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Abstract

Six points on a conic section define 60 different hexagons and therefore 60 Pascal lines. Each
Pascal line passes through three of the 45 intersections of connecting lines of the six given
points. Instead of searching for collinear triples (Pascal lines) among these 45 points, we
identify and classify all six-tuples among the 45 points which lie on a conic section. These
six-tuples will be called Pascal twins of the given six points. It turns out that there are also
six-tuples that lie on a conic section which have two points in common with the given six
points. These six-tuples are called Siamese Pascal twins for evident reasons.

1 Introduction

One of the most fundamental theorems of projective geometry is Pascal’s Hexagon Theorem. The
result is often referred to as the Hexagrammum Mysticum Theorem. It states the following. Let
P1, P2, . . . , P6 be arbitrary points on a non-degenerate conic C and σ a permutation of the set
{1, 2, . . . , 6}. Then the three pairs of opposite sides of the conic hexagon Pσ(1), Pσ(2), . . . , Pσ(6)

(extended if necessary) meet at three points which lie on a straight line, called the Pascal line of
the hexagon. Modulo cyclic renumbering of the points or reversal of the order, there are 6!

6·2 = 60
different hexagons. In general, the 60 resulting Pascal lines are different from each other. The Swiss
mathematician Jakob Steiner found that these Pascal lines concur in threes in 20 points, which
we today call Steiner nodes. Two decades after Steiner’s discovery, Thomas Kirkman announced
that the Pascal lines also concur in threes at 60 more points, now known as the Kirkman nodes.
This is only the beginning of a cascade of further incidences: Three of the Kirkman nodes and one
Steiner node lie on one of 20 Cayley lines. The Steiner nodes lie in fours on 15 Plücker lines. Four
Cayley lines concur in one of 15 Salmon nodes. We refer to [2] for a wonderful presentation of all
these incidences.

Six pairwise distinct points P1, P2, . . . , P6 on a non-degenerate conic C, called a conic hexa-set,
define

(
6
2

)
= 15 lines which in turn yield, in general, 45 intersection points different from the

points Pi. The intersection of the lines PiPj and PkPl will be denoted by Pijkl. Let S be the
set of these 45 points Pijkl. Instead of chasing collinear points among the points in S, like Pascal
did, we ask in this article, if there are six points in S which lie on a non-degenerate conic. Such a
hexagon with vertices in S will be called a Pascal twin of the original hexagon with vertices Pi (see
Figures 1 to 4). A hexagon with k ≥ 1 vertices among the points P1, P2, . . . , P6 and 6− k vertices
in S will be called a Siamese Pascal twin of the original hexagon with vertices Pi (see Figures 5
to 8).

We will use a rational model to computationally detect and classify Pascal twins and Siamese
Pascal twins. These incidence relations are then proven in general by classical methods. The
paper is organized as follows. In Section 2 we identify all possible Pascal twins of a conic hexagon.
The main result will be that essentially only four such twins exist. In Section 3 we identify all
possible Siamese Pascal twins of a conic hexagon. It will turn out that a Siamese twin necessarily
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has exactly two points in common with the original hexagon, and that again essentially only four
such Siamese twins exist. Section 4 will be devoted to the proofs of the results for the Siamese
Pascal twins, and the final Section 5 contains the proofs of the results for the Pascal twins.

2 Candidates for Pascal twins

In order to determine the possible candidates for Pascal twins of a conic hexagon, we proceed as
follows. We chose six different points P1, P2, . . . , P6 with rational coordinates on a non-degenerate
conic C in such a way, that S consists of 45 different points, also with rational coordinates. By a
computer search, using exact rational numbers, we check for all

(
45
6

)
possible hexa-sets of points in

S whether they lie on a non-degenerate conic. This results in 255 such conic hexa-sets. However,
many of these conic hexa-sets are combinatorially the same in the following sense: Suppose T
is a conic hexa-set with points Pinjnknln (for n = 1, 2, . . . , 6) lying on a conic, where Pinjnknln

is the intersection of the lines PinPjn and Pkn
Pln Let T ′ be another conic hexa-set of points

which is obtained by a permutation σ of the points P1, P2, . . . , P6, i.e., T
′ consists of the points

Pσ(in)σ(jn)σ(kn)σ(ln), n = 1, 2, . . . , 6. We will then say, that T and T ′ are equivalent. The tedious
task to identify the equivalence classes can be delegated to a computer program. One finds exactly
four equivalence classes. The following figures show one representative in each class e1, . . . , e4. The
brown triangles are only for better orientation.

