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Abstract

For a ⊆ b ⊆ ω with b\a infinite, the set D = {x ∈ [ω]ω : a ⊆ x ⊆ b} is called a doughnut.
Doughnuts are equivalent to conditions of Silver forcing, and so, a set S ⊆ [ω]ω is called
Silver measurable, or completely doughnut, if for every doughnut D there is a doughnut
D′ ⊆ D which is contained in or disjoint from S. In this paper, we investigate the Silver
measurability of ∆1

2 and Σ1
2 sets of reals and compare it to other regularity properties

like the Baire and the Ramsey property and Miller and Sacks measurability.

0. Introduction

Most forcings that are used in Set Theory of the Reals belong to a class called arboreal
forcing notions. A forcing notion P is called arboreal if its conditions are trees on
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either 2 = {0, 1} or ω ordered by inclusion and for each T ∈ P, the set [T ] of all branches
through T is homeomorphic to either ω2 or ωω.

Each arboreal forcing notion is canonically related to a notion of measurability and a
notion of smallness:

If P is an arboreal forcing notion, we define

AP := {A : ∀T ∈ P (∃S ≤ T ([S] ⊆ A or [S] ∩A = ∅) ) }, and

IP := {A : ∀T ∈ P (∃S ≤ T ([S] ∩A = ∅) ) }.

We call the elements of AP P-measurable sets and the elements of IP P-null sets1.
Standard examples of arboreal forcing notions are Cohen forcing C (the set of basic
open sets in the standard topology of either ω2 or ωω), Sacks forcing S (the set of perfect
trees), Miller forcing M (the set of superperfect trees), Silver forcing V (the set of
uniform perfect trees), Mathias forcing R (the set of basic Ellentuck neighbourhoods)2.
The corresponding notions of measurability and smallness have been investigated in many
contexts, and some of them are known under different names: the sets in IS are also called
Marczewski null, the sets in AR are also said to be completely Ramsey, and the sets
in AV are said to be completely doughnut (cf. Section 1·2)3.

Being P-measurable is considered a regularity property of a set, and the extent of these
regularity properties has been investigated: usually, all Σ1

1 sets are P-measurable4, there
are ∆1

2 sets that are not P-measurable in the constructible universe L, and very often
the statements “Every ∆1

2 set is P-measurable” and “Every Σ1
2 set is P-measurable” can

be characterized in terms of transcendence over L as exemplified in Fact 0·1.
In the following, we shall write Γ(B ) (Γ(D ), Γ(L ), Γ(M ), Γ(R ), Γ(S )) for “Every

Γ set has the Baire property (is completely doughnut, is Lebesgue measurable, is Miller
measurable, is completely Ramsey, is Sacks measurable)”.

Fact 0·1.
(i) (Solovay) Σ1

2(L ) is equivalent to “for all r ∈ ωω there is a measure 1 set of
random reals over L[r]”,

(ii) (Solovay) Σ1
2(B ) is equivalent to “for all r ∈ ωω there is a comeagre set of Cohen

reals over L[r]”,
(iii) [JudShe89, Theorem 3.1 (i)/(ii)] ∆1

2(L ) is equivalent to “for all r ∈ ωω there
is a random real over L[r]”,

(iv) [JudShe89, Theorem 3.1 (iii)/(iv)] ∆1
2(B ) is equivalent to “for all r ∈ ωω there

is a Cohen real over L[r]”,
(v) [JudShe89, Theorem 2.10] ∆1

2(R ) and Σ1
2(R ) are equivalent,

1 This general approach to regularity properties connected to forcing notions was considered
in [Bre95], and continued in [Löw98], [BreLöw99], [Bre00] and [Löw03]. Even more general
are the notions of Marczewski field and Marczewski ideal from [Bal+01/02]. In these
publications, IP was denoted by (p0), p0 or s0(P). As the letter I insinuates, in most applications,
IP turns out to be an ideal, or even a σ-ideal.

2 Cf. Section 1·1 for more detailed definitions.
3 Note that the measurability property connected to Cohen forcing is the Baire property (a

set A has the Baire property if there is an open set P such that AMP is meagre) which is not
the same as membership in AC.

4 There is a uniform approach via game proofs of analytic measurability for these regularity
properties in [Löw98].
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(vi) [JudShe89, Theorem 3.5 (iv)] Σ1
2(R ) does not imply ∆1

2(B ),
(vii) [BreLöw99, Theorem 6.1] Σ1

2(M ) and ∆1
2(M ) are equivalent, and equivalent to

“for all r ∈ ωω (ωω ∩ L[r] is not dominating)”,
(viii) [BreLöw99, Theorem 7.1] Σ1

2(S ) and ∆1
2(S ) are equivalent, and equivalent to

“for all r ∈ ωω (ωω ∩ L[r] 6= ωω)”.

Abstractly, one could describe Fact 0·1 (i)/(ii) as “Measurability of Σ1
2 sets corre-

sponds to the existence of a large set of generics over L[r],” whilst one could describe
Fact 0·1 (iii)/(iv) as “Measurability of ∆1

2 sets corresponds to the existence of generics
over L[r].” We follow [BreLöw99] and call theorems of type (i)/(ii) “Solovay-type
characterizations”. We shall call theorems of type (iii)/(iv) “Judah-Shelah-type
characterizations”.

