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As the original design of 
asting Peals of Bells was inorder to make pleasant Musi
k thereon; so the Notes inevery Peal are formed apt for that end and purpose, ev-ery Peal of Bells being tun'd a

ording to the prin
iplesof Musi
k.Yet the Notes may be so pla
ed in ringing that theirMusi
k may be rendred mu
h more pleasant: for in Mu-si
k there are Con
ords, whi
h indeed may be term'dthe very life and soul of it.For this Musi
al end were 
hanges on Bells �rst pra
-ti
ed, 
hanges being nothing else but a moving and pla
-ing of the Notes in ringing; wherein 'tis to be observedas a general Rule, That every 
hange must be madebetwixt two notes that strike next to ea
h other.Fabian StedmanCampanalogia, 1677By the 
ampanologist, the playing of tunes is 
onsideredto be a 
hildish game; the proper use of bells is to workout mathemati
al permutations and 
ombinations.His passion �nds its satisfa
tion in mathemati
al 
om-pleteness and me
hani
al perfe
tion.Dorothy L. SayersThe Nine Tailors, 1934





Prefa
e
This book provides a self-
ontained introdu
tion to Axiomati
 Set Theorywith main fo
us on In�nitary Combinatori
s and the For
ing Te
hnique. Thebook is intended to be used as a textbook in undergraduate and graduate
ourses of various levels, as well as for self-study. To make the book valuablefor experien
ed resear
hers also, some histori
al ba
kground and the sour
es ofthe main results have been provided in the Notes, and some topi
s for furtherstudies are given in the se
tion Related Results�where those 
ontainingopen problems are marked with an asterisk.The axioms of Set Theory ZFC, 
onsisting of the axioms of Zermelo-Fraenkel Set Theory (denoted ZF) and the Axiom of Choi
e, are the foun-dation of Mathemati
s in the sense that essentially all Mathemati
s 
an beformalised within ZFC. On the other hand, Set Theory 
an also be 
onsid-ered as a mathemati
al theory, like Group Theory, rather than the basis forbuilding general mathemati
al theories. This approa
h allows us to drop ormodify axioms of ZFC in order to get, for example, a Set Theory withoutthe Axiom of Choi
e (see Chapter 4) or in whi
h just a weak form of theAxiom of Choi
e holds (see Chapter 7). In addition, we are also allowed toextend the axiomati
 system ZFC in order to get, for example, a Set Theoryin whi
h, in addition to the ZFC axioms, we also have Martin's Axiom (seeChapter 13), whi
h is a very powerful axiom with many appli
ations for In-�nitary Combinatori
s as well as other �elds of Mathemati
s. However, thisapproa
h prevents us from using any kind of Set Theory whi
h goes beyondZFC, whi
h is used, for example, to prove the existen
e of a 
ountable modelof ZFC (see the Löwenheim-Skolem Theorem in Chapter 15).Most of the results presented in this book are 
ombinatorial results, inparti
ular the results in Ramsey Theory (introdu
ed in Chapter 2 and furtherdeveloped in Chapter 11), or those results whose proofs have a 
ombinatorial�avour. For example, we get results of the latter type if we work in Set Theorywithout the Axiom of Choi
e, sin
e in the absen
e of the Axiom of Choi
e,the proofs must be 
onstru
tive and therefore typi
ally have a mu
h more
ombinatorial �avour than proofs in ZFC (examples 
an be found in Chap-



X Prefa
eters 4&7). On the other hand, there are also elegant 
ombinatorial proofsusing the Axiom of Choi
e. An example is the proof in Chapter 6, where it isshown that one 
an divide the solid unit ball into �ve parts, su
h that one 
anbuild two solid unit balls out of these �ve parts� another su
h paradoxi
alresult is given in Chapter 17, where it is shown that it might be possible in ZFto de
ompose a square into more parts than there are points on the square.Even though the ZFC axiomati
 system is the foundation of Mathemati
s,by Gödel's In
ompleteness Theorem �brie�y dis
ussed at the end of Chap-ter 3� no axiomati
 system of Mathemati
s is 
omplete in the sense thatevery statement 
an either be proved or disproved; in other words, there arealways statements whi
h are independent of the axiomati
 system. The maintool to show that a 
ertain statement is independent of the axioms of SetTheory is Cohen's For
ing Te
hnique, whi
h he originally developed in theearly 1960s in order to show that there are models of ZF in whi
h the Axiomof Choi
e fails (see Chapter 17) and that the Continuum Hypothesis is inde-pendent of ZFC (see Chapter 14). The For
ing Te
hnique is introdu
ed anddis
ussed in great detail in Part II, and in Part III it is used to investigate
ombinatorial properties of the set of real numbers. This is done by 
omparingthe Cardinal Chara
teristi
s of the Continuum introdu
ed in Chapter 8.The following table indi
ates whi
h of the main topi
s appear in whi
h 
hapter,where ∗∗∗ means that it is the main topi
 of that 
hapter, ∗∗ means that somenew results in that topi
 are proved or at least that the topi
 is important forunderstanding 
ertain proofs, and ∗ means that the topi
 appears somewherein that 
hapter, but not in an essential way: 27
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ChapterFor
ing Te
hniqueAxiom of Choi
e & ZFRamsey TheoryCardinal Chara
teristi
s Part I Part II Part IIIFor example Ramsey's Theorem, whi
h is the nu
leus of Ramsey Theory, is themain topi
 in Chapter 2, it is used in some proofs in Chapters 4&7, it is usedas a 
hoi
e prin
iple in Chapter 5, it is related to two Cardinal Chara
teristi
sde�ned in Chapter 8, it is used to de�ne what is 
alled a Ramsey ultra�lterin Chapter 10, it is used in the proof of the Hales-Jewett Theorem in Chap-ter 11, and it is used to formulate a 
ombinatorial feature of Mathias reals in



Prefa
e XIChapter 24. Furthermore, one 
an see that Cardinal Chara
teristi
s are ourmain tool in Part III in the investigation of 
ombinatorial properties of variousfor
ing notions, even in the 
ases when� in Chapters 25&26� the existen
eof Ramsey ultra�lters are investigated. Finally, in Chapter 27 we show howCardinal Chara
teristi
s 
an be used to shed new light on a 
lassi
al prob-lem in Measure Theory. On the other hand, the Cardinal Chara
teristi
s areused to des
ribe some 
ombinatorial features of di�erent for
ing notions. Inparti
ular, it will be shown that the 
ardinal 
hara
teristi
 h (introdu
ed inChapter 8 and investigated in Chapter 9) is 
losely related to Mathias for
-ing (introdu
ed in Chapter 24), whi
h is used in Chapter 25 to show that theexisten
e of Ramsey ultra�lters is independent of ZFC.I tried to write this book like a pie
e of musi
, not just writing note bynote, but using various themes or voi
es� like Ramsey's Theorem and the
ardinal 
hara
teristi
 h�again and again in di�erent 
ombinations. In thisundertaking, I was inspired by the English art of bell ringing and tried to basethe order of the themes on Zarlino's introdu
tion to the art of 
ounterpoint.A
knowledgement. First of all, I would like to thank Andreas Blass for hisvaluable remarks and 
omments, as well as for his numerous 
orre
tions, whi
himproved the quality of the book substantially. Furthermore, I would like tothank my spouse Stephanie Halbeisen, not only for reading Chapters 1&12and parts of Chapters 5&13, but also for her patien
e during the last sevenyears. I would also like to thank Dandolo Flumini for reading Chapters 2,3, 13, 14, 15, Ioanna Dimitriou for reading Chapters 16&17, and GearóidínDiserens for reading Chapter 1 as well as the introdu
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omments of several
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1The Setting
For one 
annot order or 
ompose anything, or un-derstand the nature of the 
omposite, unless oneknows �rst the things that must be ordered or 
om-bined, their nature, and their 
ause.Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558Combinatori
s with all its various aspe
ts is a broad �eld of Mathemati
swhi
h has many appli
ations in areas like Topology, Group Theory and evenAnalysis. A reason for its wide range of appli
ations might be that Combi-natori
s is rather a way of thinking than a homogeneous theory, and 
onse-quently Combinatori
s is quite di�
ult to de�ne. Nevertheless, let us startwith a de�nition of Combinatori
s whi
h will be suitable for our purpose:Combinatori
s is the bran
h of Mathemati
s whi
h studies 
olle
tionsof obje
ts that satisfy 
ertain 
riteria, and is in parti
ular 
on
ernedwith de
iding how large or how small su
h 
olle
tions might be.Below we give a few examples whi
h should illustrate some aspe
ts of in�nitaryCombinatori
s. At the same time, we present the main topi
s of this book,whi
h are the Axiom of Choi
e, Ramsey Theory, 
ardinal 
hara
teristi
s ofthe 
ontinuum, and for
ing.Let us start with an example from Graph Theory: A graph is a set ofverti
es, where some pairs of verti
es are 
onne
ted by an edge. Conne
tedpairs of verti
es are 
alled neighbours. A graph is in�nite if it has an in�nitenumber of verti
es. A tree is a 
y
le-free (i.e., one 
annot walk in proper
y
les along edges), 
onne
ted (i.e., any two verti
es are 
onne
ted by a pathof edges) graph, where one of its verti
es is designated as the root. A tree



2is �nitely bran
hing if every vertex has only a �nite number of neighbours.Furthermore, a bran
h through a tree is a maximal edge-path beginning atthe root, in whi
h no edge appears twi
e.Now we are ready to state König's Lemma, whi
h is often used impli
itly in�elds like Combinatori
s, Topology, and many other bran
hes of Mathemati
s.König's Lemma: Every in�nite, �nitely bran
hing tree 
ontains an in�-nite bran
h.At �rst glan
e, this result looks straightforward and one would 
onstru
tan in�nite bran
h as follows: Let v0 be the root. Sin
e the tree is in�nitebut �nitely bran
hing, there must be a neighbour of v0 from whi
h we rea
hin�nitely many verti
es without going ba
k to v0. Let v1 be su
h a neighbourof v0. Again, sin
e we rea
h in�nitely many verti
es from v1 (without goingba
k to v1) and the tree is �nitely bran
hing, there must be a neighbour of
v1, say v2, from whi
h we rea
h in�nitely many verti
es without going ba
kto v2. Pro
eeding in this way, we �nally get the in�nite bran
h (v0, v1, v2, . . .).Let us now have a 
loser look at this proof: Firstly, in order to provethat the set of neighbours of v0 from whi
h we rea
h in�nitely many verti
eswithout going ba
k to v0 is not empty, we need an in�nite version of theso-
alled Pigeon-Hole Prin
iple. The Pigeon-Hole Prin
iple 
an be seen as thefundamental prin
iple of Combinatori
s.Pigeon-Hole Prin
iple: If n+1 pigeons roost in n holes, then at least twopigeons must share a hole. More prosai
ally: If m obje
ts are 
olouredwith n 
olours and m > n, then at least two obje
ts have the same
olour.An in�nite version of the Pigeon-Hole Prin
iple reads as follows:In�nite Pigeon-Hole Prin
iple: If in�nitely many obje
ts are 
olouredwith �nitely many 
olours, then in�nitely many obje
ts have the same
olour.Using the In�nite Pigeon-Hole Prin
iple we are now sure that the set of neigh-bours of v0 from whi
h we rea
h in�nitely many verti
es without going ba
kto v0 is not empty. However, the next problem we fa
e is whi
h element weshould 
hoose from that non-empty set. If the verti
es are ordered in someway, then we 
an 
hoose the �rst element with respe
t to that order, butotherwise, we would need some kind of 
hoi
e fun
tion whi
h sele
ts in�nitelyoften (and this is the 
ru
ial point!) one vertex from a given non-empty set ofverti
es. Su
h a 
hoi
e fun
tion is guaranteed by the Axiom of Choi
e, denotedAC, whi
h is dis
ussed in Chapter 5.



3Axiom of Choi
e: For every family F of non-empty sets, there is afun
tion f �
alled 
hoi
e fun
tion �whi
h sele
ts one element fromea
h member of F (i.e., for ea
h x ∈ F , f(x) ∈ x); or equivalently,every Cartesian produ
t of non-empty sets is non-empty.The Axiom of Choi
e is one of the main topi
s of this book: In Chapter 3,the axioms of Zermelo-Fraenkel Set Theory (i.e., the usual axioms of SetTheory ex
ept AC) are introdu
ed. In Chapter 4 we shall introdu
e the readerto Zermelo-Fraenkel Set Theory and show how 
ombinatori
s 
an, to someextent, repla
e the Axiom of Choi
e. Subsequently, the Axiom of Choi
e (andsome of its weaker forms) is introdu
ed in Chapter 5. From then on, we alwayswork in Zermelo-Fraenkel Set Theory with the Axiom of Choi
e�even in the
ase as in Chapters 7&17 when we 
onstru
t models of Set Theory in whi
hAC fails.Now, let us turn ba
k to König's Lemma. In order to prove König's Lemmawe do not need full AC, sin
e it would be enough if every family of non-empty�nite sets had a 
hoi
e fun
tion� the family would 
onsist of all subsets ofneighbours of verti
es. However, as we will see later, even this weaker form ofAC is a proper axiom and is independent of the other axioms of Set Theory(
f. Proposition 7.7). Thus, depending on the axioms of Set Theory we startwith, AC�as well as some weakened forms of it �may fail, and 
onsequently,König's Lemma may be
ome unprovable. On the other hand, as we will see inChapter 5, König's Lemma may be used as a non-trivial 
hoi
e prin
iple.Thus, this �rst example shows that � with respe
t to our de�nition ofCombinatori
s given above� some �obje
ts satisfying 
ertain 
riteria,� may,but need not, exist.The next example 
an be seen as a problem in in�nitary Extremal Combi-natori
s. The word �extremal� des
ribes the nature of problems dealt within this �eld and refers to the se
ond part of our de�nition of Combinatori
s,namely �how large or how small 
olle
tions satisfying 
ertain 
riteria mightbe.�If the obje
ts 
onsidered are in�nite, then the answer, how large or howsmall 
ertain sets are, depends again on the underlying axioms of Set Theory,as the next example shows.Reaping Families: A family R of in�nite subsets of the natural num-bers N is said to be reaping if for every 
olouring of N with two 
oloursthere exists a mono
hromati
 set in the family R.For example, the set of all in�nite subsets of N is su
h a family. The reap-ing number r�a so-
alled 
ardinal 
hara
teristi
 of the 
ontinuum� is thesmallest 
ardinality (i.e., size) of a reaping family. In general, a 
ardinal 
har-a
teristi
 of the 
ontinuum is typi
ally de�ned as the smallest 
ardinality ofa subset of a given set S whi
h has 
ertain 
ombinatorial properties, where Sis of the same 
ardinality as the 
ontinuum R.



4 Consider the 
ardinal 
hara
teristi
 r (i.e., the size of the smallest reapingfamily). Sin
e r is a well-de�ned 
ardinality we 
an ask: How large is r ? Canit be 
ountable? Is it always equal to the 
ardinality of the 
ontinuum?Let us just show that a reaping family 
an never be 
ountable: Let A =
{Ai : i ∈ N} be any 
ountable family of in�nite subsets of N. For ea
h i ∈ N,pi
k ni and mi from the set Ai in su
h a way that, at the end, for all i wehave ni < mi < ni+1. Now we 
olour all ni's blue and all the other numbersred. For this 
olouring, there is no mono
hromati
 set in A , and hen
e, A
annot be a reaping family. The Continuum Hypothesis, denoted CH, statesthat every subset of the 
ontinuum R is either 
ountable or of 
ardinality c,where c denotes the 
ardinality of R. Thus, if we assume CH, then any reapingfamily is of 
ardinality c. The same holds if we assume Martin's Axiom whi
hwill be introdu
ed in Chapter 13.On the other hand, with the for
ing te
hnique� invented by Paul Cohenin the early 1960s� one 
an show that the axioms of Set Theory do notde
ide whether or not the 
ardinals r and c are equal. The for
ing te
hniqueis introdu
ed in Part II and a model in whi
h r < c is given in Chapter 18.Thus, the se
ond example shows that � depending on the additional ax-ioms of Set Theory we start with�we 
an get di�erent answers when we tryto �de
ide how large or how small 
ertain 
olle
tions might be.�Many more 
ardinal 
hara
teristi
s like hom and par (see below) are intro-du
ed in Chapter 8. Possible (i.e., 
onsistent) relations between these 
ardi-nals are investigated in Part II and more systemati
ally in Part III � wherethe 
ardinal 
hara
teristi
s are also used to distinguish the 
ombinatorial fea-tures of 
ertain for
ing notions.Another �eld of Combinatori
s is the so-
alled Ramsey Theory, and sin
emany results in this work rely on Ramsey-type theorems, let us give a briefdes
ription of Ramsey Theory.Loosely speaking, Ramsey Theory (whi
h 
an be seen as a part of extremalCombinatori
s) is the bran
h of Combinatori
s whi
h deals with stru
turespreserved under partitions, or 
olourings. Typi
ally, one looks at the follow-ing kind of question: If a parti
ular obje
t (e.g., algebrai
, geometri
 or 
om-binatorial) is arbitrarily 
oloured with �nitely many 
olours, what kinds ofmono
hromati
 stru
tures 
an we �nd?For example, van der Waerden's Theorem, whi
h will be proved inChapter 11, tells us that for any positive integers r and n, there is a positiveinteger N su
h that for every r-
olouring of the set {0, 1, . . . , N} we �ndalways a mono
hromati
 (non-
onstant) arithmeti
 progression of length n.Even though van der Waerden's Theorem is one of the earliest re-sults in Ramsey Theory, the most famous result in Ramsey Theory is surelyRamsey's Theorem (whi
h will be dis
ussed in detail in the next 
hapter):



5Ramsey's Theorem: Let n be any positive integer. If we 
olour all
n-element subsets of N with �nitely many 
olours, then there existsan in�nite subset of N all of whose n-element subsets have the same
olour.There is also a �nite version of Ramsey's Theorem whi
h gives an answerto problems like the following:How many people must be invited to a party in order to make sure thatthree of them mutually shook hands on a previous o

asion or three of themmutually did not shake hands on a previous o

asion?It is quite easy to show that at least six people must be invited. On the otherhand, if we ask how many people must get invited su
h that there are �vepeople who all mutually shook hands or did not shake hands on a previouso

asion, then the pre
ise number is not known� but it is 
onje
tured thatit is su�
ient to invite 43 people.As we shall see later, Ramsey's Theorem has many� sometimes unex-pe
ted� appli
ations. For example, if we work in Set Theory without AC,then Ramsey's Theorem 
an help to 
onstru
t a 
hoi
e fun
tion, as we willsee in Chapter 4. Sometimes we get Ramsey-type (or anti-Ramsey-type) re-sults even for partitions into in�nitely many 
lasses (i.e., using in�nitely many
olours). For example, one 
an show that there is a 
olouring of the pointsin the Eu
lidean plane with 
ountably many 
olours, su
h that no two pointsof any �
opy of the rationals� have the same 
olour. This result 
an be seenas an anti-Ramsey-type theorem (sin
e we are far away from �mono
hromati
stru
tures�), and it shows that Ramsey-type theorems 
annot be generalisedarbitrarily. However, 
on
erning Ramsey's Theorem, we 
an ask for a �ni
e�family F of in�nite subsets ofN, su
h that for every 
olouring of the n-elementsubsets of N with �nitely many 
olours, there exists a homogenous set in thefamily F , where an in�nite set x ⊆ N is 
alled homogeneous if all n-elementsubsets of x have the same 
olour. Now, �ni
e� 
ould mean �as small as pos-sible� but also �being an ultra�lter.� In the former 
ase, this leads to thehomogeneous number hom, whi
h is the smallest 
ardinality of a family Fwhi
h 
ontains a homogeneous set for every 2-
olouring of the 2-element sub-sets of N. One 
an show that hom is un
ountable and� like for the reapingnumber� that the axioms of Set Theory do not de
ide whether or not homis equal to c (see Chapter 18). The latter 
ase, where �ni
e� means �being anultra�lter,� leads to so-
alled Ramsey ultra�lters. It is not di�
ult to showthat Ramsey ultra�lters exist if one assumes CH or Martin's Axiom (see Chap-ter 10), but on the other hand, the axioms of Set Theory alone do not implythe existen
e of Ramsey ultra�lters (see Proposition 25.11). A somewhatanti-Ramsey-type question would be to ask how many 2-
olourings of the 2-element subsets of N we need to make sure that no single in�nite subset of Nis almost homogeneous for all these 
olourings, where a set H is 
alled almosthomogeneous if there is a �nite set K su
h that H \K is homogeneous. Thisquestion leads to the partition number par. Again, par is un
ountable and the



6axioms of Set Theory do not de
ide whether or not par is equal to c (see forexample Chapter 18).Ramsey's Theorem, as well as Ramsey Theory in general, play an impor-tant role throughout this book. Espe
ially in all 
hapters of Part I, ex
ept forChapter 3, we shall meet � sometimes unexpe
tedly�Ramsey's Theoremin one form or other. NotesGiose�o Zarlino. All 
itations of Zarlino (1517 � 1590) are taken from Part IIIof his book entitled Le Istitutioni Harmoni
he (
f. [1℄). This se
tion of Zarlino's In-stitutioni is 
on
erned primarily with the art of 
ounterpoint, whi
h is, a

ordingto Zarlino, the 
on
ordan
e or agreement born of a body with diverse parts, its var-ious melodi
 lines a

ommodated to the total 
omposition, arranged so that voi
esare separated by 
ommensurable, harmonious intervals. The word �
ounterpoint�presumably originated at the beginning of the 14th 
entury and was derived from�pun
tus 
ontra pun
tum,� �.e., point against point or note against note. Zarlinohimself was an Italian musi
 theorist and 
omposer. While he 
omposed a numberof masses, motets and madrigals, his prin
ipal 
laim to fame is as a musi
 theorist:For example, Zarlino was ahead of his time in proposing that the o
tave should bedivided into twelve equal semitones � for the lute, that is to say, he advo
ated apra
ti
e in the 16th 
entury whi
h was universally adopted three 
enturies later.He also advo
ated equal temperament for keyboard instruments and just intonationfor una

ompanied vo
al musi
 and strings � a system whi
h has been su

essfullypra
ti
ed up to the present day. Furthermore, Zarlino arranged the modes in a di�er-ent order of su

ession, beginning with the Ionian mode instead of the Dorian mode.This arrangement seems almost to have been di
tated by a propheti
 anti
ipationof the 
hange whi
h was to lead to the abandonment of the modes in favour of anewer tonality, for his series begins with a form whi
h 
orresponds exa
tly with ourmodern major mode and ends with the prototype of the des
ending minor s
ale ofmodern musi
. (For the terminology of musi
 theory we refer the interested readerto Benson [2℄.)Zarlino's most notable student was the musi
 theorist and 
omposer Vin
enzoGalilei, the father of Galileo Galilei.König's Lemma and Ramsey's Theorem. A proof of König's Lemma 
an befound in König's book on Graph Theory [3, VI, �2, Satz 6℄, where he 
alled the resultUnendli
hkeitslemma. As a �rst appli
ation of the Unendli
hkeitslemma he provedthe following theorem of de la Vallée Poussin: If E is a subset of the open unitinterval (0, 1) whi
h is 
losed in R and I is a set of open intervals 
overing E, thenthere is a natural number n, su
h that if one partitions (0, 1) into 2n intervals oflength 2−n, ea
h of these intervals 
ontaining a point of E is 
ontained in an intervalof I . Using the Unendli
hkeitslemma, König also showed that van der Waerden'sTheorem is equivalent to the following statement: If the positive integers are �nitely
oloured, then there are arbitrarily long mono
hromati
 arithmeti
 progressions. Ina similar way we will use König's Lemma to derive the Finite Ramsey Theoremfrom Ramsey's Theorem (
f. Corollary 2.3).
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2Overture: Ramsey's Theorem
Musi
ians in the past, as well as the best of themoderns, believed that a 
ounterpoint or other mu-si
al 
omposition should begin on a perfe
t 
onso-nan
e, that is, a unison, �fth, o
tave, or 
ompoundof one of these. Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558The Nu
leus of Ramsey TheoryMost of this text is 
on
erned with sets of subsets of the natural numbers,so, let us start there: The set {0, 1, 2, . . .} of natural numbers (or of non-negative integers) is denoted by ω. It is 
onvenient to 
onsider a naturalnumber n as an n-element subset of ω, namely as the set of all numberssmaller than n, so, n = {k ∈ ω : k < n}. In parti
ular, 0 = ∅, where ∅ isthe empty set. For any n ∈ ω and any set S, let [S]n denote the set of all
n-element subsets of S (e.g., [S]0 = {∅}). Further, the set of all �nite subsetsof a set S is denoted by [S]<ω.For a �nite set S let |S| denote the number of elements in S, also 
alledthe 
ardinality of S.A set S is 
alled 
ountable if there is an enumeration of S, i.e., if S = ∅or S = {xi : i ∈ ω}. In parti
ular, every �nite set is 
ountable. However, whenwe say that a set is 
ountable we usually mean that it is a 
ountably in�niteset. For any set S, [S]ω denotes the set of all 
ountably in�nite subsets of S,in parti
ular, sin
e every in�nite subset of ω is 
ountable, [ω]ω is the set of allin�nite subsets of ω.Let S be an arbitrary non-empty set. A binary relation �∼ � on S is anequivalen
e relation if it is
• re�exive (i.e., for all x ∈ S: x ∼ x),
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• symmetri
 (i.e., for all x, y ∈ S: x ∼ y ↔ y ∼ x), and
• transitive (i.e., for all x, y, z ∈ S: x ∼ y ∧ y ∼ z → x ∼ z).The equivalen
e 
lass of an element x ∈ S, denoted [x]̃ , is the set {

y ∈
S : x ∼ y

}. We would like to re
all the fa
t that, sin
e �∼� is an equivalen
erelation, for any x, y ∈ S we have either [x]̃ = [y]̃ or [x]̃ ∩ [y]̃ = ∅. A set
A ⊆ S is a set of representatives if for ea
h equivalen
e 
lass [x]̃ we have
|A∩ [x]̃ | = 1; in other words, A has exa
tly one element in 
ommon with ea
hequivalen
e 
lass. It is worth mentioning that in general, the existen
e of aset of representatives relies on the Axiom of Choi
e (see Chapter 5).For sets A and B, let AB denote the set of all fun
tions f : A → B.For f ∈ AB and S ⊆ A let f [S] := {

f(x) : x ∈ S
} and let f |S ∈ SB (therestri
tion of f to S) be su
h that for all x ∈ S, f(x) = f |S(x).Further, for sets A and B, let the set-theoreti
 di�eren
e of A and B bethe set A \B := {a ∈ A : a /∈ B}.For some positive n ∈ ω, let us 
olour all n-element subsets of ω withthree 
olours, say red, blue, and yellow. In other words, ea
h n-element setof natural numbers {k1, . . . , kn} is 
oloured either red, or blue, or yellow.Now one 
an ask whether there is an in�nite subset H of ω su
h that allits n-element subsets have the same 
olour (i.e., [H ]n is mono
hromati
).Su
h a set we would 
all homogeneous (for the given 
olouring). In theterminology above, this question reads as follows: Given any 
olouring (i.e.,fun
tion) π : [ω]n → 3, where 3 = {0, 1, 2}, does there exist a setH ∈ [ω]ω su
hthat π|[H]n is 
onstant? Alternatively, one 
an de�ne an equivalen
e relation�∼ � on [ω]n by stipulating x ∼ y i� π(x) = π(y) and ask whether thereexists a set H ∈ [ω]ω su
h that [H ]n is in
luded in one equivalen
e 
lass. Theanswer to this question is given by Ramsey's Theorem 2.1 below, but beforewe state and prove this theorem, let us say a few words about its ba
kground.Ramsey proved his theorem in order to investigate a problem in formallogi
, namely the problem of �nding a regular pro
edure to determine thetruth or falsity of a given logi
al formula in the language of First-Order Logi
,whi
h is also the language of Set Theory (
f. Chapter 3). However, Ramsey'sTheorem is a purely 
ombinatorial statement and was the nu
leus� butnot the earliest result� of a whole 
ombinatorial theory, the so-
alledRamseyTheory. We would also like to mention that Ramsey's original theorem, whi
hwill be dis
ussed later, is somewhat stronger than the theorem stated belowbut is, like König's Lemma, not provable without assuming some form of theAxiom of Choi
e (see Proposition 7.8).Theorem 2.1 (Ramsey's Theorem). For any number n ∈ ω, for any pos-itive number r ∈ ω, for any S ∈ [ω]ω, and for any 
olouring π : [S]n → r,there is always an H ∈ [S]ω su
h that H is homogeneous for π, i.e., the set

[H ]n is mono
hromati
.Before we prove Ramsey's Theorem, let us 
onsider a few examples: Inthe �rst example we 
olour the set of prime numbers P with two 
olours.



The nu
leus of Ramsey Theory 13A Wieferi
h prime is a prime number p su
h that p2 divides 2p−1 − 1,denoted p2 | 2p−1 − 1� re
all that by Fermat's Little Theorem we have
p | 2p−1−1 for any prime p. Now, de�ne the 2-
olouring π1 of P by stipulating

π1(p) =

{
0 if p is a Wieferi
h prime,
1 otherwise.Let H0 = {p ∈ P : p2 | 2p−1 − 1} and H1 = P \H0. The only numbers whi
hare known to belong to H0 are 1093 and 3511. On the other hand, it is notknown whether H1 is in�nite. However, by the In�nite Pigeon-Hole Prin
iplewe know that at least one of the two sets H0 and H1 is in�nite, whi
h givesus a homogeneous set for π1.As a se
ond example, de�ne the 2-
olouring π2 of the set of 2-elementsubsets of {7l : l ∈ ω} by stipulating

π2
(
{n,m}

)
=

{
0 if nm +mn + 1 is prime,
1 otherwise.An easy 
al
ulation modulo 3 shows that the set H = {42k + 14 : k ∈ ω} ⊆

{7l : l ∈ ω} is homogeneous for π2; in fa
t, for all {n,m} ∈ [H ]2 we have
3 | (nm +mn + 1).Before we give a third example, we prove the following spe
ial 
ase ofRamsey's Theorem.Proposition 2.2. For any positive number r ∈ ω, for any S ∈ [ω]ω, and forany 
olouring π : [S]2 → r, there is always an H ∈ [S]ω su
h that [H ]2 ismono
hromati
.Proof. The proof is in fa
t just a 
onsequen
e of the In�nite Pigeon-Hole Prin
i-ple; �rstly, the In�nite Pigeon-Hole Prin
iple is used to 
onstru
t homogeneoussets for 
ertain 2-
olourings τ and then it is used to show the existen
e of ahomogeneous set for π.Let S0 = S and let a0 = min(S0). De�ne the r-
olouring τ0 : S0 \{a0} → rby stipulating τ0(b) := π

(
{a0, b}

). By the In�nite Pigeon-Hole Prin
iple thereis an in�nite set S1 ⊆ S0 \ {a0} su
h that τ0|S1
is 
onstant (i.e., τ0|S1

is a
onstant fun
tion) and let ρ0 := τ0(b), where b is any member of S1. Now,let a1 = min(S1) and de�ne the r-
olouring τ1 : S1 \ {a1} → r by stipulating
τ1(b) := π

(
{a1, b}

). Again we �nd an in�nite set S2 ⊆ S1 \ {a1} su
h that
τ1|S2

is 
onstant and let ρ1 := τ1(b), where b is any member of S2. Pro
eedingthis way we �nally get in�nite sequen
es a0 < a1 < . . . < an < . . . and
ρ0, ρ1, . . .. Noti
e that by 
onstru
tion, for all n ∈ ω and all k > n we have
π
(
{an, ak}

)
= τn(ak) = ρn. De�ne the r-
olouring τ : {an : n ∈ ω} → r bystipulating τ(an) := ρn. Again by the In�nite Pigeon-Hole Prin
iple there is anin�nite set H ⊆ {an : n ∈ ω} su
h that τ |H is 
onstant, whi
h implies that His homogeneous for π, i.e., [H ]2 is mono
hromati
. ⊣



14 2 Ramsey's TheoremAs a third example, 
onsider the 17-
olouring π3 of the set of 9-elementsubsets of P de�ned by stipulating
π3

(
{p1, . . . , p9}

)
= c ⇐⇒ p1 · p2 · . . . · p9 ≡ c mod 17 .For 0 ≤ k ≤ 16 let Pk = {p ∈ P : p ≡ k mod 17}. Then, by Diri
h-let's theorem on primes in arithmeti
 progression, Pk is in�nite whenever

gcd(k, 17) = 1, i.e., for all positive numbers k ≤ 16. Thus, by an easy 
al
u-lation modulo 17 we get that for 1 ≤ k ≤ 16, Pk is homogeneous for π3.Now we give a 
omplete proof of Ramsey's Theorem 2.1:Proof of Ramsey's Theorem. The proof is by indu
tion on n. For n = 2 weget Proposition 2.2. So, we assume that the statement is true for n ≥ 2 andprove it for n + 1. Let π : [ω]n+1 → r be any r-
olouring of [ω]n+1. For ea
hinteger a ∈ ω let πa be the r-
olouring of [ω \ {a}
]n de�ned as follows:

πa(x) = π
(
x ∪ {a}

)By indu
tion hypothesis, for ea
h S′ ∈ [ω]ω and for ea
h a ∈ S′ there is an
HS′

a ∈
[
S′ \ {a}

]ω su
h that HS′

a is homogeneous for πa. Constru
t now anin�nite sequen
e a0 < a1 < . . . < ai < . . . of natural numbers and an in�nitesequen
e S0 ⊇ S1 ⊇ . . . ⊇ Si ⊇ . . . of in�nite subsets of ω as follows: Let
S0 = S and a0 = min(S), and in general let

Si+1 = HSi
ai
, and ai+1 = min

{
a ∈ Si+1 : a > ai

}
.It is 
lear that for ea
h i ∈ ω, the set [{am : m > i}

]n is mono
hromati
 for
πai ; let τ(ai) be its 
olour (i.e., τ is a 
olouring of {ai : i ∈ ω} with at most r
olours). By the In�nite Pigeon-Hole Prin
iple there is an H ⊆ {ai : i ∈ ω} su
hthat τ is 
onstant on H , whi
h implies that π|[H]n+1 is 
onstant, too. Indeed,for any x0 < . . . < xn in H we have π({x0, . . . , xn}) = πx0

(
{x1, . . . , xn}

)
=

τ(x0), whi
h 
ompletes the proof. ⊣Corollaries of Ramsey's TheoremIn �nite Combinatori
s, the most important 
onsequen
e of Ramsey's The-orem 2.1 is its �nite version:Corollary 2.3 (Finite Ramsey Theorem). For all m,n, r ∈ ω, where
r ≥ 1 and n ≤ m, there exists an N ∈ ω, where N ≥ m, su
h that for every
olouring of [N ]n with r 
olours, there exists a set H ∈ [N ]m, all of whose
n-element subsets have the same 
olour.Proof. Assume towards a 
ontradi
tion that the Finite Ramsey Theoremfails. So, there arem,n, r ∈ ω, where r ≥ 1 and n ≤ m, su
h that for all N ∈ ω



Corollaries of Ramsey's Theorem 15with N ≥ m there is a 
olouring πN : [N ]n → r su
h that no H ∈ [N ]mis homogeneous, i.e., [H ]n is not mono
hromati
. We shall 
onstru
t an r-
olouring π of [ω]n su
h that no in�nite subset of ω is homogeneous for π,
ontradi
ting Ramsey's Theorem. The r-
olouring π will be indu
ed by anin�nite bran
h through a �nitely bran
hing tree, where the in�nite bran
h isobtained by König's Lemma. Thus, we �rst need an in�nite, �nitely bran
hingtree. For this, 
onsider the following graph G: The vertex set of G 
onsists of
∅ and all 
olourings πN : [N ]n → r, where N ≥ m, su
h that no H ∈ [N ]mis homogeneous for πN . There is an edge between ∅ and ea
h r-
olouring
πm of [m]n, and there is an edge between the 
olourings πN and πN+1 i�
πN ≡ πN+1|N (i.e., for all x ∈ [N ]n, πN+1(x) = πN (x)). In parti
ular, thereis no edge between two di�erent r-
olouring of [N ]n. By our assumption, thegraphG is in�nite. Further, by 
onstru
tion, it is 
y
le-free, 
onne
ted, �nitelybran
hing, and has a root, namely ∅. In other words, G is an in�nite, �nitelybran
hing tree and therefore, by König's Lemma, 
ontains an in�nite bran
hof r-
olourings, say (∅, πm, πm+1, . . . , πm+i, . . .), where for all i, j ∈ ω, the
olouring πm+i+j is an extension of the 
olouring πm+i.At this point we would like to mention that sin
e for any N ∈ ω the setof all r-
olouring of [N ]n 
an be ordered, for example lexi
ographi
ally, we donot need any non-trivial form of the Axiom of Choi
e to 
onstru
t an in�nitebran
h.Now, the in�nite bran
h (∅, πm, πm+1, . . .) indu
es an r-
olouring π of [ω]nsu
h that no m-element subset of ω is homogeneous. In parti
ular, there is noin�nite set H ∈ [ω]ω su
h that π|[H]n is 
onstant, whi
h is a 
ontradi
tion toRamsey's Theorem 2.1 and 
ompletes the proof. ⊣The following 
orollary is a geometri
al 
onsequen
e of the Finite Ram-sey Theorem 2.3:Corollary 2.4. For every positive integer n there exists an N ∈ ω with thefollowing property: If P is a set of N points in the Eu
lidean plane withoutthree 
ollinear points, then P 
ontains n points whi
h form the verti
es of a
onvex n-gon.Proof. By the Finite Ramsey Theorem 2.3, let N be su
h that for every
2-
olouring of [N ]3 there is a set H ∈ [N ]n su
h that [H ]3 is mono
hromati
.Now let N points in the plane be given, and number them from 1 to N inan arbitrary but �xed way. Colour a triple (i, j, k), where i < j < k, red, iftravelling from i to j to k is in 
lo
kwise dire
tion; otherwise, 
olour it blue. Bythe 
hoi
e of N , there are n ordered points so that every triple has the same
olour (i.e., orientation) from whi
h one veri�es easily (e.g., by 
onsidering the
onvex hull of the n points) that these points form the verti
es of a 
onvex
n-gon. ⊣The following theorem� dis
overed more than a de
ade before Ramsey'sTheorem� is perhaps the earliest result in Ramsey Theory:
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hur's Theorem). If the positive integers are �nitely
oloured (i.e., 
oloured with �nitely many 
olours), then there are three dis-tin
t positive integers x, y, z of the same 
olour, with x+ y = z.Proof. Let r be a positive integer and let π be any r-
olouring of ω \ {0}.Let N ∈ ω be su
h that for every r-
olouring of [N ]2 there is a homogeneous
3-element subset of N . De�ne the 
olouring π∗ : [N ]2 → r by stipulating
π∗(i, j) = π(|i − j|), where |i − j| is the modulus or absolute value of thedi�eren
e i − j. Sin
e N 
ontains a homogeneous 3-element subset (for π∗),there is a triple 0 ≤ i < j < k < N su
h that π∗(i, j) = π∗(j, k) = π∗(i, k),whi
h implies that the numbers x = j − i, y = k − j, and z = k − i, have thesame 
olour, and in addition we have x+ y = z. ⊣The next result is a purely number-theoreti
al result and follows quite easilyfrom Ramsey's Theorem. However, somewhat surprisingly, it is unprovablein Number Theory, or more pre
isely, in Peano Arithmeti
 (whi
h will bedis
ussed in Chapter 3). Before we 
an state the 
orollary, we have to introdu
ethe following notion: A non-empty set S ⊆ ω is 
alled large if S has more than
min(S) elements. Further, for n,m ∈ ω let [n,m] := {i ∈ ω : n ≤ i ≤ m}.Corollary 2.6. For all n, k, r ∈ ω with r ≥ 1, there is an m ∈ ω su
h thatfor any r-
olouring of [

[n,m]
]k, there exists a large homogeneous set.Proof. Let n, k, r ∈ ω, where r ≥ 1, be some arbitrary but �xed numbers.Let π : [ω \ n]k → r be any r-
olouring of the k-element subsets of {i ∈ ω :

i ≥ n}. By Ramsey's Theorem 2.1 there exists an in�nite homogeneous set
H ∈ [ω \n]ω. Let a = min(H) and let S denote the least a+1 elements of H .Then S is large and [S]k is mono
hromati
.The existen
e of a �nite number m with the required properties nowfollows� using König's Lemma� in the very same way as the Finite RamseyTheorem followed from Ramsey's Theorem (see the proof of the FiniteRamsey Theorem 2.3). ⊣Generalisations of Ramsey's TheoremEven though Ramsey's theorems are very powerful 
ombinatorial results, they
an still be generalised. The following result will be used later in Chap-ter 7 in order to prove that the Prime Ideal Theorem� introdu
ed in Chap-ter 5� holds in the ordered Mostowski permutation model (but it will not beused anywhere else in this book).In order to illustrate the next theorem, as well as to show that it is optimalto some extent, we 
onsider the following two examples: Firstly, de�ne the 2-
olouring π1 of [ω]2 × [ω]3 × [ω]1 by stipulating
π1

(
{x1, x2}, {y1, y2, y3}, {z1}

)
=

{
1 if 2x1·x2+ 13y1·y2·y3+ 17z1− 3 is prime,
0 otherwise.



Generalisations of Ramsey's Theorem 17Let H1 = {3 · k : k ∈ ω}, H2 = {2 · k : k ∈ ω}, and H3 = {6 · k : k ∈ ω}. Thenan easy 
al
ulation modulo 7 shows that [H1]
2 × [H2]

3 × [H3]
1 is an in�nitemono
hromati
 set.Se
ondly, de�ne the 2-
olouring π2 of [ω]1 × [ω]1 by stipulating

π2
(
{x}, {y}

)
=

{
1 if x < y,
0 otherwise.It is easy to see that wheneverH1 andH2 are in�nite subsets of ω, then [H1]

1×
[H2]

1 is not mono
hromati
; on the other hand, we easily �nd arbitrarily large�nite sets M1,M2 ⊆ ω su
h that [M1]
1 × [M2]

1 is mono
hromati
.Thus, if [ω]n1 × . . .× [ω]nl is 
oloured with r 
olours, then, in general, we
annot expe
t to �nd in�nite subsets of ω, say H1, . . . , Hl, su
h that [H1]
n1 ×

. . .×[Hl]
nl is mono
hromati
; but we always �nd arbitrarily large �nite subsetsof ω:Theorem 2.7. Let r, l, n1, . . . , nl ∈ ω with r ≥ 1 be given. For every m ∈ ωwith m ≥ max{n1, . . . , nl} there is some N ∈ ω su
h that whenever [N ]n1 ×

. . .× [N ]nl is 
oloured with r 
olours, then there are M1, . . . ,Ml ∈ [N ]m su
hthat [M1]
n1 × . . .× [Ml]

nl is mono
hromati
.Proof. The proof is by indu
tion on l and the indu
tion step uses a so-
alledprodu
t-argument. For l = 1 the statement is equivalent to the Finite Ram-sey Theorem 2.3. So, assume that the statement is true for l ≥ 1 and let usprove it for l+1. By indu
tion hypothesis, for every r ≥ 1 there is an Nl (de-pending on r) su
h that for every r-
olouring of [Nl]n1 × . . .× [Nl]
nl there are

M1, . . . ,Ml ∈ [Nl]
m su
h that [M1]

n1 × . . . × [Ml]
nl is mono
hromati
. Now,the 
ru
ial idea in order to apply the Finite Ramsey Theorem is to 
onsiderthe 
oloured l-tuples in (

[Nl]
m
)l as new 
olours. More pre
isely, let ul be thenumber of di�erent l-tuples in (
[Nl]

m
)l and let rl := ul · r. Noti
e that ea
h
olour in rl 
orresponds to a pair 〈t, c〉, where t is an l-tuple in (

[Nl]
m
)l and cis one of r 
olours. Noti
e also that rl is very large 
ompared to r. Now, by theFinite Ramsey Theorem 2.3, there is a number Nl+1 ∈ ω su
h that when-ever [Nl+1]

nl+1 is 
oloured with rl 
olours, then there exists anMl+1 ∈ [Nl+1]
msu
h that [Ml+1]

nl+1 is mono
hromati
. Let N = max{Nl, Nl+1} and let π beany r-
olouring of [Nl]n1 × . . . × [Nl]
nl × [N ]nl+1 . For every F ∈ [N ]nl+1 let

πF be the r-
olouring of [Nl]n1 × . . .× [Nl]
nl de�ned by stipulating

πF (X) = π
(
〈X,F 〉

)
.By the de�nition of N , for every F ∈ [N ]nl+1 there is a lexi
ographi
ally�rst l-tuple (

MF
1 , . . . ,M

F
l

)
∈

(
[Nl]

m
)l su
h that [

MF
1

]n1 × . . . ×
[
MF
l

]nl ismono
hromati
 for πF . By de�nition of rl we 
an de�ne an rl-
olouring πl+1on [N ]nl+1 as follows: Every set F ∈ [N ]nl+1 is 
oloured a

ording to the l-tuple t = (
MF

1 , . . . ,M
F
l

) (whi
h 
an be en
oded as one of ul numbers) and the
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olour c = πF (X), where X is any element of the set [MF
1

]n1 × . . .×
[
MF
l

]nl ;be
ause [MF
1

]n1×. . .×
[
MF
l

]nl is mono
hromati
 for πF , c is well-de�ned andone of r 
olours. In other words, for every F ∈ [N ]nl+1 , πl+1(F ) 
orrespond toa pair 〈t, c〉, where t ∈ (
[Nl]

m
)l and c is one of r 
olours. Finally, by de�nitionof N , there is a set Ml+1 ∈ [N ]m su
h that [Ml+1]

nl+1 is mono
hromati
 for
πl+1, whi
h implies that for all F, F1, F2 ∈ [Ml+1]

nl+1 we have:
•

[
MF

1

]n1 × . . .×
[
MF
l

]nl is mono
hromati
 for πF ,
•

(
MF1

1 , . . . ,MF1

l

)
=

(
MF2

1 , . . . ,MF2

l

)
,

• and restri
ted to the set [MF
1

]n1 × . . .×
[
MF
l

]nl , the 
olourings πF1

l and
πF2

l are identi
al.Hen
e, there are M1, . . . ,Ml+1 ∈ [N ]m su
h that π|[M1]n1×...×[Ml+1]
nl+1 is
onstant, whi
h 
ompletes the proof. ⊣A very strong generalisation of Ramsey's Theorem in terms of partitionsis the Partition Ramsey Theorem 11.4. However, sin
e the proof of thisgeneralisation is quite involved, we postpone the dis
ussion of that result untilChapter 11 and 
onsider now some other possible generalisations of Ramsey'sTheorem: Firstly one 
ould �nitely 
olour all �nite subsets of ω, se
ondly one
ould 
olour [ω]n with in�nitely many 
olours, and �nally, one 
ould �nitely
olour all the in�nite subsets of ω. However, below we shall see that noneof these generalisations works, but �rst, let us 
onsider Ramsey's originaltheorem, whi
h is � at least in the absen
e of the Axiom of Choi
e�also ageneralisation of Ramsey's Theorem.Ramsey's Original Theorem.The theorem whi
h Ramsey proved originally is somewhat stronger than whatwe proved above. In our terminology, it states as follows:Ramsey's Original Theorem. For any in�nite set A, for any number n ∈ ω,for any positive number r ∈ ω, and for any 
olouring π : [A]n → r, there isan in�nite set H ⊆ A su
h that [H ]n is mono
hromati
.Noti
e that the di�eren
e is just that the in�nite set A is not ne
essarily asubset of ω, and therefore, it does not ne
essarily 
ontain a 
ountable in�nitesubset. However, this di�eren
e is 
ru
ial, sin
e one 
an show that, like König'sLemma, this statement is not provable without assuming some form of theAxiom of Choi
e (AC). On the other hand, if one has AC, then every in�niteset has a 
ountably in�nite subset, and so Ramsey's Theorem implies theoriginal version. Ramsey was aware of this fa
t and stated expli
itly that he isassuming the axiom of sele
tions (i.e., AC). Even though we do not need fullAC in order to proveRamsey's Original Theorem, there is no way to avoidsome non-trivial kind of 
hoi
e, sin
e there are models of Set Theory in whi
hRamsey's Original Theorem fails (
f. Proposition 7.8). Consequently,



Generalisations of Ramsey's Theorem 19Ramsey's Original Theorem 
an be used as a 
hoi
e prin
iple, whi
h willbe dis
ussed in Chapter 5.Finite Colourings of [ω]<ωAssume we have 
oloured all the �nite subsets of ω with two 
olours, say redand blue. Can we be sure that there is an in�nite subset of ω su
h that all its�nite subsets have the same 
olour? The answer to this question is negativeand it is not hard to �nd a 
ounterexample (e.g., 
olour a set x ∈ [ω]<ω blue,if |x| is even; otherwise, 
olour it red).Thus, let us ask for slightly less. Is is there at least an in�nite subset of ωsu
h that for ea
h n ∈ ω, all its n-element subsets have the same 
olour? Theanswer to this question is also negative: Colour a non-empty set x ∈ [ω]<ωred, if x has more than min(x) elements (i.e., x is large); otherwise, 
olour itblue. Now, let I be an in�nite subset of ω and let n = min(I). We leave it asan exer
ise to the reader to verify that [I]n+1 is di
hromati
.The pi
ture 
hanges if we are asking just for an almost homogeneous sets: Anin�nite setH ⊆ ω is 
alled almost homogeneous for a 
olouring π : [ω]n → r(where n ∈ ω and r is a positive integer), if there is a �nite set K ⊆ ω su
hthat H \ K is homogeneous for π. Now, for a positive integer r 
onsiderany 
olouring π̄ : [ω]<ω → r. Then, for ea
h n ∈ ω, π̄|[ω]n is a 
olouring
πn : [ω]n → r. Is there an in�nite set H ⊆ ω whi
h is almost homogeneousfor all πn's simultaneously? The answer to this question is a�rmative and isgiven by the following result.Proposition 2.8. Let {rk : k ∈ ω} and {nk : k ∈ ω} be two (possibly �nite)sets of positive integers, and for ea
h k ∈ ω let πk : [ω]nk → rk be a 
olouring.Then there exists an in�nite set H ⊆ ω whi
h is almost homogeneous for ea
h
πk (k ∈ ω).Proof. A �rst attempt to 
onstru
t the required almost homogeneous setwould be to start with an I0 ∈ [ω]ω whi
h is homogeneous for π0, then takean I1 ∈ [I0]

ω whi
h is homogeneous for π1, et 
etera, and �nally take theinterse
tion of all the Ik's. Even though this attempt fails � sin
e it is verylikely that we end up with the empty set � it is the right dire
tion. In fa
t, ifthe interse
tion of the Ik's would be non-empty, it would be homogeneous forall πk's, whi
h is more than what is required. In order to end up with an in�-nite set we just have to modify the above approa
h� the tri
k, whi
h is usedalmost always when the word �almost� is involved, is 
alled diagonalisation.The proof is by indu
tion on k: ByRamsey's Theorem 2.1 there exists an
H0 ∈ [ω]ω whi
h is homogeneous for π0. Assume we have already 
onstru
ted
Hk ∈ [ω]ω (for some k ≥ 0) su
h that Hk is homogeneous for πk. Let ak =
min(Hk) and let Sk = Hk \ {ak}. Then, again by Ramsey's Theorem 2.1,there exists an Hk+1 ∈ [Sk]

ω su
h that Hk+1 is homogeneous for πk+1. Let
H = {ak : k ∈ ω}. Then, by 
onstru
tion, for every k ∈ ω we have that
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H \ {a0, . . . , ak−1} is homogeneous for πk, whi
h implies that H is almosthomogeneous for all πk's simultaneously. ⊣Now we 
ould ask what is the least number of 2-
olourings of 2-element subsetsof ω we need in order to make sure that no single in�nite subset of ω is almosthomogeneous for all 
olourings simultaneously? By Proposition 2.8 we knowthat 
ountably many 
olourings are not su�
ient, but as we will see later, theaxioms of Set Theory do not de
ide how large this number is (
f. Chapter 18).The dual question would be as follows: How large must a family of in�nitesubsets of ω be, in order to make sure that for ea
h 2-
olouring of the 2-element subsets of ω we �nd a set in the family whi
h is homogeneous forthis 
olouring? Again, the axioms of Set Theory do not de
ide how large thisnumber is (
f. Chapter 18).Going to the In�niteThere are two parameters involved in a 
olouring π : [ω]n → r, namely n and
r. Let �rst 
onsider the 
ase when n = 2 and r = ω. In this 
ase, we obviously
annot hope for any in�nite homogeneous or almost homogeneous set. How-ever, there are still in�nite subsets of ω whi
h are homogeneous in a broadersense whi
h leads to the Canoni
al Ramsey Theorem. Even though theCanoni
al Ramsey Theorem is a proper generalisation of Ramsey's The-orem, we will not dis
uss it here (but see Related Result 0).In the 
ase when n = ω and r = 2 we 
annot hope for an in�nite homo-geneous set, as the following example illustrates (
ompare this result withChapter 5 |Related Result 38):In the presen
e of the Axiom of Choi
e there is a 2-
olouring of [ω]ω su
h thatthere is no in�nite set, all whose in�nite subsets have the same 
olour.The idea is to 
onstru
t (or more pre
isely, to prove the existen
e of) a 
olour-ing of [ω]ω with say red and blue in su
h a way that whenever an in�nite set
x ∈ [ω]ω is 
oloured blue, then for ea
h a ∈ x, x \ {a} is 
oloured red, andvi
e versa.For this, de�ne an equivalen
e relation on [ω]ω as follows: for x, y ∈ [ω]ωlet

x ∼ y ⇐⇒ x△y is �nitewhere x△y = (x \ y) ∪ (y \ x) is the symmetri
 di�eren
e of x and y. It iseasily 
he
ked that the relation �∼� is indeed an equivalen
e relation on [ω]ω.Further, let A ⊆ [ω]ω be any set of representatives, i.e., A has exa
tly oneelement in 
ommon with ea
h equivalen
e 
lass. Sin
e the existen
e of the set
A relies on the Axiom of Choi
e, the given proof is not entirely 
onstru
tive.Colour now an in�nite set x ∈ [ω]ω blue, if |x△rx| is even, where rx ∈
(A ∩ [x]̃ ); otherwise, 
olour it red. Sin
e two sets x, y ∈ [ω]ω with �nitesymmetri
 di�eren
e are always equivalent, every in�nite subset of ω must
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ontain blue as well as red 
oloured in�nite subsets.So, there is a 
olouring π : [ω]ω → {0, 1} su
h that for no x ∈ [ω]ω, π|[x]ωis 
onstant. On the other hand, if the 
olouring is not too sophisti
ated wemay �nd a homogeneous set: For A ⊆ [ω]ω de�ne πA : [ω]ω → {0, 1} bystipulating πA (x) = 1 i� x ∈ A . Now we say that the set A ⊆ [ω]ω has theRamsey property if there exists an xh ∈ [ω]ω su
h that πA |[x]ω is 
onstant.In other words, A ⊆ [ω]ω has the Ramsey property if and only if there existsan xh ∈ [ω]ω su
h that either [xh]
ω ⊆ A or xh]ω ∩ A = ∅. The Ramseyproperty is related to the 
ardinal h (
f. Chapter 8) and will be dis
ussed inChapter 9.A slightly weaker property than the Ramsey property is the so-
alleddoughnut property : If a and b are subsets of ω su
h that b \ a is in�nite,then we 
all the set [a, b]ω := {x ∈ [ω]ω : a ⊆ x ⊆ b} a doughnut. (Whysu
h sets are 
alled �doughnuts� is left to the reader's imagination.) Now, a set

A ⊆ [ω]ω is said to have the doughnut property if there exists an doughnut
[a, b]ω (for some a and b) su
h that either [a, b]ω ⊆ A or [a, b]ω ∩A = ∅. Ob-viously, every set with the Ramsey property has also the doughnut property(
onsider doughnuts of the form [∅, b]ω). On the other hand, it is not di�
ultto show that, in the presen
e of the Axiom of Choi
e, there are sets with thedoughnut property whi
h fail to have the Ramsey property (just modify theexample given above). NotesRamsey's Theorem. Frank Plumpton Ramsey (1903-1930), the elder brother ofArthur Mi
hael Ramsey (who was Ar
hbishop of Canterbury from 1961 to 1974),proved his famous theorem in [34℄ and the part of the volume in whi
h his arti
leappeared was issued on the 16th of De
ember in 1929, but the volume itself belongsto the years 1929 and 1930 (whi
h 
aused some 
onfusion about the year Ramsey'sarti
le was a
tually published). However, Ramsey submitted his paper already inNovember 1928. For Ramsey's paper and its relation to First-Order Logi
, as wellas for an introdu
tion to Ramsey Theory in general, we refer the reader to the
lassi
al textbook by Graham, Roths
hild, and Spen
er [16℄ (for Ramsey's otherpapers on Logi
 see [35℄). In [34℄, Ramsey's Theorem 2.1 appears as Theorem Aand the Finite Ramsey Theorem 2.3 is proved as a 
orollary and appears asTheorem B. Although Ramsey's Theorem is a

urately attributed to Ramsey,its popularisation stems from the 
lassi
al paper of Erd®s and Szekerés [9℄, wherethey proved (independently of Ramsey) Corollary 2.4 �whi
h 
an be seen asa variant of the Finite Ramsey Theorem 2.3 in a geometri
al 
ontext (see alsoMorris and Soltan [27℄). The elegant proof we gave for Corollary 2.4 is due toTarsy (
f. Lewin [25℄ or Graham, Roths
hild, and Spen
er [16, p. 26℄).S
hur's Theorem. S
hur's original paper [36℄ was motivated by Fermat's LastTheorem, and he a
tually proved the following result: For all natural numbers m,if p is prime and su�
iently large, then the equation xm + ym = zm has a non-zerosolution in the integers modulo p. A proof of this theorem 
an also be found in
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hild, and Spen
er [16, Se
tion 3.1℄. For some histori
al ba
kgroundand for the early development of Ramsey Theory (before Ramsey) see Soifer [38℄.The Paris-Harrington Result. As mentioned above, Corollary 2.6 is true butunprovable in Peano Arithmeti
 (also 
alled First-Order Arithmeti
). This result wasthe �rst natural example of su
h a statement and is due to Paris and Harrington [31℄(see also Graham, Roths
hild, and Spen
er [16, Se
tion 6.3℄). For other statementsof that type see Paris [30℄.It is worth mentioning that Peano Arithmeti
 is, in a suitable sense, equivalentto Zermelo-Fraenkel Set Theory with the Axiom of In�nity repla
ed by its negation,whi
h is a reasonable formalisation of standard 
ombinatorial reasoning about �nitesets.Rado's generalisation of the Finite Ramsey Theorem. Theorem 2.7, whi
his the only proper generalisation of the Finite Ramsey Theorem shown in thisbook so far, is due to Rado [32℄ (see also page 113, Problems 4&5 of Je
h [23℄).Ramsey sets and doughnuts. Even though the Ramsey property and the dough-nut property look very similar, there are sets whi
h have the Ramsey property, butwhi
h fail to have the doughnut property. For the relation between the doughnutproperty and other regularity properties see for example Halbeisen [18℄ or Brendle,Halbeisen, and Löwe [4℄ (see also Chapter 9 |Related Result 60).Related Results0. Canoni
al Ramsey Theorem. The following result, known as the Canoni
alRamsey Theorem, is due to Erd®s and Rado (
f. [8, Theorem I℄): Wheneverwe have a 
olouring π of [ω]n, for some n ∈ ω, with an arbitrary (e.g., in�nite)set of 
olours, there exist an in�nite set H ⊆ ω and a set I ⊆ {1, 2, . . . , n} su
hthat for any ordered n-element subsets {k1 < . . . < kn}, {l1 < . . . < ln} ∈ [H ]nwe have π({k1, . . . , kn}) = π
(
{l1, . . . , ln}

)
⇐⇒ ki = li for all i ∈ I . The 2npossible 
hoi
es for I 
orrespond to the so-
alled 
anoni
al 
olourings of [ω]n.As an example let us 
onsider the 
ase when n = 2: Let π be an arbitrary
olouring of [ω]2 and let H ∈ [ω]ω and I ⊆ {1, 2} be as above. Then we are inexa
tly one of the following four 
ases for all {k1 < k2}, {l1 < l2} ∈ [H ]2 (
f. [8,Theorem II℄):(1) If I = ∅, then π({k1, k2}) = π

(
{l1, l2}

).(2) If I = {1, 2}, then π({k1, k2}) = π
(
{l1, l2}

) i� {k1, k2} = {l1, l2}.(3) If I = {1}, then π({k1, k2}) = π
(
{l1, l2}

) i� k1 = l1.(4) If I = {2}, then π({k1, k2}) = π
(
{l1, l2}

) i� k2 = l2.Obviously, if π is a �nite 
olouring of [ω]n, then we are always in 
ase (1), whi
hgives us just Ramsey's Theorem 2.1.1. Ramsey numbers. The least number of people that must be invited to a party,in order to make sure that n of them mutually shook hands before or m of themmutually did not shake hands before, is denoted by R(n,m), and the numbers
R(n,m) are 
alled Ramsey numbers. Noti
e that by the Finite RamseyTheorem, Ramsey numbers R(n,m) exist for all integers n,m ∈ ω. Very fewRamsey numbers are a
tually known. It is easy to show that R(2, 3) = 3 (in



Related Results 23general, R(2, n) = n), and we leave it as an exer
ise to show that R(3, 3) = 6. A
omprehensive list of what is known about small Ramsey numbers is maintainedby Radziszowski [33℄.2. Mono
hromati
 triangles in K6-free graphs. Erd®s and Hajnal [10℄ asked for agraph whi
h 
ontains no K6 (i.e., no 
omplete graph on 6 verti
es) but has theproperty that whenever its edges are 2-
oloured there must be a mono
hromati
triangle. A minimal example for su
h a graph was provided by Graham [14℄:On the one hand he showed that if a 5-
y
le is deleted from a K8, then theresulting graph 
ontains no K6 and has the property that whenever its edgesare 2-
oloured there is a mono
hromati
 triangle. On the other hand, if a graphon 7 verti
es 
ontains no K6, then there is a 2-
olouring of the edges with nomono
hromati
 triangle.3. Hindman's Theorem. If F ∈ [ω]<ω, then we write ΣF for Σa∈F a, where asusual we de�ne Σ∅ := 0. Hindman's Theorem states that if ω is �nitely
oloured, then there is an x ∈ [ω]ω su
h that {ΣF : F ∈ [x]<ω ∧ F 6= ∅} ismono
hromati
 (
f. Hindman [21, Theorem 3.1℄ or Hindman and Strauss [22,Corollary 5.10℄ where referen
es to alternative proofs are given on page 102).Using Hindman's Theorem as a strong Pigeon-Hole Prin
iple, Milliken provedin [26℄ a strengthened version of Ramsey's Theorem 2.1 whi
h in
ludes Hind-man's Theorem as well as Ramsey's Theorem 2.1. Sin
e Milliken's result wasproved independently by Taylor (
f. [39℄), it is usually 
alled Milliken-TaylorTheorem. In order to state this result we have to introdu
e some notation.Two �nite sets K1,K2 ⊆ ω are said to be unmeshed if max(K1) < min(K2)or max(K2) < min(K1). If I and H are two sets of pairwise unmeshed �-nite subsets of ω and every member of I is the union of (�nitely many) mem-bers of H , then we write I ⊑ H . Further, let 〈ω〉ω denote the set of all in-�nite sets of pairwise unmeshed �nite subsets of ω, and for H ∈ 〈ω〉ω let
〈H〉n := {I : |I | = n and I ⊑ H}. Now, the Milliken-Taylor Theoremstates as follows: If all the n-element sets of pairwise unmeshed �nite subsetsof ω are �nitely 
oloured, then there exists an H ∈ 〈ω〉ω su
h that 〈H〉n ismono
hromati
.4. Colourings of the plane. Erd®s [7℄ proved that there is a 
olouring of theEu
lidean plane with 
ountably many 
olours, su
h that any two points ata rational distan
e have di�erent 
olours. This result was strengthened byKomjáth [24℄ in the following way: Let Q be the set of rational numbers andlet Q := {(q, 0) : q ∈ Q} be a 
opy of the rationals in the Eu
lidean plane.Then there exists a 
olouring of the Eu
lidean plane with 
ountably many
olours, su
h that for any rigid motion σ of the plane, every 
olour o

ursin σ[Q] =

{
σ(p) : p ∈ Q

} exa
tly on
e.5. Finite 
olourings of Q. If we 
olour the rational numbers Q with �nitely many
olours, is there always an in�nite homogeneous set whi
h is order-isomorphi
to Q ? In general, this is not the 
ase: Let {qn : n ∈ ω} be an enumeration of
Q (see Chapter 4, in parti
ular Related Result 14) and 
olour a pair {qi, qj}blue if qi < qj ↔ i < j, otherwise, 
olour it red. Then it is easy to see that anin�nite homogeneous set whi
h is order-isomorphi
 to Q would yield an in�nitede
reasing sequen
e of natural numbers, whi
h is obviously not possible. Onthe other hand, for every positive integer n ∈ ω there is a smallest number
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tn ∈ ω su
h that if [Q]n is �nitely 
oloured then there is an in�nite set X ⊆ Qwhi
h is order-isomorphi
 to Q su
h that [X]n is 
oloured with at most tn
olours. For this see Devlin [6℄ or Vuksanovi¢ [41℄, where it is shown that su
hnumbers exist and that the sequen
e of numbers tn 
oin
ides with the so-
alledtangent numbers (
f. Sloane [37, A000182℄). In parti
ular, t1 = 1 and for n ≥ 2,
tn =

∑n−1
i=1

(
2n−2
2i−1

)
titn−i.6. Symmetry and 
olourings. Banakh and Protasov investigated in [2℄ the follow-ing problem: Is it true that for every n-
olouring of the group Zn there existsan in�nite mono
hromati
 subset of Zn whi
h is symmetri
 with respe
t toa 
entral re�e
tion. It turns out that the answer is always positive (for all n).However, there exists a 4-
olouring of Z3 without in�nite, symmetri
, mono
hro-mati
 set. For more general results we refer the reader to Banakh, Verbitski, andVorobets [3℄.7. Wieferi
h primes∗. The so-
alled Wieferi
h primes were �rst introdu
ed byWieferi
h in [42℄ in relation to Fermat's Last Theorem. As mentioned above,the only known Wieferi
h primes (less than 1.25 ·1015) are 1093 and 3511 (foundin 1913 and 1922 respe
tively). It is not known if there are in�nitely many primesof this type, even though it is 
onje
tured that this is the 
ase (see for exampleHalbeisen and Hungerbühler [19℄). Moreover, it is not even known whether thereare in�nitely many non-Wieferi
h primes� although it is very likely to be the
ase.8. Sums and produ
ts. As a 
onsequen
e of Ramsey's Theorem we get thatif ω is �nitely 
oloured, then there are in�nite sequen
es of positive integers

(x0, x1, . . . , xk, . . .) and (y0, y1, . . . , yk, . . .) su
h that {xi+xj : i, j ∈ ω∧i < j} aswell as {yi·yj : i, j ∈ ω∧i < j} is mono
hromati
 (but not ne
essarily of the same
olour). On the other hand, it is known (
f. Hindman and Strauss [22, Chap-ter 17.2℄) that one 
an 
olour the positive integers with �nitely many 
oloursin su
h a way that there is no in�nite sequen
e (x0, x1, . . . , xk, . . .) su
h that
{xi + xj : i, j ∈ ω ∧ i < j} ∪ {xi · xj : i, j ∈ ω ∧ i < j} is mono
hromati
.9. The graph of pairwise sums and produ
ts∗. One 
an show that if ω is 2-
oloured,then there are in�nitely many pairs of distin
t positive integers x and y su
hthat x+ y has the same 
olour as x · y. For this 
onsider the graph on ω with njoined to m if for some distin
t x, y ∈ ω we have x+ y = n and x · y = m. Now,noti
e that it is enough to show that this so-
alled graph of pairwise sums andprodu
ts 
ontains in�nitely many triangles (
f. Halbeisen [17℄).Suppose now that ω is �nitely 
oloured. Are there two distin
t positive integers
x and y su
h that x+ y has the same 
olour as x · y ? This problem�whi
h isequivalent to asking whether the 
hromati
 number of the graph of pairwise sumsand produ
ts is �nite or in�nite� is still open (
f. Hindman and Strauss [22,Question 17.18℄). A partial result is given in Halbeisen [17℄, where it is shownthat su
h numbers x and y exist if ω is 3-
oloured.10. Problems in Ramsey Theory∗. For a variety of open problems from RamseyTheory we refer the reader to Graham [15℄ (it might be worth mentioning thatGraham is o�ering modest rewards for most of the presented problems).11. Appli
ations of Ramsey Theory to Bana
h Spa
e Theory. There are many� andsometimes quite unexpe
ted� appli
ations of Ramsey Theory to Bana
h Spa
e
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es 25Theory (see for example Odell [28℄, Gowers [13℄, or Argyros and Todor£evi¢ [1℄).Let us mention just the following two appli
ations:An unexpe
ted appli
ation of Ramsey Theory to Bana
h Spa
e Theory is due toBrunel and Su
heston [5℄: If x1, x2, . . . is an in�nite normalised basi
 sequen
ein a Bana
h spa
e X and εn ց 0 (a sequen
e of positive real numbers whi
htends to 0), then one 
an �nd an in�nite subsequen
e y1, y2, . . . of x1, x2, . . .whi
h has the following property: For any positive n ∈ ω, any sequen
e ofs
alars (a1, . . . , an) ∈ [−1, 1]n and any natural numbers n ≤ i0 < . . . < in−1and n ≤ j0 < . . . < jn−1 we have
∣∣∣∣
∥∥∥

n∑

k=1

akyik

∥∥∥−
∥∥∥

n∑

k=1

akyjk

∥∥∥
∣∣∣∣ < εn .The limit ‖∑n

k=1 akẽk‖ we obtain for ea
h �nite sequen
e (a1, . . . , an) ∈ [−1, 1]nleads to the sequen
e ẽ1, ẽ2, . . ., and the Bana
h spa
e generated by ẽ1, ẽ2, . . . is
alled a spreading model of X. The notion of spreading models was generalised(e.g., using the Milliken-Taylor Theorem) and investigated by Halbeisenand Odell in [20℄.Another example is due to Gowers [11, 12℄ (see also Todor£evi¢ [40, Se
tion 2.3℄),who dis
overed the long sought Blo
k Ramsey Theorem�a genuinely newRamsey-type result � for Bana
h spa
es, whi
h he used to prove his famousDi
hotomy Theorem (see also Gowers [13, Se
tion 5℄ or Odell [29℄): EveryBana
h spa
e X 
ontains a subspa
e Y whi
h either has an un
onditional ba-sis or is hereditarily inde
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3The Axioms of Zermelo-Fraenkel Set Theory
Every mathemati
al s
ien
e relies upon demon-stration rather than argument and opinion. Cer-tain prin
iples, 
alled premises, are granted, anda demonstration is made whi
h resolves everythingeasily and 
learly. To arrive at su
h a demonstra-tion the means must be found for making it a

essi-ble to our judgment. Mathemati
ians, understand-ing this, devised signs, not separate from matterex
ept in essen
e, yet distant from it. These werepoints, lines, planes, solids, numbers, and 
ount-less other 
hara
ters, whi
h are depi
ted on paperwith 
ertain 
olours, and they used these in pla
eof the things symbolised. Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558Why Axioms ?In the middle and late 19th 
entury, members of the then small mathemat-i
al 
ommunity began to look for a rigorous foundation of Mathemati
s. Ina

ordan
e with the Eu
lidean model for reason, the ideal foundation 
on-sists of a few simple, 
lear prin
iples, so-
alled axioms, on whi
h the rest ofknowledge 
an be built via �rm and reliable thoughts free of 
ontradi
tions.However, at the time it was not 
lear what assumptions should be made andwhat operations should be allowed in mathemati
al reasoning.At the beginning of the last book of Politeia, Plato develops his theoryof ideas. Translated into the mathemati
al setting, Plato's theory of ideasreads as follows: Even though there may be more than one human approa
hto Mathemati
s, there is only one idea of Mathemati
s (i.e., a unique math-emati
al world), and from this idea alone we 
an attain real knowledge� all



30 3 The Axioms of Zermelo-Fraenkel Set Theoryhuman approa
hes are just opinions. In parti
ular, the mathemati
al worldalready exists and is just waiting to be dis
overed. So, from a Platoni
 pointof view it would make sense to sear
h for the unique set of true axioms forSet Theory� also be
ause the axioms of Set Theory are supposed to des
ribethe world of �real� Mathemati
s.However, if we 
onsider Set Theory as a mathemati
al dis
ipline, then,like in any other �eld of Mathemati
s, there is no true axiom system, andmoreover, we are even allowed to weaken the axioms or to extend them byadditional assumptions in order to get weaker or stronger theories. This isdone for example in Group Theory in order to study semigroups or monoids,or to fo
us on abelian groups.It is often the 
ase that a mathemati
al theory is developed long beforeits formal axiomatisation, and in rare instan
es, mathemati
al theories werealready partially developed before mathemati
ians were aware of them, whi
hhappened with Group Theory: Around the year 1600 in England it was dis-
overed that by altering the �ttings around ea
h bell in a bell tower, it waspossible for ea
h ringer to maintain pre
ise 
ontrol of when his (there were nofemale ringers then) bell sounded. This enabled the ringers to ring the bellsin any parti
ular order, and either maintain that order or permute the orderin a pre
ise way. (For te
hni
al reasons, not every permutation is allowed. Infa
t, just produ
ts of mutually disjoint elementary transpositions may be used,that means that two bells 
an ex
hange their pla
es only if they are adja
entlyrung before-hand.) So, in the �rst half of the 17th 
entury the ringers tried to
ontinuously 
hange the order of the bells for as long as possible, while notrepeating any parti
ular order, and return to rounds at the end. This gameevolved into a 
hallenge to ring the bells in every possible order, without anyrepeats, and return to rounds at the end. Thus, bell-ringers began to investi-gate permutations and Stedman's work Campanologia (Cambridge, 1677) 
anfairly be said to be the �rst work in whi
h Group Theory was su

essfullyapplied to a �musi
al� situation and 
onsequently, Stedman 
an be regardedas the �rst group theorist. This also shows that permutations� the proto-type of �nite groups�were �rst studied in the 17th 
entury in the 
ontextof the 
hange-ringing, and therefore had a pra
ti
al appli
ation long beforethey were used in Lagrange's work of 1770�1771 on the theory of algebrai
equations.Let us now turn ba
k to Set Theory. The history of Set Theory is ratherdi�erent from the history of most other areas of Mathemati
s. Usually a longpro
ess 
an be tra
ed in whi
h ideas evolve until an ultimate �ash of inspira-tion, often by a number of mathemati
ians almost simultaneously, produ
esa dis
overy of major importan
e. Set Theory however is the 
reation of onlyone person, namely of Georg Cantor (1845�1918), who �rst dis
overed thatin�nite sets may have di�erent sizes, i.e., 
ardinalities. In fa
t, the birth ofSet Theory dates to 1873 when Cantor proved that the set of real numbers isun
ountable. Until then, no one envisioned the possibility that in�nities 
omein di�erent sizes, and moreover, mathemati
ians had no use for the a
tual in-



First-order logi
 in a nutshell 31�nite � in 
ontrast to the potential in�nite, as it is introdu
ed by Aristotle inPhysi
s Book III. The di�eren
e between a
tual and potential in�nite is thatthe latter just means �unlimited� or �arbitrarily large� (e.g., there are arbi-trarily large� and therefore arbitrarily many� prime numbers), whereas theformer means that there are in�nite obje
ts whi
h a
tually exist (e.g., thereexists a set 
ontaining all, i.e., in�nitely many, prime numbers). Moreover,Cantor also showed that for every in�nite set, there is a set of larger 
ardinal-ity, whi
h implies that there is no largest set. Cantor never introdu
ed formalaxioms for Set Theory, even though he was ta
itly using most of the axiomsintrodu
ed later by Zermelo and Fraenkel. However, Cantor 
onsidered a setas any 
olle
tion of well-distinguished obje
ts of our mind, whi
h leads di-re
tly to Russell's Paradox: Firstly, the 
olle
tion of all sets is a set whi
his a member of itself. Se
ondly, the set of negative natural numbers is empty,and hen
e 
annot be a member of itself (otherwise, it would not be empty).Now, 
all a set x good if x is not a member of itself and let C be the 
olle
tionof all sets whi
h are good. Is C, as a set, good or not? If C is good, then C isnot a member of itself, but sin
e C 
ontains all sets whi
h are good, C is amember of C, a 
ontradi
tion. Otherwise, if C is a member of itself, then Cmust be good, again a 
ontradi
tion. In order to avoid this paradox we haveto ex
lude the 
olle
tion C from being a set, but then, we have to give reasonswhy 
ertain 
olle
tions are sets and others are not. The axiomati
 way to dothis is des
ribed by Zermelo as follows: Starting with the histori
ally grownSet Theory, one has to sear
h for the prin
iples required for the foundationsof this mathemati
al dis
ipline. In solving the problem we must, on the onehand, restri
t these prin
iples su�
iently to ex
lude all 
ontradi
tions and,on the other hand, take them su�
iently wide to retain all the features of thistheory.The prin
iples, whi
h are 
alled axioms, will tell us how to get new setsfrom already existing ones. In fa
t, most of the axioms of Set Theory are
onstru
tive to some extent, i.e., they tell us how new sets are 
onstru
tedfrom already existing ones and what elements they 
ontain.However, before we state the axioms of Set Theory we would like to intro-du
e informally the formal language in whi
h these axioms will be formulated.First-Order Logi
 in a NutshellFirst-Order Logi
 is the system of Symboli
 Logi
 
on
erned not only to rep-resent the logi
al relations between senten
es or propositions as wholes (likePropositional Logi
), but also to 
onsider their internal stru
ture in termsof subje
t and predi
ate. First-Order Logi
 
an be 
onsider as a kind of lan-guage whi
h is distinguished from higher-order languages in that it does notallow quanti�
ation over subsets of the domain of dis
ourse or other obje
tsof higher type. Nevertheless, First-Order Logi
 is strong enough to formaliseall of Set Theory and thereby virtually all of Mathemati
s. In other words,



32 3 The Axioms of Zermelo-Fraenkel Set TheoryFirst-Order Logi
 is an abstra
t language that in one parti
ular 
ase is thelanguage of Group Theory, and in another 
ase is the language of Set Theory.The goal of this brief introdu
tion to First-Order Logi
 is to illustrate andsummarise some of the basi
 
on
epts of this language and to show how it isapplied to �elds like Group Theory and Peano Arithmeti
 (two theories whi
hwill a

ompany us for a while).Syntax: Formulae, Formal Proofs, and Consisten
yLike any other written language, First-Order Logi
 is based on an alphabet,whi
h 
onsists of the following symbols:(a) Variables su
h as v0, v1, x, y, . . . whi
h are pla
e holders for obje
ts ofthe domain under 
onsideration (whi
h 
an for example be the elementsof a group, natural numbers, or sets).(b) Logi
al operators whi
h are �¬� (not), �∧� (and), �∨� (or), �→� (im-plies), and �↔� (if and only if, abbreviated i� ).(
) Logi
al quanti�ers whi
h are the existential quanti�er �∃� (there is orthere exists) and the universal quanti�er �∀� (for all or for ea
h), wherequanti�
ation is restri
ted to obje
ts only and not to formulae or sets ofobje
ts (but the obje
ts themselves may be sets).(d) Equality symbol �= �, whi
h stands for the parti
ular binary equalityrelation.(e) Constant symbols like the number 0 in Peano Arithmeti
, or the neutralelement e in Group Theory. Constant symbols stand for �xed individualobje
ts in the domain.(f) Fun
tion symbols su
h as ◦ (the operation in Group Theory), or +, · , s(the operations in Peano Arithmeti
), Fun
tion symbols stand for �xedfun
tions taking obje
ts as arguments and returning obje
ts as values.With ea
h fun
tion symbol we asso
iate a positive natural number, its
o-
alled �arity� (e.g., �◦� is a 2-ary or binary fun
tion, and the su

essoroperation �s� is a 1-ary or unary fun
tion).(g) Relation symbols or predi
ate 
onstants (su
h as ∈ in Set Theory)stand for �xed relations between (or properties of) obje
ts in the domain.Again we asso
iate an �arity� with ea
h relation symbol (e.g., �∈� is abinary relation).The symbols in (a)�(d) form the 
ore of the alphabet and are 
alled logi
alsymbols. The symbols in (e)�(g) depend on the spe
i�
 topi
 we are investi-gating and are 
alled non-logi
al symbols. The set of non-logi
al symbolswhi
h are used in order to formalise a 
ertain mathemati
al theory is 
alledthe language of this theory, denoted by L , and formulae whi
h are for-mulated in a language L are usually 
alled L -formulae. For example if weinvestigate groups, then the only non-logi
al symbols we use are �e� and �◦�,thus, L = {e, ◦} is the language of Group Theory.



