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Abstract

For n ∈ ω, the weak choice principle RCn is defined as follows:

For every infinite set X there is an infinite subset Y ⊆ X with a choice function on
[Y ]n := {z ⊆ Y : |z| = n}.

The choice principle C−
n states the following:

For every infinite family of n-element sets, there is an infinite subfamily G ⊆ F with
a choice function.

The choice principles LOC−
n and WOC−

n are the same as C−
n , but we assume that the family F

is linearly orderable (for LOC−
n ) or well-orderable (for WOC−

n ).

In the first part of this paper, for m,n ∈ ω we will give a full characterization of when the im-
plication RCm ⇒WOC−

n holds in ZF. We will prove the independence results by using suitable
Fraenkel-Mostowski permutation models. In the second part, we will show some generalizations.
In particular, we will show that RC5 ⇒ LOC−

5 and that RC6 ⇒ C−
3 , answering two open ques-

tions from Halbeisen and Tachtsis [4]. Furthermore, we will show that RC6 ⇒ C−
9 and that

RC7 ⇒ LOC−
7 .

1 Definitions and Terminology

The notation we use is standard and follows that of [5]. Now we list some definitions that shall be
used in the sequel:

Definition 1.1. Let n be an arbitrary positive natural number.

1. C−n states that every infinite family F of sets of size n has an infinite subset G ⊆ F with a
choice function.

2. LOC−n states that every infinite, linearly orderable family F of sets of size n has an infinite
subset G ⊆ F with a choice function.

3. WOC−n states that every infinite, well-orderable family F of sets of size n has an infinite
subset G ⊆ F with a choice function.
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4. RCn states that every infinite set X has an infinite subset Y ⊆ X such that the set

[Y ]n = {z ⊆ Y : |z| = n}

has a choice function.

5. Let F be an infinite family of n-element sets. A Kinna-Wagner selection function of F is a
function f with dom(f) = F such that for all p ∈ F , ∅ 6= f(p) ( p.

6. KW−
n states that every infinite family F of sets of size n has an infinite subset G ⊆ F with a

Kinna-Wagner selection function.

7. LOKW−
n states that every infinite, linearly orderable family F of sets of size n has an infinite

subset G ⊆ F with a Kinna-Wagner selection function.

In 1995, Montenegro proved in [6] that RCn ⇒ C−n for all n ∈ {2, 3, 4}. It is still unknown whether
this implication holds for any n ≥ 5. In 2017, Halbeisen and Tachtsis found interesting results
concerning the implications RCm ⇒ C−n and RCm ⇒ RCn for m,n ∈ ω \ {0, 1} (see [4]). Among
other results they proved that the following statements are consistent with ZF or provable in ZF,
respectively:

(α) If m,n ∈ ω \ {0, 1} are such that there is a prime p with p - m and p | n, then

RCm ; RCn and RCm ; C−n .

(β) RC5 ; LOC−2 and RC5 ; LOC−3 .

(γ) For every n ∈ ω \ {0, 1} we have that C−n ⇒ LOC−n ⇒WOC−n but none of these implications
is reversible.

(δ) For every n ∈ ω \ {0, 1} the implication RC2n ⇒ LOKW−
n holds. In particular we have that

RC6 ⇒ LOC−3 (notice that LOKW−
3 ⇔ LOC−3 ).

In Section 2 of this paper, we will give a full characterization of when the implication RCn ⇒WOC−m
(for n,m ∈ ω \ {0, 1}) is provable in ZF. To be more precise, it will be shown (see Theorem 2.10)
that for every m,n ∈ ω\{0, 1}, RCm ⇒WOC−n is provable in ZF if an only if the following condition
holds: Whenever we can write n in the form

n =
∑
i<k

aipi,

where p0, . . . , pk−1 are prime numbers and a0, . . . , ak−1 ∈ ω \ {0}, then we find b0, . . . , bk−1 ∈ ω
with

m =
∑
i<k

bipi.

In order to prove the independence of this implication with ZF, we shall use permutation models
(see [5] for an introduction to permutation models and to models of ZFA). With Pincus’ trans-
fer theorems (see [7]), we are able to transfer the results obtained in ZFA to ZF. Furthermore,
Theorem 2.10 gives us the following three special cases:
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1. For all n ∈ ω we have that RCn ⇒WOC−n (see Corollary 2.3).

2. Let p be a prime number, m ∈ ω \ {0} and n ∈ ω \ {0, 1}. Then

RCpm ⇒WOC−n

if and only if n | pm or p = 2, m = 1 and n = 4 (see Corollary 2.12).

3. If RCm 6⇒ WOC−n , we also have that RCm 6⇒ RC−n and RCm 6⇒ C−n (see Corollary 2.11).
This generalizes Halbeisens and Tachtsis’ result (α).

In Section 3, we will give some insights into the question what happens when we weaken the
assumption that our family of n-element sets is well-ordered. We will prove that RC6 ⇒ C−n for
n ∈ {3, 9} and that RCn ⇒ LOC−n for n ∈ {5, 7}.

2 On the implication RCm ⇒WOC−n

2.1 When is RCm ⇒WOC−
n provable in ZF?

In this section, we will characterise the values m and n for which the implication RCm ⇒WOC−n
is provable in ZF. However, before we state and prove the main result of this section, we introduce
some notation and prove an auxiliary result.

Two finite partitions {xi : 0 ≤ i ≤ l} and {yj : 0 ≤ j ≤ k} of sets of the same cardinality are of the
same type, if l = k and for each 0 ≤ i ≤ l we have |xi| = |yi|.

Let k be a positive integer and let n =
∑

i<k aipi, where p0, . . . , pk−1 are prime numbers and
a0, . . . , ak−1 ∈ ω \ {0}. Furthermore, for an infinite, well-ordered set λ, let F = {Fα : α ∈ λ} be an
infinite family of pairwise disjoint n-element sets, where for each α ∈ λ, Fα is partitioned into sets
Fα,i (i < k), where |Fα,i| = aipi, i.e.,

Fα =
⋃
i<k

Fα,i and Fα,i ∩ Fα,i′ = ∅ whenever i 6= i′.

In particular, for any α, α′ ∈ λ, the partitions {Fα,i : i < k} and {Fα′,i : i < k} are of the same
type.

For α ∈ λ we say that d ⊆ Fα diagonalises Fα if for all i < k, |Fα,i ∩ d| = 1. Let

Dα := {d ⊆ Fα : d diagonalises Fα}

and for each α ∈ λ let Dα be a non-empty subset of Dα such that for any α, α′ ∈ λ we have
|Dα| = |Dα′ |.

Finally, for some positive integer t ≥ 1 and some prime number p, for each α ∈ λ let {Dp
α,j : j < t}

be a partition of [Dα]p such that for any α, α′ ∈ λ, the partitions {Dp
α,j : j < t} and {Dp

α′,j : j < t}
are of the same type.
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Lemma 2.1. Let n =
∑

i<k aipi, F = {Fα : α ∈ λ}, Fα =
⋃
{Fα,i : i < k}, Dα, and {Dp

α,j : j < t}
be as above. Furthermore, let p := pi0 for some pi0 ∈ {p0, . . . , pk−1}, and assume that for some
integer l ≥ 0 there is a choice function

h :

[⋃
α∈λ

Dα

]l+p
→
⋃
α∈λ

Dα .

Then there is an infinite subset λ′ ⊆ λ such that we are in at least one of the following cases:

(a) There is a choice function

h′ :

[ ⋃
α∈λ′

Dα

]l
→
⋃
α∈λ′

Dα .

(b) We can simultaneously refine the partitions on {Fα : α ∈ λ′} to partitions of the same type
(and extend accordingly the corresponding sets Dα).

(c) We can simultaneously refine the partitions on {[Dα]p : α ∈ λ′} to partitions of the same
type.

(d) For each α ∈ λ′ we can choose a non-empty proper subset D′α of Dα, i.e.,

∅ 6= D′α ( Dα,

such that for all α, β ∈ λ′ we have |D′α| = |D′β|.

