Silver Measurability and its relation to other regularity properties

By JÖRG BRENDLE

The Graduate School of Science and Technology

Kobe University

Rokko-dai 1-1, Nada

Kobe 657-8501, Japan

e-mail: brendle@kurt.scitec.kobe-u.ac.jp

LORENZ HALBEISEN

Department of Pure Mathematics
Queen's University Belfast
Belfast BT7 1NN, Northern Ireland
e-mail: halbeis@qub.ac.uk

AND BENEDIKT LÖWE

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24

1018 TV Amsterdam, The Netherlands
e-mail: bloewe@science.uva.nl

(Final Version [3.7]; June 16th, 2004)

Abstract

For $a \subseteq b \subseteq \omega$ with $b \setminus a$ infinite, the set $D = \{x \in [\omega]^\omega : a \subseteq x \subseteq b\}$ is called a *doughnut*. Doughnuts are equivalent to conditions of Silver forcing, and so, a set $S \subseteq [\omega]^\omega$ is called *Silver measurable*, or *completely doughnut*, if for every doughnut D there is a doughnut $D' \subseteq D$ which is contained in or disjoint from S. In this paper, we investigate the Silver measurability of Δ_2^1 and Σ_2^1 sets of reals and compare it to other regularity properties like the Baire and the Ramsey property and Miller and Sacks measurability.

0. Introduction

Most forcings that are used in *Set Theory of the Reals* belong to a class called **arboreal** forcing notions. A forcing notion \mathbb{P} is called **arboreal** if its conditions are trees on

either $2 = \{0, 1\}$ or ω ordered by inclusion and for each $T \in \mathbb{P}$, the set [T] of all branches through T is homeomorphic to either $^{\omega}2$ or $^{\omega}\omega$.

Each arboreal forcing notion is canonically related to a notion of measurability and a notion of smallness:

If \mathbb{P} is an arboreal forcing notion, we define

$$\mathfrak{A}_{\mathbb{P}} := \left\{ A \, : \, \forall T \in \mathbb{P} \left(\exists S \leq T([S] \subseteq A \text{ or } [S] \cap A = \varnothing) \right) \right\}, \text{ and}$$
$$\mathfrak{I}_{\mathbb{P}} := \left\{ A \, : \, \forall T \in P \left(\exists S \leq T([S] \cap A = \varnothing) \right) \right\}.$$

We call the elements of $\mathfrak{A}_{\mathbb{P}}$ \mathbb{P} -measurable sets and the elements of $\mathfrak{I}_{\mathbb{P}}$ \mathbb{P} -null sets. Standard examples of arboreal forcing notions are Cohen forcing $\mathbb C$ (the set of basic open sets in the standard topology of either ${}^{\omega}2$ or ${}^{\omega}\omega$), Sacks forcing S (the set of perfect trees), Miller forcing M (the set of superperfect trees), Silver forcing V (the set of uniform perfect trees), Mathias forcing \mathbb{R} (the set of basic Ellentuck neighbourhoods)? The corresponding notions of measurability and smallness have been investigated in many contexts, and some of them are known under different names: the sets in $\mathfrak{I}_{\mathbb{S}}$ are also called Marczewski null, the sets in $\mathfrak{A}_{\mathbb{R}}$ are also said to be completely Ramsey, and the sets in $\mathfrak{A}_{\mathbb{V}}$ are said to be **completely doughnut** (cf. Section 1.2).

Being \mathbb{P} -measurable is considered a regularity property of a set, and the extent of these regularity properties has been investigated: usually, all Σ_1^1 sets are \mathbb{P} -measurable, there are Δ_2^1 sets that are not P-measurable in the constructible universe L, and very often the statements "Every Δ_2^1 set is \mathbb{P} -measurable" and "Every Σ_2^1 set is \mathbb{P} -measurable" can be characterized in terms of transcendence over ${\bf L}$ as exemplified in Fact 0·1.

In the following, we shall write $\Gamma(\mathscr{B})$ ($\Gamma(\mathscr{D})$, $\Gamma(\mathscr{L})$, $\Gamma(\mathscr{M})$, $\Gamma(\mathscr{R})$, $\Gamma(\mathscr{S})$) for "Every Γ set has the Baire property (is completely doughnut, is Lebesgue measurable, is Miller measurable, is completely Ramsey, is Sacks measurable)".

- (i) (Solovay) $\Sigma_2^1(\mathcal{L})$ is equivalent to "for all $r \in {}^{\omega}\omega$ there is a measure 1 set of random reals over $\mathbf{L}[r]$ ",
- (ii) (Solovay) $\Sigma_2^1(\mathscr{B})$ is equivalent to "for all $r \in {}^{\omega}\omega$ there is a comeagre set of Cohen reals over $\mathbf{L}[r]$ ",
- (iii) [JudShe89, Theorem 3.1 (i)/(ii)] $\Delta_2^1(\mathcal{L})$ is equivalent to "for all $r \in {}^{\omega}\omega$ there is a random real over $\mathbf{L}[r]$ ".
- (iv) [JudShe89, Theorem 3.1 (iii)/(iv)] $\Delta_2^1(\mathscr{B})$ is equivalent to "for all $r \in {}^\omega\omega$ there is a Cohen real over $\mathbf{L}[r]$ ",
- (v) [JudShe89, Theorem 2.10] $\Delta_2^1(\mathcal{R})$ and $\Sigma_2^1(\mathcal{R})$ are equivalent,

¹ This general approach to regularity properties connected to forcing notions was considered in [Bre95], and continued in [Löw98], [BreLöw99], [Bre00] and [Löw03]. Even more general are the notions of Marczewski field and Marczewski ideal from [Bal+01/02]. In these publications, $\mathfrak{I}_{\mathbb{P}}$ was denoted by (p^0) , p^0 or $s^0(\mathbb{P})$. As the letter \mathfrak{I} insinuates, in most applications, $\mathfrak{I}_{\mathbb{P}}$ turns out to be an ideal, or even a σ -ideal.

² Cf. Section 1·1 for more detailed definitions.

³ Note that the measurability property connected to Cohen forcing is the Baire property (a set A has the **Baire property** if there is an open set P such that $A \triangle P$ is meagre) which is not the same as membership in $\mathfrak{A}_{\mathbb{C}}$.

⁴ There is a uniform approach via game proofs of analytic measurability for these regularity properties in [Löw98].

- (vi) [JudShe89, Theorem 3.5 (iv)] $\Sigma_2^1(\mathscr{R})$ does not imply $\Delta_2^1(\mathscr{R})$,
- (vii) [**BreLöw99**, Theorem 6.1] $\Sigma_2^1(\mathscr{M})$ and $\Delta_2^1(\mathscr{M})$ are equivalent, and equivalent to "for all $r \in {}^{\omega}\omega ({}^{\omega}\omega \cap \mathbf{L}[r]$ is not dominating)",
- (viii) [BreLöw99, Theorem 7.1] $\Sigma_2^1(\mathcal{S})$ and $\Delta_2^1(\mathcal{S})$ are equivalent, and equivalent to "for all $r \in {}^{\omega}\omega ({}^{\omega}\omega \cap \mathbf{L}[r] \neq {}^{\omega}\omega)$ ".

Abstractly, one could describe Fact 0.1 (i)/(ii) as "Measurability of Σ_2^1 sets corresponds to the existence of a large set of generics over $\mathbf{L}[r]$," whilst one could describe Fact 0.1 (iii)/(iv) as "Measurability of Δ_2^1 sets corresponds to the existence of generics over $\mathbf{L}[r]$." We follow [BreLöw99] and call theorems of type (i)/(ii) "Solovay-type characterizations". We shall call theorems of type (iii)/(iv) "Judah-Shelah-type characterizations".