P1

P6

P5

P3 P4

P2

P1536

P3152

P2641

P5314

P4263

P6425

Figure 1: A Pascal twin representative of equivalence class e1. From one
point Pijkl counterclockwise to the next one, apply the permutation (123456)
to each index.

P2

P5

P3

P6

P4

P1

P2536

P2356

P3526

P1456

P1546

P4516

Figure 2: A Pascal twin representative of equivalence class e2.
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P4
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P5

P6

P2

P4516

P1546P2456

P1356

P3526

P2536

Figure 3: A Pascal twin representative of equivalence class e3.

P2

P1

P5

P6

P3 = P4

P2536

P3526

P2456
P1546

P4516

P1356

Figure 4: A Pascal twin representative of equivalence class e4. Notice that
Class e4 is essentially the same as Class e3, where the points P3 and P4 are
identified. In particular, there are just 5 different points involved.

Notice that so far, these are only results for the rational points P1, P2, . . . , P6 which we have
initially chosen. In Section 5 we will actually prove that these twins exist for an arbitrary choice
of points P1, P2, . . . , P6 on a conic C.
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3 Candidates for Siamese Pascal twins

The procedure to identify candidates for Siamese Pascal twins is identical to the one in the previous
section. We start with six rational points P1, P2, . . . , P6 on a conic C and compute the set S of the
45 rational intersection points Pijkl. Then we fix the points P1, P2, . . . , Pk with k = 1, 2, . . . , 4, and
complete them with all possible combinations of points from S to form a hexa-set. We check for
each resulting hexa-set if it lies on a non-degenerate conic. Notice that we can restrict the search
to k ≤ 4, since a conic is defined by five points. It turns out that only for k = 2 such Siamese
Pascal twins exist, and that modulo renumbering, again only four equivalence classes f1, . . . , f4
exist. For better readability we denote the two points which lie on both conics by X and Y , and
the four remaining points on the original conic are denoted by P1, . . . , P4. The Figures 5 to 8 show
one representative of each equivalence class.

X

Y

P1

P4

P3

P2

PX1Y4

PX4Y 1

PX3 Y 2

PX2Y 3

Figure 5: A Siamese Pascal twin representative of equivalence class f1.

Y

X
P1

P2

P3

P4

PY 312

PY 412

PX134

PX234

Figure 6: A Siamese Pascal twin representative of equivalence class f2.
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X

Y

P3

P4

P2

P1

PX312

PX234

PY 412

PY 134

Figure 7: A Siamese Pascal twin representative of equivalence class f3.

X

Y

P2

P1

P4

P3

PX234PX1Y 4

PY 134

PX3Y 2

Figure 8: A Siamese Pascal twin representative of equivalence class f4.

4 Incidence results for Siamese Pascal twins

As a short hand notation, we will use P −Q to denote the line joining two points P,Q, and g ∧ h
to denote the intersection of two lines g, h. Recall that Pascal’s Theorem states that six points,
numbered 1 , 2 , 3 , 4 , 5 , 6 , lie on a conic iff the three points

1 − 2 ∧ 4 − 5 , 2 − 3 ∧ 5 − 6 , 3 − 4 ∧ 6 − 1
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are collinear. Another useful tool will be Carnot’s Theorem (see [1, no. 396]): The the six points
1 , . . . , 6 lie on a conic iff the lines(

1 − 2 ∧ 3 − 4
)
−

(
4 − 5 ∧ 6 − 1

)
2 − 5

3 − 6

are concurrent. Since Carnot’s Theorem is independent of the enumeration of six points and
since every enumeration of six points P1, . . . , P6 leads to three lines, we get that these three lines
are concurrent iff the six points P1, . . . , P6 lie on a conic. For example, if we enumerate the six
points P1, . . . , P6 by 2 , 4 , 6 , 1 , 3 , 5 and define h1 = P4 − P1, h2 = P5 − P2, h3 = P2 − P6,
h4 = P3−P4, Q1 = h1 ∧h2, Q2 = h3 ∧h4, then the six points P1, . . . , P6 lie on a conic iff the three
lines Q1 −Q2, P1 − P6, P5 − P3, are concurrent. For better readability we denote this as follows,
where for simplicity we omit the circles around the numbers:

P1 P2 P3 P4 P5 P6 concurrent lines

enumeration 2 4 6 1 3 5 Q1 −Q2, P1 − P6, P5 − P3

Theorem 1 (Class f1). Let X,Y, P1 . . . , P4 be points in the projective plane, and PXiY j be the
intersection of the lines X −Pi and Y −Pj. Then the points X,Y, P1, . . . , P4 lie on a conic iff the
points X,Y, PX1Y 4, PX3Y 2, PX2Y 3, PX4Y 1 lie on a conic.

In the following theorems, all conics are assumed to be non-degenerate.

Proof. We have to show that X,Y, P1 . . . , P4 lie on a conic iff the points X,Y,Q1, . . . , Q4 lie on a
conic, where Q1 = PX1Y 4, Q2 = PX3Y 2, Q3 = PX2Y 3, Q4 = PX4Y 1 (see Figure 9):

P2 P1

P4P3

X

Y

Q2 Q1

Q3 Q4

Figure 9: Proof of Theorem 1.

By Carnot’s Theorem with respect to the 6 points X,Y, P1 . . . , P4 we obtain:

X Y P1 P2 P3 P4 concurrent lines

enumeration 1 4 2 5 6 3 Q3 −Q4, P1 − P2, P3 − P4

enumeration 1 4 3 6 5 2 Q1 −Q2, P1 − P2, P3 − P4

Furthermore, by Carnot’s Theorem with respect to the 6 points X,Y,Q1 . . . , Q4 we have:

X Y Q1 Q2 Q3 Q4 concurrent lines

enumeration 1 4 6 3 2 5 P1 − P2, Q1 −Q2, Q3 −Q4

enumeration 1 4 5 2 3 6 P3 − P4, Q1 −Q2, Q3 −Q4

This shows that X,Y, P1 . . . , P4 lie on a conic if and only if X,Y,Q1 . . . , Q4 lie on a conic. q.e.d.

Theorem 2 (Class f2). Let X,Y, P1 . . . , P4 be points in the projective plane. Then the points
X,Y, P1, . . . , P4 lie on a conic iff the points X,Y, PX134, PX234, PY 312, PY 412 lie on a conic.
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Proof. We have to show that X,Y, P1 . . . , P4 lie on a conic iff the points X,Y,Q1, . . . , Q4 lie on a
conic, where Q1 = PX134, Q2 = PX234, Q3 = PY 312, Q4 = PY 412 (see Figure 10):

Q1 Q2

Q4 Q3P2 P1

P4P3

X Y

Figure 10: Proof of Theorem 2.

By Carnot’s Theorem with respect to the 6 points X,Y, P1 . . . , P4 we obtain:

X Y P1 P2 P3 P4 concurrent lines

enumeration 3 6 5 4 2 1 Q2 −Q4, P3 − P1, X − Y

Furthermore, by Carnot’s Theorem with respect to the 6 points X,Y,Q1 . . . , Q4 we have:

X Y Q1 Q2 Q3 Q4 concurrent lines

enumeration 3 6 4 5 1 2 P1 − P3, Q4 −Q2, X − Y

This shows that X,Y, P1 . . . , P4 lie on a conic if and only if X,Y,Q1 . . . , Q4 lie on a conic. q.e.d.

Theorem 3 (Class f3). Let X,Y, P1 . . . , P4 be points in the projective plane. Then the points
X,Y, P1, . . . , P4 lie on a conic iff the points X,Y, PY 412, PX312, PX234, PY 134 lie on a conic.

Proof. We have to show that X,Y, P1 . . . , P4 lie on a conic iff the points X,Y,Q1, . . . , Q4 lie on a
conic, where Q1 = PY 134, Q2 = PX234, Q3 = PX312, and Q4 = PY 412 (see Figure 11):

Q3 Q4

Q1Q2

P2 P1

P4P3

X
Y

Figure 11: Proof of Theorem 3.

Let
S := X − P2 ∧ Y − P4 and T := X − P3 ∧ Y − P1 .