Proof. Recall that for all α, α′ ∈ λ we have |Dα| = |Dα′ |. Now, assume that there is a j0 < k such
that for nj0 := aj0pj0 and all α ∈ λ we have

nj0 - |Dα| .

For all α ∈ λ and all z ∈ Fα define

#z :=
∣∣{X ∈ Dα : z ∈ X

}∣∣.
Since

∑
z∈Fα,j0

#z = |Dα|, |Fα,j0 | = nj0 and nj0 - |Dα|, it follows that

∅ 6=
{
z ∈ Fα,j0 : ∀z′ ∈ Fα,j0(#z ≤ #z′)

}
( Fα,j0 .

Therefore, we can simultaneously refine the partition on each Fα for α ∈ λ. Moreover, notice
that since nj0 is finite, we find an infinite set λ′ ⊆ λ such that for each α ∈ λ′, the block Fα,j0
is partitioned into two non-empty blocks Fα,j1 and Fα,j2 where for all α, β ∈ λ′, |Fα,j1 | = |Fβ,j1 |
and |Fα,j2 | = |Fβ,j2 |. This shows that all the refined partitions are of the same type and we are in
Case (b).

So, we can assume that for all i < k and all α ∈ λ we have

ni | |Dα|

where ni := aipi.

4



We consider now the following four cases:

Case 1: There is a Z0 ∈
[⋃

α∈λDα

]l
and an infinite subset λ′ ⊆ λ such that

∀α ∈ λ′ ∀X ∈ [Dα]p
(
h(Z0 ∪X) ∈ X

)
.

By shrinking λ′ if necessary, we may assume that Z0 ∩
⋃
α∈λ′ Dα = ∅. For every α ∈ λ′ and all

d ∈ Dα define
degα(d) :=

∣∣{X ∈ [Dα]p : h(Z0 ∪X) = d
}∣∣.

Note that
∑

d∈Dα degα(d) =
∣∣[Dα]p

∣∣ =

(
|Dα|
p

)
. Since p = pi0 and since ni0 | |Dα|, we have p | |Dα|.

Hence, it follows that |Dα| -
(
|Dα|
p

)
. To see this, let D := |Dα| and notice that if D = aps for

some positive integers a, s where p - a, then(
D

p

)
=
aps · (aps − 1) · . . . · (aps − p+ 1)

1 · 2 · . . . · p
=
aps−1 · (aps − 1) · . . . · (aps − p+ 1)

1 · 2 · . . . · (p− 1)
.

Hence, ps -
(
D
p

)
and in particular we have D -

(
D
p

)
.

Thus, for each α ∈ λ′ we can choose

∅ 6= D′α :=
{
d ∈ Dα : ∀d′ ∈ Dα(degα(d) ≤ degα(d′))

}
( Dα.

Moreover, notice that since Dα is finite, by shrinking λ′ if necessary, we can assume that for all
α, β ∈ λ′ we have |D′α| = |D′β|, and we are in Case (d).

Case 2: There is a set Z0 ∈
[⋃

α∈λDα

]l
, a non-negative integer j0 < t, and an infinite subset λ′ ⊆ λ

such that Z0 ∩
⋃
α∈λ′ Dα = ∅ and

∀α ∈ λ′ ∃X,X ′ ∈ Dp
α,j0

(
h(Z0 ∪X) ∈ Z0 ∧ h(Z0 ∪X ′) ∈ X ′

)
.

In this case, we can simultaneously refine the partition on [Dα]p for each α ∈ λ′. Moreover, since
[Dα]p is finite (for all α ∈ λ′), by shrinking λ′ if necessary, we can assume that for all α, β ∈ λ′, the
partition on [Dα]p has the same type as the partition on [Dβ]p, and we are in Case (c).

Case 3: There is a set Z0 ∈
[⋃

α∈λDα

]l
, a non-negative integer j0 < t, and an infinite subset λ′ ⊆ λ

such that Z0 ∩
⋃
α∈λ′ Dα = ∅ and

∀α ∈ λ′
((
∀X ∈ Dp

α,j0
h(Z0 ∪X) ∈ Z0

)
∧ ∃X,X ′ ∈ Dp

α,j

(
h(Z0 ∪X) 6= h(Z0 ∪X ′)

))
.

In this case, we can simultaneously refine the partition on [Dα]p for each α ∈ λ′. Moreover, by
shrinking λ′ if necessary, we can assume that all partitions are of the same type and we are again
in Case (c).

Case 4: For all Z ∈
[⋃

α∈λDα

]l
and for all but finitely many α ∈ λ we have

∃j < t ∀X,X ′ ∈ Dp
α,j

(
h(Z ∪X) = h(Z ∪X ′) ∈ Z

)
. (∗)
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Then, for each Z ∈
[⋃

α∈λDα

]l
let αZ ∈ λ be the least element with respect to the well-ordering

on λ such that (∗) holds for α = αZ . Furthermore, for every Z ∈
[⋃

α∈λDα

]l
let jZ < t be the least

integer such that (∗) holds for α = αZ and j = jZ . So, for every Z ∈
[⋃

α∈λDα

]l
we have

∀X,X ′ ∈ Dp
αZ ,jZ

(
h(Z ∪X) = h(Z ∪X ′) ∧ h(Z ∪X) ∈ Z

)
. (∗∗)

Finally, we define a function h′ :
[⋃

α∈λDα

]l → ⋃
α∈λDα by stipulating

h′ :
[⋃

α∈λDα

]l −→ ⋃
α∈λDα

Z 7−→ h(Z ∪X)

where X is an arbitrary element of Dp
αZ ,jZ

. Note that by (∗∗), h′ is a well-defined choice function
and we are in Case (a). a

Now, we are ready to prove the main result of this section.

Proposition 2.2. Let m,n ∈ ω \ {0, 1} and assume that whenever we can write n in the form

n =
∑
i<k

aipi,

where p0, . . . , pk−1 are prime numbers and a0, . . . , ak−1 are positive integers, then we find b0, . . . , bk−1 ∈
ω with

m =
∑
i<k

bipi.

Then, in ZF we have
RCm ⇒WOC−n .

Proof. Let F = {Fα : α ∈ λ} be an infinite, well-ordered family of pairwise disjoint n-element sets.
The goal is to construct an infinite subfamily of F with a choice function.

Applying RCm to the set X0 :=
⋃
α∈λ Fα, we obtain an infinite set Y0 ⊆ X0 such that the set [Y0]m

has a choice function. For 1 ≤ j ≤ n, let

λj :=
{
α ∈ λ : |Fα ∩ Y0| = j

}
.

Since n is finite and λ is infinite, there exists a j0 with 1 ≤ j0 ≤ n such that λj0 ⊆ λ is infinite. If
j0 = 1 we are done since {Fα : α ∈ λ1} ⊆ F has a choice function. If 1 < j0 < n, we apply RCm to
the set

X1 :=
⋃{

Fα \ Y0 : α ∈ λj0
}

and obtain an infinite set Y1 ⊆ X1 such the set [Y1]m has a choice function. As above, for 1 ≤ j ≤
n− j0, let

λj0,j :=
{
α ∈ λj0 : |Fα ∩ Y1| = j

}
.

Then there exists a j1 with 1 ≤ j1 ≤ n − j0 such that λj0,j1 ⊆ λ is infinite. If j1 = 1, then the
infinite family {Fα : α ∈ λj0,1} ⊆ F has a choice function. Proceeding this way, we either find an
infinite subfamily of F with a choice function, or for an infinite subset λ0 ⊆ λ, for all α ∈ λ0 we
can simultaneously partition the sets Fα into sets Fα,i with i < k for some k ≥ 1. Since for each
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i < k, |Fα,i| ≥ 2, we have |Fα,i| = aipi, where pi is prime and ai > 0. Finally, for each α ∈ λ0, let
let Dα := {d ⊆ Fα : d diagonalises Fα}.