In this paper, we shall investigate Silver measurability, continuing research from the
paper [Hal03], in order to give complete diagrams of the implications between the prop-
ertiesB , D , R andD , M , S for ∆1

2 and Σ1
2 sets. It will also be shown that ∆1

2(D )
implies that there are splitting reals over each L[r], and that Σ1

2(D ) implies that there
are unbounded reals over each L[r].

We shall introduce some notation, prove crucial abstract results and list earlier results
on Silver measurability in Section 1. In Section 2 and Section 3 we prove our results
about ∆1

2(D ) and Σ1
2(D ), respectively. Finally, in Section 4, we shall summarize our

results and list some open questions.

1. Definitions and the abstract setting

Throughout this paper we shall use standard set theoretic terminology which the reader
can find, e.g., in textbooks like [BarJud95].

1·1. Trees

As usual, X<ω is the set of all finite sequences of elements of X, and a tree on X is
a subset of X<ω closed under initial segments. If x ∈ ωX is a function from ω to X and
n ∈ ω is a natural number, we denote the finite sequence 〈x(0), x(1), ..., x(n− 1)〉 by x�n
and call it the restriction of x to n. If s ∈ X<ω and t ∈ X<ω or x ∈ ωX, we can define
the concatenation of s and t (of s and x), denoted by sat (sax) in the obvious way.

A tree on 2 = {0, 1} is called uniform if for all s, t ∈ T of the same length and all
i ∈ {0, 1}, we have

sai ∈ T ⇐⇒ tai ∈ T.

If T is a tree, then a function x ∈ ωX is called a branch through T , if for all n ∈ ω,
we have that x�n ∈ T . The set of all branches through T is denoted by [T ]. A tree T on
2 is called perfect, if for every s ∈ T there is a t ∈ T with s ⊆ t such that both ta0 and
ta1 belong to T ; such a sequence t is called a splitting node of T .

A perfect tree T is canonically (order) isomorphic to the full binary tree 2<ω, and the
order isomorphism induces a homeomorphism ΘT : [T ] → ω2. Note that if B ⊆ [T ] is a
Borel set with a Borel code in L[r], then ΘT [B] is a Borel set with a Borel code in L[r, T ]
since the homeomorphism can be read off in a recursive way from the tree T . This will
be used later.

Similarly, if T is a tree on ω, we can call s ∈ T an ω-splitting node if s has infinitely
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many immediate successors. A tree T is called superperfect if for each s ∈ T there is
an ω-splitting node t ⊇ s with t ∈ T .

We can now use the special kinds of trees just defined to define the forcing notions
mentioned in the introduction:

Silver forcing V is the set of all uniform perfect trees ordered by inclusion5, Sacks
forcing S is the set of all perfect trees ordered by inclusion, and Miller forcing M is
the set of all superperfect trees ordered by inclusion.

1·2. Doughnuts

Investigating arrow partition properties, Carlos DiPrisco and James Henle introduced
in [DiPHen00] the so-called doughnut property: Let [ω]ω := {x ⊆ ω : |x| = ω}. Then,
for a ⊆ b ⊆ ω with b\a ∈ [ω]ω, the set D = {x ∈ [ω]ω : a ⊆ x ⊆ b} is called a doughnut,
or more precisely, the (a, b)-doughnut, denoted by [a, b]ω.

Doughnuts are equivalent to uniform perfect trees in the following sense (cf. [Hal03]):

Fact 1·1. Each uniform perfect tree T ⊆ 2<ω corresponds in a unique way to a dough-
nut, and vice versa.

Di Prisco and Henle said that a set A has the doughnut property if it either contains
or is disjoint from a doughnut, and that it is completely doughnut if for every doughnut
D there is a doughnut D∗ ⊆ D such that either D∗ ⊆ A or D∗ ∩A = ∅.

By virtue of Fact 1·1, being completely doughnut is equivalent to being Silver measur-
able in the sense of the introduction.6

Silver measurability or the doughnut property was investigated by the first author in
[Bre95], for analytic sets in terms of games by the third author in [Löw98], and for Σ1

2

sets by the second author in [Hal03]. In particular, all Borel and all analytic sets are
completely doughnut.

By work of the second author on Cohen reals and doughnuts in [Hal03], we know that
Cohen forcing adds a doughnut of Cohen reals:

Lemma 1·2. Suppose that A is a Σ1
2(r) set for some real number r and c is a Cohen

real over L[r]. Then there is a uniform perfect tree T ∈ L[r, c] such that either [T ] ⊆ A

or [T ] ∩A = ∅.

Proof. See (the proof of) [Hal03, Lemma 2.1].

Corollary 1·3. ∆1
2(B ) implies Σ1

2(D ).

Proof. Immediate from Lemma 1·2 and Fact 0·1 (iv).

1·3. Weak Measurability

The notion of P-measurability is a Π2 notion. By dropping the first universal quantifier
one arrives at a weaker Σ1 notion that is called weak P-measurability: A set A is said to
be weakly P-measurable if there is a T ∈ P such that either [T ] ⊆ A or [T ]∩A = ∅. In

5 Uniform perfect trees have been used in recursion theory, and are called Lachlan 1-trees
there. Cf. [Lac71].

6 The Ramsey property, originally defined in terms of the Baire property in the Ellentuck
topology or in terms of partitions (cf. [Kec95, 19.D]), can be equivalently defined in terms of
doughnuts.
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general, the notion of weak measurability is not a statement about the regularity of a set:
a set can contain a P-condition T and be completely irregular outside of T . Compare this
to the doughnut property from Section 1·2: as Silver measurability is equivalent to being
completely doughnut, weak Silver measurability is equivalent to the doughnut property.