In this paper, we shall investigate Silver measurability, continuing research from the paper [Hal03], in order to give complete diagrams of the implications between the properties \mathscr{B} , \mathscr{D} , \mathscr{R} and \mathscr{D} , \mathscr{M} , \mathscr{S} for Δ_2^1 and Σ_2^1 sets. It will also be shown that $\Delta_2^1(\mathscr{D})$ implies that there are splitting reals over each $\mathbf{L}[r]$, and that $\Sigma_2^1(\mathscr{D})$ implies that there are unbounded reals over each $\mathbf{L}[r]$.

We shall introduce some notation, prove crucial abstract results and list earlier results on Silver measurability in Section 1. In Section 2 and Section 3 we prove our results about $\Delta_2^1(\mathscr{D})$ and $\Sigma_2^1(\mathscr{D})$, respectively. Finally, in Section 4, we shall summarize our results and list some open questions.

1. Definitions and the abstract setting

Throughout this paper we shall use standard set theoretic terminology which the reader can find, e.g., in textbooks like [BarJud95].

1.1. Trees

As usual, $X^{<\omega}$ is the set of all finite sequences of elements of X, and a **tree on** X is a subset of $X^{<\omega}$ closed under initial segments. If $x \in {}^{\omega}X$ is a function from ω to X and $n \in \omega$ is a natural number, we denote the finite sequence $\langle x(0), x(1), ..., x(n-1) \rangle$ by $x \upharpoonright n$ and call it **the restriction of** x **to** n. If $s \in X^{<\omega}$ and $t \in X^{<\omega}$ or $x \in {}^{\omega}X$, we can define the **concatenation of** s **and** t (of s and t), denoted by $s \cap t$ ($s \cap x$) in the obvious way.

A tree on $2 = \{0, 1\}$ is called **uniform** if for all $s, t \in T$ of the same length and all $i \in \{0, 1\}$, we have

$$s^{\hat{}} i \in T \iff t^{\hat{}} i \in T.$$

If T is a tree, then a function $x \in {}^{\omega}X$ is called a **branch** through T, if for all $n \in \omega$, we have that $x \upharpoonright n \in T$. The set of all branches through T is denoted by [T]. A tree T on 2 is called **perfect**, if for every $s \in T$ there is a $t \in T$ with $s \subseteq t$ such that both $t \cap 0$ and $t \cap 1$ belong to T; such a sequence t is called a **splitting node** of T.

A perfect tree T is canonically (order) isomorphic to the full binary tree $2^{<\omega}$, and the order isomorphism induces a homeomorphism $\Theta_T : [T] \to {}^{\omega} 2$. Note that if $B \subseteq [T]$ is a Borel set with a Borel code in $\mathbf{L}[r]$, then $\Theta_T[B]$ is a Borel set with a Borel code in $\mathbf{L}[r,T]$ since the homeomorphism can be read off in a recursive way from the tree T. This will be used later.

Similarly, if T is a tree on ω , we can call $s \in T$ an ω -splitting node if s has infinitely

4 JÖRG BRENDLE, LORENZ HALBEISEN & BENEDIKT LÖWE

many immediate successors. A tree T is called **superperfect** if for each $s \in T$ there is an ω -splitting node $t \supseteq s$ with $t \in T$.

We can now use the special kinds of trees just defined to define the forcing notions mentioned in the introduction:

Silver forcing V is the set of all uniform perfect trees ordered by inclusion, Sacks forcing S is the set of all perfect trees ordered by inclusion, and Miller forcing M is the set of all superperfect trees ordered by inclusion.

1.2. Doughnuts

Investigating arrow partition properties, Carlos DiPrisco and James Henle introduced in [**DiPHen00**] the so-called doughnut property: Let $[\omega]^{\omega} := \{x \subseteq \omega : |x| = \omega\}$. Then, for $a \subseteq b \subseteq \omega$ with $b \setminus a \in [\omega]^{\omega}$, the set $D = \{x \in [\omega]^{\omega} : a \subseteq x \subseteq b\}$ is called a **doughnut**, or more precisely, the (a, b)-doughnut, denoted by $[a, b]^{\omega}$.

Doughnuts are equivalent to uniform perfect trees in the following sense (cf. [Hal03]):

FACT 1·1. Each uniform perfect tree $T \subseteq 2^{<\omega}$ corresponds in a unique way to a doughnut, and vice versa.

Di Prisco and Henle said that a set A has the **doughnut property** if it either contains or is disjoint from a doughnut, and that it is **completely doughnut** if for every doughnut D there is a doughnut $D^* \subseteq D$ such that either $D^* \subseteq A$ or $D^* \cap A = \emptyset$.

By virtue of Fact $1\cdot 1$, being completely doughnut is equivalent to being Silver measurable in the sense of the introduction.⁶

Silver measurability or the doughnut property was investigated by the first author in [Bre95], for analytic sets in terms of games by the third author in [Löw98], and for Σ_2^1 sets by the second author in [Hal03]. In particular, all Borel and all analytic sets are completely doughnut.

By work of the second author on Cohen reals and doughnuts in [Hal03], we know that Cohen forcing adds a doughnut of Cohen reals:

LEMMA 1·2. Suppose that A is a $\Sigma_2^1(r)$ set for some real number r and c is a Cohen real over $\mathbf{L}[r]$. Then there is a uniform perfect tree $T \in \mathbf{L}[r,c]$ such that either $[T] \subseteq A$ or $[T] \cap A = \emptyset$.

<i>Proof.</i> See (the proof of) [Hal03, Lemma 2.1]. \Box	
COROLLARY 1.3. $\Delta_2^1(\mathscr{B})$ implies $\Sigma_2^1(\mathscr{D})$.	
<i>Proof.</i> Immediate from Lemma 1·2 and Fact 0·1 (iv).	

1.3. Weak Measurability

The notion of \mathbb{P} -measurability is a Π_2 notion. By dropping the first universal quantifier one arrives at a weaker Σ_1 notion that is called weak \mathbb{P} -measurability: A set A is said to be **weakly** \mathbb{P} -measurable if there is a $T \in \mathbb{P}$ such that either $[T] \subseteq A$ or $[T] \cap A = \emptyset$. In

 $^{^5}$ Uniform perfect trees have been used in recursion theory, and are called **Lachlan** 1-trees there. Cf. [Lac71].

⁶ The Ramsey property, originally defined in terms of the Baire property in the Ellentuck topology or in terms of partitions (cf. [**Kec95**, 19.D]), can be equivalently defined in terms of doughnuts.

general, the notion of weak measurability is not a statement about the regularity of a set: a set can contain a \mathbb{P} -condition T and be completely irregular outside of T. Compare this to the doughnut property from Section 1·2: as Silver measurability is equivalent to being completely doughnut, weak Silver measurability is equivalent to the doughnut property.

Although weak measurability of a single set does not imply its regularity, classwise statements of weak measurability suffice to prove full measurability as the following general lemma from [BreLöw99] shows:

LEMMA 1·4 (Brendle-Löwe (1999)). Let Γ be a boldface pointclass closed under intersections with closed sets (in this paper, Δ_2^1 and Σ_2^1 are the only examples). Then the following are equivalent:

- (i) Every set in Γ is Silver measurable, and
- (ii) every set in Γ is weakly Silver measurable.

Lemma 1.4 was proved in an abstract setting in [BreLöw99, Lemma 2.1].

1.4. Borel codes and the Borel decomposition of Σ_2^1 sets

We fix some coding of all Borel sets (e.g., the one used in [Jec03, p. 504sqq.]), and use standard notation: if c is a Borel code, we denote the decoded set by A_c , or A_c^M if we want to stress that it is decoded in the model M.