By Carnot’s Theorem with respect to the 6 points X,Y, P1 . . . , P4 we obtain:

X Y P1 P2 P3 P4 concurrent lines

enumeration 1 4 5 2 6 3 S − T , P2 − P1, P4 − P3

Furthermore, since S = X −Q2 ∧ Y −Q4 and T = X −Q3 ∧ Y −Q1, by Carnot’s Theorem with
respect to the 6 points X,Y,Q1 . . . , Q4 we have:

X Y Q1 Q2 Q3 Q4 concurrent lines

enumeration 1 4 5 2 6 3 S − T , Q2 −Q1, Q4 −Q3
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Since P2 − P1 = Q4 −Q3 and P4 − P3 = Q2 −Q1, this shows that X,Y, P1 . . . , P4 lie on a conic if
and only if X,Y,Q1 . . . , Q4 lie on a conic. q.e.d.

Theorem 4 (Class f4). Let X,Y, P1 . . . , P4 be points in the projective plane. Then the points
X,Y, P1, . . . , P4 lie on a conic iff the points X,Y, PX1Y 4, PX3Y 2, PX234, PY 134 lie on a conic.

Proof. We have to show that X,Y, P1 . . . , P4 lie on a conic iff the points X,Y,Q1, . . . , Q4 lie on a
conic, where Q1 = PX1Y 4, Q2 = PX3Y 2, Q3 = PX234, and Q4 = PY 134 (see Figure 12):

Q3 Q4

Q1Q2
P2 P1

P4P3

X

Y

Figure 12: Proof of Theorem 4.

By Carnot’s Theorem with respect to the 6 points X,Y, P1 . . . , P4 we obtain:

X Y P1 P2 P3 P4 concurrent lines

enumeration 1 4 6 3 2 5 Q2 −Q1, P3 − P4, P2 − P1

Furthermore, by Carnot’s Theorem with respect to the 6 points X,Y,Q1 . . . , Q4 we have:

X Y Q1 Q2 Q3 Q4 concurrent lines

enumeration 1 4 2 5 6 3 P1 − P2, Q1 −Q2, Q4 −Q3

Since P3−P4 = Q4−Q3, this shows that X,Y, P1 . . . , P4 lie on a conic if and only if X,Y,Q1 . . . , Q4

lie on a conic. q.e.d.

5 Incidence results for Pascal twins

We start with the proof for the Class e1. This proof is again based on a multiple nested application
of the theorems of Pascal and Carnot.

Theorem 5 (Class e1). Let P1, P2, . . . , P6 be points in the projective plane, and Pijkl be the
intersection of the lines Pi − Pj and Pk − Pl. Then the points P1, P2, . . . , P6 lie on a conic iff the
points P1426, P2531, P3642, P4153, P5264, P6315 lie on a conic. The two hexa-sets P1, P2, . . . , P6 and
P1426, P2531, P3642, P4153, P5264, P6315, share two common Pascal lines.

Proof. We have to show that P1, . . . , P6 lie on a conic iff the points Q1, . . . , Q6 lie on a conic, where
Q1 = P1426, Q2 = P2531, Q3 = P3642, Q4 = P4153, Q5 = P5264, Q6 = P6315 (see Figure 13):

By Pascal’s Theorem with respect to the 6 points P1 . . . , P6 we obtain:

P1 P2 P3 P4 P5 P6 collinear points

enumeration 3 6 1 4 5 2


P3 − P6 ∧ P4 − P5= : R

P6 − P1 ∧ P5 − P2= : S

P1 − P4 ∧ P2 − P3= : T

In particular, the three points R,S, T lie on a Pascal line of the hexa-set P1, . . . , P6.
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P2 P1

P5P4

P3

P6

Q3

Q6

Q2

Q5

Q1

Q4

Figure 13: Proof of Theorem 5.