Now, since n =
∑

i<k aipi, by our assumption we find b0, . . . , bk−1 ∈ ω with m =
∑

i<k bipi, and
since m ≥ 2, there is an i0 < k with bi0 6= 0. In particular, we have m ≥ pi0 . Let p := pi0 and
l := m − p, where l ≥ 0. Furthermore, for t = 1, {Dα,j : j < t} = [Dα]p is the trivial partition
of [Dα]p. Thus, by RCm, there is an infinite set λ ⊆ λ0 and a choice function

h :

[⋃
α∈λ

Dα

]l+p
→
⋃
α∈λ

Dα .

So, we have all the requirements to apply Lemma 2.1 iteratively until — after finitely many steps —
the partitions of the Fα’s or of the [Dα]p’s contain a block with just one element, or the sets Dα

are singletons: To see this, notice first that if we are in one of the cases (b), (c), or (d), or if l = 0,
then we can either refine the partition of the Fα’s or of the [Dα]p’s. Now, if we are in case (a) for
l > 0, then, by the properties of

m =
∑
i<k

bipi

and since we start with l = m− p, l ≥ pi (for some i < k) and we can proceed with l′ := l − pi.

So, after finitely many steps — in particular after finitely many choices of sets Z0 — we are in the
situation where the partitions of the Fα’s or of the [Dα]p’s contain a block with just one element,
or the Dα’s are reduced to singletons, which gives us an algorithm to select an element from each
of the remaining Fα’s — where in the case when |Dα| = 1, we choose the element in Dα ∩ Fα,0. a

Corollary 2.3. For every n ∈ ω we have that

RCn ⇒WOC−n .

2.2 When is RCm ; WOC−
n consistent with ZF?

In this section we will show that for all n,m ∈ ω \ {0, 1} which do not satisfy the conditions of
Proposition 2.2 we get that

RCm 6⇒WOC−n

is consistent with ZF. In a first step we will construct suitable Fraenkel-Mostowski permutation
models — similar to those constructed in [2, Sec. 6] — in which we have RCm 6⇒ WOC−n . We will
then see that both statements, RCm and WOC−n , are injectively boundable. So, by [7, Theorem
3A3] the result is transferable to ZF.

Let p0 and p1 be two prime numbers. We start with a ground model Mp0,p1 of ZFA + AC with a
set of atoms

A :=
⋃
{Ai : i ∈ ω} ∪

⋃
{Bj : j ∈ ω},

where for all i, j ∈ ω the sets Ai and Bj are called blocks. These blocks have the following properties:

• For all i ∈ ω, Ai = {ai,k : k < p0} and Bi = {bi,l : l < p1} with |Ai| = p0 and |Bi| = p1.

• The blocks are pairwise disjoint.
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For all i, j ∈ ω we define a permutation on A as follows:

• For all i ∈ ω and all k < p0 let

αi(ai,k) :=

{
ai,0 if k = p0 − 1,

ai,k+1 if k < p0 − 1,

and αi(a) = a for all a ∈ A \Ai. Analogously for all j ∈ ω and all l < p1 let

βj(bj,l) :=

{
bi,0 if l = p1 − 1,

bj,l+1 if l < p1 − 1,

and βj(b) = b for all b ∈ A \Bj .

Now we define an abelian group G of permutations of A by requiring

φ ∈ G ⇐⇒ φ = α ◦ β,

where
α =

∏
i∈ω

αkii with ki < p0 for each i ∈ ω

and
β =

∏
j∈ω

β
lj
j with lj < p1 for each j ∈ ω.

Let F be the normal filter on G generated by the subgroups

fixG(E) = {φ ∈ G : ∀a ∈ E(φ(a) = a)}

with E ∈ fin(A) := {A ⊆ A : |A| ∈ ω}. Let Vp0,p1 be the class of all hereditarily symmetric sets.

Remark 2.4. We can also work with k blocks of size p0, . . . , pk−1, where pi is a prime number for
every i < k. The corresponding permutation model is denoted by Vp0,...,pk−1

.

Definition 2.5. A set E ∈ fin(A) is closed if and only if for all i, j ∈ ω we have that

Ai ∩ E 6= ∅ ⇒ Ai ⊆ E and Bj ∩ E 6= ∅ ⇒ Bj ⊆ E.

We now define a well-ordering on the set of closed sets.

Definition 2.6. Let C1 and C2 be two blocks in {Ai : i ∈ ω} ∪ {Bj : j ∈ ω}. We define

C1 < C2 :⇐⇒


C1 = Ai ∧ C2 = Bj , or

C1 = Ai ∧ C2 = Aj ∧ i < j, or

C1 = Bi ∧ C2 = Bj ∧ i < j.

Moreover, for distinct closed sets E =
⋃
{F0, . . . Fn} ∈ fin(A) and E′ =

⋃
{F ′0, . . . , F ′m} ∈ fin(A)

with blocks F0, . . . , Fn, F
′
0, . . . , F

′
m let

E ≺ E′ :⇐⇒ The <-least block in the symmetric difference

{F0, . . . , Fn}∆{F ′0, . . . , F ′m} belongs to E.
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Note that this defines a well-ordering on the set of closed sets and therefore on the set of all closed
supports.

Lemma 2.7. Let n ∈ ω \ {0, 1} and let p0 and p1 be two prime numbers such that

n = cp0 + dp1 6= 0

for c, d ∈ ω. Then we have that
Vp0,p1 |= ¬WOC−n .

Proof. Define

F :=
{
Al ∪Al+1 ∪ · · · ∪Al+c−1 ∪Bl+c ∪ · · · ∪Bl+c+d−1 : l = k(c+ d) for a k ∈ ω

}
.

Then F is an infinite family of pairwise disjoint n-element sets. Since the empty set is a support of
F , we have that F ∈ Vp0,p1 . Moreover, F is well-orderable in Vp0,p1 . Assume towards contradiction
that there is an infinite subset G ⊆ F with a choice function

g : G →
⋃
G

in Vp0,p1 . Let Eg ∈ fin(A) be a closed support of g. Since Eg is finite, there is a G0 ∈ G such that
G0 ∩ Eg = ∅. Then there are i, j ∈ ω with

g(G0) ∈ Al+i ∪Bl+c+j .

Define γ0 := αl+i ◦ βl+c+j . We have that

g(γ0(G0)) = g(G0) 6= γ0(g(G0)).

So Eg is not a support of g which is a contradiction. a

Lemma 2.8. Let m ∈ ω \ {0, 1} and let p0, p1 be prime numbers such that

m 6= cp0 + dp1

for all c, d ∈ ω. Then we have:
Vp0,p1 |= RCm

Proof. Let x ∈ Vp0,p1 be an infinite set with closed support Ex ∈ fin(A). If there is an E ∈ fin(A)
such that

y :=
{
z ∈ x : E is a support of z

}
is an infinite set, then y can be well-ordered in Vp0,p1 and we can define a choice function on [y]m

by choosing the least element with respect to that well-ordering.

So, assume that for all E ∈ fin(A) there are only finitely many z ∈ x with support E. For every
closed set E ∈ fin(A) with Ex ( E define

ME :=
{
z ∈ x : E is the minimal closed support of z with Ex ⊆ E

}
.
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Since E is a support of ME , the sets ME belong to Vp0,p1 , and by our assumption, the sets ME are
finite. Now, for each z ∈ME define

[z] := {φ(z) : φ ∈ fixG(Ex)} ⊆ME .

To see that [z] ⊆ME , notice that since E ∈ fin(A) is closed, for all φ ∈ G we have φ(E) = E.

We consider the following two cases:

Case 1: For infinitely many ME there is a z ∈ME with

[z] = ME .

Let y :=
⋃
{ME : Ex ( E ∧ ∃z ∈ME(ME = [z])}. The set y is in Vp0,p1 because Ex is a support of

y. Let t ⊆ y with |t| = m and let E be a smallest closed set such that ME ⊆ y and |t ∩ME | is not
of the form k0p0 + k1p1 with k0, k1 ∈ ω. To see that such a set t exists, notice that for [z] = ME

and [z′] = ME′ , if [z] ∩ [z′] 6= ∅, then ME = ME′ .

