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Abstract. We consider the arithmetics of Collatz cycles in Q[(2)]. In par-
ticular, we prove optimal estimates for the length of a cycle in terms of its
minimum. As an application, we derive an improved version of Eliahou's cri-
terion, and we show that the length of (integer) Collatz cycles which do not
contain 1, is at least 102 225 496 provided the Collatz conjecture is veri�ed for
all initial values x0 � 212 366 032 807 211.

1. Introduction

For x 2 R let g0(x) =
x
2 and g1(x) =

3x+1
2 . Let Q[(2)] denote the local ring of

fractions of Z at the prime ideal (2), i.e. the domain of all rational numbers having
(written in least terms) an odd denominator. A number p

q 2 Q[(2)] with q odd

is considered even or odd according to the parity of the numerator p. Then the
Collatz sequence generated by x0 2 Q[(2)] is de�ned by

xn =

(
g0(xn�1) if xn�1 is even

g1(xn�1) if xn�1 is odd
(1)

for n 2 N. The structure of the set of Collatz cycles (i.e. periodic Collatz sequences)
in Q[(2)] has been studied by Lagarias in [6]. Of course, if x0 2 N, then the
generated sequence is the usual integer Collatz sequence, and hence, statements
about rational Collatz sequences have implications for integer Collatz sequences.
We recall that the Collatz conjecture which states that

(C) for all x0 2 N there exists an index n with xn = 1,

is still open. Of course (C) is equivalent to the conjunction of (A) and (B):

(A) (1,2) is the only Collatz cycle in N.

(B) Every Collatz sequence in N is bounded.

As a main reference about the Collatz problem we refer to [5]. For more recent
results see [1], [2], [4], [8], [9], [6], [3] and [10]. Partial results are:

(D) The Collatz conjecture holds true for all initial values x0 � 6:3 1013 (see [7]).
1
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(E) The length of a Collatz cycle in N which does not contain 1 is at least
17087 915 (see [3]).

The aim of this article is to present some new techniques which allow a re�ned
analysis of rational (and hence integer) Collatz cycles. In particular, we prove op-
timal estimates for the length of a positive cycle in terms of its minimum. As an
application, we derive an improved version of Eliahou's criterion, and we show that
the length of Collatz cycles in N which do not contain 1, is at least 102225 496 pro-
vided the Collatz conjecture is veri�ed for all initial values x0 � 212 366 032 807 211
(this number is about 3.3 times larger than the actually veri�ed bound mentioned
in (D), but Eliahou's original criterion would require to check all initial values up
to 2.9 1014 which is about 4.6 times larger).

2. Auxiliary results

Let us start with some notations: Let Sl;n denote the set of all 0-1 sequences
of length l containing exactly n times a 1, Sl = [ln=0Sl;n and S = [l2NSl. To
every s = (s1; : : : ; sl) 2 Sl we associate the a�ne function �s : R ! R, �s =
gsl � : : : � gs2 � gs1 . A sequence (x0; : : : ; xl) of real numbers xi is called a pseudo
cycle of length l if there exists s = (s1; : : : ; sl) 2 Sl such that

(i) �s(x0) = x0 2 Q[(2)]
(ii) gsi+1(xi) = xi+1 for i = 0; : : : ; l � 1.

Notice that if p
q 2 Q with 2rjq then 2rj~q, if ~q denotes the denominator of gi(

p
q )

(i = 0; 1). Hence, every element of a pseudo cycle is in Q[(2)]. Thus, if p
q and

gi(
p
q ) =

~p
~q are consecutive elements of a pseudo cycle, then

i = 0 if p is even, since else
~p

~q
=2 Q[(2)]

i = 1 if p is odd, since else
~p

~q
=2 Q[(2)].

The conclusion of this simple observations is

Lemma 1. The set of pseudo cycles coincides with the set of Collatz cycles in
Q[(2)]. Cycles are either positive or negative.