Furthermore, by Carnot’s Theorem with respect to the 6 points P1 . . . , P6 we obtain:

P1 P2 P3 P4 P5 P6 concurrent lines

enumeration 1 4 6 2 5 3 Q1 −Q2, P4 − P5, P6 − P3︸ ︷︷ ︸
meet in R

enumeration 2 6 4 1 3 5 Q4 −Q3, P1 − P6, P5 − P2︸ ︷︷ ︸
meet in S

enumeration 2 6 3 5 1 4 Q6 −Q5, P1 − P4, P3 − P2︸ ︷︷ ︸
meet in T

Finally, by Pascal’s Theorem with respect to the 6 points Q1 . . . , Q6 we obtain:

Q1 Q2 Q3 Q4 Q5 Q6 collinear points

enumeration 1 2 5 6 3 4



Q1 −Q2 ∧
=P6−P3︷ ︸︸ ︷
Q6 −Q3︸ ︷︷ ︸

=R

=P2−P5︷ ︸︸ ︷
Q2 −Q5 ∧Q3 −Q4︸ ︷︷ ︸

=S

Q5 −Q6 ∧
=P4−P1︷ ︸︸ ︷
Q4 −Q1︸ ︷︷ ︸

=T

This shows that the hexagon P3P6P1P4P5P2 (in this order) lie on a conic with Pascal line R−S−T
if and only if the hexagon Q1Q2Q5Q6Q3Q4 (in this order) lie on a conic with the same Pascal line.

In order to find the second common Pascal line of the two conics, we proceed as follows: By Pascal’s
Theorem with respect to the 6 points P1 . . . , P6 we obtain:
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P1 P2 P3 P4 P5 P6 collinear points

enumeration 2 5 6 3 4 1


P2 − P5 ∧ P3 − P4= : R′

P5 − P6 ∧ P4 − P1= : S′

P6 − P3 ∧ P1 − P2= : T ′

Furthermore, by Carnot’s Theorem with respect to the 6 points P1 . . . , P6 we obtain:

P1 P2 P3 P4 P5 P6 concurrent lines

enumeration 6 3 5 1 4 2 Q6 −Q1, P3 − P4, P5 − P2︸ ︷︷ ︸
meet in R′

enumeration 2 5 1 3 6 4 Q2 −Q3, P5 − P6, P1 − P4︸ ︷︷ ︸
meet in S′

enumeration 4 1 3 5 2 6 Q4 −Q5, P1 − P2, P3 − P6︸ ︷︷ ︸
meet in T ′

Finally, by Pascal’s Theorem with respect to the 6 points Q1 . . . , Q6 we obtain:

Q1 Q2 Q3 Q4 Q5 Q6 collinear points

enumeration 6 1 4 5 2 3



Q6 −Q1 ∧
=P5−P2︷ ︸︸ ︷
Q5 −Q2︸ ︷︷ ︸

=R′

=P1−P4︷ ︸︸ ︷
Q1 −Q4 ∧Q2 −Q3︸ ︷︷ ︸

=S′

Q4 −Q5 ∧
=P3−P6︷ ︸︸ ︷
Q3 −Q6︸ ︷︷ ︸

=T ′

This shows that the conic hexagon P2P5P6P3P4P1 has the same Pascal line R′ − S′ − T ′ as the
conic hexagon Q6Q1Q4Q5Q2Q3. q.e.d.

Remark. By a computer search we found that the Siamese Pascal twins in the Classes f1, f2, f3, f4
share 4, 6, 3, 3 Pascal lines. In the Class f2, 4 of the 6 common Pascal lines meet in the point P1234.
The Pascal twins in the Classes e2, e3, e4 have no common Pascal line.

Before we consider the Classes e2, e3 and e4, we prove two auxiliary results. The first one is a
quantified version of Pascal’s Theorem:

Lemma 6. Let P1, P2, P3, P4, X, Y be points on a conic, and let ℓ = X − Y . If A = P1 − P2 ∧ ℓ,
B = P1 − P4 ∧ ℓ, A′ = P3 − P2 ∧ ℓ, and B′ = P3 − P4 ∧ ℓ, then the cross ratios (X,Y,A,B) and
(X,Y,A′, B′) are equal. Vice versa, if (X,Y ′, A,B) = (X,Y ′, A′, B′) for some Y ′ on ℓ, then either
Y ′ = X or Y ′ = Y .