Define t−1 := t ∩ME . Since E \ Ex 6= ∅ there are blocks Ai0 , . . . , Aiu−1 , Bju , . . . , Bju+v−1 with

E \ Ex =
⋃
{Ai0 , Ai1 . . . , Aiu−1 , Bju , Bju+1 , . . . , Bju+v−1}.

Define

G̃ :=

{∏
k∈u

α
κik
ik
◦
∏
l∈v

β
λju+l
ju+l

: ∀k < u ∀l < v
(
κik < p0 ∧ λju+l < p1

)}
.

Let φ = α
κi0
i0
◦ · · · ◦ α

κiu−1

iu−1
◦ βλjuju

◦ · · · ◦ β
λju+v−1

ju+v−1
∈ G̃. Define

φ|r := κir if r < u and φ|r := λjr if u ≤ r < u+ v.

The elements in G̃ can be ordered lexicographically. We call this well-ordering≤G̃. For all s, s′ < t−1

and all r < u+ v define
distr(〈s, s′〉) := φ|r,

where φ is the ≤G̃-smallest element in G̃ with φ(s) = s′.

The rest of the proof can be done as in [2, Proposition 6.6]. For the sake of completeness, we will
redo it here:

Claim 1: For all s, s′, s′′ < t−1 and all r < u+ v we have that

distr(〈s, s′〉) +p distr(〈s′, s′′〉) = distr(〈s, s′′〉),

where p = p0 if r < u and p = p1 if u ≤ r < u+ v. Moreover, +p denotes addition modulo p.

Proof of Claim 1. Let φ0, φ1, φ ∈ G̃ be ≤G̃-minimal with

φ0(s) = s′, φ1(s′) = s′′ and φ(s) = s′′.

Assume that φ 6= φ1 ◦ φ0. So we have that φ−1 ◦ φ1 ◦ φ0 6= id and

φ−1 ◦ φ1 ◦ φ0(s) = s.

10



Let l < u+ v be the largest number such that

φ−1 ◦ φ1 ◦ φ0|l 6= 0.

Without loss of generality we assume that l < u. Then let m ∈ ω with

(φ−1 ◦ φ1 ◦ φ0)m|l = 1.

Note that (φ−1 ◦ φ1 ◦ φ0)m 6= αil because otherwise we would have that αil(s) = s which is a
contradiction to the fact that E is the minimal support of s with Ex ⊆ E. So there is a ϕ ∈ G̃\{id}
with

(φ−1 ◦ φ1 ◦ φ0)m = ϕ ◦ αil and ϕ <G̃ αil .

Then ϕ ◦ αil(s) = s ⇒ αil(s) = ϕ−1(s). Note that ϕ−1 <G̃ αil . We have that φ0|l 6= 0 or φ1|l 6= 0
or φ|l 6= 0. Without loss of generality we assume that φ0|l 6= 0. Then

φ0 ◦ α−1
il
◦ ϕ−1 <G̃ φ0

and
φ0 ◦ α−1

il
◦ ϕ−1(s) = φ0 ◦ α−1

il
◦ αil(s) = φ0(s) = s′.

This contradicts the minimality of φ0. aClaim 1

For all t̃ ⊆ t−1, all s < t̃ and all r < u+ v define

χr(s, t̃) := {distr(〈s, s′〉) : s′ ∈ t̃}.

These sets have the following properties:

Claim 2: For all t̃ ⊆ t−1 and all s, s′ < t̃ we have that

1. 1 ≤ |χr(s, t̃)| ≤ p0 for all r < u and 1 ≤ |χr(s, t̃)| ≤ p1 for all u ≤ r < u+ v.

2. for all r < u + v there is a kr ∈ ω such that χr(s, t̃) = χr(s
′, t̃) +p kr, where p = p0 if r < u

and p = p1 if u ≤ r < u+ v.

3. |χr(s, t̃)| = |χr(s′, t̃)|.

4. if s 6= s′ there is an r < u+ v such that χr(s, t̃) 6= χr(s
′, t̃).

Proof of Claim 2. 1. Note that 0 < χr(s, t̃) since distr(〈s, s〉) = 0.
2. Set kr := φ|r, where φ is ≤G̃-minimal with φ(s) = s′ and use Claim 1.
3. This follows from 2.
4. Let s, s′ < t̃ and let φ be ≤G̃-minimal with φ(s) = s′. If χr(s, t̃) = χr(s

′, t̃) for all r < u + v it
follows that φ|r = kr = 0 for all r < u+ v. So φ = id and therefore s = s′. aClaim 2

We define an ordering � on the sets χr(s, t̃) as follows: χr(s, t̃) � χr(s
′, t̃) if and only if χr(s, t̃) =

χr(s
′, t̃) or the smallest integer in the symmetric difference χ(s, t̃)∆χr(s

′, t̃) belongs to χr(s, t̃).
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For all non-empty sets t̃ ⊆ t−1, all r < u + v and all natural numbers n define λr,n(t̃) as follows:
Let λr,0(t̃) := ∅ and for every n ∈ ω \ {0} let

λr,n(t̃) :=

{
s ∈ t̃ \

n−1⋃
i=0

λr,i(t̃) : ∀s′ ∈ t̃ \
n−1⋃
i=0

λr,i(t̃)
(
χr(s, t̃) � χr(s′, t̃)

)}
.

Note that
⋃
n∈ω λr,n(t̃) = t̃ and only finitely many λr,n(t̃) are non-empty. Assume that tr−1 is

defined for an r < u+ v. Then let
tr := λr,n0(tr−1),

where n0 ∈ ω is the smallest natural number such that λr,n0(tr−1) is not of the form

cp0 + dp1

with c, d ∈ ω. By Claim 2, tu+v−1 is a one-element set, i.e., there is an s < t with

tu+v−1 = {s}.

So we choose s from t. This shows that RCm holds in Vp0,p1 .

Case 2: There are infinitely many ME such that there are z, z′ ∈ME with

[z] ∩ [z′] = ∅.

Our goal is to reduce this case to Case 1. For every E ∈ fin(A) with Ex ( E define

[ME ] := {[z] : z ∈ME}.

Furthermore, choose a w0 in the ground model Mp0,p1 |= ZFA + AC such that

w0 \
⋃

E ∈ fin(A)

Ex ( E

[ME ] = ∅

and

for all closed sets E ∈ fin(A) with Ex ( E and ME 6= ∅ we have |w0 ∩ [ME ]| = 1.

In other words, w0 picks exactly one element from each non-empty [ME ]. Note that Ex is a support
of w0. So w0 ∈ Vp0,p1 . Choose

M ′E := ME ∩ w0.

This reduces Case 2 to Case 1. a

Proposition 2.9. Let m,n ∈ ω \ {0, 1}, k ∈ ω, and let p0, . . . , pk−1 be prime numbers such that

m 6=
∑
i<k

cipi

for all ci ∈ ω, i < k, and

n =
∑
i<k

dipi

for some di ∈ ω, i ∈ k. Then
RCm 6⇒WOC−n

is consistent with ZF.
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Proof. Similar as in Lemma 2.7 and Lemma 2.8 we can prove that

Vp0,...,pk−1
|= RCm ∧¬WOC−n . (1)

In order to transfer this statement to ZF, we have to show that RCn and WOC−n are injectively
boundable for all n ∈ ω. Then we can use Pincus’ transfer theorem [7, Theorem 3A3]. The terms
“boundable” and “injectively boundable” are defined in [7].

For a set x we define the injective cardinality

|x|− := {α ∈ Ω : there is an injection from α into x},

where Ω is the class of all ordinal numbers. Moreover let ϕ(x) denote the following property:

if x is an infinite set, there is an infinite y ⊆ x with a choice function on [y]n.