Syntax: formulae, formal proofs, and 
onsisten
y 33A �rst step towards a proper language is to build words (i.e., terms) withthese symbols.Terms:(T1) Ea
h variable is a term.(T2) Ea
h 
onstant symbol is a term.(T3) If t1, . . . , tn are terms and F is an n-ary fun
tion symbol, then Ft1 · · · tnis a term.It is 
onvenient to use auxiliary symbols like bra
kets in order to make terms,relations, and other expressions easier to read. For example we usually write
F (t1, . . . , tn) rather than Ft1 · · · tn.To some extent, terms 
orrespond to words, sin
e they denote obje
ts of thedomain under 
onsideration. Like real words, they are not statements and
annot express or des
ribe possible relations between obje
ts. So, the nextstep is to build senten
es (i.e., formulae) with these terms.Formulae:(F1) If t1 and t2 are terms, then t1 = t2 is a formula.(F2) If t1, . . . , tn are terms and R is an n-ary relation symbol, then Rt1 · · · tnis a formula.(F3) If ϕ is a formula, then ¬ϕ is a formula.(F4) If ϕ and ψ are formulae, then (ϕ∧ψ), (ϕ∨ψ), (ϕ→ ψ), and (ϕ↔ ψ) areformulae. (To avoid the use of bra
kets one 
ould write these formulaefor example in Polish notation, i.e., ∧ϕψ, ∨ϕψ, et 
etera.)(F5) If ϕ is a formula and x a variable, then ∃xϕ and ∀xϕ are formulae.Formulae of the form (F1) or (F2) are the most basi
 expressions we have,and sin
e every formula is a logi
al 
onne
tion or a quanti�
ation of theseformulae, they are 
alled atomi
 formulae.For binary relations R it is 
onvenient to write xRy instead of R(x, y). Forexample we write x ∈ y instead of ∈(x, y), and we write x /∈ y rather than
¬(x ∈ y).If a formula ϕ is of the form ∃xψ or of the form ∀xψ (for some formula ψ)and x o

urs in ψ, then we say that x is in the range of a logi
al quanti�er. Avariable x o

urring at a parti
ular pla
e in a formula ϕ is either in the rangeof a logi
al quanti�er or it is not in the range of any logi
al quanti�er. In theformer 
ase this parti
ular instan
e of the variable x is bound in ϕ, and inthe latter 
ase it is free in ϕ. Noti
e that it is possible that a 
ertain variableo

urs in a given formula bound as well as free (e.g., in ∃z(x = z)∧∀x(x = y),the variable x is both bound and free, whereas z is just bound and y is justfree). However, one 
an always rename the bound variables o

urring in agiven formula ϕ su
h that ea
h variable in ϕ is either bound or free. Forformulae ϕ, the set of variables o

urring free in ϕ is denoted by free(ϕ). A



34 3 The Axioms of Zermelo-Fraenkel Set Theoryformula ϕ is a senten
e if it 
ontains no free variables (i.e., free(ϕ) = ∅). Forexample ∀x(x = x) is a senten
e but (x = x) is not.Sometimes it is useful to indi
ate expli
itly whi
h variables o

ur free in agiven formula ϕ, and for this we usually write ϕ(x1, . . . , xn) to indi
ate that
{x1, . . . , xn} ⊆ free(ϕ).If ϕ(x) is a formula (i.e., x ∈ free(ϕ)), and t a term, then ϕ(x/t) is theformula we get after repla
ing all free instan
es of x by t. A so-
alled substi-tution ϕ(x/t) is admissible i� no free o

urren
e of x in ϕ is in the rangeof a quanti�er that binds any variable 
ontained in t (i.e., for ea
h variable vappearing in t, no pla
e where x o

urs free in ϕ is in the range of �∃v� or�∀v�).So far we have letters, and we 
an build words and senten
es. However,these senten
es are just strings of symbols without any inherent meaning.Later we shall interpret formulae in the intuitively natural way by giving thesymbols the intended meaning (e.g., �∧� meaning �and�, �∀x� meaning �forall x�, et 
etera). But before we shall do so, let us stay a little bit longeron the synta
ti
al side � nevertheless, one should 
onsider the formulae alsofrom a semanti
al point of view.Below we shall label 
ertain formulae or types of formulae as axioms,whi
h are used in 
onne
tion with inferen
e rules in order to derive furtherformulae. From a semanti
al point of view we 
an think of axioms as �true�statements from whi
h we dedu
e or prove further results. We distinguishtwo types of axioms, namely logi
al axioms and non-logi
al axioms (whi
hwill be dis
ussed later). A logi
al axiom is a senten
e or formula ϕ whi
his universally valid (i.e., ϕ is true in any possible universe, no matter howthe variables, 
onstants, et 
etera, o

urring in ϕ are interpreted). Usuallyone takes as logi
al axioms some minimal set of formulae that is su�
ient forderiving all universally valid formulae (su
h a set is given below).If a symbol is involved in an axiom whi
h stands for an arbitrary relation,fun
tion, or even for a �rst-order formula, then we usually 
onsider the state-ment as an axiom s
hema rather than a single axiom, sin
e ea
h instan
e ofthe symbol represents a single axiom. The following list of axiom s
hemata isa system of logi
al axioms.Let ϕ, ϕ1, ϕ2, and ψ, be arbitrary �rst-order formulae:L1 : ϕ→ (ψ → ϕ)L2 : (

ψ → (ϕ1 → ϕ2)
)
→

(
(ψ → ϕ1) → (ψ → ϕ2)

)L3 : (ϕ ∧ ψ) → ϕL4 : (ϕ ∧ ψ) → ψL5 : ϕ→
(
ψ → (ψ ∧ ϕ)

)L6 : ϕ→ (ϕ ∨ ψ)L7 : ψ → (ϕ ∨ ψ)L8 : (ϕ1 → ϕ3) →
(
(ϕ2 → ϕ3) →

(
(ϕ1 ∨ ϕ2) → ϕ3

))L9 : (ϕ→ ψ) →
(
(ϕ→ ¬ψ) → ¬ϕ

)



Syntax: formulae, formal proofs, and 
onsisten
y 35L10: ¬ϕ→ (ϕ→ ψ)L11: ϕ ∨ ¬ϕIf t is a term and the substitution ϕ(x/t) is admissible, then:L12: ∀xϕ(x) → ϕ(t)L13: ϕ(t) → ∃xϕ(x)If ψ is a formula su
h that x /∈ free(ψ), then:L14: ∀x
(
ψ → ϕ(x)

)
→

(
ψ → ∀xϕ(x)

)L15: ∀x
(
ϕ(x) → ψ

)
→

(
∃xϕ(x) → ψ

)What is not 
overed yet is the symbol �= �, so, let us have a 
loser look atthe binary equality relation. The de�ning properties of equality 
an alreadybe found in Book VII, Chapter 1 of Aristotle's Topi
s, where one of the rulesto de
ide whether two things are the same is as follows: . . . you should lookat every possible predi
ate of ea
h of the two terms and at the things of whi
hthey are predi
ated and see whether there is any dis
repan
y anywhere. Foranything whi
h is predi
ated of the one ought also to be predi
ated of the other,and of anything of whi
h the one is a predi
ate the other also ought to be apredi
ate.In our formal system, the binary equality relation is de�ned by the follow-ing three axioms.If t, t1, . . . , tn, t′1, . . . , t′n are any terms, R an n-ary relation symbol (e.g., thebinary relation symbol �= �), and F an n-ary fun
tion symbol, then:L16: t = tL17: (
t1 = t′1 ∧ · · · ∧ tn = t′n

)
→

(
R(t1, . . . , tn) → R(t′1, . . . , t

′
n)
)L18: (

t1 = t′1 ∧ · · · ∧ tn = t′n
)
→

(
F (t1, . . . , tn) = F (t′1, . . . , t

′
n)
)Finally, we de�ne the logi
al operator �↔� by stipulating

ϕ↔ ψ ⇐⇒ (ϕ→ ψ) ∧ (ψ → ϕ) ,i.e., ϕ↔ ψ is just an abbreviation for (ϕ→ ψ) ∧ (ψ → ϕ).This 
ompletes the list of our logi
al axioms. In addition to these axioms, weare allowed to state arbitrarily many theory-spe
i�
 assumptions, so-
allednon-logi
al axioms. Su
h axioms are for example the three axioms of GroupTheory, denoted GT, or the axioms of Peano Arithmeti
, denoted PA.GT: The language of Group Theory is LGT = {e, ◦ }, where �e� is a 
onstantsymbol and �◦� is a binary fun
tion symbol.GT0: ∀x∀y∀z
(
x◦(y◦z) = (x◦y)◦z

) (i.e., �◦� is asso
iative)GT1: ∀x(e◦x = x) (i.e., �e� is a left-neutral element)GT2: ∀x∃y(y◦x = e) (i.e., every element has a left-inverse)



36 3 The Axioms of Zermelo-Fraenkel Set TheoryPA: The language of Peano Arithmeti
 is LPA = {0, s,+, · }, where �0� is a
onstant symbol, �s� is a unary fun
tion symbol, and �+� and � · � are binaryfun
tion symbols.PA1: ∀x
(s(x) 6= 0)PA2: ∀x∀y

(s(x) = s(y) → x = y
)PA3: ∀x(x + 0 = x)PA4: ∀x∀y

(
x+ s(y) = s(x+ y)

)PA5: ∀x(x · 0 = 0)PA6: ∀x∀y
(
x · s(y) = (x · y) + x

)If ϕ is any LPA-formula with x ∈ free(ϕ), then:PA7: (
ϕ(0) ∧ ∀x

(
ϕ(x) → ϕ(s(x)))) → ∀xϕ(x).It is often 
onvenient to add 
ertain de�ned symbols to a given languageso that the expressions get shorter or at least are easier to read. For ex-ample in Peano Arithmeti
 � whi
h is an axiomati
 system for the naturalnumbers� we usually repla
e the expression s(0) with 1 and 
onsequentlys(x) by x + 1. Probably, we would like to introdu
e an ordering �<� on thenatural numbers. We 
an do this by stipulating1 := s(0) , x < y ⇐⇒ ∃z

(
(x + z) + 1 = y

)
.We usually use � :=� to de�ne 
onstants or fun
tions, and �⇐⇒� to de�nerelations. Obviously, all that 
an be expressed in the language LPA ∪ {1, <}
an also be expressed in LPA.So far we have a set of logi
al and non-logi
al axioms in a 
ertain languageand 
an de�ne, if we wish, as many new 
onstants, fun
tions, and relationsas we like. However, we are still not able to dedu
e anything from the givenaxioms, sin
e we have neither inferen
e rules nor the notion of formal proof.Surprisingly, just two inferen
e rules are su�
ient, namely:Modus Ponens: ϕ→ ψ, ϕ

ψ
and Generalisation: ϕ

∀xϕIn the former 
ase we say that ψ is obtained from ϕ → ψ and ϕ by ModusPonens, and in the latter 
ase we say that ∀xϕ (where x 
an be any variable)is obtained from ϕ by Generalisation.Using these two inferen
e rules, we are able to de�ne the notion of formalproof : Let T be a possibly empty set of non-logi
al axioms (usually senten
es),formulated in a 
ertain language L . An L -formula ψ is provable from T (orprovable in T), denoted T ⊢ ψ, if there is a �nite sequen
e ϕ1, . . . , ϕn of L -formulae su
h that ϕn is equal to ψ (i.e., the formulae ϕn and ψ are identi
al),and for all i with 1 ≤ i ≤ n we have:
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• ϕi is a logi
al axiom, or
• ϕi ∈ T, or
• there are j, k < i su
h that ϕj is equal to the formula ϕk → ϕi, or
• there is a j < i su
h that ϕi is equal to the formula ∀xϕj .If a formula ψ is not provable in T, i.e., if there is no formal proof for ψwhi
h uses just formulae from T, then we write T 0 ψ.Formal proofs, even of very simple statements, 
an get quite long andtri
ky. So, before we give an example of a formal proof, let us state a theoremwhi
h allows us to simplify formal proofs:Theorem 3.1 (Dedu
tion Theorem). If {ψ1, . . . , ψn} ∪ {ϕ1, . . . , ϕk} ⊢
ϕ, where Generalisation is not applied to the free variables of the formulae
ϕ1, . . . , ϕk (e.g., if these formulae are senten
es), then

{ψ1, . . . , ψn} ⊢
(
ϕ1 ∧ . . . ∧ ϕk

)
→ ϕ .Now, as an example of a formal proof let us show the equality relation issymmetri
. We �rst work with Tx=y, 
onsisting only of the formula x = y,and show that Tx=y ⊢ y = x, in other words we show that {x = y} ⊢ y = x :

ϕ1: (x = y ∧ x = x) → (x = x→ y = x) instan
e of L17

ϕ2: (x = y ∧ x = x) → x = x instan
e of L4

ϕ3: ϕ1 →
(
ϕ2 →

(
(x = y ∧ x = x) → y = x

)) instan
e of L2

ϕ4: ϕ2 →
(
(x = y ∧ x = x) → y = x

) from ϕ3 and ϕ1by Modus Ponens
ϕ5: (x = y ∧ x = x) → y = x from ϕ4 and ϕ2by Modus Ponens
ϕ6: x = x instan
e of L16

ϕ7: x = y (x = y) ∈ Tx=y
ϕ8: x = x→

(
x = y → (x = y ∧ x = x)

) instan
e of L5

ϕ9: x = y → (x = y ∧ x = x) from ϕ8 and ϕ6by Modus Ponens
ϕ10: x = y ∧ x = x from ϕ9 and ϕ7by Modus Ponens
ϕ11: y = x from ϕ5 and ϕ9by Modus PonensThus, we have {x = y} ⊢ y = x, and by the Dedu
tion Theorem 3.1 weget that ⊢ x = y → y = x, and �nally, by Generalisation we get

⊢ ∀x∀y(x = y → y = x) .



38 3 The Axioms of Zermelo-Fraenkel Set TheoryWe leave it as an exer
ise to the reader to show that the equality relationis also transitive, and sin
e the equality relation is also re�exive (by L16), itis an equivalen
e relation.Furthermore, we say that two formulae ϕ and ψ are equivalent, denoted
ϕ ≡ ψ, if ⊢ ϕ ↔ ψ. In other words, if ϕ ≡ ψ, then� from a logi
al point ofview� ϕ and ψ state exa
tly the same, and therefore we 
ould 
all ϕ ↔ ψa tautology, whi
h means saying the same thing twi
e. However, in Logi
, aformula ϕ is a tautology if ⊢ ϕ. Thus, the formulae ϕ and ψ are equivalentif and only if ϕ↔ ψ is a tautology.A few examples:
• ϕ∨ψ ≡ ψ∨ϕ , ϕ∧ψ ≡ ψ∧ϕ This shows that �∨� and �∧� are 
ommutative(up to equivalen
e). Moreover, �∨� and �∧� are (up to equivalen
e) alsoasso
iative� a fa
t whi
h we ta
itly used already.
• ¬¬ϕ ≡ ϕ , (ϕ ∨ ψ) ≡ ¬(¬ϕ ∧ ¬ψ) This shows for example how �∨� 
anbe repla
ed with �¬� and �∧�.
• (ϕ → ψ) ≡ (¬ϕ ∨ ψ) This shows how the logi
al operator �→� 
an berepla
ed with �¬� and �∨�.
• ∀xϕ ≡ ¬∃x¬ϕ This shows how �∀� 
an be repla
ed with �¬� and �∃�.Thus, some of the logi
al operators are redundant and we 
ould work forexample with just �¬�, �∧�, and �∃�. However, it is more 
onvenient to use allof them.Let T be a set of L -formulae. We say that T is 
onsistent, denoted Con(T),if there is no L -formula ϕ su
h that T ⊢ (ϕ ∧ ¬ϕ), otherwise T is 
alledin
onsistent, denoted ¬Con(T).Proposition 3.2. Let T be a set of L -formulae.(a) If ¬Con(T), then for every L -formula ψ we have T ⊢ ψ.(b) If Con(T) and T ⊢ ϕ for some L -formula ϕ, then T 0 ¬ϕ.Proof. (a) Let ψ be any L -formula and assume that T ⊢ (ϕ ∧ ¬ϕ) for some
L -formula ϕ. Then T ⊢ ψ:

ϕ1: ϕ ∧ ¬ϕ provable from T by assumption
ϕ2: (ϕ ∧ ¬ϕ) → ϕ instan
e of L3

ϕ3: ϕ from ϕ2 and ϕ1 by Modus Ponens
ϕ4: (ϕ ∧ ¬ϕ) → ¬ϕ instan
e of L4

ϕ5: ¬ϕ from ϕ4 and ϕ1 by Modus Ponens
ϕ6: ¬ϕ → (ϕ→ ψ) instan
e of L10

ϕ7: ϕ → ψ from ϕ6 and ϕ5 by Modus Ponens
ϕ8: ψ from ϕ7 and ϕ3 by Modus Ponens



Semanti
s: models, 
ompleteness, and independen
e 39(b) Assume that T ⊢ ϕ and T ⊢ ¬ϕ. Then T ⊢ (ϕ ∧ ¬ϕ), i.e., ¬Con(T):
ϕ1: ϕ provable from T by assumption
ϕ2: ¬ϕ provable from T by assumption
ϕ3: ϕ→

(
¬ϕ → (ϕ ∧ ¬ϕ)

) instan
e of L5

ϕ4: ¬ϕ→ (ϕ ∧ ¬ϕ) from ϕ3 and ϕ1 by Modus Ponens
ϕ5: ϕ ∧ ¬ϕ from ϕ4 and ϕ2 by Modus Ponens

⊣Noti
e that Proposition 3.2.(a) implies that from an in
onsistent set of ax-ioms T one 
an prove everything and T would be 
ompletely useless. So, if wedesign a set of axioms T, we have to make sure that T is 
onsistent. However,as we shall see later, in many 
ases this task is impossible.Semanti
s: Models, Completeness, and Independen
eLet T be any set of L -formulae (for some languageL ). There are two di�erentways to approa
h T, namely the synta
ti
al and the semanti
al way. The abovepresented synta
ti
al approa
h 
onsiders the set T just as a set of well-formedformulae� regardless of their intended sense or meaning� from whi
h we
an prove some other formulae.On the other hand, we 
an 
onsider T also from a semanti
al point of viewby interpreting the symbols of the language L in a reasonable way, and thenseeking for a model in whi
h all formulae of T are true. To be more pre
ise,we �rst have to de�ne how models are built and what �true� means:Let L be an arbitrary but �xed language. An L -stru
ture A 
onsists ofa (non-empty) set or 
olle
tion A, 
alled the domain of A, together with amapping whi
h assigns to ea
h 
onstant symbol c ∈ L an element cA of A, toea
h n-ary relation symbol R ∈ L a set of n-tuples RA of elements of A, andto ea
h n-ary fun
tion symbol F ∈ L a fun
tion FA from n-tuples of A to
A. Further, the interpretation of variables is given by a so-
alled assignment:An assignment in an L -stru
ture A is a mapping j whi
h assigns to ea
hvariable an element of the domain A. Finally, an L -interpretation I is a pair
(A, j) 
onsisting of an L -stru
ture A and an assignment j in A. For a variable
x, an element a ∈ A, and an assignment j in A we de�ne the assignment j axby stipulating

j ax (y) =

{
a if y = x,
j(y) otherwise.Further, for an interpretation I = (A, j) let I ax := (A, j ax).



40 3 The Axioms of Zermelo-Fraenkel Set TheoryWe asso
iate with every interpretation I = (A, j) and every term t anelement I(t) from the domain A as follows:
• For a variable x let I(x) := j(x).
• For a 
onstant symbol c ∈ L let I(c) := cA.
• For an n-ary fun
tion symbol F ∈ L and terms t1, . . . , tn let

I
(
F (t1, . . . , tn)

)
:= FA

(
I(t1), . . . , I(tn)

)
.Now, we are able to de�ne pre
isely the notion of a formula ϕ being trueunder an interpretation I = (A, j), in whi
h 
ase we write I � ϕ and say that

ϕ holds in I. The de�nition is by indu
tion on the 
omplexity of the formula
ϕ (where it is enough to 
onsider formulae 
ontaining� besides terms andrelations� just the logi
al operators �¬� and �∧�, and the logi
al quanti�er�∃�):
• If ϕ is of the form t1 = t2, then

I � t1 = t2 ⇐⇒ I(t1) is the same element as I(t2) .
• If ϕ is of the form R(t1, . . . , tn), then

I � R(t1, . . . , tn) ⇐⇒
(
I(t1), . . . , I(tn)

) belongs to RA .
• If ϕ is of the form ¬ψ, then

I � ¬ψ ⇐⇒ it is not the 
ase that I � ψ .
• If ϕ is of the form ∃xψ, then

I � ∃xψ ⇐⇒ there is an element a ∈ A su
h that I ax � ψ .
• If ϕ is of the form ψ1 ∧ ψ2, then

I � ψ1 ∧ ψ2 ⇐⇒ I � ψ1 and I � ψ2 .Noti
e that sin
e the domain of I is non-empty we always have I � ∃x(x = x).Now, let T be an arbitrary set of L -formulae. Then an L -stru
ture A is amodel of T if for every assignment j in A and for ea
h formula ϕ ∈ T wehave (A, j) � ϕ, i.e., ϕ holds in the L -interpretation I = (A, j). We usuallydenote models by bold letters like M, N, V, et 
etera. Instead of saying �Mis a model of T� we just write M � T. If ϕ fails in M, then we write M 2 ϕ,whi
h is equivalent to M � ¬ϕ (this is be
ause for any L -formula ϕ we haveeither M � ϕ or M � ¬ϕ).For example S7 (i.e., the set of all permutations of seven di�erent items) isa model of GT, where the interpretation of the binary operation is 
ompositionand the neutral element is interpreted as the identity permutation. In this 
ase,the elements of the domain of S7 
an be real and 
an even be heard, namely
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e 41when the seven items are seven bells and a peal of for example StedmanTriples 
onsisting of all 5040 permutations of the seven bells is rung�whi
hhappens quite often, sin
e Stedman Triples are very popular with 
hange-ringers. However, the obje
ts of models of mathemati
al theories usually donot belong to our physi
al world and are not more real than for example thenumber zero or the empty set.The following two theorems, whi
h we state without proofs, are the main
onne
tions between the synta
ti
al and the semanti
al approa
h to �rst-ordertheories. On the one hand, the Soundness Theorem 3.3 just tells us thatour dedu
tion system is sound, i.e., if a senten
e ϕ is provable from T then
ϕ is true in ea
h model of T. On the other hand, Gödel's CompletenessTheorem 3.4 tells us that our dedu
tion system is even 
omplete, i.e., everysenten
e whi
h is true in all models of T is provable from T. As a 
onsequen
ewe get that T ⊢ ϕ if and only if ϕ is true in ea
h model of T. In parti
ular, ifT is empty, this implies that every tautology (i.e., universally valid formula)is provable.Theorem 3.3 (Soundness Theorem). Let T be a set of L -senten
es andlet ϕ be any L -senten
e. If T ⊢ ϕ, then in any model M su
h that M � Twe have M � ϕ.Theorem 3.4 (Gödel's Completeness Theorem). Let T be a set of L -senten
es and let ϕ be any L -senten
e. Then T ⊢ ϕ or there is a model Msu
h that M � T ∪ {¬ϕ}. In other words, if for every model M � T we have
M � ϕ, then T ⊢ ϕ. (Noti
e that this does not imply the existen
e of a modelof T.)One of the main 
onsequen
es of Gödel's Completeness Theorem 3.4is that formal proofs� whi
h are usually quite long and involved� 
an berepla
ed with informal ones: Let T be a 
onsistent set of L -formulae and let
ϕ be any L -senten
e. Then, by Gödel's Completeness Theorem 3.4, inorder to show that T ⊢ ϕ it is enough to show that M � ϕ whenever M � T.In fa
t, we would take an arbitrary model M of T and show that M � ϕ.As an example let us show that GT ⊢ (y◦x = e) → (x◦y = e): Firstly, let
G be a model of GT, with domain G, and let x and y be any elements of G. ByGT2 we know that every element of G has a left-inverse. In parti
ular, y hasa left-inverse, say ȳ, and we have ȳ◦y = e. By GT1 we have x◦y = (ȳ◦y)◦(x◦y),and by GT0 we get (ȳ◦y)◦(x◦y) = ȳ◦

(
(y◦x)◦y

). Now, if y◦x = e, then we have
x◦y = ȳ◦y and 
onsequently we get x◦y = e. Noti
e that we ta
itly used thatthe equality relation is symmetri
 and transitive.We leave it as an exer
ise to the reader to �nd the 
orresponding formalproof of this basi
 result in Group Theory. In a similar way one 
an showthat every left-neutral element is also a right-neutral element (
alled neutralelement) and that there is just one neutral element in a group.The following result, whi
h is a 
onsequen
e of Gödel's CompletenessTheorem 3.4, shows that every 
onsistent set of formulae has a model.



42 3 The Axioms of Zermelo-Fraenkel Set TheoryProposition 3.5. Let T be any set of L -formulae. Then Con(T) if and onlyif T has a model.Proof. (⇒) If T has no model, then, by Gödel's Completeness Theo-rem 3.4, for every L -formula ψ we have T ⊢ ψ (otherwise, there would be amodel of T ∪ {¬ψ}, and in parti
ular for T). So, for ψ being ϕ ∧ ¬ϕ we getT ⊢ (ϕ ∧ ¬ϕ), hen
e T is in
onsistent.(⇐) If T is in
onsistent, then, by Proposition 3.2.(a), for every L -formula ψwe have T ⊢ ψ, in parti
ular, T ⊢ ϕ∧¬ϕ. Now, the Soundness Theorem 3.3implies that in all models M � T we have M � ϕ ∧ ¬ϕ; thus, there are nomodels of T. ⊣A set of senten
es T is usually 
alled a theory. A 
onsistent theory T (in a
ertain language L ) is said to be 
omplete if for every L -senten
e ϕ, eitherT ⊢ ϕ or T ⊢ ¬ϕ. If T is not 
omplete, we say that T is in
omplete.The following result is an immediate 
onsequen
e of Proposition 3.5.Corollary 3.6. Every 
onsistent theory is 
ontained in a 
omplete theory.Proof. Let T be a theory in the language L . If T is 
onsistent, then it has amodel, say M. Now let T be the set of all L -senten
es ϕ su
h that M � ϕ.Obviously, T is a 
omplete theory whi
h 
ontains T. ⊣Let T be a set of L -formulae and let ϕ be any L -formula not 
ontainedin T. ϕ is said to be 
onsistent relative to T (or that ϕ is 
onsistentwith T) if Con(T) implies Con(T∪{ϕ}) (later we usually write T+ϕ insteadof T ∪ {ϕ}). If both ϕ and ¬ϕ are 
onsistent with T, then ϕ is said to beindependent of T. In other words, if Con(T), then ϕ is independent of T ifneither T ⊢ ϕ nor T ⊢ ¬ϕ. By Gödel's Completeness Theorem 3.4 weget that if Con(T) and ϕ is independent of T, then there are models M1 and
M2 of T su
h that M1 � ϕ and M2 � ¬ϕ. A typi
al example of a statementwhi
h is independent of GT is ∀x∀y(x◦y = y◦x) (i.e., the binary operation is
ommutative), and indeed, there are abelian as well as non-abelian groups.In order to prove that a 
ertain statement ϕ is independent of a given(
onsistent) theory T, one 
ould try to �nd two di�erent models of T su
hthat ϕ holds in one model and fails in the other. However, this task is quitedi�
ult, in parti
ular if one 
annot prove that T has a model at all (as ithappens for Set Theory).Limits of First-Order Logi
We begin this se
tion with a useful result, 
alled Compa
tness Theorem.On the one hand, it is just a 
onsequen
e of the fa
t that formal proofs are�nite (i.e., �nite sequen
es of formulae). On the other hand, the Compa
t-ness Theorem is the main tool to prove that a 
ertain senten
e (or a set ofsenten
es) is 
onsistent with a given theory. In parti
ular, the Compa
tness
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 43Theorem is impli
itly used in every set-theoreti
 
onsisten
y proof whi
h isobtained by for
ing (for details see Chapter 16).Theorem 3.7 (Compa
tness Theorem). Let T be an arbitrary set of L -formulae. Then T is 
onsistent if and only if every �nite subset Φ of T is
onsistent.Proof. Obviously, if T is 
onsistent, then every �nite subset Φ of T must be
onsistent. On the other hand, if T is in
onsistent, then there is a formula ϕsu
h that T ⊢ ϕ∧¬ϕ. In other words, there is a proof of ϕ∧¬ϕ from T. Now,sin
e every proof is �nite, there are only �nitely many formulae of T involvedin this proof, and if Φ is this �nite set of formulae, then Φ ⊢ ϕ ∧ ¬ϕ, whi
hshows that Φ, a �nite subset of T, is in
onsistent. ⊣A simple appli
ation of the Compa
tness Theorem 3.7 shows that if PAis 
onsistent, then there is more than one model of PA (i.e., beside the in-tended model of natural numbers with domain N, there are also so-
allednon-standard models of PA with larger domains):Firstly we extend the language LPA = {0, s,+, · } by adding a new 
onstantsymbol n. Se
ondly we extend PA by adding the formulaen 6= 0︸ ︷︷ ︸
ϕ0

, n 6= s(0)︸ ︷︷ ︸
ϕ1

, n 6= s(s(0))
︸ ︷︷ ︸

, . . .

ϕ2and let Ψ be the set of these formulae. Now, if PA has a model N with domainsay N, and Φ is any �nite subset of Ψ, then, by interpreting n in a suitableway,N is also a model of PA∪Φ, whi
h implies that PA∪Φ is 
onsistent. Thus,by the Compa
tness Theorem 3.7, PA ∪ Ψ is also 
onsistent and thereforehas a model, say Ñ. Now, Ñ � PA ∪ Ψ, but sin
e n is di�erent from everystandard natural number of the form s(s(. . . s(0) . . .)), the domain of Ñ mustbe essentially di�erent from N (sin
e it 
ontains a kind of in�nite number,whereas all standard natural numbers are �nite).This example shows that we 
annot axiomatise Peano Arithmeti
 in First-Order Logi
 in su
h a way that all the models we get have essentially the samedomain N.By Proposition 3.5 we know that a set of �rst-order formulae T is 
onsistentif and only if it has a model, i.e., there is a model M su
h that M � T. So,in order to prove for example that the axioms of Set Theory are 
onsistentwe only have to �nd a single model in whi
h all these axioms hold. However,as a 
onsequen
e of the following theorems�whi
h we state again withoutproof� this turns out to be impossible (at least if one restri
ts oneself tomethods formalisable in Set Theory).Theorem 3.8 (Gödel's In
ompleteness Theorem). Let T be a 
onsis-tent set of �rst-order L -formulae whi
h is su�
iently strong to de�ne the
on
ept of natural numbers and to prove 
ertain basi
 arithmeti
al fa
ts (e.g.,



44 3 The Axioms of Zermelo-Fraenkel Set TheoryPA is su
h a theory, but also slightly weaker theories would su�
e). Then thereis always an L -senten
e ϕ whi
h is independent of T, i.e., neither T ⊢ ϕ norT ⊢ ¬ϕ (or in other words, there are models M1 and M2 of T su
h that
M1 � ϕ and M2 � ¬ϕ).In parti
ular we get that there are number-theoreti
 statements whi
h 
anneither be proved nor disproved in PA (i.e., the theory PA is in
omplete).Moreover, the following 
onsequen
e of Gödel's In
ompleteness Theo-rem 3.4 shows that not even the 
onsisten
y of PA 
an be proved with number-theoreti
al methods.Theorem 3.9 (Gödel's Se
ond In
ompleteness Theorem). Let T bea set of �rst-order L -formulae. Then the statement Con(T), whi
h says thatT 0 ϕ ∧ ¬ϕ for some L -formula ϕ, 
an be formulated as a number-theoreti
senten
e ConT. Now, if T is 
onsistent and is su�
iently strong to de�ne the
on
ept of natural numbers and to prove 
ertain basi
 arithmeti
al fa
ts, thenT 0 ConT, i.e., T 
annot prove its own 
onsisten
y. In parti
ular, PA 0 ConPA.On the one hand, Gödel's In
ompleteness Theorem tells us that in anytheory T whi
h is su�
iently strong, there are always statements whi
h areindependent of T (i.e., whi
h 
an neither be proved nor disproved in T). Onthe other hand, statements whi
h are independent of a given theory (e.g.,of Set Theory or of Peano Arithmeti
) are often very interesting, sin
e theysay something unexpe
ted, but in a language we 
an understand. From thispoint of view it is good to have Gödel's In
ompleteness Theorem whi
hguarantees the existen
e of su
h statements in theories like Set Theory orPeano Arithmeti
.In Part II we shall present a te
hnique with whi
h we 
an prove the inde-penden
e of 
ertain set-theoreti
al statements from the axioms of Set Theory,whi
h are introdu
ed and dis
ussed below.The Axioms of Zermelo-Fraenkel Set TheoryIn 1905, Zermelo began to axiomatise Set Theory and in 1908 he publishedhis �rst axiomati
 system 
onsisting of seven axioms. In 1922, Fraenkel andSkolem independently improved and extended Zermelo's original axiomati
system, and the �nal version was presented again by Zermelo in 1930. In this
hapter we give the resulting axiomati
 system 
alled Zermelo-Fraenkel SetTheory, denoted ZF, whi
h 
ontains all axioms of Set Theory ex
ept the Axiomof Choi
e, whi
h will be introdu
ed and dis
ussed in Chapter 5. Alongside theaxioms of Set Theory we develop the theory of ordinals and give variousnotations whi
h will be used throughout this book.The language of Set Theory 
ontains only one non-logi
al symbol, namelythe binary membership relation, denoted by ∈, and there exists just one



Extensionality 45type of obje
ts, namely sets. In other words, every obje
t in the domain isa set and there are no other obje
ts than sets. However, to make life easier,instead of ∈(a, b) we write a ∈ b (or on rare o

asions also b ∋ a) and saythat �a is an element of b�, or that �a belongs to b�. Later we will extendthe language of Set Theory by de�ning some 
onstants (like �∅� and �ω �),relations (like �⊆ �), and operations (like the power set operation �P �), butin fa
t, all that 
an be formulated in Set Theory, 
an be written as a formula
ontaining only the non-logi
al relation �∈� (but for obvious reasons, we willusually not do so).0. The Axiom of Empty Set
∃x∀z(z /∈ x)This axiom not only postulates the existen
e of a set without any elements,i.e., an empty set, it also shows that the set-theoreti
 universe is non-empty,be
ause it 
ontains at least an empty set (of 
ourse, the logi
al axioms L16and L13 already in
orporate this fa
t).1. The Axiom of Extensionality

∀x∀y
(
∀z(z ∈ x↔ z ∈ y) → x = y

)This axiom says that any sets x and y having the same elements are equal.Noti
e that the 
onverse� whi
h is x = y implies that x and y have the sameelements � is just a 
onsequen
e of the logi
al axiom L17.The Axiom of Extensionality also shows that the empty set, postulated bythe Axiom of Empty Set, is unique. For assume that there are two empty sets
x0 and x1, then we have ∀z(z /∈ x0 ∧ z /∈ x1), whi
h implies that ∀z(z ∈ x0 ↔
z ∈ x1), and therefore, x0 = x1.Let us introdu
e the following notation: If ϕ(x) is any �rst-order formulawith free variable x (i.e., x o

urs at a parti
ular pla
e in the formula ϕ whereit is not in the range of any logi
al quanti�er), then

∃!xϕ(x) ⇐⇒ ∃x
(
ϕ(x) ∧ ∀z

(
ϕ(z) → z = x

))With this de�nition we 
an reformulate the Axiom of Empty Set as follows:
∃!x∀z(z /∈ x)and this unique empty set is denoted by ∅.We say that y is a subset of x, denoted y ⊆ x, if ∀z(z ∈ y → z ∈ x).Noti
e that the empty set is a subset of every set. If y is a proper subset of

x, i.e., y ⊆ x and y 6= x, then this is sometimes denoted by y  x.One of the most important 
on
epts in Set Theory is the notion of ordinalnumber, whi
h 
an be seen as a trans�nite extension of the natural numbers.



46 3 The Axioms of Zermelo-Fraenkel Set TheoryIn order to de�ne the 
on
ept of ordinal numbers, we have to give �rst somede�nitions: Let z ∈ x. Then z is 
alled an ∈-minimal element of x, if
∀y(y /∈ z ∨ y /∈ x), or equivalently, ∀y(y ∈ z → y /∈ x). A set x is orderedby ∈ if for any sets y1, y2 ∈ x we have y1 ∈ y2, or y1 = y2, or y1 ∋ y2,but we do not require the three 
ases to be mutually ex
lusive. Now, a set
x is 
alled well-ordered by ∈ if it is ordered by ∈ and every non-emptysubset of x has an ∈-minimal element. Further, a set x is 
alled transitiveif ∀y(y ∈ x → y ⊆ x). Noti
e that if x is transitive and z ∈ y ∈ x, then thisimplies z ∈ x. A set is 
alled an ordinal number, or just an ordinal, if itis transitive and well-ordered by ∈. Ordinal numbers are usually denoted byGreek letters like α, β, γ, λ, et 
etera, and the 
olle
tion of all ordinal numbersis denoted by Ω. We will see later, when we know more properties of ordinals,that Ω is not a set. However, we 
an 
onsider �α ∈ Ω� just as an abbreviationfor �α is an ordinal�, and thus, there is no harm in using the symbol Ω in thisway, even though Ω is not an obje
t of the set-theoreti
 universe.Fa
t 3.10. If α ∈ Ω, then either α = ∅ or ∅ ∈ α.Proof. Sin
e α ∈ Ω, α is well-ordered by ∈. Thus, either α = ∅, or, sin
e
α ⊆ α, α 
ontains an ∈-minimal element, say x0. Now, by transitivity of α,for all z ∈ x0 we have z ∈ α, and sin
e x0 is ∈-minimal we get x0 = ∅. ⊣Noti
e that until now, we 
annot prove the existen
e of any ordinal� or evenof any set � beside the empty set, postulated by the Axiom of Empty Set. Thiswill 
hange with the following axiom.2. The Axiom of Pairing

∀x∀y∃!u
(
u = {x, y}

)where {x, y} denotes the set whi
h 
ontains just the elements x and y. Inorder to write this axiom in a more formal way, let us introdu
e the followingnotation: If ϕ(z) is any �rst-order formula with free variable z, and x is anyset, then
∀z ∈ x

(
ϕ(z)

)
⇐⇒ ∀z

(
(z ∈ x) → ϕ(z)

)
,and similarly

∃z ∈ x
(
ϕ(z)

)
⇐⇒ ∃z

(
(z ∈ x) ∧ ϕ(z)

)
.More formally the Axiom of Pairing reads as follows:

∀x∀y∃u
(
x ∈ u ∧ y ∈ u ∧ ∀z ∈ u(z = x ∨ z = y)

)If in the above formula we set x = y, then u = {x, x}, whi
h is, by theAxiom of Extensionality, the same as {x}. Thus, by the Axiom of Pairing, if
x is a set, then also {x} is a set. Starting with ∅, an iterated appli
ation ofthe Axiom of Pairing yields for example the sets ∅, {∅},

{
{∅}

}
,
{{

{∅}
}}
, . . . ,



Union 47and {
∅, {∅}

}
,
{
{∅},

{
∅, {∅}

}}
, . . . Among these sets, ∅, {∅}, and {

∅, {∅}
} areordinals, but for example {

{∅}
} is not an ordinal.So far, we did not ex
lude the possibility that a set may be an element ofitself, and in fa
t, we need the Axiom of Foundation in order to do so. However,we 
an already show that no ordinal is an element of itself:Fa
t 3.11. If α ∈ Ω, then α /∈ α.Proof. Assume towards a 
ontradi
tion that α ∈ α. Then {α} is a non-emptysubset of α and therefore 
ontains an ∈-minimal element. Now, sin
e {α} just
ontains the element α, the ∈-minimal element of {α} must be α, but on theother hand, α ∈ α implies that α is not ∈-minimal, a 
ontradi
tion. ⊣For any sets x and y, the Axiom of Extensionality implies that {x, y} =

{y, x}. So, it does not matter in whi
h order the elements of a 2-element setare written down. However, with the Axiom of Pairing we 
an easily de�neordered pairs, denoted 〈x, y〉, as follows:
〈x, y〉 =

{
{x}, {x, y}

}Noti
e that 〈x, y〉 = 〈x′, y′〉 i� x = x′ and y = y′, and further noti
e thatthis de�nition also makes sense in the 
ase when x = y�at least as longas we know that {
{x}

} is supposed to denote an ordered pair. By a similartri
k, one 
an also de�ne ordered triples by stipulating for example 〈x, y, z〉 :=〈
x, 〈y, z〉

〉, ordered quadruples, et 
etera, but the notation be
omes hard toread and it requires additional methods to distinguish for example betweenordered pairs and ordered triples. However, when we have more axioms athand we 
an de�ne arbitrary tuples more elegantly.3. The Axiom of Union
∀x∃u∀z

(
z ∈ u↔ ∃w ∈ x (z ∈ w)

)More informally, for all sets x there exists the union of x, denoted ⋃
x, 
on-sisting of all sets whi
h belong to a member of x.For sets x and y, let x∪ y :=

⋃{x, y} denote the union of x and y. Noti
ethat x =
⋃{x}. For x ∪ y, where x and y are disjoint (i.e., do not have any
ommon elements) we sometimes write x ∪̇ y, and for x = {yι : ι ∈ I} wesometimes write ⋃

ι∈I yι instead of ⋃x.Now, with the Axiom of Union and the Axiom of Pairing, and by stipulating
x+1 := x∪{x}, we 
an for example build the following sets (whi
h are in fa
tordinals): 0 := ∅, 1 := 0 + 1 = 0 ∪ {0} = {0}, 2 := 1 + 1 = 1 ∪ {1} = {0, 1},
3 := 2 + 1 = 2 ∪ {2} = {0, 1, 2}, and so on. In parti
ular, if a set x of thistype is already de�ned, we get that x+1 = {0, 1, 2, . . . , x}. This 
onstru
tionleads to the following de�nition:A set x su
h that ∀y(y ∈ x→ (y ∪ {y}) ∈ x

) is 
alled indu
tive. On the one



48 3 The Axioms of Zermelo-Fraenkel Set Theoryhand, ∅ is indu
tive. On the other hand, we 
annot prove the existen
e of anon-empty indu
tive set without the aid of the following axiom.4. The Axiom of In�nity
∃I

(
∅ ∈ I ∧ ∀y ∈ I

(
(y ∪ {y}) ∈ I

))More informally, the Axiom of In�nity postulates the existen
e of a non-emptyindu
tive set 
ontaining ∅. All the sets 0, 1, 2, . . . 
onstru
ted above�whi
hwe re
ognise as natural numbers�must belong to every indu
tive set and infa
t, the �smallest� indu
tive set 
ontains just these sets.5. The Axiom S
hema of SeparationFor ea
h �rst-order formula ϕ(z, p1, . . . , pn) with free(ϕ) ⊆ {z, p1, . . . , pn}, thefollowing formula is an axiom:
∀x∀p1 . . .∀pn∃y∀z

(
z ∈ y ↔

(
z ∈ x ∧ ϕ(z, p1, . . . , pn)

))Informally, for ea
h set x and every �rst-order formula ϕ(z), {z ∈ x : ϕ(z)
}is a set.One 
an think of the sets p1, . . . , pn as parameters of ϕ, whi
h are usuallysome �xed sets. For example for ϕ(z, p) ≡ z ∈ p we get that for any sets xand p there exists a set y su
h that z ∈ y ↔ (z ∈ x ∧ z ∈ p). In other words,for any sets x0 and x1, the 
olle
tion of all sets whi
h belong to both, x0 and

x1, is a set. This set is 
alled the interse
tion of x0 and x1 and is denotedby x0 ∩ x1. In general, for non-empty sets x we de�ne
⋂
x =

{
z ∈ ⋃

x : ∀y ∈ x (z ∈ y)
}whi
h is the interse
tion of all sets whi
h belong to x. (In order to see that⋂

x is a set, let ϕ(z, x) ≡ ∀y ∈ x (z ∈ y) and apply the Axiom S
hemaof Separation to ⋃
x.) Noti
e also that x ∩ y =

⋂{x, y}. Furthermore, for
x = {yι : ι ∈ I} we sometimes write ⋂

ι∈I yι instead of ⋂x. Another exampleis when ϕ(z, p) ≡ z /∈ p. In this 
ase, for p = y, we get that {z ∈ x : z /∈ y} isa set, denoted x \ y, whi
h is 
alled the set-theoreti
 di�eren
e of x and y.Let us now turn ba
k to ordinal numbers:Theorem 3.12. (a) If α, β ∈ Ω, then α ∈ β or α = β or α ∋ β, where thesethree 
ases are mutually ex
lusive.(b) If α ∈ β ∈ Ω, then α ∈ Ω.(
) If α ∈ Ω, then also (
α ∪ {α}

)
∈ Ω.(d) Ω is transitive and is well-ordered by ∈, or more pre
isely, Ω is transitive,is ordered by ∈, and every non-empty 
lass C ⊆ Ω has an ∈-minimal element.



Separation 49Proof. (a) Firstly, noti
e that by Fa
t 3.11 the three 
ases α ∈ β, α = β,
α ∋ β, are mutually ex
lusive.Let α, β ∈ Ω be given. If α = β, then we are done. So, let us assume that
α 6= β. Without loss of generality we may assume that α \ β 6= ∅.We �rst show that α∩β is the ∈-minimal element of α \β: Let γ be an ∈-minimal element of α \β. Sin
e α is transitive and γ ∈ α, ∀u(u ∈ γ → u ∈ α),and sin
e γ is an ∈-minimal element of α \ β, ∀u(u ∈ γ → u ∈ β), whi
himplies γ ⊆ α∩β. On the other hand, if there is a w ∈ (α∩β) \ γ, then, sin
e
α is ordered by ∈ and γ 6= w (γ /∈ β ∋ w), we must have γ ∈ w, and sin
e
β is transitive and w ∈ β, this implies that γ ∈ β, whi
h 
ontradi
ts the fa
tthat γ ∈ (α \ β). Hen
e, γ = α ∩ β is the ∈-minimal element of α \ β. Now, ifalso β \α 6= ∅, then we would get that α∩ β is also the ∈-minimal element of
β \ α, whi
h is obviously a 
ontradi
tion.Thus, α \ β 6= ∅ implies that β \ α = ∅, or in other words, β ⊆ α, whi
h isthe same as saying β = α ∩ β. Consequently we get that β is the ∈-minimalelement of α \ β, in parti
ular, β ∈ α.(b) Let α ∈ β ∈ Ω. Sin
e β is transitive, α is ordered by ∈. So, it remains toshow that α is transitive and well-ordered by ∈.well-ordered by ∈ : Be
ause β is transitive, every subset of α is also a subsetof β and 
onsequently 
ontains an ∈-minimal element.transitive: Let δ ∈ γ ∈ α. We have to show that δ ∈ α. Sin
e β is transitive,
δ ∈ β, and sin
e β is ordered by ∈, we have either δ ∈ α or δ = α or α ∈ δ. If
δ ∈ α, we are done, and if δ = α or α ∈ δ, then the set {α, γ, δ} ⊆ β does nothave an ∈-minimal element, whi
h 
ontradi
ts the fa
t that β is well-orderedby ∈.(
) We have to show that α ∪ {α} is transitive and well-ordered by ∈.transitive: If β ∈ (α ∪ {α}), then either β ∈ α or β = α, and in both 
ases wehave β ⊆ (α ∪ {α}).well-ordered by ∈ : Sin
e α is an ordinal, α ∪ {α} is ordered by ∈. Let now
x ⊆ (α ∪ {α}) be a non-empty set. If x = {α}, then α is obviously an ∈-minimal element of x. Otherwise, x ∩ α 6= ∅, and sin
e α ∈ Ω, x ∩ α has an
∈-minimal element, say γ. Sin
e α is transitive we have x∩ γ = ∅ (otherwise,
γ would not be ∈-minimal in x ∩ α), whi
h implies that γ is ∈-minimal in x.(d)Ω is transitive and ordered by ∈ : This is part (b) and part (a) respe
tively.
Ω is well-ordered by ∈ : Let C ⊆ Ω be a non-empty 
lass of ordinals. If C = {α}for some α ∈ Ω, then α is the ∈-minimal element of C. Otherwise, C 
ontainsan ordinal δ0 su
h that δ0 ∩ C 6= ∅ and let x := δ0 ∩ C. Then x is a non-empty set of ordinals. Now, let α ∈ x and let γ be an ∈-minimal elementof x ∩ (α ∪ {α}). By de�nition, γ ∈ (α ∪ {α}), and sin
e (α ∪ {α}) ∈ Ω,
γ ⊆ (α ∪ {α}). Thus, every ordinal γ′ ∈ γ belongs to α ∪ {α}, but by thede�nition of γ, γ′ 
annot belong to x∩ (α∪ {α}), whi
h implies that γ is also
∈-minimal in x, and 
onsequently in C. ⊣



50 3 The Axioms of Zermelo-Fraenkel Set TheoryBy Theorem 3.12.(d) we get that Ω is transitive and well-ordered by ∈.Thus, if Ω would be a set, Ω would be an ordinal number and therefore wouldbelong to itself, but this is a 
ontradi
tion to Fa
t 3.11.In general, a 
olle
tion of sets, satisfying for example a 
ertain formula,whi
h is not ne
essarily a set is 
alled a 
lass. For example Ω is a 
lass whi
his not a set (it 
onsists of all transitive sets whi
h are well-ordered by ∈).Even though proper 
lasses (i.e., 
lasses whi
h are not sets) do not belongto the set-theoreti
 universe, it is sometimes 
onvenient to handle them likesets, e.g., taking interse
tions or extra
ting 
ertain subsets or sub
lasses fromthem.ByTheorem 3.12.(
) we know that if α ∈ Ω, then also (α∪{α}) ∈ Ω. Now,for ordinals α ∈ Ω let α+1 := α∪{α}. Part (a) of the following result � whi
his just a 
onsequen
e of Theorem 3.12�motivates this notation.Corollary 3.13. (a) If α, β ∈ Ω and α ∈ β, then α+1 ⊆ β. In other words,
α+ 1 is the least ordinal whi
h 
ontains α.(b) For every ordinal α ∈ Ω we have either α =

⋃
α or there exists β ∈ Ωsu
h that α = β + 1.Proof. (a) Assume α ∈ β, then {α} ⊆ β, and sin
e β is transitive, we alsohave α ⊆ β; thus, α+ 1 = α ∪ {α} ⊆ β.(b) Sin
e α is transitive, ⋃α ⊆ α. Thus, if α 6= ⋃
α, then α \ ⋃

α 6= ∅. Let
β be ∈-minimal in α \ ⋃

α. Then β ∈ α and β + 1 ∈ Ω, and by part (a) wehave β + 1 ⊆ α. On the one hand, α ∈ β + 1 would imply that α ∈ α, a
ontradi
tion to Fa
t 3.11. On the other hand, β + 1 ∈ α would imply that
β ∈ ⋃

α, whi
h 
ontradi
ts the 
hoi
e of β. Thus, we must have β+1 = α. ⊣This leads to the following de�nitions: An ordinal α is 
alled a su

essorordinal if there exists an ordinal β su
h that α = β+1; otherwise, it is 
alleda limit ordinal. In parti
ular, ∅ (or equivalently 0) is a limit ordinal.We are now ready to de�ne the set of natural numbers ω, whi
h will turnout to be the least non-empty limit ordinal. By the Axiom of In�nity we knowthat there exists an indu
tive set I. Below we show that there exists also asmallest indu
tive set. For this, let IΩ = I ∩ Ω; more pre
isely,
IΩ = {α ∈ I : α is an ordinal} .Then IΩ is a set of ordinals and by Theorem 3.12.(
), IΩ is even an indu
tiveset. Now, if there exists no α ∈ IΩ su
h that α is non-empty and indu
tive,let ω := IΩ, otherwise, de�ne

ω =
⋂{

α ∈ IΩ : ∅ ∈ α and α is indu
tive} .By de�nition, ∅ ∈ ω and for all β ∈ ω we have β+1 ∈ ω, i.e., ω is indu
tive and
ontains ∅. In parti
ular,⋃ω = ω, whi
h shows that ω is a limit ordinal. Againby de�nition, ω does not properly 
ontain any indu
tive set whi
h 
ontains ∅.



Power Set 51In parti
ular, ω does not 
ontain any limit ordinal other than ∅ (sin
e su
han ordinal would be an indu
tive set 
ontaining ∅), and therefore, ω is thesmallest non-empty limit ordinal.The ordinals belonging to ω are 
alled natural numbers. One 
an alsode�ne natural numbers indu
tively as we have done above: 0 := ∅, and forany natural number n, n + 1 := n ∪ {n} = {0, 1, 2, . . . , n}. Noti
e that ea
hnatural number n is the set {k ∈ ω : k < n}, where k < n ⇐⇒ k ∈ n. Furthernoti
e that sin
e ω is the smallest non-empty limit ordinal, all natural numbersex
ept 0 are su

essor ordinals. Now, a set A is 
alled �nite if there existsa bije
tion between A and a natural number n ∈ ω, otherwise, A is 
alledin�nite. Thus, all natural numbers are �nite and ω is the smallest in�nite(i.e., not �nite) ordinal number.The following theorem is a 
onsequen
e of the fa
t that Ω is transitive andwell-ordered by ∈ (whi
h is just Theorem 3.12.(d)).Theorem 3.14 (Transfinite Indu
tion Theorem). Let C ⊆ Ω be a
lass of ordinals and assume that:(a) if α ∈ C, then α+ 1 ∈ C,(b) if α is a limit ordinal and ∀β ∈ α(β ∈ C), then α ∈ C.Then C is the 
lass of all ordinals. (Noti
e that by (b) we have 0 ∈ C, inparti
ular, C 6= ∅.)Proof. Assume towards a 
ontradi
tion that C 6= Ω and let α0 be the ∈-minimal ordinal whi
h does not belong to C (su
h an ordinal exists by The-orem 3.12.(d)). Now, α0 
an be neither a su

essor ordinal, sin
e this would
ontradi
t (a), nor a limit ordinal, sin
e this would 
ontradi
t (b). Thus, α0does not exist whi
h implies that Ω \ C = ∅, i.e., C = Ω. ⊣The following result is just a reformulation of the Transfinite Indu
tionTheorem.Corollary 3.15. For any �rst-order formula ϕ(x) with free variable x wehave
∀α ∈ Ω

(
∀β ∈ α

(
ϕ(β)

)
→ ϕ(α)

)
→ ∀α ∈ Ω

(
ϕ(α)

)
.Proof. Let C ⊆ Ω be the 
lass of all ordinals α ∈ Ω su
h that ϕ(α) holds andapply the Transfinite Indu
tion Theorem 3.14. ⊣When some form of Corollary 3.15 is involved we usually do not mention the
orresponding formula ϕ and just say �by indu
tion on . . .� or �by trans�niteindu
tion�.6. The Axiom of Power Set

∀x∃y∀z(z ∈ y ↔ z ⊆ x)



52 3 The Axioms of Zermelo-Fraenkel Set TheoryInformally, the Axiom of Power Set states that for ea
h set x there is a set
P(x), 
alled the power set of x, whi
h 
onsists of all subsets of x.With the Axiom of Power Set (and other axioms like the Axiom of Unionor the Axiom S
hema of Separation) we 
an now de�ne notions like fun
tions,relations, and sequen
es: Let A and B be arbitrary sets. Then

A×B =
{
〈x, y〉 : x ∈ A ∧ y ∈ B

}where 〈x, y〉 =
{
{x}, {x, y}

}; thus, A×B ⊆ P
(
P(A ∪B)

). Further, let
AB =

{
f ⊆ A×B : ∀x ∈ A∃!y ∈ B (〈x, y〉 ∈ f)

}
.An element f ∈ AB, usually denoted by f : A→ B, is 
alled a fun
tion ormapping from A to B, where A is 
alled the domain of f , denoted dom(f).For f : A → B we usually write f(x) = y instead of 〈x, y〉 ∈ f . If S is aset, then the image of S under f is denoted by f [S] = {

f(x) : x ∈ S
} and

f |S =
{
〈x, y〉 ∈ f : x ∈ S

} is the restri
tion of f to S. Furthermore, for afun
tion f : A→ B, f [A] is 
alled the range of f , denoted ran(f).A fun
tion f : A→ B is surje
tive, or onto, if ∀y ∈ B ∃x ∈ A
(
f(x) = y

).We sometimes emphasise the fa
t that f is surje
tive by writing f : A։ B.A fun
tion f : A → B is inje
tive, also 
alled one-to-one, if we have
∀x1 ∈ A∀x2 ∈ A

(
f(x1) = f(x2) → x1 = x2

). To emphasise the fa
t that f isinje
tive we sometimes write f : A →֒ B.A fun
tion f : A → B is bije
tive if it is inje
tive and surje
tive. If
f : A→ B is bije
tive, then

∀y ∈ B ∃!x ∈ A
(
〈x, y〉 ∈ f

)and therefore,
f−1 :=

{
〈y, x〉 : 〈x, y〉 ∈ f

}
∈ BAis a fun
tion whi
h is even bije
tive. So, if there is a bije
tive fun
tion from

A to B, then there is also one from B to A and we sometimes just say thatthere is a bije
tion between A and B. Noti
e that if f : A→ B is inje
tive,then f is a bije
tion between A and f [A].Let x be any non-empty set and assume that for ea
h i ∈ x we haveassigned a set Ai. For A =
⋃
i∈xAi, where ⋃

i∈xAi :=
⋃{Ai : i ∈ x}, the set

∏

i∈x

Ai =
{
f ∈ xA : ∀i ∈ x

(
f(i) ∈ Ai

)}is 
alled the Cartesian produ
t of the sets Ai (i ∈ x). Noti
e that if all sets
Ai are equal to a given set A, then ∏

i∈xAi =
xA. If x = n for some n ∈ ω, inabuse of notation we also write An instead of nA by identifying nA with theset

An = A× . . .×A︸ ︷︷ ︸
n-times .



Power Set 53Similarly, for α ∈ Ω we sometimes identify a fun
tion f ∈ αA with the se-quen
e 〈f(0), f(1), . . . , f(β), . . .〉α of length α, and vi
e versa. Sequen
es (oflength α) are usually denoted by using angled bra
kets (and by using α as asubs
ript), e.g., 〈s0, . . . , sβ, . . .〉α or 〈sβ : β < α〉.For any set A and any n ∈ ω, a set R ⊆ An is 
alled an n-ary relation on A.If n = 2, then R ⊆ A×A is also 
alled a binary relation. A binary relation
R on A is a well-ordering of A, if there is an ordinal α ∈ Ω and a bije
tion
f : A→ α su
h that

R(x, y) ⇐⇒ f(x) ∈ f(y) .For any set A, let seq(A) be the set of all �nite sequen
es whi
h 
an be formedwith elements of A, or more formally:
seq(A) =

⋃

n∈ω

AnFurthermore, let seq1-1(A) be those sequen
es of seq(A) in whi
h no elementappears twi
e. Again more formally, this reads as follows:
seq1-1(A) = {

σ ∈ seq(A) : σ is inje
tive}The last notion we introdu
e in this se
tion is the notion of 
ardinality:Two sets A and B are said to have the same 
ardinality, denoted |A| = |B|,if there is a bije
tion between A and B. Noti
e that 
ardinality equality isan equivalen
e relation. For example |ω × ω| = |ω|, e.g., de�ne the bije
tion
f : ω × ω → ω by stipulating f(〈n,m〉

)
= m+ 1

2 (n+m)(n+m+ 1).If |A| = |B′| for some B′ ⊆ B, then the 
ardinality of A is less than orequal to the 
ardinality of B, denoted |A| ≤ |B|. Noti
e that |A| ≤ |B| i�there is an inje
tion from A into B. Finally, if |A| 6= |B| but |A| ≤ |B|, then
ardinality of A is said to be stri
tly less than the 
ardinality of B, denoted
|A| < |B|. Noti
e that the relation �≤� is re�exive and transitive. The notationsuggests that |A| ≤ |B| and |B| ≤ |A| implies |A| = |B|. This is indeed the
ase and a 
onsequen
e of the following result.Lemma 3.16. Let A0, A1, A be sets su
h that A0 ⊆ A1 ⊆ A. If |A| = |A0|,then |A| = |A1|.Proof. If A1 = A or A1 = A0, then the statement is trivial. So, let us assumethat A0  A1  A and let C = A\A1, i.e., A\C = A1. Further, let f : A→ A0be a bije
tion and de�ne g : P(A) → P(A0) by stipulating g(D) := f [D].Let ϕ(z, p1, p2, p3) be the following formula:
z ∈ p1 ∧ 〈0, p2〉 ∈ z ∧ ∀n ∈ ω∃u∃v

(
〈n, u〉 ∈ z ∧ 〈u, v〉 ∈ p3 ∧ 〈n+ 1, v〉 ∈ z

)By the Axiom S
hema of Separation, for x = p1 = ωP(A), p2 = C, and p3 = g,there exists a set y su
h that z ∈ y ↔
(
z ∈ ωP(A) ∧ ϕ(z,ωP(A), C, g)

).By indu
tion on n and by assembling the various partial fun
tions produ
ed



54 3 The Axioms of Zermelo-Fraenkel Set Theoryby the indu
tion into a single fun
tion, one gets that y 
ontains just a singlefun
tion, say z0 : ω → P(A). In fa
t, z0(0) = C and for all n ∈ ω we have
z0(n+ 1) = f

[
z0(n)

]. Now, let
C̄ =

⋃{
z0(n) : n ∈ ω

}and de�ne the fun
tion f̃ : A→ A by stipulating
f̃(x) =

{
f(x) x ∈ C̄,

x otherwise.By de�nition of f̃ and sin
e f is a bije
tion whi
h maps C into A0, f̃ [C̄] =
C̄ \C. Moreover, the fun
tion f̃ is inje
tive. To see this, let x, y ∈ A be distin
tand 
onsider the following three 
ases:(1) If x, y ∈ C̄, then f̃(x) = f(x) and f̃(y) = f(y), and sin
e f is inje
tive weget f̃(x) 6= f̃(y).(2) If x, y ∈ A \ C̄, then f̃(x) = x and f̃(y) = y, and hen
e, f̃(x) 6= f̃(y).(3) If x ∈ C̄ and y ∈ A \ C̄, then f̃(x) = f(x) ∈ C̄ and f̃(y) = y /∈ C̄, andtherefore, f̃(x) 6= f̃(y).We already know that f̃ [C̄] = C̄\C and by de�nition we have f̃ [A\C̄] = A\C̄.Hen
e,

f̃ [A] = (A \ C̄) ∪̇ (C̄ \ C) = A \ C = A1whi
h shows that |A| = |A1|. ⊣Theorem 3.17 (Cantor-Bernstein Theorem). Let A and B be any sets.If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.Proof. Let f : A →֒ B be a one-to-one mapping from A into B, and g : B →֒ Abe a one-to-one mapping from B into A. Further, let A0 := (g ◦ f)[A] and
A1 := g[B]. Then |A0| = |A| and A0 ⊆ A1 ⊆ A, hen
e, by Lemma 3.16,
|A| = |A1|, and sin
e |A1| = |B| we have |A| = |B|. ⊣As an appli
ation of the Cantor-Bernstein Theorem 3.17 let us show thatthe set of real numbers, denoted by R, has the same 
ardinality as P(ω).Proposition 3.18. |R| = |P(ω)|.Proof. Cantor showed that every real number r > 1 
an be written in a uniqueway as a produ
t of the form

r =
∏

n∈ω

(
1 +

1

qn

)where all qn's are positive integers and for all n ∈ ω we have qn+1 ≥ q2n. Su
hprodu
ts are 
alled Cantor produ
ts. So, for every real number r > 1 there
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ement 55exists a unique in�nite sequen
e q0(r), q1(r), . . . , qn(r), . . . of positive integerswith qn+1 ≥ q2n (for all n ∈ ω) su
h that r = ∏
n∈ω

(
1 + 1

qn

).Let us �rst show that |R| ≤ |P(ω): For r ∈ R let
f(r) =

{∑

j≤n

qj(r)(2
j + 1) : n ∈ ω

}
.De�ne the fun
tion h : R → R by stipulating h(x) := 1 + ex, where e is theEuler number and ex =

∑
n∈ω(x

n/n!) . Then h is a bije
tion between R andthe set of real numbers r > 1. We leave it as an exer
ise to the reader to verifythat the 
omposition f ◦h is an inje
tive mapping from R into P(ω).To see that |P(ω)| ≤ |R|, 
onsider for example the fun
tion g(x) = ∑

n∈x

3−n,where g(∅) := 0, whi
h is obviously a inje
tive mapping from P(ω) into R(or more pre
isely, into the interval [0, 32 ]).So, by the Cantor-Bernstein Theorem 3.17, |R| = |P(ω)|. ⊣7. The Axiom S
hema of Repla
ementFor every �rst-order formula ϕ(x, y, p) with free(ϕ) ⊆ {x, y, p}, where p 
anbe an ordered n-tuple of parameters, the following formula is an axiom:
∀A∀p

(
∀x ∈ A∃!y ϕ(x, y, p) → ∃B ∀x ∈ A∃y ∈ B ϕ(x, y, p)

)In other words, for every set A and for ea
h 
lass fun
tion F (i.e., a 
ertain
lass of ordered pairs of sets) de�ned on A, F [A] = {F (x) : x ∈ A} is a set.Or even more informally, images of sets under fun
tions are sets.The Axiom S
hema of Repla
ement is needed to build sets like {
Pn(ω) : n ∈

ω
}, where P0(ω) := ω and Pn+1(ω) := P

(
Pn(ω)

).Another appli
ation of the Axiom S
hema of Repla
ement is the followingresult, whi
h will be used for example to de�ne ordinal addition (see Theo-rem 3.20) or to build the 
umulative hierar
hy of sets (see Theorem 3.22).Theorem 3.19 (Transfinite Re
ursion Theorem). Let F be a 
lassfun
tion whi
h is de�ned for all sets. Then there is a unique 
lass fun
tion Gde�ned on Ω su
h that for ea
h α ∈ Ω we have
G(α) = F (G|α) , where G|α =

{
〈β,G(β)〉 : β ∈ α

}
.Proof. If su
h a 
lass fun
tion G exists, then, by the Axiom S
hema of Re-pla
ement, for every ordinal α, ran(G|α) is a set, and 
onsequently, G|α is afun
tion with dom(G|α) = α. This leads to the following de�nition: For δ ∈ Ω,a fun
tion g with dom(g) = δ is 
alled a δ-approximation if

∀β ∈ δ
(
g(β) = F (g|β)

)
.In other words, g is an δ-approximation if and only if g has the followingproperties:



56 3 The Axioms of Zermelo-Fraenkel Set Theory(a) If β + 1 ∈ δ, then g(β + 1) = F
(
g|β ∪

{
〈β, g(β)〉

}).(b) If β ∈ δ is a limit ordinal, then g(β) = F (g|β).In parti
ular, by (b) we get g(0) = F (∅). For example g1 =
{
〈0, F (∅)〉

}is a 1-approximation; in fa
t, g1 is the unique 1-approximation. Similarly,
g2 =

{
〈0, F (∅)〉,

〈
1, F (〈0, F (∅)〉)

〉} is the unique 2-approximation.Firstly, noti
e that for all ordinals δ and δ′, if g is an δ-approximation and
g′ is an δ′-approximation, then g|δ∩δ′ = g′|δ∩δ′ . Otherwise, there would be asmallest ordinal β0 su
h that g(β0) 6= g′(β0), but by (a) and (b), β0 would beneither a su

essor ordinal nor a limit ordinal.Se
ondly, noti
e that for ea
h ordinal δ there exists a δ-approximation.Otherwise, by Theorem 3.12.(d), there would be a smallest ordinal δ0 su
hthat there is no δ0-approximation. In parti
ular, for ea
h δ ∈ δ0 there wouldbe a δ-approximation, and by the Axiom S
hema of Repla
ement, the 
olle
tionof all δ-approximations (for δ ∈ δ0) is a set, where the union of this set is a
δ′-approximation for some δ′ ∈ Ω. Now, if δ0 is a limit ordinal, then δ′ = δ0and we get a δ0-approximation, and if δ0 is a su

essor ordinal, then δ0 = δ′+1and we get a δ0-approximation by (a). So, in both 
ases we get a 
ontradi
tionto our assumption that there is no δ0-approximation.Now, for ea
h α ∈ Ω de�ne G(α) := g(α), where g is the δ-approximationfor any δ su
h that α ∈ δ. ⊣By trans�nite re
ursion we are able to de�ne addition, multipli
ation, andexponentiation of arbitrary ordinal numbers:Ordinal Addition: For arbitrary ordinals α ∈ Ω we de�ne:(a) α+ 0 := α.(b) α+ (β + 1) := (α+ β) + 1, for all β ∈ Ω.(
) If β ∈ Ω is non-empty and a limit ordinal, then α+ β :=

⋃
δ∈β(α+ δ).Noti
e that addition of ordinals is in general not 
ommutative (e.g., 1 + ω =

ω 6= ω + 1).Ordinal Multipli
ation: For arbitrary ordinals α ∈ Ω we de�ne:(a) α · 0 := 0.(b) α · (β + 1) := (α · β) + α, for all β ∈ Ω.(
) If β ∈ Ω is a limit ordinal, then α · β :=
⋃
δ∈β(α · δ).Noti
e that multipli
ation of ordinals is in general not 
ommutative (e.g.,

2 · ω = ω 6= ω + ω = ω · 2).
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ement 57Ordinal Exponentiation: For arbitrary ordinals α ∈ Ω we de�ne:(a) α0 := 1.(b) αβ+1 := αβ · α, for all β ∈ Ω.(
) If β ∈ Ω is non-empty and a limit ordinal, then αβ :=
⋃
δ∈β(α

δ+1).Noti
e that for example 2ω = ω, whi
h should not be 
onfused with 
ardinalexponentiation de�ned in Chapter 5.Theorem 3.20. Addition, multipli
ation, and exponentiation of ordinals areproper binary operations on Ω.Proof. We just prove it for addition (the proof for the other operations issimilar): For ea
h α ∈ Ω de�ne a 
lass fun
tion Fα by stipulating Fα(x) := ∅if x is not a fun
tion; and if x is a fun
tion, then let
Fα(x) =





α if x = ∅,
x(β) ∪

{
x(β)

} if dom(x) = β + 1 and β ∈ Ω,⋃
δ∈β x(δ) if dom(x) = β and β ∈ Ω \ {∅} is a limit ordinal,

∅ otherwise.By the Transfinite Re
ursion Theorem 3.19, for ea
h α ∈ Ω there isa unique 
lass fun
tion Gα de�ned on Ω su
h that for ea
h β ∈ Ω we have
Gα(β) = Fα(Gα|β), and in parti
ular we get Gα(β) = α+ β. ⊣Even though addition and multipli
ation of ordinals are not 
ommutative,they are still asso
iative.Proposition 3.21. Addition and multipli
ation of ordinals de�ned as aboveare asso
iative operations.Proof. We have to show that for all α, β, γ ∈ Ω, (α + β) + γ = α + (β + γ)and (α · β) · γ = α · (β · γ). We give the proof just for addition and leave theproof for multipli
ation as an exer
ise to the reader.Let α and β be arbitrary ordinals. The proof is by indu
tion on γ ∈ Ω.For γ = 0 we obviously have (α + β) + 0 = α+ β = α+ (β + 0). Now, let usassume that (α+ β) + γ = α+ (β + γ) for some γ. Then:

(α + β) + (γ + 1) =
(
(α + β) + γ

)
+ 1 (by de�nition of �+�)

=
(
α+ (β + γ)

)
+ 1 (by our assumption)

= α+
(
(β + γ) + 1

) (by de�nition of �+�)
= α+

(
β + (γ + 1)

) (by de�nition of �+�)Finally, let γ be a limit ordinal. Noti
e �rst that α+(β+γ) =
⋃
δ∈(β+γ) α+δ =⋃

(β+γ′)∈(β+γ) α+(β+γ′) =
⋃
γ′∈γ α+(β+γ′). Thus, if (α+β)+γ′ = α+(β+γ′)for all γ′ ∈ γ, then

(α+ β) + γ =
⋃

γ′∈γ

(α+ β) + γ′ =
⋃

γ′∈γ

α+ (β + γ′) = α+ (β + γ) .