Shoenfield's analysis of Σ_2^1 sets [Kan94, p. 171–175] gives us for each Σ_2^1 set X a decomposition into ω_1 Borel sets

$$X = \bigcup_{\alpha < \omega_1} X_\alpha$$

that is absolute in the following sense:

If X is $\Sigma_2^1(r)$, and $\alpha < \omega_1^{\mathbf{L}[r]}$, then X_{α} has a Borel code $c_{\alpha} \in \mathbf{L}[r]$, and

$$X\cap\mathbf{L}[r]=\bigcup_{\alpha<\omega_1^{\mathbf{L}[r]}}A_{c_\alpha}^{\mathbf{L}[r]}.$$

Consequently, if $\omega_1^{\mathbf{L}[r]} = \omega_1^{\mathbf{V}}$, the entire Borel decomposition is represented by Borel codes in $\mathbf{L}[r]$. Moreover, if for some $x \in {}^{\omega}\omega$, $\omega_1^{\mathbf{L}[x]} = \omega_1^{\mathbf{V}}$ and X is $\Sigma_2^1(r)$, then we find a Borel decomposition of X with all Borel codes in $\mathbf{L}[x, r]$.

1.5. Quasigenericity

Let \mathfrak{I} be an ideal (on ${}^{\omega}2$ or ${}^{\omega}\omega$), and M be a model of (a rich enough fragment of) set theory. We write $N(\mathfrak{I}, M)$ for the set of all Borel sets B such that

- $B \in \mathfrak{I}$, and
- there is a Borel code for the set B in M.

It is well-known that there are characterizations of the generics of random and Cohen forcing via the ideals $\mathfrak N$ of Lebesgue null and $\mathfrak M$ of meagre sets, respectively?

Fact 1.5 (Solovay).

- A real r is random over M if and only if $r \notin \bigcup N(\mathfrak{N}, M)$, and
- a real c is Cohen over M if and only if $c \notin \bigcup N(\mathfrak{M}, M)$.

⁷ Cf. [**Kan94**, Theorem 11.10].

6 JÖRG BRENDLE, LORENZ HALBEISEN & BENEDIKT LÖWE

For arbitrary arboreal forcings \mathbb{P} on ω , the set ${}^{\omega}\omega\setminus\bigcup N(\mathfrak{I}_{\mathbb{P}},M)$ is not in general the set of generics. But we can define a notion of quasi-genericity in analogy to Fact 1.5:

Let \Im be an ideal on ${}^{\omega}\omega$ and M be a model of set theory. We set

$$QG(\mathfrak{I}, M) := {}^{\omega}\omega\backslash \bigcup N(\mathfrak{I}, M),$$

and call the elements of $QG(\mathfrak{I},M)$ \mathfrak{I} -M-quasigeneric. Analogously, we define the set $QG(\mathfrak{I},M)$ for ideals \mathfrak{I} on ${}^{\omega}2$.

1.6. Some ideals and Silver Homogeneity

The equivalence relation E_0 , defined by $xE_0y \iff \forall^{\infty}n(x(n)=y(n))$, is well-known from Descriptive Set Theory. We call a Borel set $A\subseteq {}^{\omega}2$ an E_0 -selector if for any distinct $x,y\in A$ there are infinitely many $n\in \omega$ such that $x(n)\neq y(n)$. This makes sure that A selects at most one element from each equivalence class of E_0 (see [**Zap04**, Section 2.3.10]). Denote the set of E_0 -selectors with Sel_{E_0} .

Now, let \mathfrak{I}_{E_0} be the σ -ideal of sets σ -generated by Borel E_0 -selectors.

We define two further ideals closer to the notion of Silver measurability: We call a Borel set $A \subseteq {}^{\omega}2$ G-independent if for any distinct $x, y \in A$ there are at least two $n \in \omega$ such that $x(n) \neq y(n)$; we call a G-independent set **parity preserving** if for each $x, y \in A$ the number of n such that $x(n) \neq y(n)$ is even (including ω). We call them "parity preserving" because of the following fact:

If A is parity preserving, $z \in {}^{\omega}2$ and $x, y \in A$ such that $x \triangle z$ and $y \triangle z$ are finite, then

 $x \triangle z$ is odd if and only if $y \triangle z$ is odd.

The sets of G-independent sets and parity preserving G-independent sets are denoted by Ind_G and $\operatorname{Ind}_G^{\operatorname{pp}}$, respectively. The ideals σ -generated by Ind_G and $\operatorname{Ind}_G^{\operatorname{pp}}$ are denoted by \mathfrak{I}_G and $\mathfrak{I}_G^{\operatorname{pp}}$.

By a result of Zapletal's, the ideal \mathfrak{I}_G is the ideal σ -generated by Borel sets in $\mathfrak{I}_{\mathbb{V}}$, whence the notions of \mathfrak{I}_G -quasigenericity and $\mathfrak{I}_{\mathbb{V}}$ -quasigenericity coincide [**Zap04**, Lemma 2.3.37]. We have

$$\mathfrak{I}_{E_0} \subseteq \mathfrak{I}_G^{\mathrm{pp}} \subseteq \mathfrak{I}_G$$
,

and so every \mathfrak{I}_G -quasigeneric is \mathfrak{I}_G^{pp} -quasigeneric, and every \mathfrak{I}_G^{pp} -quasigeneric is \mathfrak{I}_{E_0} -quasigeneric.

An ideal \mathfrak{I} on ${}^{\omega}2$ is called **Silver homogeneous** if for each $T \in \mathbb{V}$, the canonical homeomorphism $\Theta_T : [T] \to {}^{\omega}2$ preserves membership in \mathfrak{I} , i.e., if $A \in \mathfrak{I}$, then $\Theta_T[A] \in \mathfrak{I}^{0}$.

Observation 1.6. The ideals $\mathfrak{I}_{\mathbb{V}}$, \mathfrak{I}_{G} , \mathfrak{I}_{G}^{pp} and $\mathfrak{I}_{E_{0}}$ are Silver homogeneous.

LEMMA 1.7 (First Homogeneity Lemma). Let \Im be a Silver homogeneous ideal on $^{\omega}2$ and $T \in \mathbb{V}$. Suppose that there is an \Im - $\mathbf{L}[r,T]$ -quasigeneric real x, then $\Theta_T^{-1}(x)$ is also \Im - $\mathbf{L}[r,T]$ -quasigeneric.

⁸ It is the least non-smooth countable Borel equivalence relation and as such the object of the famous Generalized Glimm-Effros Dichotomy of Harrington, Kechris and Louveau [HarKecLou90]: cf. the survey paper [Kec99] p. 166-167].

[[]HarKecLou90]; cf. the survey paper [Kec99, p. 166-167].

⁹ Here we interpret elements of ${}^{\omega}2$ as sets of natural numbers and let $x \triangle y := \{n : x(n) \neq y(n)\}$.

 $^{^{10}}$ This is a slight generalization of Zapletal's notion of homogeneity [**Zap04**].

Proof. Let $x \in \mathrm{QG}(\mathfrak{I}, \mathbf{L}[r,T])$. We claim that $y := \Theta_T^{-1}(x)$ is also \mathfrak{I} - $\mathbf{L}[r,T]$ -quasigeneric. This is a direct consequence of Silver homogeneity: take any Borel set $B \in \mathfrak{I}$ coded in $\mathbf{L}[r,T]$, then $B \cap [T]$ is still a Borel set from \mathfrak{I} coded in $\mathbf{L}[r,T]$. We shift it from [T] to $^\omega 2$ via Θ_T . By Silver homogeneity, it is still in \mathfrak{I} . But since Θ_T is recursively defined from T, $\Theta_T[B \cap [T]]$ is in $N(\mathfrak{I}, \mathbf{L}[r,T])$. If $y \in B$, then $x \in \Theta_T[B \cap [T]]$, contradicting x's quasigenericity; thus, y cannot lie in B. \square

Note that Θ_T and Θ_T^{-1} preserve the property of being a uniform perfect tree: If S is a uniform perfect tree, then $\Theta_T^{-1}[S]$ is the set of branches through a uniform perfect subtree of T.