Note that ϕ(x) is boundable. Since ϕ(x) holds when |x|− > ω, it follows that

RCn ⇐⇒ ∀x(|x|− ≤ ω ⇒ ϕ(x)).

So, RCn is injectively boundable. Furthermore, we have that ¬WOC−n is boundable. So, (1) is
transferable into ZF. a

Propostion 2.2 together with Propostion 2.9 gives us the following result:

Theorem 2.10. Let m,n ∈ ω\{0, 1}. Then RCm implies WOC−n if an only if the following condition
holds: For all prime numbers p0, . . . , pk−1 such that there are positive integers a0, . . . , ak−1 with

n =
∑
i<k

aipi,

we can find b0, . . . , bk−1 ∈ ω with

m =
∑
i<k

bipi.

We conclude this section by giving a few consequences. Since ¬WOC−n ⇒ ¬RCn, Proposition 2.9
gives us:

Corollary 2.11. Let m,n ∈ ω \ {0, 1} and let p0, . . . , pk−1 be k ∈ ω prime numbers such that

m 6=
∑
i<k

cipi

for all ci ∈ ω, i < k, and

n =
∑
i<k

dipi

for some di ∈ ω, i < k. Then
RCm 6⇒ RCn

in ZF.
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Proof. This follows from RCn ⇒WOC−n (Corollary 2.3) and RCm ; WOC−n (Proposition 2.9). a

Corollary 2.12. Let p be a prime number, let m ∈ ω \ {0} and n ∈ ω \ {0, 1}. Then we have that

RCpm ⇒WOC−n

if and only if n | pm or p = 2, m = 1 and n = 4.

Proof. If n is divisible by a prime q 6= p we have that

Vq |= RCpm ∧¬WOC−n .

Therefore, RCpm 6⇒WOC−n in ZF. So we can assume that n = pk for a k ∈ ω \ {0}.

Case 1: m ≥ k
Let r ∈ ω and let p0, p1 . . . , pr−1 be prime numbers such that there are a0, a1, . . . , ar−1 ∈ ω with

n = pk =
∑
i<r

aipi.

Then
pm = pm−kpk =

∑
i<r

pm−kaipi.

So by Proposition 2.2 we have that
RCpm ⇒WOC−n .

Case 2: m < k
First, assume that p 6= 2. By Bertrand’s postulate there is a prime number q0 with

pm < q0 < 2pm.

Note that pk − q0 > pk − 2pm ≥ p and q0 6= p. So there is a prime number q1 6= p with

q1 | (pk − q0).

By construction, pk can be written as a sum of multiples of q0 and q1. Since q1 - pm and pm < q0,
we have that

pm 6= aq0 + bq1.

for all a, b ∈ ω. So by Proposition 2.9 we have that

RCpm 6⇒WOC−
pk
.

Now, let p = 2 and k ≥ 3. Then there is a prime number q0 with

2k−1 − 1 < q0 < 2k − 2.

It follows that
2 < 2k−1 < q0 < 2k − 2.

So, 2k − q0 > 2 and with the same argumentation as above we see that

RC2n 6⇒WOC2k .

Now we assume that p = 2 and k = 2 (i.e., m = 1). This is the only remaining case. By
Proposition 2.2 we have that

RC2 ⇒WOC−4 .

a
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3 Results provable in ZF

In this section we shall prove four results which are provable in ZF. The first two results are about
the implications RC6 ⇒ C−n for n ∈ {3, 9}, and the second two results are about the implications
RCn ⇒ LOC−m for m ∈ {5, 7}.

3.1 RC6 implies C−
3

In the proof of the next result, we will closely follow the proof of RC4 ⇒ C−4 given in [6].

Proposition 3.1. ZF ` RC6 ⇒ C−3 , i.e., it is provable in ZF that RC6 implies C−3 .

Proof. Let F be an infinite family of pairwise disjoint sets of size 3. We apply RC6 to the set
⋃
F .

This gives us an infinite subset Y ⊆
⋃
F with a choice function on [Y ]6. For every i ∈ {1, 2, 3} we

define
Gi := {u ∈ F : |u ∩ Y | = i}.

Without loss of generality we can assume that G := G3 is infinite, since otherwise, we can easily
define a choice function on an infinite subset of F . So, there is a choice function

f :
[⋃
G
]6
→
⋃
G.

We define a directed graph on G by putting a directed edge from v to u i.e., v → u), if and only
if f(u ∪ v) ∈ u. If there is direct edge from v to u we will say that the edge points from v to u.
With this graph we carry out the same construction as in [6]. So, there is an infinite subset H ⊆ G
which is partitioned into finite sets (An)n∈ω such that for every n ∈ ω, all elements in An have
outdegree n. Moreover, for all n ∈ ω we have that |An| is odd, and for all n < m, the edges between
An and Am all point from Am to An. We can assume that we are in one of the following two cases:

Case 1: There are infinitely many n ∈ ω with 3 - |An|.
In this case we follow the proof of the Claim in [6, p. 60]: Without loss of generality we can assume
that 3 - |An| for every n ∈ ω. Let n0 ∈ ω and p0 = {x0, x1, x2} ∈ An0 . For each i ≤ 2 we define

deg(xi) := |{q ∈ An0+1 : f(q ∪ p0) = xi}|.

Since 3 - |An0+1| we have that 3 - (deg(x0) + deg(x1) + deg(x2)). Therefore, we can choose one
element from p0.

Case 2: For all n ∈ ω we have that 3 | |An|.
Let p0 ∈ H and let n ∈ ω be the unique natural number with p0 ∈ An. There is an s ∈ ω with
|An| = 2s+ 1. We want to find the number of elements in An with edges pointing to p0. There are(|An|

2

)
edges in An. Since the number of edges in An that point to an element in An is the same for

every element of An, we have that the indegree of p0 in An is given by

indegreeAn(p0) =
1

|An|

(
|An|

2

)
=

1

2
(|An| − 1) = s.
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By assumption we have that 3 | |An| = 2s+ 1. Therefore, 3 - s. Assume that p0 = {x0, x1, x2}. For
every i ≤ 2 we define

Axin := {v ∈ An : f(v ∪ p0) = xi}.

Since 3 - (|Ax0n |+ |Ax1n |+ |Ax2n |) = s, we can choose an element from p0. a

3.2 RC6 implies C−
9

Lemma 3.2. Let F be an infinite family of pairwise disjoint 4-element sets. If there is a choice
function

f :
[⋃
F
]6
→
⋃
F ,

then there is a function h with h(p ∪ q) ∈ p ∪ q for all p 6= q in F .

Proof. Let p 6= q be elements of F . We will show that we can choose exactly one element from
p ∪ q. There are (

8
6

)
= 28

6-element subsets of p ∪ q. From each of these subsets we can choose one point with the choice
function f . Let A be the set of all elements in p ∪ q which are chosen the most times. Note that
1 ≤ |A| ≤ 7, because 8 does not divide 28.

· If |A| = 1 we are done.

· If |A| = 2, choose f((p ∪ q) \A).

· If |A| = 3 and A ⊆ p or A ⊆ q we are done because we can choose the point in p \ A or in
q \A. Otherwise, |p ∩A| = 1 or |q ∩A| = 1 and we are also done.

· If |A| ∈ {5, 6, 7}, replace A by (p ∪ q) \A. So we are in one of the cases above.

· If |A| = 4, the set [(p∪ q) \A]2 contains

(
4
2

)
= 6 elements. For each B ∈ [(p∪ q) \A]2 choose

f(A ∪B). Let C0 and C1 be the sets of all elements in p ∪ q which are chosen the most and
the least often. Note that either C0 or C1 does not contain 4 elements. By the cases above
we are done.