⊣



58 3 The Axioms of Zermelo-Fraenkel Set Theory8. The Axiom of Foundation
∀x

(
∃z(z ∈ x) → ∃y ∈ x (y ∩ x = ∅)

)As a 
onsequen
e of the Axiom of Foundation we get that there is no in�nite de-s
ending sequen
e x0 ∋ x1 ∋ x2 ∋ · · · sin
e otherwise, the set {x0, x1, x2, . . .}would 
ontradi
t the Axiom of Foundation. In parti
ular, there is no set x su
hthat x ∈ x and there are also no 
y
les like x0 ∈ x1 ∈ · · · ∈ xn ∈ x0. Asa matter of fa
t we would like to mention that if one assumes the Axiom ofChoi
e, then the non-existen
e of su
h in�nite des
ending sequen
es 
an beproved to be equivalent to the Axiom of Foundation.The axiom system 
ontaining the axioms 0�8 is 
alled Zermelo-FraenkelSet Theory and is denoted by ZF. In fa
t, ZF 
ontains all axioms of SetTheory ex
ept the Axiom of Choi
e.Even though the Axiom of Foundation is irrelevant outside Set Theory, itis extremely useful in the metamathemati
s of Set Theory, sin
e it allows usto arrange all sets in a 
umulative hierar
hy and let us de�ne 
ardinalities assets.Models of ZFBy indu
tion on α ∈ Ω, de�ne the following sets:
V0 = ∅

Vα =
⋃
β∈αVβ if α is a limit ordinal

Vα+1 = P(Vα)and let
V =

⋃

α∈Ω

Vα .Noti
e that by 
onstru
tion, for ea
h α ∈ Ω, Vα is a set. Again by indu
tionon α ∈ Ω one 
an easily show that the sets Vα have the following properties:
• Ea
h Vα is transitive.
• If α ∈ β, then Vα  Vβ .
• α ⊆ Vα and α ∈ Vα+1.These fa
ts are visualised by the following �gure:
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∧
Ω
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❵♣ω

Vα+1❵♣α

Before we 
an prove that the 
lass V, 
alled the 
umulative hierar
hy,
ontains all set, we have to introdu
e the notion of transitive 
losure: Let Sbe an arbitrary set. By indu
tion on n ∈ ω de�ne
S0 = S , Sn+1 =

⋃
Sn ,and �nally

TC(S) =
⋃

n∈ω

Snwhere⋃n∈ω Sn :=
⋃{Sn : n ∈ ω}. For example x1 ∈ S1 i� ∃x0 ∈ S0(x0 ∋ x1),and in general, xn+1 ∈ Sn+1 i� ∃x0 ∈ S0 · · · ∃xn ∈ Sn(x0 ∋ x1 ∋ · · · ∋ xn+1).Noti
e that by the Axiom of Foundation, every des
ending sequen
e of the form

x0 ∋ x1 ∋ · · · must be �nite.By 
onstru
tion, TC(S) is transitive, i.e., x ∈ TC(S) implies x ⊆ TC(S),and we further have S ⊆ TC(S). Moreover, sin
e every transitive set T mustsatisfy ⋃
T ⊆ T , it follows that the set TC(S) is the smallest transitive setwhi
h 
ontains S. Thus,

TC(S) =
⋂{

T : T ⊇ S and T is transitive}and 
onsequently the set TC(S) is 
alled the transitive 
losure of S.Theorem 3.22. For every set x there is an ordinal α su
h that x ∈ Vα. Inparti
ular, the 
lass V is equal to the set-theoreti
 universe.Proof. Assume towards a 
ontradi
tion that there exists a set x whi
h doesnot belong to V. Let x̄ := TC
(
{x}

) and let w := {z ∈ x̄ : z /∈ V}, i.e.,
w = x̄ \

{
z′ ∈ x̄ : ∃α ∈ Ω (z′ ∈ Vα)

}. Sin
e x ∈ w we have w 6= ∅, andby the Axiom of Foundation there is a z0 ∈ w su
h that (z0 ∩ w) = ∅. Sin
e
z0 ∈ w we have z0 /∈ V, whi
h implies that z0 6= ∅, but for all u ∈ z0 there isa least ordinal αu su
h that u ∈ Vαu

. By the Axiom S
hema of Repla
ement,
{αu : u ∈ z0} is a set, and moreover, α =

⋃{αu : u ∈ z0} ∈ Ω. This impliesthat z0 ⊆ Vα and 
onsequently we get z0 ∈ Vα+1, whi
h 
ontradi
ts the fa
tthat z0 /∈ V and 
ompletes the proof. ⊣



60 3 The Axioms of Zermelo-Fraenkel Set TheoryIt is natural to ask whether there exists some kind of upper bound or 
eilingfor the set-theoreti
 universeV or if there exists arbitrarily large sets. In orderto address this questions we have to introdu
e the notion of 
ardinal numbers.Cardinals in ZFLet A be an arbitrary set. The 
ardinality of A, denoted |A|, 
ould be de�nedas the 
lass of all sets B whi
h have the same 
ardinality as A (i.e., forwhi
h there exists a bije
tion between A and B), but this would have thedisadvantage that ex
ept for A = ∅, |A| would not belong to the set-theoreti
universe. However, with the Axiom of Foundation the 
ardinality of a set A
an be de�ned as a proper set:
|A| =

{
B ∈ Vβ0 : there exists a bije
tion between B and A}where β0 is the least ordinal number for whi
h there is a B ∈ Vβ0 su
h that

B has the same 
ardinality as A. Noti
e that for example |∅| = {∅}, where
{∅} ⊆ V1 (in this 
ase, β0 = 1). The set |A| is 
alled a 
ardinal number,or just a 
ardinal. Noti
e that A is not ne
essarily a member of |A|. Furthernoti
e that |A| = |B| i� there is a bije
tion between A and B, and as abovewe write |A| ≤ |B| if |A| = |B′| for some B′ ⊆ B. Cardinal numbers areusually denoted by Fraktur letters like m and n. A 
ardinal number is �nite ifit is the 
ardinality of a natural number n ∈ ω, otherwise it is in�nite. Finite
ardinals are usually denoted by letters like n,m, . . . An in�nite 
ardinal whi
h
ontains a well-orderable set is traditionally 
alled an aleph and 
onsequentlydenoted by an �ℵ�, e.g., ℵ0 := |ω|. The following fa
t summarises some simpleproperties of alephs.Fa
t 3.23. All sets whi
h belong to an aleph 
an be well-ordered and the
ardinality of any ordinal is an aleph. Further, for any ordinals α, β ∈ Ω wehave |α| < |β| or |α| = |β| or |α| > |β|, and these three 
ases are mutuallyex
lusive.A non-empty set A is 
alled un
ountable if there is no enumeration of theelements of A, or equivalently, no mapping from ω to A is surje
tive.By the Axiom of In�nity we know that there is an in�nite set and we have seenthat there is even a smallest in�nite ordinal, namely ω, whi
h is of 
ourse a
ountable set. Now, the question arises whether every in�nite set is 
ountable.We answer this question in two steps: First we show that the set of realnumbers is un
ountable, and then we show that in general, for every set Athere exists a set of stri
tly greater 
ardinality than A�whi
h implies thatthere is no largest 
ardinal.Proposition 3.24. The set of real numbers is un
ountable.



Cardinals in ZF 61Proof. By Proposition 3.18 we already know that there is a bije
tion be-tween R and P(ω). Further we have |P(ω)| = |ω2|. Indeed, for every
x ∈ P(ω) let χx ∈ ω2 be su
h that

χx(n) =

{
1 if n ∈ x,
0 otherwise.So, it is enough to show that no mapping from ω to ω2 is surje
tive. Let

g : ω −→ ω2

n 7−→ fnbe any mapping from ω to ω2. De�ne the fun
tion f ∈ ω2 by stipulating
f(n) = 1− fn(n) .Then for ea
h n ∈ ω we have f(n) 6= fn(n), so, f is distin
t from everyfun
tion fn (n ∈ ω), whi
h shows that g is not surje
tive. ⊣For 
ardinals m = |A| let 2m :=

∣∣P(A)
∣∣. By modifying the proof above we
an show the following result:Theorem 3.25 (Cantor's Theorem). For every 
ardinal m, 2m > m.Proof. Let A ∈ m be arbitrary. It is enough to show that there is an inje
tionfrom A into P(A), but there is no surje
tion from A onto P(A).Firstly, the fun
tion

f : A −→ P(A)

x 7−→ {x}is obviously inje
tive, and therefore we get m ≤ 2m.Se
ondly, let g : A→ P(A) be an arbitrary fun
tion. Consider the set
A′ =

{
x ∈ A : x /∈ g(x)

}
.As a subset of A, the set A′ is an element of P(A). If there would be an x0 ∈ Asu
h that g(x0) = A′, then x0 ∈ A′ ↔ x0 /∈ g(x0), but sin
e g(x0) = A′,

x0 /∈ g(x0) ↔ x0 /∈ A′. Thus, x0 ∈ A′ ↔ x0 /∈ A′, whi
h is obviously a
ontradi
tion and shows that g is not surje
tive. ⊣As an immediate 
onsequen
e of Cantor's Theorem 3.25 we get that thereare arbitrarily large 
ardinal numbers. Before we show that there are alsoarbitrarily large ordinal numbers, let us summarise some basi
 fa
ts aboutwell-orderings: Re
all that a binary relation R ⊆ A × A is a well-orderingof A, if there is an α ∈ Ω and a bije
tion f : A → α su
h that R(x, y) i�
f(x) ∈ f(y).The following proposition is 
ru
ial in order to de�ne the order type of awell-ordering.



62 3 The Axioms of Zermelo-Fraenkel Set TheoryProposition 3.26. If α, β ∈ Ω and f : α → β is a bije
tion su
h that for all
γ1 ∈ γ2 ∈ α we have f(γ1) ∈ f(γ2), then α = βProof. If α 6= β, then, by Theorem 3.12.(a), we have either α ∈ β or β ∈ α.Without loss of generality we assume that α ∈ β. Thus, there is a η ∈ β \ α.Sin
e f is a bije
tion, there is a γ ∈ α su
h that f(γ) = η, and sin
e η /∈ α,
f(γ) 6= η� in fa
t, f(γ) ∈ η. Let γ0 be the ∈-minimal ordinal in α su
hthat f(γ0) 6= γ0, in parti
ular, f |γ0 is the identity. The situation we have isillustrated by the following �gure:

α

β

∅ ∅ = f(∅)

δ δ = f(δ)

γ0 γ0 = f(δ0)

δ0

f(γ0)

Sin
e f(δ) = δ for all δ ∈ γ0, γ0 ∈ f(γ0). Let δ0 = f−1(γ0). By the de�nitionof γ0 we have γ0 ∈ δ0, whi
h implies f(γ0) ∈ f(δ0), or equivalently, f(γ0) ∈ γ0,a 
ontradi
tion. ⊣As an immediate 
onsequen
e we get that ea
h well-ordering R of A 
orre-sponds to exa
tly one ordinal, 
alled the order type of R, denoted o.t.(R),su
h that there exists a bije
tion f : A → o.t.(R) with the property that forall a1, a2 ∈ A we have a1Ra2 ⇐⇒ f(a1) ∈ f(a2). Indeed, for every b ∈ Ade�ne Ab = {a ∈ A : aRb} and let f : A → Ω su
h that for ea
h b ∈ A thereexists a unique ordinal β su
h that f [Ab] = β; then o.t.(R) = f [A]. Moreover,by Theorem 3.12.(a), if R1 and R2 are well-orderings of any two subsets of A,then we have o.t.(R1) ∈ o.t.(R2) or o.t.(R1) = o.t.(R2) or o.t.(R1) ∋ o.t.(R2),where the three 
ases are mutually ex
lusive.Theorem 3.27 (Hartogs' Theorem). For every 
ardinal m there is asmallest aleph, denoted ℵ(m), su
h that ℵ(m) � m.Proof. Let A ∈ m be arbitrary and let R ⊆ P(A× A) be the set of all well-orderings of subsets of A. For every R ∈ R, o.t.(R) is an ordinal, and for every
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R ∈ R and any β ∈ o.t.(R) there is an R′ ∈ R su
h that o.t.(R′) = β, whi
hshows that

α =
{
o.t.(R) : R ∈ R

}is an ordinal. By de�nition, for every β ∈ α there is a well-ordering RS of some
S ⊆ A su
h that o.t.(RS) = β, whi
h implies that |β| ≤ |A|. On the otherhand, |α| ≤ |A| would imply that α ∈ α, whi
h is obviously a 
ontradi
tion.Let ℵ(m) := |α|, then ℵ(m) � m and for ea
h ℵ < ℵ(m) we have ℵ ≤ m. ⊣Corollary 3.28. For every ordinal number α and for every 
ardinal number
m, there exists an ordinal number β su
h that |β| > |α| and |β| � m.Proof. For the �rst inequality let α ∈ Ω and let n = |α|. By Hartogs'Theorem 3.27 there is an aleph, namely ℵ(n), su
h that ℵ(n) � n. Now, sin
e
n and ℵ(n) both 
ontain well-ordered sets we have n < ℵ(n). Let w ∈ ℵ(n) bea well-ordered set and let β be the order type of w. Then ℵ(n) = |β| > |α| = n.For the se
ond inequality let β be the order type of a well-ordered setwhi
h belongs to ℵ(m); then |β| � m. ⊣On the Consisten
y of ZFZermelo writes in [118, p. 262℄ that he was not able to show that the sevenaxioms for Set Theory given in that arti
le are 
onsistent. Even though it isessential to know whether a theory is 
onsistent or not, by Gödel's Se
-ond In
ompleteness Theorem 3.9 we know that for a su�
iently strong
onsistent theory, there is no way to prove its 
onsisten
y within this theory.To apply this result for Set Theory, we �rst have to show that ZF is �su�-
iently strong�. In other words, we have to show that ZF is strong enough tode�ne the 
on
ept of natural numbers and to prove 
ertain basi
 arithmeti
alfa
ts. We do this by showing that ω � PA: Firstly, Proposition 3.21 showsthat addition and multipli
ation is asso
iative. Se
ondly, by repla
ing Ω with
ω in Corollary 3.15 we get the Indu
tion S
hema for natural numbers:Proposition 3.29 (Indu
tion S
hema). If ϕ(0) and ϕ(n) → ϕ(n+1) forall n ∈ ω, then we have ϕ(n) for all n ∈ ω.Hen
e, every model of ZF 
ontains a model of PA (i.e., if ZF is 
onsistent, thenso is PA). However, by Gödel's Se
ond In
ompleteness Theorem 3.9, ifZF is 
onsistent (what we believe or at least assume), then ZF 
annot prove itsown 
onsisten
y (i.e., 
annot provide a model for itself). In other words, thereis no mathemati
al proof for the 
onsisten
y of ZF within ZF, whi
h meansthat there is no way to 
onstru
t or to de�ne a model of ZF without the aidof some 
on
epts that go beyond what is provided in ordinary Mathemati
s.More formally, any proof for Con(ZF) has to be 
arried out in some theoryT whi
h 
ontains some information that is not in ZF, and whose 
onsisten
y
annot be proved within T.



64 3 The Axioms of Zermelo-Fraenkel Set TheoryTo sum up, either ZF is in
onsistent� whi
h is hopefully not the 
ase� orany proof of the 
onsisten
y of ZF has to be 
arried out in a theory whose
onsisten
y is not provable within that theory.NotesSome of the papers mentioned below, or at least their translation into English, 
anbe found in the 
olle
tion [109℄ edited by van Heijenoort (whose biography is writtenby Feferman [35℄).Milestones in Logi
. Before we dis
uss the development of Set Theory, let usgive a brief overview of the history of Logi
 (see Bo
he«ski [11℄ for a 
omprehensiveproblem history of formal logi
, providing also large quotes from histori
al texts).Organon. Aristotle's logi
al treatises 
ontain the earliest formal study of Logi
(i.e., of Propositional Logi
, whi
h is 
on
erned about logi
al relations betweenpropositions as wholes) and 
onsequently he is 
ommonly 
onsidered the �rst lo-gi
ian. Aristotle's logi
al works were grouped together by the an
ient 
ommentatorsunder the title Organon, 
onsisting of Categories, On Interpretation, Prior Analyt-i
s, Posterior Analyti
s, Topi
s, and On Sophisti
al Refutations. Aristotle's workwas so outstanding and ahead of his time that nothing signi�
ant had been addedto his views during the following two millennia.The Laws of Thought. In 1854, Boole published in An Investigation of the Lawsof Thought [15℄ (see also [14℄) a new approa
h to Logi
 by redu
ing it to a kind ofalgebra and thereby in
orporated Logi
 into Mathemati
s: Boole noti
ed that Aris-totle's Logi
 was essentially dealing with 
lasses of obje
ts and he further observedthat these 
lasses 
an be denoted by symbols like x, y, z, subje
t to the ordinaryrules of algebra, with the following interpretations.(a) xy denotes the 
lass of members of x whi
h are also members of y.(b) If x and y have no members in 
ommon, then x+ y denotes the 
lass of obje
tswhi
h belong either to x or to y.(
) I− x denotes all the obje
ts not belonging to the 
lass x.(d) x = 0 means that the 
lass x has no members.However, Boole's Logi
 was still Propositional Logi
, but just 25 years later thisweakness was eliminated.Begri�ss
hrift. In 1879, Frege published in his Begri�ss
hrift [42℄ the most im-portant advan
e in Logi
 sin
e Aristotle. In this work, Frege presented for the �rsttime what we would re
ognise today as a logi
al system with negation, impli
ation,universal quanti�
ation, logi
al axioms, et 
etera. Even though Frege's a
hievementin Logi
 was a major step towards First-Order Logi
, his work had led to some
ontradi
tions � dis
overed by Russell � and further steps had to be taken.Peano Arithmeti
. Written in Latin, [89℄ was Peano's �rst attempt at an ax-iomatisation of Mathemati
s� and in parti
ular of Arithmeti
� in a symboli
 lan-guage. The initial arithmeti
 notions are number, one, su

essor, is equal to, andnine axioms are stated 
on
erning theses notions. (Today, �= � belongs to the un-derlying language of Logi
, and so, Peano's axioms dealing with equality be
omeredundant; further, we start the natural numbers with zero, rather than one.) Con-
erning the problem whether the natural numbers 
an be 
onsidered as symbolswithout inherent meaning, we refer the reader to the dis
ussion between Müller [83℄



Notes 65and Bernays [6℄. For Peano's work in Logi
, and in parti
ular for the developmentof the axioms for natural numbers, we refer the reader to Jourdain [67, pp. 270�314℄(where one 
an also �nd some 
omments by Peano) and to Wang [111℄. A

ordingto Jourdain (
f. [67, p. 273℄), Peano [89℄ su

eeded in writing out wholly in sym-bols the propositions and proofs of a 
omplete treatise on the arithmeti
 of positivenumbers. However, in the arithmeti
al demonstrations, Peano made extensive useof Grassmann's work [54℄, and in fundamental questions of arithmeti
 as well as inthe theory of logi
al fun
tions, he used Dedekind's work [24℄. The main feature ofWang's paper [111℄ is the printing of a letter (mentioned by Noether on page 490 of[25℄) from Dedekind to a headmaster in Hamburg, dated 27 February, 1890. In thatletter, Dedekind points out the appearan
e of non-standard models of axioms fornatural numbers (see Kaye [71℄) and explains how one 
ould avoid su
h unintendedmodels by using his Kettentheorie (i.e., 
on
ept of 
hains) whi
h he developed in[24℄. He also refers to Frege's works [42, 43℄ and notes that Frege's method of de�ninga kind of �su

essor relation� agrees in essen
e with his 
on
ept of 
hains.Prin
ipia Mathemati
a. One of these steps was taken by Russell and Whiteheadin their Prin
ipia Mathemati
a [113℄, whi
h is a three-volume work on the founda-tions of Mathemati
s, published between 1910 and 1913. It is an attempt to deriveall mathemati
al truths from a well-de�ned set of axioms and inferen
e rules insymboli
 logi
. The main inspiration and motivation for the Prin
ipia Mathemati
awas Frege's earlier work on Logi
, espe
ially the 
ontradi
tions dis
overed by Russell(as mentioned above). The questions remained whether a 
ontradi
tion 
ould alsobe derived from the axioms given in the Prin
ipia Mathemati
a, and whether thereexists a mathemati
al statement whi
h 
ould neither be proven nor disproven in thesystem (for Russell's sear
h for truth we refer the reader to Doxiadis and Papadim-itriou [27℄). It took another twenty odd years until these questions were answered byGödel's In
ompleteness Theorem, but before, the logi
al axioms had to be settled.Grundzüge der theoretis
hen Logik. In 1928, A
kermann and Hilbert publishedin their Grundzüge der theoretis
hen Logik [66℄ to some extent the �nal versionof logi
al axioms (for the development of these axioms see Hilbert [61, 62, 64℄).Our approa
h to First-Order Logi
 is partially taken from the �rst few se
tionsof the hyper-textbook for students by Detlovs and Podnieks (these se
tions are anextended translation of the 
orresponding 
hapters of Detlovs [26℄). For other rulesof inferen
e see for example Hermes [60℄ or Ebbinghaus, Flum, and Thomas [28, 29℄.Über die Vollständigkeit des Logikkalküls. Gödel proved the CompletenessTheorem in his do
toral dissertation Über die Vollständigkeit des Logikkalküls [46℄whi
h was 
ompleted in 1929. In 1930, he published the same material as in thedo
toral dissertation in a rewritten and shortened form in [47℄. The standard prooffor Gödel's Completeness Theorem is Henkin's proof, whi
h 
an be found in [58℄(see also [59℄) as well as in most other textbooks on Logi
. A slightly di�erentapproa
h 
an be found for example in Kleene [72, �72℄.Über formal unents
heidbare Sätze der Prin
ipia Mathemati
a. In 1930, Gödelannoun
ed in [48℄ his In
ompleteness Theorem (published later in [49℄), whi
his probably the most famous theorem in Logi
. The theorem as it is stated aboveis Satz VI of [49℄, and Gödel's Se
ond In
ompleteness Theorem 3.9, whi
his in fa
t a 
onsequen
e of the proof of that theorem, is Satz XI of [49℄. Gödel'sIn
ompleteness Theorem 3.4 is dis
ussed in great detail in Mostowski [82℄ (seealso Goldstern and Judah [53, Chapter 4℄); and for a di�erent proof of Gödel'sIn
ompleteness Theorem, not just a di�erent version of Gödel's proof, see Put-



66 3 The Axioms of Zermelo-Fraenkel Set Theorynam [95℄. For more histori
al ba
kground� as well as for Gödel's platonism�werefer the reader to Goldstein [51℄.Now, let us dis
uss the development of Set Theory: To some extent, Set Theory isthe theory of in�nite sets; but, what is the in�nite and does it exist?The in�nite. As mentioned before, there are two di�erent kinds of in�nite, namelythe a
tual in�nite and the potential in�nite. To illustrate the di�eren
e, let us 
on-sider the 
olle
tion of prime numbers. Eu
lid proved that for any prime number pthere is a prime number p′ whi
h is larger than p (see [31, Book IX℄). This shows thatthere are arbitrarily many prime numbers, and therefore, the 
olle
tion of primesis �potentially� in�nite. However, he did not 
laim that the 
olle
tion of all primenumbers as a whole �a
tually� exists. (The di�eren
e between a
tual and potentialin�nite is dis
ussed in greater detail for example in Bernays [7, Teil II℄).Two quite similar attempts to prove the obje
tive existen
e of the (a
tual) in-�nite are due to Bolzano [12, 13, �13℄ and Dedekind [24, �5, No. 66℄, and both aresimilar to the approa
h suggested in Plato's Parmenides [94, 132a-b℄ (for a philo-sophi
al view to the notion of in�nity we refer the reader to Man
osu [78℄). How-ever, Russell [99, Chapter XIII, p. 139 �.℄ (see also [101, Chapter XLIII℄) shows thatthese attempts must fail. Moreover, he demonstrates that the in�nite is neitherself-
ontradi
tory nor demonstrable logi
ally and writes that we must 
on
lude thatnothing 
an be known a priori as to whether the number of things in the world is�nite or in�nite. The 
on
lusion is, therefore, to adopt a Leibnizian phraseology,that some of the possible worlds are �nite, some in�nite, and we have no means ofknowing to whi
h of these two kinds our a
tual world belongs. The axiom of in�nitywill be true in some possible worlds and false in others; whether it is true or falsein this world, we 
annot tell (
f. [99, p. 141℄).If the in�nite exists, the problem still remains how one would re
ognise in�nitesets, or in other words, how one would de�ne the predi
ate �in�nite�. Dedekindprovided a de�nition in [24, �5, No. 64℄, whi
h is � as S
hröder [103, p. 303 f.℄ pointedout� equivalent to the de�nition given three years earlier by Peir
e (
f. [91, p. 202℄or [5, p. 51℄). However, the fa
t that an in�nite set 
an be mapped inje
tively intoa proper subset of itself � whi
h is the key idea of Dedekind's de�nition of in�nitesets �was already dis
overed and 
learly explained about 250 years earlier by Galilei(see [45, First Day℄). Another de�nition of the in�nite�whi
h will be 
omparedwith Dedekind's de�nition in Chapter 7 � 
an be found in von Neumann [86, p. 736℄.More de�nitions of �niteness, as well as their dependen
ies, 
an be found for examplein Lévy [75℄ and in Spi²iak and Vojtá² [106℄.Birth of Set Theory. As mentioned above, the birth of Set Theory dates to 1873when Cantor proved that the set of real numbers is un
ountable. One 
ould evenargue that the exa
t birth date is 7 De
ember 1873, the date of Cantor's letter toDedekind informing him of his dis
overy.Cantor's �rst proof that there is no bije
tion between the set of real numbers andthe set of natural numbers used an argument with nested intervals (
f. [18, �2℄ or [23,p. 117℄). Later, he improved the result by showing that 2m > m for every 
ardinal m(
f. [20℄ or [23, III. 8℄), whi
h is nowadays 
alled Cantor's Theorem. The argumentused in the proof of Proposition 3.24 �whi
h is in fa
t just a spe
ial 
ase ofCantor's Theorem� is sometimes 
alled Cantor's diagonal argument. The word�diagonal� 
omes from the diagonal pro
ess used in the proofs of Proposition 3.24and Cantor's Theorem. The diagonal pro
ess is a te
hnique of 
onstru
ting a



Notes 67new member of a set of lists whi
h is distin
t from all members of a given list. Thisis done by arranging �rst the list as a matrix, whose diagonal gives informationabout the xth term of the xth row of the matrix. Then, by 
hanging ea
h term ofthe diagonal, we get a new list whi
h is distin
t from every row of the matrix (seealso Kleene [72, �2℄).For a brief biography of Cantor and for the development of Set Theory see forexample Fraenkel [41℄, S
hoen�ies [102℄, and Kanamori [68℄.Russell's Paradox. The fa
t that a naïve approa
h to the notion of �set� leadsto 
ontradi
tions was dis
overed by Russell in June 1901 while he was working onhis Prin
iples of Mathemati
s [101℄ (see also Grattan-Guinness [55℄). When Russellpublished his dis
overy, other mathemati
ians and set-theorists like Zermelo (see[115, footnote p. 118 f.℄ or Rang and Thomas [96℄) had already been aware of thisantinomy, whi
h� a

ording to Hilbert� had a downright 
atastrophi
 e�e
t whenit be
ame known throughout the world of Mathemati
s (
f. [63, p. 169℄ or [65, p. 190℄).However, Russell was the �rst to dis
uss the 
ontradi
tion at length in his publishedworks, the �rst to attempt to formulate solutions and the �rst to appre
iate fully itsimportan
e. For example the entire Chapter X of [101℄ was dedi
ated to dis
ussingthis paradox (in parti
ular see [101, Chapter X, �102℄). In order to prevent the emer-gen
e of antinomies and paradoxes in Set Theory and in Logi
 in general, Russelldeveloped in [101, Appendix B℄ (see also [98℄) his theory of logi
al types whi
h rulesout self-referen
e. A

ording to this theory, self-referential statements are neithertrue nor false, but meaningless.Russell's Paradox as well as some other antinomies 
an also be found in Fraenkel,Bar-Hillel, and Lévy [36, Chapter I℄.Axiomatisation of Set Theory. In 1908, Zermelo published in [118℄ his �rstaxiomati
 system 
onsisting of seven axioms, whi
h he 
alled:1. Axiom der Bestimmtheitwhi
h 
orresponds to the Axiom of Extensionality2. Axiom der Elementarmengenwhi
h in
ludes the Axiom of Empty Set as well as the Axiom of Pairing3. Axiom der Aussonderungwhi
h 
orresponds to the Axiom S
hema of Separation4. Axiom der Potenzmengewhi
h 
orresponds to the Axiom of Power Set5. Axiom der Vereinigungwhi
h 
orresponds to the Axiom of Union6. Axiom der Auswahlwhi
h 
orresponds to the Axiom of Choi
e7. Axiom des Unendli
henwhi
h 
orresponds to the Axiom of In�nityIn 1930, Zermelo presented in [116℄ his se
ond axiomati
 system, whi
h he 
alled ZF-system, in whi
h he in
orporated ideas of Fraenkel [38℄, Skolem [104℄, and von Neu-mann [85, 86, 88℄. (see also Zermelo [114℄). In fa
t, he added the Axiom S
hema of
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ement and the Axiom of Foundation to his former system, 
an
elled the Axiomof In�nity (sin
e he thought that it does not belong to the general theory of sets), anddid not mention expli
itly the Axiom of Choi
e (be
ause of its di�erent 
hara
ter andsin
e he 
onsidered it as a general logi
al prin
iple). For Zermelo's published workin Set Theory, des
ribed and analysed in its histori
al 
ontext, see Zermelo [117℄,Kanamori [70℄ and Ebbinghaus [30℄.The need for the Axiom S
hema of Repla
ement was �rst noti
ed by Fraenkel (see[117, p. 23℄) who introdu
ed a 
ertain form of it in [38℄ (another form of it he gavein [37, De�nition 2, p. 158℄). However, the present form was introdu
ed by von Neu-mann [87℄ (see the note below on the Transfinite Re
ursion Theorem). As amatter of fa
t we would like to mention that the Axiom S
hema of Repla
ementwas al-ready used impli
itly by Cantor in 1899 (
f. [23, p. 444, line 3℄). Beside Fraenkel, alsoSkolem realised that Zermelo's �rst axiomati
 system was not su�
ient to provide a
omplete foundation for the usual theory of sets and introdu
ed� independently ofFraenkel � in 1922 the Axiom S
hema of Repla
ement (see [104℄ or [105, p. 145 f.℄).In [104℄, he also gave a proper de�nition of the notion �de�nite proposition� and,based on a theorem of Löwenheim [77℄, he dis
overed the following fa
t [105, p. 139℄(stated in Chapter 15 as Löwenheim-Skolem Theorem 15.1): If the axioms are
onsistent, there exists a domain in whi
h the axioms hold and whose elements 
anall be enumerated by means of the positive �nite integers . At a �rst glan
e thislooks strange, sin
e we know for example that the set of real numbers is un
ount-able. However, this so-
alled Skolem Paradox�whi
h we will meet in a slightlydi�erent form in Chapter 15� is not a paradox in the sense of an antinomy, it isjust a somewhat unexpe
ted feature of formal systems (see also Kleene [72, p. 426 f.℄and von Plato [110℄).Con
erning the terminology we would like to mention that the de�nition ofordered pairs given above was introdu
ed by Kuratowski [74, Dé�nition V, p. 171℄(
ompare with Hausdor� [57, p. 32℄ and see also Kanamori [69, �5℄), and that thein�nite set whi
h 
orresponds to ω =
{
∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

} wasintrodu
ed by von Neumann [84℄. For more histori
al ba
kground see Ba
hmann [4℄or Fraenkel [8, Part I℄, and for a brief dis
ussion of the axiom systems of von Neu-mann, Bernays, and Gödel see Fraenkel [8, Part I, Se
tion 7℄.The Axiom of Foundation. As mentioned above, Zermelo introdu
ed this axiomin his se
ond axiomatisation of Set Theory in 1930, but it goes ba
k to von Neu-mann (
f. [85, p. 239℄ and [88, p. 231℄), and in fa
t, the idea 
an already be found inMirimano� [80, 81℄: For example in [80, p. 211℄ he 
alls a set x regular (Fren
h �ordi-naire�) if every des
ending sequen
e x ∋ x1 ∋ x2 ∋ . . . is �nite. However, he did notpostulate the regularity of sets as an axiom, but if one would do so, one would getthe Axiom of Regularity saying that every set is regular. Now, as a 
onsequen
e of theAxiom of Foundation we got the fa
t that there are no in�nite des
ending sequen
esof the form x1 ∋ x2 ∋ . . . ∋ xi . . ., whi
h just tells us that every set is regular. Thus,the Axiom of Foundation implies the Axiom of Regularity. The 
onverse is not true,unless we assume some non-trivial form of the Axiom of Choi
e (see Mendelson [79℄).As a matter of fa
t we would like to mention that Zermelo, when he formulatedthe Axiom of Foundation in [116℄, gave both de�nitions and just mentioned (withoutproof) that they are equivalent.Ordinal numbers. The theory of ordinals was �rst developed in an axiomati
 wayby von Neumann in [84℄ (see also [85, 86, 87℄). For an alternative axiomati
 approa
h



Notes 69to ordinals, independently of ordered sets and types, see Tarski [108℄ or Lindenbaumand Tarski [76℄. For some more de�nitions of ordinals see Ba
hmann [4, p. 24℄.The Trans�nite Re
ursion Theorem. The Transfinite Re
ursion Theo-rem was �rst formulated and proved by von Neumann [87℄, who also pointed outthat, beside the axioms of Zermelo, also the Axiom S
hema of Repla
ement has to beused. Even though a 
ertain form of the Axiom S
hema of Repla
ement was alreadygiven by Fraenkel (see above), von Neumann showed that Fraenkel's notion of fun
-tion is not su�
ient to prove the Transfinite Re
ursion Theorem. Moreover,he showed (
f. [87, I.3℄) that Fraenkel's version of the Axiom S
hema of Repla
ementgiven in [39, �1 1℄ follows from the other axioms given there (see also Fraenkel's note[40℄).The Cantor-Bernstein Theorem. This theorem, unfortunately also known asS
hröder-Bernstein Theorem, was �rst stated and proved by Cantor (
f. [19,VIII.4℄ or [23, p. 413℄, and [21, �2, Satz B℄ or [23, p. 285℄). In order to prove thistheorem, Cantor used the Tri
hotomy of Cardinals, whi
h is � as we will see inChapter 5� equivalent to the Axiom of Choi
e (see also [23, p. 351, Anm.2℄). Analternative proof, avoiding any form of the Axiom of Choi
e, was found by Bern-stein, who was initially a student of Cantor's. Bernstein presented his proof aroundEaster 1897 in one of Cantor's seminars in Halle, and the result was published in 1898in Borel [16, p. 103�106℄ (see Related Result 12). About the same time, S
hrödergave a similar proof in [103℄ (submitted May 1896), but unfortunately, S
hröder'sproof was �awed by an irreparable error. While other mathemati
ians regarded hisproof as 
orre
t, Korselt wrote to S
hröder about the error in 1902. In his reply,S
hröder admitted his mistake whi
h he had already found some time ago but didnot have the opportunity to make publi
. A few weeks later, Korselt submitted thepaper [73℄ �whi
h appeared almost a de
ade later �with a proof of the Cantor-Bernstein Theorem whi
h is quite di�erent from the one given by Bernstein. Aproof of the Cantor-Bernstein Theorem, similar to Korselt's proof, was foundin 1906 independently by Peano [90℄ and Zermelo (see [118, footnote p. 272 f.℄). How-ever, they 
ould not know that they had just redis
overed the proof that had alreadybeen obtained twi
e by Dedekind in 1887 and 1897, sin
e Dedekind's proof � in ourterminology given above�was not published until 1932 (see [25, LXII&Erl. p. 448℄and [23, p. 449℄).Cantor produ
ts. Motivated by a result due to Euler on partition numbers (
f. [32,Caput XVI℄), Cantor showed in [17℄ (see also [23, pp. 43�50℄) that every real number
r > 1 
an be written in a unique way as a produ
t of the form ∏

n∈ω

(
1+ 1

qn

), whereall qn's are positive integers and qn+1 ≥ q2n. He also showed that r = ∏
n∈ω

(
1+ 1

qn

)is rational if and only if there is an m ∈ ω su
h that for all n ≥ m we have
qn+1 = q2n, and further he gave the representation of the square roots of some smallnatural numbers. For example, the qn's in the representation of √2 are q0 = 3 and
qn+1 = 2q2n−1. More about Cantor produ
ts 
an be found for example in Perron [92,�35℄.Cardinal numbers. The 
on
ept of 
ardinal number is one of the most fundamen-tal 
on
epts in Set Theory. Cantor des
ribes 
ardinal numbers as follows (
f. [21, �1℄or [23, p. 282 f.℄): The general 
on
ept whi
h with the aid of our a
tive intelligen
eresults from a set M , when we abstra
t from the nature of its various elements andfrom the order of their being given, we 
all the �power� or �
ardinal number� of M .



70 3 The Axioms of Zermelo-Fraenkel Set TheoryThis double abstra
tion suggests his notation �M � for the 
ardinality ofM . As men-tioned above, one 
an de�ne the 
ardinal number of a set M as an obje
t M whi
h
onsists of all those sets (in
luding M itself) whi
h have the same 
ardinality as
M . This approa
h, whi
h was for example taken by Frege (
f. [43, 44℄), and Russell(
f. [97, p. 378℄ or [98, Se
tion IX, p. 256℄), has the advantage that it 
an be 
arriedout in naïve Set Theory (see also Kleene [72, p. 9℄). However, it has the disadvantagethat for every non-empty set M , the obje
t M is a proper 
lass and therefore doesnot belong to the set-theoreti
 universe.Hartogs' Theorem. The proof of Hartogs' Theorem is taken from Hartogs [56℄.In that paper, Hartogs' main motivation was to �nd a proof for Zermelo's Well-Ordering Prin
iple whi
h does not make use of the Axiom of Choi
e. However, sin
ethe Well-Ordering Prin
iple and the Axiom of Choi
e are equivalent, he had to assumesomething similar, whi
h he had done assuming expli
itly Tri
hotomy of Cardinals.These prin
iples will be dis
ussed in greater detail in Chapter 5.In 1935, Hartogs was for
ed to retire from his position in Muni
h, where he 
om-mitted sui
ide in August 1943 be
ause he 
ould not bear any longer the 
ontinuoushumiliations by the Nazis. Related Results12. Bernstein's proof of the Cantor-Bernstein Theorem. Below we sket
h out Bern-stein's proof of the Cantor-Bernstein Theorem as it was published by Borelin [16, p. 104 �.℄: Let A and B be two arbitrary sets and let f : A →֒ B and

g : B →֒ A two inje
tions. Further, let A0 := A, B0 := g[B], and for n ∈ ω let
An+1 := (g◦f)[An] and Bn+1 := (g◦f)[Bn]; �nally let D :=

⋂
n∈ω An.We get the following pi
ture:
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4Cardinal Relations in ZF only
To some it may appear novel that I in
lude thefourth among the 
onsonan
es, be
ause pra
ti
ingmusi
ians have until now relegated it to the disso-nan
es. Hen
e I must emphasise that the fourth isa
tually not a dissonan
e but a 
onsonan
e.Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558In the previous 
hapter we introdu
ed 
ardinal numbers as 
ertain sets,whi
h 
ontain only sets of the same 
ardinality. Cardinal numbers in Zermelo-Fraenkel Set Theory are traditionally denoted by Fraktur letters like m and
n. However, the 
ardinality of a given set A is denoted by |A|. If |A| = m,then we say that A is of 
ardinality m. Re
all that for 
ardinals m = |A|,
2m := |P(A)|, in parti
ular 2ℵ0 = |P(ω)|.Re
all that a set A is �nite if there exists a bije
tion between A and anatural number n ∈ ω. Now, a 
ardinal number m is �nite if m 
ontains a�nite set� re
all that |∅| = {∅}. Finite 
ardinal numbers are usually denotedlike elements of ω, i.e., by letters like n,m, k et 
etera. In other words, for
n ∈ ω we usually do not distinguish between the ordinal number n and the
ardinal number n. Finally, a 
ardinal number is in�nite if it is not �nite.Re
all that an in�nite 
ardinal whi
h 
ontains a well-orderable set is 
alledan aleph and that alephs are denoted by ℵ's, e.g., ℵ0 := |ω|. A 
ardinal m is
alled trans�nite or Dedekind-in�nite if ℵ0 ≤ m. Noti
e that trans�nite
ardinals are always in�nite. If the 
ardinality of a set A is trans�nite, then
A is 
alled trans�nite. Noti
e that for ea
h trans�nite set A there is aninje
tion from ω into A. Sets or 
ardinals whi
h are not trans�nite are 
alled
D-�nite or Dedekind-�nite. Noti
e that every �nite set is D-�nite, but aswe will see later, D-�nite sets are not ne
essarily �nite. For other notions of�niteness see Related Result 13.



80 4 Cardinal Relations in ZF onlyBasi
 Cardinal RelationsBelow we show some relations between 
ardinals whi
h 
an be proved in ZF.We start with some simple fa
ts.Fa
t 4.1. ℵ0 = |P| = |Z| = |Z2| = |Q|, where P denotes the set of primenumbers, Z denotes the set of integers, and Q denotes the set of rationalnumbers.Proof. By de�nition we have ℵ0 = |ω|. Further, |P| ≤ |ω| ≤ |Z| ≤ |Q|,and sin
e every redu
ed rational number p
q

orresponds to an ordered pair

〈p, q〉 of integers we also have |Q| ≤ |Z2|. Thus, by the Cantor-BernsteinTheorem 3.17 it is enough to show that the set P is trans�nite and to �ndan inje
tion from Z2 into ω. That P is trans�nite follows from the fa
t that
P is an in�nite, well-orderable set; and to 
onstru
t an inje
tion f : Z2 →֒ ωwe de�ne for example �rst g : P×Z → ω by stipulating g(p, z) := max{1, pz}and then let f(〈x, y〉) := g(2, x) · g(3,−x) · g(5, y) · g(7,−y). ⊣For an arbitrary set A let fin(A) denote the set of all �nite subsets of A. Noti
ethat fin(A) = P(A) if and only if A is �nite. Further, re
all that seq(A)denotes the set of all �nite sequen
es whi
h 
an be formed with elements of Aand that seq1-1(A) be those sequen
es of seq(A) in whi
h no element appearstwi
e. Further, re
all that [A]2 is the set of all 2-element subsets of A.Fa
t 4.2. ℵ0 = |[ω]2| = | fin(ω)| = | seq1-1(ω)| = | seq(ω)| = |A|, where Adenotes the set of algebrai
 numbers, whi
h is the set of all real numberswhi
h are roots of polynomials with integer 
oe�
ients.Proof. Sin
e every �nite subset of ω 
orresponds to a stri
tly in
reasing �-nite sequen
e of elements of ω we obviously have ℵ0 ≤ |[ω]2| ≤ | fin(ω)| ≤
| seq1-1(ω)| ≤ | seq(ω)|. By the Cantor-Bernstein Theorem 3.17, in orderto prove that | seq(ω)| = ℵ0 it is enough to �nd an inje
tion from seq(ω) into
ω. Let P = {pi : i ∈ ω} be su
h that for all i, j ∈ ω, i < j → pi < pj , andde�ne f : seq(ω) → ω by stipulating

f
(
〈a0, a1, . . . , an〉

)
:= pa0+1

0 · pa1+1
1 · . . . · pan+1

n .Then, by unique fa
torisation of integers, f is inje
tive. Now, let us 
onsiderthe set A: A polynomial p(x) = anx
n + an−1x

n−1 + . . . a1x+ a0 with integer
oe�
ients has at most n di�erent real roots say r0 < r1 < . . . rk where k < n,and sin
e there exists a bije
tion g between Z and ω (by Fa
t 4.1), we 
ande�ne a mapping hp(x) whi
h assigns to ea
h root ri of p(x) an element of
seq(ω) by stipulating

hp(x)(ri) =
〈
g(a0), . . . , g(an), i

〉
,and de�ne H : A → ω by stipulating

H(r) = min
{
hp(x)(ri) : p(r) = 0 ∧ r = ri

}
.This shows that |A| ≤ ℵ0 and 
ompletes the proof. ⊣



Basi
 
ardinal relations 81By Proposition 3.18 we know that |R| = 2ℵ0 and by Cantor's The-orem 3.25 we get that ℵ0 < 2ℵ0 , hen
e, the set of reals is un
ountable(
f. Proposition 3.24). The following result gives a few examples of sets ofthe same 
ardinality as R.Fa
t 4.3. ∣∣[0, ε]∣∣ = ∣∣R
∣∣ =

∣∣ω2
∣∣ =

∣∣ωω
∣∣ =

∣∣R×R
∣∣ =

∣∣ωR
∣∣ =

∣∣C[0, 1]
∣∣ =

∣∣R\A
∣∣,where for ε > 0, [0, ε] = {r ∈ R : 0 ≤ r ≤ ε}, and C[0, 1] denotes the set of
ontinuous fun
tions from [0, 1] to R.Proof. The fun
tion ε · ( arctan(x) + π

2

)
/π is a bije
tion between R and theopen interval (0, ε), thus, by the Cantor-Bernstein Theorem 3.17 we get∣∣[0, ε]

∣∣ =
∣∣R

∣∣.Sin
e the fun
tion h : ω2 → P(ω) de�ned by stipulating h(f) := {
n ∈ ω :

f(n) = 1} is bije
tive, and sin
e |R| = |P(ω)|, we get |R| = |ω2|.Re
all that there is a bije
tion g : ω × ω → ω, e.g., let g(〈n,m〉
)
:=

m + 1
2 (n +m)(n +m + 1). In order to show that |ωR| = |R| it is enough toshow that there is a bije
tion between ωP(ω) and P(ω). Now, there is a one-to-one 
orresponden
e between fun
tions h ∈ ωP(ω) and sets X ∈ P(ω×ω)by 〈a, b〉 ∈ X ⇐⇒ b ∈ h(a). Thus, the fun
tion

P(ω × ω) −→ P(ω)

X 7−→ g[X ]indu
es an bije
tion between ωP(ω) and P(ω), hen
e, |ωR| and |R|, andsin
e |R| ≤ |R × R| ≤ |ωR| and |R| = |ω2| ≤ |ωω| ≤ |ωR|, we �nally get
|R| = |ω2| = |ωω| = |R×R| = |ωR|.To see that ∣∣R

∣∣ =
∣∣C[0, 1]

∣∣, noti
e �rst that a 
ontinuous fun
tion from
[0, 1] to R is de�ned by its values on Q∩ [0, 1]. By Fa
t 4.1 there is a bije
tionbetween Q ∩ [0, 1] and ω, and 
onsequently there is a one-to-one 
orrespon-den
e between fun
tions in C[0, 1] and some fun
tions in ωR whi
h shows that∣∣C[0, 1]

∣∣ ≤
∣∣ωR

∣∣. Sin
e |ωR| = |R| and sin
e we obviously have ∣∣R∣∣ ≤
∣∣C[0, 1]

∣∣,by the Cantor-Bernstein Theorem 3.17 we �nally get ∣∣C[0, 1]∣∣ = ∣∣R
∣∣.By Fa
t 4.2, |A| = ℵ0 and we leave it as an exer
ise to the reader to showthat |R \ A| = |R| for all 
ountable sets A ⊆ R. At this point we would liketo mention that the reals R \A are 
alled trans
endental numbers; thus, allbut 
ountably many reals are trans
endental. ⊣Let us now turn our attention to arbitrary 
ardinalities and let us provethat whenever we 
an embed ω into P(A). Then we 
an also embed R into

P(A).Proposition 4.4. If ℵ0 ≤ 2m, then 2ℵ0 ≤ 2m.Proof. Let A be an arbitrary set of 
ardinality m. Be
ause ℵ0 ≤ 2m there is aninje
tion f0 : ω →֒ P(A). De�ne an equivalen
e relation on A by stipulating
x ∼ y ⇐⇒ ∀n ∈ ω

(
x ∈ f0(n) ↔ y ∈ f0(n)

)
,



82 4 Cardinal Relations in ZF onlyand let [x]̃ := {y ∈ A : y ∼ x}. For x ∈ A let gx :=
{
n ∈ ω : x ∈ f0(n)

}.Then for every x ∈ A we have gx ⊆ ω and gx = gy i� [x]̃ = [y]̃ . We 
an
onsider the set gx as a fun
tion from ω to {0, 1} by gx(n) = 0 if x ∈ f0(n) and
gx(n) = 1 if x /∈ f0(n). Now we de�ne an ordering �≺ � on the set {gx : x ∈ A}by stipulating
gx ≺ gy ⇐⇒ ∃n ∈ ω

(
gx(n) < gy(n) ∧ ∀k ∈ n

(
gx(k) = gy(k)

))
.Noti
e that for all x, y ∈ A su
h that gx 6= gy we have either gx ≺ gy or

gy ≺ gx. Let P 0
n := {gx : gx(n) = 0}. Then for ea
h n ∈ ω, P 0

n ⊆ ω2.Obviously, the relation �≺ � de�nes an ordering on ea
h P 0
n . We 
onsider thefollowing two 
ases:If for ea
h n ∈ ω, P 0

n is well-ordered by �≺ �, then we 
an easily well-orderthe in�nite set ⋃n∈ω P
0
n and 
onstru
t a 
ountably in�nite set {gxi

: i ∈ ω}su
h that for all distin
t i, j ∈ ω, gxi
6= gxj

. If we de�ne qi = {x ∈ A : gx =
gxi

}, then the set Q := {qi : i ∈ ω} is a 
ountable in�nite set of pairwisedisjoint subsets of A.If not every P 0
n is well-ordered by �≺ �, there exists a least m ∈ ω su
hthat P 0

m is not well-ordered by �≺ � and we 
an de�ne
S0 =

⋃{
S ⊆ P 0

m : S has no ≺-minimal element} .By de�nition of S0 ⊆ P 0
m, S0 has no ≺-minimal element, too. For k ∈ ωwe de�ne Sk+1 as follows: If Sk ∩ P 0

m+k+1 = ∅, then Sk+1 := Sk; otherwise,
Sk+1 := Sk ∩P 0

m+k+1. By 
onstru
tion, for every k ∈ ω, Sk 6= ∅ and Sk is notwell-ordered by �≺ �. This implies that for every k ∈ ω there exists an l > ksu
h that Sl is a proper subset of Sk. Now let Sk0 , Sk1 , . . . be su
h that for all
i < j we have Ski \ Skj 6= ∅ and let qi := {

x ∈ A : gx ∈ (Ski \ Ski+1

}. Thenthe set Q := {qi : i ∈ ω} is again a 
ountable in�nite set of pairwise disjointsubsets of A.Thus, in both 
ases the 
ardinality of P(Q) is 2ℵ0 , and sin
e the fun
tion
P(Q) −→ P(A)

X 7−→ ⋃
Xis inje
tive we �nally have 2ℵ0 ≤ 2m. ⊣It is now time to de�ne addition and multipli
ation of 
ardinals. Let mand n be 
ardinals and let A and B be disjoint sets of 
ardinality m and nrespe
tively. Then we de�ne the sum and produ
t of m and n as follows:

m+ n = |A ∪̇B|
m · n = |A×B|



Basi
 
ardinal relations 83Furthermore, let 2m := m+ m and m2 := m ·m. We leave it as an exer
ise tothe reader to show that for any 
ardinals m, n and p we have for example:
m+ n = n+m , m · n = n ·m

m ≤ n → p+m ≤ p+ n , m ≤ n → p ·m ≤ p · n

2m+n = 2m · 2n , 2m·n =
(
2m

)nFor example to show that 2m+n = 2m·2n, de�ne f : P(A∪̇B) → P(A)×P(B)by stipulating f(S) := 〈S ∩ A,S ∩B〉.The following fa
t is just an easy 
onsequen
e of the de�nition of orderedpairs.Fa
t 4.5. For any 
ardinal m, m2 ≤ 22
m .Proof. Let A be a set of 
ardinality m. Any 〈a, b〉 ∈ A× A 
an be written inthe form {

a, {a, b}
}, whi
h is obviously an element of P

(
P(A)

). ⊣Let m be a 
ardinal and let A be a set of 
ardinality m. Then we de�ne
fin(m) := | fin(A)| and [m]2 := |[A]2|. Noti
e that for all 
ardinals m > 2 wehave m ≤ [m]2 ≤ fin(m). We leave it as an exer
ise to the reader to show that
ℵ0 ≤ m2 → ℵ0 ≤ m; however, ℵ0 ≤ [m]2 → ℵ0 ≤ m is not provable in ZF (seeTheorem 7.6.(b)).As mentioned above, an in�nite set 
an be D-�nite and moreover, even thepower set of an in�nite set 
an be D-�nite. However, for every in�nite 
ardinal
m, 2fin(m) is trans�nite (noti
e that 2fin(m) ≤ 22

m).Fa
t 4.6. If m is an in�nite 
ardinal, then 2ℵ0 ≤ 2fin(m), in parti
ular 2fin(m)is trans�nite.Proof. Let A be an arbitrary in�nite set of 
ardinality m. For every n ∈ ω let
Xn := {x ⊆ A : |x| = n}. Then for any n ∈ ω, Xn ∈ P

(
fin(A)

). For any twodistin
t integers n,m ∈ ω we get Xn 6= Xm. This shows that ℵ0 ≤ 2fin(m),and hen
e, by Proposition 4.4, 2ℵ0 ≤ 2fin(m). ⊣The following result is an immediate 
onsequen
e of Fa
t 4.6 (see Theo-rem 4.28 for a stronger result).Fa
t 4.7. If m is an in�nite 
ardinal, then 22
2
m

+ 22
2
m

= 22
2
m .Proof. Noti
e that

22
2
m

+ 22
2
m

= 2 · 222
m

= 2(2
2
m

+1),and sin
e 22
m is trans�nite, 22m

+ 1 = 22
m .



84 4 Cardinal Relations in ZF onlyFor arbitrary sets A and B we write |A| ≤∗ |B| if either A = ∅ or thereis a surje
tion from B onto A. Similarly we write m ≤∗ n if there are sets
A ∈ m and B ∈ n su
h that |A| ≤∗ |B|. Noti
e that 
ardinal relation �≤� isre�exive and transitive, and that m ≤ n → m ≤∗ n. We leave it as an exer
iseto the reader to show that for all 
ardinals m, [m]2 ≤∗ m2 (
ompare this resultwith Proposition 7.18). However, in ZF, |A| ≤∗ |B| and |B| ≤∗ |A| does notimply |A| = |B| (see Chapter 7 for 
ounterexamples). On the other hand, wehave the followingFa
t 4.8. If m ≤∗ n, then 2m ≤ 2n. Moreover, if m ≤∗ ℵ, then m ≤ ℵ.Proof. Let the sets A and B be of 
ardinality m and n respe
tively. Sin
e
m ≤∗ n there is a surje
tion g : B ։ A. Let f : P(A) → P(B) by stipulating
f(X) :=

{
y ∈ B : g(y) ∈ X

}. Then f is inje
tive whi
h shows that ∣∣P(A)
∣∣ ≤∣∣P(B)

∣∣.Now, let S be a set of 
ardinality ℵ and let RS ⊆ S×S be a well-orderingof S. Further, let g : S ։ A (where |A| = m) be a surje
tion. Then f : A→ S,where f(a) is the RS-minimal element of {s ∈ S : g(s) = a
} is obviously aninje
tion. ⊣Re
all that by Hartogs' Theorem 3.27, for any 
ardinal m there is asmallest ℵ, denoted ℵ(m), su
h that ℵ(m) � m.Fa
t 4.9. If m is an in�nite 
ardinal, then ℵ(m) ≤∗ 2m

2 .Proof. Let A be a set of 
ardinalitym. Any binary relationR on A 
orrespondsto a subset XR of A× A by stipulating 〈a0, a1〉 ∈ XR ⇐⇒ R(a0, a1). Thus,we get that the 
ardinality of the set of binary relations on A is less than orequal to 2m
2 . Further, let S be a well-orderable set of 
ardinality ℵ(m), let

R be a well-ordering of S, and let α = o.t.(R) be the order type of R. Then
|α| = |S| = α(m). De�ne f : P(A×A) → α by stipulating

f(X) =

{
∅ if X is not a well-ordering of a subset of A,
o.t.(X) otherwise.By the proof of Hartogs' Theorem 3.27, for every β ∈ α there is a well-ordering R of a subset of A su
h that o.t.(R) = β, hen
e, f is surje
tive. ⊣In the proof of Cantor's Theorem 3.25 it is in fa
t shown that for all
ardinals m, 2m �∗ m. On the other hand, we obviously have 2m ≤∗ m2 in the
ase when m ≤ 4; however, it is not known whether 2m ≤∗ m2 → m ≤ 4 isprovable in ZF (see Related Result 21).The situation is di�erent when we repla
e �≤∗ � by �≤ �. By Cantor'sTheorem 3.25 we know that m < 2m, thus, 2m � m. Moreover, 2m ≤ m2 →

m ≤ 4 (see Theorem 4.20), but we have to postpone the proof until we 
an
ompute the 
ardinality of produ
ts of in�nite ordinal numbers. However, letus �rst investigate the 
ardinality of the 
ontinuum R.



On the 
ardinals 2ℵ0 and ℵ1 85On the Cardinals 2ℵ0 and ℵ1By Hartogs' Theorem 3.27 we know that for any 
ardinal m (e.g., m = ℵ0)there is a smallest ℵ, denoted ℵ(m), su
h that ℵ(m) � m. Now let ℵ1 := ℵ(ℵ0).Then ℵ1 
ontains an un
ountable well-orderable set, say A, su
h that everysubset of A of 
ardinality stri
tly less than A is 
ountable. Let α be the ordertype of a well-ordering of A. Then, sin
e |α| = ℵ1, α is an un
ountable ordinal.Now, if α \ {β ∈ α : |β| = ℵ0} = ∅, then α is the least un
ountable ordinalwhi
h is usually denoted ω1. Otherwise, the non-empty set α \ {β ∈ α : |β| =
ℵ0}, as a set of ordinals, has an ∈-minimal element, say γ. Then γ is the leastun
ountable ordinal, i.e., γ = ω1. In parti
ular we get |ω1| = ℵ1, and for all
β ∈ ω1 we have |β| = ℵ0.If 2ℵ0 would be an aleph, then we would have ℵ1 ≤ 2ℵ0 , (noti
e that
ℵ0 < 2ℵ0 and that ℵ0 < ℵ1). Now, the Continuum Hypothesis, denoted CH,states that 2ℵ0 = ℵ1. In parti
ular, if 2ℵ0 is an aleph then CH is equivalent tosaying that every subset of R is either 
ountable or of 
ardinality 2ℵ0 .In Chapter 16 we shall see that CH is independent of ZF, thus, neither ZF ⊢CH nor ZF ⊢ ¬CH. Below we investigate the relationship between the 
ardinals
2ℵ0 and ℵ1. In order to 
onstru
t a surje
tion from R onto ω1 �even thoughthere might be no inje
tion from ω1 into R�we prove �rst the followingresult:Lemma 4.10. For every ordinal α ∈ ω1 there is a set of rationals Qα ⊆
Q∩ (0, 1) and a bije
tion hα : α → Qα su
h that for all β, β′ ∈ α, β ∈ β′ ⇐⇒
hα(β) < hα(β

′).Proof. Let α be an arbitrary but �xed ordinal in ω1. For α = 0 let Q0 := ∅and we are done; and if 0 6= α ∈ ω (i.e., if α is �nite), then for n ∈ α we de�ne
hα(n) := 1− 1/(n+ 2). If α is in�nite we pro
eed as follows. Firstly let

ω −→ α

n 7−→ βnand
ω −→ Q ∩ (0, 1)

n 7−→ qnbe two bije
tions (noti
e that the sets α and Q ∩ (0, 1) are both 
ountablyin�nite). Sin
e {βn : n ∈ ω} = α, it is enough to de�ne hα(βn) for all n ∈ ωwhi
h is done by indu
tion: hα(β0) := q0 and if hα(βk) is de�ned for all k ∈ n,then
hα(βn) = qµ(n)where

µ(n) = min
{
m ∈ ω : ∀k ∈ n (qm ≤ hα(βk) ↔ βn ∈ βk)

}
.Further, let Qα := hα[α]. Then by indu
tion one 
an show that hα and Qαhave the required properties (the details are left to the reader). ⊣



86 4 Cardinal Relations in ZF onlyTheorem 4.11. ℵ1 ≤∗ 2ℵ0 .Proof. It is enough to 
onstru
t a surje
tion from the open interval (0, 1) onto
ω1. Firstly noti
e that every real r ∈ (0, 1) 
an be written uniquely as

r =
∑

n∈ω

rn · 2−(n+1)where for all n ∈ ω, rn ∈ {0, 1}, and in�nitely many rn's are equal to 0. Onthe other hand, for every fun
tion f ∈ ω2 su
h that {n ∈ ω : f(n) = 0} isin�nite there exists a unique real r = ∑
n∈ω f(n) · 2−(n+1) in (0, 1). Se
ondly,for r ∈ (0, 1) let Qr = {qn : r2n = 1} where the fun
tion whi
h maps n to

qn is a bije
tion between ω and Q ∩ (0, 1). If Qr is well-ordered by �< �, thenlet η(r) be the order type of (Qr, <); otherwise, let η(r) = ∅. Sin
e the set ofrational numbers is 
ountable, η is a fun
tion from (0, 1) to ω1. Moreover, thefun
tion η is even surje
tive. Indeed, by Lemma 4.10 we know that for any
α ∈ ω1 there is a set of rational numbers Qα ⊆ Q ∩ (0, 1) su
h that the ordertype of (Qα, <) is equal to α. Thus, for

r =
∑

n∈N(Qα)

2−(2n+1) where N(Qα) = {k ∈ ω : qk ∈ Qα}we have r ∈ (0, 1) and η(r) = α, and sin
e α ∈ ω1 was arbitrary this showsthat η is surje
tive. ⊣In 
ontrast to Theorem 4.11 the existen
e of an inje
tion from ω1 into Ris not provable in ZF, i.e., ℵ1 � 2ℵ0 is 
onsistent with ZF. For example thereis no su
h inje
tion in the 
ase when the reals 
an be written as a 
ountableunion of 
ountable sets (for the 
onsisten
y of this statement with ZF seeChapter 17).Proposition 4.12. If the set of real numbers is a 
ountable union of 
ount-able sets, then ℵ1 � 2ℵ0 .Proof. By Fa
t 4.3, |R| = |ωR|. Thus, if R is a 
ountable union of 
ountablesets, then we also have ωR =
⋃
n∈ω Fn where ea
h Fn is 
ountable. Theproof is by 
ontraposition: Under the assumption that there is an inje
tion

j : ω1 →֒ R we show that ωR 6= ⋃
n∈ω Fn. Consider the fun
tion

G : ω −→ P(R)

n 7−→
{
r ∈ R : ∃f ∈ Fn ∃k ∈ ω

(
f(k) = r

)}
.For ea
h n ∈ ω we have |G(n)| ≤ ℵ0 and we 
an de�ne h : ω → R bystipulating

h(n) := j(αn) where αn = min
{
β ∈ ω1 : j(β) /∈ G(n)

}
.



Ordinal numbers revisited 87By de�nition h ∈ ωR, but on the other hand, h does not belong to any set
Fn (for n ∈ ω); sin
e otherwise we would have h(n) ∈ G(n) whi
h 
ontradi
tsthe de�nition of h(n). Thus, h /∈ ⋃

n∈ω Fn whi
h shows that ωR�and 
on-sequently R�
annot be 
overed by 
ountably many 
ountable sets. ⊣As a 
onsequen
e of Proposition 4.12 one 
an show that if R is a 
ount-able union of 
ountable sets, then R 
an be partitioned into stri
tly moreparts than real numbers exist, where a partition of R is a set R ⊆ P(R)su
h that ⋃R = R and for any distin
t x, y ∈ R, x ∩ y = ∅.Corollary 4.13. If the set of real numbers is a 
ountable union of 
ountablesets, then there exists a partition R of R su
h that |R| > |R|.Proof. By Fa
t 4.3 and the Cantor-Bernstein Theorem 3.17 there existsa bije
tion between R \ (0, 1) and R, and by Theorem 4.11 there exists asurje
tion from (0, 1) onto ω1. Thus, there is a surje
tion f : R ։ R∪̇ω1and with f we 
an de�ne an equivalen
e relation �∼� on R by stipulating
x ∼ y ⇐⇒ f(x) = f(y). Let R = {[x]̃ : x ∈ R}. Then R is a partition of Rand we have |R| = ℵ1+2ℵ0 . By Proposition 4.12, ℵ1 � 2ℵ0 and 
onsequently
ℵ1+2ℵ0 � 2ℵ0 , and sin
e 2ℵ0 ≤ ℵ1+2ℵ0 we have 2ℵ0 < ℵ1+2ℵ0 , in parti
ular,
|R| < |R|. ⊣Ordinal Numbers revisitedIn the previous 
hapter we have de�ned addition, multipli
ation, and exponen-tiation of ordinal numbers. Using these arithmeti
al operations we 
an showthat every ordinal number 
an be uniquely represented in a standardised form,but �rst let us introdu
e some terminology: For ordinals α, β ∈ Ω we will write
β < α instead of β ∈ α and 
onsequently we de�ne β ≤ α ⇐⇒ β ∈ α∨β = α.Further noti
e that if β ≤ α, then there is a unique ordinal, denoted α − β,su
h that β + (α− β) = α.Lemma 4.14. For every ordinal α > 0 there exists a unique ordinal α0 su
hthat ωα0 ≤ α and ωα0+1 > α.Proof. Firstly noti
e that by the rules of ordinal exponentiation, for γ < γ′ wehave ωγ < ωγ ·ω ≤ ωγ ·ωγ′−γ = ωγ

′ . In parti
ular, for any ordinal α0 we have
ωα0 < ωα0+1. Se
ondly noti
e that for all ordinals α we have ωα ≥ α, hen
e,
ωα+1 > ωα ≥ α. Now, sin
e α+1 is well-ordered by �< � and ωα+1 > α ≥ ω0,there is a unique least ordinal β ≤ α+1 su
h that ωβ > α. It remains to showthat β is a su

essor ordinal, i.e., β = α0 + 1 for some α0. Indeed, if β wouldbe a limit ordinal, then ωβ =

⋃
γ∈β ω

γ , and by de�nition of β we would have
ωγ ≤ α (for all γ ∈ β). Sin
e ωγ+1 > ωγ and sin
e β is a limit ordinal, thiswould imply that ωγ ∈ α whenever γ ∈ β and 
onsequently ωβ ≤ α, whereas
ωβ > α, a 
ontradi
tion. ⊣



88 4 Cardinal Relations in ZF onlyLemma 4.15. Let α ≥ ω be an in�nite ordinal. Then there exist a positiveinteger k0 and ordinals α′ and α0 where α′ < ωα0 su
h that α = ωα0 ·k0+α′.Moreover, the ordinals k0, α0, and α′ are uniquely determined by α.Proof. Let α0 be as in Lemma 4.14. Then ωα0 ≤ α and ωα0+1 > α. By asimilar argument as in the proof of Lemma 4.14, this implies that there arepositive integers k su
h that ωα0 · k > α. Let k0 be the least integer su
h that
ωα0 · (k0 + 1) > α; then 1 ≤ k0 < ω (noti
e that ωα0 = ωα0 · 1 ≤ α). Finally,let α′ =

(
α − ωα0 · k0

). Then ωα0 · k0 + α′ = α and sin
e ωα0 · (k0 + 1) =
ωα0 · k0 +ωα0 > α, α′ < ωα0 . We leave it as an exer
ise to the reader to showthat k0, α0, and α′ are uniquely determined by α. ⊣Now we are ready to prove the following result:Theorem 4.16 (Cantor's Normal Form Theorem). Every ordinal num-ber α > 0 
an be uniquely represented in the form

α = ωα0 · k0 + ωα1 · k1 + . . .+ ωαn · knwhere n+1 and k0, k1, . . . , kn are positive integers and the ordinal exponentssatisfy α ≥ α0 > α1 > α2 > . . . > αn ≥ 0.Proof. By an iterative appli
ation of Lemma 4.15 we get
α = ωα0 · k0 + α′

α′ = ωα1 · k1 + α′′

α′′ = ωα2 · k2 + α′′′...where α′ < ωα0 , α′′ < ωα1 , α′′′ < ωα2 , et 
etera, and k0, k1, k2, . . . are positiveintegers. Now, α′ < ωα0 implies that α1 < α0, and α′′ < ωα1 implies that
α2 < α1, and so on. Thus, we get a des
ending sequen
e α ≥ α0 > α1 >
α2 > . . ., and sin
e by the Axiom of Foundation every su
h sequen
e is �nite,there exists an n ∈ ω su
h that αn+1 = 0, and sin
e ω0 = 1 this implies that
α = ωα0 · k0 + . . .+ ωαn · kn. ⊣The form α = ωα0 ·k0+. . .+ωαn ·kn is 
alled the Cantor normal form of
α, denoted cnf(α). Noti
e that by Cantor's Normal Form Theorem 4.16,every ordinal number 
an be written in a unique way in Cantor normal form.For α = ωα0 ·k0+ . . .+ωαn ·kn let cnf0(α) := ωα0 ·k0. The next lemma willbe used to show that for every in�nite ordinal α, there is a bije
tion between
α and cnf0(α).Lemma 4.17. If α0, α1, k0, k1 are ordinals, where α0 > α1 and 0 < k0, k1 < ω,then

ωα1 · k1 + ωα0 · k0 = ωα0 · k0 .



Ordinal numbers revisited 89Proof. By distributivity we get ωα1 ·k1+ωα0 ·k0 = ωα1 ·
(
k1+ω

α0−α1 ·k0
), andsin
e k1+ω = ω we get k1+ωα0−α1 ·k0 = ωα0−α1 ·k0. Thus, ωα1 ·k1+ωα0 ·k0 =

ωα1 ·
(
k1 + ωα0−α1 · k0

)
= ωα0 · k0. ⊣Lemma 4.18. For ea
h ordinal α > 0 there exists a bije
tion between α and

cnf0(α).Proof. Let cnf(α) = ωα0 · k0 +ωα1 · k1 + . . .+ωαn · kn and de�ne the �reverseCantor normal form� of α, denoted ←−

cnf(α), by
←−

cnf(α) = ωαn · kn + ωαn−1 · kn−1 + . . .+ ωα0 · k0 .If α < ω, then α0 = 0, hen
e, α = ωα0 · k0 = k0 and therefore α = cnf0(α).If α ≥ ω, then by an iterative appli
ation of Lemma 4.17 we get ←−cnf(α) =
ωα0 · k0 = cnf0(α), and sin
e there is obviously a bije
tion between α and
←−

cnf(α), there exists a bije
tion between α and cnf0(α). ⊣Now we are ready to show that for ea
h in�nite ordinal α, the 
ardinality ofthe set of all �nite sequen
es whi
h 
an be formed with elements of α is thesame as the 
ardinality of α. Moreover, we 
an show the following result:Theorem 4.19. For ea
h in�nite ordinal α we have
|α| = | fin(α)| = | seq1-1(α)| = | seq(α)| .Moreover, there exists a 
lass fun
tion F su
h that for ea
h in�nite ordinal

α ≥ ω, {α} × seq(α) ⊆ dom(F ) and F |{α}×seq(α) indu
es an inje
tion from
seq(α) into α.Proof. Firstly noti
e that for every ordinal α, |α| ≤ | fin(α)| ≤ | seq1-1(α)| ≤
| seq(α)|. In fa
t, there is a 
lass fun
tion assigning to ea
h ordinal α someappropriate fun
tions to witness these inequalities. Thus, it is enough to provethat for every in�nite ordinal α, | seq(α)| ≤ |α| uniformly; i.e., it is enough toshow the existen
e of a 
lass fun
tion F su
h that for every in�nite ordinal
α and any distin
t �nite sequen
es s, t ∈ seq(α) we have F (〈α, s〉) ∈ α and
F
(
〈α, s〉

)
6= F

(
〈α, t〉

). Let α be an arbitrary but �xed in�nite ordinal. Inthe following steps we will 
onstru
t an inje
tion Fα : seq(α) →֒ α su
h thatthe 
lass fun
tion F de�ned by F (〈α, s〉) := Fα(s) has the desired properties(noti
e that this requires that the fun
tion Fα is fully determined by α).First we give a detailed 
onstru
tion of an inje
tion gα : α →֒ ωα0 , where
ωα0 ·k0 = cnf0(α). By Lemma 4.18 there is a bije
tion between α and ωα0 ·k0.Further, there is a bije
tion between the ordinal ωα0 · k0 and the set ωα0 × k0.Indeed, if β ∈ ωα0 · k0, then there is a β′ ∈ ωα0 and an j ∈ k0 su
h that
β = ωα0 · j + β′; let the image of β be 〈β′, j〉. Similarly, there is a bije
tionbetween the set k0×ωα0 and the ordinal k0 ·ωα0 , and sin
e there is obviouslya bije
tion between ωα0 × k0 and k0 ×ωα0 , there is a bije
tion between α and
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k0 · ωα0 . Further, sin
e 1 ≤ k0 < ω, there is an inje
tion from k0 · ωα0 into
ω · ωα0 = ω1+α0 , thus, there is an inje
tion

g : α →֒ ω1+α0 .Noti
e that be
ause α ≥ ω, α0 ≥ 1. Now we 
onsider the following two 
ases:If α0 ≥ ω, then 1 + α0 = α0, thus, g is an inje
tion from α into ωα0 ; inthis 
ase let gα := g.If α0 < ω, then 1+α0 = α0+1 and there is a bije
tion between the ordinal
ωα0+1 and the set of fun
tions from α0+1 to ω, denoted α0+1ω. Similar to theproof of Fa
t 4.2 let p0 < p1 < . . . < pα0 be the least α0 + 1 prime numbersand de�ne h : α0+1ω → ω by stipulating h(s) =

∏
i≤α0

p
s(i)+1
i . Then h isinje
tive and sin
e α0 ≥ 1 (noti
e that α ≥ ω), there is an inje
tion from αinto ωα0 ; in this 
ase let gα be that inje
tion.Similarly, for ea
h n ∈ ω we 
an 
onstru
t an inje
tion fα,n : nα →֒ α. For

n = 0 let fα,0(∅) := ∅; and for n > 0 let fα,n be de�ned by the followingsequen
e of inje
tions:
fα,n : nα by gα // n

(
ωα0

)
//
(
ωα0

)n // ωα0·n // ωn·α0 //

ωn·d0 // ω // αby gαo , where
ωδo · d0 = cnf0(α0)

//
ωn·ω

δo ·d0 //
ωn·d0·ω

δo

δ0
=0
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ωω // α

ωω·ω
δo //

ωω
1+δo

δ0
<
ω

;;wwwwwww

δ
0≥
ω

##G
GG

GG
GG

ωω
δo // αNow we 
an 
onstru
t an inje
tion from seq(α) into α: Firstly noti
e thatthere is a natural bije
tion between seq(α) and ⋃

n∈ω
nα, thus, it is enoughto 
onstru
t an inje
tion Fα from ⋃

n∈ω
nα into α. If s ∈ ⋃

n∈ω
nα, then s isa �nite set of ordered pairs (i.e., |s| ∈ ω) and fα,|s| is an inje
tion from |s|αinto α, in parti
ular, fα,|s|(s) ∈ α. Finally let us de�ne Fα :

⋃
n∈ω

nα → α bystipulating
F (s) := fα,2

({
〈0, |s|〉, 〈1, fα,|s|(s)〉

})
.Then, sin
e α is in�nite, |s| ∈ α, and sin
e fα,2 is an inje
tion from 2α into

α, Fα is inje
tive. ⊣As an appli
ation of Theorem 4.19 let us prove that whenever we havean inje
tion from P(A) into A×A, then A has at most four elements.