LEMMA 1.8 (Second Homogeneity Lemma). Let \Im be an ideal on ${}^{\omega}2$, let $A = {}^{\omega}2 \setminus \bigcup QG(\Im, \mathbf{L}[r])$ and suppose that the following conditions are met:

- (i) A is weakly Silver measurable,
- (ii) I is Silver homogeneous,
- (iii) for each s there is an \Im -**L**[r, s]-quasigeneric.

Then there is a uniform perfect tree of \Im - $\mathbf{L}[r]$ -quasigenerics.

Proof. Since A is weakly Silver measurable, there is either a uniform perfect tree whose branches are disjoint from A or one whose branches are all in A.

In the former case, all of the branches of that tree are quasigeneric by definition of A and we are done immediately.

In the latter case, all of the branches of T are non-quasigeneric. By the assumption, we can pick some \mathfrak{I} - $\mathbf{L}[r,T]$ -quasigeneric real. Now the assumptions of the First Homogeneity Lemma 1·7 are satisfied, so we get a \mathfrak{I} - $\mathbf{L}[r,T]$ -quasigeneric inside [T]. But since $\mathrm{QG}(\mathfrak{I},\mathbf{L}[r,T])\subseteq \mathrm{QG}(\mathfrak{I},\mathbf{L}[r])$, this is absurd. \square

1.7. Mansfield-Solovay statements and inaccessibility of ω_1 by reals

For an arboreal forcing notion \mathbb{P} , we call the statement "For every $\Sigma_2^1(r)$ set A, either there is some $T \in \mathbb{P}$ such that $[T] \subseteq A$, or A does not contain any $\mathfrak{I}_{\mathbb{P}}$ - $\mathbf{L}[r]$ -quasigenerics" the **Mansfield-Solovay statement for** \mathbb{P} **and** r. The reason for this name is the fact that the classical Mansfield-Solovay theorem [Kan94, Corollary 14.9] is equivalent to the Mansfield-Solovay statement for Sacks forcing \mathbb{S} : Since every real in ${}^{\omega}\omega\backslash\mathbf{L}[r]$ is $\mathfrak{I}_{\mathbb{S}}$ - $\mathbf{L}[r]$ -quasigeneric, the "or" condition is equivalent to " $A\subseteq\mathbf{L}[r]$ ".

Unpublished work of Zapletal shows that the Mansfield-Solovay statement for Silver forcing $\mathbb V$ cannot hold for r if $\omega_1^{\mathbf L[r]}$ is countable: if $\omega_1^{\mathbf L}<\omega_1^{\mathbf V}$, then there is a (lightface) Σ_2^1 set that contains $\mathfrak I_{\mathbb V}$ - $\mathbf L$ -quasigenerics but no uniform perfect tree. The Mansfield-Solovay statement for $\mathbb V$ is true, however, for those r with uncountable $\omega_1^{\mathbf L[r]}$ (Lemma 1·10).

These two facts require us to distinguish between the case " ω_1 is *inaccessible* by reals" and the case " ω_1 is *accessible* by reals" several times in the sequel. Therefore, let us state two observations about Silver measurability for these proofs by cases:

LEMMA 1.9. If ω_1 is inaccessible by reals (i.e., for all reals r, $\omega_1^{\mathbf{L}[r]}$ is countable), then $\Sigma_2^1(\mathscr{D})$ holds.

Proof. Clear by Corollary 1·3 and Fact 0·1 (iv): The existence of Cohen reals gives us $\Delta_2^1(\mathscr{D})$, and that in turn yields $\Sigma_2^1(\mathscr{D})$. \square

LEMMA 1·10. The Mansfield-Solovay statement for \mathbb{V} is true for all $r \in {}^{\omega}\omega$ such that $\omega_1^{\mathbf{L}[r]} = \omega_1$, i.e., every $\Sigma_2^1(r)$ set either contains the branches through a uniform perfect tree or does not contain any $\mathfrak{I}_{\mathbb{V}}$ - $\mathbf{L}[r]$ -quasigenerics.

Proof. Let X be a $\Sigma_2^1(r)$ set and $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$ be the Borel decomposition with Borel codes in $\mathbf{L}[r]$. By Silver measurability of Borel sets, each X_{α} either contains the branches through a uniform perfect tree or is in $\mathfrak{I}_{\mathbb{V}}$.

Case 1. If for some uniform perfect tree T and some $\alpha < \omega_1$, we have $[T] \subseteq X_{\alpha}$, then $[T] \subseteq X$.

Case 2. If all X_{α} are in $\mathfrak{I}_{\mathbb{V}}$, then none of them can contain any $\mathfrak{I}_{\mathbb{V}}$ - $\mathbf{L}[r]$ -quasigeneric (because they all have Borel codes in $\mathbf{L}[r]$), so $\mathrm{QG}(\mathfrak{I}_{\mathbb{V}},\mathbf{L}[r])\cap X=\emptyset$. \square

2.
$$\Delta_2^1$$
 sets

We connect the existence of quasigenerics to Silver measurability and deduce some consequences for the relationship of Silver measurability to other regularity properties.

PROPOSITION 2·1. If for all $r \in {}^{\omega}\omega$ there is an $\mathfrak{I}_{\mathbb{V}}$ - $\mathbf{L}[r]$ -quasigeneric real, then every Δ_2^1 set is Silver measurable.

Proof. If ω_1 is inaccessible by reals, we are done by Lemma 1.9. So, let us assume that there is some x such that $\omega_1^{\mathbf{L}[x]} = \omega_1^{\mathbf{V}}$.

By Lemma 1·4 we only have to show that for every Δ_2^1 set X there is a T in \mathbb{V} such that either $[T] \subseteq X$ or $[T] \cap X = \emptyset$. Given a $\Delta_2^1(r)$ set X, let Y be its complement and $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$ and $Y = \bigcup_{\alpha < \omega_1} Y_{\alpha}$ be the Borel decompositions of X and Y. By our assumption and the absoluteness of the Borel decomposition, all of these sets have a Borel code in $\mathbf{L}[x, r]$.

Case 1. There is an α such that $X_{\alpha} \notin \mathfrak{I}_{\mathbb{V}}$. Since X_{α} is Borel and thus has the doughnut property, there is $T \in \mathbb{V}$ such that $[T] \subseteq X_{\alpha} \subseteq X$.

Case 2. There is an α such that $Y_{\alpha} \notin \mathfrak{I}_{\mathbb{V}}$. Since Y_{α} is Borel, this means that there is $T \in \mathbb{V}$ such that $[T] \subseteq Y_{\alpha} \subseteq Y$.

Case 3. For all α , both X_{α} and Y_{α} are Silver null.

Then $\bigcup_{\alpha<\omega_1}(X_\alpha\cup Y_\alpha)\subseteq\bigcup N(\mathfrak{I}_{\mathbb{V}},\mathbf{L}[x,r])$, hence it cannot contain a quasigeneric. But

$$\bigcup_{\alpha < \omega_1} (X_\alpha \cup Y_\alpha) = X \cup Y = {}^{\omega}2,$$

contradicting the existence of quasigenerics over $\mathbf{L}[x,r]$. \square

It is easy to see that both in the Silver model and in the random model, we have $\mathfrak{I}_{\mathbb{V}}$ -quasigenerics, so we get two consequences:

COROLLARY 2.2. An ω_1 -iteration with countable support of Silver forcing, starting from \mathbf{L} , yields a model in which every $\mathbf{\Delta}_2^1$ set is Silver measurable. Similarly for an ω_1 -iteration of random forcing starting from \mathbf{L} .

COROLLARY 2.3. $\Delta_2^1(\mathcal{L})$ implies $\Delta_2^1(\mathcal{D})$.