Although weak measurability of a single set does not imply its regularity, classwise
statements of weak measurability suffice to prove full measurability as the following
general lemma from [BreLöw99] shows:

Lemma 1·4 (Brendle-Löwe (1999)). Let Γ be a boldface pointclass closed under inter-
sections with closed sets (in this paper, ∆1

2 and Σ1
2 are the only examples). Then the

following are equivalent:
(i) Every set in Γ is Silver measurable, and
(ii) every set in Γ is weakly Silver measurable.

Lemma 1·4 was proved in an abstract setting in [BreLöw99, Lemma 2.1].

1·4. Borel codes and the Borel decomposition of Σ1
2 sets

We fix some coding of all Borel sets (e.g., the one used in [Jec03, p. 504sqq.]), and use
standard notation: if c is a Borel code, we denote the decoded set by Ac, or AM

c if we
want to stress that it is decoded in the model M .

Shoenfield’s analysis of Σ1
2 sets [Kan94, p. 171–175] gives us for each Σ1

2 set X a
decomposition into ω1 Borel sets

X =
⋃

α<ω1

Xα

that is absolute in the following sense:
If X is Σ1

2(r), and α < ω
L[r]
1 , then Xα has a Borel code cα ∈ L[r], and

X ∩ L[r] =
⋃

α<ω
L[r]
1

AL[r]
cα

.

Consequently, if ω
L[r]
1 = ωV

1 , the entire Borel decomposition is represented by Borel
codes in L[r]. Moreover, if for some x ∈ ωω, ω

L[x]
1 = ωV

1 and X is Σ1
2(r), then we find a

Borel decomposition of X with all Borel codes in L[x, r].

1·5. Quasigenericity

Let I be an ideal (on ω2 or ωω), and M be a model of (a rich enough fragment of) set
theory. We write N(I,M) for the set of all Borel sets B such that

• B ∈ I, and
• there is a Borel code for the set B in M .

It is well-known that there are characterizations of the generics of random and Cohen
forcing via the ideals N of Lebesgue null and M of meagre sets, respectively7:

Fact 1·5 (Solovay).

• A real r is random over M if and only if r /∈
⋃

N(N,M), and
• a real c is Cohen over M if and only if c /∈

⋃
N(M,M).

7 Cf. [Kan94, Theorem 11.10].
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For arbitrary arboreal forcings P on ω, the set ωω\
⋃

N(IP,M) is not in general the
set of generics. But we can define a notion of quasi-genericity in analogy to Fact 1·5:

Let I be an ideal on ωω and M be a model of set theory. We set

QG(I,M) := ωω\
⋃

N(I,M),

and call the elements of QG(I,M) I-M-quasigeneric. Analogously, we define the set
QG(I,M) for ideals I on ω2.

1·6. Some ideals and Silver Homogeneity

The equivalence relation E0, defined by xE0y ⇐⇒ ∀∞n(x(n) = y(n)), is well-known
from Descriptive Set Theory8. We call a Borel set A ⊆ ω2 an E0-selector if for any
distinct x, y ∈ A there are infinitely many n ∈ ω such that x(n) 6= y(n). This makes
sure that A selects at most one element from each equivalence class of E0 (see [Zap04,
Section 2.3.10]). Denote the set of E0-selectors with SelE0 .

Now, let IE0 be the σ-ideal of sets σ-generated by Borel E0-selectors.

We define two further ideals closer to the notion of Silver measurability: We call a
Borel set A ⊆ ω2 G-independent if for any distinct x, y ∈ A there are at least two
n ∈ ω such that x(n) 6= y(n); we call a G-independent set parity preserving if for each
x, y ∈ A the number of n such that x(n) 6= y(n) is even (including ω). We call them
“parity preserving” because of the following fact:

If A is parity preserving, z ∈ ω2 and x, y ∈ A such that xMz and yMz are finite9, then

xMz is odd if and only if yMz is odd.

The sets of G-independent sets and parity preserving G-independent sets are denoted
by IndG and Indpp

G , respectively. The ideals σ-generated by IndG and Indpp
G are denoted

by IG and Ipp
G .

By a result of Zapletal’s, the ideal IG is the ideal σ-generated by Borel sets in IV,
whence the notions of IG-quasigenericity and IV-quasigenericity coincide [Zap04, Lemma
2.3.37]. We have

IE0 ⊆ Ipp
G ⊆ IG,

and so every IG-quasigeneric is Ipp
G -quasigeneric, and every Ipp

G -quasigeneric is IE0-
quasigeneric.

An ideal I on ω2 is called Silver homogeneous if for each T ∈ V, the canonical
homeomorphism ΘT : [T ] → ω2 preserves membership in I, i.e., if A ∈ I, then ΘT [A] ∈ I10.

Observation 1·6. The ideals IV, IG, Ipp
G and IE0 are Silver homogeneous.

Lemma 1·7 (First Homogeneity Lemma). Let I be a Silver homogeneous ideal on ω2
and T ∈ V. Suppose that there is an I-L[r, T ]-quasigeneric real x, then Θ−1

T (x) is also
I-L[r, T ]-quasigeneric.