Ordinal numbers revisited 91Theorem 4.20. 2m ≤ m2 → m ≤ 4.Proof. If m is �nite, an easy 
al
ulation shows that 2m ≤ m2 implies that
m ∈ {2, 3, 4}. Thus, let m be in�nite and assume towards a 
ontradi
tion that
2m ≤ m2. Let A be a set of 
ardinality m and let f0 : P(A) →֒ A×A. With thefun
tion f0 we 
an 
onstru
t an inje
tive 
lass fun
tion from Ω into A, whi
his obviously a 
ontradi
tion to the Axiom S
hema of Repla
ement�whi
himplies that there is no inje
tion from a proper 
lass (like Ω) into a set.Firstly we 
onstru
t an inje
tion Fω : ω →֒ A. Let a0, a1, a2, a3, a4 be �vedistin
t elements of A and de�ne F5 : 5 → A by stipulating F5(i) := ai (forall i ∈ 5); further let S5 := F5[5] (i.e., S5 = {F5(i) : i ∈ 5}). Assume that forsome n ≥ 5 we have already 
onstru
ted an inje
tion Fn : n →֒ A. For anydistin
t sets x, y ∈ P(Sn), where Sn := Fn[n], let
x ≺ y ⇐⇒ |x| < |y| ∨ ∃i ∈ n

(
F (i) ∈ (x\y)∧∀j ∈ i

(
F (j) ∈ x↔ F (j) ∈ y

))
.Sin
e Sn is �nite, the relation �≺ � is a well-ordering, and sin
e n ≥ 5,

|P(Sn)| = 2n > n2 = |Sn × Sn|. Thus, there exists a ≺-minimal set x ⊆ Snsu
h that f0(x) /∈ Sn × Sn. Let f0(x) = 〈b0, b1〉 and let
an =

{
b0 if b0 /∈ Sn,
b1 otherwise.De�ne Fn+1 := Fn ∪ {〈n, an〉} and let Sn+1 := Sn ∪

{
Fn+1(n)

}. Then Fn+1is an inje
tion from n + 1 into A, and Sn+1 = Fn+1[n + 1]. Pro
eeding thisway we �nally get an inje
tion Fω : ω →֒ A as well as a 
ountably in�nite set
Sω = Fω[ω] ⊆ A.Assume now that we have already 
onstru
ted an inje
tion Fα : α →֒ Afor some in�nite ordinal α ≥ ω and let Sα := Fα[α]. By Theorem 4.19 thereis a 
anoni
al bije
tion g : α → α × α. With g we 
an de�ne a bije
tion
ḡ : Sα → Sα × Sα by stipulating

ḡ
(
Fα(β)

)
=

〈
Fα(β0), Fα(β1)

〉 where β = g−1
(
〈β0, β1〉

)
.Further, de�ne a mapping Γ : Sα → P(Sα) by stipulating

Γ (a) =

{
x ⊆ Sα if f0(x) = ḡ(a),
∅ otherwise.and let

M =
{
a ∈ Sα : a /∈ Γ (a)

}
.Then M ∈ P(Sα) and let f0(M) = 〈b0, b1〉 ∈ A × A. If 〈b0, b1〉 ∈ Sα × Sα,then f0(M) = ḡ(a) for some a ∈ Sα, and hen
e Γ (a) = M ; but a ∈ Γ (a) ↔

a ∈ M ↔ a /∈ Γ (a), whi
h is obviously impossible. Thus, 〈b0, b1〉 /∈ Sα × Sαand we let
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aα =

{
b0 if b0 /∈ Sα,
b1 otherwise.Further, de�ne Fα+1 := Fα∪{〈α, aα〉} and let Sα+1 := Sα∪{aα}. Then Fα+1is an inje
tion from α + 1 into A, and Sα+1 = Fα+1[α + 1]. Finally, if λ is alimit ordinal and Fβ is de�ned for ea
h β ∈ λ we de�ne Fλ :=

⋃
β∈λ Fβ .Now, by the Transfinite Re
ursion Theorem 3.19, ⋃
α∈Ω Fα is aninje
tive 
lass fun
tion whi
h maps Ω into A; a 
ontradi
tion to Hartogs'Theorem. ⊣The idea of the previous proof� getting a 
ontradi
tion by 
onstru
tingan inje
tive 
lass fun
tion from Ω into a given set � is used again in the proofsof Theorem 4.21, Proposition 4.22, and Lemma 4.23.More Cardinal Relations

fin(m) < 2m whenever m is in�niteTheorem 4.21. If m is an in�nite 
ardinal, then fin(m) < 2m.Proof. Let A be an arbitrary but �xed in�nite set of 
ardinality m. Obviously,the identity mapping is an inje
tion from fin(A) into P(A), hen
e, fin(m) ≤
2m. Now, assume towards a 
ontradi
tion that ∣∣P(A)

∣∣ =
∣∣fin(A)

∣∣ and let
f0 : P(A) → fin(A)be a bije
tion. The mapping will be used in order to 
onstru
t an inje
tive
lass fun
tion F : Ω →֒ fin(A). First we de�ne an inje
tion Fω : ω →֒ fin(A)by stipulating
Fω(n) = fn+1

0 (A)where f1
0 (A) := f0(A) and for positive integers k, fk+1

0 (A) := f0
(
fk0 (A)

).Then, sin
e A is in�nite, Fω is indeed an inje
tion.Assume that we have already 
onstru
ted an inje
tion Fα : α →֒ fin(A) forsome in�nite ordinal α ≥ ω and for ι ∈ α let sι := F (ι). Noti
e that sι 6= sι′whenever ι 6= ι′. De�ne an equivalen
e relation on A by
x ∼ y ⇐⇒ ∀ι ∈ α(x ∈ sι ↔ y ∈ sι) .For x ∈ A and µ ∈ α de�ne

Dx,µ =
⋂{

sι : ι ∈ µ ∧ x ∈ sι
}where we de�ne for the moment ⋂ ∅ := A, and let

gx =
{
µ ∈ α : x ∈ sµ ∧ (sµ ∩Dx,µ 6= Dx,µ)

}
.



More 
ardinal relations: fin(m) < 2m 93We leave it as an exer
ise to the reader to show that for any x, y ∈ A, gx = gyi� x ∼ y. Hen
e, there is a bije
tion between {
[x]̃ : x ∈ A

} and {
gx : x ∈ A

}.Further, for ea
h x ∈ A, gx ∈ fin(α). To see this, let µ0 < µ1 < µ2 < . . . bethe ordinals in gx in in
reasing order. By de�nition we have:(1) x /∈ sι whenever ι ∈ µ0(2) x ∈ sµ0 and sµ0 = Dx,µ0+1(3) Dx,µ0+1 ! Dx,µ1+1 ! Dx,µ2+1 ! . . .By (2), Dx,µ0+1 is �nite, and therefore the de
reasing sequen
e (3) must be�nite too, whi
h implies that also gx is �nite.Sin
e {gx : x ∈ A} ⊆ fin(α) we 
an apply Theorem 4.19 to obtain aninje
tion h : {gx : x ∈ A} →֒ α. The set h[{gx : x ∈ A}
], as a subset of α, iswell-ordered by �∈�. Let γ be the order type of h[{gx : x ∈ A}

]. Then γ ≤ αand for ea
h gx assign an ordinal number η(gx) ∈ γ su
h that the mapping
η : {gx : x ∈ A} → γ is bije
tive. For ea
h ι ∈ α, sι is the union of at most�nitely many equivalen
e 
lasses. Thus, we 
an 
onstru
t an inje
tion from αinto fin(γ) by stipulating

ι 7−→
{
ξ ∈ γ : ∃x ∈ sι

(
η(gx) = ξ

}
.Be
ause by Theorem 4.19 we 
an 
onstru
t a bije
tion between fin(γ) and

γ, we 
an also 
onstru
t an inje
tion from α into γ, and be
ause γ ≤ α, bythe Cantor-Bernstein Theorem 3.17 we �nally get a bije
tion H : γ → αbetween γ and α. De�ne the fun
tion Γ : A→ P(A) by stipulating
Γ (x) = f0

−1
(
sH(η(gx))

)and 
onsider the set
M =

{
x ∈ A : x /∈ Γ (x)

}
.We 
laim that the set M does not belong to {

f0
−1(sι) : ι ∈ α

}. Indeed, ifthere would be a β ∈ α su
h that f0−1(sβ) =M , then there would also be anequivalen
e 
lass [x]̃ , whi
h 
orresponds to gx, su
h that
β = H

(
η(gx)

)
.For ea
h y ∈ [x]̃ we have Γ (y) = M , and y ∈ Γ (y) ↔ y ∈ M ↔ y /∈ Γ (y),whi
h is obviously impossible.Now, let sα := f0

−1(M) and de�ne Fα+1 := Fα ∪ {sα}. Then Fα+1 isan inje
tion from α + 1 into fin(A). Finally, if λ is a limit ordinal and Fβ isde�ned for ea
h β ∈ λ, then de�ne Fλ :=
⋃
β∈λ Fβ . Thus, by the TransfiniteRe
ursion Theorem 3.19,⋃α∈Ω Fα is an inje
tive 
lass fun
tion whi
h maps

Ω into fin(A); a 
ontradi
tion to Hartogs' Theorem. ⊣Even though fin(m) < 2m (for all in�nite 
ardinals m), it might be possiblethat for some natural number n, n · fin(m) = 2m. The next result shows thatin that 
ase, n must be a power of 2.



94 4 Cardinal Relations in ZF onlyProposition 4.22. If 2m = n·fin(m) for some natural number n, then n = 2kfor some k ∈ ω.Proof. If the 
ardinal m is �nite, then 2m = fin(m) = 1 · fin(m) = 20 · fin(m).So, let m be an in�nite 
ardinal and let A be an arbitrary but �xed set of
ardinality m. Further, let n be a natural number whi
h is not a power of 2.Assume towards a 
ontradi
tion that ∣∣P(A)
∣∣ =

∣∣n× fin(A)
∣∣. Let

f0 : n× fin(A) → P(A)be a bije
tion whi
h will be used to 
onstru
t an inje
tive 
lass fun
tionfrom Ω into fin(A). Let 〈m0, x0〉 := f0
−1(A). Assume that for some ℓ ∈ ω,

x0, x1, . . . , xℓ are pairwise distin
t �nite subsets of A. For ea
h i ∈ n and j ≤ ℓlet
Xi,j = f0

(
〈i, xj〉

)
.On A de�ne an equivalen
e relation by stipulating

a ∼ b ⇐⇒ ∀i ∈ n ∀j ≤ ℓ (a ∈ Xi,j ↔ b ∈ Xi,j) .Further, let Eq :=
{
[a]̃ : a ∈ A

} be the set of all equivalen
e 
lasses and let
k0 := |Eq |. Now de�ne an ordering �≺ � on the set {Xi,j : i ∈ n ∧ j ≤ ℓ}, forexample de�ne

Xi,j ≺ Xi′,j′ ⇐⇒ j < j′ ∨ (j = j′ ∧ i < i′) .The ordering �≺ � indu
es in a natural way an ordering on the set Eq, and
onsequently of the set E =
{⋃

Y : Y ⊆ Eq
}. Sin
e the equivalen
e 
lassesin Eq are pairwise disjoint, |E| = 2k0 . Noti
e that 2k0 ≥ n · (ℓ+ 1), and sin
e

n is not a power of 2, there is a least set ⋃
Y0 ∈ E (least with respe
t tothe ordering on E indu
ed by �≺ �) su
h that f0−1

(⋃
Y0

)
= 〈mℓ+1, xℓ+1〉 and

xℓ+1 /∈ {xj : j ≤ ℓ}. For i ∈ n de�ne Xi,ℓ+1 := f0
(
〈i, xℓ+1〉

) and pro
eed asbefore. Finally we get an in�nite sequen
e x0, x1, . . . of pairwise distin
t �nitesubsets of A whi
h shows that fin(A) is trans�nite, i.e., there exists a inje
tion
Fω : ω →֒ fin(A).Assume that we have already 
onstru
ted an inje
tion Fα : α →֒ fin(A) forsome in�nite ordinal α ≥ ω. Using the fa
t that there is a bije
tion between
n · α and α, by the same arguments as in the proof of Theorem 4.21 we 
an
onstru
t an inje
tion Fα+1 : α + 1 →֒ fin(A) and �nally obtain an inje
tive
lass fun
tion from Ω into fin(A); a 
ontradi
tion to Hartogs' Theorem.

⊣Even though Proposition 4.22 looks a little bland, one 
annot do betterin ZF, i.e., for all k ∈ ω, the statement �∃m(
2m = 2k · fin(m)

)� is 
onsistentwith ZF (
f. Proposition 7.5).
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seq1-1(m) 6= 2m 6= seq(m) whenever m ≥ 2First we prove that the inequality seq1-1(m) 6= 2m 6= seq(m) whenever m istrans�nite.Lemma 4.23. Let m be a trans�nite 
ardinal number. Then 2m � seq(m) and
onsequently also 2m � seq1-1(m).Proof. Let A be a set of 
ardinality m and assume towards a 
ontradi
tionthat there exists an inje
tion f0 : P(A) →֒ seq(A). Sin
e A is trans�nite thereis an inje
tion Fω : ω →֒ A and let Sω := Fω [ω]. Assume that we have already
onstru
ted an inje
tion Fα : α →֒ A for some in�nite ordinal α ≥ ω and let
Sα := Fα[α]. By Theorem 4.19 there is a bije
tion between α and seq(α),and 
onsequently we 
an de�ne a bije
tion ḡ : Sα → seq(Sα). Further, de�ne
Γ : Sα → P(Sα) by stipulating

Γ (a) =

{
x ⊆ Sα if f0(x) = ḡ(a),
∅ otherwise,and let

M =
{
a ∈ Sα : a /∈ Γ (a)

}
.Then M ∈ P(Sα) and f0(M) = 〈b0, b1, . . . , bn〉 ∈ seq(A) \ seq(Sα). Now,let aα := bi, where i ≤ n is the least number su
h that bi /∈ Sα and de�ne

Fα+1 := Fα ∪ {〈α, aα〉} and Sα+1 := Sα ∪
{
Fα+1(α)

}. Then Fα+1 is aninje
tion from α + 1 into A, and Sα+1 = Fα+1[α + 1]. Finally, if λ is a limitordinal and Fβ is de�ned for ea
h β ∈ λ we de�ne Fλ :=
⋃
β∈λ Fβ and �nallyget that ⋃α∈Ω Fα is an inje
tive 
lass fun
tion; a 
ontradi
tion to Hartogs'Theorem. ⊣To prove that seq(m) 6= 2m whenever m ≥ 1 one 
ould for example showthat seq(m) = 2m implies that m is trans�nite by using similar ideas as above,but we get a slightly more elegant proof by showing that seq(m) = 2m impliesthat seq(m + ℵ0) = 2m+ℵ0 .Theorem 4.24. For all 
ardinals m ≥ 1, seq(m) 6= 2m.Proof. We will show that whenever m ≥ 1 is a 
ardinal su
h that 2m = seq(m),then 2m+ℵ0 = seq(m + ℵ0) whi
h is a 
ontradi
tion to Lemma 4.23. Let theset A be su
h |A| = m and A ∩ ω = ∅. Further, let f0 : P(A) → seq(A) be abije
tion. For a �xed element a0 ∈ A and n ∈ ω let

sn = 〈 a0, . . . , a0︸ ︷︷ ︸
n-times 〉 .With the sequen
es sn we 
an de�ne an inje
tion g : ω →֒ P(A) by stipulating

g(n) := f0
−1(sn), whi
h shows that P(A) is trans�nite, i.e., ℵ0 ≤ 2m. Thus,



96 4 Cardinal Relations in ZF onlyby Proposition 4.4 we have 2ℵ0 ≤ 2m whi
h implies that there exists aninje
tion h : P(ω) →֒ P(A). Finally let
F : P(A)× P(ω) −→ seq(A ∪ ω)

〈x, y〉 7−→ f0(x)
⌢
0
⌢
f0
(
h(y)

)where s⌢t denotes the 
on
atenation of the sequen
es s and t. Then F isinje
tive and we 
onsequently get 2m+ℵ0 = 2m · 2ℵ0 = seq(m+ ℵ0). ⊣In order to prove that seq1-1(m) 6= 2m whenever m ≥ 2 we show that
seq1-1(m) = 2m would imply that m is trans�nite, whi
h is a 
ontradi
tion toLemma 4.23. However, before we have to introdu
e some notation 
on
erning�nite sequen
es of natural numbers.For n ∈ ω let n⋆ := | seq1-1(n)| be the number of non-repetitive sequen
es(i.e., sequen
es without repetitions) we 
an build with n distin
t obje
ts (e.g.,with {0, . . . , n− 1} = n). It is not hard to verify that

n⋆ =
n∑

k=0

(
n

k

)
k! =

n∑

j=0

n!

j!
,and that for all positive integers n we have n⋆ = ⌊en!⌋, where ⌊x⌋ denotes theinteger part of a real number x and eis the Euler number. Obviously, 0⋆ = 1and n⋆ = n · (n− 1)

⋆
+ 1, whi
h implies that

n⋆ = e

∫ ∞

1

tne−tdt .The number n⋆ is also the number of paths (without loops) in the 
ompletegraph on n+ 2 verti
es starting in one vertex and ending in another.The �rst few numbers of the integer sequen
e n⋆ are 0⋆ = 1, 1⋆ = 2, 2⋆ = 5,
3⋆ = 16, 4⋆ = 65, 5⋆ = 326, and further we get e.g., 100⋆ ≈ 2.53687 · 10158and 256⋆ ≈ 2.33179 · 10507.For ea
h positive integer q, an easy 
al
ulation modulo q shows that for all
n ∈ ω we have n⋆ ≡ (n+ q)⋆ mod q. In parti
ular, if q | n⋆, then q | (n+ q)⋆.Now we 
an ask whether there is a positive integer t < q su
h that q | (n+ t)

⋆and q | n⋆. The following lemma shows that this is not the 
ase whenever q isa power of 2.Lemma 4.25. If 2k | n⋆ and 2k | (n+ t)
⋆ for some t ∈ ω, then 2k | t.Proof. For k ≤ 3, an easy 
al
ulation modulo 2k shows that for ea
h n, if

2k|n⋆, then 2k ∤ (n+ t)
⋆ whenever 0 < t < 2k.Assume towards a 
ontradi
tion that there is a smallest k ≥ 3 su
h that

2k+1 | n⋆ and 2k+1 | (n+ t)
⋆ for some integer t with 0 < t < 2k+1. Noti
e thatsin
e k ≥ 3, n ≥ 3. Then, be
ause 2k | 2k+1, we have 2k | n⋆ and 2k | (n+ t)

⋆,
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ardinal relations: seq1-1(m) 6= 2m 6= seq(m) 97and by the 
hoi
e of k we get t = 2k. Let us now 
ompute (n+ 2k
)⋆ by writingdown ∑n+2k

i=0
(n+2k)!

i! expli
itly:
(
n+ 2k

)⋆
= 1 · 2 · 3· . . . ·2k · (2k + 1)· . . . ·(2k + n) + [1℄

2 · 3· . . . ·2k · (2k + 1)· . . . ·(2k + n) + [2℄
3· . . . ·2k · (2k + 1)· . . . ·(2k + n) + [3℄. . . ... ...

2k · (2k + 1)· . . . ·(2k + n) + [2k℄
(2k + 1)· . . . ·(2k + n) + [2k + 1℄. . . ... ...

(2k + n) + [2k + n℄
1 [2k + n+ 1℄Sin
e k ≥ 4 and n ≥ 3, 2k+1 divides rows [1] − [2k]. In order to 
al
ulate theprodu
ts in rows [2k+1]− [2k +n+1] (modulo 2k+1), we only have to 
onsiderprodu
ts whi
h are not obviously divisible by 2k+1. So, sin
e 2k+1 | (n+ 2k)

⋆,for a suitable natural number r we have
(n+ 2k)

⋆
= 2k ·

( n−1∑

j=0

n∑

i>j

n!

i · j!
)
+ n⋆ + 2k+1 · r .We know that 2k+1|n⋆ where n ≥ 3 and k ≥ 4, and be
ause n⋆ is even, n hasto be odd. If j is equal to n− 1, n− 2, or n− 3, then ∑n

i>j
n!
i·j! is odd, and if

0 ≤ j ≤ (n− 4), then ∑n
i>j

n!
i·j! is even. So,

n−1∑

j=0

n∑

i>j

n!

i · j!is odd, and sin
e 2k+1 | n⋆, 2k+1 ∤ (n+ 2k)
⋆. ⊣Now we are ready to prove the following result:Theorem 4.26. For all 
ardinals m ≥ 2, seq1-1(m) 6= 2m.Proof. By Lemma 4.23 it is enough to prove that for m ≥ 2, seq1-1(m) = 2m →

ℵ0 ≤ m. Let A be an arbitrary set of 
ardinality m and assume that
f0 : P(A) −→ seq1-1(A)is a bije
tion between P(A) and seq1-1(A). We shall use this bije
tion to showthat A is trans�nite. In fa
t it is enough to show that every �nite sequen
e
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sn = 〈a0, . . . , an−1〉 ∈ seq1-1(A) of length n 
an be extended 
anoni
ally to asequen
e sn+1 = sn

⌢〈an〉 ∈ seq1-1(A) of length n+ 1.Let a0 and a1 be two distin
t elements of A and assume that for some
n ≥ 2 we already have 
onstru
ted a sequen
e sn = 〈a0, a1, . . . , an−1〉 ofdistin
t elements of A and let Sn = {ai : i ∈ n}. The sequen
e sn indu
esin a natural way an ordering on the set seq1-1(Sn), e.g., order seq1-1(Sn) bylength and lexi
ographi
ally. Let us de�ne an equivalen
e relation on A bystipulating

a ∼ b ⇐⇒ ∀s ∈ seq1-1(Sn)(a ∈ f0
−1(s) ↔ b ∈ f0

−1(s)
)
.Let Eq(n) := {

[a]̃ : a ∈ A
} be the set of all equivalen
e 
lasses. The orderingon seq1-1(Sn) indu
es an ordering on Eq(n). Let

k0 = |Eq(n)| .Then 2k0 is equal to the 
ardinality of P
(
Eq(n)

). Identify {⋃
Y : Y ⊆

Eq(n)
} with the set of all fun
tions ḡ ∈ Eq(n)2. Now, the ordering on Eq(n)indu
es in a natural way an ordering on the set of fun
tions Eq(n)2. By 
on-stru
tion we have n⋆ = | seq1-1(Sn)| ≤ 2k0 , i.e., we have either n⋆ < 2k0 or

n⋆ = 2k0 :Case 1 : If n⋆ < 2k0 , then there exists a least fun
tion ḡ0 ∈ Eq(n)2 (leastwith respe
t to the ordering on Eq(n)2) su
h that ḡ0 /∈ {
xs : s ∈ seq1-1(Sn)},where xs is the 
hara
teristi
 fun
tion of the set of equivalen
e 
lasses in-
luded in f0

−1(s). In parti
ular we get f0(ḡ0) /∈ seq1-1(Sn). Let an ∈ A bethe �rst element in the sequen
e f0(ḡ0) whi
h does not belong to Sn. Now,
sn
⌢〈an〉 ∈ seq1-1(A) is a sequen
e of length n+ 1 and we are done.Case 2 : Suppose that n⋆ = 2k0 . For arbitrary elements a ∈ A\Sn let us resumethe 
onstru
tion with the sequen
e sn⌢〈a〉. By a parity argument one easilyveri�es that (n+ 1)

⋆ is not an integer power of 2, and thus, we are in Case 1.We pro
eed as long as we are in Case 1. If there is an element a ∈ A\Sn su
hthat we are always in Case 1, then we 
an 
onstru
t an in�nite non-repetitivesequen
e of elements of A and we are done.Assume now that no matter with whi
h element a ∈ A \ Sn we resumeour 
onstru
tion, we always get ba
k to Case 2. We then have the followingsituation: Starting with any element a ∈ A \ Sn we get a non-repetitive se-quen
e of elements of A of length n+ ℓ+1 (for some positive integer ℓ) where
(n+ ℓ+ 1)

⋆ is an integer power of 2. Let san+ℓ = 〈a0, a1, . . . , an+ℓ〉 be that se-quen
e and let S̄an = {a0, a1, . . . , an+ℓ}. By 
onstru
tion we have a ∈ S̄an, i.e.,
a belongs to the 
orresponding sequen
e san+ℓ. However, S̄an is not ne
essarilythe union of elements of Eq(n), whi
h leads to the following de�nition:A subset of A is 
alled good if it is not the union of elements of Eq(n).
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ardinal relations: seq1-1(m) 6= 2m 6= seq(m) 99For every set X ⊆ A whi
h is good we have f0(X) /∈ seq1-1(Sn), whi
h impliesthat there is a �rst element in the sequen
e f0(X) whi
h does not belongto the set Sn. Thus, it is enough to determine a good subset of A. For this,
onsider the set
Tmin :=

{
a ∈ A \ Sn : S̄an is good and of least 
ardinality} .Noti
e that for every a ∈ A \Sn, S̄an is �nite and 
ontains a, and sin
e A \Snis in�nite, there is an S̄an (for some a ∈ A \Sn) whi
h is good, thus, Tmin 6= ∅.If Tmin is good, use f0(Tmin) to 
onstru
t a non-repetitive sequen
e in A oflength (n+1), and we are done. Otherwise, let mT :=

∣∣S̄an
∣∣ for some a in Tmin(noti
e that by our assumptions, mT is a positive integer). For ea
h a ∈ Tminlet us 
onstru
t a non-repetitive sequen
e SEQa of elements of S̄an of length

mT in su
h a way that for all a, b ∈ Tmin:
S̄an = S̄bn =⇒ SEQa = SEQbIn order to do so, let a ∈ Tmin be arbitrary. Be
ause S̄an ∈ Tmin, S̄an is good,thus

f0(S̄
a
n) /∈ seq1-1(Sn) ,hen
e, there is a �rst element an in the sequen
e f0(S̄an) whi
h does not belongto Sn. Repeat the 
onstru
tion starting with the sequen
e sn+1 = sn

⌢〈an〉and 
onsider the set S̄ann . If S̄ann = S̄an, then the 
orresponding sequen
e san ∈
seq1-1(S̄ann ) is of length mT and we de�ne SEQa := san . On the other hand, if
S̄ann  S̄an, then S̄ann is not good (sin
e S̄an is a good set of least 
ardinality),i.e., S̄ann is the union of elements of Eq(n). Let S′ = S̄an \ S̄ann and let s′ ∈
seq1-1(S′) be the 
orresponding sequen
e. Then S′ is good, whi
h implies that
f0(S

′) /∈ seq1-1(S̄an), and let a′ be the �rst element in the sequen
e f0(S′)whi
h does not belong to S̄an . Now pro
eed building the sequen
e SEQa bystarting with the sequen
e s′⌢〈a′〉. Noti
e that by 
onstru
tion the sequen
e
SEQa depends only on the set S̄an, thus, for all a, b ∈ Tmin, SEQa = SEQbwhenever S̄an = S̄bn.So far, for ea
h a ∈ Tmin with ∣∣S̄an

∣∣ = mT we 
an 
onstru
t a non-repetitivesequen
e SEQa ∈ seq1-1(S̄an) of length mT > n. On the other hand, we stillhave to determine in a 
onstru
tive way a good subset of A whi
h 
ontains
Sn�even though S̄an is good for ea
h a ∈ Tmin, it is not 
lear whi
h set S̄anwe should 
hoose. Now, for i < mT de�ne

Qi := {b ∈ A : b is the ith element in SEQa for some a ∈ Tmin} .Claim. There is a smallest j0 < mT su
h that Qj0 is good.Proof of Claim. For any a ∈ Tmin let
a= := {a′ ∈ A : S̄a

′

= S̄a} ,
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h are the elements of the �nite set S̄a whi
h are to some extent indistin-guishable, and further let t0 denote the least 
ardinality of the sets a=, where
a ∈ Tmin. Note that if for some i 6= j0, a ∈ Qi ∩Qj , then S̄an 
annot be good(otherwise, SEQa would not be unique). Consequently, for ea
h a ∈ Tmin thereis exa
tly one ia su
h that a ∈ Qia and for all b, b′ ∈ a= with b 6= b′ we have
ib 6= ib′ . Hen
e, if there are no good Qi's, then t0 
annot ex
eed k0 = |Eq(n)|.Let us now show that indeed, t0 must ex
eed k0: Re
all that n⋆ = 2k0 and that
(n+ ℓ+ 1)

⋆ is an integer power of 2, where ℓ+1 = mT −n. As a 
onsequen
eof Lemma 4.25, for any positive integer t we get:If n⋆ = 2k and (n+ t)
⋆
= 2k

′ then t ≥ 2k, in parti
ular t > k . (⋆)For every a ∈ Tmin with |a=| = t0, and for any b ∈ S̄a \ Sn, where S̄b is notne
essarily good, we have the following situation:
• |S̄b| = n+ t where (n+ t)

⋆
= 2k for some k > k0, and

• either b ∈ a= or S̄b is not good.Hen
e, for some integer t′ ≥ 0 we have
mT = n+ ℓ+ 1 = n+ t′ + t0 = |S̄a| ,where (n+ t′)⋆ and (n+ t′ + t0)

⋆ are both integer powers of 2. Say (n+ t′)⋆ =
2k and (n+ t′ + t0)

⋆
= 2k

′ where k′ > k ≥ k0. Then, by (⋆), t0 > k ≥ k0whi
h 
ompletes the proof of the 
laim. ⊣ClaimSin
e f0(Qj0) /∈ seq1-1(Sn) there exists a �rst element an in the sequen
e
f0(Qj0) whi
h does not belong to Sn. Let sn+1 = sn

⌢〈an〉. Then sn+1 is anon-repetitive sequen
e in A of length n + 1, whi
h is what we were aimingfor. ⊣To some extent, Theorem 4.24 and Theorem;4.26 are optimal, i.e., thereare no other relations between seq1-1(m), seq(m), and 2m whi
h are provablein ZF (see Chapter 7 |Related Result 49). It might be tempting to provethat for all 
ardinals m, seq(m) ≮ fin(m), however, su
h a proof 
annot be
arried out in ZF (
f. Proposition 7.17).
22

m

+ 22
m

= 22
m whenever m is in�niteThe fa
t that 22
m

+ 22
m

= 22
m whenever m is in�nite will turn out as a
onsequen
e of the following result:Lemma 4.27 (Läu
hli's Lemma). If m is an in�nite 
ardinal, then

(
2fin(m)

)ℵ0
= 2fin(m) .Proof. Let A be an arbitrary but �xed set of 
ardinality m. Re
all that for

n ∈ ω, [A]n denotes the set of all n-element subsets of A. For natural numbers
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n, k ∈ ω, where k ≥ n, we de�ne two mappings gn,k and dn,k from P
(
[A]n

)into itself as follows: For X ⊆ [A]n de�ne
gn,k(X) =

{
y ∈ [A]n : ∀z ∈ [A]k

(
y ⊆ z → ∃x ∈ X (x ⊆ z)

)}and let dn,k(X) := gn,k(X) \X . To get familiar with the fun
tions gn,k and
dn,k respe
tively, 
onsider the following example: Let n = 2, k = 4, take
{a0, a1} ∈ [A]2, and let X0 =

{
x ∈ [A]2 : x ∩ {a0, a1} = ∅

}. Then g2,4(X0) =

[A]2 and Y := d2,4(X0) =
{
y ∈ [A]2 : y ∩ {a0, a1} 6= ∅

}. Further, g2,4(Y ) = Yand d2,4(Y ) = d2,4
(
d2,4(X0)

)
= ∅. We leave it as an exer
ise to the reader toshow that the mapping gn,k has the following properties:(1) For all X ⊆ [A]n, X ⊆ gn,k(X).(2) gn,k ◦ gn,k = gn,k, i.e., for all X ⊆ [A]n, gn,k(gn,k(X)

)
= gn,k(X).(3) For all X ⊆ [A]n, gn,k(X) ⊆ gn,k′(X) whenever k′ ≥ k.By indu
tion on j we de�ne dj+1

n,k := dn,k ◦ d
j
n,k, where d0

n,k denotes the iden-tity. Then, we have dj+1
n,k =

(
gn,k ◦ d

j
n,k

)
\ djn,k, and therefore by (1) we get(4) djn,k =

(
gn,k ◦ d

j
n,k

)
\ dj+1

n,k .In order to show that dnn,k = gn,k ◦ d
n
n,k we �rst prove a 
ombinatorial resultby applying the Finite Ramsey Theorem 2.3.For any �xed integers n, k ∈ ω where k ≥ n, for U ⊆ A with |U | ≤ n, and forany X ⊆ [A]n, let ψ(U,X,W ) and ϕ(U,X) be the following statements:

ψ(U,X,W ) ≡W ⊆ A \ U ∧ ∀V ∈ [W ]n−|U| (U ∪ V ∈ X)and
ϕ(U,X) ≡ ∀m ∈ ω ∃W ⊆ A

(
|W | ≥ m ∧ ψ(U,X,W )

)
.Noti
e that if U ∈ X ⊆ [A]n, then we have ψ(U,X,W ) for every W ⊆

A \ U , and 
onsequently we have ϕ(U,X) for all U ∈ X . To get familiarwith the statements ψ and ϕ respe
tively 
onsider again the example givenabove: Let b ∈ A \ {a0, a1} and let U = {a0, b}. Then we have ϕ(U, d2,4(X0)
),sin
e for any m ∈ ω we have ψ(U, d2,4(X0), [A \ {a0, a1, b}]m

). Further, for
U ′ = {b} ⊆ U we have ϕ(U ′, X0), sin
e for any positive m ∈ ω we have
ψ
(
U ′, X0, [A \ {a0, a1, b}]m

).Claim 1. If we have ϕ(U, dn,k(X)
), then there is a set U ′ with |U ′| < |U |su
h that we have ϕ(U ′, X). In parti
ular we get that ϕ(∅, dn,k(X)

) fails � afa
t whi
h 
an be easily veri�ed dire
tly.Proof of Claim 1. Let us assume that ϕ(U, dn,k(X)
) holds for U ⊆ A with

|U | ≤ n and some set X ⊆ [A]n. It is enough to show that for any integer
m ≥ k there is a proper subset U ′ of U and aW ∈ [A]m su
h that ψ(U ′, X,W )holds. Indeed, sin
e there are just �nitely many proper subsets of U , there
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h that for arbitrarily large integers mthere is a set Wm ∈ [A]m su
h that ψ(U ′, X,Wm) holds, we get that ϕ(U ′, X)holds.Re
all that by the Finite Ramsey Theorem 2.3, for all m, i, j ∈ ω, where
j ≥ 1 and i ≤ m, there exists a smallest integer Nm,i,j ≥ m su
h that for ea
h
j-
olouring of [N ]i there is an m-element subset of N , all whose i-elementsubsets have the same 
olour. Let m ≥ k, let m′ := max{Nm,i,2 : 0 ≤ i ≤ n},and let m′′ = Nm′,k−r,2r where r = |U |. By ϕ(U, dn,k(X)

) there is a set Swith |S| = m′′ su
h that ψ(U, dn,k(X), S
). To ea
h subset U ′ of U we assignthe set X(U ′) by stipulating

X(U ′) =
{
Y ∈ [S]k−r : ∃V ′ ⊆ Y (U ′ ∪ V ′ ∈ X)

}
.Now we show that ⋃U ′⊆U X(U ′) = [S]k−r: Let V ∈ [S]k−r. By de�nition of

ψ
(
U, dn,k(X), S

), S ⊆ A \ U , and sin
e |U | = r we have |U ∪ V | = k. Sin
e
k − r ≥ n − r there is a set Q ∈ [V ]n−r, and sin
e ψ(U, dn,k(X), S

) we get
U ∪ Q ∈ dn,k(X). Hen
e, by de�nition of dn,k and gn,k respe
tively, there isa set x ∈ X su
h that x ⊆ U ∪ V . If we let U ′ = U ∩ x and V ′ = V ∩ x, then
U ′ ∪ V ′ ∈ X and 
onsequently V ∈ X(U ′).Be
ause |S| = m′′ = Nm′,k−r,2r , there is a set T ∈ [S]m

′ and a set U ′ ⊆ Usu
h that [T ]k−r ⊆ X(U ′). Let s = |U ′|, let
Z =

{
V ′ ∈ [T ]n−s : U ′ ∪ V ′ ∈ X

}
,and let Z ′ = [T ]n−s \ Z. Sin
e |T | = m′ ≥ Nm,n−s,2, there exists a set

W ∈ [T ]m su
h that either [W ]n−s ⊆ Z or [W ]n−s ⊆ Z ′. The latter 
ase 
anbe ex
luded. Indeed, sin
e m ≥ k ≥ k − r, [W ]k−r 6= ∅. Now, ea
h element wof [W ]k−r is a subset of T and 
onsequently an element of X(U ′). Thus, thereis a V ′ ⊆ w su
h that U ′ ∪ V ′ ∈ X whi
h implies that V ′ ∈ Z, in parti
ular,
[W ]n−s ∩ Z 6= ∅. Hen
e, [W ]n−s ⊆ Z and we �nally have ψ(U ′, X,W ) where
|W | = m.It remains to show that U ′ 6= U : Sin
e we have ψ(U, dn,k(X), S

) and W ⊆ S,we also have ψ(U, dn,k(X),W
). Now, if U ′ = U , then we would also have

ψ(U,X,W ), but sin
e dn,k(X) = gn,k(X) \X , dn,k(X)∩X = ∅ whi
h impliesthat the set [W ]n−r is empty whi
h is only the 
ase when |W | < n−r; however,
|W | = m ≥ k ≥ n ≥ n− r. ⊣Claim 1Now we turn ba
k to the sets djn,k(X) and show that dn+1

n,k (X) = ∅. In fa
t weshow a slightly stronger result:Claim 2. If dln,k(X) 6= ∅ for some set X ⊆ [A]n, then l ≤ n.Proof of Claim 2. Take any U ∈ dln,k(X). Sin
e |U | = n, for ea
h setW ⊆ A\Uwe have ψ(U, dln,k(X),W
), and sin
e A is not �nite we have ϕ(U, dln,k(X)

).By applying Claim 1 l times we get a sequen
e U = Ul, Ul−1, . . . , U0 su
hthat |Uj+1| > |Uj | for all j ∈ l, whi
h implies that |Uj| ≥ j (for all j's). Inparti
ular |U | = |Ul| ≥ l, and sin
e |U | = n this implies that l ≤ n. ⊣Claim 2
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onsequen
e of Claim 2 we get(5) dnn,k = gn,k ◦ d

n
n,k.De�ne now a mapping fn,k from P

(
[A]n

) to P
(
[A]k

) by stipulating
fn,k(X) =

{
z ∈ [A]k : ∃x ∈ X (x ⊆ z)

}
.Further, let

In,k(X) =
{
X ⊆ [A]n : gn,k(X) = X

}
.Then, by (1) and (3) we get(6) In,k′ ⊆ In,k whenever k′ ≥ k.Consider now f̄n,k := fn,k|In,k

. By de�nition of gn,k and dn,k respe
tivelywe have that f̄n,k is inje
tive. Indeed, if X,X ′ ∈ In,k (i.e., gn,k(X) = Xand gn,k(X ′) = X ′) and f̄n,k(X) = f̄n,k(X
′), then X ⊆ gn,k(X

′) = X ′ and
X ′ ⊆ gn,k(X) = X , and therefore X = X ′. So, for sets in dom(f̄n,k) we 
ande�ne the inverse of f̄n,k by stipulating

f̄−1
n,k

(
f̄n,k(X)

)
= X .Now we are ready to 
onstru
t a one-to-one mapping F from P

(
fin(A)

)ωinto P
(
fin(A)

): Let X ∈ P
(
fin(A)

)ω, i.e., X = {Xs : s ∈ ω} where for ea
h
s ∈ ω, Xs ∈ P

(
fin(A)

). De�ne the fun
tion F by stipulating
F (X) =

⋃

s∈ω

⋃

n∈ω

( ⋃

0≤j≤n

f
n,k(s,n,j)

◦ g
n,k(s,n,n)

◦ dj
n,k(s,n,n)

(
Xs ∩ [A]n

))where k(s, n, j) := 2s · 3n · 5j . By de�nition we get that F is a fun
tion from
P

(
fin(A)

)ω to P
(
fin(A)

). So, it remains to show that F is inje
tive. To keepthe notation short let
Xs,n = Xs ∩ [A]n ,

Xs,n,j = g
n,k(s,n,n)

◦ dj
n,k(s,n,n)(Xs,n) ,

Ys,n,j = f
n,k(s,n,j)(Xs,n,j) .Then

F (X) =
⋃

s∈ω

⋃

n∈ω

( ⋃

0≤j≤n

Ys,n,j

)
.Sin
e Ys,n,j ∈ P

(
[A]k(s,n,j)

) and sin
e the mapping 〈s, n, j〉 7→ k(s, n, j) isinje
tive we get
Ys,n,j = F (X) ∩ [A]k(s,n,j) .By (2) we have Xs,n,j ∈ In,k(s,n,n). Moreover, sin
e j ≤ n we have k(s, n, j) ≤

k(s, n, n) and by (6) we getXs,n,j ∈ In,k(s,n,j). Thus, Ys,n,j = f̄n,k(s,n,j)(Xs,n,j)and therefore
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Xs,n,j = f̄−1

n,k(s,n,j)(Ys,n,j) .By (4) and (5) we get
Xs,n = Xs,n,0 \

(
Xs,n,1 \

(
· · · (Xs,n,n−1 \Xs,n,n) · · ·

))
,and sin
e

Xs =
⋃

n∈ω

Xs,nwe get that F is inje
tive. This shows that (
2fin(m)

)ℵ0 ≤ 2fin(m), and sin
ewe obviously have 2fin(m) ≤
(
2fin(m)

)ℵ0 , by the Cantor-Bernstein Theo-rem 3.17 we �nally get (2fin(m)
)ℵ0

= 2fin(m). ⊣As a 
onsequen
e of Läu
hli's Lemma 4.27 we get the following equality:Theorem 4.28. If m is an in�nite 
ardinal, then 2ℵ0 ·22m

= 22
m , in parti
ularwe get 22m

+ 22
m

= 22
m .Proof. Let A be a set of 
ardinality m. Further, let inf(A) := P(A) \ fin(A)and let inf(m) := | inf(A)|. Then 2m = fin(m) + inf(m) and 
onsequently

22
m

= 2fin(m)+inf(m) = 2fin(m) · 2inf(m).Sin
e by Läu
hli's Lemma 4.27, 2fin(m) =
(
2fin(m)

)2, and by Fa
t 4.6,
2fin(m) ≥ 2ℵ0 , we have

2fin(m) · 2inf(m) =
(
2fin(m)

)2 · 2inf(m) = 2fin(m) · 22m ≥ 2ℵ0 · 22m

,and sin
e 22
m ≤ 2ℵ0 · 22m , by the Cantor-Bernstein Theorem 3.17 we�nally get 2ℵ0 · 22m

= 22
m . ⊣NotesD-�nite and trans�nite sets. In [8, �5℄, Dedekind de�ned in�nite and �nite setsas follows: A set S is 
alled in�nite when it is similar to a proper subset of itself;otherwise, S is said to be �nite. It is not hard to verify that Dedekind's de�nitionof �nite and in�nite sets 
orrespond to our de�nition of D-�nite and trans�nitesets respe
tively. In the footnote to his de�nition Dedekind writes: In this formI 
ommuni
ated the de�nition of the in�nite, whi
h forms the 
ore of my wholeinvestigation, in September, 1882, to G. Cantor, and several years earlier to S
hwarzand Weber. More histori
al ba
kground 
an be found in Fraenkel [12, Ch. I., �2, 5.℄.

ℵ0 ≤ 2m → 2ℵ0 ≤ 2m. The proof of Proposition 4.4 �whi
h is Theorem 68 ofLindenbaum and Tarski [24℄ � is taken from Halbeisen [14, VIII℄ (see also Halbeisenand Shelah [17, Fa
t 8.1℄); and for another proof see for example Sierpi«ski [34,VIII �2, Ex. 9℄.
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ℵ1 ≤∗ 2ℵ0 . The relation symbol �≤∗ � was introdu
ed by Tarski (
f. Lindenbaumand Tarski [24, p. 301℄). The proof of Theorem 4.11 is essentially taken from Sier-pi«ski [34, XV�2℄, and an alternative proof is given by Sierpi«ski [29℄. Lemma 4.10is due to Lebesgue [22, p. 213 f.℄, and Chur
h [7, Corollary 2, p. 183℄ showed that theset of all non-repetitive well-ordered sequen
es of natural numbers is of 
ardinality
2ℵ0 .If the reals are a 
ountable union of 
ountable sets. Proposition 4.12 istaken from Spe
ker [36, III. �3℄, where one 
an �nd also some other impli
ations like
ℵ1 < ℵℵ0

1 , or that every subset of R is either �nite or trans�nite. Corollary 4.13(i.e., the paradoxi
al de
omposition of R) 
an also be found in Halbeisen and She-lah [18, Fa
t 8.6℄.Cantor's Normal Form Theorem. The proof of Cantor's Normal FormTheorem 4.16 is taken from Cantor [4, �19, Satz B℄ (see also Cantor [6, p. 333 �.℄),but 
an also be found for example in Fraenkel [12, Ch. III, �11,Thm. 11℄. For a slightlymore general result see Ba
hmann [1, III. �12℄. The proof of Theorem 4.19 is takenfrom Halbeisen [14, VII℄ (
f. Spe
ker [35℄).Other 
ardinal relations. Theorem 4.20 � as well as the idea of getting a 
on-tradi
tion by 
onstru
ting an inje
tive 
lass fun
tion from Ω into a given set� isdue to Spe
ker [35, p. 334 �.℄ (
f. Related Result 21). Theorem 4.21 and Propo-sition 4.22 are due to Halbeisen [14, IX℄ (see also Halbeisen and Shelah [17,�2, Theorem 3 and p. 36℄). Lemma 4.23 and Theorem 4.24 are due to Halbeisen [14,IX℄ (see also Halbeisen and Shelah [17, �3, Theorem 5℄). The proof of Theorem 4.26is due to Shelah (see Halbeisen and Shelah [17, �3 Theorem 4℄). Lemma 4.25 is dueto Halbeisen, who proved that number-theoreti
 result when Theorem 4.26 wasstill a 
onje
ture. For a generalisation of Theorem 4.26 see Related Result 20.Läu
hli's Lemma 4.27 as well as Theorem 4.28 is taken from Läu
hli [21℄.Related Results13. Other de�nitions of �niteness. Among the many de�nitions of �niteness wewould like to mention just one by von Neumann who de�ned in [25, p. 736℄�nite sets as follows: A set E is �nite, if there is no non-empty set K ⊆ P(E)su
h that for ea
h x ∈ K there is a y ∈ K with |x| < |y|. With respe
t to thisde�nition of �niteness, a set I is in�nite i� for ea
h natural number n thereexists an n-element subset of I , or equivalently, a set E is �nite i� there exists abije
tion between E and a natural number n. However, noti
e that von Neumanndoes not use the notion of natural numbers in his de�nition. In [25, VIII. 2.℄,von Neumann investigated that notion of �niteness and showed for example thatpower sets of �nite sets are �nite. For some other de�nitions of �niteness andtheir dependen
ies we refer the reader to Kurepa [20℄, Lévy [23℄, S
hröder [27℄,Spi²iak and Vojtá² [37℄, Tarski [38℄, and Truss [41℄.14. The 
ountability of the rationals. We have seen that the set of rational numbersis 
ountable, but sin
e we used the Cantor-Bernstein Theorem 3.17 to 
on-stru
t a bije
tion between Q and ω, it is quite di�
ult to determine the imageof a given rational number. However, there exists also a �
omputable� bije
tion
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f : Q → ω due to Faber [10℄: The image of a rational number q, written in theform

q =
a1
2!

+
a2
3!

+ · · ·+ an
(n+ 1)!

,where the ai's are 
omputed by trigonometri
 series and for all 1 ≤ i ≤ n wehave 0 ≤ ai < (i+ 1)!, is de�ned by
f(q) = a1 · 1! + a2 · 2! + a3 · 3! + . . .+ an · n! .15. Goodstein sequen
es. For positive integers m and n, where n > 1, de�ne thehereditary base n representation of m as follows. First write m as the sumof powers of n, e.g., if m = 265 and n = 2 write 265 = 28 + 23 + 1. Thenwrite ea
h exponent as the sum of powers of n and repeat with exponents ofexponents and so on until the representation stabilises, e.g., 265 stabilises atthe representation 22

2+1

+ 22+1 + 1. Now de�ne the number Gn(m) as follows.If m = 0 let Gn(0) := 0; otherwise, let Gn(m) be the number produ
ed byrepla
ing every o

urren
e of n in the hereditarily base n representation of mby the number n + 1 and then subtra
ting 1, e.g., G2(265) = 33
3+1

+ 33+1.The Goodstein sequen
e m0,m1, . . . for m starting at 2 is de�ned as follows:
m0 = m, m1 = G2(m0), m2 = G3(m1), m3 = G4(m2), and so on; for examplewe get:

2650 = 265

= 22
2+1

+ 22+1 + 1

2651 = 33
3+1

+ 33+1

2652 = 44
4+1

+ 44+1 − 1

= 44
4+1

+ 44 · 3 + 43 · 3 + 42 · 3 + 4 · 3 + 3

2653 = 55
5+1

+ 55 · 3 + 53 · 3 + 52 · 3 + 5 · 3 + 2

2654 = 66
6+1

+ 66 · 3 + 63 · 3 + 62 · 3 + 6 · 3 + 1

2655 = 77
7+1

+ 77 · 3 + 73 · 3 + 72 · 3 + 7 · 3

2656 = 88
8+1

+ 88 · 3 + 83 · 3 + 82 · 3 + 8 · 3− 1

= 88
8+1

+ 88 · 3 + 83 · 3 + 82 · 3 + 8 · 2 + 7

2657 = . . .Computing a few of the numbers 265k , one noti
es that the sequen
e 2650,
2651, 2652, . . . grows extremely fast and one would probably guess that it tendsto in�nity. Amazingly, Goodstein [13℄ showed that for every integer m thereis a k ∈ ω su
h that mk = 0. Indeed, if we repla
e in the hereditarily base nrepresentation of mn−2 ea
h n by ω, we get an ordinal number, say αn−2(m);in fa
t we get cnf (αn−2(m)

), e.g., α3(265) = ωω
ω+1

+ ωω · 3 + ω3 · 3 + ω2 · 3 +
ω · 3 + 2. We leave it as an exer
ise to the reader to show that the sequen
e ofordinal numbers α0(m), α1(m), α2(m), . . . is stri
tly de
reasing. In other words,
α0(m) ∋ α1(m) ∋ α2(m) ∋ . . ., thus, by the Axiom of Foundation, the sequen
eof ordinals must be �nite whi
h implies that the Goodstein sequen
e m0, m1, . . .is eventually zero. However, Kirby and Paris [19℄ showed that Goodstein's resultis not provable in Peano Arithmeti
 (
f. also Paris [26℄).
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. As we have seen, one 
an de�ne various arithmeti
aloperations on ordinals like addition, multipli
ation and exponentiation, andeven subtra
tion. Moreover, one 
an also de�ne division (
f. Fraenkel [12,Ch. III., �11, 4.℄, Ba
hmann [1, III. �17℄, or Sierpi«ski [31℄): For any given or-dinals α and δ (δ 6= 0) there is a single pair of ordinals β, ρ su
h that
α = δ · β + ρ where ρ < δ .For the theory of ordinal arithmeti
 we refer the reader to Ba
hmann [1, III.℄(
f. also Sierpi«ski [32, 33℄).17. Can
ellation laws. Bernstein showed in his dissertation [2℄ (see [3, �2, Satz 3℄)that for any �nite 
ardinal a ≥ 1 and arbitrary 
ardinals m and n we have

a · m = a · n → m = n .In fa
t, Bernstein gave a quite involved proof for the 
ase a = 2 ([3, �2, Satz 2℄)and just outlined the proof for the general 
ase. Later, Sierpi«ski [28℄ found asimpler proof for the 
ase a = 2 and generalised the result in [30℄ to (2 · m ≤
2 ·n) → (m ≤ n). Slightly later, Tarski showed in [39℄ that for any �nite 
ardinal
a ≥ 1 and arbitrary 
ardinals m and n we have

a · m ≤ a · n → m ≤ n .18. On the 
ardinality of power sets of power sets∗. As a 
onsequen
e of Theo-rem 4.28 we get
2
22

m

× 2
22

m

= 2
22

m

.However, it is open if also 22
m × 22

m

= 22
m is provable in ZF.19. The hierar
hy of ℵ's. By indu
tion on Ω we de�ne

ℵ0 = |ω| ,

ℵα+1 = ℵ(ℵα) ,

ℵλ =
⋃

α∈λ

ℵα for in�nite limit ordinals λ.For an ordinal α, let A be a set of 
ardinality ℵα and let γ0 be the order type ofa well-ordering of A. Then, sin
e |γ0| = ℵα, γ0 is an ordinal of 
ardinality ℵα,and we de�ne
ωα =

⋂{
γ ∈ γ0 + 1 : |γ| = ℵα

}
.20. On the 
ardinality of the set of non-repetitive sequen
es∗. Let m be an in�nite
ardinal an let S be a set of 
ardinality m. We de�ned 2m = |P(S)|, however, 2m
an also be 
onsidered as the 
ardinality of the set of fun
tions from S to {0, 1}.Similarly, for natural numbers a ≥ 2 let am denote the 
ardinality of the set offun
tions from S to {0, 1, . . . a− 1}. By Theorem 4.26 we have 2m 6= seq1-1(m)and it is natural to ask whether the following statement is provable in ZF:For all �nite 
ardinals a and all in�nite 
ardinals m, am 6= seq1-1(m) . (❀)Obviously, if we would have a suitable generalisation of Lemma 4.25 at hand,then the proof of Theorem 4.26 would work for all natural numbers a ≥ 2.
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tion n⋆ and generalisedLemma 4.25 to numbers di�erent from 2, and this generalisation was later usedby Halbeisen [15℄ who showed that (❀) holds for a large 
lass of �nite 
ardinals,e.g., for a ∈ {2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, . . .}; it is 
onje
tured that (❀) holdsfor all �nite 
ardinals a ≥ 2.21. On the 
ardinality of the set of ordered pairs∗. By Cantor's Theorem 3.25 wealways have 2m �∗ m. Furthermore, one 
an show that if there is a �nite-to-onemap from 2m onto m, then m is �nite (see Forster [11℄). Now, having Theo-rem 4.20 in mind, one 
ould ask whether 2m ≤∗ m2 → m ≤ 4. This question isstill open and is asked in Truss [40℄, where a dualisation of Theorem 4.20 isinvestigated. Referen
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5The Axiom of Choi
e
Two terms o

asionally used by musi
ians are�full � 
onsonan
e and �pleasing� 
onsonan
e.An interval is said to be �fuller� than another whenit has greater power to satisfy the ear.Consonan
es are the more �pleasing� as they de-part from simpli
ity, whi
h does not delight oursenses mu
h. Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558Zermelo's Axiom of Choi
e and its Consisten
y with ZFIn 1904, Zermelo published his �rst proof that every set 
an be well-ordered.The proof is based on the so-
alled Axiom of Choi
e, denoted AC, whi
h, inZermelo's words, states that the produ
t of an in�nite totality of sets, ea
h
ontaining at least one element, itself di�ers from zero (i.e., the empty set).The full theory ZF+ AC, denoted ZFC, is 
alled Set Theory.In order to state the Axiom of Choi
e we �rst de�ne the notion of a 
hoi
efun
tion: If F is a family of non-empty sets (i.e., ∅ /∈ F ), then a 
hoi
efun
tion for F is a fun
tion f : F → ⋃

F su
h that for ea
h x ∈ F ,
f(x) ∈ x.The Axiom of Choi
e�whi
h 
ompletes the axiom system of Set Theoryand whi
h is in our 
ounting the ninth axiom of ZFC� states as follows:9. The Axiom of Choi
e

∀F

(
∅ /∈ F → ∃f

(
f ∈ F⋃

F ∧ ∀x ∈ F
(
f(x) ∈ x

)))Informally, every family of non-empty sets has a 
hoi
e fun
tion, or equiva-lently, every Cartesian produ
t of non-empty sets is non-empty.
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eBefore we give some reformulations of the Axiom of Choi
e and show some ofits 
onsequen
es, we should address the question whether AC is 
onsistent rel-ative to the other axioms of Set Theory (i.e., relative to ZF), whi
h is indeedthe 
ase.Assume that ZF is 
onsistent, then, by Proposition 3.5, ZF has a model,say V. To obtain the relative 
onsisten
y of AC with ZF, we have to showthat also ZF+AC has a model. In 1935, Gödel informed von Neumann at theInstitute for Advan
ed Study in Prin
eton that he had found su
h a model.In fa
t he showed that there exists a smallest transitive sub
lass of V whi
h
ontains all ordinals (i.e., 
ontains Ω as a sub
lass) in whi
h AC as well asZF holds. This unique submodel of V is 
alled the 
onstru
tible universeand is denoted by L, where �L� stands for the following �law� by whi
h the
onstru
tible universe is built. Roughly speaking, the model L 
onsists ofall �mathemati
ally 
onstru
tible� sets, or in other words, all sets whi
h are�
onstru
tible� or �des
ribable�, but nothing else. To be more pre
ise, let usgive the following de�nitions:Let M be a set and ϕ(x0, . . . , xn) be a �rst-order formula in the language
{∈}. Then ϕM denotes the formula we obtain by repla
ing all o

urren
es of�∃x� and �∀x� by �∃x ∈M � and �∀x ∈M � respe
tively. A subset y ⊆M is de-�nable over M if there is a �rst-order formula ϕ(x0, . . . , xn) in the language
{∈}, and parameters a1, . . . , an in M , su
h that {z : ϕM (z, a1, . . . , an)

}
= y.Finally, for any set M :

def(M) =
{
y ⊆M : y is de�nable over M}Noti
e that for any set M , def(M) is a set being itself a subset of P(M).Now, by indu
tion on α ∈ Ω, de�ne the following sets (
ompare with the
umulative hierar
hy de�ned in Chapter 3):

L0 = ∅

Lα =
⋃
β∈αLβ if α is a limit ordinal

Lα+1 = def(Lα)and let
L =

⋃

α∈Ω

Lα .Like for the 
umulative hierar
hy one 
an show that for ea
h α ∈ Ω, Lα is atransitive set, α ⊆ Lα and α ∈ Lα+1, and that α ∈ β implies Lα  Lβ .Moreover, Gödel showed that L � ZF + AC, and that L is the smallesttransitive 
lass 
ontainingΩ as a sub
lass su
h that L � ZFC. Thus, by startingwith any model V of ZF we �nd a sub
lass L of V su
h that L � ZFC. Inother words we get that if ZF is 
onsistent then so is ZFC (roughly speaking,if ZFC is in
onsistent, then AC 
annot be blamed for it).
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e 113Equivalent Forms of the Axiom of Choi
eThere are dozens of hypotheses whi
h are equivalent to the Axiom of Choi
e,but among the best known and most popular ones are surely theWell-OrderingPrin
iple, the Kuratowski-Zorn Lemma, Kurepa's Prin
iple, and Tei
hmüller'sPrin
iple� sometimes 
alled Tukey's Lemma. Sin
e the �rst three deal withorderings, we have to introdu
e �rst the 
orresponding de�nitions before we
an state these� and some other� so-
alled 
hoi
e prin
iples.A binary relation �≤� on a set P is a partial ordering of P if it istransitive (i.e., p ≤ q and q ≤ r implies p ≤ r), re�exive (i.e., p ≤ p for every
p ∈ P ), and anti-symmetri
 (i.e., p ≤ q and q ≤ p implies p = q). If �≤� is apartial ordering on P , then (P,≤) is 
alled a partially ordered set.If (P,≤) is a partially ordered set, then we de�ne

p < q ⇐⇒ p ≤ q ∧ p 6= q ,and 
all (P,<) a partially ordered in the stri
t sense, (repla
ing re�exivityby p ≮ p for every p ∈ P ).Two distin
t elements p, q ∈ P , where (P,<) is a partially ordered set, aresaid to be 
omparable if either p < q or q < p; otherwise, they are 
alledin
omparable. Noti
e that for p, q ∈ P we 
ould have p � q as well as p � q.However, if for any elements p and q of a partially ordered set (P,<) we have
p < q or p = q or p > q (where these three 
ases are mutually ex
lusive),then P is said to be linearly ordered by the linear ordering �<�. Twoelements p1 and p2 of P are 
alled 
ompatible if there exists a q ∈ P su
hthat p1 ≤ q ≥ p2; otherwise they are 
alled in
ompatible, denoted p1 ⊥ p2.We would like to mention that in the 
ontext of for
ing, elements of par-tially ordered sets are 
alled 
onditions. Furthermore, it is worth mentioningthat the de�nition of �
ompatible� given above in
orporates a 
onvention,namely the so-
alled Jerusalem 
onvention for for
ing �with respe
t to theAmeri
an 
onvention of for
ing, p1 and p2 are 
ompatible if there exists a qsu
h that p1 ≥ q ≤ p2.Let (P,<) be a partially ordered set. Then p ∈ P is 
alled maximal (ormore pre
isely<-maximal) in P if there is no x ∈ P su
h that p < x. Similarly,
q ∈ P is 
alled minimal (or more pre
isely <-minimal) in P if there is no
x ∈ P su
h that x < q. Furthermore, for a non-empty subset C ⊆ P , anelement p′ ∈ P is said to be an upper bound of C if for all x ∈ C, x ≤ p′.A non-empty set C ⊆ P , where (P,<) is a partially ordered set, is a 
hainin P if C is linearly ordered by �<� (i.e., for any distin
t members p, q ∈ C wehave either p < q or p > q). Conversely, if A ⊆ P is su
h that any two distin
telements of A are in
omparable (i.e., neither p < q nor p > q), then in OrderTheory, A is 
alled an anti-
hain. However, in the 
ontext of for
ing we saythat a subset A ⊆ P is an anti-
hain in P if any two distin
t elements of Aare in
ompatible. Furthermore, A ⊆ P is a maximal anti-
hain in P if A isan anti-
hain in P and A is maximal with this property. Noti
e that if A ⊆ P
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eis a maximal anti-
hain, then for every p ∈ P \A there is a q ∈ A su
h p and
q are 
ompatible.Re
all that a binary relation R on a set P is a well-ordering on P , if there isan ordinal α ∈ Ω and a bije
tion f : P → α su
h that R(x, y) i� f(x) ∈ f(y).This leads to the following equivalent de�nition of a well-ordering, where theequivalen
e follows from the proof of Theorem 5.1 (the details are left to thereader): Let (P,<) be a linearly ordered set. Then �<� is a well-ordering on
P if every non-empty subset of P has a <-minimal element. Furthermore, aset P is said to be well-orderable (or equivalently, P 
an be well-ordered)if there exists a well-ordering on P .In general, it is not possible to de�ne a well-ordering by a �rst-order formula ona given set (e.g., on R). However, the existen
e of well-ordering is guaranteedby the following prin
iple:Well-Ordering Prin
iple: Every set 
an be well-ordered.To some extent, the Well-Ordering Prin
iple (like the Axiom of Choi
e) postu-lates the existen
e of 
ertain sets whose existen
e in general (i.e., without anyfurther assumptions like V = L), 
annot be proved within ZF.In parti
ular, the Well-Ordering Prin
iple postulates the existen
e of well-orderings of Q and of R. Obviously, both sets are linearly ordered by �< �.However, sin
e for any elements x and y with x < y there exists a z su
h that
x < z < y, the ordering `< � is far away from being a well-ordering� 
onsiderfor example the set of all positive elements. Even though (Q, <) and (R, <)have similar properties (at least from an order-theoreti
al point of view), whenwe try to well-order these sets they behave very di�erently. Firstly, by Fa
t 4.1we know that Q is 
ountable and the bije
tion f : Q → ω allows us to de�nea well-ordering �≺ � on Q by stipulating q ≺ p ⇐⇒ f(q) < f(p). Now, let us
onsider the set R. For example we 
ould �rst well-order the rational numbers,or even the algebrai
 numbers, and then try to extend this well-ordering toall real numbers. However, this attempt � as well as all other attempts � to
onstru
t expli
itly a well-ordering of the reals will end in failure (the readeris invited to verify this 
laim by writing down expli
itly some orderings of R).As mentioned above, Zermelo proved in 1904 that the Axiom of Choi
eimplies the Well-Ordering Prin
iple. In the proof of this result presented herewe shall use the ideas of Zermelo's original proof.Theorem 5.1. The Well-Ordering Prin
iple is equivalent to the Axiom ofChoi
e.Proof. (⇐) Let M be a set. If M = ∅, then M is already well-ordered. So,assume thatM 6= ∅ and let P∗(M) := P(M)\{∅}. Further, let f : P∗(M) →
M be an arbitrary but �xed 
hoi
e fun
tion for P∗(M) (whi
h exists by AC).A one-to-one fun
tion wα : α →֒ M , where α ∈ Ω, is an f -set if for all
γ ∈ α:



Equivalent forms of the Axiom of Choi
e 115
wα(γ) = f

(
M \

{
wα(δ) : δ ∈ γ

})For example w1(0) = f(M) is an f -set, in fa
t, w1 is the unique f -set withdomain {0}. Further, by Hartogs' Theorem 3.27, the 
olle
tion of all f -setsis a set, say S. De�ne the ordering �≺� on S as follows: For two distin
t f -sets
wα and wβ let wα ≺ wβ if α 6= β and wβ |α = wα. Noti
e that wα ≺ wβimplies α ∈ β.Claim. The set S of all f -sets is well-ordered by �≺�.Proof of Claim. Let wα and wβ be any two f -sets and let

Γ =
{
γ ∈ (α ∩ β) : wα(γ) 6= wβ(γ)

}
.If Γ 6= ∅, then, for γ0 =

⋂
Γ , we have wα(γ0) 6= wβ(γ0). On the other hand,for all δ ∈ γ0 we have wα(δ) = wβ(δ), thus, by the de�nition of f -sets, we get

wα(γ0) = wβ(γ0). Hen
e, Γ = ∅, and 
onsequently we are in exa
tly one ofthe following three 
ases:
• wα ≺ wβ i� α ∈ β.
• wα = wβ i� α = β.
• wβ ≺ wα i� β ∈ α.Thus, the ordering �≺� on S 
orresponds to the ordering of the ordinals by�∈�, and sin
e the latter relation is a well-ordering on Ω, the ordering �≺� isa well-ordering, too. ⊣ClaimNow, let w :=

⋃
S and let M ′ :=

{
x ∈ M : ∃γ ∈ dom(w)

(
w(γ) = x

)}.Then w ∈ S and M ′ = M ; otherwise, w 
an be extended to the f -set w ∪{
〈dom(w), f(M \M ′)〉

}.Thus, the one-to-one fun
tion w : dom(w) →M is onto, or in other words,
M is well-orderable.(⇒) Let F be any family of non-empty sets and let �<� be any well-orderingon ⋃

F . De�ne f : F → ⋃
F by stipulating f(x) being the <-minimalelement of x. ⊣It turns out that in many 
ases, the Well-Ordering Prin
iple�mostly in 
om-bination with trans�nite indu
tion� is easier to apply than the Axiom ofChoi
e. For example in order to prove that every ve
tor spa
e has an alge-brai
 basis, we would �rst well-order the set of ve
tors and then build a basisby trans�nite indu
tion (i.e., for every ve
tor vα we 
he
k whether it is in thelinear span of the ve
tors {vβ : β ∈ α}, and if it is not, we mark it as a ve
torof the basis). However, similarly to the well-ordering of R, in many 
ases it isnot possible to write down expli
itly an algebrai
 basis of a ve
tor spa
e. Forexample 
onsider the real ve
tor spa
e of all 
ountably in�nite sequen
es ofreal numbers, or any in�nite dimensional Bana
h spa
e.The following three prin
iples, whi
h will be shown to be equivalent to theAxiom of Choi
e, are quite popular in Algebra and Topology. Even thoughthese prin
iples look rather di�erent, all state that 
ertain sets have maximal
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eelements or subsets (with respe
t to some partial ordering), and so they areusually 
alled maximality prin
iples. Let us �rst state the Kuratowski-ZornLemma and Kurepa's Prin
iple.Kuratowski-Zorn Lemma: If (P,≤) is a non-empty partially ordered setsu
h that every 
hain in P has an upper bound, then P has a maximalelement.Kurepa's Prin
iple: Ea
h partially ordered set has a maximal subset ofpairwise in
omparable elements.In order to state Tei
hmüller's Prin
iple we have to introdu
e one more notion:A family F of sets is said to have �nite 
hara
ter if for ea
h set x, x ∈ Fi� fin(x) ⊆ F (i.e., every �nite subset of x belongs to F ).Tei
hmüller's Prin
iple: Let F be a non-empty family of sets. If F has�nite 
hara
ter, then F has a maximal element (maximal with respe
tto in
lusion �⊆�).Below we shall see that the three maximality prin
iples are all equivalent to theAxiom of Choi
e. However, in order to prove dire
tly that the Axiom of Choi
eimplies the Kuratowski-Zorn Lemma (i.e., without using theWell-Ordering Prin-
iple), we have to show �rst the following interesting lemma�whi
h is themain reason why we do not want to derive the Kuratowski-Zorn Lemma fromthe Well-Ordering Prin
iple, even though this would be mu
h easier.Lemma 5.2. Let (P,≤) be a non-empty partially ordered set. If there is afun
tion b : P(P ) → P whi
h assigns to every 
hain C an upper bound b(C),and if f : P → P is a fun
tion su
h that for all x ∈ P we have x ≤ f(x),then there is a p0 ∈ P su
h that p0 = f(p0).Proof. Noti
e that be
ause every well-ordered set is a 
hain, it is enough torequire the existen
e of an upper bound b(W ) just for every set W ⊆ P whi
his well-ordered by �<�. If W ⊆ P is a well-ordered subset of P and x ∈ W ,then Wx := {y ∈ W : y < x}. A well-ordered set W ⊆ P is 
alled an f -
hain, if for all x ∈ W we have x = f
(
b(Wx)

)
. Noti
e that sin
e ∅ ⊆ P iswell-ordered by �<�, the set {f(b(∅))} is an f -
hain.We leave it as an exer
ise to the reader to verify that the set of f -
hainsis well-ordered by proper in
lusion �(�. Hen
e, the set

U =
⋃{

W ⊆ P :W is an f -
hain}is itself an f -
hain. Consider p0 := f
(
b(U)

) and noti
e that U ∪ {p0} is an
f -
hain. By the de�nition of U we get that p0 ∈ U , and 
onsequently wehave f(b(Up0)) = p0. Now, sin
e f(b(Up0)) ≥ b(Up0) ≥ p0, we must have
b(Up0) = p0, and therefore f(p0) = p0. ⊣
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e that the proof of Lemma 5.2 does not rely on any 
hoi
e prin
iples.Now we are ready to prove that the Kuratowski-Zorn Lemma and Tei
hmüller'sPrin
iple are both equivalent to the Axiom of Choi
e.Theorem 5.3. The following statements are equivalent:(a) Axiom of Choi
e.(b) Kuratowski-Zorn Lemma.(
) Tei
hmüller's Prin
iple.Proof. (a)⇒(b) Let (P,≤) be a non-empty partially ordered set su
h thatevery 
hain in P , (in parti
ular every well-ordered 
hain), has an upper bound.Then, for every non-empty well-ordered subset W ⊆ P , the set of upperbounds BW :=
{
p ∈ P : ∀x ∈ W (x ≤ p)

} is non-empty. Thus, the family
F =

{
BW :W is a well-ordered, non-empty subset of P}is a family of non-empty sets and therefore, by the Axiom of Choi
e, for ea
h

W ∈ F we 
an pi
k an element b(W ) ∈ BW . Now, for every x ∈ P let
Mx =

{
{x} if x is maximal in P ,
{y ∈ P : y > x} otherwise.Then {Mx : x ∈ P} is a family of non-empty sets and again by the Axiom ofChoi
e, there is a fun
tion f : P → P su
h that

f(x) =

{
x if x is maximal in P ,
y where y > x.Sin
e f(x) ≥ x (for all x ∈ P ) and every non-empty well-ordered subset

W ⊆ P has an upper bound b(W ), we 
an apply Lemma 5.2 and get an ele-ment p0 ∈ P su
h that f(p0) = p0, hen
e, P has a maximal element.(b)⇒(
) Let F be a non-empty family of sets and assume that F has �nite
hara
ter. Obviously, F is partially ordered by in
lusion �⊆�. For every 
hain
C in F let UC =

⋃
C . Then every �nite subset of UC belongs to F , thus,

UC belongs to F . On the other hand, UC is obviously an upper bound of C .Hen
e, every 
hain has an upper bound and we may apply the Kuratowski-Zorn Lemma and get a maximal element of the family F .(
)⇒(a) Given a family F of non-empty sets. We have to �nd a 
hoi
e fun
-tion for F . Consider the family
E =

{
f : f is a 
hoi
e fun
tion for some subfamily F

′ ⊆ F
}
.Noti
e that f is a 
hoi
e fun
tion if and only if every �nite subfun
tion of

f is a 
hoi
e fun
tion. Hen
e, E has �nite 
hara
ter. Thus, by Tei
hmüller'sPrin
iple, the family E has a maximal element, say f0. Sin
e f0 is maximal,
dom(f0) = F , and therefore f0 is a 
hoi
e fun
tion for F . ⊣
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eIn order to prove that also Kurepa's Prin
iple is equivalent to the Axiom ofChoi
e, we have to 
hange the setting a little bit: In the proof of Theorem 5.3,as well as in Zermelo's proof of Theorem 5.1, the Axiom of Foundation wasnot involved (in fa
t, the proofs 
an be 
arried out in Cantor's Set Theory).However, without the aid of the Axiom of Foundation it is not possible to provethat Kurepa's Prin
iple implies the Axiom of Choi
e, whereas the 
onverse im-pli
ation is evident (
ompare the following theorem with Chapter 7 |RelatedResult 46).Theorem 5.4. The following statements are equivalent in ZF:(a) Axiom of Choi
e.(b) Every ve
tor spa
e has an algebrai
 basis.(
) Multiple Choi
e: For every family F of non-empty sets, there exists afun
tion f : F → P
(⋃

F
) su
h that for ea
h X ∈ F , f(X) is a non-empty�nite subset of X .(d) Kurepa's Prin
iple.Proof. (a)⇒(b) Let V be a ve
tor spa
e and let F be the family of all setsof linearly independent ve
tors of V . Obviously, F has �nite 
hara
ter. So, byTei
hmüller's Prin
iple, whi
h is, as we have seen in Theorem 5.3 equivalentto the Axiom of Choi
e, F has a maximal element. In other words, there is amaximal set of linearly independent ve
tors, whi
h must be of 
ourse a basisof V .(b)⇒(
) Let F = {Xι : ι ∈ I} be a family of non-empty sets. We have to
onstru
t a fun
tion f : F → P

(⋃
F

) su
h that for ea
h Xι ∈ F , f(Xι)is a non-empty �nite subset of Xι. Without loss of generality we may assumethat the members of F are pairwise disjoint (if ne
essary, 
onsider the family{
Xι × {Xι} : ι ∈ I

} instead of F ). Adjoin all the elements of X :=
⋃

F asindeterminates to some arbitrary but �xed �eld F (e.g., F = Q) and 
onsiderthe �eld F(X) 
onsisting of all rational fun
tions of the �variables� in X with
oe�
ients in F. For ea
h ι ∈ I, we de�ne the ι-degree of a monomial� i.e.,a term of the form axk11 · · ·xkll where a ∈ F and x1, . . . , xl ∈ X� to bethe sum of the exponents of members of Xι in that monomial. A rationalfun
tion q ∈ F(X) is 
alled ι-homogeneous of degree d if it is the quotient oftwo polynomials su
h that all monomials in the denominator have the same
ι-degree n, while all those in the numerator have ι-degree n+ d. The rationalfun
tions that are ι-homogeneous of degree 0 for all ι ∈ I form a sub�eld F0of F(X). Thus, F(X) is a ve
tor spa
e over F0, and we let V be the subspa
espanned by the set X .By assumption, the F0-ve
tor spa
e V has an algebrai
 basis, say B. Belowwe use this basisB to expli
itly de�ne the desired fun
tion f : F → P

(⋃
F

).For ea
h ι ∈ I and ea
h x ∈ Xι we 
an express x as a �nite linear 
ombinationof elements of B. Thus, every x ∈ Xι 
an be written in the form
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x =

∑

b∈B(x)

axb · b ,where B(x) ∈ �n(B) and for all b ∈ B(x), axb ∈ F0 \ {0}. If y is anotherelement of the same Xι as x, then we have on the one hand
y =

∑

b′∈B(y)

ayb′ · b′ ,and on the other hand, after multiplying the above representation of x by theelement y
x
∈ F0, we get

y =
∑

b∈B(x)

(
y
x
· axb

)
· b .Comparing these two expressions for y and using the fa
t that B is a basis,i.e., that the representation of y is unique, we must have

B(x) = B(y) and ayb =
y

x
· axb for all b ∈ B(x).Hen
e, the �nite subset B(x) of B as well as the elements axb

x
of F(X) dependonly on ι, not on the parti
ular x ∈ Xι, and we therefore 
all them Bι and

aιb respe
tively. Noti
e that, sin
e axb ∈ F0, aιb is ι-homogeneous of degree −1(and ι′-homogeneous of degree 0 for ι′ 6= ι). So, when aιb is written as aquotient of polynomials in redu
ed form, some variables from Xι must o

urin the denominator. De�ne f(Xι) to be the set of all those members of Xιthat o

ur in the denominator of aιb (in redu
ed form) for some b ∈ Bι. Then
f(Xι) is a non-empty �nite subset of Xι, as required.(
)⇒(d) Let (P,<) be a partially ordered set. By Multiple Choi
e, there isa fun
tion f su
h that for ea
h non-empty set X ⊆ P , f(X) is a non-empty�nite subset of X . Let g : P(P ) → �n(P ) be su
h that g(∅) := ∅ and for ea
hnon-empty X ⊆ P , g(X) :=

{
y ∈ f(X) : y is <-minimal in f(X)

}. Obvi-ously, for every non-empty X ⊆ P , g(X) is a non-empty �nite set of pairwisein
omparable elements. Using the fun
tion g we 
onstru
t by trans�nite in-du
tion a maximal subset of pairwise in
omparable elements: Let A0 := g(P ),and for α ∈ Ω let Aα := g(Xα), where
Xα :=

{
x ∈ P : x is in
omparable with ea
h a ∈ ⋃{Aβ : β ∈ α}

}
.By 
onstru
tion, the Aα's are pairwise disjoint and any union of Aα's is a setof pairwise in
omparable elements. Again by 
onstru
tion there must be an

α0 ∈ Ω su
h that Xα0 = ∅. Thus, ⋃{Aβ : β ∈ α0} ⊆ P is a maximal set ofpairwise in
omparable elements.(d)⇒(a) By the Axiom of Foundation, for every set x there exists an ordinal
α ∈ Ω su
h that x ⊆ Vα. Thus, sin
e the Axiom of Choi
e is equivalent to theWell-Ordering Prin
iple (see Theorem 5.1), it is enough to show that Kurepa'sPrin
iple implies that for every α ∈ Ω, Vα 
an be well-ordered. The 
ru
ial
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epoint in that proof is to show that power sets of well-orderable sets are well-orderable.The �rst step is quite straightforward: Let Q be a well-orderable set andlet �<Q� be a well-ordering on Q. We de�ne a linear ordering �≺ � on P(Q)by stipulating x ≺ y i� the <Q-minimal element of the symmetri
 di�eren
e
x△y belongs to x. To see that �≺ � is a linear ordering, noti
e that �≺ � is justthe lexi
ographi
 ordering on P(Q) indu
ed by �<Q�. The following 
laim iswhere Kurepa's Prin
iple 
omes in.Claim. Kurepa's Prin
iple implies that every linearly orderable set is well-orderable.Proof of Claim. Let (P,≺) be a linearly ordered set. Consider the set W ofall pairs (X, x) where X ⊆ P and x ∈ X . On W we de�ne a partial ordering�<� by stipulating

(X, x) < (Y, y) ⇐⇒ X = Y ∧ x ≺ y .By Kurepa's Prin
iple, (W,<) has a maximal set of pairwise in
omparableelements, say A ⊆W . For every non-empty set X ⊆ P let f(X) be the uniqueelement of X su
h that (
X, f(X)

)
∈ A . It is not hard to verify that f is a
hoi
e fun
tion for P(P )\{∅}, and 
onsequently, P 
an be well-ordered.⊣ClaimNow we are ready to show that Kurepa's Prin
iple implies that every set Vα(α ∈ Ω) 
an be well-ordered. We 
onsider the following two 
ases:

α su

essor ordinal : Let α = β0 + 1 and assume that Vβ0 is well-orderable.Then Vα = P(Vβ0), and as the power set of a well-orderable set, Vα is well-orderable.
α limit ordinal : Assume that for ea
h β ∈ α, Vβ is well-orderable, i.e., for ea
h
β ∈ α there exists a well-ordering �<β� on Vβ . Let ξ be the least ordinal su
hthat there is no inje
tion from ξ into Vα. The ordinal ξ exists by Hartogs'Theorem 3.27 and sin
e every Vβ 
an be well-ordered. Sin
e ξ is well-orderedby ∈, P(ξ) 
an be well-ordered; let us �x a well-ordering≺ξ ⊆ (

P(ξ)×P(ξ)
).For every β ∈ α we 
hoose a well-ordering �<β � on Vβ as follows:

• If β = 0, then <0= ∅.
• If β =

⋃
δ∈β δ is a limit ordinal, then, for x, y ∈ Vβ , let
x <β y ⇐⇒ ρ(x) ∈ ρ(y) ∨

(
ρ(x) = ρ(y) ∧ x <ρ(x) y

)
,where for any z, ρ(z) := ⋂{γ ∈ Ω : x ∈ Vγ}.

