in a unique
way into five 2-element sets B;, i < 4. Further assume that there is a choice function

f: [U]—"}?%U}".

Then there is an infinite subset G C F with a Kinna-Wagner selection function.

Proof. The proof is similar to the proof of Theorem [3.7] —

ProrosiTION 3.11. ZF - RC7 = LOC; .

Proof. Let F be a linearly orderable, infinite family of sets of size 7. We apply RCy on the set
X :=|JF to find an infinite subset Y C X with a choice function f : [Y]” — Y. For every i < 7
we define

Fi={peF:|pnY|=1i}.

Note that we can without loss of generality assume that J» or F3 has infinite cardinality.

Case 1: F3 has infinite cardinality.
For every p € F3 let
p*i={{a,z}e[pP:acepnY Az ep\Y}

and apply RC7 on the set X* := J{p* : p € F3}. We get an infinite subset Y* C X* with a choice
function g : [Y*]” — Y*. For every 1 <i < 12 define

Fr={p" :peFAp'NnY*| =i}
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Figure 3: Case i =6

There is an ¢ with 1 < ¢ < 12 such that |F| = co. If i ¢ {6,12} we can choose an element from
each p with p* € F and therefore we are done. If ¢ = 6, the only case in which we cannot choose

an element from all p with p* € F{ is the one illustrated in Figure
But in this case we are done by Lemmal[3.8] And if ¢ = 12 we are done by Lemma

Case 2: F» has infinite cardinality.

For every 1 <14 < 10 we define F;" as in Case 1. The only 4 for which we cannot choose one element
from each p with p* € F; or for which we cannot choose three elements from each p with p* € F
in order to reduce it to Case 1, is i = 10. But in this case we are done by Lemma [3.10] =

4 Open Questions

1. By [6] we have that RC,, = C,, in ZF for every n € {2,3,4}. Does this implication hold for
any other n € w\ {0,1}7

2. By [6], Proposition and Theorem [3.7] we have that RC,, = LOC;, in ZF for any n €
{2,3,4,5,7}. Does this implication hold for any other n € w\ {0, 1}?
3. For every n € w )\ {0, 1} the following weak choice principle was introduced in [8]:

nC;NO: For every infinite family F of finite sets with cardinality at least n there
is an infinite subfamily G C F with a selection function f: G — [|JG]" such that
f(G) € [G]™ for all G € G.

Moreover, as in [I] we can define a restricted version of nC_y, as follows:

nRCgqn: Given any infinite set x, there is an infinite subset y C x and a selection
function f that chooses an n-element subset from every z C y containing at least n
elements.
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The relationship of RC,, and nRCpg, to kC;NO and Cj_ has already been studied in [3]. How-

ever, the following question is still open: For every n € {2, 3,4, 6} we have that nRCg,, = ano
in ZF. Does this implication hold for any other n € w\ {0,1}?
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