Let us now de�ne the function ' : S ! N recursively by

'(fg) = 0

'(s0) = '(s)(2)

'(s1) = 3'(s) + 2l(s)
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where s denotes an arbitrary element of S and l(s) the length of s. ' is easily
computed explicitly (see also [6]):

'(s) =

l(s)X
j=1

sj3
sj+1+���+sl(s)2j�1:(3)

An easy consequence of the de�nition (2) is the following decomposition formula
which will be convenient afterwards:

'(s�s) = 3n(�s)'(s) + 2l(s)'(�s):(4)

Here s�s is the concatenation of s; �s 2 S, and n(s) denotes here and subsequently
the number of 1 in the sequence s. The second lemma shows how ' is used to
compute explicitly the function �s.

Lemma 2 (Lagarias). For arbitrary s 2 S there holds

�s(x) =
3n(s)x+ '(s)

2l(s)

and hence for every s 2 S there exists a unique x0 2 Q[(2)] which generates a
Collatz cycle in Q[(2)] of length l(s) and which coincides with the pseudo cycle
generated by s. x0 is given by

x0 =
'(s)

2l(s) � 3n(s)
:

Proof

The proof is by induction with respect to l(s):

(i) l(s) = 1 is easily checked from the de�nition.

(ii) l(s) > 1: 1. case s = �s0:

��s0(x) =
��s(x)

2
=

3n(�s)x+ '(�s)

2 � 2l(�s)
=

3n(s)x+ '(s)

2l(s)

2. case s = �s1: analogue. 2

For s 2 Sl let �(s) denote the orbit of s in Sl generated by the left-shift permutation

�l : (s1; : : : ; sl) 7! (s2; : : : ; sl; s1);

i.e. �(s) := f�kl (s) : k = 1; : : : ; lg. Furthermore, we de�ne

Ml;n := max
s2Sl;n

f min
t2�(s)

'(t)g:

Now, suppose, the Collatz conjecture is veri�ed for all initial values x0 � m. If one
can then show that

8n; l < L :
Ml;n

2l � 3n
� m(5)
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it follows that the length of a Collatz cycle in N which does not contain 1 is at least
L. Before we start with a detailed analysis of the crucial quantity Ml;n in the next
section, we mention a further technical lemma:

Lemma 3. Let fi be a non-increasing sequence of non-negative real numbers, and
ci and di be sequences such that for all n 2 N

nX
i=1

ci �

nX
i=1

di :

Then there holds for all n 2 N

nX
i=1

cifi �

nX
i=1

difi :

Proof

The stronger assertion

nX
i=1

cifi �

nX
i=1

difi � fn

nX
i=1

(di � ci)

is easily proved by induction. 2

3. The minimum in a Collatz cycle of length l

We start with a monotonicity property of the function '.

Lemma 4. Let s = (s1; : : : ; sl) and t = (t1; : : : ; tl) be two distinct elements of

Sl;n. If for all k 2 f1; : : : ; lg there holds
kP

i=1
si �

kP
i=1

ti, then '(s) > '(t).

Proof

Because both sequences s and t contain exactly n times a 1 and because they
are distinct, there exists a smallest number k0 with sk0 = 0 and tk0 = 1 and a
smallest number k1 > k0 with sk1 = 1 and tk1 = 0. Now let s0 be such that

s0i = si for i 62 fk0; k1g, s
0
k0

= 1 and s0k1 = 0. Then
kP

i=1
si �

kP
i=1

s0i �
kP

i=1
ti (for all

k 2 f1; : : : ; lg).

Consider the sequence �s = (sk0+1; : : : ; sk1�1). With (2) it is not hard to see that
'(0�s1) > '(1�s0) and with (4) we get '(s0) < '(s). If s0 6= t we can repeat the
same procedure with s0 as we have done with s and �nd a sequence s00 such that
'(s0) > '(s00). After �nitely many repetitions we get '(s) > '(t). 2

In the next lemma we determin the sequence ~s for which ' attains the value Ml;n.
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Lemma 5. Let n � l be natural numbers. Let ~si := dinl e�d(i�1)
n
l e (for 1 � i � l),

then '(~s) = mint2�(~s)f'(t)g =Ml;n.