8 It is the least non-smooth countable Borel equivalence relation and as such the ob-
ject of the famous Generalized Glimm-Effros Dichotomy of Harrington, Kechris and Louveau
[HarKecLou90]; cf. the survey paper [Kec99, p. 166-167].

9 Here we interpret elements of ω2 as sets of natural numbers and let xMy := {n : x(n) 6=
y(n)}.

10 This is a slight generalization of Zapletal’s notion of homogeneity [Zap04].
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Proof. Let x ∈ QG(I,L[r, T ]). We claim that y := Θ−1
T (x) is also I-L[r, T ]-quasigeneric.

This is a direct consequence of Silver homogeneity: take any Borel set B ∈ I coded in
L[r, T ], then B ∩ [T ] is still a Borel set from I coded in L[r, T ]. We shift it from [T ] to
ω2 via ΘT . By Silver homogeneity, it is still in I. But since ΘT is recursively defined
from T , ΘT [B ∩ [T ]] is in N(I,L[r, T ]). If y ∈ B, then x ∈ ΘT [B ∩ [T ]], contradicting x’s
quasigenericity; thus, y cannot lie in B.

Note that ΘT and Θ−1
T preserve the property of being a uniform perfect tree: If S

is a uniform perfect tree, then Θ−1
T [S] is the set of branches through a uniform perfect

subtree of T .

Lemma 1·8 (Second Homogeneity Lemma). Let I be an ideal on ω2, let A =
ω2\

⋃
QG(I,L[r]) and suppose that the following conditions are met:

(i) A is weakly Silver measurable,
(ii) I is Silver homogeneous,
(iii) for each s there is an I-L[r, s]-quasigeneric.

Then there is a uniform perfect tree of I-L[r]-quasigenerics.

Proof. Since A is weakly Silver measurable, there is either a uniform perfect tree whose
branches are disjoint from A or one whose branches are all in A.

In the former case, all of the branches of that tree are quasigeneric by definition of A

and we are done immediately.
In the latter case, all of the branches of T are non-quasigeneric. By the assumption,

we can pick some I-L[r, T ]-quasigeneric real. Now the assumptions of the First Homo-
geneity Lemma 1·7 are satisfied, so we get a I-L[r, T ]-quasigeneric inside [T ]. But since
QG(I,L[r, T ]) ⊆ QG(I,L[r]), this is absurd.

1·7. Mansfield-Solovay statements and inaccessibility of ω1 by reals

For an arboreal forcing notion P, we call the statement “For every Σ1
2(r) set A, either

there is some T ∈ P such that [T ] ⊆ A, or A does not contain any IP-L[r]-quasigenerics”
the Mansfield-Solovay statement for P and r. The reason for this name is the fact
that the classical Mansfield-Solovay theorem [Kan94, Corollary 14.9] is equivalent to the
Mansfield-Solovay statement for Sacks forcing S: Since every real in ωω\L[r] is IS-L[r]-
quasigeneric, the “or” condition is equivalent to “A ⊆ L[r]”.

Unpublished work of Zapletal shows that the Mansfield-Solovay statement for Silver
forcing V cannot hold for r if ω

L[r]
1 is countable: if ωL

1 < ωV
1 , then there is a (lightface) Σ1

2

set that contains IV-L-quasigenerics but no uniform perfect tree. The Mansfield-Solovay
statement for V is true, however, for those r with uncountable ω

L[r]
1 (Lemma 1·10).

These two facts require us to distinguish between the case “ω1 is inaccessible by reals”
and the case “ω1 is accessible by reals” several times in the sequel. Therefore, let us state
two observations about Silver measurability for these proofs by cases:

Lemma 1·9. If ω1 is inaccessible by reals (i.e., for all reals r, ω
L[r]
1 is countable), then

Σ1
2(D ) holds.

Proof. Clear by Corollary 1·3 and Fact 0·1 (iv): The existence of Cohen reals gives us
∆1

2(B ), and that in turn yields Σ1
2(D ).

Lemma 1·10. The Mansfield-Solovay statement for V is true for all r ∈ ωω such that
ω

L[r]
1 = ω1, i.e., every Σ1

2(r) set either contains the branches through a uniform perfect
tree or does not contain any IV-L[r]-quasigenerics.



8 Jörg Brendle, Lorenz Halbeisen & Benedikt Löwe

Proof. Let X be a Σ1
2(r) set and X =

⋃
α<ω1

Xα be the Borel decomposition with
Borel codes in L[r]. By Silver measurability of Borel sets, each Xα either contains the
branches through a uniform perfect tree or is in IV.

Case 1. If for some uniform perfect tree T and some α < ω1, we have [T ] ⊆ Xα, then
[T ] ⊆ X.

Case 2. If all Xα are in IV, then none of them can contain any IV-L[r]-quasigeneric
(because they all have Borel codes in L[r]), so QG(IV,L[r]) ∩X = ∅.

2. ∆1
2 sets

We connect the existence of quasigenerics to Silver measurability and deduce some
consequences for the relationship of Silver measurability to other regularity properties.

Proposition 2·1. If for all r ∈ ωω there is an IV-L[r]-quasigeneric real, then every
∆1

2 set is Silver measurable.

Proof. If ω1 is inaccessible by reals, we are done by Lemma 1·9. So, let us assume that
there is some x such that ω

L[x]
1 = ωV

1 .