So there is a choice function
h : {p ∪ q : p, q ∈ F} →

⋃
F .

a

Lemma 3.3. Let {An : n ∈ ω} be a countable family of pairwise disjoint non-empty finite sets
of pairwise disjoint sets of size 2, and let F :=

⋃
n∈ω An be the corresponding infinite family of

2-element sets. If

f :
[⋃
F
]6
→
⋃
F .

is a choice function, then there is an infinite subfamily G ⊆ F with a choice function.
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Proof. By using a bijection between ω and an infinite subset of ω, without loss of generality we are
in one of the following four cases:

Case 1: For all n ∈ ω we have that 2 - |An|.
Let k ∈ ω. Then there are natural numbers l0, l1 and l2 such that

|A3k| = 2l0 + 1, |A3k+1| = 2l1 + 1 and |A3k+2| = 2l2 + 1.

For every a ∈ A3k ∪A3k+1 ∪A3k+2 define

#a := |{(a0, a1, a2) ∈ A3k ×A3k+1 ×A3k+2 : f(a0 ∪ a1 ∪ a2) ∈ a}|.

If #a is odd, we can choose an element from a, for example the element in a we choose more often
than the other. Since

2 -
∏
i≤2

(2li + 1) and
∑

a∈A3k∪A3k+1∪A3k+2

#a =
∏
i≤2

(2li + 1),

we have that for every k ∈ ω there is at least one a ∈ A3k ∪ A3k+1 ∪ A3k+2 such that #a is odd.
So, we can find a choice function on the infinite set

G := {a ∈ F : #a is odd}.

Case 2: For all n ∈ ω we have that |An| = 2.
For every k ∈ ω let A2k = {a2k, b2k} and B0 := {a2k} ∪A2k+1 and B1 := {b2k} ∪A2k+1. For every
a ∈ A2k ∪A2k+1 we define

#a :=
∣∣∣{i ∈ {0, 1} : f

(⋃
Bi

)
∈ a
}∣∣∣ .

Note that if #a = 1, we can choose an element from a and we are done. So, if there are infinitely
many a ∈ F such that #a is odd, we are done. Otherwise, there is an infinite subset I ⊆ ω such
that for all k ∈ I there is a unique ak ∈ A2k ∪ A2k+1 with #ak = 2. Then we are in the first case
for the family {{ak} : k ∈ I}.

Case 3: For all n ∈ ω we have that |An| ≥ 3, 4 - |An| and 2 | |An|.
Let n ∈ ω. Then, by the properties of |An| we have |An| = 2t for some odd t, and therefore we have

that

(
|An|

2

)
is odd. For every k ∈ ω we look at the 4-element subsets of A2k ∪ A2k+1 with two

elements in A2k and two elements in A2k+1. Note that the number of such subsets, as the product
of two odd numbers, is odd. Let h be the choice function we found in Lemma 3.2. Then for every
k ∈ ω there is at least one a ∈ A2k ∪A2k+1 such that

#a := |{({a0, a1}, {b0, b1}) ∈ [A2k]
2 × [A2k+1]2 : h(a0 ∪ a1 ∪ b0 ∪ b1) ∈ a}|

is odd. So again we found a choice function on the infinite set

G := {a ∈ F : #a is odd}.
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Case 4: For all n ∈ ω we have that |An| ≥ 3 and 4 | |An|.
Let n ∈ ω. Then there is a k ∈ ω with |An| = 4k. We have that

2|An| -
(
|An|

3

)
, (2)

since otherwise we would have that

|An|(|An| − 1)(|An| − 2)

2 · |An| · 2 · 3
=

2(4k2 − 3k) + 1

2 · 3
∈ ω,

but this is not the case since the numerator is odd. We define

#a := |{{a0, a1, a2} ∈ [An]3 : f(a0 ∪ a1 ∪ a2) ∈ a}|

and for all y ∈
⋃
An let

#(y) := |{{a0, a1, a2} ∈ [An]3 : f(a0 ∪ a1 ∪ a2) = y}|.

Note that by (2) ∣∣∣{y ∈⋃An : #(y) = max
{

#(z) : z ∈
⋃
An

}}∣∣∣ < 2|An|.

If there is an a = {a0, a1} ∈ An with
#(a0) 6= #(a1)

choose the element ai with lower #(ai). Otherwise we have that

Bn := {a ∈ An : #a = max{#b : b ∈ An}} ( An.

Repeat the procedure with An := Bn until either 4 - |An| or there is an a = {a0, a1} ∈ An with

#(a0) 6= #(a1).

Note that we have to repeat the procedure at most |An| times. In the end we either found a choice
function on an infinite subset of F or we reduced Case 4 to one of the other cases. a

Corollary 3.4. Let F be an infinite family of pairwise disjoint 4-element sets. If

f :
[⋃
F
]6
→
⋃
F

is a choice function, then there is an infinite subset G ⊆ F with a choice function on G.

Proof. Let h be the choice function we found in Lemma 3.2. We can define a complete, directed
graph on F by putting an edge from p to q if and only if h(p ∪ q) ∈ q. With this graph we can do
the same construction as in [6]. So, we can find an infinite subset G ⊆ F such that we can choose
exactly 1 or 2 elements from each G ∈ G. So either we found a choice function on an infinite subset
of G or we can find an infinite family of 2-element sets H. Then we apply Lemma 3.3 to H and we
are done. a
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Lemma 3.5. Let F := {Fλ : λ ∈ Λ} be an infinite family of 10-element sets. Assume that each
Fλ ∈ F is a disjoint union of five 2-element sets Fλ,i, 0 ≤ i ≤ 4. Moreover, assume that

f :
[⋃
F
]6
→
⋃
F

is a choice function. Then there is an infinite subset G ⊆ F with a Kinna-Wagner selection
function.

Proof. For all 4-element sets A ⊆
⋃
F , we define the degree of A by

deg(A) := |{Fλ,i : Fλ ∈ F ∧ i ≤ 4 ∧ Fλ,i ∩A = ∅ ∧ f(A ∪ Fλ,i) ∈ Fλ,i}|.

If there is an A0 ∈ [
⋃
F ]4 with infinite degree we are done, because then the set

G := {Fλ ∈ F : ∃i ≤ 4 (f(A0 ∪ Fλ,i) ∈ Fλ,i)}

is infinite and from every G ∈ G we can choose the set

{f(A0 ∪Gi) : i ≤ 4} ∩G ( G.

Thus, we can assume that each A ∈ [
⋃
F ]4 has finite degree. Define F2 = {Fλ,i : Fλ ∈ F ∧ i ≤ 4}

and for all Fλ ∈ F let F 2
λ := {Fλ,i : i ≤ 4}.

Case 1: There is an n ∈ ω such that for infinitely many λ ∈ Λ there are distinct A,B ∈ F 2
λ with

deg(A ∪B) = n.
Let G := {Fλ ∈ F : ∃A,B ∈ F 2

λ (deg(A ∪ B) = n)}. By assumption this is an infinite set. Choose
an (n+ 3)-element set {Xi : i ≤ n+ 2} ⊆ F2. For all G ∈ G and all A,B ∈ G2 with deg(A∪B) = n
put an edge pointing from A to B if and only if

f(A ∪B ∪Xi0) ∈ B,

where
i0 := min{i ≤ n+ 2 : f(A ∪B ∪Xi) /∈ Xi}.

Notice that this gives us a directed graph with at least one edge in each G2 with G ∈ G. If for
infinitely many G ∈ G not all elements of G2 have the same outdegree, we are done. So, we either
have a cycle on infinitely many G2 or we have a complete graph in which every node has outdegree
2. In the former case we can choose a point in each A∪B, where A,B ∈ G2 are neighbours. Thus,
we can choose 5 elements in each G ∈ G. In the latter case, we can choose 5 edges as follows: For
the node A ∈ G2, let B,C ∈ G2 be the two successors of A in the graph. Consider the edge which
connects B and C (see Figure 1). If this edge points to C, then we go to B and consider the two
successors of B. Proceeding this way, we obtain a cycle on infinitely many G2’s and can again
choose 5 elements from G.