Proof. Note that the generators of \mathfrak{I}_G are Lebesgue null sets, so every random real is \mathfrak{I}_G -quasigeneric (and thus $\mathfrak{I}_{\mathbb{V}}$ -quasigeneric). The claim now follows by Proposition 2·1 and Fact 0·1 (iii). \square

PROPOSITION 2·4. $\Delta_2^1(\mathscr{D})$ implies that for all $r \in {}^{\omega}2$ there is an $\mathfrak{I}_G^{\mathrm{pp}}$ - $\mathbf{L}[r]$ -quasigeneric (and thus, a fortiori, an \mathfrak{I}_{E_0} - $\mathbf{L}[r]$ -quasigeneric).

Proof. Assume towards a contradiction that there is an r such that $QG(\mathfrak{I}_G^{pp}, \mathbf{L}[r]) = \emptyset$. Now, for each $x \in {}^{\omega}2$ define the set

$$C_x := \{c \in \mathbf{L}[r] : c \text{ is a Borel code } \& A_c \in \mathrm{Ind}_G^{\mathrm{pp}} \& \exists y \in A_c(y \triangle x \text{ is finite})\}.$$

We fix some $x \in {}^{\omega}2$. By our assumption, x is not $\mathfrak{I}_{G}^{\mathrm{pp}}$ - $\mathbf{L}[r]$ -quasigeneric, so is in some set in $\mathfrak{I}_{G}^{\mathrm{pp}}$, hence in some parity preserving G-independent set, so C_x is a non-empty $\Sigma_{2}^{1}(r,x)$ set. Pick the $<_{\mathbf{L}[r]}$ -least element of C_x and call it c_x . If $y_0, y_1 \in A_{c_x}$ and $y_0 \triangle x$ and $y_1 \triangle x$ are both finite, then they have the same parity since A_{c_x} is parity preserving. Let $n_x := 0$ if $y_0 \triangle x$ is even and $n_x := 1$ if it is odd.

Define $C_0 := \{x : n_x = 0\}$ and $C_1 := \{x : n_x = 1\}$. Since the canonical wellordering $<_{\mathbf{L}[r]}$ of $\mathbf{L}[r]$ is a $\Delta_2^1(r)$ -wellordering, both of these sets are $\Sigma_2^1(r)$ sets, and hence Δ_2^1 sets (by our assumption, we have $C_0 \cup C_1 = {}^{\omega} 2$).

But neither C_0 nor C_1 contains a uniform perfect tree: If $z \in C_0$ and T is a uniform perfect tree with $z \in [T]$, then [T] contains infinitely many elements $\{z_n : n \in \omega\}$ that differ in exactly one place from z (say, $z(k_n) \neq z_n(k_n)$).

Note that $c_z = c_{z_m}$. Pick some $y \in A_{c_z}$ such that $z \triangle y$ is finite and even. Choose k_m such that $k_m \notin z \triangle y$, then $z_m \triangle y$ and $z \triangle y$ have different parity, so $z_m \notin C_0$.

The same argument works for C_1 . Consequently, neither C_0 nor C_1 contain a uniform perfect tree, and thus they cannot be Silver measurable. \square

With a similar technique, we can show:

PROPOSITION 2.5. $\Delta_2^1(\mathscr{D})$ implies that for all reals r there is a splitting real over $\mathbf{L}[r]$.

Proof. For $x \in [\omega]^{\omega}$ let $\tau_x \in {}^{\omega}\omega$ be the increasing enumeration of x and let $\hat{x} \in [\omega]^{\omega}$ be defined as follows:

$$k \in \widehat{x} \iff \exists n \in \omega (\tau_x(2n) < k \le \tau_x(2n+1)).$$

Assume towards a contradiction that there is $r \in [\omega]^{\omega}$ such that there is no splitting real over $\mathbf{L}[r]$, which is equivalent to

$$\exists r \in [\omega]^{\omega} \, \forall x \in [\omega]^{\omega} \, \exists y \in [\omega]^{\omega} \cap \mathbf{L}[r] \, (y \cap x \text{ or } y \setminus x \text{ is finite}) \,.$$

Now, for each $x \in [\omega]^{\omega}$ pick the $<_{\mathbf{L}[r]}$ -least $y_x \in [\omega]^{\omega} \cap \mathbf{L}[r]$ such that $y_x \cap \widehat{x}$ or $y_x \setminus \widehat{x}$ is finite, and let $A \subseteq [\omega]^{\omega}$ be the set of all x for which the former case holds. It is easy to see that A is a $\Delta_2^1(r)$ set and that A does neither contain nor is disjoint from any uniform perfect tree, which completes the proof. \square

3.
$$\Sigma_2^1$$
 sets

We can use the Second Homogeneity Lemma 1.8 to derive a result about $\Sigma_2^1(\mathcal{D})$ and the existence of quasigenerics:

LEMMA 3.1. The following are equivalent:

- (i) For all r, we have $QG(\mathfrak{I}_{\mathbb{V}}, \mathbf{L}[r]) \neq \emptyset$ and $\Sigma_2^1(\mathscr{D})$ holds, and
- (ii) for all r, the set $QG(\mathfrak{I}_{\mathbb{V}}, \mathbf{L}[r])$ is co-Silver null (i.e., its complement is in $\mathfrak{I}_{\mathbb{V}}$).

Proof. " \Rightarrow ": Consider the Σ_2^1 set $X = \bigcup N(\mathfrak{I}_{\mathbb{V}}, \mathbf{L}[r])$. Our assumption $\Sigma_2^1(\mathscr{D})$ implies that X is weakly Silver measurable. Let T be an arbitrary uniform perfect tree. We have to show that there is a uniform perfect subtree $S \subseteq T$ that consists of quasigenerics.

We can apply the Second Homogeneity Lemma 1.8, and get a uniform perfect tree of quasigenerics. Now we can use the First Homogeneity Lemma 1.7 to copy that tree into T

" \Leftarrow ": If ω_1 is inaccessible by reals, then Lemma 1.9 yields the claim. So, let $x \in {}^{\omega}\omega$ be such that $\omega_1^{\mathbf{L}[x]} = \omega_1$.

Now we can view a given $\Sigma_2^1(r)$ set X as a $\Sigma_2^1(x,r)$ set and apply our weak version of the Mansfield-Solovay theorem for Silver forcing, Lemma 1·10. By Lemma 1·4, we only have to show that either X or its complement contains the branches through a uniform perfect tree.

If X does not contain the branches through a uniform perfect tree, then by Lemma 1·10, $QG(\mathfrak{I}_{\mathbb{V}}, \mathbf{L}[x,r]) \cap X = \emptyset$. But by our assumption, $QG(\mathfrak{I}_{\mathbb{V}}, \mathbf{L}[x,r])$ contains a uniform perfect tree. \square

The next Proposition 3·2 is not exactly a characterization of $\Sigma_2^1(\mathscr{D})$, but very close to one, since the ideals \mathfrak{I}_G and \mathfrak{I}_G^{pp} are very similar, and thus the notions of $\mathfrak{I}_{\mathbb{V}}$ -quasigenerics and \mathfrak{I}_G^{pp} -quasigenerics are very close. (*Cf.* Question 6.)

Proposition 3.2.

- (i) If for each r the set of $\Im_{\mathbb{V}}$ -L[r]-quasigenerics is co-Silver null, then $\Sigma_2^1(\mathscr{D})$ holds.
- (ii) If $\Sigma_2^1(\mathscr{D})$ holds, then for each r the set of $\mathfrak{I}_G^{\operatorname{pp}}$ - $\mathbf{L}[r]$ -quasigenerics is co-Silver null (and hence also the set of \mathfrak{I}_{E_0} - $\mathbf{L}[r]$ -quasigenerics).

Proof. "(i)": This is an immediate consequence of Lemma 3.1.