Proof. By a projective transformation we may assume that P1P2P3P3 is a rectangle and X a point
on its circumcircle C (see [3, proof of Satz 7.10]). Now, observe that the set of the four blue
lines P1P2, P1 − X,P1 − P4, P1 − Y in Figure 14 is congruent to the set of the four green lines
P3−P2, P3−X,P3−P4, P3−Y . For example, the angles ∢Y P1P4 and ∢Y P3P4 agree as angles over
the same arc

>
Y P4 on the circle C. The first set of lines intersects the line ℓ in the points A,X,B, Y ,

the second set of lines intersects the line ℓ in the points A′, X,B′Y . Hence the corresponding cross
ratios agree.

Vice versa, using the definition of the cross ratio, a short calculation shows that the only solutions
of the equation (X,Y ′, A,B) = (X,Y ′, A′, B′) are Y ′ = X and Y ′ = Y . q.e.d.
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P2

P1

P4

P3

C

X

B′

Y

A′

B

A
ℓ

Figure 14: Equality of the cross ratios (X,Y,A,B) = (X,Y,A′, B′) in the
proof of Lemma 6.

The next result can be seen as a dynamic version of Class f1:

Pascal Twin Porism. Let X,Y, P1 . . . , P4 and X,Y, PX1Y 4, PX3Y 2, PX2Y 3, PX4Y 1 be two conic
hexagons. Furthermore, let X ′ be a point on the line ℓ = X − Y , let C ′ be the conic defined by
the 5 points X ′, P1 . . . , P4, and let Y ′ be the other intersection point of the line ℓ with C ′. Then
the conic C ′′ defined by the 5 points X ′, PX1Y 4, PX3Y 2, PX2Y 3, PX4Y 1 passes also through Y ′ (see
Figure 15).

P2

X

P3

P4

P1

Y

PX2Y 3

PX4Y 1

PX1Y 4

PX3Y 2

X ′

C′′

C′

Y ′

Figure 15: Proof of the Pascal Twin Porism.

Proof. We will use twice Lemma 6 in the proof to locate the point Y ′, once with respect to the
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conic C ′ and once with respect to the conic C ′′. To do so, we need the following points:

A = P1 − P2 ∧ ℓ E = PX4Y 1 − PX2Y 3 ∧ ℓ

B = P1 − P4 ∧ ℓ F = PX4Y 1 − PX1Y 4 ∧ ℓ

A′ = P3 − P2 ∧ ℓ E′ = PX3Y 2 − PX2Y 3 ∧ ℓ

B′ = P3 − P4 ∧ ℓ F ′ = PX3Y 2 − PX3Y 2 ∧ ℓ

By a projective transformation, we may assume that

P1 = (0, 1, 1) A′ = (1, 0, 1)

P2 = (1, 1, 1) X = (0, 0, 1)

The other points have the coordinates

P3 = (1, c, 1) X ′ = (u, 0, 1)

P4 = (a, b, 1) Y ′ = (v, 0, 1)

and ℓ = (0, 1, 0). The recall that on the level of coordinates, the intersection of lines and the line
joining two points is realized by the cross product in R3. Concretely, this results in the following
coordinates for the individual points:

A = ℓ× (P1 × P2) = (1, 0, 0) B = ℓ× (P1 × P4) = (a, 0, 1− b)

A′ = ℓ× (P3 × P2) = (1, 0, 1) B′ = ℓ× (P3 × P4) = (ac− b, 0, c− b)

Using the equation (X,Y,A,B) = (X,Y,A′, B′) from Lemma 6, we find for Y the coordinates

Y = (ac(a− b) + b(b− 1)︸ ︷︷ ︸
=:α

, 0, (b− ac)(b− 1)).

Using this, we obtain

PX4Y 1 = (Y × P1)× (X × P4) = (αa, αb, ac(a− b2) + b(a+ b)(b− 1))

PX2Y 3 = (Y × P3)× (X × P2) = (α, α, a(a+ c− bc− 1) + b(b− 1))

PX3Y 2 = (Y × P2)× (X × P3) = (α, αc, b2 + ac(1 + (a− 1)c)− b(1 + ac))

PX1Y 4 = (Y × P4)× (X × P1) = (0, αb, b(a− 1)(1− b+ ac))

and hence

E = ℓ× (PX4Y 1 × PX2Y 3) = (α(a− b), 0, a(a− b)(c− b))

F = ℓ× (PX4Y 1 × PX1Y 4) = (αab, 0, b(b− 1)(b(2a+ b− 1)− ac(a+ b)))

E′ = ℓ× (PX3Y 2 × PX2Y 3) = (α, 0, b(b− 1)− ac(a+ b− 2))

F ′ = ℓ× (PX3Y 2 × PX1Y 4) = (αb, 0, b(b− 1)(b− c)).