To indicate that the constructed ~s depends on l and n, we will often write ~s(l; n)
for it.

Proof

Let t 2 Sl;n. We can represent
kP

i=1
ti (1 � k � l) by a staircase (see Figure 1).

l = 34

1

1

1

1

1

0

0

max. distance

k0

 n = 21

Figure 1

Assume there exists a k0 such that (k0
n
l �

k0P
i=1

ti) > 0 is maximal, then for t0 = �k0l (t)

we have
kP

i=1

t0i � k n
l (for all 1 � k � l). By construction of ~s we also have

kP
i=1

t0i �
kP

i=1
~si � k n

l (1 � k � l) and by Lemma 4 we get '(~s) > '(t0) and therefore

'(~s) � min
t02�(t)

f'(t0)g for all t 2 Sl;n.

Now we must show that '(~s) = min
s2�(~s)

f'(s)g. Let ~s0 := �ml (~s) for an arbitrary m.

Then by construction of ~s we see that
kP

i=1
~s0i �

kP
i=1

~si (1 � k � l) and therefore

'(~s) � '(~s0) (by Lemma 4). 2
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From (3) we hence conclude

Corollary 1. For every l and n � l there holds

Ml;n =

lX
j=1

�
dj
n

l
e � d(j � 1)

n

l
e
�
2j�13n�dj

n
l
e:

Using this explicit formula we now derive di�erent estimates forMl;n. A �rst rather
rough estimate will be useful afterwards.

Proposition 1. For all l and n � n(l) := bl log3 2c there holds

Ml;n

2l � 3n
�

n

l

1

2� 3n=l
:

Proof

From Corollary 1 we infer that

Ml;n �

lX
j=1

(dj
n

l
e � d(j � 1)

n

l
e)2j�13n�j

n
l(6)

=
lX

i=1

(d(l � i+ 1)
n

l
e � d(l � i)

n

l
e)2l�i3(i�1)

n
l

(where we have changed the order of summation). Observe now, that fi :=
2l�i3(i�1)

n
l is a positive decreasing sequence. Furthermore, we have for all k � l

kX
i=1

(d(l � i+ 1)
n

l
e � d(l � i)

n

l
e) �

kX
i=1

n

l
:

Applying Lemma 3 we hence conclude

Ml;n �

lX
i=1

2l�i3(i�1)
n
l
n

l

=
n

l

2l � 3n

2� 3n=l

and the claim is proved. 2

The estimate (6) above is quite rough and in order to improve the result, we will
consider appropriate pieces of the sequence ~s(l; n).

Proposition 2. If we denote by x = 2l

3n and by m = 2n � l, then the following
holds:

Ml;n

3n
� �1x

1�1=m + �2
x1�1=m � 1

x1=m � 1
(7)

for all l > 6 and n = n(l). Here, �1 =
2n+3l
9m and �2 =

6n+l
27m .
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Proof

For l = 7; : : : ; 159, the assertion can be checked by direct computation, using
Corollary 1. (For l < 6, the right hand side of (7) does not make sense.) If l � 160,
then the sequence ~s (constructed as in Lemma 5) is composed of the sequences 110
(=: Z) and 11010 (=: A). So, let ~s = (a1; : : : ; am), ai 2 fA;Zg, be of length l. If
a denotes the number of A and z the number of Z in ~s, then it follows from

5a+ 3z = l

3a+ 2z = n

that m = a+ z = 2n� l. Then

'(~s) = 3n(~s)
mX
k=1

�8
9

�"Z(k)�32
27

�"A(k)
�(k)(8)

where "Z(k) and "A(k) denote the number of Z and A respectively in the initial
sequence (a1; : : : ; ak�1) of ~s and

�(k) =

(
5
9 if ak = Z
23
27 if ak = A

The formula (8) is easily proved by induction using the following formulas which
are special cases of (4):