• If β = δ + 1 is a su

essor ordinal, then, by the 
hoi
e of ξ, there is aninje
tion f : Vδ →֒ ξ. Let x = ran(f); then x ⊆ ξ. Further, there exists abije
tion between P(Vδ) = Vβ and P(x), and sin
e P(x) ⊆ P(ξ) and
P(ξ) is well-ordered by �≺ξ �, the restri
tion of �≺ξ � to P(x) indu
es awell-ordering on Vβ .Thus, for every β ∈ α we have a well-ordering �<β � on Vβ . Now, for x, y ∈ Vαde�ne
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x <α y ⇐⇒ ρ(x) ∈ ρ(y) ∨

(
ρ(x) = ρ(y) ∧ x <ρ(x) y

)
.Then, by 
onstru
tion, �<α � is a well-ordering on Vα. ⊣We 
on
lude this se
tion on equivalent forms of AC by giving three 
ardinalrelations whi
h are equivalent to the Well-Ordering Prin
iple.Theorem 5.5. Ea
h of the following statements is equivalent to the Well-Ordering Prin
iple, and 
onsequently to the Axiom of Choi
e:(a) Every 
ardinal m is an aleph, i.e., 
ontains a well-orderable set.(b) Tri
hotomy of Cardinals: If n and m are any 
ardinals, then n < m or

n = m or n > m, where these three 
ases are mutually ex
lusive.(
) If n and m are any 
ardinals, then n ≤∗ m or m ≤∗ n.(d) If m is any in�nite 
ardinal, then m2 = m.Proof. (a) If every set is well-orderable, then obviously every 
ardinal 
on-tains an well-orderable set and is therefore an aleph. On the other hand, for anarbitrary set x let m = |x| and let y0 ∈ m be well-orderable. By de�nition of
m there exists a bije
tion between y0 and x, and therefore, x is well-orderableas well.(b) Firstly noti
e that any two alephs are 
omparable. Thus, by (a) we getthat the Well-Ordering Prin
iple implies the Tri
hotomy of Cardinals and 
onse-quently so does AC. On the other hand, byHartogs' Theorem 3.27 we knowthat for every 
ardinal m there is a smallest aleph, denoted ℵ(m), su
h that
ℵ(m) � m. Now, if any two 
ardinals are 
omparable we must have m < ℵ(m),whi
h implies that m is an aleph.(
) Noti
e that if every set 
an be well-ordered, then for any 
ardinals n and
m we have n ≤∗ m i� n ≤ m. For the other dire
tion we �rst prove that forany 
ardinal m there exists an aleph ℵ′(m) su
h that ℵ′(m) �∗ m: Noti
e thatif there exists a surje
tion from a set A onto a set B, then there exist aninje
tion from B into P(A). So, by de�nition of ℵ(2m) we have ℵ(2m) �∗ m.Let now m be an arbitrary 
ardinal and let n = ℵ(2m). If n ≤∗ m or n ≥∗ m,then we must have n ≥∗ m (sin
e n �∗ m), whi
h implies that m is an alephand 
ompletes the proof.(d) Assume that for any in�nite 
ardinal n we have n2 = n. Hen
e, we get
m+ℵ(m) = (m+ℵ(m))2 = m2+(m+m) ·ℵ(m)+ℵ(m)2 = m+ℵ(m)+m ·ℵ(m),and sin
e m+ ℵ(m) ≤ m · ℵ(m) we have

m+ ℵ(m) = m · ℵ(m) .Now, let x ∈ m and let y0 ∈ ℵ(m) be a set whi
h is well-ordered by �<y0�.Without loss of generality we may assume that x and y0 are disjoint. Sin
e
|x ∪ y0| = |x × y0|, there exists a bije
tion f : x ∪ y0 → x × y0. Using thebije
tion f we de�ne x̃ :=

{
a ∈ x : ∃b ∈ y0 (〈a, b〉 ∈ f [y0])

}
⊆ x. Firstlynoti
e that x̃ = x. Indeed, if there would be an a0 ∈ x \ x̃, then for all b ∈ y0
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ewe have f−1
(
〈a0, b〉

)
/∈ y0, i.e., f−1

(
〈a0, b〉

)
∈ x. Thus, sin
e f is bije
tive,

f−1
[
{a0} × y0

]
⊆ x is a set of 
ardinality ℵ(m), 
ontradi
ting the fa
t that

ℵ(m) � m. So, for every a ∈ x, the set
ua := {b ∈ y0 : ∃b′ ∈ y0 (f(b) = 〈a, b′〉)}is a non-empty subset of y0, and� sin
e y0 is well-ordered by �<y0� � has a

<y0-minimal element, say µa. Finally, de�ne an ordering �<� on x by stipu-lating a < a′ i� µa <y0 µa′ . It is easily 
he
ked that �<� is a well-ordering on
x, and therefore, m is an aleph.The 
onverse impli
ation� namely that theWell-Ordering Prin
iple impliesthat m2 = m for every in�nite 
ardinal m� is postponed to the next se
tion(see Theorem 5.7). ⊣Cardinal Arithmeti
 in the Presen
e of ACIn the presen
e of AC we are able to de�ne 
ardinal numbers as ordinals: Forany set A we de�ne

|A| =
⋂{

α ∈ Ω : there is a bije
tion between α and A} .Re
all that AC implies that every set A is well-orderable and that every well-ordering of A 
orresponds to exa
tly one ordinal (whi
h is the order type ofthe well-ordering).For example we have |n| = n for every n ∈ ω, and |ω| = ω. However, for
α ∈ Ω we have in general |α| 6= α, e.g., |ω + 1| = ω.Ordinal numbers κ ∈ Ω su
h that |κ| = κ are 
alled 
ardinal numbers,or just 
ardinals, and are usually denoted by Greek letters like κ, λ, µ, et
etera.A 
ardinal κ is in�nite if κ /∈ ω, otherwise, it is �nite. In other words, a
ardinal is �nite if and only if it is a natural number.Sin
e 
ardinal numbers are just a spe
ial kind of ordinals, they are well-ordered by �∈�. However, for 
ardinal numbers κ and λ we usually write κ < λinstead of κ ∈ λ, thus,

κ < λ ⇐⇒ κ ∈ λ .Let κ be a 
ardinal. The smallest 
ardinal number whi
h is greater than
κ is denoted by κ+, thus,

κ+ =
⋂{

α ∈ Ω : κ < |α|
}
.Noti
e that by Cantor's Theorem 3.25, for every 
ardinal κ there is a
ardinal λ > κ, in parti
ular, for every 
ardinal κ, ⋂{

α ∈ Ω : κ < |α|
} isnon-empty and therefore κ+ exists.
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e of AC 123A 
ardinal µ is 
alled a su

essor 
ardinal if there exists a 
ardinal κsu
h that µ = κ+; otherwise, it is 
alled a limit 
ardinal. In parti
ular, everypositive number n ∈ ω is a su

essor 
ardinal and ω is the smallest non-zerolimit 
ardinal. By indu
tion on α ∈ Ω we de�ne ωα+1 := ω+
α , where ω0 := ω,and ωα :=

⋃
δ∈α ωδ for limit ordinals α; noti
e that ⋃

δ∈α ωδ is a 
ardinal.In parti
ular, ωω is the smallest un
ountable limit 
ardinal and ω1 = ω+
0 isthe smallest un
ountable 
ardinal. Further, the 
olle
tion {ωα : α ∈ Ω} isthe 
lass of all in�nite 
ardinals, i.e., for every in�nite 
ardinal κ there is an

α ∈ Ω su
h that κ = ωα. Noti
e that the 
olle
tion of 
ardinals is� like the
olle
tion of ordinals� a proper 
lass and not a set.Cardinal addition, multipli
ation, and exponentiation is de�ned as follows:Cardinal addition: For 
ardinals κ and µ let κ+µ :=
∣∣(κ×{0}) ∪̇ (µ×{1})

∣∣.Cardinal multipli
ation: For 
ardinals κ and µ let κ · µ := |κ× µ|.Cardinal exponentiation: For 
ardinals κ and µ let κµ :=
∣∣µκ

∣∣.Sin
e for any set A, ∣∣A2∣∣ =
∣∣P(A)

∣∣, the 
ardinality of the power set of a
ardinal κ is usually denoted by 2κ. However, be
ause 2ω is the 
ardinality ofthe so-
alled 
ontinuumR, it is usually denoted by c. Noti
e that byCantor'sTheorem 3.25 for all 
ardinals κ we have κ < 2κ.As a 
onsequen
e of the de�nition we get the followingFa
t 5.6. Addition and multipli
ation of 
ardinals is asso
iative and 
ommu-tative and we have the distributive law for multipli
ation over addition, andfor all 
ardinals κ, λ, µ, we have
κλ+µ = κλ · κµ, κµ·λ =

(
κλ

)µ
, (κ · λ)µ = κµ · λµ.Proof. It is obvious that addition and multipli
ation is asso
iative and 
om-mutative and that we have the distributive law for multipli
ation over addi-tion. Now, let κ, λ, µ, be any 
ardinal numbers. Firstly, for every fun
tion

f :
(
λ × {0}

)
∪
(
µ × {1}

)
→ κ let the fun
tions fλ :

(
λ × {0}

)
→ κ and

fµ :
(
µ× {1}

)
→ κ be su
h that for ea
h x ∈

(
λ× {0}

)
∪
(
µ× {1}

),
f(x) =

{
fλ(x) if x ∈ λ× {0},
fµ(x) if x ∈ µ× {1}.It is easy to see that ea
h fun
tion f :

(
λ×{0}

)
∪
(
µ×{1}

)
→ κ 
orrespondsto a unique pair 〈fλ, fµ〉, and vi
e versa, ea
h pair 〈fλ, fµ〉 de�nes uniquely afun
tion f :

(
λ × {0}

)
∪
(
µ × {1}

)
→ κ. Thus, we have a bije
tion between

κλ+µ and κλ · κµ.Se
ondly, for every fun
tion f : µ→ λκ let f̃ : µ× λ→ κ be su
h that for all
α ∈ µ and all β ∈ λ we have

f̃
(
〈α, β〉

)
= f(α)(β) .
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eWe leave it as an exer
ise to the reader to verify that the mapping
µ(λκ

)
−→ µ×λκ

f 7−→ f̃is bije
tive, and therefore we have κµ·λ =
(
κλ

)µ.Thirdly, for every fun
tion f : µ → κ × λ let the fun
tions fκ : µ → κ and
fλ : µ → λ be su
h that for ea
h α ∈ µ, f(α) = 〈

fκ(α), fλ(α)
〉. We leave itagain as an exer
ise to the reader to show that the mapping

µ(κ× λ) −→ µκ× µλ

f 7−→ 〈fκ, fλ〉is a bije
tion. ⊣The next result 
ompletes the proof of Theorem 5.5.(d):Theorem 5.7. For any ordinal numbers α, β ∈ Ω we have:
ωα + ωβ = ωα · ωβ = ωα∪β = max{ωα, ωβ}In parti
ular, for every in�nite 
ardinal κ we have κ2 = κ.Proof. It is enough to show that for all α ∈ Ω we have ωα · ωα = ωα. For

α = 0 we already know that |ω × ω| = ω, thus, ω0 · ω0 = ω0. Assume towardsa 
ontradi
tion that there exists a β0 ∈ Ω su
h that ωβ0 · ωβ0 > ωβ0 . Let
α0 =

⋂{
α ∈ β0 + 1 : ωα · ωα > ωα

}
.On ωα0 × ωα0 we de�ne an ordering �<� by stipulating

〈γ1, δ1〉 < 〈γ2, δ2〉 ⇐⇒






γ1 ∪ δ1 ∈ γ2 ∪ δ2 , or
γ1 ∪ δ1 = γ2 ∪ δ2 ∧ γ1 ∈ γ2 , or
γ1 ∪ δ1 = γ2 ∪ δ2 ∧ γ1 = γ2 ∧ δ1 ∈ δ2 .This linear ordering 
an be visualised as follows:

ν × ν

ωα0
× ωα0

γ

δ

ν

ν
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e of AC 125It is easily veri�ed that �<� is a well-ordering on ωα0 ×ωα0 . Now, let ρ be theorder type of the well-ordering �<� and let Γ : ωα0 × ωα0 → ρ be the uniqueorder preserving bije
tion between ωα0 × ωα0 and ρ, i.e., 〈γ1, δ1〉 < 〈γ2, δ2〉i� Γ
(
〈γ1, δ1〉

)
∈ Γ

(
〈γ2, δ2〉

). Be
ause ωα0 · ωα0 > ωα0 we have |ρ| > ωα0 .Now, by the de�nition of the well-ordering �<�, there are γ0, δ0 ∈ ωα0 su
hthat Γ (〈γ0, δ0〉) = ωα0 and for ν = γ0 ∪ δ0 we have |ν × ν| ≥ ωα0 . Thus, for
ωβ = |ν| we have ωβ < ωα0 (sin
e ν ∈ ωα0) and ωβ · ωβ ≥ ωα0 . In parti
ular,
ωβ · ωβ > ωβ, whi
h is a 
ontradi
tion to the 
hoi
e of α0. ⊣As a 
onsequen
e of Theorem 5.7 we get the followingCorollary 5.8. If κ is an in�nite 
ardinal, then seq(κ) = κ and κκ = 2κ.Proof. Firstly we have seq(κ) = ∣∣⋃

n∈ω κ
n
∣∣ = 1+ κ+ κ2+ . . . = 1+ κ ·ω = κ.Se
ondly, by de�nition we have κκ = |κκ|. By identifying ea
h fun
tion f ∈ κκby its graph, whi
h is a subset of κ× κ, we get |κκ| ≤ |P(κ × κ)|, and sin
e

|κ× κ| = κ we �nally have κκ ≤ |P(κ)| = 2κ. ⊣Let λ be an in�nite limit ordinal. A subset C of λ is 
alled 
o�nal in λ if⋃ C = λ. The 
o�nality of λ, denoted cf(λ), is the 
ardinality of a smallest
o�nal set C ⊆ λ. In other words,
cf(λ) = min

{
|C| : C is 
o�nal in λ} .Noti
e that by de�nition, cf(λ) is always a 
ardinal number.Let again λ be an in�nite limit ordinal and let C =

{
βξ : ξ ∈ cf(λ)

}
⊆ λ be
o�nal in λ. Now, for every ν ∈ cf(λ) let αν :=

⋃{βξ : ξ ∈ ν} (noti
e that allthe αν 's belong to λ). Then 〈
αν : ν ∈ cf(λ)

〉 is an in
reasing sequen
e (notne
essarily in the stri
t sense) of length cf(λ) with ⋃{
αν : ν ∈ cf(λ)

}
= λ.Thus, instead of 
o�nal subsets of λ we 
ould equally well work with 
o�nalsequen
es.Sin
e every in�nite 
ardinal is an in�nite limit ordinal, cf(κ) is also de�nedfor 
ardinals κ. An in�nite 
ardinal κ is 
alled regular if cf(κ) = κ; otherwise,

κ is 
alled singular. For example ω is regular and ωω is singular (sin
e {ωn :
n ∈ ω} is 
o�nal in ωω). In general, for non-zero limit ordinals λ we have
cf(ωλ) = cf(λ). For example cf(ωω) = cf(ωω+ω) = cf(ωωωω

) = ω.Fa
t 5.9. For all in�nite limit ordinals λ, the 
ardinal cf(λ) is regular.Proof. Let κ = cf(λ) and let 〈αξ : ξ ∈ κ
〉 be an in
reasing, 
o�nal sequen
eof λ. Further, let C ⊆ κ be 
o�nal in κ with |C| = cf(κ). Now, 〈αν : ν ∈ C〉 isstill a 
o�nal sequen
e of λ, whi
h implies that cf(λ) ≤ cf(κ). On the otherhand we have cf(κ) ≤ κ = cf(λ). Hen
e, cf(κ) = κ = cf(λ), whi
h shows that

cf(λ) is regular. ⊣The following result� whi
h impli
itly uses AC� shows that all in�nitesu

essor 
ardinals are regular.
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eProposition 5.10. If κ is an in�nite 
ardinal, then κ+ is regular.Proof. Assume towards a 
ontradi
tion that there exists a subset C ⊆ κ+ su
hthat C is 
o�nal in κ+ and |C| < κ+, i.e., |C| ≤ κ. Sin
e C ⊆ κ+, for every
α ∈ C we have |α| ≤ κ. Now, by AC, for ea
h α ∈ C we 
an 
hoose a one-to-onemapping fα : α →֒ κ and further let g be a one-to-one mapping from C into
κ. Then, {

〈g(α), fα(ν)〉 : α ∈ C ∧ ν ∈ α
}is a subset of κ × κ and 
onsequently ∣∣⋃ C

∣∣ ≤ |κ × κ| = κ. Thus, ⋃ C 6= κ+whi
h implies that C is not 
o�nal in κ+. ⊣For example, ω1, ω17, and ωω+5 are regular, sin
e ω1 = ω+
0 , ω17 = ω+

16, and
ωω+5 = ω+

ω+4.We now 
onsider arbitrary sums and produ
ts of 
ardinal numbers. Forthis, let I be a non-empty set and let {κι : ι ∈ I} be a family of 
ardinals. Wede�ne ∑

ι∈I

κι =
∣∣∣
⋃

ι∈I

Aι

∣∣∣where {Aι : ι ∈ I} is a family of pairwise disjoint sets su
h that |Aι| = κι forea
h ι ∈ I, e.g., Aι = κι × {ι} will do.Similarly we de�ne ∏

ι∈I

κι =
∣∣∣
∏

ι∈I

Aι

∣∣∣where {Aι : ι ∈ I} is a family of sets su
h that |Aι| = κι for ea
h ι ∈ I, e.g.,
Aι = κι will do.Theorem 5.11 (Inequality of König-Jourdain-Zermelo). Let I be anon-empty set and let {κι : ι ∈ I} and {λι : ι ∈ I} be families of 
ardinalnumbers su
h that κι < λι for every ι ∈ I. Then

∑

ι∈I

κι <
∏

ι∈I

λι .Proof. Let {Aι : ι ∈ I} be a family of pairwise disjoint sets su
h that |Aι| = κιfor ea
h ι ∈ I. Firstly, for ea
h ι ∈ I 
hoose a inje
tion fι : Aι →֒ λι and anelement yι ∈ λι \ fι[Aι] (noti
e that sin
e |Aι| < λι, the set λι \ fι[Aι] isnon-empty).As a �rst step we show that ∑
ι∈I κι ≤ ∏

ι∈I λι: For this, de�ne f̄ :⋃
ι∈I Aι →

∏
ι∈I λι by stipulating f̄(x) := 〈f̄ι(x) : ι ∈ I〉 where

f̄ι(x) =

{
fι(x) if x ∈ Aι,
yι otherwise.Then f̄ is obviously a one-to-one fun
tion from ⋃

ι∈I Aι into ∏
ι∈I λι, whi
hshows that ∑ι∈I κι ≤

∏
ι∈I λι.
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∏
ι∈I λι, take any fun
tion g :

⋃
ι∈I Aι →

∏
ι∈I λι.For every ι ∈ I, let Pι(g[Aι]) be the proje
tion of g[Aι] on κι. Then, for ea
h

ι ∈ I we 
an 
hoose an element zι ∈ λι \ Pι
(
g[Aι]

). Evidently, the sequen
e
〈zι : ι ∈ I〉 does not belong to g[⋃ι∈I Aι

] whi
h shows that g is not surje
tive,and 
onsequently, g is not bije
tive. ⊣As an immediate 
onsequen
e we get the followingCorollary 5.12. For every in�nite 
ardinal κ we have
κ < κcf(κ) and cf(2κ) > κ .In parti
ular we get that cf(c) > ω.Proof. Let 〈αν : ν ∈ cf(κ)

〉 be a 
o�nal sequen
e of κ. On the one hand wehave
κ =

∣∣∣
⋃

ν∈cf(κ)

αν

∣∣∣ ≤
∑

ν∈cf(κ)

|αν | ≤ cf(κ) · κ = κ ,and hen
e, κ =
∑
ν∈cf(κ) |αν |. On the other hand, for ea
h ν ∈ cf(κ) we have

|αν | < κ, and therefore, by Theorem 5.11, we have
∑

ν∈cf(κ)

|αν | <
∏

ν∈cf(κ)

κ = κcf(κ) .Thus, we have κ < κcf(κ).In order to see that cf(2κ) > κ, noti
e that cf(2κ) ≤ κ would imply that
(2κ)cf(2

κ) ≤ (2κ)κ = 2κ·κ = 2κ, whi
h 
ontradi
ts the fa
t that 2κ < (2κ)cf(2
κ).
⊣Some Weaker Forms of the Axiom of Choi
eThe Prime Ideal Theorem and Related StatementsThe following maximality prin
iple � whi
h is frequently used in areas likeAlgebra and Topology� is just slightly weaker than the Axiom of Choi
e.However, in order to formulate this 
hoi
e prin
iple we have to introdu
e thenotion of Boolean algebra and ideal:A Boolean algebra is an algebrai
 stru
ture, say

(
B,+, · ,−,0,1

)where B is a non-empty set, �+� and � · � are two binary operations (
alledBoolean sum and produ
t), �−� is an unary operation (
alled 
omplement),
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eand 0,1 are two 
onstants. For all u, v, w ∈ B, the Boolean operations satisfythe following axioms:
u+ v = v + u

u+ (v +w) = (u+ v) + w

u · (v + w) = (u · v) + (u · w)
u · (u+ v) = u

u+ (−u) = 1

u · v = v · u (
ommutativity)
u · (v · w) = (u · v) · w (asso
iativity)
u+ (v · w) = (u+ v) · (u+w) (distributivity)
u+ (u · v) = u (absorption)
u · (−u) = 0 (
omplementation)An algebra of sets is a 
olle
tion S of subsets of a given set S su
h that

S ∈ S and whenever X,Y ∈ S , then S \ (X ∩ Y ) ∈ S (i.e., S is 
losedunder unions, interse
tions and 
omplements). An algebra of sets S ⊆ P(S)is a Boolean algebra, with Boolean sum and produ
t being ∪ and ∩ respe
-tively, the 
omplement −X of a set X ∈ S being S \ X , and with ∅ and
S being the 
onstants 0 and 1 respe
tively. In parti
ular, for any set S,(
P(S),∪,∩,−, ∅, S

) is a Boolean algebra. The 
ase when S = ω plays animportant role throughout this book and some 
ombinatorial properties ofthe Boolean algebra (
P(ω),∪,∩,−, ∅, ω

) will be investigated in Chapters 8�10. From the axioms above one 
an derive additional Boolean algebrai
 rulesthat 
orrespond to rules for the set operations ∪, ∩ and −. Among others wehave
u+u = u ·u = −(−u) = u , u+0 = u , u ·0 = 0 , u+1 = 1 , u ·1 = u ,as well as the two De Morgan laws

−(u+ v) = −u · −v and − (u · v) = −u+−v .The De Morgan laws might be better re
ognised for example in set-theoreti
notation as
S \ (X ∪ Y ) = (S \X) ∩ (S \ Y )where X,Y ∈ P(S); or in Propositional Logi
 as

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψwhere ϕ and ψ are any senten
es formulated in a 
ertain language.This last formulation in the language of Propositional Logi
 shows therelation between Boolean algebra and Logi
 and provides other examples ofBoolean algebras:Let L be a �rst-order language and let S be the set of all L -senten
es.We de�ne an equivalen
e relation �∼� on S by stipulating
ϕ ∼ ψ ⇐⇒ ⊢ ϕ↔ ψ .The set B := S/∼ of all equivalen
e 
lasses [ϕ] is a Boolean algebra underthe operations [ϕ] + [ψ] := [ϕ ∨ ψ], [ϕ] · [ψ] := [ϕ ∧ ψ], −[ϕ] := [¬ϕ], where
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0 := [ϕ ∧ ¬ϕ] and 1 := [ϕ ∨ ¬ϕ]. This algebra is 
alled the Lindenbaumalgebra.Let us de�ne

u− v = u · (−v)and
u ≤ v ⇐⇒ u− v = 0 .We leave it as an exer
ise to the reader to verify that �≤� is a partial orderingon B and that

u ≤ v ⇐⇒ u+ v = v ⇐⇒ u · v = u .Noti
e also that [ϕ] ≤ [ψ] is equivalent to ⊢ ϕ→ ψ.With respe
t to that ordering, 1 is the greatest element of B and 0 isthe least element. Also, for any u, v ∈ B, u + v is the least upper bound of
{u, v}, and u · v is the greatest lower bound of {u, v}. Moreover, sin
e −u isthe unique element v of B su
h that u + v = 1 and u · v = 0 we get that allBoolean-algebrai
 operations 
an be de�ned in terms of the partial ordering�≤� (e.g., −u is the least element v of B with the property that u+ v = 1).Now, let us de�ne an additional operation �⊕� on B by stipulating

u⊕ v = (u − v) + (v − u) .Noti
e that for every u ∈ B we have u ⊕ u = 0, thus, with respe
t to theoperation �⊕�, every element of B is its own (and unique) inverse. We leaveit as an exer
ise to the reader to show that B with the two binary operations
⊕ and · is a ring with zero 0 and unit 1.Before we give the de�nition of ideals in Boolean algebras, let us brie�yre
all the algebrai
 notion of ideals in 
ommutative rings: Let R = (R,+, · ,0)be an arbitrary 
ommutative ring. An non-empty subset I ⊆ R is an ideal in
R if and only if for all x, y ∈ I and all r ∈ R we have x− y ∈ I and r · x ∈ I.The ideal {0} is 
alled the trivial ideal. An ideal I ⊆ R of a ring is 
alledmaximal if I 6= R and the only ideals J in R for whi
h I ⊆ J are J = I and
J = R. If R is a 
ommutative ring and I 6= R is an ideal in R, then I is 
alleda prime ideal if given any r, s ∈ R with r ·s ∈ I we always have r ∈ I or s ∈ I.It is not hard to verify that in a 
ommutative ring with 1, every maximalideal is prime. Finally, if an ideal J ⊆ R is generated by a single element of
R, then J is so-
alled prin
ipal ideal.With respe
t to the ring (B,⊕, · ,0,1), this leads to the following de�nitionof ideals in Boolean algebras.Let (B,+, · ,−,0,1) be a Boolean algebra. An ideal I in B is a non-emptyproper subset of B with the following properties:
• 0 ∈ I but 1 /∈ I.
• If u ∈ I and v ∈ I, then u+ v ∈ I.
• For all w ∈ B and all u ∈ I, w ·u ∈ I (or equivalently, if w ∈ B, u ∈ I and

w ≤ u, then w ∈ I).
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eConsidering the Boolean algebra (
P(ω),∪,∩,−, ∅, ω

), one easily veri�es thatthe set of all �nite subsets of ω is an ideal over ω, i.e., an ideal on P(ω). Thisideal is 
alled the Fré
het ideal.The dual notion of an ideal is a so-
alled �lter. Thus, a �lter F in B is anon-empty proper subset of B with the following properties:
• 0 /∈ F but 1 ∈ F .
• If u ∈ F and v ∈ F , then u · v ∈ F .
• For all w ∈ B and all u ∈ F , w + u ∈ I (or equivalently, if w ∈ B, u ∈ Fand w ≥ u, then w ∈ F ).Moreover, if I is an ideal in B, then I∗ := {−u : u ∈ I} is a �lter, 
alled dual�lter. Similarly, if F is a �lter in B, then F ∗ := {−u : u ∈ F} is an ideal,
alled dual ideal. The dual �lter I∗0 = {x ⊆ ω : ω \ x is �nite} of the Fré
hetideal I0 on P(ω) is 
alled the Fré
het �lter.Let I be an ideal in B, and let F be a �lter in B.

I is 
alled
• trivial if I = {0};
• prin
ipal if there is an u ∈

B su
h that I = {v : v ≤ u};
• prime if for all u ∈ B, either

u ∈ I or −u ∈ I;
F is 
alled
• trivial if F = {1};
• prin
ipal if there is an u ∈

B su
h that F = {v : v ≥ u};
• an ultra�lter if for all u ∈

B, either u ∈ F or −u ∈ F .Let us 
onsider a few ideals and �lters over ω, i.e., ideals and �lters in theBoolean algebra (
P(ω),∪,∩,−, ∅, ω

): The trivial ideal is {∅}, and the trivial�lter is {ω}. For any non-empty subset x ⊆ ω, Fx :=
{
y ∈ P(ω) : y ⊇ x

}is a prin
ipal �lter, and the dual ideal Iω\x := (Fx)
∗ = {z ∈ P(ω) : ω \ z ∈

Fx} =
{
z ∈ P(ω) : z ∩ x = ∅

} is also prin
ipal. In parti
ular, if x = {a} forsome a ∈ ω, then Fx is a prin
ipal ultra�lter and Iω\x is a prin
ipal primeideal. We leave it as an exer
ise to the reader to show that every prin
ipalultra�lter over ω is of the form F{a} for some a ∈ ω, and that every prin
ipalprime ideal is of the form Iω\{a}. Considering the Fré
het �lter F on P(ω),one easily veri�es that F is a non-prin
ipal �lter, but not an ultra�lter (noti
ethat neither x = {2n : n ∈ ω} nor ω \ x belongs to F ). Similarly, the Fré
hetideal is not prime but non-prin
ipal.Let us now summarise a few basi
 properties of ultra�lters over sets (theproofs are left to the reader):Fa
t 5.13. Let U be an ultra�lter over a set S.(a) If {x0, . . . , xn−1} ⊆ P(S) (for some n ∈ ω) su
h that x0∪ . . .∪xn−1 ∈ Uand for any distin
t i, j ∈ n we have xi ∩xj /∈ U , then there is a unique k ∈ nsu
h that xk ∈ U .(b) If x ∈ U and |x| ≥ 2, then there is a proper subset y  x su
h that y ∈ U .(
) If U 
ontains a �nite set, then U is prin
ipal.



The Prime Ideal Theorem and related statements 131On the one hand, prime ideals and ultra�lters in Boolean algebras arealways maximal. On the other hand, one 
annot prove in ZF that for examplethe Fré
het �lter over ω 
an be extended to an ultra�lter. In parti
ular, thereare models of ZF in whi
h every ultra�lter over ω is prin
ipal (
f. RelatedResult 38 and Chapter 17).However, there is a 
hoi
e prin
iple whi
h guarantees that every ideal ina Boolean algebra 
an be extended to a prime ideal, and 
onsequently, thatevery �lter 
an be extended to an ultra�lter.Prime Ideal Theorem: If I is an ideal in a Boolean algebra, then I 
anbe extended to a prime ideal.In fa
t, the Prime Ideal Theorem, denoted PIT, is a 
hoi
e prin
iple whi
h isjust slightly weaker than the full Axiom of Choi
e. Below we shall present someequivalent formulations of the Prime Ideal Theorem, but �rst let us show thatthe Prime Ideal Theorem follows from the Axiom of Choi
e (for the fa
t thatthe 
onverse impli
ation does not hold see Theorem 7.16).Proposition 5.14. AC ⇒ PIT.Proof. By Theorem 5.3 it is enough to show that the Prime Ideal Theoremfollows from Tei
hmüller's Prin
iple. Let (B,+, · ,−,0,1) be a Boolean algebraand let I0  B be an ideal. Further, let F be the family of all sets X ⊆ B \ I0su
h that for every �nite subset {u0, . . . , un} ⊆ X ∪ I0 we have
u0 + . . .+ un 6= 1 .Obviously, F has �nite 
hara
ter, and therefore, by Tei
hmüller's Prin
iple,

F has a maximal element. In other words, there is a maximal subset I1of B whi
h has the property that whenever we pi
k �nitely many elements
{u0, . . . , un} from I := I0 ∪ I1 we have u0 + . . .+ un 6= 1. Sin
e I1 is maximalwe get that I is an ideal in B whi
h extends I0. Moreover, the ideal I has theproperty that for any element v ∈ B \ I there is a u ∈ I su
h that u+ v = 1,i.e., for any v ∈ B, v /∈ I implies −v ∈ I. Thus, I is a prime ideal in B whi
hextends I0.A seemingly weaker version of PIT is the following statement.Ultra�lter Theorem: If F is a �lter over a set S, then F 
an be extendedto an ultra�lter.Noti
e that the Ultra�lter Theorem is the dual version of the Prime Ideal The-orem in the 
ase when the Boolean algebra is an algebra of sets.For the next version of the Prime Ideal Theorem we have to introdu
e �rstsome terminology: Let S be a set and let B be a set of binary fun
tions (i.e.,with values 0 or 1) de�ned on �nite subsets of S. We say that B is a binarymess on S if B satis�es the following properties:
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e
• For ea
h �nite set P ⊆ S, there is a fun
tion g ∈ B su
h that dom(g) = P ,i.e., g is de�ned on P .
• For ea
h g ∈ B and ea
h �nite set P ⊆ S, the restri
tion g|P belongs to B.Let f be a binary fun
tion on S and let B be a binary mess on S. Then f is
onsistent with B if for every �nite set P ⊆ S, f |P ∈ B.Consisten
y Prin
iple: For every binary mess B on a set S, there existsa binary fun
tion f on S whi
h is 
onsistent with B.In order to state the last version of the Prime Ideal Theorem we have tointrodu
e �rst some terminology from Propositional Logi
: The alpha-bet of Propositional Logi
 
onsists of an arbitrarily large but �xed set
P := {pλ : λ ∈ Λ} of so-
alled propositional variables, as well as of thelogi
al operators �¬�, �∧�, and �∨�. The formulae of Propositional Logi
 arede�ned re
ursively as follows:
• A single propositional variable p ∈ P by itself is a formula.
• If ϕ and ψ are formulae, then so are ¬(ϕ), (ϕ ∧ ψ), and (ϕ ∨ ψ); in Polishnotation, the three 
omposite formulae are ¬ϕ, ∧ϕψ, and ∨ϕψ, respe
-tively.A realisation of Propositional Logi
 is a map of P , the set of propositionalvariables, to the two element Boolean algebra (

{0,1},+, · ,−,0,1
). Givena realisation f of Propositional Logi
. By indu
tion on the 
omplexity offormulae we extend f to all formulae of Propositional Logi
 (
ompare withthe de�nition of Lindenbaum's algebra): For any formulae ϕ and ψ, if f(ϕ)and f(ψ) have already been de�ned, then

f(∧ϕψ) = f(ϕ) · f(ψ) , f(∨ϕψ) = f(ϕ) + f(ψ) ,and
f(¬ϕ) = −f(ϕ) .Let ϕ be any formula of Propositional Logi
. If the realisation f , extended inthe way just des
ribed, maps the formula ϕ to 1, then we say that f satis�es

ϕ. Finally, a set Σ of formulae of Propositional Logi
 is satis�able if there isa realisation whi
h simultaneously satis�es all the formulae in Σ.Compa
tness Theorem for Propositional Logi
: Let Σ be a set of formulaeof Propositional Logi
. If every �nite subset of Σ is satis�able, then also
Σ is satis�able.Noti
e that the reverse impli
ation of the Compa
tness Theorem for Proposi-tional Logi
 is trivially satis�ed.Now we show that the above prin
iples are all equivalent to the Prime IdealTheorem.



The Prime Ideal Theorem and related statements 133Theorem 5.15. The following statements are equivalent:(a) Prime Ideal Theorem.(b) Ultra�lter Theorem.(
) Consisten
y Prin
iple.(d) Compa
tness Theorem for Propositional Logi
.(e) Every Boolean algebra has a prime ideal.Proof. (a)⇒(b) The Ultra�lter Theorem is an immediate 
onsequen
e of thedual form of the Prime Ideal Theorem.(b)⇒(
) Let B be a binary mess on a non-empty set S. Assuming the Ultra�l-ter Theorem we show that there is a binary fun
tion f on S whi
h is 
onsistentwith B. Let fin(S) be the set of all �nite subsets of S. For ea
h P ∈ fin(S), let
AP =

{
g ∈ S2 : g|P ∈ B

}
.Sin
e B is a binary mess, the interse
tion of �nitely many sets AP is non-empty. Thus, the family F 
onsisting of all supersets of interse
tions of �nitelymany sets AP is a �lter over S2. By the Ultra�lter Theorem, F 
an be extendedto an ultra�lter U ⊆ P

(
S2

). Sin
e U is an ultra�lter, for ea
h s ∈ S, either{
g ∈ S2 : g(s) = 0

} or {g ∈ S2 : g(s) = 1
} belongs to U , and we de�ne thefun
tion f ∈ S2 by stipulating that for ea
h s ∈ S, the set As =

{
g ∈ S2 :

g(s) = f(s)
} belongs to U . Now, for any �nite set P = {s0, . . . , sn} ⊆ S,⋂

i≤n Asi ∈ U , whi
h shows that f |P ∈ B, i.e., f is 
onsistent with B.(
)⇒(d) Let Σ be a set of formulae of Propositional Logi
 and let S ⊆ P bethe set of propositional variables whi
h appear in formulae of Σ. Assume thatevery �nite subset of Σ is satis�able, i.e., for every �nite subset Σ0 ⊆ Σ thereis a realisation gΣ0 : SΣ0 → {0,1} whi
h satis�es Σ0, where SΣ0 denotes theset of propositional variables whi
h appear in formulae of Σ0. Let
BΣ :=

{
gΣ0 |P : Σ0 ∈ fin(Σ) ∧ P ⊆ SΣ0

}
.Then BΣ is obviously a binary mess and by Consisten
y Prin
iple there existsa binary fun
tion f on S whi
h is 
onsistent with BΣ. Now, f is a realisationof Σ and therefore Σ is satis�able.(d)⇒(e) Let (B,+, · ,−,0,1) be a Boolean algebra and let P := {pu : u ∈

B} be a set of propositional variables. Further, let ΣB be the following set offormulae of Propositional Logi
:
• p0, ¬p1;
• pu ∨ ¬p−u (for ea
h u ∈ B);
• ¬(pu1 ∧ . . . ∧ pun

) ∨ pu1+...+un
(for ea
h �nite set {u1, . . . , un} ⊆ B).

• ¬(pu1 ∨ . . . ∨ pun
) ∨ pu1·...·un

(for ea
h �nite set {u1, . . . , un} ⊆ B).Noti
e that every �nite subset of B generates a �nite subalgebra of B andthat every �nite Boolean algebra has a prime ideal. Now, sin
e every �nite



134 5 The Axiom of Choi
eprime ideal in a �nite subalgebra of B 
orresponds to a realisation of a �nitesubset of ΣB, and vi
e versa, every �nite subset of ΣB is satis�able. Thus, bythe Compa
tness Theorem for Propositional Logi
, ΣB is satis�able. Let f be arealisation of ΣB and let I =
{
u ∈ B : f(pu) = 1

}. By de�nition of ΣB and Irespe
tively we get:
• f(p0) = 1 and f(p1) = 0; thus, 0 ∈ I but 1 /∈ I.
• f(pu) = 1− f(¬pu); thus, for all u ∈ B, either u ∈ I or −u ∈ I.
• If f(pu1) = f(pu2) = 1, then f(pu1 ∧ pu2) = 1; thus, for all u1, u2 ∈ I wehave u1 + u2 ∈ I.
• if f(pu1) = 1, then f(pu1 ∨ pu2) = 1; thus, for all u1 ∈ I and all u2 ∈ B wehave u1 · u2 ∈ I.Thus, the set I =

{
u ∈ B : f(pu) = 1

} is a prime ideal in B.(e)⇒(a) Let (
B,+, · ,−,0,1

) be a Boolean algebra and I ⊆ B an ideal in
B. De�ne the following equivalen
e relation on B:

u ∼ v ⇐⇒ (u− v) + (v − u) ∈ ILet C be the set of all equivalen
e 
lasses [u]̃ and de�ne the operations �+�,� · �, and �−� on C as follows:
[u]̃ + [v]̃ = [u+ v]̃ , [u]̃ · [v]̃ = [u · v]̃ , −[u]̃ = [−u]̃ .Now, (

C,+, · ,−, [0]̃ , [1]̃
)is a Boolean algebra, the so-
alled quotient of B modulo I. By the Prime IdealTheorem, C has a prime ideal J . We leave it as an exer
ise to the reader toverify that the set {

u ∈ B : [u]̃ ∈ J
}is a prime ideal in B whi
h extends I. ⊣König's Lemma and other Choi
e Prin
iplesLet us begin by de�ning some 
hoi
e prin
iples:

• C(ℵ0,∞): Every 
ountable family of non-empty sets has a 
hoi
e fun
tion(this 
hoi
e prin
iple is usually 
alled Countable Axiom of Choi
e).
• C(ℵ0,ℵ0): Every 
ountable family of non-empty 
ountable sets has a 
hoi
efun
tion.
• C(ℵ0, < ℵ0): Every 
ountable family of non-empty �nite sets has a 
hoi
efun
tion.
• C(ℵ0, n): Every 
ountable family of n-element sets, where n ∈ ω, has a
hoi
e fun
tion.
• C(∞, < ℵ0): Every family of non-empty �nite sets has a 
hoi
e fun
tion(this 
hoi
e prin
iple is usually 
alled Axiom of Choi
e for Finite Sets).
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• C(∞, n): Every family of n-element sets, where n ∈ ω, has a 
hoi
e fun
-tion. This 
hoi
e prin
iple is usually denoted Cn.Another � seemingly unrelated� 
hoi
e prin
iple is the Ramseyan PartitionPrin
iple, denoted RPP.
• RPP: If X is an in�nite set and [X ]2 is 2-
oloured, then there is an in�nitesubset Y of X su
h that [Y ]2 is mono
hromati
.Below we show how these 
hoi
e prin
iples are related to ea
h other, but�rst let us show that C(ℵ0, < ℵ0) and König's Lemma, denoted by KL, areequivalent.Proposition 5.16. C(ℵ0, < ℵ0) ⇐⇒ KL.Proof. (⇒) Let T = (V,E) be an in�nite, �nitely bran
hing tree with vertexset V , edge set E, and root say v0. The edge set E 
an be 
onsidered asa subset of V × V , i.e., as a set of ordered pairs of verti
es indi
ating thedire
tion from the root to the top of the tree. Let S0 := {v0}, and for n ∈ ωlet

Sn+1 :=
{
v ∈ V : ∃u ∈ Sn(〈u, v〉 ∈ E)

}and let S :=
⋃
n∈ω Sn. Sin
e T is in�nite and �nitely bran
hing, S is in�niteand for every n ∈ ω, Sn is a non-empty �nite set. Further, for every v ∈ Slet S(v) be the set of all verti
es u ∈ S su
h that there exists a non-empty�nite sequen
e s ∈ seq(S) of length k + 1 (for some k ∈ ω) with s(0) = v and

s(k) = u, and for all i ≤ k we have 〈s(i), s(i+1)
〉
∈ E. In other words, S(v) isthe set of all verti
es whi
h 
an be rea
hed from v. Noti
e that (S(v), E|S(v)

)is a subtree of T . Sin
e S is in�nite and for all n ∈ ω, ⋃i∈n Si is �nite, forea
h n ∈ ω there exists a vertex v ∈ Sn su
h that S(v) is in�nite.We now pro
eed as follows: By C(ℵ0, < ℵ0), for ea
h n ∈ ω we 
an 
hoosea well-ordering �<n � on Sn and then 
onstru
t a bran
h v0, v1, . . . , vn, . . .through T , where for all n ∈ ω, vn+1 is the <n+1-minimal element of thenon-empty set {v ∈ Sn+1 : 〈vn, v〉 ∈ E ∧ “S(v) is in�nite�}.(⇐) Let F = {Fn : n ∈ ω} be a 
ountable family of non-empty �nite sets.Further, let V =
⋃
k∈ω

(∏
n∈k Fn

) and let E ⊆ V ×V be the set of all orderedpairs 〈s, t〉 of the form s = 〈x0, . . . , xn〉 and t = 〈x0, . . . , xn, xn+1〉 respe
tively,where for ea
h i ∈ n+2, xi ∈ Fi (i.e., the sequen
e t is obtained by adding anelement of Fn+1 to s). Obviously, T = (V,E) is an in�nite, �nitely bran
hingtree and therefore, by KL, has an in�nite bran
h, say 〈an : n ∈ ω〉. Sin
e, forall n ∈ ω, an belongs to Fn, the fun
tion
f : F −→ ⋃

F

Fn 7−→ anis a 
hoi
e fun
tion for F , and sin
e the 
ountable family of �nite sets F wasarbitrary, we get C(ℵ0, < ℵ0). ⊣
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eObviously, C(ℵ0, < ℵ0) ⇒ C(ℵ0, n) for all positive integers n ∈ ω. However,as a matter of fa
t we would like to mention that for ea
h n ≥ 2, C(ℵ0, n)is a proper axiom, i.e., not provable within ZF (for n = 2 see for exampleProposition 7.7).The following result shows the strength of the 
hoi
e prin
iples RPP andKL 
ompared to C(ℵ0,∞) and C(ℵ0, n) respe
tively:Theorem 5.17. C(ℵ0,∞) =⇒ RPP =⇒ KL =⇒ C(ℵ0, n).Proof. C(ℵ0,∞) ⇒ RPP: Firstly we show that C(ℵ0,∞) implies that everyin�nite set X is trans�nite, i.e., there is an in�nite sequen
e of elements of
X in whi
h no element appears twi
e: Let X be an in�nite set and for every
n ∈ ω let Fn+1 be the set of all inje
tions from n + 1 into X . Consider thefamily F =

{
Fn+1 : n ∈ ω

}. Sin
e X is in�nite, F is a 
ountable family ofnon-empty sets. Thus, by C(ℵ0,∞), there is a 
hoi
e fun
tion, say f , on F .For every n ∈ ω let gn := f(Fn+1). With the 
ountably many inje
tions gn we
an easily 
onstru
t an inje
tion from ω into X . In parti
ular, we get an in�-nite sequen
e 〈ai : i ∈ ω〉 of elements of X in whi
h no element appears twi
e.For S := {ai : i ∈ ω} ⊆ X , every 2-
olouring of [X ]2 indu
es a 2-
olouring of
[S]2. Now, by Ramsey's Theorem 2.1, there exists an in�nite subset Y of Ssu
h that [Y ]2 is mono
hromati
 (noti
e that no 
hoi
e is needed to establishRamsey's Theorem for 
ountable sets).RPP ⇒ KL: Let T = (V,E) be an in�nite, �nitely bran
hing tree and let thesets Sn (for n ∈ ω) be as in the �rst part of the proof of Proposition 5.16.De�ne the 
olouring π : [V ]2 → {0, 1} by stipulating π

(
{u, v}

)
= 0 ⇐⇒

{u, v} ⊆ Sn for some n ∈ ω. By RPP there exists an in�nite subset X ⊆ Vsu
h that [X ]2 is mono
hromati
. Now, sin
e T is �nitely bran
hing, we getthat if X ⊆ V is in�nite and [X ]2 is mono
hromati
, then [X ]2 is of 
olour 1,i.e., no two distin
t elements of X are in the same set Sn. In order to 
onstru
tan in�nite bran
h through T , just pro
eed as in the �rst part of the proof ofProposition 5.16.KL ⇒ C(ℵ0, n): Be
ause C(ℵ0, < ℵ0) ⇒ C(ℵ0, n), this is an immediate 
on-sequen
e of Proposition 5.16. ⊣The last result of this 
hapter deals with the relationship of the 
hoi
e prin-
iples Cn (i.e., C(∞, n)) for di�erent natural numbers n. Before we 
an statethe theorem we have to introdu
e the following number-theoreti
al 
ondition:Let m,n be two positive integers. Then we say that m,n satisfy 
ondition (S)if the following 
ondition holds:There is no de
omposition of n into a sum of primes, n = p1+. . .+ps,su
h that pi > m for all 1 ≤ i ≤ s.Theorem 5.18. If the positive integers m,n satisfy 
ondition (S) and if Ckholds for every k ≤ m, then also Cn holds.



Notes 137Proof. Firstly noti
e that C1 is obviously true. Se
ondly noti
e that for n ≤ m,the impli
ation of the theorem is trivially true. So, without loss of generalitywe may assume that n > m.The proof is now by indu
tion on n: Let m < n be a �xed positive integersu
h that m,n satisfy 
ondition (S) and assume that the impli
ation of thetheorem is true for every l < n. Sin
e n,m satisfy (S), n is not a prime and
onsequently n is divisible by some prime p < n. Ne
essarily, p ≤ m, sin
eotherwise we 
ould write n = p+. . .+p, 
ontrary to (S). Let F = {Aλ : λ ∈ Λ}be a family of n-element sets. We have to des
ribe a way to 
hoose an elementfrom ea
h set Aλ (λ ∈ Λ). Take an arbitraryA ∈ F and 
onsider [A]p (i.e., theset of all p-element subsets of A). Sin
e p ≤ m, by the premise of the theoremthere is a 
hoi
e fun
tion g for [A]p. In other words, for every X ∈ [A]p,
g(X) ∈ X , in parti
ular, g(X) ∈ A. For every a ∈ A let

q(a) =
∣∣{X ∈ [A]p : g(X) = a

}∣∣and let q := min
{
q(a) : a ∈ A

}. Further, let B :=
{
a ∈ A : q(a) = q

}.Obviously, the set B is non-empty and the set [A]p has (n
p

) elements. In orderto prove that A \ B is non-empty, we have to show that (
n
p

) is not divisibleby n. Indeed, be
ause p divides n, there is a positive integer k whi
h is notdivisible by p su
h that n = k · pa+1 (for some a ∈ ω). We have
(
n

p

)
=
k · pa+1

p
· (n− 1) · · · · · (n− p+ 1)

(p− 1) · · · · · 1
=
k · pa+1

p
·
(
n− 1

p− 1

)
,and sin
e p does obviously not divide (

n−1
p−1

), we get that (
n
p

) is divisible by
pa, but not by pa+1; in parti
ular, (n

p

) is not divisible by n = k · pa+1. Thus,the sets B and A \B are both non-empty, and for l1 := |B| and l2 := |A \B|we get that l1 and l2 are positive integers with l1 + l2 = n. Moreover, m, l1 or
m, l2 satisfy 
ondition (S), sin
e otherwise we 
ould write l1 = p1 + . . . + prand l2 = pr+1 + . . . + ps, where p1, . . . , ps are primes bigger than m, whi
hwould imply that n = p1 + . . . + ps, 
ontrary to the assumption that m,nsatisfy (S). Thus, by the indu
tion hypothesis, either Cl1 holds and we 
hoosean element in B, or, if Cl1 fails, Cl2 holds and we 
hoose an element in A \B.Finally, sin
e A ∈ F was arbitrary, this 
ompletes the proof. ⊣NotesThe Axiom of Choi
e. Fraenkel writes in [26, p. 56 f.℄ that the Axiom of Choi
e isprobably the most interesting and, in spite of its late appearan
e, the most dis
ussedaxiom of Mathemati
s, se
ond only to Eu
lid's axiom of parallels whi
h was intro-du
ed more than two thousand years ago. We would also like to mention a di�erentview to 
hoi
e fun
tions, namely the view of Peano. In 1890, Peano published a proofin whi
h he was 
onstrained to 
hoose a single element from ea
h set in a 
ertain in�-nite sequen
e A1, A2, . . . of in�nite subsets of R. In that proof, he remarked 
arefully



138 5 The Axiom of Choi
e(
f. [73, p. 210℄): But as one 
annot apply in�nitely many times an arbitrary rule bywhi
h one assigns to a 
lass A an individual of this 
lass, a determinate rule is statedhere, by whi
h, under suitable hypotheses, one assigns to ea
h 
lass A an individ-ual of this 
lass. To obtain his rule, he employed least upper bounds. A

ording toMoore [66, p 76℄, Peano was the �rst mathemati
ian who�while a

epting in�nite
olle
tions � 
ategori
ally reje
ted the use of in�nitely many arbitrary 
hoi
es.The di�
ulty is well illustrated by a Russellian ane
dote (
f. Sierpi«ski [82,p. 125℄): A millionaire possesses an in�nite number of pairs of shoes, and an in-�nite number of pairs of so
ks. One day, in a �t of e

entri
ity, he summons hisvalet and asks him to sele
t one shoe from ea
h pair. When the valet, a

ustomedto re
eiving pre
ise instru
tions, asks for details as to how to perform the sele
tion,the millionaire suggests that the left shoe be 
hosen from ea
h pair. Next day themillionaire proposes to the valet that he sele
t one so
k from ea
h pair. When askedas to how this operation is to be 
arried out, the millionaire is at a loss for a reply,sin
e, unlike shoes, there is no intrinsi
 way of distinguishing one so
k of a pair fromthe other. In other words, the sele
tion of the so
ks 
annot be 
arried out withoutthe aid of some 
hoi
e fun
tion.As long as the impli
it and un
ons
ious use of the Axiom of Choi
e by Can-tor and others involved only generalised arithmeti
al 
on
epts and properties well-known from �nite numbers, nobody took o�en
e. However, the situation 
hangeddrasti
ally after Zermelo [107℄ published his �rst proof that every set 
an be well-ordered�whi
h was one of the earliest assertions of Cantor. It is worth mentioningthat, a

ording to Zermelo [107, p. 514℄ & [108, footnote p. 118℄, it was in fa
t theidea of Erhard S
hmidt to use the Axiom of Choi
e in order to build the f-sets.Zermelo 
onsidered the Axiom of Choi
e as a logi
al prin
iple, that 
annot be redu
edto a still simpler one, but is used everywhere in mathemati
al dedu
tions withouthesitation (see [107, p. 516℄). Even though in Zermelo's view the Axiom of Choi
ewas �self-evident�, whi
h is not the same as �obvious� (see Shapiro [81, �5℄ for a de-tailed dis
ussion of the meaning of �self-eviden
e�), not all mathemati
ians at thattime shared Zermelo's opinion. Moreover, after the �rst proof of the Well-OrderingPrin
iple was published in 1904, the mathemati
al journals (espe
ially volume 60 ofMathematis
he Annalen) were �ooded with 
riti
al notes reje
ting the proof (see forexample Moore [66, Chapter 2℄), mostly arguing that the Axiom of Choi
e was eitherillegitimate or meaningless (
f. Fraenkel, Bar-Hillel, and Lévy [26, p. 82℄). The reasonfor this was not only due to the non-
onstru
tive 
hara
ter of the Axiom of Choi
e,but also be
ause it was not yet 
lear what a �set� should be. So, Zermelo de
ided topublish a more detailed proof, and at the same time taking the opportunity to replyto his 
riti
s. This resulted in [108℄, his se
ond proof of the Well-Ordering Prin
iplewhi
h was published in 1908, the same year as he presented his �rst axiomatisationof Set Theory in [108℄. It seems that this was not a 
oin
iden
e. Moore [66, p. 159℄writes that Zermelo's axiomatisation was primarily motivated by a desire to se
urehis demonstration of the Well-Ordering Prin
iple and, in parti
ular, to save his Axiomof Choi
e. Moreover, Hallett [32, p. xvi℄ goes even further by trying to show that thesele
tion of the axioms themselves was guided by the demands of Zermelo's re
on-stru
ted [se
ond℄ proof. Hallett's statement is motivated by a remark on page 124in Zermelo [108℄, where he emphasises that the proof is just based on 
ertain �xedprin
iples to build initial sets and to derive new sets from given ones �exa
tly whatwe would require for prin
iples to form an axiomati
 system of Set Theory.



Notes 139We would like to mention that be
ause of its di�erent 
hara
ter (
f. Bernays [3℄)and sin
e he 
onsidered the Axiom of Choi
e as a general logi
al prin
iple, he didnot in
lude the Axiom of Choi
e to his se
ond axiomati
 system of Set Theory.For a 
omprehensive survey of Zermelo's Axiom of Choi
e, its origins, develop-ment, and in�uen
e, we refer the reader to Moore [66℄ (see also Kanamori [46℄,Je
h [41℄, and Fraenkel, Bar-Hillel, and Lévy [26, Chapter II, �4℄); and for a biogra-phy of Zermelo (in
luding the history of AC and axiomati
 Set Theory) we refer thereader to Ebbinghaus [17℄.Gödel's 
onstru
tible universe. A

ording to Kanamori [45, p. 28 �.℄, in O
to-ber of 1935 Gödel informed von Neumann at the Institute for Advan
ed Study inPrin
eton that he had established the relative 
onsisten
y of the Axiom of Choi
e.This he did by devising his 
onstru
tible (not 
onstru
tive!) hierar
hy L (for �law�)and verifying the Axiom of Choi
e and the rest of the ZF axioms there. Gödel 
on-je
tured that the Continuum Hypothesis would also hold in L, but he soon fell illand only gave a proof of this and the Generalised Continuum Hypothesis (i.e., for all
α ∈ Ω, 2ωα = ωα+1) two years later. The 
ru
ial idea apparently 
ame to him duringthe night of June 14/15, 1937 (see also [31, pp. 1�8℄).Gödel's arti
le [28℄ was the �rst announ
ement of these results, in whi
h hedes
ribes the model L as the 
lass of all �mathemati
ally 
onstru
tible� sets, wherethe term �
onstru
tible� is to be understood in the semi-intuitionisti
 sense whi
hex
ludes impredi
ative pro
edures. This means �
onstru
tible� sets are de�ned to bethose sets whi
h 
an be obtained by Russell's rami�ed hierar
hy of types, if extendedto in
lude trans�nite orders. In the su

eeding arti
le [29℄, Gödel provided moredetails in the 
ontext of ZF, and in his monograph [30℄ � based on le
tures givenat the Institute for Advan
ed Study during the winter of 1938/39 �Gödel gaveanother presentation of L. This time he generated L set by set with a trans�nitere
ursion in terms of eight elementary set generators, a sort of Gödel numberinginto the trans�nite (
f. Kanamori [45, p. 30℄, and for Gödel's work in Set Theory seeKanamori [47℄).Equivalent Forms of the Axiom of Choi
e. The literature gives numerousexamples of theorems whi
h are equivalent to the Axiom of Choi
e and a huge 
ol-le
tion of su
h equivalent forms of the Axiom of Choi
e was a

umulated by Rubinand Rubin [79, 80℄.The most popular variants of the Axiom of Choi
e�and the most often used inmathemati
al proofs � are probably the Well-Ordering Prin
iple (dis
ussed above),the Kuratowski-Zorn Lemma, and Tei
hmüller's Prin
iple.The Kuratowski-Zorn Lemma was proved independently by Kuratowski [53℄ andmore than a de
ade later by Zorn [106℄ (see Moore [66, p. 223℄ and also Camp-bell [13℄). Usually, the Kuratowski-Zorn Lemma is dedu
ed quite easily from theWell-Ordering Prin
iple. The dire
t dedu
tion from the Axiom of Choi
e presentedabove (Theorem 5.3) is due to Kneser [51℄, who also proved Lemma 5.2 whi
h wasstated without proof by Bourbaki [12, p. 37 (lemme fondamental)℄.Tei
hmüller's Prin
iple was formulated independently by Tukey [103℄ and slightlyearlier by Tei
hmüller in [97℄, where he provides also some equivalent forms of thisvery useful prin
iple. Tei
hmüller himself was a member of the Nazi party andjoined the army in 1939. Fighting �rst in Norway and then at the Eastern Front, heeventually died in 1943.



140 5 The Axiom of Choi
eKurepa's Prin
iple was introdu
ed by Kurepa in [54℄, where he showed thatKurepa's Prin
iple together with the Linear-Ordering Prin
iple�whi
h states that ev-ery set 
an be linearly ordered� implies the Axiom of Choi
e. The proof that� inthe presen
e of the Axiom of Foundation� Kurepa's Prin
iple implies the Axiom ofChoi
e is due to Felgner [18℄ (see also Felgner and Je
h [20℄ or Je
h [40, Theo-rem 9.1.(a)℄).The proof that �every ve
tor spa
e has an algebrai
 basis� impliesMultiple Choi
eis taken from Blass [9℄, and the proof that Multiple Choi
e implies Kurepa's Prin
ipleis taken from Je
h [40, Theorem 9.1.(a)℄ (
ompare with Chapter 7 |Related Re-sult 44).Among the dozens of 
ardinal relations whi
h are equivalent to the Axiom of Choi
e(see for example Lindenbaum and Tarski [60℄, Ba
hmann [1, �31℄, or Moore [66,p. 330 f.℄), we just mentioned three.In 1895, Cantor [14, �2℄ asserted the Tri
hotomy of Cardinals without proof,and in a letter of 28 July 1899 (
f. [16, pp. 443�447℄) he wrote to Dedekind thatthe Tri
hotomy of Cardinals follows from the Well-Ordering Prin
iple. However, theirequivalen
e remained unproven until Hartogs [34℄ established it in 1915 (
f. alsoMoore [66, p. 10℄). As a matter of fa
t we would like to mention that� a

ording toSierpi«ski [82, p. 99 f.℄ � Le±niewski showed that Tri
hotomy of Cardinals is equiva-lent to the statement that for any two 
ardinals n and m, where at least one of these
ardinals is in�nite, we always have n+ m = n or n+m = m.Theorem 5.5.(
) �whi
h is to some extent a dualisation of the Tri
hotomy ofCardinals�was stated without proof by Lindenbaum [60, p. 312 (A6)℄ and the proofgiven above is taken from Sierpi«ski [83, p. 426℄.The fa
t that the 
ardinal equation m2 = m implies the Axiom of Choi
e is dueto Tarski [87℄ (see also Ba
hmann [1, V, p. 140 �.℄).Cardinal arithmeti
 in the presen
e of AC. The de�nition of 
ardinals givenabove 
an also be found for example in von Neumann [72, VII.2. p.731℄.The �rst proof of Theorem 5.7 appeared in Hessenberg [38, p. 593℄ (see alsoJourdain [44℄).Regularity of 
ardinals was investigated by Hausdor�, who also raised the ques-tion of existen
e of regular limit 
ardinals (
f. [35, p. 131℄).The Inequality of König-Jourdain-Zermelo 5.11 � also known asKönig'sTheorem�was proven by König [52℄ (but only for 
ountable sums and prod-u
ts), and independently by Jourdain [43℄ and by Zermelo [110℄ (for histori
al fa
tssee Moore [66, p. 154℄ and Fraenkel [25, p. 98℄). Obviously, the Inequality ofKönig-Jourdain-Zermelo implies the Axiom of Choi
e (sin
e it guarantees thatevery Cartesian produ
t of non-empty sets is non-empty), and 
onsequently we getthat the Inequality of König-Jourdain-Zermelo is equivalent to the Axiom ofChoi
e.Algebras. Boolean algebra is named after George Boole who� a

ording to Rus-sell � dis
overed Pure Mathemati
s. Even though this might be an exaggeration, itis true that Boole was one of the �rst to view Mathemati
s as the study of abstra
tstru
tures rather than as the s
ien
e of magnitude, and he was the �rst who ap-plied su

essfully mathemati
al te
hniques to Logi
 (
f. Boole [11, 10℄) and his workevolved into the modern theory of Boolean algebras and algebrai
 Logi
. In 1849,Boole was appointed at the newly founded Queen's College in Cork, where he died



Notes 141in 1864 as a result of pneumonia 
aused by walking to a le
ture in a De
emberdownpour and le
turing all day in wet 
lothes (see also Ma
Hale [61℄).Lindenbaum's algebra is named in memory of the Polish mathemati
ian AdolfLindenbaum, who was killed by the Gestapo at Nowa Wilejka in the summer of 1941.Lindenbaum and Tarski (see for example Tarski [90, 89, 91℄) developed the idea ofviewing the set of formulae as an algebra (with operations indu
ed by the logi
al
onne
tives) independently around 1935; however, Lindenbaum's results were notpublished (see Rasiowa and Sikorski [78, footnote to page 245℄).For the history of abstra
t algebrai
 Logi
 and Boolean algebras we refer thereader to Font, Jansana, and Pigozzi [22℄.Prime Ideals. Ideals and prime ideals on algebras of sets where investigated forexample by Tarski in [93℄.The notion of Lindenbaum's algebra and the Compa
tness Theorem for Propo-sitional Logi
 is taken from Bell and Slomson [2, Chapter 2℄. The equivalent formsof the Prime Ideal Theorem are taken from Je
h [40, Chapter 2, �3℄, and the 
orre-sponding referen
es 
an be found in [40, Chapter 2, �7℄. We would like to mentionthat the Ultra�lter Theorem, whi
h is just the dual form of the Prime Ideal Theorem,is due to Tarski [88℄.Ramsey's Theorem as a 
hoi
e prin
iple. Ramsey's Original Theorem(
f. Chapter 2) implies that every in�nite set X has the following property: For every
2-
olouring of [X]2 there is an in�nite subset Y of X su
h that [Y ]2 is mono
hro-mati
. As mentioned in Chapter 2, Ramsey [76℄ expli
itly indi
ated that his proof ofthis theorem used the Axiom of Choi
e. Later, Kleinberg [50℄ showed that every proofof Ramsey's Original Theorem must use the Axiom of Choi
e, although ratherweak forms of the Axiom of Choi
e like C(ℵ0,∞) su�
e (see Theorem 5.17). Forthe position of Ramsey's Original Theorem in the hierar
hy of 
hoi
e prin
ipleswe refer the reader to Blass [8℄ (see also Related Result 31).For the fa
t that none of the impli
ations in Theorem 5.17 is reversible we referthe reader to Howard and Rubin [39℄.From 
ountable 
hoi
e to 
hoi
e for �nite sets. The Countable Axiom ofChoi
e asserts that every 
ountable family of non-empty sets has a 
hoi
e fun
tion,whereas the Axiom of Choi
e for Finite Sets asserts that every family of non-empty�nite sets has a 
hoi
e fun
tion. Repla
ing the �nite sets in the latter 
hoi
e prin
ipleby n-element sets (for natural numbers n ≥ 2), we obtained the 
hoi
e prin
iples Cnwhi
h assert that every family of n-element sets has a 
hoi
e fun
tion. Combiningthese two 
hoi
e prin
iples we get in fa
t versions of König's Lemma, namely 
hoi
eprin
iples like C(ℵ0, < ℵ0) and C(ℵ0, n) (for positive integers n ≥ 2).The proof of Theorem 5.18 is taken from Je
h [40, p. 111℄ and is optimal in thefollowing sense: If the positive integers m,n do not satisfy 
ondition (S), then thereis a model of Set Theory in whi
h Ck holds for every k ≤ m but Cn fails (see theproof of Theorem 7.16 in Je
h [40℄).



142 5 The Axiom of Choi
eRelated Results22. Hausdor�'s Prin
iple. Among the numerous maximality prin
iples whi
h areequivalent to the Axiom of Choi
e, we like to mention the one known as Haus-dor�'s Prin
iple (
f. Hausdor� [35, VI, �1, p. 140℄):Hausdor�'s Prin
iple: Every partially ordered set has a maximal 
hain(maximal with respe
t to in
lusion �⊆�).For the history of Hausdor�'s Prin
iple see Moore [66, Se
tion 3.4, p. 167 �.℄ anda proof of the equivalen
e with the Axiom of Choi
e 
an be found for examplein Bernays [5, p. 142 �.℄.23. Bases in ve
tor spa
es and the Axiom of Choi
e. Relations between the exis-ten
e or non-existen
e of bases in ve
tor spa
es and some weaker forms of theAxiom of Choi
e are investigated for example in Keremedis [48, 49℄, Läu
hli [55℄,and Halpern [33℄.24. Cardinal relations whi
h are equivalent to AC. Below we list a few of the dozensof 
ardinal relations whi
h are equivalent to the Axiom of Choi
e (mainly takenfrom Tarski [87℄):(a) m · n = m+ n for all in�nite 
ardinals m and n.(b) If m2 = n2, then m = n.(
) If m < n and p < q, then m+ p < n+ q.(d) If m < n and p < q, then m · p < n · q.(e) If m+ p < n+ p, then m < n.(f) If m · p < n · p, then m < n.(g) If 2m < m+ n, then m < n.For the proofs we refer the reader to Tarski [87℄ and Sierpi«ski [83, p. 421℄(
ompare (g) with Chapter 4 |Related Result 17). More su
h 
ardinal rela-tions 
an be found for example in Howard and Rubin [39, p. 82 �.℄, Rubin andRubin [80, p. 137 �.℄, Moore [66, p. 330 f.℄, and Ba
hmann [1, �31℄).25. Su

essors of Cardinals. In [96℄ Tarski investigated the following three types ofsu

essor of a 
ardinal number:S1. For every 
ardinal m there is a 
ardinal n su
h that m < n and theformula m < p < n does not hold for any 
ardinal p.S2. For every 
ardinal m there is a 
ardinal n su
h that m < n and forevery 
ardinal p the formula m < p implies n ≤ p.S3. For every 
ardinal m there is a 
ardinal n su
h that m < n and forevery 
ardinal p the formula p < n implies p ≤ m.Tarski [96℄ showed that S1 
an be proved without the help of the Axiom ofChoi
e, whereas S2 is equivalent to this axiom. The relation of S3 with theAxiom of Choi
e was further investigated by Sobo
i«ski [84℄ and Truss [100℄ (seealso Ba
hmann [1, �31, p. 141℄).26. A formulation by Sudan. Sudan [85℄ showed that the following statement isequivalent to the Axiom of Choi
e: Let m, n, and p be arbitrary in�nite 
ardinals.If m and n are either equal or n is a S1-su

essor (i.e., a su

essor in the in thesense of S1) of m, then also p·m and p·n are either equal or p·n is an S1-su

essorof p ·m. For the in�uen
e of Tarski [87℄ on Sudan see Moore [66, p. 218℄.