"(ii)": For the second implication, we apply the Homogeneity Lemmas again as in Lemma 3·1: Consider the Σ_2^1 set $X = \bigcup N(\mathfrak{I}_G^{pp}, \mathbf{L}[r])$. $\Sigma_2^1(\mathscr{D})$ implies that X is weakly Silver measurable. This time, we use the Silver homogeneity of \mathfrak{I}_G^{pp} (Observation 1·6). After we fixed a uniform perfect tree T, we can use the quasigenerics given by Proposition 2·4, and then apply the Second Homogeneity Lemma 1·8. We again get a uniform perfect tree of quasigenerics which we paste into T by use of the First Homogeneity Lemma 1·7.

We can also connect $\Sigma_2^1(\mathcal{D})$ to splitting reals, and almost get a converse to Proposition 2.5.

LEMMA 3·3. If $s \in [\omega]^{\omega}$ splits the set A (i.e., for all $a \in A$, both $a \cap s$ and $a \setminus s$ are infinite), then there is a uniform perfect tree T such that $[T] \cap A = \emptyset$.

Proof. Define

$$U_s := \{ t \in 2^{<\omega} : (n \notin s \& n \in \text{dom}(t)) \to t(n) = 0 \}.$$

Since s is an infinite set, U_s is a uniform perfect tree. If now $a \in A$, then by the assumption there is an n such that $n \in a \setminus s$, so the real associated to a cannot belong to $[U_s]$. \square

PROPOSITION 3.4. If for each r there is a splitting real over $\mathbf{L}[r]$, then every Σ_2^1 set either contains the branches through a perfect tree or its complement contains the branches through a uniform perfect tree.

Proof. By Mansfield-Solovay [Kan94, Corollary 14.9], every Σ_2^1 set A either contains a perfect subset or is contained in $\mathbf{L}[r]$. But if it is contained in $\mathbf{L}[r]$, we can take the splitting real and construct a uniform perfect tree in the complement of A by Lemma 3·3. \square

We shall see later that Proposition 3.4 cannot be improved to "If for each r there is a splitting real over $\mathbf{L}[r]$, then every Σ_2^1 set is weakly Silver measurable" (Corollary 3.6 proves that $\Delta_2^1(\mathscr{D})$ and $\Sigma_2^1(\mathscr{D})$ are not equivalent).

PROPOSITION 3.5. $\Sigma_2^1(\mathscr{D})$ implies that for each $r \in {}^{\omega}\omega$ there is an unbounded real over $\mathbf{L}[r]$.

Proof. We shall construct a tree $P_f \subseteq 2^{<\omega}$ which belongs to \mathfrak{I}_{E_0} for every strictly increasing function $f \in {}^{\omega}\omega$; and for every uniform perfect tree T we shall construct a function $g_T \in {}^{\omega}\omega$, such that $f > g_T$ implies $[P_f] \cap [T] \neq \emptyset$. These assignments $f \mapsto P_f$ and $T \mapsto g_T$ form a Galois-Tukey connection and thus give us the claim by Proposition 3·2 (ii).

For $T \in \mathbb{V}$, g_T is just the increasing enumeration of the split levels of [T].

For $f \in {}^{\omega}\omega$, let $k_0 = 0$ and $k_{n+1} = f(k_n + 1)$. We construct the tree P_f by induction. For n = 0, let $P_f^n = 2^{<\omega}$ be the full binary tree. Assume we have already constructed P_f^n for some $n \in \omega$. Let $P_f^n|_{k_{n+1}} = \{t \in P_f^n : |t| \le k_{n+1}\}$. Further, for every $t \in 2^{<\omega}$ with $|t| = k_{n+1}$ let $\xi_n^t \in 2$ be defined as follows:

$$\xi_n^t = \begin{cases} 0 & \text{if } t(n) \equiv |\{m : n < m < k_{n+1} \text{ and } t(m) = 0\}| \mod 2, \\ 1 & \text{otherwise.} \end{cases}$$

Now, define

$$(P_f^n)^* := \left\{ s \in P_f^n : \exists t, t' \in 2^{<\omega} \left(|t| = k_{n+1} \& s = t^{\smallfrown} \xi_n^t {^{\smallfrown}} t' \right) \right\}, \text{ and }$$

$$P_f^{n+1} = P_f^n|_{k_{n+1}} \cup (P_f^n)^*.$$

Finally, let $P_f = \bigcap_{n \in \omega} P_f^n$, then, by construction, $[P_f]$ is a closed set in \mathfrak{I}_{E_0} with parameter f. To see that $[P_f] \in \mathfrak{I}_{E_0}$, assume towards a contradiction that there are two distinct $x, y \in [P_f]$ and an $m \in \omega$ such that $x(m) \neq y(m)$ and for all m' > m, x(m') = y(m'). Then, by construction, we get $x(k_{m+1}) \neq y(k_{m+1})$, and since $k_{m+1} > m$, this is a contradiction.

Further, if $f > g_T$, then $g_T(k_n) < k_{n+1}$, which implies that for any $n \in \omega$, there is a split level of T between k_n and k_{n+1} , and thus, by construction, we have $[P_f] \cap [T] \neq \emptyset$. \square

As a consequence we get:

COROLLARY 3.6. An ω_1 -iteration with countable support of Silver forcing, starting from \mathbf{L} , yields a model \mathbf{W} in which we have $\boldsymbol{\Delta}_2^1(\mathscr{D}) \& \neg \boldsymbol{\Sigma}_2^1(\mathscr{D}) \& \neg \boldsymbol{\Delta}_2^1(\mathscr{D}) \& \neg \boldsymbol{\Delta}_2^1(\mathscr{D})$.

Proof. Firstly recall that Silver forcing does not add unbounded reals. Thus, since $\Delta_2^1(\mathscr{R})$ implies that for all $r \in {}^{\omega}\omega$ there is a dominating real over $\mathbf{L}[r]$, we have $\mathbf{W} \models \neg \Delta_2^1(\mathscr{R})$. Secondly, in Corollary 2·2 we have seen that an ω_1 -iteration of Silver forcing with countable support, starting from \mathbf{L} , yields a model \mathbf{W} in which every Δ_2^1 set is Silver measurable, and in Proposition 3·5 we have seen that $\Sigma_2^1(\mathscr{D})$ implies that for every real r, there are unbounded reals over $\mathbf{L}[r]$. Hence, since Silver forcing does not add unbounded reals, by Corollary 1·3 we have $\mathbf{W} \models \Delta_2^1(\mathscr{D}) \& \neg \Sigma_2^1(\mathscr{D}) \& \neg \Delta_2^1(\mathscr{R})$. \square

PROPOSITION 3.7. Let \mathbb{C}_{ω_1} be the ω_1 -product with finite support of Cohen forcing. Then

 $\mathbf{V}^{\mathbb{C}_{\omega_1}} \models$ "all projective sets are Silver measurable".

Proof. Let $A = \{y : \varphi(y)\}$, where φ is a Σ_n^1 -formula with some parameter r. Given $[a,b]^{\omega} \in \mathbf{V}^{\mathbb{C}_{\omega_1}}$, we want to find $[a',b']^{\omega} \subseteq [a,b]^{\omega}$ such that either $[a',b']^{\omega} \subseteq A$ or $[a',b']^{\omega} \cap A = \emptyset$. Without loss of generality, let us assume that $a,b,r\ldots$ belong to \mathbf{V} . Recall that \mathbb{C}_{ω_1} is homogeneous, and therefore, for every sentence σ of the forcing language with parameters in \mathbf{V} we have either $[\![\sigma]\!]_{\mathbb{C}_{\omega_1}} = \mathbf{1}$ or $[\![\sigma]\!]_{\mathbb{C}_{\omega_1}} = \mathbf{0}$. Notice also that if $c \in \mathbf{V}^{\mathbb{C}_{\omega_1}}$ is Cohen-generic over \mathbf{V} , say, added by \mathbb{C} , and if we decompose $\mathbb{C}_{\omega_1} = \mathbb{C} * \dot{\mathbb{A}}$, then in $\mathbf{V}[c]$, $\dot{\mathbb{A}}[c]$ is isomorphic to \mathbb{C}_{ω_1} .