'(A�) = 3n(A�)(
'(�)

3n(�)
32
27 +

23
27 )

'(Z�) = 3n(Z�)(
'(�)

3n(�)
8
9 +

5
9 )

Here, � denotes an arbitrary 0-1 sequence. From

2"Z(k) + 3"A(k)

3"Z(k) + 5"A(k)
�

n

l
(9)

we obtain

"Z(k) � "A(k)
5n� 3l

2l� 3n

and on the other hand, from "A(k) + "Z(k) = k � 1 and (9) it follows that

"A(k) � (k � 1)
2l� 3n

2n� l
:

Hence we can estimate as follows:

'(~s)

3n
=

mX
i=1

�8
9

�"Z(m�i+1)�32
27

�"A(m�i+1)
�(m� i+ 1)(10)

�

mX
i=1

��8
9

� 5n�3l
2l�3n

32

27

�(m�i) 2l�3n
2n�l

�(m� i+ 1)

=

mX
i=1

x1�i=m�(m� i+ 1) :
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Notice that the sequence x1�1=m is positive and decreasing, since x = 2l

3n 2]1; 3[.
On the other hand, we have for arbitrary k 2 f1; : : : ;mg

kX
i=1

�(m� i+ 1) =
1

27
(15EZ(k) + 23EA(k))

whereEZ(k) andEA(k) denote the number of Z andA respectively in (am�k+1; : : : ; am).
From

2EZ(k) + 3EA(k) + 1

3EZ(k) + 5EA(k)
�

n

l

and EZ(k) +EA(k) = k we derive that

15EZ(k) + 23EA(k) � k
6n+ l

m
+

8l

m
:

Thus
kX

i=1

�(m� i+ 1) �

kX
i=1

di

if we set d1 := �1 and di := �2 for i � 2. Application of Lemma 3 to (10) and
summation of the resulting geometric series �nishes the proof. 2

Remark 1: Using similar arguments, one can estimate the growth ofMl;n. In fact,
for all l; n = n(l) there holds:

1

20
�

Ml;n

n 3n
�

7

10

and for l > 103 one can even replace 7
10 by 1

2 .

Since we want to improve a criterion of Eliahou in the next section, it is now
necessary to state one more technical lemma:

Lemma 6. For all x 2]1; 3[ and all l > 160, there holds for � = 0:9, n = n(l) and
�1, �2, and m as in Proposition 2

f(x) :=

�
�1x

1�1=m + �2
x1�1=m � 1

x1=m � 1

�
3(x1=n � 1)

x� 1
� �

Remark 2: We will see in the proof that the value of � could be improved to
limz!1 f(z) = 0:842 : : : for l large enough.

Proof

Using l log3 2� 1 � n � l log3 2 we �rst observe that

�1 �
1

9

2 log 2 + 3 log 3

2 log 2� log 3� 2 log 3
l

!
1

9

2 log 2 + 3 log 3

2 log 2� log 3
= 1:808 : : :

�2 �
1

27

6 log 2 + log 3

2 log 2� log 3� 2 log 3
l

!
1

27

6 log 2 + log 3

2 log 2� log 3
= 0:676 : : :
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It can be checked elementary that (for l > 160) f is concave for x > 1. Hence,
f(x) � limz!1 f(z) + limz!1 f

0(z)(x� 1). Calculating these values, on gets

lim
z!1

f(z) =
3

n
(�1 + �2(m� 1))! 3�2(2� log2 3) = 0:842 : : : as l !1

lim
z!1

f 0(z) =
3

2n2
(�1 + �2(m� 1)) +

3

2mn
(�1(m� 2)� 2�2(m� 1))! 0 as l !1

and the claim follows easily from these facts. 2

We close this section with a further monotonicity lemma. We show that Ml;n is
increasing in n for every �xed l:

Lemma 7. If n0 < n then Ml;n0 < Ml;n.