Related Results 14327. A formulation by Tarski. There are also some equivalents of the Axiom of Choi
ewhi
h seemingly are far away of being 
hoi
e prin
iples. The following formula-tion by Tarski [92℄ is surely of this type: For every set N there is a set M su
hthat X ∈M if and only if X ⊆ M and for all Y ⊆ X we have |Y | 6= |N |. Similarstatements 
an be found in Tarski [94, 95℄ (see also Ba
hmann [1, �31.3℄).28. Singular Cardinal Hypothesis. The Singular Cardinal Hypothesis statesthat for every singular 
ardinal κ, 2cf(κ) < κ implies κcf(κ) = κ+. Obviously, theSingular Cardinal Hypothesis follows from the Generalised Continuum Hy-pothesis. On the other hand, the Singular Cardinal Hypothesis is not prov-able within ZFC and in fa
t, the failure of the Singular Cardinal Hypothe-sis is equi
onsistent with the existen
e of a 
ertain large 
ardinal (
f. Je
h [42,p. 58 f. &Chapter 24℄).29. Model Theory and the Prime Ideal Theorem. Using Lindenbaum's algebra, Ra-siowa and Sikorski [77℄ gave an alternative proof of Gödel's CompletenessTheorem 3.4, and Henkin [36℄ proved that the Prime Ideal Theorem is equiv-alent to the Compa
tness Theorem 3.7. Noti
e that by Theorem 5.15 wejust get that the Prime Ideal Theorem is equivalent to the Compa
tness The-orem for Propositional Logi
, whi
h is a seemingly weaker statement than theCompa
tness Theorem 3.7.30. Colouring in�nite graphs and the Prime Ideal Theorem∗. For n a positive integer
onsider the following statement:Pn. If G is a graph su
h that every �nite subgraph of G is n-
olourable,then G itself is n-
olourable.The following impli
ations are provable in Set Theory without the Axiom ofChoi
e (see My
ielski [69, 70℄):PIT ⇒ Pn+1 ⇒ Pn ⇒ C(∞, n) , C(∞, 2) ⇒ P2On the other hand, Lévy [59℄ showed that for any n, ZF 0 C(∞, n) ⇒ P3.Surprisingly, Läu
hli showed in [57℄ that P3 implies PIT, and 
onsequently, forall n ≥ 3, the equivalen
e Pn ⇒ PIT is provable in Set Theory without the Axiomof Choi
e. However, the question whether there is a �dire
t� proof of P3 ⇒ P4without involving PIT is still open.31. Ramsey's Theorem, König's Lemma, and 
ountable 
hoi
e. Truss investigatedin [102℄ versions of König's Lemma, where restri
tions are pla
ed on the degree ofbran
hing of the �nitely bran
hing tree. In parti
ular, he investigated C(ℵ0, n)for di�erent n ∈ ω. Later in [24℄, Forster and Truss 
onsidered the relation be-tween versions of Ramsey's Original Theorem and these versions of König'sLemma.The 
hoi
e prin
iple C(ℵ0, n) was also investigated by Wi±niewski [105℄, whereit is 
ompared with C(∞, n) and other weak forms of the Axiom of Choi
e.32. Ramsey Choi
e∗. Related to Cn are the following two 
hoi
e prin
iples: C−
n statesthat every in�nite family X of n-element sets has an in�nite subfamily Y ⊆ Xwith a 
hoi
e fun
tion; and RCn states that for every in�nite set X there isan in�nite subset Y ⊆ X su
h that [Y ]n has a 
hoi
e fun
tion. These two
hoi
e prin
iples are both stri
tly weaker than Cn (
f. Truss [99℄). Montenegro
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einvestigated in [65℄ the relation between RCn and C−
n for some small values of n:It is not hard to see that RC2 ⇒ C−

2 and RC3 ⇒ C−
3 (
f. [65, Lemma℄). Howeverit is quite tri
ky to prove that RC4 ⇒ C−

4 (
f. [65, Theorem℄) and it is still openwhether RC5 implies C−
5 .33. Well-ordered and well-orderable subsets of a set. For a set x, s(x) is the set of allsubsets of x whi
h 
an be well-ordered, and w(x) is the set of all well-orderingsof subsets of x. Noti
e that s(x) ⊆ P(x), whereas w(x) ⊆ P(x×x). Tarski [94℄showed�without the help of the Axiom of Choi
e�that |x| < |s(x)|, for anyset x, and his proof also yields |x| < |w(x)|. Later, Truss showed in [101℄ that forany in�nite set x and for any n ∈ ω we have |s(x)| � |xn| as well as |xn| < |w(x)|.Furthermore, he showed that if there is a 
hoi
e fun
tion for the set of �nitesubsets of x, then |xn| < |s(x)|. A

ording to Howard and Rubin [39, p. 371℄ itis not known whether |xn| < |s(x)| (Form 283 of [39℄) is provable in ZF. The
ardinality of the set w(x) was further investigated by Forster and Truss in [23℄.34. Axiom of Choi
e for families of n-element sets. For di�erent n ∈ ω, Cnhas been extensively studied by Mostowski in [67℄, and most of the followingresults �whi
h are all provable without the help of the Axiom of Choi
e�
anbe found in that paper (see also Truss [99℄, Gauntt [27℄, or Je
h [40, Chap-ter 7, �4℄):(a) If m,n satisfy 
ondition (S), then n < 8m2.(b) C2 ⇒ Cn is provable if and only if n ∈ {1, 2, 4}.(
) For a �nite set Z = {m1, . . . ,mk} of positive integers let CZ denote thestatement Cm1 ∧ · · · ∧ Cmk

. We say that Z, n satisfy 
ondition (S) if forevery de
omposition of n into a sum of primes, n = p1 + . . . + ps, at leastone prime pi belongs to Z. Now, the following 
ondition holds: If Z, n satisfy
ondition (S), then CZ implies Cn.(d) Let Sn be the group of all permutation of {1, . . . , n}. A subgroup G of Snis said to be �xed point free if for every i ∈ {1, . . . , n} there is a π ∈ Snsu
h that π(i) 6= i. Let Z be again a �nite set of positive integers. We saythat Z, n satisfy 
ondition (T) if for every �xed point free subgroup G of
Sn there is a subgroup H of G and a �nite sequen
e H1, . . . ,Hk of propersubgroups of H su
h that the sum of indi
es [H : H1] + . . .+ [H : Hk] is in
Z. Now, the following 
ondition holds: If Z, n satisfy 
ondition (T), thenCZ implies Cn. Moreover we have: If Z, n do not satisfy 
ondition (T), thenthere is a model of ZF in whi
h CZ holds and Cn fails.We would also like to mention that the Axiom of Choi
e for Finite Sets C(∞, < ℵ0)is unprovable in ZF, even if we assume that Cn is true for ea
h n ∈ ω (
f. Je
h [40,Chapter 7, �4℄, or Lévy [58℄ and Pin
us [75℄).35. Ordering prin
iples. Among the numerous 
hoi
e prin
iples whi
h deal withordering we mention just two:Ordering Prin
iple: Every set 
an be linearly ordered.If �<� and �≺� are partial orderings of a set P , then we say that �≺� extends�<� if for any p, q ∈ P , p < q implies p ≺ q.Order-Extension Prin
iple: Every partial ordering of a set P 
an be ex-tended to a linear ordering of P .



Related Results 145Obviously, the Order-Extension Prin
iple implies the Ordering Prin
iple, but theother dire
tion fails (see Mathias [62℄). Thus, the Ordering Prin
iple is slightlyweaker than the Order-Extension Prin
iple. Furthermore, Szpilrajn (who 
hangedhis name from Szpilrajn to Mar
zewski while hiding from the Nazi perse
u-tion) showed in [86℄ that the Order-Extension Prin
iple follows from the Axiomof Choi
e, where one 
an even repla
e the Axiom of Choi
e by the Prime IdealTheorem (see for example Je
h [40, 2.3.2℄). We leave it as an exer
ise to thereader to show that the Ordering Prin
iple implies C(∞, < ℵ0). Thus, we get thefollowing sequen
e of impli
ations:PIT⇒ Order-Extension Prin
iple⇒ Ordering Prin
iple ⇒C(∞, < ℵ0)On the other hand, none of these impli
ations is reversible (see Läu
hli [56℄ andPin
us [74, �4B℄, Felgner and Truss [21, Lemma 2.1℄, Mathias [62℄, or Je
h [40,Chapter 7℄; 
ompare also with Chapter 7 |Related Result 48).36. More ordering prin
iples. Mathias showed in [62℄ that the following assertiondoes not imply the Order-Extension Prin
iple:If X is a set of well-orderable sets, then there is a fun
tion f su
h thatfor ea
h x ∈ X, f(x) is a well-ordering of x.On the other hand, Truss [98℄ showed that following assertion, apparently onlyslightly stronger than the ordering prin
iple above, implies the Axiom of Choi
e:If X is a set and f a fun
tion on X su
h that for ea
h x ∈ X, f(x) is anon-empty set of well-orderings of x, then {
f(x) : x ∈ X

} has a 
hoi
efun
tion.37. Prin
iple of Dependent Choi
es. Finally, let us mention a 
hoi
e prin
iple whi
his 
losely related to the Countable Axiom of Choi
e. Its meaning is that one isallowed to make a 
ountable number of 
onse
utive 
hoi
es.Prin
iple of Dependent Choi
es: If R is a binary relation on a non-emptyset S, and if for every x ∈ S there exists y ∈ S with xRy, then there isa sequen
e 〈xn : n ∈ ω〉 of elements of S su
h that for all n ∈ ω we have
xnRxn+1.The Prin
iple of Dependent Choi
es, usually denoted DC, was formulated byBernays in [4℄ and for example investigated by Mostowski [68℄ (see also Je
h [40,Chapter 8℄). Even though DC is signi�
antly weaker than AC, it is stronger thanC(ℵ0,∞) and (thus) implies for example that every Dedekind-�nite set is �nite(i.e., every in�nity set is trans�nite). Thus, in the presen
e of DC, many�kindof natural � propositions are still provable. On the other hand, having just DCinstead of full AC, most of the somewhat paradoxi
al 
onstru
tions (e.g., makingtwo balls from one) 
annot be 
arried out anymore (see Herrli
h [37℄ for some`disasters' that happen with and without AC). In my opinion, DC re�e
ts bestour intuition, and 
onsequently, ZF+DC would be a quite reasonable and smoothaxiomati
 system for Set Theory; however, it is not suitable for really ex
itingresults.38. An alternative to the Axiom of Choi
e. Let ω → (ω)ω be the statement thatwhenever the set [ω]ω is 
oloured with 2 
olours, there exists an in�nite subset
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eof ω, all whose in�nite subsets have the same 
olour (
ompare with the Ramseyproperty de�ned in Chapter 9). In Chapter 2 we have seen that ω → (ω)ω failsin the presen
e of the Axiom of Choi
e. On the other hand, Mathias proved thatunder the assumption of the existen
e of an ina

essible 
ardinal (de�ned onpage 315), ω → (ω)ω is 
onsistent with ZF+DC (see Mathias [64, Theorem 5.1℄).The 
ombinatorial statement ω → (ω)ω has many interesting 
onsequen
es: Forexample Mathias [63℄ gave an elementary proof of the fa
t that if ω → (ω)ωholds, then there are no so-
alled rare �lters and every ultra�lter over ω isprin
ipal (see Mathias [64, p. 91 �.℄ for similar results).39. The Axiom of Determina
y. Another alternative to the Axiom of Choi
e is theAxiom of Determina
y, whi
h asserts that all games of a 
ertain type are deter-mined. In order to be more pre
ise we have to introdu
e �rst some terminology:With ea
h subset A of ωω we asso
iate the following game GA, played by twoplayers I and II. First I 
hooses a natural number a0, then II 
hooses a naturalnumber b0, then I 
hooses a1, then II 
hooses b1, and so on. The game endsafter ω steps: if the resulting sequen
e 〈a0, b0, a1, b1, . . .〉 is in A, then I wins,otherwise II wins. A strategy (for I or II) is a rule that tells the player whatmove to make depending on the previous moves of both players; and a strategyis a winning strategy if the player who follows it always wins (for a more formalde�nition see Chapter 10). The game GA is determined if one of the players hasa winning strategy.Axiom of Determina
y (AD): For every set A ⊆ ωω the game GA is deter-mined, i.e., either player I or player II has winning strategy.An easy diagonal argument shows that AC is in
ompatible with AD, i.e., assum-ing the Axiom of Choi
e there exists a set A ⊆ ωω su
h that the game GA is notdetermined (
f. Je
h [42, Lemma 33.1℄). In 
ontrast we have that AD impliesthat every 
ountable family of non-empty sets of reals has a 
hoi
e fun
tion(
f. Je
h [42, Lemma 33.2℄). Moreover, one 
an show that Con(ZF+AD) implies
Con(ZF + AD + DC), thus, even in the presen
e of AD we still 
an have DC.Furthermore, AD implies that sets of reals are well behaved, e.g., every set ofreals is Lebesgue measurable, has the property of Baire, and every un
ountableset of reals 
ontains a perfe
t subset, i.e., a 
losed set without isolated points(
f. Je
h [42, Theorem 33.3℄); however, it also implies that every ultra�lter over
ω is prin
ipal (
f. Kanamori [45, Proposition 28.1℄) and that ℵ1 and ℵ2 are bothmeasurable 
ardinals (
f. Je
h [42, Theorem 33.12℄). Be
ause of its ni
e 
onse-quen
es for sets of reals, AD is a reasonable alternative to AC, espe
ially for theinvestigation of the real line (for the beauty of ZF + AD see for example Her-rli
h [37, Se
tion 7.2℄). In 1962, when My
ielskiand Steinhaus [71℄ introdu
ed theAxiom of Determina
y, they did not 
laim this new axiom to be intuitively true,but stated that the purpose of their paper is only to propose another theory whi
hseems very interesting although its 
onsisten
y is problemati
. Sin
e AD impliesthe existen
e of large 
ardinals, the 
onsisten
y of ZF + AD 
annot be derivedfrom that of ZF. Moreover, using very sophisti
ated te
hniques� far beyondthe s
ope of this book�Woodin proved that ZF + AD is equi
onsistent withZFC + �There are in�nitely many Woodin 
ardinals� (
f. Kanamori [45, Theo-rem 32.16℄ or Je
h [42, Theorem 33.27℄). Further results and the 
orrespondingreferen
es 
an be found for example in Kanamori [45, Chapter 6℄ and Je
h [42,Chapter 33℄.
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6How to Make Two Balls from One
Rests, whi
h are so 
onvenient to the 
omposer andsinger, arose for two reasons: ne
essity and the de-sire for ornamentation. As for ne
essity, it wouldbe impossible to sing an entire 
omposition withoutpausing, for it would 
ause fatigue that might wellprevent a singer from �nishing.Rest were adopted also for the sake of ornament.With them parts 
ould enter one after another infugue or 
onsequen
e, pro
edures that give a 
om-position an artful and pleasing e�e
t.Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558For two reasons we shall give the reader a rest: one reason is that thereader deserves a pause to re�e
t on the axioms of ZFC; the other reason isthat we would like to show Robinson's beautiful 
onstru
tion� relying onAC�of how to make two balls from one by dividing the ball into only �veparts.Equide
omposabilityTwo geometri
al �gures A and A′ (i.e., two sets of points lying on the straightline R, on the plane R2, or in the three-dimensional spa
e R3) are said tobe 
ongruent, denoted A ∼= A′, if A 
an be obtained from A′ by translationand/or rotation, but we shall ex
lude re�e
tions. Two geometri
al �gures Aand A′ are said to be equide
omposable, denoted A ≃ A′, if there is apositive integer n and partitions A = A1 ∪̇ . . . ∪̇An and A′ = A′

1 ∪̇ . . . ∪̇A′
n
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h that for all 1 ≤ i ≤ n: Ai ∼= A′
i. To indi
ate that A and A′ are equide-
omposable using at most n pie
es we shall write A ≃nA′.Below we shall present two somewhat paradoxi
al de
ompositions of the 2-dimensional unit sphere S2 as well as of the 3-dimensional solid unit ball

B1:Firstly we show that the unit sphere S2 
an be partitioned into four parts,say S2 = A ∪̇B ∪̇C ∪̇F , su
h that F is 
ountable, A ∼= B ∼= C, and A ∼=
B ∪̇C. This result is known as Hausdor�'s Paradox, even though it is just aparadoxi
al partition of the sphere S2 rather than a paradox.Se
ondly we show how to make two balls from one, in fa
t we show that
B1 ≃5 B1 ∪̇B1. This result is due to Robinson and is optimal with respe
t tothe number of pie
es needed, i.e., B1 6≃4 B1 ∪̇B1. We would like to mentionthat about two de
ades earlier, Bana
h and Tarski already showed that a unitball and two unit balls are equide
omposable; however, their 
onstru
tionrequires many more than �ve pie
es.Both de
ompositions, Hausdor�'s partition of the sphere as well as Robin-son's de
omposition of the ball, rely on the Axiom of Choi
e. Moreover, it 
anbe shown that in the absen
e of the Axiom of Choi
e neither de
ompositionis provable� but this is beyond the s
ope of this book (see Related Re-sult 41). However, before we start the 
onstru
tions, let us brie�y dis
uss themeasure-theoreti
al ba
kground of these somewhat paradoxi
al partitions, inparti
ular of the de
omposition of the ball: Firstly, why does Robinson's de-
omposition of the ball seem paradoxi
al? Of 
ourse, it is be
ause the volumeis not preserved; but what are volumes? One 
ould 
onsider the notion ofvolume as a fun
tion µ whi
h assigns to ea
h set X ⊆ R3 a non-negativereal number, 
alled the volume of A. We require that the fun
tion µ has thefollowing basi
 properties:
• µ(∅) = 0 and µ(B1) > 0 (e.g., µ(B1) = 1),
• µ(X ∪ Y ) = µ(X) + µ(Y ) whenever X and Y are disjoint, and
• µ(X) = µ(Y ) whenever X and Y are 
ongruent.Now, by the fa
t that a unit ball and two unit balls are equide
omposable, andimpli
itly by Hausdor�'s result (see below), we see that there is no su
h mea-sure on R3, i.e., µ is not de�ned for all subsets of R3. Roughly speaking, thereare some dust-like subsets of R3 (like the sets we shall 
onstru
t) to whi
h we
annot assign a volume. Having this in mind, Robinson's de
omposition losesits paradoxi
al 
hara
ter� but 
ertainly not its beauty.Hausdor�'s ParadoxBefore we show how to make two balls from one, we will present Hausdor�'spartition of the sphere. The itinerary is as follows: Firstly we de�ne an in�nitesubgroup H of SO(3), where SO(3) is the so-
alled spe
ial orthogonal group
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onsisting of all rotations in R3 leaving �xed the origin. Even though the group
H is in�nite, it is generated by just two elements. Sin
e H is a subgroup of
SO(3), there is a natural a
tion of H on the unit sphere S2 whi
h indu
es anequivalen
e relation on S2 by x ∼ y ⇐⇒ ∃g ∈ H

(
g(x) = y

) (i.e., x ∼ yi� y belongs to the orbit of x). Then we 
hoose from ea
h equivalen
e 
lassa representative� this is where the Axiom of Choi
e 
omes in� and use theset of representatives to de�ne Hausdor�'s partition of the sphere.We begin the 
onstru
tion by de�ning the group H . For this, 
onsider thefollowing two elements of SO(3), whi
h will be the generators of H :
ϕ =




−1 0 0
0 −1 0
0 0 1



 ψ =
1

4




−2 −

√
6

√
6√

6 1 3

−
√
6 3 1



The linear mapping ϕ is the rotation through π about the axis (0, 0, 1), and
ψ is the rotation through 2π/3 about the axis (0, 1, 1). Thus, ϕ2 = ψ3 = ιwhere ι denotes the identity. We leave it as an exer
ise to the reader to showby indu
tion on n that for all integers n ≥ 1 and for all εk = ±1 (where
1 ≤ k ≤ n) we have:

(
ϕψεn · · ·ϕψε1

)
=

1

2n+1




a1 a2
√
6 a3

√
6

b1
√
6 b2 b3

b′1
√
6 b′2 b′3


where all numbers a1, a2, . . . , b′3 are integers with

• a1 ≡ 2 mod 4,
• a2, a3, b1, . . . , b

′
3 are odd, and

• b1 ≡ b′1, b2 ≡ b′2, b3 ≡ b′3 mod 4.Hen
e, we 
on
lude that for all n ≥ 1: (ϕψεn · · ·ϕψε1
)
/∈ {ι, ϕ}. Consequently,for all n ≥ 1, for all εk = ±1 (where 1 ≤ k ≤ n), and for ε0 ∈ {0, 1} and

εn+1 ∈ {0,±1}, we get:
ψεn+1 ·

(
ϕψεn · · ·ϕψε1

)
· ϕε0 6= ι (∗)In other words, the only relations between ϕ and ψ are ϕ2 = ψ3 = ι. Let H bethe group of linear transformations� in fa
t rotations� of R3 generated bythe two rotations ϕ and ψ. Then H is a subgroup of SO(3) and every elementof H is a rotation whi
h 
orresponds, by (∗), to a unique redu
ed �word� ofthe form

ψεn+1ϕψεn · · ·ϕψε1ϕε0where n ≥ 0, εk = ±1 (for all 1 ≤ k ≤ n), ε0 ∈ {0, 1}, and εn+1 ∈ {0,±1}.We now 
onsider the so-
alled Cayley graph of H : The Cayley graph of
H is a graph with vertex set H , where for ρ1, ρ2 ∈ H there is a dire
ted edgefrom ρ1 to ρ2 if either ρ2 = ϕρ1 or ρ2 = ψρ1. In the former 
ase, the edge islabelled ϕ, in the latter 
ase it is labelled ψ, e.g., ψϕ ϕ−→ ϕψϕ or ψ2ϕ

ψ−→ ϕ.



156 6 How to Make Two Balls from OneTo ea
h vertex of the Cayley graph of H (i.e., to ea
h element of H) weassign a label, whi
h is either ❶, ❷, or ❸. The labelling is done a

ording tothe following rules:
• The identity ι gets the label ❶.
• If ρ ∈ H is labelled ❷ or ❸ and σ = ϕρ, then σ is labelled ❶.
• If ρ ∈ H is labelled ❶ and σ = ϕρ, then σ is labelled either ❷ or ❸.
• If ρ ∈ H is labelled ❶ (or ❷, or ❸) and σ = ψρ, then σ is labelled ❷ (or

❸, or ❶, respe
tively).These rules are illustrated by the following �gures and diagrams:
❶ oo ϕ // ❷/③

❸OO

ψ❶
xx

ψ qqqqqqqq

❷
&&ψ

MMMMMMMM

ϕ //

❶

KKKKKKKKK
UUUUUUUU ❶

❷

iiiiiiii
❷

❸

sssssssss
❸

oo
ϕ

ψ //

❶
UUUUUUUU ❶

❷
UUUUUUUU ❷

❸

sssssssss
❸

oo
ψ2The lightfa
e label ③ indi
ates that if ρ is a redu
ed word in H , labelled ❶,of the form ψερ′ for ε = ±1, then ϕρ is always labelled ❷ (not ③).The following �gure shows part of the labelled Cayley graph of H :

❶ ❶

❸
�� ϕ

??~~~~~~
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��~~
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~~
❸
��ϕ
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ψ
��

❶
ψ
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??

ϕ��~~
~~

~~
❷

ψ

OO

❶//ϕ
oo

ψ   @
@@

@@
@ ❸ oo

ϕ
//ψoo ❶

ψ
// ❷

ψ
__@@@@@@

__

ϕ ��@
@@

@@
@

❷ ❷
ψ

>>~~~~~~
❶

❶ ❶
��
ϕ
OO

ψ

��~~
~~

~~
❶

❷

ψ ��@
@@

@@
@

��

ϕ
__??????

❶
ψoo ❷//

ϕoo
ψ

// ❸ oo ϕ //

ψ__@@@@@@

❶

ψ
��

❸
ψoo

��

ϕ
??������

❸ __
ϕ

��@
@@

@@
@

ψ

OO

❷??
ϕ

��~~
~~

~~

ψ

??~~~~~~

❶ ❶The group H a
ts on the 2-dimensional unit sphere S2 and we de�ne theequivalen
e relation �∼� on S2 via x ∼ y i� there is a ρ ∈ H su
h that
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ρ(x) = y. The equivalen
e 
lasses of �∼� are usually 
alled H-orbits, andthe H-orbit 
ontaining x ∈ S2 is written [x]̃ . Let F ⊆ S2 be the set of all�xed points (i.e., the set of all y ∈ S2 su
h that there is a ρ ∈ H \ {ι} with
ρ(y) = y). Sin
e H is 
ountable and every rotation ρ ∈ H has two �xed points,
F is 
ountable. We noti
e �rst that any point equivalent to a �xed point isa �xed point (i.e., for every x ∈ S2 \ F we have [x]̃ ⊆ S2 \ F ). Indeed, if
ρ(y) = y for some ρ ∈ H and y ∈ S2, then σρσ−1

(
σ(y)

)
= σ(y); that is, if yis �xed for ρ, then σ(y) is �xed for σ ρσ−1. Thus, a 
lass of equivalent points
onsists either entirely of �xed points, or entirely of non-�xed points.By the Axiom of Choi
e there is a 
hoi
e fun
tion f for F =

{
[x]̃ : x ∈

S2 \ F
} and let M =

{
f
(
[x]̃

)
: x ∈ S2 \ F

}.Now we de�ne labels for all non-�xed points (i.e., points in S2 \ F ) asfollows: Firstly, every element inM is labelled ❶. Se
ondly, if x ∈ S2 \F , thenthere is a unique rotation ρ ∈ H su
h that ρ(y) = x, where {y} = M ∩ [x]̃ .We de�ne the label of the point x by the label of ρ in the labelled Cayleygraph of H . This indu
es a partition of S2 \ F into the following three parts:
A =

{
x ∈ S2 \ F : x is labelled ❶

}

B =
{
x ∈ S2 \ F : x is labelled ❷

}

C =
{
x ∈ S2 \ F : x is labelled ❸

}Thus, S2 = A ∪̇B ∪̇C ∪̇F and by the labelling of the verti
es of the Cayleygraph of H we get:
B = ψ[A] , C = ψ−1[A] , B ∪̇C = ϕ[A] .Hen
e, we get that A ∼= B, A ∼= C, and that A ∼= B ∪̇C. We leave it as anexer
ise to the reader to show that this implies (S2 \F ) ≃4 (S2 \F ) ∪̇ (S2 \F ).For ea
h point x ∈ S2 let lx be the line joining the origin (i.e., the 
entreof the sphere) with x, and for S ⊆ S2 de�ne S̄ :=

⋃{lx : x ∈ S}. Thenthe sets Ā, B̄, and C̄, 
annot be Lebesgue measurable (otherwise we wouldhave 0 < µ(B̄) = µ(C̄) = µ(B̄ ∪ C̄), a 
ontradi
tion). In fa
t, Hausdor�'sde
omposition shows that there is no non-vanishing measure on S2 whi
h isde�ned for all subsets of S2 su
h that 
ongruent sets have the same measure.Robinson's De
ompositionRobinson's de
omposition of the ball is similar to Hausdor�'s partition of thesphere: Firstly we de�ne an in�nite subgroupG of SO(3), whereG is generatedby four generators. The a
tion of G on the unit ball B1 (with 
entre the origin)indu
es an equivalen
e relation on B1, and we 
hoose from ea
h equivalen
e
lass a representative. With the set of representatives and a sophisti
atedlabelling we �nally de�ne a partition of B1 into �ve parts A1, . . . , A5, su
hthat we 
an make a solid unit ball with either the two sets A1 and A3, or withthe three sets A2, A4 and A5.



158 6 How to Make Two Balls from OneLet the rotations ϕ and ψ be as above. Let χ := ψϕψ. Then, oneeasily veri�es by indu
tion on m that for all positive m ∈ ω we have
χm = ψ(ϕψ2)m−1ϕψ and χ−m = ψ2 ϕ(ψϕ)m−1ψ2. Now, by (∗), we getthat for every k ≥ 1 and any non-zero integers p1, p2, . . . , pk:

χp1ϕχp2ϕ . . . ϕχpk 6= ιFor 1 ≤ m ≤ 4 de�ne
ϕm = χmϕχm .We leave it again as an exer
ise to the reader to verify that for every k ≥ 1, anynon-zero integers p1, p2, . . . , pk, and any i1, . . . , ik ∈ {1, 2, 3, 4} where il 6= il+1for all 1 ≤ l < k:
ϕp1i1 ϕ

p2
i2
. . . ϕpkik 6= ι (∗∗)Let G be the subgroup of SO(3) generated by the four rotations ϕ1, . . . , ϕ4.We 
onsider now the labelled Cayley graph of G, where we allow againsome freedom in the labelling pro
ess (indi
ated by lightfa
e labels). Therules for labelling the verti
es of the Cayley graph of G are illustrated by thefollowing �gure:

❶/② ❸/④ ❶/②

❶ ❶
ϕ1 //

ϕ1
−1

oo

ϕ2

OO

ϕ2
−1
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@@
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ϕ3
−1

~~~~
~~

~~
~~

~~
~

❷/①

❶/②/④ ❷ ❶/②/③
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❶ ❷
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ϕ1
−1
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ϕ2
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��
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~~
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❸ ❸
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oo
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OO
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>>~~~~~~~~~~~
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❹/③
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❸ ❹
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OO
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omposition 159The following �gure shows part of the labelled Cayley graph of G in whi
hjust ϕ1 and ϕ2 are involved:
❸

❷ ❷

❸ ❷ϕ1

oo
ϕ2

−1

OO

ϕ1
−1

��

❷

ϕ1

OO

ϕ1
−1

//ϕ2
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oo ❶ ϕ2

//
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��
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❸

❶ ❶

❷ ❶

❸ ❷
ϕ1oo
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−1

OO
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❷ ❶
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❶
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ϕ2
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// ❷
ϕ2

−1
//
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−1

OO

❷

❸
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❸
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❸
��

ϕ2

❸
��

ϕ1

❸The group G a
ts on the solid unit ball B1 and we de�ne the equivalen
erelation �∼� on B1 like above via x ∼ y i� there is a ρ ∈ G su
h that
ρ(x) = y. The G-orbit 
ontaining x ∈ B1 is again written [x]̃ . Let P be anarbitrary point on the unit sphere (i.e., on the surfa
e of B1), whi
h does notbelong to any rotation axis, and �nally let E ⊆ B1 be the set of all pointswhi
h belong to a rotation axis and whi
h are distin
t from the origin. It iseasy to see that for every x ∈ B1 \ E we have [x]̃ ⊆ B1 \ E. By the Axiomof Choi
e there is a 
hoi
e fun
tion f for F =

{
[x]̃ : x ∈ B1 \ E

} and let
M =

{
f
(
[x]̃

)
: x ∈ B1 \ E

}
\ {0}, where 0 denotes the origin.We �rst de�ne labels for all points in B1 \

(
E ∪ [P ]̃

) as follows:
• Every element in M is labelled ❶.
• The origin is labelled ③.
• If x ∈ B1 \ E and ρ(y) = x, where {y} = M ∩ [x]̃ , then the label of thepoint x is de�ned as the label of ρ in the labelled Cayley graph of G.Consider now the set E and �x any 
lass [z ]̃ ⊆ E. Choose a rotation θ 6= ιhaving a �xed point in [z ]̃ and whi
h is as short as possible, or more pre
isely,whi
h is expressible as a produ
t of the smallest possible number of fa
tors ofthe form ϕ±1

m with m ∈ {1, 2, 3, 4}. Fix an arbitrary point x0 ∈ [z ]̃ su
h that
θ(x0) = x0.



160 6 How to Make Two Balls from OneFirstly we show that if ρ(x0) = x0, then ρ = θn for some integer n. If
ρ = ι, then ρ = θ0 and we are done. Thus, we may assume that ρ 6= ι.Noti
e �rst that the initial and �nal fa
tors of θ�where θ and all otherprodu
ts of rotations are read from the right to the left � 
annot be inverse,sin
e otherwise, for some σ = ϕεm where m ∈ {1, 2, 3, 4} and ε ∈ {−1, 1}, therotation σθ σ−1 would be shorter than θ and would have a �xed point in thesame equivalen
e 
lass [z ]̃ . Thus, the rotations θ and θ−1 neither begin norend with the same fa
tor. Now, if ρ has the same �xed point x0 as θ, then
ρθ = θρ. If ρθ does not simplify when ρ and θ are written in terms of the
ϕ±1
m where m ∈ {1, 2, 3, 4}, then, by (∗∗), θρ must also not simplify. Hen
e,
ρ must begin with the blo
k θ. Indu
tively one �nds that ρ is obtained bywriting the blo
k θ n-times, that is, ρ = θn, where n is a positive integer. In
ase ρθ does simplify, then ρθ−1 does not (sin
e θ and θ−1 end with di�erentfa
tors). Thus, we may apply the same argument as before to the equation
ρθ−1 = θ−1ρ, and �nd that ρ = θ−n, where n is again a positive integer.Se
ondly, noti
e that ea
h point y ∈ [z ]̃ may be written in the form σy(x0),where σy ∈ G is a rotation whi
h starts neither with the blo
k θ (when writtenin terms of the ϕ±1

k ), nor with the inverse of the last fa
tor of θ�where θ isstill read from the right to the left. The former property is obvious; and toa
hieve the latter property 
onsider σyθn, where n is su�
iently large, and thensimplify and remove any remaining blo
ks θ. Noti
e that this representationis unique: For suppose that σ(x0) = ρ(x0), where σ and ρ are again writtenin terms of the ϕ±1
m . Then ρ−1σ(x0) = x0, hen
e, ρ−1σ = θn. If n > 0, thisyields σ = ρθn, whi
h is impossible sin
e ρθn does not simplify and σ doesnot begin with the blo
k θ. If n < 0, we may inter
hange the roles of σ andρand again rea
h a 
ontradi
tion. Hen
e we have n = 0, whi
h is σ = ρ.Thirdly, assume that θ is of the form

θ = ϕjkik ϕ
jk−1

ik−1
· · ·ϕj1i1where the il's (1 ≤ l ≤ k) belong to {1, 2, 3, 4} and ea
h exponent jl is ±1.So, starting with the point x0, we obtain su

essively the k distin
t points

x0 , x1 = ϕj1i1 (x0) , x2 = ϕj2i2ϕ
j1
i1
(x0) , . . . , xk = ϕjkik ϕ

jk−1

ik−1
· · ·ϕj1i1 (x0) = x0whi
h form a 
losed 
y
le. As shown above, ea
h point y ∈ [z ]̃ 
an be writtenuniquely in the form σy(x0), where σy starts neither with the blo
k θ nor withthe rotation ϕ−jk

ik
.Consider the following �gure:
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PSfrag repla
ements
x0 = θ(x0)

x1

x2

xi
xi+1

xk−1

y = σy(x0)

As a 
onsequen
e of the pre
eding arguments we get that, starting with x0,there are no other 
losed 
y
les in [z ]̃ : Indeed, let y ∈ [z ]̃ and ρ 6= ι be su
hthat ρ(y) = y. Now, y = σy(x0) where σy is as above. Now, ρσy(x0) = σy(x0)and therefore σ−1
y ρσy(x0) = x0. Consequently we have σ−1

y ρσy = θn whi
himplies y ∈ {x0, . . . , xk}.Now we are ready to assign a label to ea
h point in E: Firstly, for every
[z ]̃ , where z ∈ E, we 
hoose a rotation θz 6= ι having a �xed point in [z ]̃and whi
h is as short as possible, and then 
hoose a point xz0 ∈ [z ]̃ su
h that
θ(xz0) = xz0. Assume that θz is of the form θz = ϕjkik ϕ

jk−1

ik−1
· · ·ϕj1i1 where the il's(for 1 ≤ l ≤ k) belong to {1, 2, 3, 4} and ea
h exponent jl is ±1. Then fromthe point xz0 we obtain su

essively the points xz1, . . . , xzk−1, x

z
k = xz0. We knowthat every point y ∈ [z ]̃ 
an be written uniquely in the form σy(x

z
0), where σystarts neither with the blo
k θz nor with the rotation ϕ−jk

ik
, and that, startingwith xz0, there are no other 
losed 
y
les in [z ]̃ . Thus, in order to label thepoints in [z ]̃ it is enough to assign a label to the k points of the 
y
le in away whi
h respe
ts the labelling rules given above; the remaining points maybe labelled like the non-�xed points, i.e., like the points in B1 \

(
E ∪ [P ]̃

).



162 6 How to Make Two Balls from OneFor this, 
onsider the following s
hemata whi
h illustrate the labelling rules:
ϕ1 //

❶
UUUUUUUU ❶

❷
UUUUUUUU

KKKKKKKKK ❷

❸
UUUUUUUU ❸

❹

iiiiiiii
❹

oo
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−1

ϕ2 //

❶

KKKKKKKKK

AA
AA

AA
AA

AA
A ❶

❷

iiiiiiii
❷

❸
UUUUUUUU ❸

❹

iiiiiiii
❹

oo
ϕ2

−1

ϕ3 //

❶
UUUUUUUU ❶

❷

iiiiiiii
❷

❸
UUUUUUUU ❸

❹

}}}}}}}}}}}

sssssssss
❹

oo
ϕ3

−1

ϕ4 //

❶
UUUUUUUU ❶

❷

iiiiiiii
❷

❸

iiiiiiii

sssssssss
❸

❹

iiiiiiii
❹

oo
ϕ4

−1




1 0 0 0
1 0 0 0
0 1 1 1
0 1 1 1




︸ ︷︷ ︸
= R1




0 1 0 0
0 1 0 0
1 0 1 1
1 0 1 1




︸ ︷︷ ︸
= R2




1 1 0 1
1 1 0 1
0 0 1 0
0 0 1 0




︸ ︷︷ ︸
= R3




1 1 1 0
1 1 1 0
0 0 0 1
0 0 0 1




︸ ︷︷ ︸
= R4For 1 ≤ m ≤ 4, the matrix Rm, whi
h 
orresponds to ϕm, is su
h that aij = 0i� whenever σ has label i❣, ϕmσ 
annot get label j❣. It is easy to see thatfor 1 ≤ m ≤ 4, the matrix RTm 
orresponds to ϕm−1. Consequently, the rota-tion θz 
orresponds to a 
ertain produ
t of the matri
es R1, . . . , R4 and theirtransposes. In parti
ular, θz 
orresponds to a 4 × 4 matrix Q. By 
onsider-ing the tra
e of Q, tr(Q), and by applying the fa
t that for any matri
es Aand B we have tr(AT ) = tr(A) and tr(AB) = tr(BA), one 
an easily verifythat tr(Q) 6= 0. This implies that there exists a sequen
e of labels say l0✐,

l1✐, . . ., lk✐with l0 = lk (here we use that tr(Q) 6= 0) su
h that labelling xziwith li✐(for 0 ≤ i ≤ k) respe
ts the labelling rules.So, we 
an assign a label to ea
h of the k points xz0, . . . , xzk−1 of the 
y
lein a way whi
h respe
ts the labelling rules, and 
onsequently, we 
an assign alabel to every point in E. Thus, the only points whi
h are not labelled yet arethe points in [P ]̃ : For the point P , and only for this single point, we modifythe labelling as illustrated by the following �gure (the further labelling of thepoints in [P ]̃ is done a

ording to the labelling rules):
❷ ❶ ❸

❶ P

ϕ3

OO

ϕ3
−1

��

ϕ4

eeKKKKKKKKKKKKKK

ϕ4
−1

%%KKKKKKKKKKKKKK
ϕ1 //

ϕ2

99ssssssssssssss

ϕ2
−1

yyssssssssssssssϕ1
−1

oo ❹

❷ ❹ ❸



Robinson's de
omposition 163Finally, we have labelled all points of B1 \ {P} with four labels, whi
hindu
es a partition of B1 into the following �ve parts:
A1 =

{
x ∈ B1 : x is labelled ❶

}

A2 =
{
x ∈ B1 : x is labelled ❷

}

A3 =
{
x ∈ B1 : x is labelled ❸

}

A4 =
{
x ∈ B1 : x is labelled ❹

}

A5 = {P}Obviously, B1 = A1 ∪̇A2 ∪̇A3 ∪̇A4 ∪̇A5. We leave it as an exer
ise to thereader to 
he
k that by the labelling rules (and the labelling of P ) we have:
• ϕ1[A1] = A1 ∪̇A2 ∪̇A5.
• ϕ2[A2] = A1 ∪̇A2 ∪̇A5.
• ϕ3[A3] = A3 ∪̇A4.
• ϕ4[A4] = (A3 ∪̇A4) \ {0}, where 0 denotes the origin.Hen
e, we get that A1

∼= A1 ∪̇A2 ∪̇A5
∼= A2, A3

∼= A3 ∪̇A4, and A4
∼=

(A3 ∪̇A4) \ {0}, and obviously we have {P} ∼= {0}.Now, with the two sets A1 and A3, as well as with the three sets A2, A4 and
A5, we 
an make a solid unit ball: Firstly, noti
e that B1 = ϕ1[A1] ∪̇ϕ3[A3].Se
ondly, let o be a translation whi
h moves P to the origin 0. Then B1 =
ϕ2[A2] ∪̇ ϕ4[A4] ∪̇ o[A5]. Hen
e, we �nally get

B1 ≃5 B1 ∪̇B1 .This result is optimal with respe
t to the number of pie
es needed, in otherwords we have
B1 6≃4 B1∪̇B1 .To see this, assume towards a 
ontradi
tion that there are distan
e-preserving(not ne
essarily orientation-preserving) transformations ψ1, ψ2, ψ3, ψ4 and apartition B1 = P1 ∪̇P2 ∪̇P3 ∪̇P4 su
h that B1 = ψ1[P1] ∪ ψ2[P2] and B1 =

ψ3[P3] ∪ ψ4[P4]. Firstly noti
e that not all transformations ψ1, ψ2, ψ3, ψ4 
ouldleave the origin �xed, for then one 
opy of B1 would be without a 
entre. Nowsuppose for example that ψ4(0) 6= 0. Then S2 \ ψ4[B1] (where S2 denotes thesurfa
e of B1) 
ontains more than a hemisphere (i.e., more than half of S2). Inother words, ψ4[B1]∩S2, and in parti
ular ψ4[P4]∩S2, is 
ontained in less thana hemisphere. Sin
e ψ3[P3] must 
over S2 \ ψ4[P4], it must 
over more thana hemisphere, whi
h is only possible if ψ3(0) = 0 (otherwise, ψ3[P3] ∪ ψ4[P4]would not 
over S2). Thus, P3 itself must 
over more than a hemisphere, and
onsequently, (P1 ∪ P2) ∩ S2 is 
ontained in less than a hemisphere. Hen
e,(
ψ1[P1]∪ψ2[P2]

)
∩S2 is properly 
ontained in S2, and therefore ψ1[P1]∪ψ2[P2]
annot 
over S2.



164 6 How to Make Two Balls from OneNotesIn 1924, Bana
h and Tarski proved in [2℄ that if A and A′ are bounded subsets ofEu
lidean spa
e of three or more dimensions and both sets have interior points, then
A and A′ are equide
omposable. In parti
ular, for A = B1 and A′ = B1∪̇B1, B1 ≃
B1∪̇B1 (
f. [2, p. 262 (Lemme 22)℄). However, no estimate was given for the numberof pie
es required to make two balls from one. Some years later, von Neumann [8,p. 77℄ stated without proof that nine pie
es are su�
ient, and about two de
adeslater, Sierpi«ski improved von Neumann's result by showing that eight pie
es aresu�
ient (
f. [13℄). Finally, Robinson was able to show that in fa
t just �ve pie
es aresu�
ient and that 5 is the smallest possible number of pie
es, i.e., B1 6≃4 B1∪̇B1.The proof of B1 ≃5 B1∪̇B1 given above is taken essentially from [10℄. How-ever, we have made a few modi�
ations: For example we have taken Sierpi«ski's
onstru
tion given in [12℄ to obtain the four independent rotations ϕ1, ϕ2, ϕ3, ϕ4.Furthermore we have repla
ed the parts in Robinson's proof whi
h deal with prod-u
ts of relations with produ
ts of matri
es, and introdu
ed the tri
k with the tra
ein order to �nd �xed points in produ
ts of relations. Finally, we tried to visualise afew key steps in the proof by some �gures.The results of Bana
h and Tarski [2℄ � and indire
tly also the other paradoxi
alde
ompositions of geometri
al �gures�were motivated by Hausdor�'s de
ompo-sition of the sphere, given in [3℄ (see also [5, pp. 5�10℄ or [4, p. 469 �.℄). The aimof Hausdor�'s de
omposition was to show that it is impossible to de�ne a non-vanishing measure µ on S2 whi
h is de�ned for all subsets of S2, is �nitely additive(i.e., µ(A∪B) = µ(A)+µ(B) whenever A and B are disjoint), and has the propertythat 
ongruent sets have the same measure.Like Hartogs, also Hausdor� had to retire 1935 from his 
hair in Bonn and byO
tober 1941 he was for
ed to wear the �yellow star�. Around the end of the yearhe was informed that he would be sent to Cologne �whi
h he knew was just apreliminary to deportation to Poland� but managed to avoid being sent. Shortlylater, in January 1942, he was informed again that he was to be interned now inEndeni
h, and together with his wife and his wife's sister, he 
ommitted sui
ide on26 January. Related Results40. Further paradoxi
al de
ompositions. In [8, p. 85 f.℄ von Neumann introdu
edthe following notion of de
omposability: Let A and B be two subsets of ametri
 spa
e (X, d). A is said to be metri
ally smaller than B if there is abije
tion f : A → B su
h that for any distin
t points x, y ∈ A we have

d(x, y) < d
(
f(x), f(y)

). Furthermore, A is smaller by �nite de
ompositionthan B if there is a positive integer n and partitions A = A1 ∪̇ . . . ∪̇An and
B = B1 ∪̇ . . . ∪̇Bn su
h that for all 1 ≤ i ≤ n we have that Ai is metri
allysmaller than Bi. Now, von Neumann [8, p. 115 f.℄ showed that every interval ofthe real line is smaller by �nite de
omposition than every other interval of thereal line. About two de
ades later, Sierpi«ski [14℄ proved a 2-dimensional ana-logue by showing that every dis
 is smaller by �nite de
omposition than everyother dis
.For the 
onsequen
es of the paradoxi
al de
ompositions for Measure Theoryand its 
onne
tions with Group Theory, Geometry, and Logi
, we refer the
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es 165reader to Wagon [18℄, and for some histori
al ba
kground see Wapner [19℄.For other paradoxi
al de
ompositions see La
zkovi
h [7℄ or Sierpi«ski [15℄, andfor a seemingly stronger notion of equide
omposability we refer the reader toWilson [20℄.41. Limits of de
omposability. In 1923, Bana
h showed that there exists a �nitelyadditive measure m on R2, extending the Lebesgue measure µ, su
h that m isde�ned for all subsets of R2 and has the property thatm(A) = m(A′) whenever
A ∼= A′ (see Bana
h [1, Théorème I℄). This implies that whenever A and A′ areLebesgue measurable subsets of R2 and A ≃ A′, then µ(A) = µ(A′) (see Bana
hand Tarski [2, Théorème 16℄). In parti
ular, the unit dis
 and two unit dis
s arenot equide
omposable.Neither Hausdor�'s partition of the sphere nor Robinson's de
omposition ofthe ball 
an be 
arried out without the aid of some form of the Axiom ofChoi
e. The reason for this is that in the presen
e of ina

essible 
ardinals(
f. Chapter 15 |Related Result 85), there exists a model of ZF in whi
h ev-ery set of reals is Lebesgue measurable (see Solovay [17℄, and Shelah [11℄ orRaisonnier [9℄).42. Squaring the 
ir
le. As mentioned above, there is no 2-dimensional analogueof Robinson's de
omposition of the ball, i.e., there is no way of making twounit dis
s from one unit dis
. However, La
zkovi
h [6℄ showed that a dis
 isequide
omposable� by translations only�with a square of the same area. The
onstru
tion makes use of the Axiom of Choi
e and the �gures are partitionedinto about 1050 pie
es. Referen
es1. Stefan Bana
h, Sur le problème de la mesure, Fundamenta Mathemati
ae,vol. 4 (1923), 7�33.2. Stefan Bana
h and Alfred Tarski, Sur la dé
omposition des ensembles depoints en parties respe
tivement 
ongruentes, Fundamenta Mathemati
ae,vol. 6 (1924), 244�277.3. Felix Hausdorff, Bemerkungen über den Inhalt von Punktmengen, Mathe-matis
he Annalen, vol. 75 (1914), 428�433.4. , Grundzüge der Mengenlehre, de Gruyter, Leipzig, 1914 [reprint:Chelsea, New York, 1965].5. , Gesammelte Werke, Band IV: Analysis, Algebra und Zahlen-theorie, Springer-Verlag, Berlin, 2001.6. Miklós La
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h, Equide
omposability and dis
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y; a solution ofTarski's 
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le-squaring problem, Journal für die Reine und AngewandteMathematik, vol. 404 (1990), 77�117.7. , Paradoxi
al de
ompositions: A survey of re
ent results, First EuropeanCongress of Mathemati
s Paris, July 6�10, 1992, Vol. II (A. Joseph, F. Mignot,F. Murat, B. Prum, and R. Rents
hler, eds.), [Progress in Mathemati
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7Models of Set Theory with Atoms
A musi
ian regards 
onsonan
es more highly thandissonan
es, so he 
omposes prin
ipally with them.Nevertheless, it seems that he also values thosesounds whi
h are dissonant.Now intervals that are dissonant produ
e a soundthat is disagreeable to the ear and render a 
ompo-sition harsh and without any sweetness. Thereforea musi
ian must know them not only to avoid themwhere 
onsonan
es are required, but to use themwithin the parts of a 
omposition.Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558In this 
hapter, we shall 
onstru
t various models of Set Theory inwhi
h the Axiom of Choi
e fails. In parti
ular, we shall 
onstru
t a modelin whi
h C(ℵ0, 2) fails, and another one in whi
h a 
ardinal m exists su
hthat m2 < [m]2. These somewhat strange models are 
onstru
ted in a similarway to models of ZF (see the 
umulative hierar
hy introdu
ed in Chapter 3).However, instead of starting with the empty set (in order to build the 
umu-lative hierar
hy) we start with a set of atoms and de�ne a 
ertain group Gof permutations of these atoms. Roughly speaking, a set x is in the modelif x is �stable� under 
ertain subgroups H ⊆ G (i.e., for all permutations
π ∈ H , πx = x). In this way we 
an make sure that some parti
ular sets(e.g., 
hoi
e fun
tions for a given family in the model) do not belong to themodel. Unfortunately, sin
e we have to introdu
e atoms to 
onstru
t thesemodels, we do not get models of ZF; however, using the Je
h-So
hor Em-bedding Theorem 17.2, we 
an embed arbitrarily large fragments of thesemodels into models of ZF, whi
h is su�
ient for our purposes.



168 7 Models of Set Theory with AtomsPermutation ModelsIn this se
tion we shall give the de�nition of so-
alled permutation models,but �rst have to say a few words about Set Theory with atoms, denoted ZFA:Set theory with atoms is 
hara
terised by the fa
t that it admits so-
alledatoms or urelements.Atoms are obje
ts whi
h do not have any elements but are distin
t fromthe empty set. The 
olle
tion of atoms� assumed to be a set� is usuallydenoted by A, and we add the 
onstant symbol A to the language of SetTheory. Thus, the language of Set Theory with atoms 
onsists of the relationsymbol �∈� and the 
onstant symbol �A�, i.e., LZFA = {∈, A}.In ZFA we have two types of obje
ts, namely sets and atoms, and sin
eatoms behave slightly di�erent than sets (e.g., they do not 
ontain elementsbut are di�erent from ∅), we have to add a new axiom for atoms (i.e., anaxiom for the symbol A) and have to modify the Axiom of Empty Set as wellas the Axiom of Extensionality.Axiom of Empty Set (for ZFA):
∃x

(
x /∈ A ∧ ∀z(z /∈ x)

)Axiom of Extensionality (for ZFA):
∀x∀y

(
(x /∈ A ∧ y /∈ A) → ∀z(z ∈ x↔ z ∈ y) → x = y

)Roughly speaking, any two obje
ts, whi
h are not atoms but have the sameelements, are equal. Noti
e that the Axiom of Extensionality implies that theempty set is unique, i.e., ∅ is the only obje
t that has no elements but doesnot belong to A.Axiom of Atoms:
∀x

(
x ∈ A ↔ (x 6= ∅ ∧ ¬∃z(z ∈ x))

)In other words, an obje
t is an atom if and only if it 
ontains no elements butis di�erent from the set ∅. For an alternative de�nition of atoms see RelatedResult 43.It is time to mention that if ∀z¬ϕ(z), then we stipulate {
z : ϕ(z)

}
:= ∅ (notsome atom, whi
h would also be possible). For example, if x and y do not haveany elements in 
ommon, i.e., ∀z¬(z ∈ x∧ z ∈ y), then x∩ y = ∅. Noti
e thatwith this 
onvention we do not have to modify the Axiom of Extensionality forZFA.The development of the theory ZFA is very mu
h the same as that ofZF (ex
ept for the de�nition of ordinals, where we have to require that anordinal does not have atoms among its elements). Let S be a set. Then bytrans�nite re
ursion on α ∈ Ω we 
an de�ne Pα(S) as follows: P∅(S) := S,

Pα+1(S) := Pα(S) ∪ P(Pα(S)) and Pα(S) :=
⋃
β∈αPα(S) when α is



Permutation models 169a limit ordinal. Furthermore, let P∞(S) :=
⋃
α∈Ω Pα(S). If M is a modelof ZFA and A is the set of atoms of M, then M = P∞(A). The 
lass

V̂ := P∞(∅), whi
h is a sub
lass of M, is a model of ZF and is 
alled thekernel. Noti
e that all ordinals belong to the kernel.Now, the underlying idea of permutation models, whi
h are models of ZFA,is the fa
t that the axioms of ZFA do not distinguish between the atoms, andso a permutation of the set of atoms indu
es an automorphism of the universe.Let A be a set of atoms and let M = P∞(A) be a model of ZFA. Fur-thermore, in M, let G be a group of permutations (or automorphisms) of A,where a permutation of A is a one-to-one mapping from A onto A. We saythat a set F of subgroups of G is a normal �lter on G if for all subgroups
H,K of G we have:(A) G ∈ F(B) if H ∈ F and H ⊆ K, then K ∈ F(C) if H ∈ F and K ∈ F , then H ∩K ∈ F(D) if π ∈ G and H ∈ F , then πHπ−1 ∈ F(E) for ea
h a ∈ A, {π ∈ G : πa = a} ∈ FFor every set x ∈ M there is a least ordinal α su
h that x ∈ Pα(A). So, byindu
tion on the ordinals, for every π ∈ G and for every set x ∈ M we 
ande�ne πx by stipulating

πx =






∅ if x = ∅,
πx if x ∈ A,
{πy : y ∈ x} otherwise.Noti
e that for all x, y ∈ M and every π ∈ G we have πx = y ⇐⇒ x = π−1yand x ∈ y ⇐⇒ πx ∈ πy, whi
h leads to the following de�nition: A bije
tive
lass fun
tion F : M → M is 
alled an ∈-automorphism of M if for all

x, y ∈ M we have x ∈ y ⇐⇒ F (x) ∈ F (y). In parti
ular, π : M → M isan ∈-automorphism of M.For x ∈ M, the symmetry group of x, denoted symG (x), is the groupof all permutations in G whi
h map x to x, in other words
symG (x) = {π ∈ G : πx = x} .A set x is said to be symmetri
 (with respe
t to a normal �lter F ) if thesymmetry group of x belongs to F , i.e., symG (x) ∈ F . By (E) we have thatevery atom a ∈ A is symmetri
. A set x is 
alled hereditarily symmetri
 if

x as well as ea
h element of its transitive 
losure is symmetri
. Noti
e that forall x ∈ M and every π ∈ G , x is hereditarily symmetri
 i� πx is hereditarilysymmetri
.Let V ⊆ M be the 
lass of all hereditarily symmetri
 sets. Then V is atransitive model of ZFA and we 
all V a permutation model. Be
ause A,



170 7 Models of Set Theory with Atomsas well as every a ∈ A, is symmetri
, we get that the set of atoms A belongsto V .Be
ause ∅ is hereditarily symmetri
 and for all ordinals α the set Pα(∅)is hereditarily symmetri
 too, the kernel V̂ = P∞(∅) is a sub
lass of V .Noti
e that every π ∈ G whi
h is not the identity mapping is a non-trivial
∈-automorphism of V. On the other hand, all ∈-automorphisms of models ofZF are trivial. In parti
ular, by indu
tion on α one easily veri�es the followingFa
t 7.1. For any set x ∈ V̂ and any π ∈ G we have πx = x.Sin
e the atoms a ∈ A do not 
ontain any elements, but are distin
t fromthe empty set, the permutation models are not models of ZF. However, by theJe
h-So
hor Embedding Theorem 17.2 one 
an embed arbitrarily largefragments of a permutation model into a well-founded model of ZF.Most of the well-known permutation models are of the following simpletype: Let G be a group of permutations of A. A family I of subsets of A, forexample I = fin(A), is a normal ideal if for all subsets E,F of A we have:(a) ∅ ∈ I(b) if E ∈ I and F ⊆ E, then F ∈ I(
) if E ∈ I and F ∈ I, then E ∪ F ∈ I(d) if π ∈ G and E ∈ I, then πE ∈ I(e) for ea
h a ∈ A, {a} ∈ IFor ea
h set S ⊆ A, let

fixG (S) =
{
π ∈ G : πa = a for all a ∈ S

}and let F be the �lter on G generated by the subgroups {fixG (E) : E ∈ I}.Then F is a normal �lter. Furthermore, x is symmetri
 if and only if thereexists a set of atoms Ex ∈ I su
h that
fixG (Ex) ⊆ symG (x)where Ex is 
alled a support of x. Noti
e that if Ex is a support of x and

Ex ⊆ Fx ∈ I, then Fx is a support of x as well.Below, we give some relationships whi
h are 
onsistent with ZF betweenthe 
ardinals de�ned in Chapter 4. We will do this by investigating the rela-tions between 
ertain sets in some permutation models. The general 
onstru
-tion will be as follows: Let V be a permutation model with a set of atoms Aand let m be a set in V. Let C(m) :=
{
x ∈ V : V � |x| = |m|

}. Then C(m) isin general a 
lass in V. The 
ardinality of m in the model V (denoted by m)is de�ned by m := C(m) ∩ Pα(A) ∩ V, where α is the smallest ordinal su
hthat C(m) ∩ Pα(A) ∩ V 6= ∅.If m is a set in a permutation model V and we have for example V �

| seq(m)| < | fin(m)|, and therefore V � seq(m) < fin(m), then, by the Je
h-So
hor Embedding Theorem 17.2, there exist a well-founded model V̂
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 Fraenkel model 171of ZF and a set m̂ su
h that V̂ � | seq(m̂)| < | fin(m̂)| and 
onsequently
V̂ � seq(m̂) < fin(m̂), where m̂ and n̂ are the 
ardinalities of the sets m̂and n̂ respe
tively. In fa
t, the Je
h-So
hor Embedding Theorem 17.2enables us to translate every relation between sets in a permutation model toa well-founded model. Hen
e, in order to prove that a relation between some
ardinals is 
onsistent with ZF, it is enough to �nd a permutation model inwhi
h the desired relation holds between the 
orresponding sets. Below weshall make use of this method without expli
itly mentioning it.The Basi
 Fraenkel ModelIn this se
tion we shall present a simple example of a permutation model inwhi
h the Axiom of Choi
e fails.Let A be a 
ountable in�nite set (the atoms), let G be the group of allpermutations of A, and let Ifin be the set of all �nite subsets of A. Obviously,
Ifin is a normal ideal and the �lter derived from Ifin as des
ribed above is anormal �lter.Let VF0 (F for Fraenkel) be the 
orresponding permutation model, theso-
alled basi
 Fraenkel model. Note that a set x belongs to VF0 if andonly if x is symmetri
 and ea
h y ∈ x belongs to VF0 , too.Before we start with some results involving subsets of A, let us re
all that aset S is trans�nite if ℵ0 ≤ |S|; otherwise S is 
alled D-�nite.Lemma 7.2. Let E ∈ Ifin; then ea
h S ⊆ A with support E is either �nite or
o-�nite, i.e., A \S is �nite. Furthermore, if S is �nite, then S ⊆ E, and if Sis 
o-�nite, then (A \ S) ⊆ E.Proof. Let S ⊆ A with support E. Be
ause E is a support of S, for all
π ∈ fix(E) and every a ∈ A we have πa ∈ S i� a ∈ S. If S 
ontains anelement a0 of A \ E, then it 
ontains them all, sin
e permutations in fix(E)
an send a0 to any other element of A\E. Thus, either S ⊆ E or (A\S) ⊆ E.As a 
onsequen
e we get the following result (
f. Chapter 4 |Related Re-sult 18): Let m denote the 
ardinality of the set of atoms of the basi
 Fraenkelmodel. Then

VF0 �
(
22

m)ℵ0
= 2fin(m) .Indeed, every subset of A in VF0 is either �nite or 
o-�nite, and therefore,

2m = 2 ·fin(m). Hen
e, (22m
)ℵ0

=
(
2fin(m)

)2·ℵ0 and by Läu
hli's Lemma 4.27this is equal to 2fin(m).Proposition 7.3. Let A be the set of atoms of the basi
 Fraenkel model andlet m denote its 
ardinality. Then VF0 � ℵ0 6≤ m; in parti
ular, in VF0 thereare in�nite D-�nite sets. In parti
ular, it is not provable in ZF that every
D-�nite set is �nite.



172 7 Models of Set Theory with AtomsProof. If there is a one-to-one mapping f : ω → A, then the set S =
{
f(2n) :

n ∈ ω
} would be an in�nite, 
o-in�nite set of atoms, whi
h is a 
ontradi
tionto Lemma 7.2. ⊣We have seen in Chapter 4 that for every in�nite 
ardinal m, 2ℵ0 ≤ 2fin(m).In 
ontrast to this fa
t, the following result shows that in the model VF0 , thepower set of an in�nite set 
an be D-�nite, whi
h shows that even for in�nite
ardinals m, the statement ℵ0 ≤ 2m is in general not provable in ZF.Proposition 7.4. Let A be the set of atoms of the basi
 Fraenkel model andlet m denote its 
ardinality. Then VF0 � ℵ0 6≤ 2m. In parti
ular, it is notprovable in ZF that the power set of an in�nite set is trans�nite.Proof. Assume towards a 
ontradi
tion that there exists a one-to-one fun
tion

f : ω → P(A) whi
h belongs to VF0 . Then, be
ause f is symmetri
, thereis a �nite set Ef ⊆ A (a support of f) su
h that fixG (Ef ) ⊆ symG (f). Now,let n ∈ ω be su
h that fixG (Ef ) * symG

(
f(n)

) (su
h an n exists be
ause,by Lemma 7.2, Ef supports only �nitely many subsets of A). Further, let
π ∈ fixG (Ef ) be su
h that πf(n) 6= f(n). By Fa
t 7.1 we get that πn = n, andtherefore, f(πn) = f(n). So, Ef 
annot be a support of f whi
h 
ontradi
tsthe 
hoi
e of Ef and shows that a one-to-one fun
tion from ω into P(A)
annot belong to the model VF0 . ⊣By Proposition 4.22 we know that if 2m = n · fin(m) for some n ∈ ω, then
n = 2k for some k ∈ ω. The next result shows that also a kind of 
onverse istrue:Proposition 7.5. For every number n of the form n = 2k, where k ∈ ω,there is a set Ak in VF0 su
h that VF0 �

∣∣P(Ak)
∣∣ =

∣∣n× fin(Ak)
∣∣.Proof. If n = 20, then the statement is true for every �nite set A0 (in everymodel of Set Theory).Let k ∈ ω \ {0} and let n = 2k. Further, let A be the set of atoms of VF0and let Ak = k ×A. By Lemma 7.2 we know that every subset of A (in VF0)is either �nite or 
o-�nite and therefore |P(A)| = 2 · | fin(A)|. Thus, in VF0 wehave |P(Ak)| = |P(k ×A)| = |P(A)k| =

∣∣(2 × fin(A)
)k∣∣ =

∣∣2k × fin(A)k
∣∣ =∣∣2k × fin(Ak)

∣∣, and therefore VF0 �
∣∣P(Ak)

∣∣ =
∣∣n× fin(Ak)

∣∣. ⊣The Se
ond Fraenkel ModelThe set of atoms of the se
ond Fraenkel model 
onsists of 
ountably manymutually disjoint 2-element sets:
A =

⋃

n∈ω

Pn , where Pn = {an, bn} (for n ∈ ω)



The se
ond Fraenkel model 173Let G be the group of those permutations of A whi
h preserve the pairs Pn,i.e., π({an, bn}) = {an, bn} (for ea
h π ∈ G and every n ∈ ω). Further, let Ifinbe the set of all �nite subsets of A. Then Ifin is a normal ideal and the �ltergenerated by Ifin is a normal �lter.Let VF2 be the 
orresponding permutation model, 
alled the se
ondFraenkel model. The following theorem summarises the main features ofthis model.Theorem 7.6. (a) For ea
h n ∈ ω the set Pn belongs to VF2 .(b) The sequen
e 〈Pn : n ∈ ω〉 belongs to VF2 . In parti
ular, the set of pairs
{Pn : n ∈ ω} is 
ountable in VF2 .(
) There is no 
hoi
e fun
tion on {Pn : n ∈ ω}. In parti
ular, C(ℵ0, 2) failsin VF2 whi
h shows that ZF 0 C(ℵ0, 2).Proof. (a) For ea
h π ∈ G and for every n ∈ ω we have πPn = Pn, whi
himplies that every Pn is symmetri
.(b) For ea
h π ∈ G we have π(〈Pn : n ∈ ω〉

)
= 〈πPn : n ∈ ω〉 = 〈Pn : n ∈ ω〉,and therefore by (a), 〈Pn : n ∈ ω〉 is hereditarily symmetri
.(
) Assume that there is a 
hoi
e fun
tion f on {Pn : n ∈ ω} whi
h belongs to

VF2 . The 
hoi
e fun
tion f would be a fun
tion from ω into ⋃{Pn : n ∈ ω}su
h that f(n) ∈ Pn (for every n ∈ ω). Let {a0, b0, . . . , ak, bk} be a supportof f and let π ∈ fixG

(
{a0, b0, . . . , ak, bk}

) be su
h that πak+1 = bk+1. Then
π(k+ 1) = k+1, but π(f(k+ 1)

)
6= f(k+1), whi
h implies that πf 6= f and
ontradi
ts the fa
t that {a0, b0, . . . , ak, bk} is a support of f . ⊣We leave it as an exer
ise to the reader to show that C2, whi
h is a moregeneral 
hoi
e prin
iple than C(ℵ0, 2), already fails in VF0 .The following result shows that in VF2 , König's Lemma fails even for binarytrees.Proposition 7.7. In VF2 there exists an in�nite binary tree whi
h does nothave an in�nite bran
h.Proof. We 
onstru
t the binary tree T = (V,E) with vertex set V and edgeset E as follows: For n ∈ ω let Vn =

{
s ∈ nA : ∀i ∈ n (s(i) ∈ Pi)

} and let
V =

⋃
n∈ω Vn. Further, let 〈s, t〉 ∈ E i� for some n ∈ ω, s ∈ Vn, t ∈ Vn+1, and

t|n = s. It is easily veri�ed that T is an in�nite tree and sin
e every vertex
s ∈ V has exa
tly two su

essors, namely s⌢an and s

⌢
bn, where s ∈ Vn and

s
⌢
x denotes the 
on
atenation of the sequen
e s and the element x, T is evena binary tree. On the other hand, an in�nite bran
h through T would yield a
hoi
e fun
tion on {Pn : n ∈ ω}, a 
ontradi
tion to Theorem 7.6.(
). ⊣In a similar way one 
an show that Ramsey's original theorem fails in VF2 :Proposition 7.8. In VF2 there exist an in�nite set S and a 2-
olouring of

[S]2 su
h that no in�nite subset of S is homogeneous.



174 7 Models of Set Theory with AtomsProof. Let S be the set of atoms of VF2 and 
olour a 2-element set of atoms
{a, b} red, if {a, b} = Pn for some n ∈ ω; otherwise, 
olour it blue. We leave itas an exer
ise to the reader to show that no in�nite homogeneous set belongsto VF2 . ⊣The last result of this se
tion is a kind of in�nite version of Proposition 7.5.Proposition 7.9. In VF2 , let m denote the 
ardinality of the set of atoms.Then VF2 � 2m = 2ℵ0 · fin(m).Proof. By the Cantor-Bernstein Theorem 3.17 it is enough to �nd twoone-to-one mappings f : P(A) → ω2 × fin(A) and g : ω2 × fin(A) → P(A).For every n ∈ ω let Un =

⋃
i∈n Pi.For S ⊆ A let m =

⋃{n+1 : |Pn∩S| = 1}. Then FS = S∩Um is �nite andfor every n > m we have either Pn ⊆ S or Pn∩S = ∅. Now de�ne χS : ω → 2by stipulating χS(n) = 0 i� Pn+m+1 ∩ S = ∅, and de�ne f(S) := 〈χS , FS〉. Itis easily veri�ed that the fun
tion f is one-to-one.Let 〈χ, F 〉 ∈ ω2 × fin(A) and de�ne again m =
⋃{n + 1 : |Pn ∩ F | = 1}.Then F0 = F ∩ Um and F1 = F \ F0 are �nite. Further, let

Sχ,F = F0 ∪
⋃{

P2n : Pn ⊆ F1

}
∪
⋃{

P2n+m+1 : χ(n) = 1
}
⊆ Aand de�ne g(〈χ, F 〉) := Sχ,F . It is again easy to 
he
k that the fun
tion g isone-to-one. ⊣The Ordered Mostowski ModelThe set of atoms A of the ordered Mostowski model 
onsists of an in�nite
ountable set together with an ordering �<M� su
h that A is densely orderedand does not have a smallest or greatest element, i.e., A is order-isomorphi
 tothe rational numbers. Let G be the group of all order-preserving permutationsof A and let Ifin be the ideal of the �nite subsets of A. Then again, Ifin is anormal ideal and the �lter generated by Ifin is a normal �lter.Let VM (M for Mostowski) be the 
orresponding permutation model,
alled the ordered Mostowski model.First let us show that the binary relation �<M � belongs to the model VM .In other words, for any two distin
t atoms a1 and a2 we 
an de
ide in VMwhether we have a1 <M a2 or a2 <M a1.Lemma 7.10. The set R< =

{
〈a1, a2〉 : a1 <M a2} ⊆ A×A belongs to VM .Proof. If a1 <M a2, then πa1 <M πa2 (for any π ∈ G ), and therefore, 〈a1, a2〉 ∈

R< i� 〈πa1, πa2〉 ∈ R<, whi
h implies that symG (R<) = G . ⊣Be
ause by de�nition all sets in the ordered Mostowski model must be sym-metri
, ea
h set in VM has a �nite support. Moreover, ea
h set in VM has aunique least support:



The ordered Mostowski model 175Lemma 7.11. (a) If E1 and E2 are supports of x, then also E = E1 ∩ E2 isa support of x.(b) Every set x ∈ VM has a least support.(
) The 
lass of all pairs (x,E), where x ∈ VM and E is the least support of
x, is symmetri
.Proof. (a) Let E1 and E2 be two �nite supports of the set x ∈ VM andlet E = E1 ∩ E2. Noti
e that for every π ∈ fixG (E) there are �nitely many
ρ1, . . . , ρn ∈ fixG (E1) and σ1, . . . , σn ∈ fixG (E2) su
h that π = ρ1σ1 · · · ρnσn.To see this, it might be better to draw a pi
ture than to prove it formally(e.g., let E1 = {a0, a1, a2} and E2 = {b0, b1, b2} be su
h that a0 = b0 <

M
a1 <

M b1 <
M a2 <

M b2, and let π ∈ fixG

(
{a0}

) be su
h that b2 <M πc forsome a0 <M c <M b1). Sin
e ρix = x = σix (for all 1 ≤ i ≤ n) we have
πx = ρ1σ1 · · · ρnσnx = ρ1σ1 · · ·σn−1ρnx = . . . = ρ1x = xfor all π ∈ fixG (E), whi
h shows that π ∈ symG (x). Hen
e, fixG (E) ⊆

symG (x) whi
h implies that E is a support of x.(b) Let E0 be a support of x. The least support of x is the interse
tion of allsupports of x whi
h are subsets of E0. Sin
e there are only �nitely many ofsu
h supports, by (a), the interse
tion is a support of x.(
) Let x ∈ VM and let E be the least support of x. If π ∈ G , then
fixG (πE) = π · fixG (E) · π−1 and symG (πx) = π · symG (x) · π−1, and thus, if
E is a support of x, then πE is a support of πx. ⊣For every �nite set E ⊆ A, one 
an give a 
omplete des
ription of the subsetsof A with support E, whi
h leads to the followingLemma 7.12. If E ⊆ A is a �nite set of 
ardinality n, then there are 22n+1sets S ⊆ A in VM su
h that E is a support of S.Proof. Let E = {a1, . . . , an} be su
h that a1 <M . . . <M an. Assume that E isa support of the set S ⊆ A. If there is an s0 ∈ S su
h that ai <M s0 <M ai+1(for some 1 ≤ i < n), then {s ∈ A : ai <

M s <M ai+1} ⊆ S. To see this,noti
e that for every s with ai <M s <M ai+1 there is a π ∈ fixG (E) su
h that
πs0 = s. Similarly, if there is an s ∈ S su
h that s <M a1 (or an <M s), then
{s ∈ A : s <M a1} ⊆ S (or {s ∈ A : an <

M s} ⊆ S). Now, there are n + 1su
h intervals and every interval is entirely 
ontained in S or disjoint from S.Further, for ea
h 1 ≤ i ≤ n, either ai ∈ S or ai /∈ S. Hen
e, there are 22n+1di�erent subsets of A whi
h have E as a support. ⊣Sin
e the set of atoms in the ordered Mostowski model is in�nite, the followingresult implies that the Axiom of Choi
e fails in VM (
ompare this result withProposition 7.4).Lemma 7.13. Let A be the set of atoms of the ordered Mostowski model andlet m denote its 
ardinality. Then VM � ℵ0 6≤ 2m.



176 7 Models of Set Theory with AtomsProof. We have to show that there is no one-to-one mapping f : ω → P(A).Now, if a �nite set E ⊆ A is a support of f , then E supports ea
h of thein�nitely many distin
t sets f(n) (n ∈ ω), be
ause all permutations �x ea
h
n ∈ ω. On the other hand, by Lemma 7.12, a �nite set E ⊆ A 
an supportjust �nitely many sets. ⊣By Theorem 4.21, for every in�nite 
ardinal m we have fin(m) < 2m. In
ontrast to this result we show now that VM � 2m ≤∗ fin(m), where m denotesthe 
ardinality of the set of atoms of VM . As a 
onsequen
e we get by Fa
t 4.8that 22m ≤ 2fin(m), whi
h implies by the Cantor-Bernstein Theorem 3.17that VM � 22

m

= 2fin(m).Proposition 7.14. Let A be the set of atoms of the ordered Mostowskimodel. Then in VM there is a surje
tion from fin(A) onto P(A). Thus, it is
onsistent with ZF that there are in�nite 
ardinals m su
h that 2m ≤∗ fin(m),even though fin(m) < 2m is provable in ZF for every in�nite 
ardinal m.Proof. The key idea in order to 
onstru
t a surje
tive fun
tion g : fin(A) ։
P(A) is to de�ne an ordering of the subsets of A sharing a given �nite support.For E = {a1 <M . . . <M an} ∈ fin(A) let I0 = {a ∈ A : a <M a1}, In = {a ∈
A : an <

M a}, and Ii = {a ∈ A : ai <
M a <M ai+1} for 1 ≤ i ≤ n − 1. Forevery fun
tion χ ∈ 2n+12 we assign a set Sχ ∈ P(A) by

Sχ =
⋃

χ(2i)=1

Ii ∪
{
ai : χ(2i− 1) = 1

}
.Then for every χ ∈ 2n+12, E is a support of Sχ and for every S0 ⊆ A su
hthat E is a support of S0 there is a χ0 ∈ 2n+12 su
h that S0 = Sχ0 (thisfollows from Lemma 7.12).We now 
onsider for a moment the set 2n+22: Let �<l� be the lexi
ographi
ordering on 2n+22, i.e., ξ <l ξ′ if there is a j ∈ 2n+ 2 su
h that ξ(j) < ξ′(j),but for all i < j we have ξ(i) = ξ′(i). For ξ ∈ 2n+22 let ξ̄ ∈ 2n+22 be su
h thatfor all i ∈ 2n+ 2, ξ̄(i) := 1 − ξ(i). We de�ne the fun
tion µ : 2n+22 → 2n+22by stipulating

µ(ξ) =

{
ξ if ξ <l ξ̄,
ξ̄ otherwise,in other words, µ(ξ) is ξ or ξ̄, whi
hever begins with 0.Let us turn ba
k to the set 2n+12. For χ ∈ 2n+12 let χ+ := χ∪

{
〈2n+1, 0〉

}.Noti
e that χ+ ∈ 2n+22. We de�ne the ordering �≺n� on 2n+12 by stipulating
χ0 ≺n χ1 ⇐⇒ µ(χ+

0 ) <l µ(χ
+
1 ) .Now, we are ready to de�ne a surje
tion from fin(A) onto P(A). For this,
onsider the following fun
tion:

g : fin(A) −→ P(A)

E 7−→ Sχ∗
|E|



The Prime Ideal Theorem revisited 177where for |E| = n, χ∗
n denotes the nth fun
tion of 2n+12 with respe
t to theordering �≺n�.By 
onstru
tion, for every set S0 ∈ P(A) there is a �nite set E su
h that

E is a support of S0 and S0 = Sχ∗
|E|

. Indeed, let E0 be the least support of
S0. Then there is an n ∈ ω su
h that S0 = Sχ∗n . By the properties of theordering �≺|E0|�, n ≥ |E0| and we leave it as an exer
ise to show that E0 
anbe extended to a �nite set E su
h that |E| = n and Sχ∗

|E|
= S0. Hen
e, themapping g is surje
tive as required. ⊣Proposition 7.15. Let m denote the 
ardinality of the set of atoms of theordered Mostowski model. Then

VM � n · fin(m) < 2m < ℵ0 · fin(m)for every n ∈ ω.Proof (Sket
h). 2m ≤ ℵ0 · fin(m): For S ⊆ A let E be the least support of S,let n = |E|, and let k ∈ ω be su
h that S = Sχk
, where χk denotes the kthfun
tion of 2n+12 with respe
t to the ordering �≺n� de�ned above. Then themapping S 7→ (k, Sχk

) is an inje
tive fun
tion from P(A) into ω × fin(A).
2m 6= ℵ0 · fin(m): This is an immediate 
onsequen
e of Lemma 7.13.
n · fin(m) ≤ 2m: For j ∈ n and E ∈ fin(A) large enough we 
an de�ne Sj,Eas the jth set whi
h has E as its least support. For E ∈ fin(A) whi
h are notlarge enough to allow su
h an en
oding, we have to work with a large enoughauxiliary set E0 and then do some en
oding for example on E ∪E0.
n · fin(m) 6= 2m: Assume towards a 
ontradi
tion that there is an inje
tivefun
tion f : P(A) →֒ n × fin(A). Let k ∈ ω be su
h that 22k+1 > n · 2kand let E0 ⊆ A be a �nite set of size k. By Lemma 7.12 there are 22k+1subsets of A, say S1, S2, . . ., whi
h have E0 as their support. Sin
e there areonly 2k subsets of E0, by the 
hoi
e of k there is a �rst Si (1 ≤ i ≤ 22k+1)su
h that f(Si) /∈ n × fin(E0). Now, f(Si) = 〈m,F0〉 for some m ∈ k and

F0 ∈ fin(A). Sin
e F0 * E0 we have |E0 ∪ F0| > |E0| and 
an pro
eedwith E1 = E0 ∪ F0. Finally, with the sets E0, E1, . . . we get ℵ0 ≤ 2m, whi
h
ontradi
ts Lemma 7.13. ⊣The Prime Ideal Theorem RevisitedIn this se
tion we show that the Prime Ideal Theorem holds in the orderedMostowski model. In other words, the Axiom of Choi
e is not provable in ZFAfrom the Prime Ideal Theorem.Theorem 7.16. The Prime Ideal Theorem holds in the ordered Mostowskimodel.



178 7 Models of Set Theory with AtomsProof. By Theorem 5.15 it is enough to show that in VM , for every binarymess B there is a fun
tion f whi
h is 
onsistent with B.Let B ∈ VM be a binary mess on a set S, and let EB be the least supportof B. On S de�ne an equivalen
e relation by stipulating x ∼ y i� there is a
π ∈ fixG (EB) su
h that y = πx. For every x ∈ S let

[x]̃ =
{
πx : π ∈ fixG (EB)

} (the orbit of x)and let S̃ =
{
[x]̃ : x ∈ S

}. Noti
e that x ∼ y i� [x]̃ = [y]̃ .The goal� whi
h will be
ome 
lear later� is to lift some fun
tions t ofthe binary mess on S to fun
tions h de�ned on �nite subsets of S̃ in order toget a binary mess B̃ on S̃ so that every fun
tion g on S̃ whi
h is 
onsistentwith B̃ indu
es a fun
tion f ∈ VM whi
h is 
onsistent with B. Let B̃ 
onsist ofall binary fun
tions h de�ned on �nite subsets Q̃ of S̃ that satisfy the following
ondition: For every �nite set P ⊆ ⋃{
[x]̃ : [x]̃ ∈ Q̃

} there is a t ∈ B su
hthat t is de�ned on P and
t(x) = h

(
[x]̃

) for every x ∈ P .If this is the 
ase, we say that the set P admits the fun
tion h. In other words,
P admits h if and only if there is a binary fun
tion t ∈ B whi
h is de�nedon P su
h that whenever x, y ∈ P and x ∼ y, then t(x) = t(y) = h

(
[x]̃

). Inorder to show that B̃ is a binary mess, we have to verify that for every �niteset Q̃ ⊆ S̃ there is a binary fun
tion h ∈ B̃ whi
h is de�ned on Q̃.On
e we know that B̃ is a binary mess, we 
an take any g on S̃ 
onsistentwith B̃ and de�ne
f(x) = g

(
[x]̃

)for every x ∈ S. The fun
tion f is obviously symmetri
, hen
e f ∈ VM , andwe are done. So, all that we have to do is to prove the following 
laim:For every �nite set Q̃ ⊆ S̃ there is a binary fun
tion h ∈ B̃ de�ned on
Q̃, su
h that for every �nite set P ⊆ ⋃{

[x]̃ : [x]̃ ∈ Q̃
}, P admits h.For simpli
ity we distinguish two 
ases:

EB is empty : Let Q̃ be a �nite subset of S̃ =
{
[x]̃ : x ∈ S

} and let Q =
{
x ∈

S : [x]̃ ∈ Q̃}. We are looking for a binary fun
tion h on Q̃ su
h that every�nite subset of Q admits h. Noti
e that we have r = 2q binary fun
tions h on
Q̃ to 
hoose from, where q = |Q̃|. In M, �x some P0 ⊆ Q whi
h has exa
tlyone element in ea
h equivalen
e 
lass [x]̃ ∈ Q̃ and noti
e that by de�nitionof S̃, Q =

⋃{
πP0 : π ∈ G

}. Let us say that P ⊆ Q is a k-set if there are
k permutations π1, . . . , πk ∈ G su
h that P = π1P0 ∪ . . . ∪ πkP0. Sin
e every�nite subset of Q is in
luded in a k-set for some k, it is su�
ient to show thatfor every k and for every k-set P there is a binary fun
tion h on Q̃ su
h that
P admits h.



The Prime Ideal Theorem revisited 179Let k be arbitrary but �xed. We say that two k-sets P1 and P2 are iso-morphi
 if P2 = π(P1) for some π ∈ G . Noti
e that being isomorphi
 is anequivalen
e relation. If P1 and P2 are isomorphi
 and P1 admits h (where his some binary fun
tion on Q̃), then also P2 admits h. To see this, �rst noti
ethat sin
e EB = ∅, a binary fun
tion t belongs to B i� πt belongs to B (forany π ∈ G ). If P1 admits h, then there is a t ∈ B su
h that t is de�ned on
P1 and for all x ∈ P1 we have t(x) = h([x]̃ ). Let P2 = π(P1) and 
onsiderthe binary fun
tion πt ∈ B: Sin
e t(x) ∈ {0, 1}, π(t(x)) = h([x]̃ ). Further,for ea
h y ∈ P2 there is an x ∈ P1 su
h that y = πx, whi
h implies that thebinary fun
tion πt is de�ned on P2. Hen
e, for any y ∈ P2 and x = π−1y ∈ P1we have (πt)(y) = (πt)(πx) = t(x) = h([x]̃ ) = h([y]̃ ), whi
h shows that P2admits h. Thus, if a k-set P admits the binary fun
tion h, then all k-setsbelonging to the same isomorphism 
lass as P also admit h.Now we show that there are only �nitely many isomorphism 
lasses of k-sets: Let E0 be the least support of P0 and let n = |E0|. Let {E1, . . . , Ek} and
{E′

1, . . . , E
′
k} be two sets of n-element subsets of A (where A is the set of atomsof VM ). We say that these two so-
alled (k, n)-sets are isomorphi
 if there isa π ∈ G whi
h transforms the set {E1, . . . , Ek} into the set {E′

1, . . . , E
′
k}.Noti
e that there are only �nitely many isomorphism 
lasses of (k, n)-sets. Tosee this, let us just 
onsider the 
ase when n = k = 2: Let E1 = {a, b} and

E2 = {c, d}, and without loss of generality let us assume that a < b, c < d,and that a = min{a, b, c, d}. Then the seven di�erent types we 
an have arerepresented by a < b < c < d, a < b = c < d, a < c < b < d, a < c < b = d,
a = c < b < d, a = c < b = d, and a < c < d < b.For ea
h E = πE0 let PE := πP0. Noti
e that for every E = πE0 thereis a fun
tion h de�ned on Q̃ su
h that PE admits h. (Let t ∈ B be anyfun
tion de�ned on PE .) Further, for ea
h (k, n)-set Ē = {E1, . . . , Ek} =
{π1E0, . . . , πkE0} let PĒ := π1P0 ∪ . . . ∪ πkP0. If Ē and Ē′ are isomorphi
,then so are the two k-sets PĒ and PĒ′ . On the other hand, for every k-set
P there are k permutations π1, . . . , πk ∈ G su
h that P = π1P0 ∪ . . . ∪ πkP0,whi
h implies that P = PĒ where Ē = {π1E0, . . . , πkE0}, and 
onsequentlywe get that PĒ and PĒ′ are isomorphi
 i� Ē and Ē′ are isomorphi
. Hen
e,sin
e there are only �nitely many isomorphism 
lasses of (k, n)-sets, there areonly �nitely many isomorphism 
lasses of k-sets.Thus it su�
es to �nd a binary fun
tion h su
h that for any set of rep-resentatives {Ē1, . . . , Ēp}, where p is the number of isomorphism 
lasses of
(k, n)-sets, we have that ea
h k-set PĒi

(1 ≤ i ≤ p) admits h.Now we apply the Finite Ramsey Theorem 2.3 whi
h tells us that forall m,n, r ∈ ω there exists an N ∈ ω su
h that for every 
olouring of [N ]nwith r 
olours, there exists a set H ∈ [N ]m, all whose n-element subsets havethe same 
olour: Let m = k · n and r = 2q, and let F ∈ [A]N be a set of
N atoms. Further, let P =

⋃{
PE : E ∈ [F ]n

} and take any t ∈ B whi
his de�ned on P . Then ea
h t|PE

orresponds to one of the r possible binaryfun
tions h1, . . . , hr de�ned on Q̃, whi
h indu
es a 
olouring on [F ]n with r
olours. By the Finite Ramsey Theorem 2.3 we �nd a set H ∈ [F ]m su
h



180 7 Models of Set Theory with Atomsthat for every E ∈ [H ]n, t|PE
is the same fun
tion and therefore indu
es aunique fun
tion on Q̃, say h. Finally, by the 
hoi
e of m, the set H 
ontainsmembers from ea
h isomorphism 
lass, whi
h implies that ea
h k-set P ⊆ Qadmits h.

EB is non-empty : Assume EB = {a1, . . . , al} where a1 < . . . < al. Instead of
G we have to work with fixG (EB). Let I1 = |{a ∈ A : a < a1}|, Ij = |{a ∈ A :
aj−1 < a < aj}| (for 1 < j < l), and Il = |{a ∈ A : al < a}|. Let P0 and E0 beas above and for 1 ≤ j ≤ l let nj := |E0 ∩ Ij |. Instead of (k, n)-sets 
onsidersets of the form {E1, . . . , En}, where for 1 ≤ i ≤ n, Ei = 〈Ei,1, . . . , Ei,l〉 and forea
h 1 ≤ j ≤ l, Ei,j ⊆ Ij and |Ei,j | = nj . Now we 
an pro
eed as above untilwe rea
h the point where the Finite Ramsey Theorem 
omes in. Here, the
ombinatori
s gets slightly more involved and instead of the Finite RamseyTheorem we need Rado's generalisation, whi
h is Theorem 2.7 given inChapter 2: It says that for all r, l,m, n1, . . . , nl ∈ ω there is some N ∈ ω su
hthat whenever [N ]n1 × . . . × [N ]nl is 
oloured with r 
olours, then there are
M1, . . . ,Ml ∈ [N ]m su
h that [M1]

n1 × . . . × [Ml]
nl is mono
hromati
. Let

m = max{k · ni : 1 ≤ i ≤ l} and r = 2q, and let F1, . . . , Fl ∈ [A]N be N -element sets of atoms su
h that for every 1 ≤ j ≤ l, Fj ⊆ Ij . Then we �nd
l sets Mj ∈ [Fj ]

m su
h that [M1]
n1 × . . . × [Ml]

nl is mono
hromati
, whi
himplies again that ea
h k-set P ⊆ Q admits the same fun
tion h. ⊣Custom-Built Permutation ModelsBelow we shall 
onstru
t two permutation models. The �rst one is designedin order to show that the existen
e of in�nite 
ardinals m for whi
h seq(m) <
fin(m) is 
onsistent with ZF. By modifying the �rst 
ustom-built permutationmodel, this somewhat 
ounter intuitive result 
an even be pushed a little bitfurther by showing that also the existen
e of in�nite 
ardinals m for whi
h
m2 < [m]2 is 
onsistent with ZF.The �rst 
ustom-built permutation modelThe set of atoms of the �rst 
ustom-built permutation model is built byindu
tion, where every atom en
odes a �nite sequen
e of atoms on a lowerlevel and every �nite sequen
e of atoms appears in �nitely many atoms.By indu
tion on n ∈ ω we 
onstru
t sets An, fun
tions Seqn from An to
seq(An−1), and groups Gn whi
h are subgroups of the group of permutationsof An as follows:(α) A0 := {a0}, where a0 is an atom, Seq0(a0) = 〈 〉, and G0 = {ι} is thegroup of all permutations of A0.For n ∈ ω let kn = |Gn|, and let Sn be the set of sequen
es of An of lengthless than or equal to n+1 whi
h do not belong to the range of Seqn. Then



Custom-built permutation models 181(β) An+1 := An ∪̇
{
(n+ 1, ζ, i) : ζ ∈ Sn ∧ i < kn + kn

}.(γ) Seqn+1 is a fun
tion from An+1 to seq(An) de�ned as follows:Seqn+1(x) =




Seqn(x) if x ∈ An,
ζ if x = (n+ 1, ζ, i) ∈ An+1 \An.(δ) Gn+1 is the subgroup of the group of permutations of An+1 
ontainingall permutations h su
h that for some gh ∈ Gn and jh < kn+ kn we have

h(x) =





gh(x) if x ∈ An,
(
n+ 1, gh(ζ), i +n jh

) if x = (n+ 1, ζ, i) ∈ An+1 \An,where gh(ζ)(m) := gh
(
ζ(m)

) and +n is addition modulo (kn + kn).Let A :=
⋃{An : n ∈ ω}. For ea
h triple (n, ζ, i) ∈ Ã we assign an atom α(n,ζ,i)and de�ne the set of atoms by stipulating Ã := A0 ∪

{
α(n,ζ,i) : (n, ζ, i) ∈ A

}.However, for the sake of simpli
ity we shall work with A as the set of atomsrather than with Ã. Let Seq :=
⋃{Seqn : n ∈ ω}; then Seq is a fun
tion from

A onto seq(A). Furthermore, let Aut(A) be the group of all permutations of A.Then G :=
{
H ∈ Aut(A) : ∀n ∈ ω(H |An

∈ Gn)
} is a group of permutationsof A. Finally, let F be the �lter on G generated by {

fixG (E) : E ∈ fin(A)
}(whi
h happens to be normal) and let Vs (s for sequen
es) be the 
lass ofall hereditarily symmetri
 obje
ts. Now we are ready to prove the followingresult.Proposition 7.17. Let m denote the 
ardinality of the set of atoms A of Vs.Then Vs � seq(m) < fin(m).Proof. Firstly we prove that Vs � seq(m) ≤ fin(m) by 
onstru
ting a one-to-one fun
tion f in Vs whi
h maps seq(A) into fin(A). For any sequen
e ζ ∈

seq(A) there is a least nζ ∈ ω su
h that ζ ∈ Snζ
. De�ne f : seq(A) → fin(A)by stipulating

f(ζ) =
{
a ∈ A : ∃i(a = α(nζ+1,ζ,i))

}
.Obviously, f is inje
tive and it remains to show that f belongs to Vs. Takean arbitrary permutation π ∈ G and let ζ ∈ seq(A) be an arbitrary sequen
e.Noti
e �rst that by the de�nition of G , nζ = nπζ . Thus, for ea
h i < knζ

+knζthere is a j < knζ
+knζ

su
h that π(nζ+1, ζ, i) = (nπζ+1, πζ, j), whi
h showsthat π〈ζ, f(ζ)〉 =
〈
πζ, f(πζ)

〉, and sin
e ζ was arbitrary we get πf = f .In order to prove that Vs � seq(m) 6= fin(m) assume towards a 
ontradi
-tion that there is a one-to-one fun
tion g ∈ Vs from fin(A) into seq(A).Noti
e �rst that for every E ∈ fin(A) there are C,F ∈ fin(A) su
h that
E ⊆ C, and for all x ∈ A \ C we have ∣∣{πx : π ∈ fixG (C)}

∣∣ > 2, and∣∣{πF : π ∈ fixG (C)
}∣∣ = 2. Indeed, 
hoose n ≥ 1 su
h that E ⊆ An, and let
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C := An and F :=

{
(n + 1, ζ, i) ∈ An+1 : i is even}. Then F has exa
tlytwo images under the permutations of fixG (C), and for all x ∈ A \C we have∣∣{πx : π ∈ fixG (C)}

∣∣ ≥ (kn + kn) > 2.Let E be a support of g and let C and F be as above. If the sequen
e g(F )belongs to seq(C), then for some π ∈ fixG (C), πF 6= F , hen
e, g(πF ) 6= g(F ).But this 
ontradi
ts that C is a support of g and that π ∈ fixG (C). Otherwise,if the sequen
e g(F ) does not belong to seq(C), there is an m ∈ ω su
h that
x0 := g(F )(m) /∈ C. Hen
e, by the 
hoi
e of C and F we have ∣∣{πx0 : π ∈
fixG (C)

}∣∣ > 2, and ∣∣{πF : π ∈ fixG (C)
}∣∣ = 2. Sin
e every π ∈ fixG (C) maps

g to itself, in parti
ular 〈F, g(F )〉 to 〈πF, πg(F )〉, and sin
e
∣∣{πF : π ∈ fixG (C)

}∣∣ <
∣∣{πx0 : π ∈ fixG (C)

}∣∣ ,the image under g of a 2-element set has stri
tly more than two elements,whi
h is obviously a 
ontradi
tion. ⊣The se
ond 
ustom-built permutation modelThe set of atoms of the se
ond 
ustom-built permutation model is also builtby indu
tion, and every atom en
odes an ordered pair of atoms on a lowerlevel. The model we �nally get will be a model in whi
h there exists a 
ar-dinal m su
h that m2 < [m]2, whi
h is to some extent just a �nite version ofProposition 7.17. The atoms are 
onstru
ted as follows:(α) A0 is an arbitrary 
ountable in�nite set of atoms.(β) G0 is the group of all permutations of A0.(γ) An+1 := An∪̇
{
(n+ 1, p, ε) : p ∈ An ×An ∧ ε ∈ {0, 1}

}.(δ) Gn+1 is the subgroup of the permutation group of An+1 
ontaining allpermutations h for whi
h there are gh ∈ Gn and εh ∈ {0, 1} su
h that
h(x) =




gh(x) if x ∈ An,
(n+ 1, gh(p), εh +2 ε) if x = (n+ 1, p, ε),where for p = 〈p1, p2〉 ∈ An, gh(p) := 〈gh(p1), gh(p2)〉 and +2 denotesaddition modulo 2.Let A :=

⋃{An : n ∈ ω} and let Aut(A) be the group of all permutations of
A. Then

G :=
{
H ∈ Aut(A) : ∀n ∈ ω (H |An

∈ Gn)
}is a group of permutations of A. Let F be the �lter on G generated by{

fixG (E) : E ∈ fin(A)
} (whi
h happens to be normal) and let Vp (p forpairs) be the 
lass of all hereditarily symmetri
 obje
ts. Now we are ready toprove the followingProposition 7.18. Let m denote the 
ardinality of the set of atoms A of Vp.Then Vp � m2 < [m]2.



Custom-built permutation models 183Proof. First we show that Vp � m2 ≤ [m]2. For this it is su�
ient to �nd aone-to-one fun
tion f ∈ Vp from A2 into [A]2. We de�ne su
h a fun
tion asfollows. For x, y ∈ A let
f
(
〈x, y〉

)
:=

{
(n+m+ 1, 〈x, y〉, 0), (n+m+ 1, 〈x, y〉, 1)

}
,where n and m are the smallest numbers su
h that x ∈ An and y ∈ Am,respe
tively. For any π ∈ G and x, y ∈ A we have πf(〈x, y〉) = f(〈πx, πy〉)and therefore, the fun
tion f is as desired and belongs to Vp.Now assume towards a 
ontradi
tion that there exists a one-to-one fun
tion

g ∈ Vp from [A]2 into A2 and let Eg be a �nite support of g. Without loss ofgenerality we may assume that if (n + 1, 〈x, y〉, ε
)
∈ Eg, then also x, y ∈ Eg(this will be needed later). Let k := |Eg| and for x, y ∈ A let g({x, y}) =

〈t0{x,y}, t1{x,y}〉. Let r := k + 4 and let N ∈ ω be su
h that for every 
olouring
τ : [N ]2 → r2 we �nd a 3-element set H ∈ [N ]3 su
h that τ |[H]2 is 
onstant.Su
h a number N exists by the Finite Ramsey Theorem 2.3. Choose Ndistin
t elements x0, . . . , xN−1 ∈ A0 \ Eg, let X = {x0, . . . , xN−1} and let
{ch : h < k} be an enumeration of Eg (re
all that k = |Eg|). We de�ne a
olouring τ : [X ]2 → r × r as follows. For {xi, xj} ∈ [X ]2, where i < j, let
τ({xi, xj}) = 〈τ0({xi, xj}), τ1({xi, xj})〉 where for l ∈ {0, 1} we de�ne

τl({xi, xj}) :=





h if tl{xi,xj}
= ch,

k if tl{xi,xj}
= xi,

k + 1 if tl{xi,xj}
= xj ,

k + 2 if tl{xi,xj}
∈ A0 \

(
{xi, xj} ∪ Eg

)
,

k + 3 if tl{xi,xj}
∈ A \ (A0 ∪ Eg).By the de�nition of N we �nd 3 elements xι0 , xι1 , xι2 ∈ X with ι0 < ι1 <

ι2 su
h that for both l ∈ {0, 1}, τl is 
onstant on [{xι0 , xι1 , xι2}]2. So, for
{xιi , xιj} ∈ [{xι0 , xι1 , xι2}]2 with i < j and for some l ∈ {0, 1}, we are in atleast one of the following 
ases:(1) tl{xιi

,xιj
} = ch0 and t1−l{xιi

,xιj
} = ch1(2) tl{xιi

,xιj
} = ch and t1−l{xιi

,xιj
} = xιi(3) tl{xιi

,xιj
} = ch and t1−l{xιi

,xιj
} = xιj(4) tl{xιi

,xιj
} = t1−l{xιi

,xιj
} and tl{xιi

,xιj
} ∈ {xιi , xιj}(5) tl{xιi

,xιj
} = xιi and t1−l{xιi

,xιj
} = xιj(6) tl{xιi

,xιj
} ∈ A0 \ (Eg ∪ {xιi , xιj})(7) tl{xιi

,xιj
} ∈ A \ (Eg ∪ A0)



184 7 Models of Set Theory with AtomsIf we are in 
ase (1) or (2), then g({xι0 , xι1}) = g({xι0 , xι2}), and there-fore g is not a one-to-one fun
tion. If we are in 
ase (3), then g is also nota one-to-one fun
tion be
ause g({xι0 , xι2}) = g({xι1 , xι2}), and the same istrue for g if we are in 
ase (4), e.g., g({xι0, xι1}) = 〈xι0 , xι0〉 = g({xι0 , xι2}).If we are in 
ase (5), then let π ∈ fix(Eg) be su
h that πxι0 = xι1and πxι1 = xι0 . Assume that g({xι0 , xι1}) = 〈xι0 , xι1〉 (the 
ase when
g({xι0 , xι1}) = 〈xι1 , xι0〉 is similar). Then we have π{xι0 , xι1} = {xι0 , xι1},but πg({xι0 , xι1}) = 〈xι1 , xι0〉 6= 〈xι0 , xι1〉, and therefore Eg is not a supportof g whi
h 
ontradi
ts the 
hoi
e of Eg �whi
h, by our assumption, has theproperty that whenever (n+ 1, 〈x, y〉, ε

)
∈ Eg also x, y ∈ Eg.If we are in 
ase (6), then let l ∈ {0, 1} be su
h that tl{xι0 ,xι1}

∈ A0 \ (Eg ∪
{xι0 , xι1}) and let a := tl{xι0 ,xι1}

. Without loss of generality we may assume
l = 0, thus, a = t0{xι0 ,xι1}

. Take an arbitrary a′ ∈ A0 \ (Eg ∪ {a, xι0 , xι1}) andlet π ∈ fix(Eg ∪ {xι0 , xι1}) be su
h that πa = a′ and πa′ = a. Then we get
π{xι0 , xι1} = {xι0 , xι1} but
g
(
π{xι0 , xι1}

)
= g

(
{xι0 , xι1}

)
= 〈a, x〉 6= 〈a′, x′〉 = π〈a, x〉 = πg

(
{xι0 , xι1}

)
.Hen
e, Eg is not a support of g whi
h 
ontradi
ts the 
hoi
e of Eg.If we are in 
ase (7), then let l ∈ {0, 1} be su
h that tl{xι0 ,xι1}

∈ A \ (Eg ∪
A0), thus tl{xι0 ,xι1}

= (n + 1, p, ε) for some (n + 1, p, ε) ∈ A. Further, let
π ∈ fix(Eg ∪ {xι0 , xι1}) be su
h that π(n+1, p, ε) = (n+1, p, 1− ε). Then wehave π{xι0 , xι1} = {xι0 , xι1} but πg({xι0 , xι1}) 6= g({xι0 , xι1}), and therefore
Eg is not a support of g whi
h 
ontradi
ts the 
hoi
e of Eg.So, in all the 
ases, either g is not one-to-one or Eg is not a support of g,whi
h 
ontradi
ts our assumption and 
ompletes the proof. ⊣NotesPermutation models. The method of permutation models was introdu
ed byFraenkel [2, 4, 3, 5, 6℄, and, in a pre
ise version with supports, by Lindenbaum andMostowski [18℄ and by Mostowski [20, 21, 22℄. The present version with �lters is dueto Spe
ker [23℄. In parti
ular, the se
ond Fraenkel model 
an be found for examplein Fraenkel [2℄, where he proved that the Axiom of Choi
e for 
ountable families ofpairs is unprovable in ZFA (for a proof in a more general setting see Mendelson [19℄),and the ordered Mostowski model is introdu
ed in [21, � 4, p. 236℄ in order to showthat the Axiom of Choi
e is independent from the Ordering Prin
iple. (Some moreba
kground 
an be found for example in Lévy [17℄.)The Prime Ideal Theorem. The independen
e of the Axiom of Choi
e from thePrime Ideal Theorem in ZFA was proved �rst by Halpern [10℄ (but the proof presentedabove is taken from Je
h [13, Chapter 7, �1℄). A few years later, the same result inZF was proved by Halpern and Lévy [12℄, using the Halpern-Läu
hli Theorem.The 
ustom-built models. The �rst 
ustom-built permutation model as well asProposition 7.17 is due to Shelah and 
an be found in [8, Theorem 2℄. The se
ond
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ustom-built permutation model, whi
h is just a modi�
ation of the �rst one, isdue to Halbeisen, but the 
ru
ial part of Proposition 7.18 is again due to Shelah(
f. Halbeisen and Shelah [9, Propostition 7.3.1℄).Related Results43. Alternative de�nition of atoms. Atoms 
ould also be de�ned by stipulating
a ∈ A ⇐⇒ a = {a}. This approa
h has the advantage that we do not need tomodify the Axiom of Extensionality; however, it has the disadvantage thatmodels of ZFA would not be well-founded� ex
ept in the 
ase when A = ∅.44. The Axiom of Choi
e in Algebra. Läu
hli shows in [14℄ that many 
lassi
alresults in Algebra 
annot be proved without the aid of the Axiom of Choi
e.For example he shows that it is 
onsistent with ZFA that there exists ve
torspa
es without algebrai
 bases, or in whi
h there exist two algebrai
 bases withdi�erent 
ardinalities.45. More 
ardinal relations. Let m denote the 
ardinality of the set of atoms ofthe basi
 Fraenkel model VF0 . Then the following statements hold in VF0(
f. Halbeisen and Shelah [9, Proposition 7.1.3℄):(a) fin(m) ⊥ seq1-1(m) and fin(m) ⊥ seq(m).(b) seq1-1(m) ⊥ 2m and seq(m) ⊥ 2m.(
) seq1-1(m) < seq(m).Unlike in the basi
 Fraenkel model, the 
ardinalities fin(m), 2m, seq1-1(m), and
seq(m) are all 
omparable in the ordered Mostowski model. Let m denote the
ardinality of the set of atoms of VM . Then the following sequen
e of inequalitiesholds in VM :

m < [m]2 < m
2 < fin(m) < 2

m < seq1-1(m) < fin2(m) < seq1-1(fin(m)) <

< fin(2m) < fin3(m) < fin4(m) < . . . < finn(m) < seq(m) < 2
fin(m) = 2

2m(See for example Halbeisen and Shelah [9, p. 249℄ or Halbeisen [7℄, or just usethe ideas of the proof of Proposition 7.15.) Furthermore we have that
VM �

(
2
2m

)ℵ0

= 2
2mwhi
h follows for example from the fa
t that VM � 22

m

= 2fin(m) and Läu
hli'sLemma 4.27.Finally, let m denote the 
ardinality of the set of atoms of the se
ond Fraenkelmodel. Then, by Proposition 7.9 and Läu
hli's Lemma 4.27 we have
VF2 �

(
2
2m

)ℵ0

= 2
2m .46. Multiple Choi
e and Kurepa's Prin
iple in Fraenkel's models. In Chapter 5 wehave seen that Multiple Choi
e and Kurepa's Prin
iple are both equivalent in ZFto the Axiom of Choi
e. On the other hand, one 
an show that Multiple Choi
eholds in the model VF0 and that Kurepa's Prin
iple holds in the model VF2 (seeLévy [16℄ and Halpern [11℄ respe
tively, or Je
h [13, Theorem 9.2℄). This showsthat these two 
hoi
e prin
iples �whi
h imply AC in ZF�are weaker than ACin ZFA.



186 7 Models of Set Theory with Atoms47. Countable unions of 
ountable sets. In order to show that a union of 
ountablymany 
ountable sets is not ne
essarily 
ountable, one 
an work for examplein the permutation model given by Fraenkel [6℄: The set of atoms 
onsists of
ountably many mutually disjoint 
ountable sets. So, A =
⋃
n∈ω Cn where ea
h

Cn is 
ountable. For ea
h n ∈ ω, the group Gn 
onsists of all permutations of
Cn and G =

∏
n∈ω Gn. The normal �lter F on G is generated by produ
ts ofthe form ∏

n∈ωHn, where Hn is either equal to Gn or the trivial group, and theformer is the 
ase for all but �nitely many n's.48. Ordering prin
iples in Mostowski's model. Mostowski showed in [21℄ that inZFA, the Axiom of Choi
e is not provable from the Ordering Prin
iple (see alsoJe
h [13, Theorem 4.7℄). In fa
t he showed that the Ordering Prin
iple holds inthe ordered Mostowski model VM , whereas the Axiom of Choi
e obviously failsin that model. Noti
e also that even the Prime Ideal Theorem, whi
h implies theOrdering Prin
iple, holds in VM .In [1℄, Felgner and Truss gave a dire
t proof � not referring to the Prime IdealTheorem�of the fa
t that the Order-Extension Prin
iple holds in VM , and then,by modifying VM , they were able to show that in ZFA, the Prime Ideal Theoremis not provable from the Order-Extension Prin
iple.Läu
hli showed in [15℄ (see also Je
h [13, p. 53℄) that the following form of theAxiom of Choi
e holds in VM : For every family of non-empty well-orderable setsthere is a 
hoi
e fun
tion. Noti
e that this implies that in VM , the union of a
ountable set of 
ountable sets is always 
ountable.49. Another 
ustom-built permutation model. Let m denote the 
ardinality of theset of atoms of the �rst 
ustom-built permutation model Vs. Then one 
anshow that Vs � seq1-1(m) < seq(m) < 2m (see Halbeisen and Shelah [9, Propo-sition 7.4.1℄, or use Proposition 7.17 and show that m is D-�nite.)So, for an in�nite 
ardinals m we 
an have seq1-1(m) < seq(m) < 2m (whi
h holdsin Vs) as well as 2m < seq1-1(m) < seq(m) (whi
h holds in VM ), and thereforeboth statements are 
onsistent with ZF. It is now natural to ask whether it isalso possible to put 2m between the 
ardinals seq1-1(m) and seq(m) (re
all thatby Theorem 4.24, for all in�nite 
ardinals m we have seq1-1(m) 6= 2m 6= seq(m)).Indeed, the existen
e of an in�nite 
ardinal m for whi
h
seq1-1(m) < 2

m < seq(m)is also 
onsistent with ZF and the permutation model in whi
h this holds � givenin Halbeisen and Shelah [9, Se
tion 7.4℄ � is due to Shelah.Referen
es1. Ulri
h Felgner and John K. Truss, The independen
e of the prime idealtheorem from the order-extension prin
iple, The Journal of Symboli
 Logi
,vol. 64 (1999), 199�215.2. Adolf Fraenkel, Der Begri� �de�nit� und die Unabhängigkeit des Aus-wahlaxioms, Sitzungsberi
hte der Preussis
hen Akademie der Wis-sens
haften zu Berlin. Physi
alis
h-Mathematis
he Klasse, vol. 21(1922), 253�257 (see [24℄ for a translation into English).



Referen
es 1873. , Über die Ordnungsfähigkeit beliebiger Mengen, Sitzungsberi
hte derPreussis
hen Akademie der Wissens
haften zu Berlin. Physi
alis
h-Mathematis
he Klasse, vol. 29 (1928), 90�91.4. , Gelöste und ungelöste Probleme im Umkreis des Auswahlprinzips, Attidel 
ongresso internationale dei matemati
i, Bologna 3�10 Settembre 1928,Vol. II, Bologna, 1930, pp. 255�259.5. , Sur l'axiome du 
hoix , L'Enseignement Mathématique, vol. 34(1935), 32�51.6. , Über eine abges
hwä
hte Fassung des Auswahlaxioms, The Journalof Symboli
 Logi
, vol. 2 (1937), 1�25.7. Lorenz Halbeisen, Verglei
he zwis
hen unendli
hen Kardinalzahlen in einerMengenlehre ohne Auswahlaxiom, Diplomarbeit (1990), University of Züri
h(Switzerland).8. Lorenz Halbeisen and Saharon Shelah, Consequen
es of arithmeti
 for settheory , The Journal of Symboli
 Logi
, vol. 59 (1994), 30�40.9. , Relations between some 
ardinals in the absen
e of the axiom of 
hoi
e,The Bulletin of Symboli
 Logi
, vol. 7 (2001), 237�261.10. James D. Halpern, The independen
e of the axiom of 
hoi
e from the Booleanprime ideal theorem, Fundamenta Mathemati
ae, vol. 55 (1964), 57�66.11. , On a question of Tarski and a maximal theorem of Kurepa, Pa
i�
Journal of Mathemati
s, vol. 41 (1972), 111�121.12. James D. Halpern and Azriel Lévy, The Boolean prime ideal theorem doesnot imply the axiom of 
hoi
e, in Axiomati
 Set Theory (Dana S. S
ott, ed.),
[Pro
eedings of Symposia in Pure Mathemati
s, Vol. XIII, Part I], Ameri
anMathemati
al So
iety, Providen
e, Rhode Island, 1971, pp. 83�134.13. Thomas Je
h, The Axiom of Choi
e, Studies in Logi
 and the Foundationsof Mathemati
s 75, North-Holland, Amsterdam, 1973.14. Hans Läu
hli, Auswahlaxiom in der Algebra, Commentarii Mathemati
iHelveti
i, vol. 37 (1962), 1�18.15. , The independen
e of the ordering prin
iple from a restri
ted axiom of
hoi
e, Fundamenta Mathemati
ae, vol. 54 (1964), 31�43.16. Azriel Lévy, Axioms of multiple 
hoi
e, Fundamenta Mathemati
ae,vol. 50 (1961), 475�483.17. , The Fraenkel-Mostowski method for independen
e proofs in set theory ,in The Theory of Models, Pro
eedings of the 1963 International Symposiumat Berkeley (J.W. Addison, L. Henkin, and A. Tarski, eds.), [Studies in Logi
 andthe Foundation of Mathemati
s], North-Holland, Amsterdam, 1965, pp. 221�228.18. Adolf Lindenbaum and Andrzej Mostowski, Über die Unabhängigkeitdes Auswahlaxioms und einiger seiner Folgerungen, Comptes Rendus desSéan
es de la So
iété des S
ien
es et des Lettres de Varsovie,Classe III, vol. 31 (1938), 27�32.19. Elliott Mendelson, The independen
e of a weak axiom of 
hoi
e, The Jour-nal of Symboli
 Logi
, vol. 21 (1956), 350�366.20. Andrzej Mostowski,Über den Begri� einer endli
hen Menge,Comptes ren-dus des séan
es de la So
iété des S
ien
es et des Lettres de Varsovie,Cl. III, vol. 31 (1938), 13�20.21. ,Über die Unabhängigkeit des Wohlordnungssatzes vom Ordnungsprinzip,Fundamenta Mathemati
ae, vol. 32 (1939), 201�252.



188 7 Models of Set Theory with Atoms22. , Axiom of 
hoi
e for �nite sets, Fundamenta Mathemati
ae, vol. 33(1945), 137�168.23. Ernst Spe
ker, Zur Axiomatik der Mengenlehre (Fundierungs- und Aus-wahlaxiom), Zeits
hrift für mathematis
he Logik und Grundlagen derMathematik, vol. 3 (1957), 173�210.24. Jean van Heijenoort, From Frege to Gödel. A Sour
e Book in Mathe-mati
al Logi
, 1879�1931, [Sour
e Books in the History of S
ien
e], HarvardUniversity Press, Cambridge, Massa
husetts, 1967.



8Twelve Cardinals and their Relations
The 
onsonan
es are those intervals whi
h areformed from the natural steps.An interval may be diminished when one of itssteps is repla
ed by a smaller one.Or it may be augmented when one of its steps isrepla
ed by a larger one. Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558In this 
hapter we investigate twelve 
ardinal 
hara
teristi
s and theirrelations to one another. A 
ardinal 
hara
teristi
 of the 
ontinuum is anun
ountable 
ardinal number whi
h is less than or equal to c that des
ribesa 
ombinatorial or analyti
al property of the 
ontinuum. Like the power ofthe 
ontinuum itself, the size of a 
ardinal 
hara
teristi
 is often independentfrom ZFC. However, some restri
tions on possible sizes follow from ZFC, andwe shall give a 
omplete list of what is known to be provable in ZFC abouttheir relation. Later in Part II, but mainly in Part III, we shall see how one
an diminish or augment some of these twelve 
ardinals without 
hanging
ertain other 
ardinals. In fa
t, these 
ardinal 
hara
teristi
s are also used toinvestigate 
ombinatorial properties of the various for
ing notions introdu
edin Part III.We shall en
ounter some of these 
ardinal 
hara
teristi
s (e.g., p) moreoften than others (e.g., i). However, we shall en
ounter ea
h of these twelve
ardinals again, and like the twelve notes of the 
hromati
 s
ale, these twelve
ardinals will build the framework of our investigation of the 
ombinatorialproperties of for
ing notions that is 
arried out in Part III.On the one hand, it would be good to have the de�nition of a 
ardinal
hara
teristi
 at hand when it is needed; but on the other hand, it is also
onvenient to have all the de�nitions together (espe
ially when a 
ardinal
hara
teristi
 is used several times), rather than s
attered over the entire



190 8 Twelve Cardinals and their Relationsbook. De�ning all twelve 
ardinals at on
e also gives us the opportunity toshow what is known to be provable in ZFC about the relationship betweenthese twelve 
ardinals. Thus, one might �rst skip this 
hapter and go ba
k toit later and take bits and pie
es when ne
essary.The Cardinals ω1 and cWe have already met both 
ardinals, c and ω1: c is the 
ardinality of the 
ontin-uum R, and ω1 is the smallest un
ountable 
ardinal. A

ording to Fa
t 4.3,
c = 2ω is also the 
ardinality of the sets [0, 1], ω2, ωω, and [0, 1] \ Q; andby Lemma 4.10, ω1 
an also be 
onsidered as the set of order types of well-orderings of Q.The Continuum Hypothesis, denoted CH, states that c is the least un
ount-able 
ardinal, i.e., c = ω1 (
f. Chapter 4), whi
h is equivalent to saying thatevery subset of R is either 
ountable or of the same 
ardinality as R. Fur-thermore, the Generalised Continuum Hypothesis, denoted GCH, states that forevery ordinal α ∈ Ω, 2ωα = ωα+1. Gödel showed that L � GCH, where L is the
onstru
tible universe (see the 
orresponding note in Chapter 5), thus, GCHis 
onsistent with ZFC.Ea
h of the following ten 
ombinatorial 
ardinal 
hara
teristi
s of the 
on-tinuum is un
ountable and less than or equal to c. Thus, if we assume CH, thenthese 
ardinals are all equal to c. However, as we shall see in Part II, CH is notprovable in ZFC. In other words, if ZFC is 
onsistent then there are models ofZFC in whi
h CH fails, i.e., models in whi
h ω1 < c. In those models, possible(i.e., 
onsistent) relations between the following 
ardinal 
hara
teristi
s willbe provided in Part II and Part III.The Cardinal pFor two sets x, y ⊆ ω we say that x is almost 
ontained in y, denoted
x ⊆∗ y, if x \ y is �nite, i.e., all but �nitely many elements of x belong to
y. For example a �nite subset of ω is almost 
ontained in ∅, and ω is almost
ontained in every 
o-�nite subset of ω (i.e., in every y ⊆ ω su
h that ω \ y is�nite). A pseudo-interse
tion of a family F ⊆ [ω]ω of in�nite subsets of ωis an in�nite subset of ω that is almost 
ontained in every member of F . Forexample ω is a pseudo-interse
tion of the family of 
o-�nite sets. Furthermore,a family F ⊆ [ω]ω has the strong �nite interse
tion property (s�p) ifevery �nite subfamily has in�nite interse
tion. Noti
e that every family witha pseudo-interse
tion ne
essarily has the s�p, but not vi
e versa. For exampleany �lter F ⊆ [ω]ω has the s�p, but no ultra�lter on [ω]ω has a pseudo-interse
tion.



The 
ardinals b and d 191Definition of p. The pseudo-interse
tion number p is the smallest 
ar-dinality of any family F ⊆ [ω]ω whi
h has the s�p but whi
h does not havea pseudo-interse
tion; more formally
p = min

{
|F | : F ⊆ [ω]ω has the s�p but no pseudo-interse
tion} .Sin
e ultra�lters on [ω]ω are families whi
h have the s�p but do not havea pseudo-interse
tion, and sin
e every ultra�lter on [ω]ω is of 
ardinality c,the 
ardinal p is well-de�ned and p ≤ c. It is natural to ask whether p 
anbe smaller than c; however, the following result shows that p 
annot be toosmall.Theorem 8.1. ω1 ≤ p.Proof. Let E = {Xn ∈ [ω]ω : n ∈ ω} be a 
ountable family whi
h has the s�p.We 
onstru
t a pseudo-interse
tion of E as follows: Let a0 :=

⋂
X0 and forpositive integers n let

an =
⋂(⋂

{Xi : i ∈ n} \ {ai : i ∈ n}
)
.Further, let Y = {an : n ∈ ω}; then for every n ∈ ω, Y \ {ai : i ∈ n} ⊆ Xnwhi
h shows that Y ⊆∗ Xn, hen
e, Y is a pseudo-interse
tion of E . ⊣The Cardinals b and dFor two fun
tions f, g ∈ ωω we say that g dominates f , denoted f <∗ g, iffor all but �nitely many integers k ∈ ω, f(k) < g(k), i.e., if there is an n0 ∈ ωsu
h that for all k ≥ n0, f(k) < g(k). Noti
e that ordering �<∗ � is transitive,however, �<∗ � it is not a linear ordering (we leave it as an exer
ise to thereader to �nd fun
tions f, g ∈ ωω su
h that neither f <∗ g nor g <∗ f).A family D ⊆ ωω is dominating if for ea
h f ∈ ωω there is a fun
tion

g ∈ D su
h that f <∗ g.Definition of d. The dominating number d is the smallest 
ardinalityof any dominating family; more formally
d = min

{
|D | : D ⊆ ωω is dominating} .A family B ⊆ ωω is unbounded if there is no single fun
tion f ∈ ωωwhi
h dominates all fun
tions of B, i.e., for every f ∈ ωω there is a g ∈ Bsu
h that g ≮∗ f . Sin
e �<∗ � is not a linear ordering, an unbounded family isnot ne
essarily dominating� but vi
e versa (see Fa
t 8.2).Definition of b. The bounding number b is the smallest 
ardinality ofany unbounded family; more formally

b = min
{
|B| : B ⊆ ωω is unbounded} .



192 8 Twelve Cardinals and their RelationsObviously, the family ωω itself is dominating and therefore unbounded,whi
h shows that d and b are well-de�ned and b, d ≤ c. Moreover, we have thefollowingFa
t 8.2. b ≤ d.Proof. It is enough to show that every dominating family is unbounded. So,let D ⊆ ωω be a dominating family and let f ∈ ωω be an arbitrary fun
tion.Sin
e D is dominating, there is a g ∈ D su
h that f <∗ g, i.e., there is an
n0 ∈ ω su
h that for all k ≥ n0, f(k) < g(k). Hen
e we get g ≮∗ f , and sin
e
f was arbitrary this implies that D is unbounded. ⊣It is natural to ask whether b 
an be smaller than d, or at least smallerthan c; however, the following result shows that b 
annot be too small.Theorem 8.3. ω1 ≤ b.Proof. Let E = {gn ∈ ωω : n ∈ ω} be a 
ountable family. We 
onstru
t afun
tion f ∈ ωω whi
h dominates all fun
tions of E : For ea
h k ∈ ω let

f(k) =
⋃{

gi(k) : i ∈ k
}
.Then for every k ∈ ω and ea
h i ∈ k we have f(k) ≥ gi(k) whi
h shows thatfor all n ∈ ω, gn <∗ f , hen
e, f dominates all fun
tions of E . ⊣One 
ould also de�ne dominating and unbounded families with respe
t tothe ordering �< � de�ned by stipulating f < g ⇐⇒ ∀k ∈ ω

(
f(k) < g(k)

).Then the 