Let us consider $\varphi(c)$: By homogeneity, in $\mathbf{V}[c]$ we have either $[\![\varphi(c)]\!]_{\mathbb{C}_{\omega_1}} = \mathbf{1}$ or $[\![\varphi(c)]\!]_{\mathbb{C}_{\omega_1}} = \mathbf{0}$. Hence, in \mathbf{V} , we have $p(\mathbf{1}) \vee p(\mathbf{0}) = \mathbf{1}$ and $p(\mathbf{1}) \wedge p(\mathbf{0}) = \mathbf{0}$, where $p(\mathbf{1}) = [\![\![\varphi(\dot{c})]\!]_{\dot{\mathbb{C}}_{\omega_1}} = \dot{\mathbf{1}}\!]\!]_{\mathbb{C}}$ and $p(\mathbf{0}) = [\![\![\![\varphi(\dot{c})]\!]_{\dot{\mathbb{C}}_{\omega_1}} = \dot{\mathbf{0}}\!]\!]_{\mathbb{C}}$. Now, in $\mathbf{V}[c]$ we find a dough-nut $[a',b']^{\omega} \subseteq [a,b]^{\omega}$ such that for all $x \in [a',b']^{\omega}$, x is Cohen-generic over \mathbf{V} (because Cohen forcing adds a uniform perfect tree of Cohen reals). By shrinking $[a',b']^{\omega}$ if necessary, we may assume that $[a',b']^{\omega} \subseteq p(\mathbf{1})$ or $[a',b']^{\omega} \subseteq p(\mathbf{0})$. Let us consider just the former case, since the latter case is similar.

We claim that $[a',b']^{\omega} \subseteq A$: If $x \in [a',b']^{\omega} \subseteq p(\mathbf{1})$, then x is Cohen-generic over \mathbf{V} (no matter where x is). Thus, $\mathbf{V}[x] \models \llbracket \varphi(x) \rrbracket_{\mathbb{C}_{\omega_1}} = \mathbf{1}$. But the extension leading to $\mathbf{V}^{\mathbb{C}_{\omega_1}}$ is a \mathbb{C}_{ω_1} -extension, hence, $\mathbf{V}^{\mathbb{C}_{\omega_1}} \models \varphi(x)$. \square

4. Conclusion

THEOREM 4·1. The only implications between the properties \mathscr{D} , \mathscr{B} and \mathscr{R} of Δ_2^1 and Σ_2^1 sets are given in the following transitive diagram:

Proof. For the implications between the Baire and Ramsey property of Δ_2^1 and Σ_2^1 sets see [Jud88] and [JudShe89].

 $\Sigma_2^1(\mathscr{D}) \not\Rightarrow \Delta_2^1(\mathscr{R})$: This follows from $\Sigma_2^1(\mathscr{R}) \Leftrightarrow \Delta_2^1(\mathscr{R})$ (cf. Fact 0·1 (v)) and $\Sigma_2^1(\mathscr{D}) \not\Rightarrow \Sigma_2^1(\mathscr{R})$ (cf. [Hal03]).

 $\Sigma_2^1(\mathscr{D}) \not\Rightarrow \Delta_2^1(\mathscr{R})$: This follows from the obvious implication $\Sigma_2^1(\mathscr{R}) \Rightarrow \Sigma_2^1(\mathscr{D})$ and $\Sigma_2^1(\mathscr{R}) \not\Rightarrow \Delta_2^1(\mathscr{R})$ (cf. Fact 0·1 (vi)).

 $\Delta_2^1(\mathscr{D}) \not\Rightarrow \Sigma_2^1(\mathscr{D})$: This follows from Corollary 3.6. \square

PROPOSITION 4.2. The only implications between the properties \mathscr{D} , \mathscr{M} and \mathscr{S} of Δ^1_2 and Σ^1_2 sets are given in the following diagram:

Proof. The equivalences for \mathcal{M} and \mathcal{S} are Fact 0.1 (vii) & (viii).

 $\Sigma_2^1(\mathscr{D}) \Rightarrow \Delta_2^1(\mathscr{M})$: This follows from Proposition 3.5 and Fact 0.1 (vii).

 $\Delta_2^1(\mathscr{D}) \Rightarrow \Sigma_2^1(\mathscr{S})$: This follows from Proposition 2·4 and Fact 0·1 (viii).

 $\Delta_2^1(\mathscr{D}) \not\Rightarrow \Sigma_2^1(\mathscr{D})$: This is Corollary 3.6.

 $\Sigma_2^1(\mathscr{S}) \not\Rightarrow \Delta_2^1(\mathscr{D})$: Sacks forcing doesn't add splitting reals, so by Proposition 2.5, $\Delta_2^1(\mathscr{D})$ can't be true in the Sacks model which is a model of $\Sigma_2^1(\mathscr{S})$.

 $\Sigma_2^1(\mathscr{S}) \not\Rightarrow \Delta_2^1(\mathscr{M})$: Similarly, Sacks forcing doesn't add unbounded reals, so by Fact 0·1 (vii), the Sacks model can't be a model of $\Delta_2^1(\mathscr{M})$.

 $\Delta_2^1(\mathscr{M}) \not\Rightarrow \Delta_2^1(\mathscr{D})$: Miller forcing doesn't add splitting reals, so the Miller model is a model of $\Delta_2^1(\mathscr{M}) \& \neg \Delta_2^1(\mathscr{D})$.

 $\Delta_2^1(\mathscr{D}) \not\Rightarrow \Delta_2^1(\mathscr{M})$: As mentioned in the proof of Corollary 3.6, Silver forcing doesn't add unbounded reals, so the Silver model is a model of $\Delta_2^1(\mathscr{D}) \& \neg \Delta_2^1(\mathscr{M})$. \square

Note that in the proof of Proposition 4.2, we get

$$\boldsymbol{\Sigma}_{2}^{1}(\mathscr{S})\,\&\,\boldsymbol{\Delta}_{2}^{1}(\mathscr{M})\,\&\,\neg\boldsymbol{\Delta}_{2}^{1}(\mathscr{D})\,\&\,\neg\boldsymbol{\Sigma}_{2}^{1}(\mathscr{D})$$

in the Miller model,

$$\boldsymbol{\Sigma}_{2}^{1}(\mathscr{S})\,\&\,\neg\boldsymbol{\Delta}_{2}^{1}(\mathscr{M})\,\&\,\boldsymbol{\Delta}_{2}^{1}(\mathscr{D})\,\&\,\neg\boldsymbol{\Sigma}_{2}^{1}(\mathscr{D})$$

in the Silver model, and

$$\boldsymbol{\Sigma}_{2}^{1}(\mathscr{S})\,\&\,\neg\boldsymbol{\Delta}_{2}^{1}(\mathscr{M})\,\&\,\neg\boldsymbol{\Delta}_{2}^{1}(\mathscr{D})\,\&\,\neg\boldsymbol{\Sigma}_{2}^{1}(\mathscr{D})$$

in the Sacks model. This suggests the question about the natural dual to the situation in the Sacks model:

QUESTION 1. Is

$$\boldsymbol{\Sigma}_{2}^{1}(\mathcal{S})\,\&\,\boldsymbol{\Delta}_{2}^{1}(\mathcal{M})\,\&\,\boldsymbol{\Delta}_{2}^{1}(\mathcal{D})\,\&\,\neg\boldsymbol{\Sigma}_{2}^{1}(\mathcal{D})$$

consistent?