Proof

We may assume that n = n0 + 1. Let s = ~s(l; n) and s0 = ~s(l; n0) denote the 0-1
sequences as constructed in Lemma 5 with the pairs l; n and l; n0 respectively. From
the construction it follows that t0 = 1s0 2 Sl+1;n dominates t = 0s 2 Sl+1;n in the

sense that
kP

i=1
ti �

kP
i=1

t0i for all k 2 f1; : : : ; l + 1g. Hence, Lemma 4 implies that

'(t) > '(t0). Now (4) implies '(s0) < '(s)� 1
23

n0 and this proves the claim. 2

4. Comparison of different criteria

4.1. Crandall's criterion. The classical (implicit) estimate for the length of Col-
latz cycles is due to Crandall [1]:

Lemma 8 (Crandall). If m > 1 is the minimum of a Collatz cycle generated by a
sequence s 2 Sl;n with n < n(l), then

m <
n(3 + 1

m )n�1

2l � 3n
:

Together with well-known facts about continued fractions this leads to Crandall's
Theorem

Theorem 1 (Crandall). Let pk
qk

be convergents to log2 3 then for k > 4

n > min(qk;
2m

qk + qk+1
)

with m and n as in Lemma 8.

Using the fact, that the Collatz conjecture was veri�ed for all initial values x0 � 240,
Lagarias [5] obtained as lower bound for the length of non-trivial Collatz cycles the
value l � 301 994.
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4.2. Eliahou's criterion. In [3] Eliahou improved Crandall's estimate and ob-
tained the following criterion.

Theorem 2 (Eliahou). If k(m) denotes the smallest integer k such that

k

n(k)
� log2(3 +

1

m
)

then there holds for every Collatz cycle C in N

jCj � k(minC):

Using the theory of continued fractions Eliahou showed that k(240) = 17 087 915
(this can also be checked directly from the de�nition).

4.3. Eliahou's criterion improved.

Theorem 3. For every positive Collatz cycle C in Q[(2)] there holds

jCj � k(
minC

�
)

provided jCj > 160.

Proof

Let C be a positive Collatz cycle generated by some s 2 Sl;n, l > 160. Then by
de�nition we have

minC �
Ml;n

2l � 3n
�

Ml;n(l)

2l � 3n(l)
(11)

where we used the monotonicity Lemma 7 in the last step. Using the estimate in
Proposition 2 and Lemma 6, we have

Ml;n(l)

2l � 3n(l)
� f(x)(3x1=n(l) � 3)�1 � �(2l=n(l) � 3)�1

where we used the notation of Lemma 6. From the last line and (11) we �nally
conclude

jCj

n(jCj)
� log2(3 +

�

minC
)

and the theorem is proved. 2

Theorem 3 tells in particular, that Eliahou's estimates on the length of cycles (e.g.
the one above in Section 4.3) are true with the weaker assumption that the Collatz
conjecture only needs to be checked up to some value which is 10% smaller than
the originally demanded value.
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4.4. Optimal criterion. The following criterion (which is according to Lemma 5
optimal, since for every given cycle length there exists a cycle, namely the cycle
generated by ~s in Lemma 5, with equality in (12) below) has the disadvantage that
it is relatively costly to check it. However we will include an example below which
shows how to handle this problem.

Theorem 4. If L(m) denotes the smallest integer L such that for n = n(L)PL
j=1(dj

n
Le � d(j � 1)nLe2

j�13n�dj
n
L
e

2L � 3n
� m

then there holds for every positive Collatz cycle C in Q[(2)]

jCj � L(minC):(12)

As an example, suppose that the Collatz conjecture is veri�ed for all initial values
x0 � m = 212 366 032 807 211. This is about three times larger than the momentary
world record of [7] which is 6:3 1013. We want to prove that than the length of a
nontrivial Collatz cycle is at least L = 102 225 496.

First step: Using Theorem 2 or 3 and either the tables in [3] which list the function
k or by direct computation, we conclude, that L � 17 087 915.