Case 2: For all n ∈ ω there are only finitely many λ ∈ Λ such that there are A,B ∈ F 2
λ with

deg(A ∪B) = n.
Let A−1 := ∅ and for every n ∈ ω define

An := {A ∈ F2 : ∃B ∈ F2(deg(A ∪B) = n)} \An−1.

Note that these sets are pairwise disjoint families of 2-element sets. So we can apply Lemma 3.3
and we are done. a
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B

C

Figure 1: How to choose the edges

Now, we are ready to prove the following:

Proposition 3.6. ZF ` RC6 ⇒ C−9 .

Proof. Let F be an infinite family of pairwise disjoint sets of size 9. Since RC6 holds, there is an
infinite set Y ⊆

⋃
F with a choice function

f : [Y ]6 → Y.

For all 0 ≤ i ≤ 9 let
Gi := {F ∩ Y : F ∈ F ∧ |F ∩ Y | = i}.

There is a 1 ≤ i ≤ 9 such that Gi is an infinite set.

Case 1: G1 or G8 is infinite.
In the case G8 is infinite, we look at the complements.

Case 2: G3 or G6 is infinite.
Use Proposition 3.1.

Case 3: G4 is infinite.
Use Corollary 3.4.

Case 4: G5 is infinite.
Apply RC6 to the complements. Then we are either in one of the preceding cases or the comple-
ments are partitioned into two sets of size two. We look at the 10 edges between the first 5 elements
and the second two elements and use Lemma 3.5.

Case 5: G7 is infinite.
For all G ∈ G7 let G be the complement of G in the sense that for the F ∈ F with G ⊆ F we have
that

G := F \G.
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Note that |G| = 2. Let
E := {{x, y} : ∃G ∈ G7(x ∈ G and y ∈ G)}.

Apply RC6 to E . Without loss of generality we can assume that we find a choice function

g : [E ]6 → E ,

because otherwise we are in one of the preceding cases. So, for every G ∈ G7 there are 14 edges
between G and G. Hence, there are (

14
6

)
= 3 · 7 · 11 · 13

6-element subsets. From each of them g chooses one element. Since

(
14
6

)
is not divisible by 14,

we can choose less than 14 edges and we are in one of the preceding cases.

Case 6: G9 is infinite.
With the choice function f we can choose an element from each 6-element subset of a G ∈ G9.

There are

(
9
6

)
subsets of size 6. Since 9 -

(
9
6

)
we can reduce this case to one of the cases above.

Case 7: G2 is infinite.
We iteratively apply RC6 to the complements. So, we can reduce this case to one of the cases
above. a

3.3 RC5 implies LOC−
5

We will now show that RC5 implies LOC−5 . The beginning of the proof will be as usual: Let F
be an infinite, linearly orderable family of 5-element sets. We apply RC5 to

⋃
F . This will give

us an infinite subfamily G ⊆ F such that each p ∈ G is partitioned into two parts. If one of these
parts is of size one, we have a choice function and we are done. Otherwise, the two parts are of
size 2 and 3. So if we could show that RC5 implies LOC−2 or LOC−3 , the proof would be finished.
However, Halbeisen’s and Tachtsis’ result (β) shows that this idea will not lead to success — which
is the reason why we will work with the set of edges between the two parts.

Theorem 3.7. ZF ` RC5 ⇒ LOC−5 .

Proof. Let F be an infinite, linearly orderable collection of pairwise disjoint sets of size 5. We fix
a linear order on F and apply RC5 on the set X :=

⋃
F to find an infinite subset Y ⊆ X with a

choice function f : [Y ]5 → Y . For every i ≤ 5 we define

Fi := {p ∈ F : |p ∩ Y | = i}.

The only non-trivial case is when the elements p of an infinite subfamily G ⊆ F are partitioned
into a set with two elements and a set with three elements, namely p = {ap, bp, cp} ∪ {xp, yp}.

21



Now we look at the set Z of all non-directed edges between a point in {ap, bp, cp} and one in {xp, yp}.
For every p ∈ G let p∗ be the set of all edges in Z belonging to p and for each subset H ⊆ F we
define H∗ := {p∗ : p ∈ H}.

Claim 1: Assume that there is an infinite subset H ⊆ G such that we can choose between 1 and 5
elements from each p∗ ∈ H∗. Then there is a choice function

h : H →
⋃
H.

Proof of Claim 1. Let p ∈ H and assume that we can choose k ∈ {1, 2, 3, 4, 5} elements from p∗.
We look at p as a graph with k edges. If 2 - k, xp and yp do not have the same degree and we can
choose the element with lower degree. Otherwise we have that 3 - k and we can choose an element
from {ap, bp, cp}. aClaim 1

Now we apply RC5 on the set Z. Then there is an infinite subset Q ⊆ Z with a choice function
g : [Q]5 → Q. By Claim 1 we can without loss of generality assume that p∗ ⊆ Q for every p in some
infinite H ⊆ G.

We can partition each p∗ ∈ H∗ as follows into two sets γp0 and γp1 of size three:

γp0 := {{ap, xp}, {bp, xp}, {cp, xp}} and γp1 := {{ap, yp}, {bp, yp}, {cp, yp}}.

Analogously we can partition p∗ into three sets β0, β1, β2 of size two as follows:

βp0 := {{ap, xp}, {ap, yp}}, βp1 := {{bp, xp}, {bp, yp}} and βp2 := {{cp, xp}, {cp, yp}}.

Figure 2: The partitions of a p∗ into γp0 , γp1 on the left and into βp
0 , βp

1 and βp
2 on the right.

Let
H∗3 := {γpi : i ≤ 1 ∧ p ∈ H}

be the sets of size three appearing in the partition of a p∗ ∈ H∗ and let

H∗2 := {βpi : i ≤ 2 ∧ p ∈ H}
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be the family of sets of size two which appear in the partition of a p∗ ∈ H∗. If there is a γ ∈ H∗3
such that for infinitely many β ∈ H∗2

g(γ ∪ β) ∈ β, (3)

we are done by Claim 1. Otherwise, for every γ ∈ H∗3 there are only finitely many β ∈ H∗2 with (3)
and we define

deg(γ) := |{β ∈ H∗2 : g(γ ∪ β) ∈ β}| ∈ ω.

We are in one of the following two cases:

Case 1: There is an n ∈ ω such that deg(γ) = n for infinitely many γ ∈ H∗3.
Let I∗3 := {γ ∈ H∗3 : deg(γ) = n}. Choose an (n+ 4)-element set {βi : i ≤ n+ 3} ⊆ H∗2. For every
γ ∈ I∗3 we define

j(γ) := min{i ≤ n+ 3 : g(γ ∪ βi) ∈ γ}.

So from every γ ∈ I∗3 we choose the element

g(γ ∪ βj(γ)) ∈ γ

and we are done by Claim 1.

Case 2: For each n ∈ ω there are only finitely many γ ∈ H3 with deg(γ) = n.
For every n ∈ ω we define

An := {γ ∈ H∗3 : deg(γ) = n} and Bn := {β ∈ H∗2 : ∃γ ∈ An∃p∗ ∈ H∗(γ ⊆ p∗ ∧ β ⊆ p∗)}.

If there are infinitely many p ∈ H such that γp0 ∈ An and γp1 ∈ Am with n 6= m we are done by
Claim 1 since we can choose three edges from each of these infinitely many p’s. So we can assume
that for every p ∈ H both, γp0 and γp1 , have the same degree and we define

Cn := {p ∈ H : {γp0 , γ
p
1} ⊆ An}

for every n ∈ ω. Moreover, let

out(β) :=

{
γ ∈

⋃
m>n

Am : g(β ∪ γ) ∈ γ

}
.

for every n ∈ ω and every β ∈ Bn. If there is a β ∈
⋃
n∈ω Bn with |out(β)| = ∞ we are done by

Claim 1. So assume that |out(β)| ∈ ω for all β ∈
⋃
n∈ω Bn.