By Lemma 1·4 we only have to show that for every ∆1
2 set X there is a T in V such

that either [T ] ⊆ X or [T ] ∩ X = ∅. Given a ∆1
2(r) set X, let Y be its complement

and X =
⋃

α<ω1
Xα and Y =

⋃
α<ω1

Yα be the Borel decompositions of X and Y . By
our assumption and the absoluteness of the Borel decomposition, all of these sets have a
Borel code in L[x, r].

Case 1. There is an α such that Xα /∈ IV. Since Xα is Borel and thus has the doughnut
property, there is T ∈ V such that [T ] ⊆ Xα ⊆ X.

Case 2. There is an α such that Yα /∈ IV. Since Yα is Borel, this means that there is
T ∈ V such that [T ] ⊆ Yα ⊆ Y .

Case 3. For all α, both Xα and Yα are Silver null.
Then

⋃
α<ω1

(Xα ∪ Yα) ⊆
⋃

N(IV,L[x, r]), hence it cannot contain a quasigeneric. But⋃
α<ω1

(Xα ∪ Yα) = X ∪ Y = ω2,

contradicting the existence of quasigenerics over L[x, r].

It is easy to see that both in the Silver model and in the random model, we have
IV-quasigenerics, so we get two consequences:

Corollary 2·2. An ω1-iteration with countable support of Silver forcing, starting
from L, yields a model in which every ∆1

2 set is Silver measurable. Similarly for an
ω1-iteration of random forcing starting from L.

Corollary 2·3. ∆1
2(L ) implies ∆1

2(D ).

Proof. Note that the generators of IG are Lebesgue null sets, so every random real is
IG-quasigeneric (and thus IV-quasigeneric). The claim now follows by Proposition 2·1
and Fact 0·1 (iii).

Proposition 2·4. ∆1
2(D ) implies that for all r ∈ ω2 there is an Ipp

G -L[r]-quasigeneric
(and thus, a fortiori, an IE0-L[r]-quasigeneric).
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Proof. Assume towards a contradiction that there is an r such that QG(Ipp
G ,L[r]) = ∅.

Now, for each x ∈ ω2 define the set

Cx := {c ∈ L[r] : c is a Borel code & Ac ∈ Indpp
G & ∃y ∈ Ac(yMx is finite)}.

We fix some x ∈ ω2. By our assumption, x is not Ipp
G -L[r]-quasigeneric, so is in some

set in Ipp
G , hence in some parity preserving G-independent set, so Cx is a non-empty

Σ1
2(r, x) set. Pick the <L[r]-least element of Cx and call it cx. If y0, y1 ∈ Acx

and y0Mx

and y1Mx are both finite, then they have the same parity since Acx
is parity preserving.

Let nx := 0 if y0Mx is even and nx := 1 if it is odd.
Define C0 := {x : nx = 0} and C1 := {x : nx = 1}. Since the canonical wellordering

<L[r] of L[r] is a ∆1
2(r)-wellordering, both of these sets are Σ1

2(r) sets, and hence ∆1
2 sets

(by our assumption, we have C0 ∪ C1 = ω2).
But neither C0 nor C1 contains a uniform perfect tree: If z ∈ C0 and T is a uniform

perfect tree with z ∈ [T ], then [T ] contains infinitely many elements {zn : n ∈ ω} that
differ in exactly one place from z (say, z(kn) 6= zn(kn)).

Note that cz = czm . Pick some y ∈ Acz such that zMy is finite and even. Choose km

such that km /∈ zMy, then zmMy and zMy have different parity, so zm /∈ C0.

The same argument works for C1. Consequently, neither C0 nor C1 contain a uniform
perfect tree, and thus they cannot be Silver measurable.

With a similar technique, we can show:

Proposition 2·5. ∆1
2(D ) implies that for all reals r there is a splitting real over L[r].

Proof. For x ∈ [ω]ω let τx ∈ ωω be the increasing enumeration of x and let x̂ ∈ [ω]ω be
defined as follows:

k ∈ x̂ ⇐⇒ ∃n ∈ ω
(
τx(2n) < k ≤ τx(2n + 1)

)
.

Assume towards a contradiction that there is r ∈ [ω]ω such that there is no splitting
real over L[r], which is equivalent to

∃r ∈ [ω]ω ∀x ∈ [ω]ω ∃y ∈ [ω]ω ∩ L[r]
(
y ∩ x or y \ x is finite

)
.

Now, for each x ∈ [ω]ω pick the <L[r]-least yx ∈ [ω]ω ∩ L[r] such that yx ∩ x̂ or yx \ x̂

is finite, and let A ⊆ [ω]ω be the set of all x for which the former case holds. It is easy
to see that A is a ∆1

2(r) set and that A does neither contain nor is disjoint from any
uniform perfect tree, which completes the proof.

3. Σ1
2 sets

We can use the Second Homogeneity Lemma 1·8 to derive a result about Σ1
2(D ) and

the existence of quasigenerics:

Lemma 3·1. The following are equivalent:
(i) For all r, we have QG(IV,L[r]) 6= ∅ and Σ1

2(D ) holds, and
(ii) for all r, the set QG(IV,L[r]) is co-Silver null (i.e., its complement is in IV).