In [Jud88] it is proved that

$$\Sigma_2^1(\mathscr{K}_{\sigma}) \iff \forall r \in {}^{\omega}\omega \,({}^{\omega}\omega \cap \mathbf{L}[r] \text{ is bounded}),$$

so $\Sigma_2^1(\mathscr{K}_{\sigma})$ implies $\Sigma_2^1(\mathscr{M})^{!1}$ By " $\Delta_2^1(\mathscr{D}) \not\Rightarrow \Delta_2^1(\mathscr{M})$ " from Proposition 4·2, $\Delta_2^1(\mathscr{D})$ doesn't imply $\Sigma_2^1(\mathscr{K}_{\sigma})$, but we don't know anything about the converse:

QUESTION 2. Does $\Sigma_2^1(\mathscr{K}_{\sigma})$ imply $\Delta_2^1(\mathscr{D})$? In particular, is the Laver model a model of $\Sigma_2^1(\mathscr{K}_{\sigma}) \& \neg \Delta_2^1(\mathscr{D})$?

 11 By $\Sigma^1_2(\mathsf{K}_\sigma)$ we denote the statement "Every Σ^1_2 set is $\mathrm{K}_\sigma\text{-regular}$ ".

14 JÖRG BRENDLE, LORENZ HALBEISEN & BENEDIKT LÖWE

We have succeeded in determining the strength of $\Delta_2^1(\mathscr{D})$ and $\Sigma_2^1(\mathscr{D})$ in terms of other regularity properties. What is still missing are results of Solovay- and Judah-Shelah-type: Propositions 2·1, 2·4, and 3·2 yield almost equivalences since the ideals $\mathfrak{I}_{\mathbb{V}}$ and \mathfrak{I}_{G}^{pp} are very close to each other.

QUESTION 3. Is there an ideal 3 such that the following hold:

- (i) $\Sigma_2^1(\mathscr{D})$ is equivalent to "for all r, the set of $\mathfrak{I}\text{-}\mathbf{L}[r]$ -quasigenerics is co-Silver null", and
- (ii) $\Delta_2^1(\mathscr{D})$ is equivalent to "for all r, there is an \Im - $\mathbf{L}[r]$ -quasigeneric real".

In the following diagram, we focus on existence statements of special real numbers. We shall abbreviate "there is an $\mathfrak{I}_{\mathbb{V}}$ -quasigeneric (\mathfrak{I}_{G}^{pp} -quasigeneric, $\mathfrak{I}_{E_{0}}$ -quasigeneric, splitting real)" by [v] ([p], [e], [s], respectively), and get the following diagram from Propositions $2\cdot 1$, $2\cdot 4$ and $2\cdot 5$:

Can we get the reverse directions anywhere in this diagram?

QUESTION 4. Does $\Delta_2^1(\mathscr{D}) \Rightarrow [v]$ hold (the converse to Proposition 2.1)?

Note that if $\Delta_2^1(\mathscr{D}) \Rightarrow [v]$, then we can also characterize $\Sigma_2^1(\mathscr{D})$ in terms of quasigenerics by Lemma 3·1: In that case, the converse to Proposition 3·2 (i) holds as well.

QUESTION 5. Does the existence of a splitting real over each $\mathbf{L}[r]$ imply $\mathbf{\Delta}_2^1(\mathcal{D})$ (the converse to Proposition 2.5)?

QUESTION 6. Can we reverse any of the arrows between $\Delta_2^1(\mathscr{D})$ and the existence statements of the different quasigenerics, i.e., can we prove any of the implications

$$[\mathsf{e}]\Rightarrow [\mathsf{p}]\Rightarrow \mathbf{\Delta}_2^1(\mathscr{D})$$
?¹²

Acknowledgements. The first author is partially supported by Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of Science ((C)(2)15540120), and by the Kobe Technical Club (KTC). The second and third author were partially supported by a Collaborative Small Grant of the London Mathematical Society (4734); the second author was also supported by the Nuffield Foundation (NAL/00513/G).

REFERENCES

[Bal+01/02] M. BALCERZAK, A. BARTOSZEWICZ, J. RZEPECKA, S. WROŃSKI: Marczewski Fields and Ideals, Real Analysis Exchange, vol. 27 (2001/2002), 707-720.
 [BarJud95] TOMEK BARTOSZYŃSKI, HAIM JUDAH: Set Theory: on the structure of the real line, A.K. Peters, Wellesley (1995).

James Hirschorn (Vienna) has a simple argument that the three notions of quasigenericity are not equivalent. For instance, for a countable model M, he gives an example of a real which is \mathfrak{I}_{E_0} -M-quasigeneric, but not \mathfrak{I}_G^{pp} -M-quasigeneric. Note that this does not refute $[e] \Rightarrow [p]$.

- [Bre95] JÖRG BRENDLE: Strolling through paradise, Fundamenta Mathematicae, vol. 148 (1995), 1–25.
- [Bre00] JÖRG BRENDLE, How small can the set of generics be?, in: S.Buss, P.Hájek, P.Pudlak (eds.), Logic Colloquium '98, A.K.Peters, Wellesley 2000 [Lecture Notes in Logic 13], p. 109-126.
- [BreLöw99] JÖRG BRENDLE AND BENEDIKT LÖWE: Solovay-type characterizations for forcing-algebras, Journal of Symbolic Logic, vol. 64 (1999), 1307–1323.
- [DiPHen00] CARLOS A. DIPRISCO AND JAMES M. HENLE: Doughnuts, floating ordinals, square brackets, and ultraflitters, Journal of Symbolic Logic, vol. 65 (2000), 461–473.
 - [Hal03] LORENZ HALBEISEN: Making doughnuts of Cohen reals, Mathematical Logic Quarterly, vol. 49(2) (2003), p. 173–178.
- [HarKecLou90] LEO A. HARRINGTON, ALEXANDER S. KECHRIS, ALAIN LOUVEAU: A Glimm-Effros dichotomy for Borel equivalence relations, Journal of the American Mathematical Society, vol. 3 (1990), 903–928.
 - can Mathematical Society, vol. 3 (1990), 903–928.

 [Jec03] THOMAS JECH: Set Theory, The Third Millenium Edition, Springer [Monographs in Mathematics], Berlin (2003).
 - [Jud88] HAIM JUDAH: Σ_2^1 -sets of reals, Journal of Symbolic Logic, vol. 53 (1988), 636–642.
 - [JudShe89] HAIM JUDAH AND SAHARON SHELAH: Δ_2^1 -sets of reals, **Annals of Pure and Applied Logic**, vol. 42 (1989), 207–223.
 - [Kan94] AKIHIRO KANAMORI: The Higher Infinite, Large Cardinals in Set Theory from Their Beginnings, Springer [Perspectives in Mathematical Logic], Berlin (1994).
 - [Kec95] ALEXANDER S. KECHRIS: Classical Descriptive Set Theory, Springer [Graduate Texts in Mathematics 156], Berlin (1995).
 - [Kec99] ALEXANDER S. KECHRIS: New directions in descriptive set theory, Bulletin of Symbolic Logic, vol. 5 (1999), 161–174.
 - [Lac71] ALISTAIR H. LACHLAN: Solution to a Problem of Spector, Canadian Journal of Mathematics, vol. 23 (1971), 247–256.
 - [Löw98] BENEDIKT LÖWE: Uniform unfolding and analytic measurability, Archive for Mathematical Logic, vol. 37 (1998), 505–520.
 - [Löw03] BENEDIKT LÖWE: The Pointwise View of Determinacy: Arboreal Forcings, Measurability, and Weak Measurability, Rocky Mountain Journal of Mathematics, to appear. [ILLC Publications PP-2003-12]
 - [Zap04] JINDŘICH ZAPLETAL: Descriptive Set Theory and Definable Forcing, Memoirs of the American Mathematical Society vol. 167 (2004), viii+141 pp.