Claim 2: We can find an infinite subset K ⊆ H with a partition K =
⋃
n∈ωKn where each Kn is

finite and non-empty. Moreover, we can assume that for all natural numbers n > m, all p ∈ Kn,
all q ∈ Km and all j ≤ 2

g(γp0 ∪ β
q
j ) = g(γp1 ∪ β

q
j ) ∈ β

q
j .

Proof of Claim 2. For every n ∈ ω we define Rn to be the set of all p ∈
⋃
k>nCk such that there

are a q ∈ Cn, an i ∈ {0, 1} and a j ∈ {0, 1, 2} with

g(γpi ∪ β
q
j ) ∈ γ

p
i .
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Since |out(β)| is finite for all β ∈
⋃
n∈ω Bn, the set Rn is finite. Jn := Cn \

⋃
k<nRn. Define Sn to

be the set of all p ∈
⋃
k>n Jk such that there are a q ∈ Jn, and a j ∈ {0, 1, 2} with

g(γp0 ∪ β
q
j ) 6= g(γp1 ∪ β

q
j ).

First of all assume that there is an n0 ∈ ω such that Sn0 is infinite. Since Jn0 is finite, we can then
find a q0 ∈ Jn0 and a j0 ∈ {0, 1, 2} such that for infinitely many p ∈ Sn0

βq0j0 3 g(γp0 ∪ β
q0
j0

) 6= g(γp1 ∪ β
q0
j0

) ∈ βq0j0

and we can choose the set of edges γp0 or γp1 depending on the choice in βp0j0 . With Claim 1 we are
done. Therefore, we can assume that each Sn is finite. In this case we define Kn := Jn \

⋃
k<n Sn

for all n ∈ ω. Infinitely many sets Kn are non-empty. By renumbering the sets Kn we can assume
that each Kn is non-empty. aClaim 2

With the same construction we did in the proof of Claim 2 we can find an infinite subset I ⊆ K
with a partition I =

⋃
n∈ω In, where each In is finite and non-empty. Moreover, we can assume

that for all natural numbers n > m, all p ∈ In, all q ∈ Im and all j ≤ 2

g(γp0 ∪ β
q
j ) = g(γp1 ∪ β

q
j ) ∈ β

q
j .

Note: Up to now we nowhere used the assumption that our infinite family F of sets of size five is
linearly ordered. In the last step we will need this assumption.

For each n ∈ ω, let pn ∈ In be the smallest element in In with respect to the linear order on F .
Note that such a smallest element exists since each In is finite and non-empty. We define

h∗ : {p∗n : n ∈ ω} →

[⋃
n∈ω

p∗n

]3

p∗n 7→
{
g
(
γ
pn+1

0 ∪ βpnj
)

: j ≤ 2
}
.

By Claim 1 we are done. a

3.4 RC7 implies LOC−
7

Before we prove our last result, we shall prove three lemmata.

Lemma 3.8. Let F be a linearly orderable family of pairwise disjoint 6-element sets. Assume that
we can partition each p ∈ F in a unique way into three 2-element sets βp0 , β

p
1 and βp2 and in a

unique way into two 3-element sets γp0 , γ
p
1 . Further assume that there is a choice function

f :
[⋃
F
]7
→
⋃
F .

Then there is an infinite subfamily G ⊆ F with a Kinna-Wagner selection function.
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Proof. We define
F3 :=

{
γpi : i ∈ {0, 1} ∧ p ∈ F

}
and

F4 :=
{
βpi ∪ β

p
j : {i, j} ∈ [3]2 ∧ p ∈ F

}
.

For every γ ∈ F3 let
deg(γ) :=

∣∣{δ ∈ F4 : δ ∩ γ = ∅ ∧ f(δ ∪ γ) ∈ δ
}∣∣.

If there is a γ ∈ F3 with deg(γ) = ∞, then we are done because we can choose between one
and three elements from infinitely many p ∈ F . The rest of the proof is similar to the proof of
Theorem 3.7. a

Lemma 3.9. Let F be a linearly orderable family of pairwise disjoint 12-element sets. Assume that
we can partition each p ∈ F in a unique way into three 4-element sets δ0, δ1 and δ2 and in a unique
way into four 3-element sets γ0, γ1, γ2 and γ3. Further assume that there is a choice function

f :
[⋃
F
]7
→
⋃
F .

Then there is an infinite subset G ⊆ F with a Kinna-Wagner selection function.

Proof. The proof is similar to the proof of Theorem 3.7. a

Lemma 3.10. Let F be a linearly orderable family of pairwise disjoint 10-element sets. Assume
that we can partition each p ∈ F in a unique way into two 5-element sets ε0 and ε1 and in a unique
way into five 2-element sets βi, i ≤ 4. Further assume that there is a choice function

f :
[⋃
F
]7
→
⋃
F .

Then there is an infinite subset G ⊆ F with a Kinna-Wagner selection function.

Proof. The proof is similar to the proof of Theorem 3.7. a

Proposition 3.11. ZF ` RC7 ⇒ LOC−7 .

Proof. Let F be a linearly orderable, infinite family of sets of size 7. We apply RC7 on the set
X :=

⋃
F to find an infinite subset Y ⊆ X with a choice function f : [Y ]7 → Y . For every i ≤ 7

we define
Fi :=

{
p ∈ F : |p ∩ Y | = i

}
.

Note that we can without loss of generality assume that F2 or F3 has infinite cardinality.

Case 1: F3 has infinite cardinality.
For every p ∈ F3 let

p∗ :=
{
{a, x} ∈ [p]2 : a ∈ p ∩ Y ∧ x ∈ p \ Y

}
and apply RC7 on the set X∗ :=

⋃
{p∗ : p ∈ F3}. We get an infinite subset Y ∗ ⊆ X∗ with a choice

function g : [Y ∗]7 → Y ∗. For every 1 ≤ i ≤ 12 define

F∗i := {p∗ : p ∈ F3 ∧ |p∗ ∩ Y ∗| = i}.
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Figure 3: Case i = 6

There is an i with 1 ≤ i ≤ 12 such that |F∗i | = ∞. If i /∈ {6, 12} we can choose an element from
each p with p∗ ∈ F∗i and therefore we are done. If i = 6, the only case in which we cannot choose
an element from all p with p∗ ∈ F∗6 is the one illustrated in Figure 3:

But in this case we are done by Lemma 3.8. And if i = 12 we are done by Lemma 3.9.

Case 2: F2 has infinite cardinality.
For every 1 ≤ i ≤ 10 we define F∗i as in Case 1. The only i for which we cannot choose one element
from each p with p∗ ∈ F∗i or for which we cannot choose three elements from each p with p∗ ∈ F∗i
in order to reduce it to Case 1, is i = 10. But in this case we are done by Lemma 3.10. a

4 Open Questions

1. By [6] we have that RCn ⇒ C−n in ZF for every n ∈ {2, 3, 4}. Does this implication hold for
any other n ∈ ω \ {0, 1}?

2. By [6], Proposition 3.11 and Theorem 3.7 we have that RCn ⇒ LOC−n in ZF for any n ∈
{2, 3, 4, 5, 7}. Does this implication hold for any other n ∈ ω \ {0, 1}?

3. For every n ∈ ω \ {0, 1} the following weak choice principle was introduced in [8]:

nC−<ℵ0: For every infinite family F of finite sets with cardinality at least n there
is an infinite subfamily G ⊆ F with a selection function f : G → [

⋃
G]n such that

f(G) ∈ [G]n for all G ∈ G.

Moreover, as in [1] we can define a restricted version of nC−<ℵ0 as follows:

nRCfin: Given any infinite set x, there is an infinite subset y ⊆ x and a selection
function f that chooses an n-element subset from every z ⊆ y containing at least n
elements.
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The relationship of RCn and nRCfin to kC−<ℵ0 and C−j has already been studied in [3]. How-

ever, the following question is still open: For every n ∈ {2, 3, 4, 6} we have that nRCfin ⇒ nC−ℵ0
in ZF. Does this implication hold for any other n ∈ ω \ {0, 1}?
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numerous comments and corrections that helped to improve the quality of this article.
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