Proof. “⇒”: Consider the Σ1
2 set X =

⋃
N(IV,L[r]). Our assumption Σ1

2(D ) implies
that X is weakly Silver measurable. Let T be an arbitrary uniform perfect tree. We have
to show that there is a uniform perfect subtree S ⊆ T that consists of quasigenerics.
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We can apply the Second Homogeneity Lemma 1·8, and get a uniform perfect tree of
quasigenerics. Now we can use the First Homogeneity Lemma 1·7 to copy that tree into
T .

“⇐”: If ω1 is inaccessible by reals, then Lemma 1·9 yields the claim. So, let x ∈ ωω be
such that ω

L[x]
1 = ω1.

Now we can view a given Σ1
2(r) set X as a Σ1

2(x, r) set and apply our weak version of
the Mansfield-Solovay theorem for Silver forcing, Lemma 1·10. By Lemma 1·4, we only
have to show that either X or its complement contains the branches through a uniform
perfect tree.

If X does not contain the branches through a uniform perfect tree, then by Lemma
1·10, QG(IV,L[x, r])∩X = ∅. But by our assumption, QG(IV,L[x, r]) contains a uniform
perfect tree.

The next Proposition 3·2 is not exactly a characterization of Σ1
2(D ), but very close to

one, since the ideals IG and Ipp
G are very similar, and thus the notions of IV-quasigenerics

and Ipp
G -quasigenerics are very close. (Cf.Question 6.)

Proposition 3·2.
(i) If for each r the set of IV-L[r]-quasigenerics is co-Silver null, then Σ1

2(D ) holds.
(ii) If Σ1

2(D ) holds, then for each r the set of Ipp
G -L[r]-quasigenerics is co-Silver null

(and hence also the set of IE0-L[r]-quasigenerics).

Proof. “(i)”: This is an immediate consequence of Lemma 3·1.

“(ii)”: For the second implication, we apply the Homogeneity Lemmas again as in Lemma
3·1: Consider the Σ1

2 set X =
⋃

N(Ipp
G ,L[r]). Σ1

2(D ) implies that X is weakly Silver
measurable. This time, we use the Silver homogeneity of Ipp

G (Observation 1·6). After we
fixed a uniform perfect tree T , we can use the quasigenerics given by Proposition 2·4,
and then apply the Second Homogeneity Lemma 1·8. We again get a uniform perfect tree
of quasigenerics which we paste into T by use of the First Homogeneity Lemma 1·7.

We can also connect Σ1
2(D ) to splitting reals, and almost get a converse to Proposition

2·5.

Lemma 3·3. If s ∈ [ω]ω splits the set A (i.e., for all a ∈ A, both a ∩ s and a\s are
infinite), then there is a uniform perfect tree T such that [T ] ∩A = ∅.

Proof. Define

Us :=
{
t ∈ 2<ω : (n /∈ s & n ∈ dom(t)) → t(n) = 0

}
.

Since s is an infinite set, Us is a uniform perfect tree. If now a ∈ A, then by the assumption
there is an n such that n ∈ a\s, so the real associated to a cannot belong to [Us].

Proposition 3·4. If for each r there is a splitting real over L[r], then every Σ1
2 set

either contains the branches through a perfect tree or its complement contains the branches
through a uniform perfect tree.

Proof. By Mansfield-Solovay [Kan94, Corollary 14.9], every Σ1
2 set A either contains

a perfect subset or is contained in L[r]. But if it is contained in L[r], we can take the
splitting real and construct a uniform perfect tree in the complement of A by Lemma
3·3.
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We shall see later that Proposition 3·4 cannot be improved to “If for each r there is
a splitting real over L[r], then every Σ1

2 set is weakly Silver measurable” (Corollary 3·6
proves that ∆1

2(D ) and Σ1
2(D ) are not equivalent).

Proposition 3·5. Σ1
2(D ) implies that for each r ∈ ωω there is an unbounded real

over L[r].

Proof. We shall construct a tree Pf ⊆ 2<ω which belongs to IE0 for every strictly
increasing function f ∈ ωω; and for every uniform perfect tree T we shall construct a
function gT ∈ ωω, such that f > gT implies [Pf ] ∩ [T ] 6= ∅. These assignments f 7→ Pf

and T 7→ gT form a Galois-Tukey connection and thus give us the claim by Proposition
3·2 (ii).

For T ∈ V, gT is just the increasing enumeration of the split levels of [T ].
For f ∈ ωω, let k0 = 0 and kn+1 = f(kn + 1). We construct the tree Pf by induction.

For n = 0, let Pn
f = 2<ω be the full binary tree. Assume we have already constructed Pn

f

for some n ∈ ω. Let Pn
f |kn+1 =

{
t ∈ Pn

f : |t| ≤ kn+1

}
. Further, for every t ∈ 2<ω with

|t| = kn+1 let ξt
n ∈ 2 be defined as follows:

ξt
n =

{
0 if t(n) ≡ |{m : n < m < kn+1 and t(m) = 0}| mod 2,

1 otherwise.

Now, define

(Pn
f )∗ :=

{
s ∈ Pn

f : ∃t, t′ ∈ 2<ω ( |t| = kn+1 & s = taξt
n

at′ )
}
, and

Pn+1
f = Pn

f |kn+1 ∪ (Pn
f )∗.