Second step: A simple Mathematica procedure can check that

n(l)

l

1

2� 3n(l)=l
< m

or alternatively that

1

2
n(l) < m (

2l

3n(l)
� 1)

for all values of l 2 fp16; : : : ; p18�1gn(A1[A2) where A1 = fk �p16 : k = 1; : : : ; 5g
and A2 = fkp16 + p14 : k = 3; 4; 5g (where p14 = 301 994, p16 = 17087 915 and
p18 = 102 225 496). The reason, why p17 is not dangerous is simply that 2p17 � 3q17

is negative. Hence Ml;n(l)=(2
l � 3n(l)) < m (according to Lemma 1 or Remark 1)

for the mentioned set of values of l.

Third step: Using Corollary 1 we can check by direct computation, that

Ml;n

2l � 3n
< m

for l = p16 and n = n(l).

Observe that q16 log3 2 = q + " holds for some number q 2 N and " 2]0; 1=100[
and this implies that kn(q16) = n(kq16) for k = 1; 2; : : : ; 100. Hence the sequence
~s(l; n(l)) constructed in Lemma 5 for l = kq16 is just the concatenation of k copies
of the sequence ~s(l; n(l)) constructed for l = q16. Then from (4) it follows that

Mkq16;n(kq16)

2kq16 � 3n(kq16)
=

Mq16;n(q16)

2q16 � 3n(q16)
< m
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for k = 1; 2; : : : ; 100. This rules out in particular the whole set A1 without further
computation. The case l 2 A2 can either be handled with a similar argument or by
direct veri�cation.

Fourth step: From the �rst three steps we infer that

Ml;n(l)

2l � 3n(l)
< m

for all l 2 f1; : : : ; p18� 1g. By the monotonicity Lemma 7 we �nally conclude that
in fact

Ml;n

2l � 3n
< m

for all l 2 f1; : : : ; p18 � 1g and all n � n(l). This proves the claim.

Notice that we would have used the value m = 2:9 1014 in order to prove the same
result by Eliahou's criterion.

5. Final remarks

All estimates on the length of Collatz cycles given so far are valid for rational
Collatz cycles although they have been stated originally for integer Collatz cycles.
But since we have seen that the minimum of rational cycles grows at least linearly
in terms of their length (compare Remark 1), such an approach cannot be successful
to prove (A). The only chance to achieve further progress in that question would
hence involve number theoretical arguments, e.g. of the following kind:

If �l denotes the right-shift permutation acting on Sl, i.e.

�l : (s1; : : : ; sl) 7! (sl; s1; : : : ; s2);

then we obtain from (4) the following formulas which describe the e�ect of �l on ':

'(�l(s0)) = '(0s) = 2'(s0)

'(�l(s1)) = '(1s) = 1
3 (2'(s1) + 3n(s1) � 2l(s1))

(13)

Then we have the following lemma.

Lemma 9. Let s 2 Sl, s 6= (0; : : : ; 0), �s1 2 �(s) and 2l(s) � 3n(s) > 0. Then

gcd('(�s1); '(�l(�s1))) = gcd('(�s1); 2l(s) � 3n(s))(14)

and in particular

gcd('(t) : t 2 �(s)) = gcd('(s); 2l(s) � 3n(s)):(15)

Proof

Let x = '(�s1), l = l(s), n = n(s). Then we have from (13) '(�l(�s1)) =
1
3 (2x+3n�

2l) and hence

gcd(x; 13 (2x+ 3n � 2l)) = gcd(x; 2x+ 3n � 2l) =

= gcd(x; 3n � 2l)
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Note that in the �rst line above we used that 1
3 (2x+3n� 2l) 2 N implies that x is

not a multiple of 3. Observing then that

gcd('(s00); '(�l(s
00))) = gcd('(s00); 2'(s00)) = '(s00)

we get (15). 2

Using Lemma 9 we obtain that :(A) is equivalent to

(A0) There exists a non-periodic s 2 Sl, l > 3, such that

gcdf'(t) : t 2 �(s)g = 2l(s) � 3n(s):
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