It turns out that for X ′ ̸= Y ′, both equations

(X ′, Y ′, A,B) = (X ′, Y ′, A′, B′) and (X ′, Y ′, E, F ) = (X ′, Y ′, E′, F ′)

can be reduced to

b(ac(u+ v − 1)− ((c+ 1)uv) + u+ v − 1) + c(a− u)(a− v) + b2(u− 1)(v − 1) = 0 .

Hence, both equations yield the same point Y ′ for a given point X ′ on ℓ. q.e.d.

Now, we are ready to proof the Classes e2, e3 and e4. In fact, it will turn out that these classes
just follow from the Pascal Twin Porism starting with a Siamese Pascal twin in Class f1.
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Theorem 7 (Class e2). Let P1, P2, . . . , P6 be points in the projective plane, and let Pijkl be the
intersection of the lines PiPj and PkPl. Then the points P1, P2, . . . , P6 lie on a conic iff the points
P1546, P3526, P2536, P4516, P2356, P1456 lie on a conic.

Proof. We have to show that P1, . . . , P6 lie on a conic iff the points Q1, . . . , Q6 lie on a conic,
where Q1 = P1546, Q2 = P3526, Q3 = P2536, Q4 = P4516, Q5 = P2356, Q6 = P1456 (see Figure 16).
Furthermore, let X = P5 and let Y = P6.

P2 P1

P4P3

X

Y

Q2 Q1

Q3

Q4

Q5

Q6

Figure 16: Proof of Theorem 7.

By Theorem 1, we know that X,Y, P1, . . . , P4 lie on a conic iff the points X,Y,Q1, . . . , Q4 lie on
a conic. Thus, by the Pascal Twin Porism, for any points X ′, Y ′ on the line X − Y we have that
X ′, Y ′, P1, . . . , P4 lie on a conic iff X ′, Y ′, Q1, . . . , Q4 lie on a conic. In particular, for X ′ = Q5 we
have that the three points P2, Q5, P3 are collinear, which implies that the conic through the five
points P1, P2, P3, P4, Q5 falls apart into two lines. One line contains the points P2, Q5, P3, and the
other line contains the points P1, P4 and Q6 = Y ′. Now, by the Pascal Twin Porism we conclude
that the six points P1, . . . , P6 lie on a conic if and only if Q1, . . . , Q6 lie on a conic, which completes
the proof. q.e.d.

Theorem 8 (Class e3). Let P1, P2, . . . , P6 be points in the projective plane, and let Pijkl be the
intersection of the lines PiPj and PkPl. Then the points P1, P2, . . . , P6 lie on a conic iff the points
P1546, P3526, P2536, P4516, P2456, P1356 lie on a conic.

Proof. We have to show that P1, . . . , P6 lie on a conic iff the points Q1, . . . , Q6 lie on a conic,
where Q1 = P1546, Q2 = P3526, Q3 = P2536, Q4 = P4516, Q5 = P2456, Q6 = P1356 (see Figure 17).
Furthermore, let X = P5 and let Y = P6.
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Figure 17: Proof of Theorem 8.

The proof is essentially the same as the proof for Class e2, the only difference is that we move
X ′ on the line X − Y to the point Q5 = X − Y ∧ P2 − P4. Since the three points P2, Q5, P4 are
collinear, the corresponding point Y ′ on the line X−Y must be on the line P1−P3, which implies
that Y ′ = Q6. Therefore, by the Pascal Twin Porism we have that the six points P1, . . . , P6 lie on
a conic if and only if Q1, . . . , Q6 lie on a conic, which completes the proof. q.e.d.

Theorem 9 (Class e4). Let P1, P2, PX , P5, P6 be five points in the projective plane such that no
three points are on a line. Then the points P15X6, PX526, P25X6, PX516, P2X56, P1X56 lie on a conic.

Proof. This class follows immediately from Class e3 by identifying the two points P3 and P4 with
the point PX (see also Figure 4). q.e.d.

References
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