Finally, let Pf =
⋂

n∈ω Pn
f , then, by construction, [Pf ] is a closed set in IE0 with param-

eter f . To see that [Pf ] ∈ IE0 , assume towards a contradiction that there are two distinct
x, y ∈ [Pf ] and an m ∈ ω such that x(m) 6= y(m) and for all m′ > m, x(m′) = y(m′).
Then, by construction, we get x(km+1) 6= y(km+1), and since km+1 > m, this is a con-
tradiction.

Further, if f > gT , then gT (kn) < kn+1, which implies that for any n ∈ ω, there is a split
level of T between kn and kn+1, and thus, by construction, we have [Pf ] ∩ [T ] 6= ∅.

As a consequence we get:

Corollary 3·6. An ω1-iteration with countable support of Silver forcing, starting
from L, yields a model W in which we have ∆1

2(D ) &¬Σ1
2(D ) &¬∆1

2(B ) &¬∆1
2(R ).

Proof. Firstly recall that Silver forcing does not add unbounded reals. Thus, since
∆1

2(R ) implies that for all r ∈ ωω there is a dominating real over L[r], we have W |=
¬∆1

2(R ). Secondly, in Corollary 2·2 we have seen that an ω1-iteration of Silver forcing
with countable support, starting from L, yields a model W in which every ∆1

2 set is Silver
measurable, and in Proposition 3·5 we have seen that Σ1

2(D ) implies that for every real r,
there are unbounded reals over L[r]. Hence, since Silver forcing does not add unbounded
reals, by Corollary 1·3 we have W |= ∆1

2(D ) &¬Σ1
2(D )&¬∆1

2(B ).

Proposition 3·7. Let Cω1 be the ω1-product with finite support of Cohen forcing.
Then

VCω1 |= “all projective sets are Silver measurable”.
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Proof. Let A =
{
y : ϕ(y)

}
, where ϕ is a Σ1

n-formula with some parameter r. Given
[a, b]ω ∈ VCω1 , we want to find [a′, b′]ω ⊆ [a, b]ω such that either [a′, b′]ω ⊆ A or [a′, b′]ω∩
A = ∅. Without loss of generality, let us assume that a, b, r . . . belong to V. Recall that
Cω1 is homogeneous, and therefore, for every sentence σ of the forcing language with
parameters in V we have either [[σ]]Cω1

= 1 or [[σ]]Cω1
= 0. Notice also that if c ∈ VCω1

is Cohen-generic over V, say, added by C, and if we decompose Cω1 = C ∗ Ȧ, then in
V[c], Ȧ[c] is isomorphic to Cω1 .

Let us consider ϕ(c): By homogeneity, in V[c] we have either [[ϕ(c)]]Cω1
= 1 or

[[ϕ(c)]]Cω1
= 0. Hence, in V, we have p(1) ∨ p(0) = 1 and p(1) ∧ p(0) = 0, where

p(1) =
[[
[[ϕ(ċ)]] Ċω1

= 1̇
]]

C and p(0) =
[[
[[ϕ(ċ)]] Ċω1

= 0̇
]]

C. Now, in V[c] we find a dough-
nut [a′, b′]ω ⊆ [a, b]ω such that for all x ∈ [a′, b′]ω, x is Cohen-generic over V (because
Cohen forcing adds a uniform perfect tree of Cohen reals). By shrinking [a′, b′]ω if nec-
essary, we may assume that [a′, b′]ω ⊆ p(1) or [a′, b′]ω ⊆ p(0). Let us consider just the
former case, since the latter case is similar.

We claim that [a′, b′]ω ⊆ A: If x ∈ [a′, b′]ω ⊆ p(1), then x is Cohen-generic over V (no
matter where x is). Thus, V[x] |= [[ϕ(x)]]Cω1

= 1. But the extension leading to VCω1 is
a Cω1-extension, hence, VCω1 |= ϕ(x).

4. Conclusion

Theorem 4·1. The only implications between the propertiesD ,B andR of ∆1
2 and

Σ1
2 sets are given in the following transitive diagram:

Σ1
2(B )

#+OOOOOO
OOOOOO

∆1
2(B )

#+PPPPPP
PPPPPP

∆1
2(R ) ks +3

s{ nnnnnn
nnnnnn

Σ1
2(R )

Σ1
2(D )

��
∆1

2(D )

Proof. For the implications between the Baire and Ramsey property of ∆1
2 and Σ1

2

sets see [Jud88] and [JudShe89].
Σ1

2(D ) 6⇒ ∆1
2(R ): This follows from Σ1

2(R ) ⇔ ∆1
2(R ) (cf. Fact 0·1 (v)) and

Σ1
2(D ) 6⇒ Σ1

2(R ) (cf. [Hal03]).
Σ1

2(D ) 6⇒ ∆1
2(B ): This follows from the obvious implication Σ1

2(R ) ⇒ Σ1
2(D ) and

Σ1
2(R ) 6⇒ ∆1

2(B ) (cf. Fact 0·1 (vi)).
∆1

2(D ) 6⇒ Σ1
2(D ): This follows from Corollary 3·6.

Proposition 4·2. The only implications between the properties D , M and S of ∆1
2

and Σ1
2 sets are given in the following diagram:
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Σ1
2(D )

�&FFFFFFFFFF

FFFFFFFFFF

x� xxxxxxxxxx

xxxxxxxxxx

Σ1
2(M ) ks +3 ∆1

2(M )

�&FFFFFFFFFF

FFFFFFFFFF
∆1

2(D )

x� xxxxxxxxxx

xxxxxxxxxx

Σ1
2(S ) ks +3 ∆1

2(S )

Proof. The equivalences for M and S are Fact 0·1 (vii) & (viii).
Σ1

2(D ) ⇒ ∆1
2(M ): This follows from Proposition 3·5 and Fact 0·1 (vii).

∆1
2(D ) ⇒ Σ1

2(S ): This follows from Proposition 2·4 and Fact 0·1 (viii).
∆1

2(D ) 6⇒ Σ1
2(D ): This is Corollary 3·6.

Σ1
2(S ) 6⇒ ∆1

2(D ): Sacks forcing doesn’t add splitting reals, so by Proposition 2·5,
∆1

2(D ) can’t be true in the Sacks model which is a model of Σ1
2(S ).

Σ1
2(S ) 6⇒ ∆1

2(M ): Similarly, Sacks forcing doesn’t add unbounded reals, so by Fact
0·1 (vii), the Sacks model can’t be a model of ∆1

2(M ).
∆1

2(M ) 6⇒ ∆1
2(D ): Miller forcing doesn’t add splitting reals, so the Miller model is a

model of ∆1
2(M ) &¬∆1

2(D ).
∆1

2(D ) 6⇒ ∆1
2(M ): As mentioned in the proof of Corollary 3·6, Silver forcing doesn’t

add unbounded reals, so the Silver model is a model of ∆1
2(D ) &¬∆1

2(M ).

Note that in the proof of Proposition 4·2, we get

Σ1
2(S ) &∆1

2(M ) &¬∆1
2(D ) &¬Σ1

2(D )

in the Miller model,

Σ1
2(S ) &¬∆1

2(M ) &∆1
2(D ) &¬Σ1

2(D )

in the Silver model, and

Σ1
2(S ) &¬∆1

2(M ) &¬∆1
2(D ) &¬Σ1

2(D )

in the Sacks model. This suggests the question about the natural dual to the situation
in the Sacks model:

Question 1. Is

Σ1
2(S ) &∆1

2(M ) &∆1
2(D ) &¬Σ1

2(D )

consistent?

In [Jud88] it is proved that

Σ1
2(K σ) ⇐⇒ ∀r ∈ ωω (ωω ∩ L[r] is bounded) ,

so Σ1
2(K σ) implies Σ1

2(M )11. By “∆1
2(D ) 6⇒ ∆1

2(M )” from Proposition 4·2, ∆1
2(D )

doesn’t imply Σ1
2(K σ), but we don’t know anything about the converse:

Question 2. Does Σ1
2(K σ) imply ∆1

2(D )? In particular, is the Laver model a model
of Σ1

2(K σ) &¬∆1
2(D )?

11 By Σ1
2(K σ) we denote the statement “Every Σ1

2 set is Kσ-regular”.



14 Jörg Brendle, Lorenz Halbeisen & Benedikt Löwe

We have succeeded in determining the strength of ∆1
2(D ) and Σ1

2(D ) in terms of other
regularity properties. What is still missing are results of Solovay- and Judah-Shelah-type:
Propositions 2·1, 2·4, and 3·2 yield almost equivalences since the ideals IV and Ipp

G are
very close to each other.

Question 3. Is there an ideal I such that the following hold:
(i) Σ1

2(D ) is equivalent to “for all r, the set of I-L[r]-quasigenerics is co-Silver null”,
and

(ii) ∆1
2(D ) is equivalent to “for all r, there is an I-L[r]-quasigeneric real”.

In the following diagram, we focus on existence statements of special real numbers.
We shall abbreviate “there is an IV-quasigeneric (Ipp

G -quasigeneric, IE0-quasigeneric,
splitting real)” by [v] ([p], [e], [s], respectively), and get the following diagram from
Propositions 2·1, 2·4 and 2·5:

[v]

��
∆1

2(D )

t| qqq
qqq

q
qqq

qqq
q

"*MMM
MMM

M

MMM
MMM

M

[p]

��

[s]

[e]
Can we get the reverse directions anywhere in this diagram?

Question 4. Does ∆1
2(D ) ⇒ [v] hold (the converse to Proposition 2·1) ?

Note that if ∆1
2(D ) ⇒ [v], then we can also characterize Σ1

2(D ) in terms of quasi-
generics by Lemma 3·1: In that case, the converse to Proposition 3·2 (i) holds as well.

Question 5. Does the existence of a splitting real over each L[r] imply ∆1
2(D ) (the

converse to Proposition 2·5) ?

Question 6. Can we reverse any of the arrows between ∆1
2(D ) and the existence

statements of the different quasigenerics, i.e., can we prove any of the implications

[e] ⇒ [p] ⇒ ∆1
2(D )?12
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[BarJud95] Tomek Bartoszyński, Haim Judah: Set Theory: on the structure of
the real line, A.K.Peters, Wellesley (1995).

12 James Hirschorn (Vienna) has a simple argument that the three notions of quasigenericity
are not equivalent. For instance, for a countable model M , he gives an example of a real which
is IE0 -M -quasigeneric, but not Ipp

G -M -quasigeneric. Note that this does not refute [e] ⇒ [p].



Silver Measurability 15

[Bre95] Jörg Brendle: Strolling through paradise, Fundamenta Mathematicae,
vol. 148 (1995), 1–25.

[Bre00] Jörg Brendle, How small can the set of generics be?, in: S.Buss,
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