orresponding dominating number would be the same as d, as anydominating family 
an be made dominating in the new sense by adding all�nite modi�
ations of its members; but the 
orresponding bounding numberwould drop to ω, as the family of all 
onstant fun
tions is unbounded (weleave the details to the reader).The Cardinals s and rA set x ⊆ ω splits an in�nite set y ∈ [ω]ω if both y ∩ x and y \ x are in�nite(i.e., |y ∩ x| = |y \ x| = ω). Noti
e that any x ⊆ ω whi
h splits a set y ∈ [ω]ωmust be in�nite. A splitting family is a family S ⊆ [ω]ω su
h that ea
h
y ∈ [ω]ω is split by at least one x ∈ S .Definition of s. The splitting number s is the smallest 
ardinality of anysplitting family; more formally

s = min
{
|S | : S ⊆ [ω]ω is splitting} .



The 
ardinals s and r 193By Theorem 8.1 and later results we get ω1 ≤ s�we leave it as anexer
ise to the reader to �nd a dire
t proof of the un
ountability of s.In the proof of the following result we will see how to 
onstru
t a splittingfamily from a dominating family.Theorem 8.4. s ≤ d.Proof. For ea
h stri
tly in
reasing fun
tion f ∈ ωω with f(0) > 0 let
σf =

⋃{[
f2n(0), f2n+1(0)

)
: n ∈ ω

}
,where for a, b ∈ ω, [a, b) := {k ∈ ω : a ≤ k < b} and fn+1(0) = f

(
fn(0)

) with
f0(0) := 0. Let D ⊆ ωω be a dominating family. Without loss of generalitywe may assume that every f ∈ D is stri
tly in
reasing and f(0) > 0, and let

SD =
{
σf : f ∈ D

}
.We show that SD is a splitting family. So, �x an arbitrary x ∈ [ω]ω and let

fx ∈ ωω be the (unique) stri
tly in
reasing bije
tion between ω and x. Moreformally, de�ne fx : ω ։ x by stipulating
fx(k) =

⋂(
x \

{
fx(i) : i ∈ k

})
.Noti
e that for all k ∈ ω, fx(k) ≥ k. Sin
e D is dominating there is an f ∈ Dsu
h that fx <∗ f , whi
h implies that there is an n0 ∈ ω su
h that for all

k ≥ n0 we have fx(k) < f(k). For ea
h k ∈ ω we have k ≤ fk(0) as well as
k ≤ fx(k). Moreover, for k ≥ n0 we have

fk(0) ≤ fx
(
fk(0)

)
< f

(
fk(0)

)
= fk+1(0)and therefore fx(fk(0)) ∈

[
fk(0), fk+1(0)

). Thus, for all k ≥ n0 we have
fx

(
fk(0)

)
∈ σf i� k is even, whi
h shows that both x ∩ σf ∩ x and x \ σfare in�nite. Hen
e, σf splits x, and sin
e x was arbitrary, SD is a splittingfamily. ⊣A reaping family�also known as re�ning or unsplittable family� isa family R ⊆ [ω]ω su
h that there is no single set x ∈ [ω]ω whi
h splits allelements of R, i.e., for every x ∈ [ω]ω there is a y ∈ R su
h that y ∩ x or

y \ x is �nite. In other words, a family R is reaping if for every x ∈ [ω]ω thereis a y ∈ R su
h that y ⊆∗ (ω \ x) or y ⊆∗ x. The origin of �reaping� in this
ontext is that A reaps B i� A splits B, by analogy with a s
ythe 
uttingthe stalks of grain when one reaps the grain. So, a reaping family would be asplitting family. However, the more logi
al approa
h, where �reaps� means �isunsplit by�, seems to have no 
onne
tion with the everyday meaning of theword �reap�.



194 8 Twelve Cardinals and their RelationsDefinition of r. The reaping number r is the smallest 
ardinality of anyreaping family; more formally
r = min

{
|R| : R ⊆ [ω]ω is reaping} .Sin
e the family [ω]ω is obviously reaping, r is well-de�ned and r ≤ c.Furthermore, by Theorem 8.3, the following result implies that every reapingfamily is un
ountable:Theorem 8.5. b ≤ r.Proof. Let E = {xξ ∈ [ω]ω : ξ ∈ κ < b} be an arbitrary family of in�nitesubsets of ω of 
ardinality stri
tly less than b. We show that E is not a reapingfamily. For ea
h xξ ∈ E let gξ ∈ ωω be the unique stri
tly in
reasing bije
tionbetween ω and xξ\{0}. Further, let g̃ξ(k) := gkξ (0), where gk+1

ξ (0) = gξ
(
gkξ (0)

)and g0ξ (0) := 0. Consider Ẽ = {g̃ξ : ξ ∈ κ}. Sin
e κ < b, the family Ẽ isbounded, i.e., there exists an f ∈ ωω su
h that for all ξ ∈ κ, g̃ξ <∗ f . Let
x =

⋃
k∈ω

[
f2k(0), f2k+1(0)

). Then for ea
h ξ ∈ κ there is an nξ ∈ ω su
hthat for all k ≥ nξ, fk(0) ≤ g̃ξ
(
fk(0)

)
< f

(
fk(0)

). This implies that neither
xξ ⊆∗ x nor xξ ⊆∗ (ω \ x), and hen
e, E is not a reaping family. ⊣The Cardinals a and iTwo sets x, y ∈ [ω]ω are almost disjoint if x∩ y is �nite. A family A ⊆ [ω]ωof pairwise almost disjoint sets is 
alled an almost disjoint family; and amaximal almost disjoint (mad) family is an in�nite almost disjoint family
A ⊆ [ω]ω whi
h is maximal with respe
t to in
lusion, i.e., A is not properly
ontained in any almost disjoint family A ′ ⊆ [ω]ω.Definition of a. The almost disjoint number a is the smallest 
ardinalityof any maximal almost disjoint family; more formally

a = min
{
|A | : A ⊆ [ω]ω is mad} .Before we show that b ≤ a (whi
h implies that a is un
ountable), let usshow �rst that there is a mad family of 
ardinality c.Proposition 8.6. There exists a maximal almost disjoint family of 
ardinal-ity c.Proof. Noti
e that by Tei
hmüller's Prin
iple, every almost disjoint family 
anbe extended to a mad family. So, it is enough to 
onstru
t an almost disjointfamily A0 of 
ardinality c. Let {si : i ∈ ω} be an enumeration of ⋃n∈ω

nω,i.e., for ea
h t : n→ ω there is a unique i ∈ ω su
h that t = si. For f ∈ ωω let
xf =

{
i ∈ ω : ∃n ∈ ω (f |n = si)

}
.



The 
ardinals a and i 195Then, for any distin
t fun
tions f, g ∈ ωω, xf ∩ xg is �nite. Indeed, if f 6= g,then there is an n0 ∈ ω su
h that f(n0) 6= g(n0) whi
h implies that for all
k > n0, f |k 6= g|k, and hen
e, |xf ∩xg| ≤ n0+1. Now, let A0 := {xf : f ∈ ωω}.Then A0 ⊆ [ω]ω is a set of pairwise almost disjoint in�nite subsets of ω,therefore, A0 is an almost disjoint family of 
ardinality |ωω| = c. ⊣The following result implies that a is un
ountable and in the proof we willshow how one 
an 
onstru
t an unbounded family from a mad family.Theorem 8.7. b ≤ a.Proof. Let A = {xξ : ξ ∈ κ} be a mad family. It is enough to 
onstru
tan unbounded family of 
ardinality |A |. Let z = ω \⋃ξ∈κ xξ; then z is �nite(otherwise,A ∪{z} would be an almost disjoint family whi
h properly 
ontains
A ). Let x′0 := x0∪z∪{0} and for positive integers n ∈ ω let x′n :=

(
xn∪{n}

)
\⋃

k∈n x
′
k. Then, sin
e A is an almost disjoint family, {x′n : n ∈ ω} is a familyof pairwise disjoint in�nite subsets of ω and by 
onstru
tion, ⋃n∈ω x

′
n = ω.Moreover, (A \{xξ : ξ ∈ ω}

)
∪{x′n : n ∈ ω} is still mad. For n ∈ ω let gn ∈ ωωbe the unique stri
tly in
reasing bije
tion from x′n to ω, and let h : ω → ω×ωde�ned by stipulating

h(m) = 〈n, k〉 where m ∈ x′n and k = gn(m) .By de�nition, for ea
h n ∈ ω, h[x′n] = {
〈n, k〉 : k ∈ ω

}, and for all ξ ∈ κ,
h[xω+ξ] ∩ x′n is �nite. Further, for ea
h ξ ∈ κ de�ne fξ ∈ ωω by stipulating

fξ(k) =
⋃(

h[xω+ξ] ∩ x′k
)and let B = {fξ ∈ ωω : ξ ∈ κ}. Then by de�nition |B| = |A |; moreover, Bis unbounded. Indeed, if there would be a fun
tion f ∈ ωω whi
h dominatesall fun
tions of B, then the in�nite set {h−1

(
〈n, f(n)〉

)
: n ∈ ω

} would have�nite interse
tion whi
h ea
h element of A 
ontrary to maximality of A . ⊣A family I ⊆ [ω]ω is 
alled independent if the interse
tion of any �nitelymany members of I and the 
omplements of any �nitely many other membersof I is in�nite. More formally, I ⊆ [ω]ω is independent if for any n,m ∈ ωand disjoint sets {xi : i ∈ n}, {yj : j ∈ m} ⊆ I ,
⋂

i∈n

xi ∩
⋂

j∈m

(ω \ yj) is in�nite ,where we stipulate ⋂ ∅ := ω. Equivalently, I ⊆ [ω]ω is independent if for any
I, J ∈ fin(I ) with I ∩ J = ∅ we have

⋂
I \

⋃
J is in�nite .We leave it as an exer
ise to the reader to show that if I is in�nite, then

I is independent i� for any disjoint sets I, J ∈ fin(I ), ⋂ I \⋃ J 6= ∅.
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h is maximal with respe
t to in
lusion, i.e., I is not properly 
ontainedin any independent family I ′ ⊆ [ω]ω.Definition of i. The independen
e number i is the smallest 
ardinalityof any maximal independent family; more formally
i = min

{
|I | : I ⊆ [ω]ω is independent} .We shall see that max{r, d} ≤ i (whi
h implies that i is un
ountable), but�rst let us show that there is a maximal independent family of 
ardinality c.Proposition 8.8. There is a maximal independent family of 
ardinality c.Proof. It is enough to 
onstru
t an independent family of 
ardinality c onsome 
ountably in�nite set. So, let us 
onstru
t an independent family of
ardinality c on the 
ountably in�nite set

C =
{
〈s, A〉 : s ∈ fin(ω) ∧ A ⊆ P(s)

}
.Further, for ea
h x ⊆ [ω]ω de�ne

Px :=
{
〈s, A〉 ∈ C : x ∩ s ∈ A

}
.Noti
e that for any distin
t x, y ∈ [ω]ω there is a �nite set s ∈ fin(ω) su
hthat x ∩ s 6= y ∩ s, and 
onsequently we get Px 6= Py whi
h implies thatthe set I0 =

{
Px : x ∈ [ω]ω

}
⊆ [C]ω is of 
ardinality c. Moreover, I0 isan independent family on C. Indeed, for any �nitely many distin
t in�nitesubsets of ω, say x0, . . . , xm, . . . , xm+n where m,n ∈ ω, there is a �nite set

s ⊆ ω su
h that for all i, j with 0 ≤ i < j ≤ m + n we have xi ∩ s 6= xj ∩ s.Let A = {s∩xi : 0 ≤ i ≤ m} ⊆ P(s), and for every k ∈ ω \ s let sk := s∪{k}and Ak := A ∪
{
t ∪ {k} : t ∈ A

}. Then
{
〈sk, Ak〉 : k ∈ ω \ s

}
⊆

⋂

0≤i≤m

Pxi
\

⋃

1≤j≤n

Pxm+j
,whi
h shows that ⋂{Pxi

: 0 ≤ i ≤ m} \⋃{Pxm+j
: 1 ≤ j ≤ n} is in�nite, andtherefore, I0 is an independent family on C of 
ardinality c. ⊣The following result implies that i is un
ountable.Theorem 8.9. max{r, d} ≤ i.Proof. r ≤ i: The idea is to show that every maximal independent familyyields a reaping family of the same 
ardinality. For this, let I ⊆ [ω]ω be amaximal independent family of 
ardinality i and let

R =
{⋂

I \
⋃
J : I, J ∈ fin(I ) ∧ I ∩ J = ∅

}
.
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ardinality i. Furthermore, sin
e I is a maximal inde-pendent family, for every x ∈ [ω]ω we �nd a y ∈ R (i.e., y =
⋂
I \⋃ J) su
hthat either x ∩ y or (ω \ x) ∩ y is �nite, and be
ause (ω \ x) ∩ y = y \ x, thisshows that x does not split all elements of R. Thus, R is a reaping family of
ardinality i, and therefore r ≤ i.

d ≤ i: The idea is to show that an independent family of 
ardinality stri
tlyless than d 
annot be maximal. For this, suppose I = {Xξ : ξ ∈ κ < d} ⊆ [ω]ωis an in�nite independent family of 
ardinality κ < d. We shall 
onstru
t aset Z ∈ [ω]ω su
h that I ∪ {Z} is still independent, whi
h implies that theindependent family I is not maximal. For this it is enough to show that forany �nite, disjoint subfamilies of I , say I and J , the in�nite set ⋂
I \ ⋃

Jmeets both Z and ω \ Z in an in�nite set.Let Iω := {Xn : n ∈ ω} ⊆ I be a 
ountably in�nite subfamily of I andfor ea
h n ∈ ω let X0
n := Xn and X1

n := ω \Xn. Further, for ea
h g ∈ ω2 let
Cn,g =

⋂

k∈n

X
g(k)
kand for I ′ := I \ Iω de�ne

F =
{⋂

I ′ \
⋃
J ′ : I ′ and J ′ are �nite, disjoint subfamilies of I

′
}
.Claim. The family C = {Cn,g : n ∈ ω} has a pseudo-interse
tion that hasin�nite interse
tion with every set in F .Proof of Claim. Sin
e I is an in�nite independent family of 
ardinality κ < d,

F ⊆ [ω]ω is a family of 
ardinality κ su
h that ea
h set in F has in�niteinterse
tion with every member of C . For any h ∈ ωω de�ne
Y hg =

⋃

n∈ω

(
Cn,g ∩ h(n)

)
.Sin
e 〈Cn,g : n ∈ ω〉 is de
reasing (i.e., Cn,g ⊇ Cm,g whenever n ≤ m), Y hgis almost 
ontained in ea
h member of C �however, Y hg is not ne
essarilyin�nite. It remains to 
hoose the fun
tion h ∈ ωω so that Y hg is in�nite (i.e.,

Y hg is a pseudo-interse
tion of C ) and has in�nite interse
tion with every set in
F . Noti
e �rst that for every A ∈ F and for every n ∈ ω, A∩Cn,g is in�nite;thus, for every A ∈ F we 
an de�ne a fun
tion fA(n) ∈ ωω by stipulating

fA(n) = the nth element (in in
reasing order) of A ∩Cn,g.Sin
e |F | < d, the family {fA : A ∈ F} is not dominating. In parti
ular,there is a fun
tion h0 ∈ ωω with the property that for ea
h A ∈ F the set
DA =

{
n ∈ ω : h0(n) > fA(n)

}is in�nite. Now, for ea
h A ∈ F and every n ∈ DA we have h0(n) ≥ fA(n)+1whi
h implies that |A∩h0(n)| ≥ |A∩fA(n)+1| = n, and sin
e DA is in�nite,
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g is in�nite. Finally, by 
onstru
tion Y h0

g is a pseudo-interse
tionof C that has in�nite interse
tion with every set in F . ⊣ClaimBy the Claim, for every g ∈ ω2 there is a set, say Yg ∈ [ω]ω, whi
h has thefollowing two properties:(1) For all n ∈ ω, Yg ⊆∗
⋂
k∈nX

g(k)
k .(2) Yg ∩ (⋂

I ′ \ ⋃
J ′
) is in�nite whenever I ′ and J ′ are �nite, disjoint sub-families of I ′.It follows from (1) that for any distin
t g, g′ ∈ ωω, Yg and Yg′ are almostdisjoint. Let now

Q0 =
{
g ∈ ωω : ∃n0 ∈ ω ∀k ≥ n0

(
g(k) = 0

)}and
Q1 =

{
g ∈ ωω : ∃n1 ∈ ω ∀k ≥ n1

(
g(k) = 1

)}
.Then Q0 ∪ Q1 is a 
ountably in�nite subset of ωω. Let {gn : n ∈ ω} be anenumeration of Q0 ∪Q1 and for ea
h n ∈ ω let Y ′

gn
:= Ygn \⋃{Ygk : k ∈ n}.Then {Y ′

gn
: n ∈ ω} is a 
ountable family of pairwise disjoint in�nite subsetsof ω. Finally let

Z =
⋃

g∈Q0

Y ′
g and Z ′ =

⋃

g∈Q1

Y ′
g .Then Z and Z ′ are disjoint. Now we show that Z has in�nite interse
tion withevery ⋂

I \⋃J , where I and J are arbitrary �nite subfamilies of I ; and sin
ethe same also holds for Z ′ ⊆ ω \ Z, I ∪ {Z} is an independent family, i.e.,the independent family I of 
ardinality < d is not maximal.Given any �nite, disjoint subfamilies I, J ⊆ I , and let I0 = I ∩ Iω ,
J0 = J ∩ Iω , I ′ = I \ I0, J ′ = J \ J0, where Iω = {Xn : n ∈ ω}. Further, let
m ∈ ω be su
h that I0 ∪ J0 ⊆ {Xn : n ∈ m} ⊆ Iω and �x g ∈ Q0 su
h thatfor all n ∈ m, (

Xn ∈ (I0 ∪ J0) ∧ g(n) = 0
)
↔ Xn ∈ I0 .We get the following in
lusions:

⋂
I \

⋃
J ⊇

(⋂
I ′ \

⋂
J ′
)
∩

⋂

n∈m

Xg(n)
n

∗⊇
(⋂

I ′ \
⋂
J ′
)
∩ YgThe interse
tion on the very right is in�nite (by property (2) of Yg) and is
ontained in Z (be
ause g ∈ Q0). Hen
e, we have found an in�nite set whi
his almost 
ontained in Z ∩

(⋂
I \⋃ J

), and therefore Z is in�nite. ⊣The Cardinals par and homBy Ramsey's Theorem 2.1, for every 
olouring π : [ω]2 → 2 there is an
x ∈ [ω]ω whi
h is homogeneous for π, i.e., π|[x]2 is 
onstant. This leads to thefollowing 
ardinal 
hara
teristi
:
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ar-dinality of any family F ⊆ [ω]ω with the property that for every 
olouring
π : [ω]2 → 2 there is an x ∈ F whi
h is homogeneous for π.The following result implies that hom is un
ountable. In fa
t we will showthat ea
h family whi
h 
ontains a homogeneous set for every 2-
olouring of
[ω]2 is reaping and that ea
h su
h family yields a dominating family of thesame 
ardinality.Theorem 8.10. max{r, d} ≤ hom.Proof. Let F ⊆ [ω]ω be a family su
h that for every 
olouring π : [ω]2 → 2there is an x ∈ F whi
h is homogeneous for π. We shall show that F isreaping and that F ′ = {fx ∈ ωω : x ∈ F} is dominating, where fx is thestri
tly in
reasing bije
tion between ω and x.
d ≤ hom : Firstly we show that F is a dominating family. For any stri
tlyin
reasing fun
tion f ∈ ωω with f(0) = 0 de�ne πf : [ω]2 → 2 by stipulating

πf
(
{n,m}

)
= 0 ⇐⇒ ∃k ∈ ω

(
f(2k) ≤ n,m < f(2k + 2)

)
.Then, for every x ∈ F whi
h is homogeneous for πf we have f <∗ fx whi
himplies that F ′ is dominating.

r ≤ hom : Now we show that F is a reaping family. Take any y ∈ [ω]ω andde�ne πy : [ω]2 → 2 by stipulating
πy

(
{n,m}

)
= 0 ⇐⇒ {n,m} ⊆ y ∨ {n,m} ∩ y = ∅ .Now, for every x ∈ F whi
h is homogeneous for πy we have either x ⊆ y or

x ∩ y = ∅, and sin
e y was arbitrary, F is reaping. ⊣Re
all that a set H ∈ [ω]ω is 
alled almost homogeneous for a 
olouring
π : [ω]2 → 2 if there is a �nite set K ⊆ H su
h that H \K is homogeneousfor π. This leads to the following 
ardinal 
hara
teristi
:Definition of par. The partition number par is the smallest 
ardinalityof any family P of 2-
olourings of [ω]2 su
h that no single H ∈ [ω]ω is almosthomogeneous for all π ∈ P.By Proposition 2.8 we get that par is un
ountable, and the followingresult gives an upper bound for par.Theorem 8.11. par = min{s, b}.Proof. First we show that par ≤ min{s, b} and then we show that par ≥
min{s, b}. par ≤ s : Let S ⊆ [ω]ω be a splitting family and for ea
h x ∈ Sde�ne the 
olouring πx : [ω]2 → 2 by stipulating

πx
(
{n,m}

)
= 0 ⇐⇒ {n,m} ⊆ x ∨ {n,m} ∩ x = ∅
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e S is splitting, no in�nite set is almosthomogeneous for all π ∈ P.
par ≤ b : Let B ⊆ ωω be an unbounded family. Without loss of generality wemay assume that ea
h g ∈ B is stri
tly in
reasing. For ea
h g ∈ B de�ne the
olouring πg : [ω]2 → 2 by stipulating

πg
(
{n,m}

)
= 0 ⇐⇒ g(n) < m where n < m .Assume towards a 
ontradi
tion that some in�nite set H ∈ [ω]ω is almosthomogeneous for all 
olourings in P = {πg : g ∈ B}. We shall show that

H yields a fun
tion whi
h dominates the unbounded family B, whi
h isobviously a 
ontradi
tion. Consider the fun
tion h ∈ ωω whi
h maps ea
hnatural number n to the se
ond member of H above n; more formally,
h(n) := min

{
m ∈ H : ∃k ∈ H(n < k < m)

}. For ea
h n ∈ ω we have
n < k < h(n) with both k and h(n) in H . By almost homogeneity of H ,for ea
h g ∈ B there is a �nite set K ⊆ ω su
h that H \K is homogeneousfor πg, i.e., for all {n,m} ∈ [H \ K]2 with n < m we have either g(n) < mor g(n) ≥ m. Sin
e H is in�nite, the latter 
ase is impossible. On the otherhand, the former 
ase implies that for all n ∈ H \K, g(n) < h(n), hen
e, hdominates g and 
onsequently h dominates ea
h fun
tion of B.
par ≥ min{s, b} : Suppose P =

{
πξ : ξ ∈ κ < min{s, b}

} is a family of
2-
olouring of [ω]2. We shall 
onstru
t a set H ∈ [ω]ω whi
h is almost homo-geneous for all 
olourings π ∈ P. For ea
h ξ ∈ κ and all n ∈ ω de�ne thefun
tion fξ,n ∈ ω2 by stipulating

fξ,n(m) =

{
πξ
(
{n,m}

) for m 6= n,
0 otherwise.Sin
e |{fξ,n : ξ ∈ κ ∧ n ∈ ω}| = κ · ω = κ < s, there is an in�nite set A ⊆ ωon whi
h all fun
tions fξ,n are almost 
onstant; more formally, for ea
h ξ ∈ κand ea
h n ∈ ω there are gξ(n) ∈ ω and jξ(n) ∈ {0, 1} su
h that for all

m ≥ gξ(n), fξ,n(m) = jξ(n). Moreover, sin
e κ < s there is an in�nite set
B ⊆ A on whi
h ea
h fun
tion jξ ∈ ω2 is almost 
onstant, say jξ(n) = iξfor all n ∈ B with n ≥ bξ. Further, sin
e κ < b there is a stri
tly in
reasingfun
tion h ∈ ωω whi
h dominates ea
h gξ, i.e., for ea
h ξ ∈ κ there is aninteger cξ su
h that for all n ≥ cξ, gξ(n) < h(n). Let H = {xk : k ∈ ω} ⊆ Bbe su
h that for all k ∈ ω, h(xk) < xk+1. Then H is almost homogeneous forea
h πξ ∈ P. Indeed, if n,m ∈ H are su
h that max{bξ, cξ} ≤ n < m, then
gξ(n) < h(n) < m and therefore πξ({n,m}

)
= fξ,n(m) = jξ(n) = iξ, i.e.,

H \max{bξ, cξ} is homogeneous for πξ. ⊣The Cardinal hA family H = {Aξ : ξ ∈ κ} ⊆ P
(
[ω]ω

) of mad families of 
ardinality c is
alled shattering if for ea
h x ∈ [ω]ω there is a ξ ∈ κ su
h that x has in�nite
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tion with at least two distin
t members of Aξ, i.e., at lest two sets of
Aξ split x. We leave it as an exer
ise to the reader to show that there areshattering families of 
ardinality c (for ea
h x ∈ [ω]ω take two disjoint sets
y, y′ ⊆ x su
h that ω \ (y ∪ y′) is in�nite and extend {y, y′} to a mad familyof 
ardinality c).Definition of h. The shattering number h is the smallest 
ardinality ofa shattering family; more formally

h = min
{
|H | : H is shattering} .If one tries to visualise a shattering family, one would probably draw akind of matrix with c 
olumns, where the rows 
orrespond to the elements ofthe family (i.e., to the mad families). Having this pi
ture in mind, the size ofthe shattering family would then be the height of the matrix, and this wherethe letter �h� 
omes from.In order to prove that h ≤ par we shall show how to 
onstru
t a shatteringfamily from any family P of 2-
olourings of [ω]2 su
h that no single set isalmost homogeneous for all π ∈ P; the following lemma is the key idea inthat 
onstru
tion:Lemma 8.12. For every 
olouring π : [ω]2 → 2 there is a mad family Aπ of
ardinality c su
h that ea
h A ∈ Aπ is homogeneous for π.Proof. Let A ⊆ [ω]ω be an arbitrary almost disjoint family of 
ardinality

c and let π be a 2-
olouring of [ω]2. By Ramsey's Theorem 2.1, for ea
h
A ∈ A we �nd an in�nite set A′ ⊆ A su
h that A′ is homogeneous for π.Let A ′ = {A′ : A ∈ A }; then A ′ is an almost disjoint family of 
ardinality
c where ea
h member of A ′ is homogeneous for π. Let {xξ : ξ ∈ κ ≤ c} bean enumeration of [ω]ω \A ′. By trans�nite indu
tion de�ne A0 = A ′ and forea
h ξ ∈ κ let

Aξ+1 =






Aξ ∪ {xξ} if xξ is homogeneous for π andfor ea
h A ∈ Aξ, xξ ∩ A is �nite,
Aξ otherwise.By 
onstru
tion, Aπ =

⋃
ξ∈κ Aξ is an almost disjoint family of 
ardinality c,all whose members are homogeneous for π. Moreover, Aπ is a mad family.Indeed, if there would be an x ∈ [ω]ω su
h that for all A ∈ Aπ, x ∩ A is�nite, then, by Ramsey's Theorem 2.1, there would be an xξ0 ∈ [x]ω (forsome ξ0 ∈ κ) whi
h is homogeneous for π. In parti
ular, xξ0 would belong to

Aξ0+1. Hen
e, x ∩ xξ0 is in�nite, where xξ0 ∈ A , whi
h is a 
ontradi
tion tothe 
hoi
e of x. ⊣Theorem 8.13. h ≤ par.



202 8 Twelve Cardinals and their RelationsProof. Let P be a family of 2-
olourings of [ω]2 su
h that no single set isalmost homogeneous for all π ∈ P and let HP = {Aπ : π ∈ P}, where Aπis like in Lemma 8.12. We 
laim that HP is shattering. Indeed, let H ⊆ ωbe an arbitrary in�nite subset of ω. By the property of P, there is a π ∈ Psu
h that H is not almost homogeneous for π. Consider Aπ ∈ HP : Sin
e
Aπ is mad, there is an A ∈ Aπ su
h that H ∩ A is in�nite, and sin
e A ishomogeneous for π, H \ A is in�nite too; and again, sin
e Aπ is mad, thereis an A′ ∈ Aπ (distin
t from A) su
h that (H \A)∩A′ is in�nite. This showsthat H has in�nite interse
tion with two distin
t members of Aπ. Hen
e, HPis shattering. ⊣In order to prove that p ≤ h we have to introdu
e some notions: If A and
A ′ are mad families (of 
ardinality c), then A ′ re�nes A , denoted A ′≻≻A,if for ea
h A′ ∈ A ′ there is an A ∈ A su
h that A′ ⊆∗ A. A shattering family
{Aξ : ξ ∈ κ} is 
alled re�ning if Aξ′≻≻Aξ whenever ξ′ > ξ.The next result is the key lemma in the proof that every shattering familyof size h indu
es a re�ning shattering family of the same 
ardinality.Lemma 8.14. For every family E = {Aξ : ξ ∈ κ < h} of 
ardinality κ < h ofmad families of 
ardinality c there exists a mad family A ′ whi
h re�nes ea
h
Aξ ∈ E . Furthermore, A ′ is of 
ardinality c.Proof. Let E = {Aξ : ξ ∈ κ < h} be a family of less than h mad families of
ardinality c. For every x ∈ [ω]ω we �nd an x′ ∈ [x]ω with the property thatfor ea
h Aξ ∈ H there is an A ∈ Aξ su
h that x′ ⊆∗ A. Indeed, if there isno su
h x′ (for some given x ∈ [ω]ω), then a bije
tion between x and ω wouldyield a shattering family of 
ardinality κ < h, 
ontrary to the de�nition of h.Now, if A ′ ⊆ {x′ : x ∈ [ω]ω} is a mad family, then A ′ is of 
ardinality c (sin
e
A0 is of 
ardinality c) and re�nes ea
h Aξ ∈ E (sin
e A ′ ⊆ {x′ : x ∈ [ω]ω}).It remains to show that mad families A ′ ⊆ {x′ : x ∈ [ω]ω} exist. Indeed, if
A ⊆ {x′ : x ∈ [ω]ω} is an almost disjoint family whi
h is not maximal, thenthere exists an x ∈ [ω]ω su
h that for all A ∈ A , x ∩ A is �nite. Noti
e that
A ∪ {x′} is still an almost disjoint family, hen
e, by Tei
hmüller's Prin
iple,every almost disjoint family A ⊆ {x′ : x ∈ [ω]ω} 
an be extended to a madfamily A ′ ⊆ {x′ : x ∈ [ω]ω}. ⊣Proposition 8.15. If H = {Aξ : ξ ∈ h} is a shattering family of 
ardinality
h, then there exists a re�ning shattering family H ′ = {A ′

ξ : ξ ∈ h} su
h thatfor ea
h ξ ∈ h we have A ′
ξ≻≻Aξ.Proof. The proof is by trans�nite indu
tion: Let A ′

0 := A0 and assume wehave already de�ned A ′
ξ for all ξ ∈ η where η ∈ h. Apply Lemma 8.14 to thefamily {A ′

ξ : ξ ∈ η} ∪ {Aη} to obtain A ′
η and let H ′ = {A ′

ξ : ξ ∈ h}. ⊣Now, the proof of p ≤ h is straightforward.Theorem 8.16. p ≤ h.



Summary 203Proof. By Proposition 8.15 there exists a re�ning shattering family H =
{Aξ : ξ ∈ h} of 
ardinality h. With H we shall build a family F ⊆ [ω]ω of
ardinality h whi
h has the s�p but whi
h does not have a pseudo-interse
tion:Chose any x0 ∈ A0 and assume we have already 
hosen xξ ∈ Aξ for all ξ ∈ ηwhere η ∈ h. Sin
e H is re�ning we 
an 
hose a xη ∈ Aη su
h that xη is apseudo-interse
tion of {xξ : ξ ∈ η}. Finally let F = {xξ : ξ ∈ h}. Then F isa family of 
ardinality ≤ h whi
h has the s�p, but sin
e H is shattering, noin�nite set is almost 
ontained in every member of F , i.e., F does not havea pseudo-interse
tion. ⊣SummaryThe diagram below shows the relations between the twelve 
ardinals. A line
onne
ting two 
ardinals indi
ates that the 
ardinal lower on the diagram isless than or equal to the 
ardinal higher on the diagram (provably in ZFC).

c
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r

���������������
d
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b

::::::::::::::

qqqqqqqqqqq
s

par

rrrrrrrrrr

h

p

ω1Later we shall see that ea
h of following relations is 
onsistent with ZFC:
• a < c (Proposition 18.5)
• i < c (Proposition 18.11)
• ω1 < p = c (Proposition 19.1)
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• a < d = r (Corollary 21.11)
• s = b < d (Proposition 21.13)
• d < r (Proposition 22.4)
• d > r (Proposition 23.7)
• p < h (Proposition 24.12) NotesMost of the 
lassi
al 
ardinal 
hara
teristi
s and their relations presented here 
anbe found for example in van Douwen [42℄ and Vaughan [43℄, where one �nds alsoa few histori
al notes (for d see also Kanamori [27, p. 179 f.℄). Proposition 8.8 isdue to Fi
htenholz and Kantorovit
h [22℄, but the proof we gave is Hausdor�'s, whogeneralised in [26℄ the result to arbitrary in�nite 
ardinals (see also Exer
ise (A6)on p. 288 of Kunen [29℄). Theorem 8.9 is due to Shelah [33℄, however, the proofis taken from Blass [5℄ (see also [4, Theorem 21℄), where the 
laim in the proof isdue to Ketonen [28, Proposition 1.3℄. Theorem 8.10 and Theorem 8.11 are due toBlass and the proofs are taken from Blass [5℄ (see also [4, Se
tion 6℄). The shattering
ardinal h was introdu
ed and investigated by Bal
ar, Pelant, and Simon in [2℄(
f. Related Result 51). Related Results50. The Continuum Hypothesis. There are numerous statements from areas likeAlgebra, Combinatori
s, or Topology, whi
h are equivalent to CH. For exampleErd®s and Kakutani showed that CH is equivalent to the statement that R isthe union of 
ountably many sets of rationally independent numbers (
f. [20,Theorem 2℄). Many more equivalents to CH 
an be found in Sierpi«ski [39℄. Forthe histori
al ba
kground of CH we refer the reader to Felgner [21℄.51. On the shattering number h. Bal
ar, Pelant, and Simon showed that h ≤ cf(c)(see [2, Theorem 4.2℄), gave a dire
t prove for h ≤ b (see [2, Theorem 4.5℄)and for h ≤ s (follows from [2, Lemma 2.11.(
)℄), and showed that h is regular(see [2, Lemma 2.11.(b)℄. Furthermore, Lemma 2.11.(
) of Bal
ar, Pelant, andSimon [2℄ states that there are shattering families of size h whi
h have a verystrong 
ombinatorial property:Base Matrix Lemma. There exists a shattering family H =

{
Aξ ⊆ [ω]ω :

ξ ∈ h
} whi
h has the property that for ea
h X ∈ [ω]ω there is a ξ ∈ h and an

A ∈ Aξ su
h that A ⊆∗ X.Proof. Let F =
{
Aξ ⊆ [ω]ω : ξ ∈ h

} be an arbitrary but �xed re�ning shatter-ing family of 
ardinality h. We �rst prove the followingClaim. For every in�nite set X ∈ [ω]ω there exists an ordinal ξ̄ ∈ h su
h that∣∣{C ∈ Aξ̄ : |C ∩X| = ω
}∣∣ = c.Proof of Claim. Let X ∈ [ω]ω be an arbitrary in�nite subset of ω. Firstly weshow that there exists a stri
tly in
reasing sequen
e 〈ξn : n ∈ ω〉 in h, su
h thatfor ea
h n ∈ ω and f ∈ n2 we �nd a set Cf ∈ Aξn with the following properties:
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• |Cf ∩X| = ω,
• if f, f ′ ∈ n2 are distin
t, then Cf 6= Cf ′ , and
• for all f ∈ n2 and m ∈ n, Cf ⊆∗ Cf |m .The sequen
e 〈ξn : n ∈ ω〉 is 
onstru
ted by indu
tion on n: First we 
hoose anarbitrary ξ0 ∈ h. Now, suppose we have already found ξn ∈ h for some n ∈ ω.Sin
e F is a shattering family, for every h ∈ n2 there exists a ζh > ξn su
h thatthe in�nite set Ch ∩ X has in�nite interse
tion with at least two members of
Aζh . Let ξn+1 =

⋃{
ζh : h ∈ n2

}. Then, sin
e F is re�ning, we �nd a family{
Cf : f ∈ n+12

}
⊆ Aξn+1 with the desired properties.Let ξ̄ :=

⋃
n∈ω ξn; then the ordinal ξ̄ is smaller than h: Otherwise, sin
e F isre�ning, the family {Aξn : n ∈ ω} would be a shattering family of 
ardinality

ω, 
ontradi
ting the fa
t that h ≥ ω1.By 
onstru
tion, for ea
h f ∈ ω2 we �nd a Cf ∈ Aξ̄ su
h that Cf ∩X is in�nite(noti
e that for ea
h n ∈ ω, |Cf |n ∩X| = ω), and sin
e F is re�ning we have
Cf 6= Cf ′ whenever f, f ′ ∈ ω2 are distin
t. Thus, ∣∣{Cf ∈ Aξ̄ : f ∈ ω2

}∣∣ = c andfor ea
h f ∈ ω2 we have |Cf ∩X| = ω. ⊣ClaimNow we 
onstru
t the shattering family H =
{
Aξ ⊆ [ω]ω : ξ ∈ h

} as follows:For ea
h ξ ∈ h, let Xξ be the family of all X ∈ [ω]ω su
h that
∣∣{C ∈ Aξ : |C ∩X| = ω

}∣∣ = c .If Xξ = ∅, then let Aξ = Aξ. Otherwise, de�ne (e.g., by trans�nite indu
tion)an inje
tion gξ : Xξ →֒ Aξ su
h that for ea
h X ∈ Xξ, ∣∣X ∩ gξ(X)
∣∣ = ω.Now, for ea
h C ∈ Aξ, let CC ⊆ [C]ω be an almost disjoint family su
h that⋃

CC = C, and whenever C = gξ(X) for some X ∈ Xξ (i.e., |X ∩ C| = ω),then there exists an A ∈ CC with A ⊆∗ X. Let Aξ := {A ∈ CC : C ∈ Aξ} andlet H := {Aξ : ξ ∈ h}. Then, by 
onstru
tion, for every X ∈ [ω]ω we �nd anordinal ξ ∈ h and an in�nite set A ∈ Aξ su
h that A ⊆∗ X. ⊣52. The tower number t∗. A family T = {Tα : α ∈ κ} ⊆ [ω]ω is 
alled a tower if
T is well-ordered by ∗⊇ (i.e., Tβ ⊆∗ Tα ↔ α < β) and does not have a pseudo-interse
tion. The tower number t is the smallest 
ardinality (or height) of atower. Obviously we have p ≤ t and the proof of Theorem 8.16 shows that
t ≤ h. However, it is open whether p < t is 
onsistent with ZFC (for partialresults see for example van Douwen [42℄, Blass [5℄, or Shelah [35℄).53. A linearly ordered subset of [ω]ω of size c. Let {qn ∈ Q : n ∈ ω} be anenumeration of the rational numbers Q and for every real number r ∈ R let
Cr := {n ∈ ω : qn ≤ r}. Then, for any real numbers r0 < r1 we have Cr0  Cr1and |Cr1 \Cr0 | = ω. Thus, with respe
t to the ordering � �, {Cr : r ∈ R} ⊆ [ω]ωis a linearly ordered set of size c. In general one 
an show that whenever M isin�nite, the partially ordered set (P(M), 

) 
ontains a linearly ordered subsetof size stri
tly greater than |M |.54. The σ-reaping number rσ
∗. A family R ⊆ [ω]ω is 
alled σ-reaping if no 
ount-ably many sets su�
e to split all members of R. The σ-reaping number rσ isthe smallest 
ardinality of any σ-reaping family (for a de�nition of rσ in termsof bounded sequen
es see Vojtá² [44℄). Obviously we have r ≤ rσ, but it is notknown whether r = rσ is provable in ZFC, i.e., it is not known whether r < rσ is
onsistent with ZFC (see also Vojtá² [44℄ and Brendle [8℄).



206 8 Twelve Cardinals and their Relations55. On i and hom∗. We have seen that max{r, d} ≤ hom (see Theorem 8.10) andthat max{r, d} ≤ i (see Theorem 8.9). Moreover, Blass [4, Se
tion 6℄ showedthat hom = max{rσ, d} (see also Blass [5℄). Thus, in every model in whi
h r =
rσ we have hom ≤ i. Furthermore, one 
an show that hom < i is 
onsistentwith ZFC: In Bal
ar, Hernández-Hernández, and Hru²ák [1℄ it is shown that
max{r, 
of (M )} ≤ i, where 
of (M ) is the 
o�nality of the ideal of meagre sets.On the other hand, it is possible to 
onstru
t models in whi
h d = rσ = ω1and 
of (M ) = ω2 = c (see for example Shelah and Zapletal [36℄ or Brendle andKhomskii [15℄). Thus, in su
h models we have ω1 = hom < i = ω2. However, itis open whether i < hom (whi
h would imply r < rσ) is 
onsistent with ZFC.56. The ultra�lter number u. A family F ⊆ [ω]ω is a base for an ultra�lter
U ⊆ [ω]ω if U =

{
y ∈ [ω]ω : ∃x ∈ F (x ⊆ y)

}. The ultra�lter number u isthe smallest 
ardinality of any ultra�lter base. We leave it as an exer
ise to thereader to show that r ≤ u.57. Consisten
y results. The following statements are 
onsistent with ZFC:
• r < u (
f. Goldstern and Shelah [23℄)
• u < d (
f. Blass and Shelah [6℄ or see Chapter 23 |Related Result 130)
• u < a (
f. Shelah [34℄, see also Brendle [13℄)
• h < par (
f. Shelah [32, Theorem 5.2℄ or Dow [19, Proposition 2.7℄)
• hom < c (see Chapter 23 |Related Result 138)
• d < a (
f. Shelah [34℄, see also Brendle [10℄)
• ω1 = b < a = s = d = ω2 (
f. Shelah [32, Se
tions 1&2℄)
• κ = b = a < s = λ for any regular un
ountable 
ardinals κ < λ (
f. Brendleand Fis
her [14℄)
• b = κ < κ+ = a = c for κ > ω1 (
f. Brendle [7℄)
• ω1 = s < b = d = r = a = ω2 (
f. Shelah [32, Se
tion 4℄)
• cf(a) = ω (
f. Brendle [11℄)
• h = ω2 + there are no towers of height ω2 (
f. Dordal [17℄).Some more results 
an be found for example in Blass [5℄, Brendle [9, 12℄,van Douwen [42℄, Dow [19℄, and Dordal [18℄.58. Combinatorial properties of maximal almost disjoint families. An un
ountableset of reals is a σ-set if every relative Borel subset is a relative Gδ set. Brendleand Piper showed in [16℄ that CH implies the existen
e of a mad family whi
his also a σ-set (in that paper, they also dis
uss related results assuming Martin'sAxiom).59. Appli
ations to Bana
h spa
e theory. Let ℓp(κ) denote the Bana
h spa
e ofbounded fun
tions f : κ→ R with �nite ℓp-norm, where for 1 ≤ p <∞,

‖f‖ = p

√∑

α∈κ

|f(α)|p ,and for p = ∞,
‖f‖ = sup

{
|f(α)| : α ∈ κ

}
.As mentioned above, Hausdor� generalised Proposition 8.8 to arbitrary in-�nite 
ardinals κ, i.e., if κ is an in�nite 
ardinal then there are independentfamilies on κ of 
ardinality 2κ. Now, using independent families on κ of 
ardi-nality 2κ it is quite straightforward to show that ℓ∞(κ) 
ontains an isomorphi
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opy of ℓ1(2κ) (the details are left to the reader), and Halbeisen [24℄ showedthat the dual of ℓ∞(κ) 
ontains an isomorphi
 
opy of ℓ2(2κ) (for an analyti
proof in the 
ase κ = ω see Rosenthal [31, Proposition 3.4℄).We have seen that there are almost disjoint families on ω of 
ardinality c = 2ℵ0 .Unlike for independent families, this result 
annot be generalised to arbitrary
ardinals κ, i.e., it is 
onsistent with ZFC that for some in�nite κ, there no almostdisjoint family on κ of 
ardinality 2κ (see Baumgartner[3, Theorem 5.6 (b)℄).However, one 
an prove that for all in�nite 
ardinals κ there is an almost disjointfamily on κ of 
ardinality > κ (
f. Tarski [41℄, Sierpi«ski [37, 38℄ or [40, p. 448 f.℄,or Baumgartner [3, Theorem 2.8℄). Using an almost disjoint family of 
ardinality
> κ it is not hard to show that every in�nite dimensional Bana
h spa
e of
ardinality κ has more than κ pairwise almost disjoint normalised Hamel bases(
f. Halbeisen [25℄), and Peª
zy«ski and Sudakov [30℄ showed that c0(κ), whi
his a subspa
e of ℓ∞(κ), is not 
omplemented in ℓ∞(κ).Referen
es1. Bohuslav Bal
ar, Fernando Hernández-Hernández, and Mi
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9The Shattering Number revisited
As variety brings pleasure and delight, so ex
essiverepetition generates boredom and annoyan
e.Besides, the 
omposer would be thought by 
onnois-seurs of the art to have a meagre store of ideas.But it is not only permitted but admirable to du-pli
ate a passage or melody as many times asone wishes if the 
ounterpoint is always di�erentand varied. For su
h repetitions strike us as be-ing somehow ingenious, and we should try to writethem wherever they seem suitable.Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558In this 
hapter we shall have a 
loser look at the shattering number h. Inthe pre
eding 
hapter, h was introdu
ed as the minimum height of a shatteringmatrix. However, like other 
ardinal 
hara
teristi
s, h has di�erent fa
ets. Inthis 
hapter we shall see that h is 
losely related to the Ramsey property, a
ombinatorial property of subsets of ω (dis
ussed at the end of Chapter 2)whi
h 
an be regarded as a generalisation of Ramsey's Theorem.The Ramsey PropertyBy Ramsey's Theorem 2.1, for every 2-
olouring of [ω]2 there is a homoge-neous set; on the other hand we have seen that there are 2-
olourings of [ω]ωwithout a homogeneous set (see the example given in Chapter 2). Obviously,every 
olouring π : [ω]ω → {0, 1} indu
es a set Cπ ⊆ [ω]ω by stipulating
Cπ =

{
x ∈ [ω]ω : π(x) = 1

}.By identifying 2-
olourings of [ω]ω with subsets of [ω]ω, the existen
e of a
2-
olouring of [ω]ω without a homogeneous set is equivalent to the existen
e



212 9 The Shattering Number revisitedof a set C ⊆ [ω]ω su
h that for all x ∈ [ω]ω there are y0, y1 ∈ [x]ω su
h that
y0 /∈ A and y1 ∈ A.Now, a set C ⊆ [ω]ω has the Ramsey property, if there exists a set
x ∈ [ω]ω su
h that either [x]ω ⊆ C or [x]ω∩C = ∅. Noti
e that the �nite as wellas the 
o-�nite subsets of [ω]ω have the Ramsey property, but noti
e also thatnot all subsets of [ω]ω have the Ramsey property (
f. Chapter 5 |RelatedResult 38).Below, we investigate a property of subsets of [ω]ω whi
h is slightly strongerthan the Ramsey property, but �rst we have to introdu
e the following nota-tion.For a �nite set s ∈ fin(ω) and an in�nite set x ∈ [ω]ω su
h that max(s) <
min(x) (i.e., ⋃ s <

⋂
x), let
[s, x]ω =

{
z ∈ [ω]ω : s ⊆ z ⊆ s ∪ x

}
.Now, a set C ⊆ [ω]ω is 
alled 
ompletely Ramsey if for every set [s, x]ωthere is a y ∈ [x]ω su
h that either [s, y]ω ⊆ C or [s, y]ω ∩ C = ∅. If we arealways in the latter 
ase (i.e., for ea
h [s, x]ω there is a y ∈ [x]ω su
h that

[s, y]ω ∩ C = ∅), then C is 
alled 
ompletely Ramsey-null. In parti
ular,for s = ∅ and x = ω we 
on
lude that any 
ompletely Ramsey set has theRamsey property. On the other hand, not every set whi
h has the Ramseyproperty is 
ompletely Ramsey (we leave it as an exer
ise to the reader to �nda 
ounterexample).The proof of the following result uses a so-
alled fusion argument, a te
h-nique whi
h we will meet again in Part III (Lemma 9.1 itself is used in theproof of Theorem 9.2).Lemma 9.1. If C ⊆ [ω]ω is 
ompletely Ramsey-null, then for ea
h x ∈ [ω]ωthere is a y ∈ [x]ω su
h that C 
ontains no in�nite set z ⊆∗ y.Proof. Let C be 
ompletely Ramsey-null and x ∈ [ω]ω be arbitrary. By de�ni-tion of 
ompletely Ramsey-null there is a y0 ∈ [x]ω su
h that [∅, y0]ω ∩C = ∅and let a0 = min(y0). Assume we have already 
onstru
ted a sequen
e
x ⊇ y0 ⊇ . . . ⊇ yn of in�nite subsets of ω as well as a sequen
e a0 < . . . < anof natural numbers su
h that for all s ∈ P(an−1 + 1),

[s, yk]
ω ∩ C = ∅ .For h = 2an+1 let {si : i ∈ h} be an enumeration of P(an + 1) where

s0 = ∅. Further let z0 = yn \ (an + 1) and for ea
h i ∈ h 
hoose an in�niteset zi+1 ⊆ zi su
h that [si+1, zi+1]
ω ∩ C = ∅ (noti
e that we 
an do thisbe
ause C is 
ompletely Ramsey-null). Finally let yn+1 = zh−1; then for all

s ∈ P(an + 1) we have
[s, yn+1]

ω ∩ C = ∅ .Let now an+1 = min(yn+1) and start the pro
ess again with the sequen
es
x ⊇ y0 ⊇ . . . ⊇ yn+1 and a0 < . . . < an+1. At the end we get an in�nite
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e a0 < a1 < . . . < an < . . . and by 
onstru
tion the set y = {ai : i ∈ ω}has the property that for ea
h s ∈ fin(ω) with max(s) ∈ y,
[
s, y \

(
max(s) + 1

)]ω ∩ C = ∅ ,whi
h implies that for ea
h in�nite set z ⊆∗ y we have [∅, z]ω ∩C = ∅, i.e., C
ontains no in�nite set z ⊆∗ y. ⊣The Ideal of Ramsey-Null SetsBelow, we 
onsider the set of 
ompletely Ramsey-null sets. So, let
R0 =

{
C ⊆ [ω]ω : C is 
ompletely Ramsey-null}be the 
olle
tion of all subsets of [ω]ω whi
h are 
ompletely Ramsey-null. Sin
e

R0 is 
losed under subsets (i.e., C ∈ R0 and C′ ⊆ C implies C′ ∈ R0) and�nite unions (i.e., C0, . . . , Cn ∈ R0 implies C0 ∪ . . .∪Cn ∈ R0), R0 is an idealon P
(
[ω]ω

).Obviously, [ω]ω /∈ R0 but for every x ∈ [ω]ω we have {x} ∈ R0. Thus, theset [ω]ω 
an be 
overed by c 
ompletely Ramsey-null sets whi
h implies thatthe union of c sets from R0 
an be a set whi
h does not belong to R0. Theseobservations lead to the following two 
ardinal numbers.Definition. The additivity of R0, denoted add(R0), is the smallest num-ber of sets in R0 with union not in R0; more formallyadd(R0) = min
{
|C | : C ⊆ R0 ∧

⋃
C /∈ R0

}
.Definition. The 
overing number ofR0, denoted 
ov(R0), is the smallestnumber of sets in R0 with union [ω]ω; more formally
ov(R0) = min

{
|C | : C ⊆ R0 ∧

⋃
C = [ω]ω

}
.We leave it as an exer
ise to the reader to show (using a fusion argu-ment) that any 
ountable union of 
ompletely Ramsey-null sets is 
ompletelyRamsey-null. Hen
e, ω1 ≤ add(R0), and 
onsequently we get ω1 ≤ add(R0) ≤
ov(R0) ≤ c. Moreover, we even have the following result.Theorem 9.2. add(R0) = 
ov(R0) = h.Proof. Be
ause add(R0) ≤ 
ov(R0) it is enough to show that 
ov(R0) ≤ hand that h ≤ add(R0).
ov(R0) ≤ h: Let {Aξ : ξ ∈ h} be a shattering family of 
ardinality h. For ea
h

ξ ∈ h let Dξ =
{
y ∈ [ω]ω : ∃x ∈ Aξ(y ⊆∗ x)

} and let Cξ = [ω]ω \Dξ. Firstlynoti
e that for ea
h ξ ∈ h, Cξ ∈ R0. Indeed, take any [s, y]ω, then, sin
e Aξ ismad, there is an x ∈ Aξ su
h that y ∩ x is in�nite; thus, [s, y ∩ x]ω ⊆ Dξ, or
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ondly noti
e that ⋃ξ∈hCξ = [ω]ω. Indeed,take any y ∈ [ω]ω, then, sin
e {Aξ : ξ ∈ h} is shattering, there is a ξ ∈ h andtwo distin
t elements x, x′ ∈ Aξ su
h that y ∩ x as well as y ∩ x′ is in�nite;hen
e, y /∈ Dξ, or equivalently y ∈ Cξ.
h ≤ add(R0): Let {Cξ ⊆ [ω]ω : ξ ∈ κ < h} ⊆ R0 be a family of 
ompletelyRamsey-null sets of 
ardinality κ < h. We will show that ⋃ξ∈κ Cξ ∈ R0. Forea
h ξ ∈ κ let

Dξ =
{
y ∈ [ω]ω : ∀z ∈ [ω]ω(z ⊆∗ y → [∅, z]ω ∩ C = ∅)

}
.Now we 
hoose for ea
h ξ ∈ κ an almost disjoint family Aξ ⊆ Dξ of 
ardinality

c whi
h is maximal with respe
t to in
lusion. Noti
e that by Lemma 9.1, forea
h x ∈ [ω]ω there is a y ∈ Aξ su
h that x ∩ y is in�nite, i.e., Aξ ⊆ Dξ is amad family (on [ω]ω) of 
ardinality c. Indeed, if there would be an x ∈ [ω]ωAξwhi
h has �nite interse
tion with ea
h member of Aξ, then, by Lemma 9.1,there is a y ∈ [x]ω su
h that y ∈ Dξ \ Aξ whi
h would imply that Aξ is notmaximal. Be
ause κ < h we 
an apply Lemma 8.14 and get a mad family A ′whi
h re�nes ea
h Aξ. Take any set [s, x]ω. Sin
e A ′ is mad, there is a y′ ∈ A ′su
h that x∩ y′ is in�nite; let z = x∩ y′. Be
ause A ′ re�nes all Aξ's, for ea
h
ξ ∈ κ there is a y ∈ Aξ su
h that z ⊆∗ y, and sin
e Aξ ⊆ Dξ, by de�nition of
Dξ we get [∅, s ∪ z]ω ∩ Cξ = ∅, in parti
ular, [s, z]ω ∩ Cξ = ∅. Thus, for everyset [s, x]ω there exists a z ∈ [x]ω su
h that for all ξ ∈ κ, [s, z]ω ∩ Cξ = ∅, i.e.,
[s, z]ω ∩⋃

ξ∈κ Cξ = ∅, hen
e ⋃
ξ∈κ Cξ ∈ R0. ⊣The Ellentu
k TopologyBelow, we give a topologi
al 
hara
terisation of 
ompletely Ramsey sets, butbefore we have to introdu
e the basi
 notions of General Topology:A topologi
al spa
e is a pair (X,O) 
onsisting of a set X and a family

O of subsets of X satisfying the following 
onditions.(O1) ∅ ∈ O and X ∈ O.(O2) If O1 ∈ O and O2 ∈ O, then O1 ∩O2 ∈ O.(O3) If F ⊆ O, then ⋃
F ∈ O.The set X is 
alled a spa
e, the elements of X are 
alled points of the spa
e,and the subsets of X belonging to O are 
alled open and the 
omplements ofopen sets are 
alled 
losed. The family O of open subsets of X is also 
alleda topology on X .Let us 
onsider for example the real line R. For r1, r2 ∈ R de�ne (r1, r2) :=

{r ∈ R : r1 < r < r2}. Now, a set O ⊆ R is 
alled open if for every r ∈ Othere exists a real ε > 0 su
h that (r − ε, r + ε) ⊆ O (i.e., every r ∈ O is
ontained in an open interval 
ontained in O). We leave it as an exer
ise tothe reader to show that the family of open sets satis�es 
onditions (O1)�(O3).From (O2) is follows that the interse
tion of any �nite family of open setsis an open set, and from (O3) it follows that the union of any family of open
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k topology 215sets is open. Noti
e that arbitrary interse
tions of 
losed sets as well as �niteunions of 
losed sets are 
losed sets. For an arbitrary set A ⊆ X let
A
◦
=

⋃{
O ∈ O : O ⊆ A

}be the interior of A; and let
Ā =

⋂{
C : C is 
losed and A ⊆ C

}be the 
losure of A. Noti
e that A◦ is the largest open set 
ontained in Aand that Ā is the smallest 
losed set 
ontaining A.A family B ⊆ O is 
alled a base for a topologi
al spa
e (X,O) if everynon-empty open subset of X 
an be represented as the union of a subfamilyof B. The sets in a basis B are also 
alled basi
 open sets. If a family B ofsubsets of X is su
h that X ∈ B and every non-empty �nite interse
tion ofsets in B belongs to B, then (X,O), where
O =

{⋃
F : F ⊆ B

}
,is a topologi
al spa
e with base B (noti
e that ⋃ ∅ = ∅). In this 
ase we saythat the topology on X is generated by the basi
 open sets O ∈ B.For example the topology onR introdu
ed above is generated by the 
ount-ably many basi
 open intervals (q1, q2), where q1, q2 ∈ Q.Let (X,O) be a topologi
al spa
e and let A ⊆ X be a subset of X .

• A is 
alled dense if for every open set O ∈ O, A ∩O 6= ∅.
• A is 
alled nowhere dense if X \A 
ontains an open dense set.
• A is 
alled meagre if A is the union of 
ountably many nowhere densesets.
• A has the Baire property if there is an open set O ∈ O su
h that O△Ais meagre, where O△A = (O \ A) ∪ (A \ O) (i.e., x /∈ O△A i� either

x ∈ A ∩O or x /∈ A ∪O).Obviously, meagre sets and open sets have the Baire property and 
ountableunions of meagre sets are meagre. Moreover, the following result shows thatthe Baire property is 
losed under 
omplementation and 
ountable unions andinterse
tions.Fa
t 9.3. (a) Every 
losed set has the Baire property.(b) The 
omplement of a set with the Baire property has the Baire property.(
) Unions and interse
tions of 
ountably many sets with the Baire propertyhave the Baire property.Proof. (a) Let A ⊆ X be a 
losed subset of X . We shall show that A \ A◦is nowhere dense. Firstly, A \ A◦ = A ∩ (X \ A◦), thus, A \ A◦ is 
losed and
X \ (A \A◦) is open. Se
ondly, no open set O ∈ O is 
ontained in A \A◦, and
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(
X \ (A \ A◦)

) is a non-empty open set. Thus, X \ (A \ A◦) isopen dense, or equivalently, A \A◦ is nowhere dense. In parti
ular, A◦△A ismeagre whi
h shows that A has the Baire property.(b) Assume that A ⊆ X has the Baire property and let O ∈ O be su
h that
O△A is meagre. Let Ō := X \ (X \O)◦ be the 
losure of O. By (a), Ō \O isnowhere dense. Thus, A△Ō is meagre and therefore (X \A)△(X \ Ō) is alsomeagre, whi
h shows that X \A has the Baire property.(
) By (b) it is enough to prove (
) for unions. So, let {An ⊆ X : n ∈ ω

} bea family of sets whi
h have the Baire property. For ea
h n ∈ ω let On ∈ O bean open set su
h that On△An is meagre. Then
M =

⋃

n∈ω

On △
⋃

n∈ω

An ⊆
⋃

n∈ω

(
On△An

)is a subset of a 
ountable union of meagre sets. Hen
e, M is meagre whi
hshows that ⋃n∈ω An has the Baire property. ⊣Consider now the set [ω]ω. The aim is to de�ne a topology on [ω]ω su
h thata set A ⊆ [ω]ω has the Baire property (with respe
t to that topology) if andonly if A is 
ompletely Ramsey. For this let
B =

{
[s, x]ω ⊆ [ω]ω : s ∈ fin(ω) ∧ x ∈ [ω]ω ∧max(s) < min(x)

}
,where we de�ned [s, x]ω :=

{
z ∈ [ω]ω : s ⊆ z ⊆ s ∪ x

}. Obviously, [ω]ω =
[∅, ω]ω ∈ B and we leave it as an exer
ise to the reader to show that every non-empty �nite interse
tion of sets in B belongs to B �noti
e that [s, x]ω∩[t, y]ωis either empty or it is [s ∪ t, x ∩ y]ω . Thus, O =

{⋃
F : F ⊆ B

} is atopology on [ω]ω, 
alled the Ellentu
k topology.In Chapter 21 we shall introdu
e a topology on ωω whi
h 
orresponds tothe topology on [ω]ω generated by the basi
 open sets [s, ω \max(s) + 1]ω.Noti
e that with respe
t to the Ellentu
k topology, ea
h singleton set
{x} ⊆ [ω]ω is nowhere dense and all 
ountable sets are meagre. Furthermore,by de�nition, subsets of meagre sets as well as 
ountable unions of meagre setsare meagre. Thus, the 
olle
tion of all meagre subsets of [ω]ω is an ideal on
P

(
[ω]ω

). The following theorem shows that the ideal of meagre sets 
oin
idewith the ideal of 
ompletely Ramsey-null sets, and that a set is 
ompletelyRamsey i� it has the Baire property; for the latter result we have to prove�rst the following lemma, whose proof uses twi
e a fusion argument.Lemma 9.4. Every open set is 
ompletely Ramsey.Proof. Firstly we introdu
e some terminology: Let O ⊆ [ω]ω be an arbitrarybut �xed open set. A basi
 open set [s, x]ω is 
alled good (with respe
t to
O), if there is a set y ∈ [x]ω su
h that [s, y]ω ⊆ O; otherwise it is 
alledbad. Further, [s, x]ω is 
alled ugly if [s ∪ {a}, x \ a+]ω is bad for all a ∈ x,where a+ := a + 1. Noti
e that if [s, x]ω is ugly, then [s, x]ω is bad, too.
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k topology 217Finally, [s, x]ω is 
alled 
ompletely ugly if [s ∪ {a0, . . . , an}, x \ a+n ]ω is badfor all {a0, . . . , an} ⊆ x with a0 < . . . < an. If [s, x]ω is 
ompletely ugly, then
[s, x]ω ∩ O = ∅ (noti
e that [s, x]ω ∩ O is open, and therefore is either emptyor 
ontains a basi
 open set [t, y]ω ⊆ [s, x]ω).Now, in order to show that the open set O is 
ompletely Ramsey it isenough to prove that every basi
 open set [s, x]ω is either good or there existsa z ∈ [x]ω su
h that [s, z]ω is 
ompletely ugly. This is done in two steps: Firstlywe show that if [s, x]ω is bad, then there exists a y ∈ [x]ω su
h that [s, y]ω isugly, and se
ondly we show that if [s, y]ω is ugly, then there exists a z ∈ [y]ωsu
h that [s, z]ω is 
ompletely ugly.Claim 1. If the basi
 open set [s, x]ω is bad, then there exists a set y ∈ [x]ωsu
h that [s, y]ω is ugly.Proof of Claim 1. Let x0 := x and a0 := min(x0), and for i ∈ ω let xi+1 ⊆
(xi \ a+i ) su
h that [s ∪ {ai}, xi+1]

ω ⊆ O if possible, and xi+1 = xi \ a+iotherwise. Further, let ai+1 := min(xi+1). Stri
tly speaking we assume that
[ω]ω is well-ordered and that xi+1 is the �rst element of [ω]ω with the requiredproperties. Now, let y =

{
ai : [s ∪ {ai}, xi+1]

ω * O
}. Be
ause [s, x]ω is bad,

y ∈ [ω]ω, whi
h implies that [s, y]ω is ugly. ⊣Claim 1Claim 2. If the basi
 open set [s, y]ω is ugly, then there exists a set z ∈ [y]ωsu
h that [s, z]ω is 
ompletely ugly.Proof of Claim 2. This follows by an iterative appli
ation of Claim 1. Let
y0 := y and let a0 := min(y0). For every i ∈ ω we 
an 
hoose a set
yi+1 ⊆ (yi \ a+i ), where ai := min(yi), su
h that for ea
h t ⊆ {a0, . . . , ai}we have either [s ∪ t, yi+1]

ω is ugly or [s ∪ t, yi+1]
ω ⊆ O. Let z := {ai : i ∈ ω}and assume towards a 
ontradi
tion that there exists a �nite set t ⊆ zsu
h that [s ∪ t, z \max(t)+]ω is good. Noti
e that sin
e [s, y]ω was assumedto be ugly, t 6= ∅. Now, let t0 be a smallest �nite subset of z su
h that

[s ∪ t0, z \max(t0)
+]ω is good and let t−0 = t0 \ {max(t0)}. By de�nition of

t0, [s ∪ t−0 , z \max(t0)]
ω 
annot be good (i.e., it is bad), and therefore, by
onstru
tion of z, it must be ugly. On the other hand, if [s ∪ t−0 , z \max(t0)]

ωis ugly, then [s ∪ t0, z \max(t0)
+]ω is bad, whi
h is a 
ontradi
tion to our as-sumption that [s ∪ t0, z \max(t0)

+]ω is good. Thus, for all �nite subsets t ⊆ z,
[s ∪ t, z \max(t)+]ω is ugly, and therefore [s, z]ω is 
ompletely ugly. ⊣Claim 2Let [s, x]ω be an arbitrary basi
 open set. If [s, x]ω is good, then there exists a
y ∈ [x]ω su
h that [s, y]ω ⊆ O. Otherwise, [s, x]ω is bad and we �nd a z ∈ [x]ωsu
h that [s, z]ω is 
ompletely ugly, i.e., [s, z]ω ∩ O = ∅. Hen
e, the arbitraryopen set O is 
ompletely Ramsey. ⊣We shall use the very same fusion arguments again in Chapter 24 in order toprove that Mathias for
ing has pure de
ision (see proof of Theorem 24.3).Theorem 9.5 (Ellentu
k). For every A ⊆ [ω]ω we have:(a) A is nowhere dense if and only if A is 
ompletely Ramsey-null.



218 9 The Shattering Number revisited(b) A is meagre if and only if A is nowhere dense.(
) A has the Baire property if and only if A is 
ompletely Ramsey.Proof. (a) A set A ⊆ [ω]ω is nowhere dense i� for ea
h basi
 open set [s, x]ωthere exists a basi
 open set [t, y]ω ⊆ [s, x]ω su
h that [t, y]ω∩A = ∅. Hen
e, weobviously have that every 
ompletely Ramsey-null set is nowhere dense. Forthe other dire
tion assume that A ⊆ [ω]ω is not 
ompletely Ramsey-null, i.e.,there is a basi
 open set [s, x]ω su
h that for all basi
 open sets [s, y]ω ⊆ [s, x]ωwe have [s, y]ω∩A 6= ∅. By a fusion argument we 
an 
onstru
t a set z0 ∈ [x]ωsu
h that for all [t, y]ω ⊆ [s, z0]
ω we have [t, y]ω ∩A 6= ∅, i.e., A is not nowheredense.(b) On the one hand, nowhere dense sets are meagre. On the other hand, byTheorem 9.2 we have add(R0) = h and sin
e h is un
ountable we get that
ountable unions of 
ompletely Ramsey-null sets (i.e., of nowhere dense sets)are 
ompletely Ramsey-null. Thus, meagre sets are 
ompletely Ramsey-nulland therefore nowhere dense.(
) On the one hand, if A ⊆ [ω]ω is 
ompletely Ramsey, then O =

⋃{
[s, y]ω :

[s, y]ω ⊆ A
} is an open subset of A and for ea
h basi
 open set [s, x]ω there isa y ∈ [x]ω su
h that either [s, y]ω ⊆ A (i.e., [s, y]ω ⊆ (A∩O) and in parti
ular

[s, y]ω ∩ (O△A) = ∅), or [s, y]ω ∩ A = ∅ (i.e., [s, y]ω ∩ (A ∪ O) = ∅ and inparti
ular [s, y]ω ∩ (O△A) = ∅). In both 
ases we have [s, y]ω ∩ (O△A) = ∅whi
h implies that O△A is meagre and shows that A has the Baire property.On the other hand, if A ⊆ [ω]ω has the Baire property then there is anopen set O ⊆ [ω]ω su
h that O△A is meagre, thus by (b), O△A is 
ompletelyRamsey-null. Now, O△A ∈ R0 i� for ea
h basi
 open set [s, y]ω there is a
z ∈ [y]ω su
h that [s, z]ω ∩ (O△A) = ∅. Be
ause O is 
ompletely Ramsey (byLemma 9.4), for every basi
 open set [s, x]ω there is a set y ∈ [x]ω su
h thateither [s, y]ω ⊆ O or [s, y]ω ∩O = ∅, and in both 
ases there is a z ∈ [y]ω su
hthat [s, z]ω ∩ (O△A) = ∅. Thus, we have either [s, z]ω ⊆ A or [s, z]ω ∩A = ∅,whi
h shows that A is 
ompletely Ramsey. ⊣As a 
onsequen
e we get the followingCorollary 9.6. The union of less than h 
ompletely Ramsey sets is 
om-pletely Ramsey.Proof. Let κ < h and let {

Cξ ⊆ [ω]ω : ξ ∈ κ
} be a family of 
ompletelyRamsey sets. For ea
h ξ ∈ κ let Oξ ⊆ [ω]ω be an open set su
h that Oξ△Cξis meagre. Then

D =
⋃

ξ∈κ

Oξ △
⋃

ξ∈κ

Cξ ⊆
⋃

ξ∈κ

(
Oξ△Cξ

)is a subset of a union of κ meagre sets, and sin
e κ < h, D is meagre andtherefore ⋃
ξ∈κ Cξ is 
ompletely Ramsey. ⊣



A generalised Suslin operation 219A generalised Suslin OperationFirst we introdu
e an operation on 
ertain families of sets and then we showthat the 
olle
tion of 
ompletely Ramsey sets is 
losed under that operation.Re
all that for arbitrary 
ardinals κ, seq(κ) denotes the set of all �nitesequen
es whi
h 
an be formed with elements of κ. As usual we identify theset seq(κ) with the set ⋃
n∈ω

nκ. Let {
Qs : s ∈ seq(κ)

} be a family of setsindexed by elements of seq(κ) and de�ne
Aκ

{
Qs : s ∈ seq(κ)

}
=

⋃

f∈ωκ

⋂

n∈ω

Qf |n .The operation Aω is 
alled the Suslin operation.Now we will show that the 
olle
tion of 
ompletely Ramsey sets (i.e., the 
ol-le
tion of sets having the Baire property) is 
losed under the generalised Suslinoperation Aκ whenever ω ≤ κ < h, i.e., for every family {
Qs : s ∈ seq(κ)

} of
ompletely Ramsey sets, Aκ

{
Qs : s ∈ seq(κ)

} is 
ompletely Ramsey.A set A ⊆ [ω]ω is meagre in the basi
 open set [s, x]ω if the interse
tion
A∩ [s, x]ω is meagre. Thus, by (a)& (b) of Theorem 9.5, A is meagre in [s, x]ωif for every [t, y]ω ⊆ [s, x]ω there is a y′ ∈ [y]ω su
h that A∩ [t, y′]ω = ∅. Now,for an arbitrary but �xed set A ⊆ [ω]ω let

M =
⋃{

[s, x]ω : A is meagre in [s, x]ω
}
.The main part of the following lemma is that A ∪

(
[ω]ω \M

) has the Baireproperty.Lemma 9.7. For A and M as above we have:(a) A is meagre in ea
h basi
 open set [s, x]ω ⊆M .(b) M ∩A is meagre.(
) A ∪
(
[ω]ω \M

) has the Baire property.Proof. (a) Let [s, x]ω ⊆M be an arbitrary basi
 open subset of M and let
N =

{
[t, y]ω ⊆ [s, x]ω : A is meagre in [t, y]ω

}
.Then, by de�nition of M and sin
e the basi
 open sets of the Ellentu
k topol-ogy are 
losed under �nite interse
tions,⋃N = [s, x]ω. So, for ea
h basi
 openset [u, z]ω ⊆ [s, x]ω there is a [t, y]ω ⊆ [u, z]ω whi
h belongs to N and we �nda y′ ∈ [y]ω su
h that [t, y′]ω ∩A = ∅. Sin
e [u, z]ω ⊆ [s, x]ω was arbitrary and

[t, y′]ω ⊆ [u, z]ω, this shows that A is meagre in [s, x]ω.(b) We have to show that [ω]ω\(M∩A) 
ontains an open dense set, i.e., for ev-ery basi
 open set [s, x]ω there is a [t, y]ω ⊆ [s, x]ω su
h that [t, y]ω∩M∩A = ∅.Let [s, x]ω be an arbitrary basi
 open set. If [s, x]ω∩M = ∅, then we are done.
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e M is open, [s, x]ω ∩ M ⊇ [t, y]ω for some basi
 open set
[t, y]ω; and sin
e [t, y]ω ⊆ M , by (a), A is meagre in [t, y]ω. Hen
e, there is a
[t, y′]ω ⊆ [t, y]ω su
h that [t, y′]ω∩A = ∅ whi
h shows that [t, y′]ω∩(M∩A) = ∅.(
) Noti
e that A ∪

(
[ω]ω \M

)
=

(
[ω]ω \M

)
∪ (M ∩A). Now, by (b), M ∩Ais meagre, and be
ause M is open, [ω]ω \M is 
losed. Thus, A ∪

(
[ω]ω \M

)is the union of a meagre set and a 
losed set and therefore has the Baireproperty. ⊣The following result is used in the proof of Theorem 9.9.Proposition 9.8. For every A ⊆ [ω]ω there is a set C ⊇ A whi
h has theBaire property and whenever Z ⊆ C \A has Baire property, then Z is meagre.Proof. Let C = A∪
(
[ω]ω\M

) whereM =
⋃{

[s, x]ω : A is meagre in [s, x]ω
}.By Lemma 9.7.(
) we know that C has the Baire property. Now let Z ⊆ C \Abe su
h that Z has the Baire property. If Z is not meagre, then there exists abasi
 open set [t, y]ω su
h that [t, y]ω \Z is meagre. In parti
ular, A is meagrein [t, y]ω and therefore [t, y]ω ⊆ M . On the other hand, sin
e [t, y]ω ∩ Z 6= ∅and Z ∩M = ∅ we get that [t, y]ω *M , a 
ontradi
tion. ⊣Now we are ready to prove that the 
olle
tion of 
ompletely Ramsey sets(i.e., the Baire property) is 
losed under the generalised Suslin operation Aκwhenever κ < h.Theorem 9.9. Let κ < h be an in�nite 
ardinal and for ea
h s ∈ seq(κ) let

Qs ⊆ [ω]ω. If all sets Qs are 
ompletely Ramsey, then
Aκ

{
Qs : s ∈ seq(κ)

}is 
ompletely Ramsey too.Proof. Let {Qs : s ∈ seq(κ)
} be a family of 
ompletely Ramsey sets. We haveto show that the set A = Aκ

{
Qs : s ∈ seq(κ)

} is 
ompletely Ramsey. Withoutloss of generality we may assume that Qs ⊇ Qt whenever s ⊆ t. For every
s ∈ seq(κ) let

As :=
⋃

f ∈ ωκ
s=f ||s|

⋂

n∈ω
n≥|s|

Qf |n .We leave it as an exer
ise to the reader to verify that A = A∅ and that forevery s ∈ seq(κ) we have As ⊆ Qs and As =
⋃
α∈κAs⌢〈α〉. Further, noti
ethat

A = Aκ

{
As : s ∈ seq(κ)

}
.By Proposition 9.8, for ea
h s ∈ seq(κ) we �nd a set Cs ⊇ As whi
h is
ompletely Ramsey and whenever Z ⊆ Cs \As is 
ompletely Ramsey, then Zis 
ompletely Ramsey-null. Be
ause Qs ⊇ As and Qs is 
ompletely Ramsey,we may assume that Cs ⊆ Qs, and thus,
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A = Aκ

{
Cs : s ∈ seq(κ)

}
.Let C := C∅ and noti
e that A =

⋃
α∈κA〈α〉 ⊆ ⋃

α∈κ C〈α〉, in parti
ular,
C ⊆ ⋃

α∈κ C〈α〉. Now we show that
C \A ⊆

⋃

α∈κ

C〈α〉 ⊆
⋃

f∈ωκ

⋂

n∈ω

Cf |n ⊆
⋃

s∈seq(κ)

(
Cs \

⋃

α∈κ

Cs⌢〈α〉

)
.Let x ∈ [ω]ω be su
h that

x /∈
⋃

s∈seq(κ)

(
Cs \

⋃

α∈κ

C
s
⌢
〈α〉

)
. (/∈)If for all α ∈ κ, x /∈ C〈α〉, then x /∈ C. On the other hand, if there existsan α0 ∈ κ su
h that x ∈ C〈α0〉, then by (/∈) we �nd an α1 su
h that x ∈

C〈α0,α1〉, and again by (/∈) we �nd an α2 su
h that x ∈ C〈α0,α1,α2〉, et 
etera,and �nally we �nd an f ∈ ωκ su
h that for all n ∈ ω, x ∈ Cf |n , whi
himplies that x ∈ A. Further, Cs \⋃α∈κ Cs⌢〈α〉 ⊆ Cs \
⋃
α∈κAs⌢〈α〉 = Cs \As,and sin
e ⋃

α∈κCs⌢〈α〉 is the union of less than h 
ompletely Ramsey sets,
Cs \ ⋃

α∈κ Cs⌢〈α〉 is 
ompletely Ramsey, and as a subset of Cs \ As it is
ompletely Ramsey-null. Thus, C \ A, as a subset of a union of less than h
ompletely Ramsey-null sets, is 
ompletely Ramsey-null, and be
ause C is
ompletely Ramsey, A is 
ompletely Ramsey too. ⊣NotesLemma 9.1 and Theorem 9.2 are due to Plewik [18℄. The Ellentu
k topology on
[ω]ω was introdu
ed by Ellentu
k in [6℄ (for a 
omprehensive exposition of GeneralTopology we refer the reader to Engelking [7℄). The main result of that paper is The-orem 9, whi
h is now known as Ellentu
k's Theorem 9.5 (see also Matet [16℄).However, the aim of Ellentu
k's paper was to give a simpler proof for the fa
t thatevery analyti
 set is 
ompletely Ramsey� a fa
t whi
h also follows from Theo-rem 9.9 (
f. Galvin and Prikry [8℄ and Silver [19℄). The proof of Theorem 9.9 issimilar to the proof of Je
h [12, Theorem 11.18℄ and is essentially taken from Hal-beisen [9, Se
tion 3℄ (see also Matet [15, Proposition 9.8℄).Related Results60. The ideal of 
ompletely doughnut null sets∗. In Chapter 2, the doughnut propertywas introdu
ed. Now, similarly as we de�ned the idealR0 of 
ompletely Ramsey-null sets one 
an de�ne the ideal v0 of 
ompletely doughnut null sets. By The-orem 9.2 we know that add(R0) = 
ov(R0), however, it is not known whetherwe also have add(v0) = 
ov(v0) (see Halbeisen [10, Question 4℄). A partial an-swer to this problem 
an be found in Kalemba, Plewik, and Woj
ie
howska [13℄,where it is shown that t = min{cf(c), r} implies add(v0) = 
ov(v0).



222 9 The Shattering Number revisited61. R0 and other σ-ideals on [ω]ω. In [5℄, Corazza 
ompares the ideal of 
om-pletely Ramsey-null sets with other σ-ideals like the ideal of Lebesgue measurezero, meagre, and Mar
zewski measure zero sets of reals (see also Louveau [14℄,Anisz
zyk, Frankiewi
z, Plewik [1℄, and Brown [3℄).62. Ellentu
k type theorems. In [4℄, Carlson and Simpson survey the interplay be-tween topology and Ramsey Theory. In parti
ular, an abstra
t version of Ellen-tu
k's Theorem 9.5 is introdu
ed and dis
ussed. For a further developmentof this theory see for example Mijares [17℄.Let βω \ ω denote the set of all non-prin
ipal ultra�lters over ω. For A ⊆ ω de�ne
A∗ = {U ∈ βω \ ω : A ∈ U } ,and let B

∗ = {A∗ : A ⊆ ω}. Noti
e that ω∗ = βω \ω and that A∗ = ∅ i� A is �nite.Furthermore, for all A∗, B∗ ∈ B
∗ we have

A∗ ∩B∗ = (A ∩B)∗ and A∗ ∪ B∗ = (A ∪ B)∗.In parti
ular, B
∗ has the property that interse
tions of sets in B

∗ belong to B
∗,thus, B

∗ is a base for a topology on βω \ ω. The set βω \ ω with the topologygenerated by the basi
 open sets A∗ ∈ B
∗ is a topologi
al spa
e whi
h has manyinteresting properties; the following results 
an be found for example in Todor£e-vi¢ [20, Se
tion 14℄.

• βω \ ω is Hausdor� ([20, Lemma 1℄).
• βω \ ω is 
ompa
t ([20, Lemma 2℄).
• βω \ ω 
ontains no non-trivial 
onverging sequen
es ([20, Theorem 2℄).For an introdu
tion to βω \ ω see van Mill [21℄, and for 
ombinatorial properties of
βω \ ω we refer the reader to Hindman and Strauss [11℄.63. The minimum height of a tree π-base of βω\ω. A family P ⊆ B

∗ of basi
 opensets is a π-base for βω\ω if every non-empty element of B
∗ 
ontains a memberof P . If a π-base P ⊆ B

∗ is a tree when 
onsidered as a partially ordered setunder reverse in
lusion (i.e., for every A∗ ∈ P , A∗
≤ := {B∗ ∈ P : A∗ ⊆ B∗} iswell-ordered by �⊇ �), then P is 
alled a tree π-base of βω \ω. If P ⊆ B

∗ is atree π-base of βω \ω, then the height of an element A∗ ∈ P , denoted h(A∗), isthe order type of A∗
≤ (well-ordered by �⊇ �), and the height of P is de�ned by

h(P) :=
⋃{

h(A∗) : A∗ ∈ P
}. Now, the Base Matrix Lemma 2.11 of Bal
ar,Pelant, and Simon [2℄ (see Chapter 8 |Related Result 51) shows that h is theminimum height of a tree π-base of βω \ ω, i.e.,

h = min
{
h(P) : P ⊆ B

∗ is a tree π-base of βω \ ω
}
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10Happy Families and their Relatives
A 
aden
e is a 
ertain simultaneous progression ofall the voi
es in a 
omposition a

ompanying a re-pose in the harmony or the 
ompletion of a mean-ingful segment of the text. Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558In this 
hapter we shall investigate 
ombinatorial properties of 
ertainfamilies of in�nite subsets of ω. In order to do so, we shall use many ofthe 
ombinatorial tools developed in the pre
eding 
hapters. The familieswe investigate� parti
ularly P -families and Ramsey families � will play akey role in understanding the 
ombinatorial properties of Silver and Mathiasfor
ing notions (see Chapter 22 and Chapter 24 respe
tively).Happy FamiliesThe P -families and Ramsey families mentioned above are relatives to the so-
alled happy families. The name �happy families� 
omes from a 
hildren's
ard game, where the idea of the game is to 
olle
t the members of �
tionalfamilies. The 
onne
tion to families in Set Theory is that a family E ⊆ [ω]ωis happy if for every 
ountable de
reasing sequen
e y0 ⊇ y1 ⊇ · · · of elementsof E there is a member of E whi
h sele
ts 
ertain elements from the sets yi(
f. Proposition 10.6.(b)). This explains why happy families are also 
alledsele
tive 
o-ideals�whi
h is more sober but less amusing.Firstly re
all that a family F ⊆ [ω]ω is a �lter if it is 
losed under supersetsand �nite interse
tions, and that the Fré
het �lter is the �lter 
onsisting ofall 
o-�nite subsets of ω (i.e., all x ∈ [ω]ω su
h that ω \ x is �nite). To keepthe notation short, for x ⊆ ω de�ne x
 := ω \ x. For a �lter F ⊆ [ω]ω, F+



226 10 Happy Families and their Relativesdenotes the 
olle
tion of all sets x ⊆ ω su
h that ω \ x does not belong to F ,i.e.,
F

+ =
{
x ⊆ ω : x
 /∈ F

}
.An equivalent de�nition of F+ is given by the followingFa
t 10.1. For any �lter F ⊆ [ω]ω, x ∈ F+ if and only if x∩z is non-emptywhenever z ∈ F .Proof. On the one hand, if, for some z ∈ F , x ∩ z = ∅, then x
 ⊇ z, whi
himplies that x
 ∈ F and therefore x /∈ F+. On the other hand, if, for some

x ⊆ ω, x
 ∈ F , then we obviously have x ∩ x
 = ∅, thus, x does not meetevery member of F . ⊣If U is an ultra�lter and x ∪ y ∈ U , then at least one of x and y belongsto U . In general, this is not the 
ase for �lters F , but it holds for F+.Lemma 10.2. Let F ⊆ [ω]ω be a �lter. If F+ 
ontains x∪y, then it 
ontainsat least one of x and y.Proof. If neither x nor y belongs to F+, then x
, y
 ∈ F . Hen
e, (x ∪ y)
 =
x
 ∩ y
 ∈ F , and therefore x ∪ y /∈ F+. ⊣Now, a �lter F ⊆ [ω]ω is 
alled a free �lter if it 
ontains the Fré
het�lter. In parti
ular, every ultra�lter on [ω]ω is free. Noti
e that for a free �lter
F , F+ =

{
x ⊆ ω : ∀z ∈ F

(
|x ∩ z| = ω

)}, and that a �lter U ⊆ [ω]ω is anultra�lter i� U = U +. Finally, a family E of subsets of ω is 
alled a freefamily if there is a free �lter F ⊆ [ω]ω su
h that E = F+. In parti
ular, [ω]ωand all ultra�lters on [ω]ω are free families. Noti
e that a free family does not
ontain any �nite sets and is 
losed under supersets. Moreover, a free family
E is 
losed under �nite interse
tions i� E is an ultra�lter on [ω]ω.Re
all that fin(ω) denotes the set of all �nite subsets of ω. To keep thenotation short, for s ∈ fin(ω) let s̄ := ⋃

s, and for n ∈ ω let n+ := n + 1 (inother words, n+ is the su

essor 
ardinal of n). In parti
ular, for non-emptysets s ∈ fin(ω) we have s̄ = max(s) and s̄+ = max(s) + 1.A set x ⊆ ω is said to diagonalise the set {xs : s ∈ fin(ω)
}
⊆ [ω]ω if thefollowing 
onditions are satis�ed:

• x ⊆ x∅;
• for all s ∈ fin(ω), if s̄ ∈ x then x \ s̄+ ⊆ xs.For A ⊆ [ω]ω we write fil(A ) for the �lter generated by the members of A ,i.e., fil(A ) 
onsists of all subsets of ω whi
h are supersets of interse
tions of�nitely many members of A .Now, a set E ⊆ [ω]ω is a happy family if E is a free family and whenever
fil
({
xs : s ∈ fin(ω)

})
⊆ E , there is an x ∈ E whi
h diagonalises the set{

xs : s ∈ fin(ω)
}.Below, we give two examples of happy families; in the �rst the family is aslarge as possible, and in the se
ond the family is of medium size� in the nextse
tion we shall see examples of happy families whi
h are as small as possible.
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t 10.3. The family [ω]ω is happy.Proof. Let {xs : s ∈ fin(ω)
}
⊆ [ω]ω be a subfamily of [ω]ω and assume that

fil
({
xs : s ∈ fin(ω)

})
⊆ [ω]ω, i.e., the interse
tion of �nitely many elements of{

xs : s ∈ fin(ω)
} is in�nite. Let n0 :=

⋂
x∅ and for k ∈ ω 
hoose nk+1 > nksu
h that

nk+1 ∈
⋂{

xs : s̄
+ ≤ nk + 1

}
.By our assumption, those 
hoi
es are possible. Let x = {nk : k ∈ ω}; then

x ⊆ x∅, and whenever s̄ = nk (i.e., s̄+ ≤ nk + 1), we get
x \ s̄+ ⊆

⋂{
xs : s̄

+ ≤ nk + 1
}
.In parti
ular, x \ s̄+ ⊆ xs, as required. ⊣In order to 
onstru
t non-trivial examples of happy families, we have tointrodu
e �rst the following notion: For a mad family A ⊆ [ω]ω, let FA bethe 
olle
tion of all subsets of ω whi
h are almost 
ontained in supersets of
omplements of �nite unions of members of A .The goal is to show that F

+
A

is a happy family whenever A ⊆ [ω]ω is amad family, but for this we have to prove �rst that FA is a free �lter.Proposition 10.4. If A ⊆ [ω]ω is a mad family, then FA is a free �lter butnot an ultra�lter.Proof. Let A ⊆ [ω]ω be a mad family and let
FA =

{
y ∈ [ω]ω : ∃x0 . . . xn ∈ A

(
(x0 ∪ . . . ∪ xn)
 ⊆∗ y

)}
.Firstly, FA is a free �lter: By de�nition, FA is 
losed under supersets and
ontains all 
o-�nite sets, and sin
e A is mad, no 
o-�nite set is the unionof �nitely many members of A , hen
e, FA does not 
ontain any �nite set.Further, for any y, y′ ∈ FA there are x0, . . . , xn and x′0, . . . , x

′
m in A su
hthat ( ⋃

i∈n

xi

)

⊆∗ y and ( ⋃

j∈m

x′j

)

⊆∗ y′ ,whi
h shows that

( ⋃

i∈n

xi ∪
⋃

j∈m

x′j

)

⊆∗ y ∩ y′ ∈ FA .Se
ondly, FA is not an ultra�lter: We have to �nd a set z ∈ [ω]ω su
h thatneither z nor z
 belongs to FA . Let {xi : i ∈ ω} be distin
t elements of A .Noti
e that it is enough to 
onstru
t a set z ∈ [ω]ω su
h that both z and

z
 have in�nite interse
tion with ea
h xi. To 
onstru
t su
h a set z, take astri
tly in
reasing sequen
e n0 < . . . < nk < . . . of natural numbers su
h thatfor ea
h k ∈ ω, if k = 2l(2m+1), then both n2k and n2k+1 are in xm and put
z = {n2k : k ∈ ω}. ⊣



228 10 Happy Families and their RelativesNow we are ready to give non-trivial examples of happy families. Even thoughthe proof of the following proposition be
omes 
onsiderably easier by the
hara
terisation of happy families given by Proposition 10.6.(b), we thinkit makes sense to have some non-trivial examples of happy families � and towork with the original de�nition� before giving an equivalent de�nition ofhappy families.Proposition 10.5. Let A ⊆ [ω]ω be a mad family. Then F
+

A
is a happyfamily.Proof. Given any family {

yt : t ∈ fin(ω)
} with fil

({
xs : s ∈ fin(ω)

})
⊆ F

+
A
.For s ∈ fin(ω), let xs =

⋂{
yt : t̄ ≤ s̄

}. Then for any n ∈ ω, x{n} = xswhenever n = s̄. We shall 
onstru
t an x ∈ F
+

A
whi
h diagonalises {

yt :

t ∈ fin(ω)
} by showing that for all n ∈ ω, x \ n+ ⊆ x{n}. For this, let

x0 �
onstru
ted as in the proof of Fa
t 10.3�diagonalise {xs : s ∈ fin(ω)
}.We may not assume that x0 belongs to F

+
A
, i.e., there might be a z ∈ F su
hthat x0 ∩ z is �nite. However, sin
e A is mad, there is a y0 ∈ A su
h that

x0∩y0 is in�nite. For ea
h s ∈ fin(ω) de�ne x1s := xs\y0. Noti
e that all x1s arein�nite and that fil ({x1s : s ∈ fin(ω)
})

⊆ F
+

A
, as y0 ∈ A . Let x1 diagonalise{

x1s : s ∈ fin(ω)
} and let y1 ∈ A be su
h that x1 ∩ y1 is in�nite. Sin
e

x1 ⊆ x1∅ ⊆ ω \ y0 we get y1 6= y0. Further, noti
e that x1 also diagonalises{
xs : s ∈ fin(ω)

}. Now, for ea
h s ∈ fin(ω) de�ne x2s := xs \ (y0 ∪ y1)and pro
eed as before. After 
ountably many steps we have 
onstru
ted twosequen
es of in�nite sets, 〈xi : i ∈ ω〉 and 〈yi : i ∈ ω〉, su
h that ea
h yibelongs to A , yi 6= yj whenever i 6= j, xi ∩ yi is in�nite (for all i ∈ ω), and
xi diagonalises {

xs : s ∈ fin(ω)
}. Constru
t a stri
tly in
reasing sequen
e

n0 < . . . < nk < . . . of natural numbers su
h that n0 ∈ x∅ and for ea
h k ∈ ω,if k = 2i(2m+ 1), then
nk ∈ yi ∩ xi ∩ x{nk−1} .Su
h a sequen
e of natural numbers exists be
ause all su�
iently largenumbers in xi belong to x{nk−1} and sin
e yi ∩ xi is in�nite. Finally, let

x = {nk : k ∈ ω}. Then x diagonalises {
xs : s ∈ fin(ω)

} and it remains toshow that x ∈ F
+

A
, i.e., x has in�nite interse
tion with ea
h member of FA .By 
onstru
tion, for ea
h i ∈ ω, x∩yi is in�nite, and sin
e A is mad, x\ yi isin�nite as well. Thus, x has in�nite interse
tion with the 
omplement of any�nite union of elements in A , hen
e, x ∈ F

+
A
. ⊣After having seen that there are non-trivial happy families, let us givenow another 
hara
terisation of happy families whi
h will be used later inthis 
hapter.Proposition 10.6. For a free family E , the following statements are equiv-alent:(a) E is happy.



Ramsey ultra�lters 229(b) If y0 ⊇ y1 ⊇ · · · ⊇ yi ⊇ · · · is a 
ountable de
reasing sequen
e of elementsof E , then there is a fun
tion f ∈ ωω su
h that f [ω] ∈ E , f(0) ∈ y0, and forall n ∈ ω we have f(n+ 1) ∈ yf(n).Proof. (a)⇒(b) Assume that E is happy and let {yi : i ∈ ω} ⊆ E be su
hthat for all i ∈ ω, yi+1 ⊆ yi. For ea
h s ∈ fin(ω) de�ne
xs =

⋂{
yi : i ≤ s̄

}
.Noti
e that fil ({xs : s ∈ fin(ω)

})
⊆ E . Sin
e E is assumed to be happy thereis an x whi
h diagonalises the family {

xs : s ∈ fin(ω)
}. Let f = fx� re
allthat fx ∈ ωω is the (unique) stri
tly in
reasing bije
tion between ω and x(de�ned in Chapter 8). For an arbitrary n ∈ ω let s := x ∩

(
f(n) + 1

). Then
s̄+ = f(n) + 1 and s̄ ∈ x. As f(n+ 1) ∈ x \ s̄+ and x \ s̄+ ⊆ xs ⊆ yf(n), wehave f(n+1) ∈ yf(n), and sin
e n was arbitrary, f has the required properties.(b)⇒(a) Assume now that E has property (b) and let {xs : s ∈ fin(ω)

}
⊆ Ebe su
h that fil

({
xs : s ∈ fin(ω)

})
⊆ E . We have to �nd an x ∈ E whi
hdiagonalises {xs : s ∈ fin(ω)

}. For ea
h i ∈ ω de�ne
yi =

⋂{
xs : s̄ ≤ i

}
.Obviously, for ea
h i ∈ ω we have yi ∈ E and yi+1 ⊆ yi. By (b) there is afun
tion f ∈ ωω su
h that f [ω] ∈ E and for all n ∈ ω we have f(n+1) ∈ yf(n).Let x := f [ω] and let s ∈ fin(ω) be su
h that s̄ ∈ x. Then there exists an n ∈ ωsu
h that f(n) = s̄, and for every k ∈ x \ s̄+ we have k = f(m) for some

m > n, hen
e, k ∈ yf(n). Now, s̄+ = f(n) + 1, and sin
e yf(n) ⊆ xs we get
k ∈ xs. Hen
e, for all s ∈ fin(ω) with s̄ ∈ x we have x \ s̄+ ⊆ xs, whi
h showsthat x diagonalises {xs : s ∈ fin(ω)

}. ⊣We leave it as an exer
ise to the reader to �nd an easier proof of Proposi-tion 10.5 by using the 
hara
terisation of happy families given by Proposi-tion 10.6.(b).Ramsey Ultra�ltersSo far we have seen two examples of happy families. In the �rst example(Fa
t 10.3), the happy family was as large as possible, and in the se
ondexample (Proposition 10.5), the happy families were of medium size. Below,we 
onsider happy families whi
h are as small as possible, i.e., happy familieswhi
h are ultra�lters.A free ultra�lter U ⊆ [ω]ω is a Ramsey ultra�lter if for every 
olouring
π : [ω]2 → 2 there exists an x ∈ U whi
h is homogeneous for π, i.e., π|[x]2 is
onstant.
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hara
terisations of Ramsey ul-tra�lter. The �rst 
hara
terisation of Ramsey ultra�lters is related to P -pointsand Q-points (introdu
ed below), and the se
ond 
hara
terisation show thata Ramsey ultra�lter is an ultra�lter that is also a happy family.Proposition 10.7. For every free ultra�lter U , the following 
onditions areequivalent:(a) U is a Ramsey ultra�lter.(b) Let {ui ⊆ ω : i ∈ ω} be a partial partition of ω, i.e., ⋃{ui : i ∈ ω} ⊆ ωand for any distin
t i, j ∈ ω we have ui ∩ uj = ∅. Then either ui ∈ U for a(unique) i ∈ ω, or there exists an x ∈ U su
h that for ea
h i ∈ ω, |x∩ui| ≤ 1.(
) U is happy.Proof. (a)⇒(b) Let {ui : i ∈ ω} be a partition of ω. With respe
t to {ui :
i ∈ ω} de�ne the 
olouring π : [ω]2 → 2 as follows:

π
(
{n,m}

)
=

{
0 if there is an i ∈ ω su
h that {n,m} ⊆ ui,

1 otherwise.By (a) there is an x ∈ U su
h that π|[x]2 is 
onstant. Now, if π|[x]2 is 
onstantlyzero, then there exists an i ∈ ω su
h that x ⊆ ui, hen
e, ui ∈ U . On the otherhand, if π|[x]2 is 
onstantly one, then for any distin
t n,m ∈ x and any i ∈ ωwe get that {n,m}∩ ui has at most one element, hen
e, for ea
h i ∈ ω, x∩uihas at most one element.(b)⇒(
) By Proposition 10.6 it is enough to show that for every 
ountablede
reasing sequen
e y0 ⊇ y1 ⊇ . . . ⊇ yn ⊇ . . . of elements of U there is afun
tion f ∈ ωω su
h that f [ω] ∈ U , f(0) ∈ y0, and for all k ∈ ω we have
f(k + 1) ∈ yf(k). If y =

⋂
n∈ω yn ∈ U , then the fun
tion fy ∈ ωω has therequired properties. So, let us assume that ⋂n∈ω yn /∈ U and without loss ofgenerality let us further assume that for all n ∈ ω, yn \ yn+1 6= ∅. Considerthe partition {

y
0 ∪⋂
n∈ω yn

}
∪ {yn \ yn+1 : n ∈ ω} and noti
e that none ofthe pie
es are in U . By (b), there exists a set x = {an : n ∈ ω} ∈ U su
hthat for all n ∈ ω, x ∩ (yn \ yn+1) = {an}, in parti
ular, x ∩ ⋂

n∈ω yn = ∅.Let g ∈ ωω be a stri
tly in
reasing fun
tion su
h that g(0) > 0, g[ω] ⊆ x,and for all n ∈ ω, x \ g(n) ⊆ yn. For k ∈ ω let gk+1(0) := g
(
gk(0)

), where
g0(0) := 0. Further, for k ∈ ω let xk := x ∩

[
g2k(0), g2k+1(0)

)� re
all that
[a, b) = {i ∈ ω : a ≤ i < b}. Now, by (b) and sin
e U is an ultra�lter,there exists a set z = {ck : k ∈ ω} ⊆ x su
h that z ∈ U and for all k ∈ ω,
z∩xk = {ck}. Noti
e that by 
onstru
tion, for ea
h k ∈ ω we have ck+2 > g(ck)and ck+2 ∈ yck . Finally, sin
e U is an ultra�lter and {ck : k ∈ ω} ∈ U , either
{c2k : k ∈ ω} or {c2k+1 : k ∈ ω} belongs to U . In the former 
ase de�ne
f ∈ ωω by stipulating f(k) := c2k, otherwise de�ne f(k) := c2k+1. Then fhas the required properties.(
)⇒(a) Let U be an ultra�lter that is also a happy family, and further let
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π : [ω]2 → 2 be an arbitrary but �xed 
olouring. We have to �nd a y ∈ U su
hthat π|[y]2 is 
onstant. The proof is similar to the proof of Proposition 2.2.First we 
onstru
t a family {

xs : s ∈ fin(ω)
}
⊆ U . Let x∅ = ω, and let x{0} ∈

U be su
h that x{0} ⊆ ω \ {0} and for all k, k′ ∈ x{0} we have π({0, k}) =

π
(
{0, k′}

). Noti
e that sin
e U is an ultra�lter, x{0} exists. In general, if xsis de�ned and n > s̄, then let xs∪{n} ∈ U be su
h that xs∪{n} ⊆ xs \ n+ andfor all k, k′ ∈ xs∪{n} we have π({n, k}) = π
(
{n, k′}

). Sin
e U is happy, thereis a y ∈ U whi
h diagonalises the family {
xs : s ∈ fin(ω)

}. By 
onstru
tion,for ea
h n ∈ y and for all k, k′ ∈ y \ n+ we have π({n, k}) = π
(
{n, k′}

) andwe 
an de�ne the 
olouring τ : x→ 2 by stipulating
τ(n) =

{
0 if there is a k ∈ x \ n+ su
h that π({n, k}) = 0,

1 otherwise.Sin
e U is an ultra�lter, there exists a x ∈ U su
h that x ⊆ y and τ |x is
onstant, hen
e, π|[x]2 is 
onstant. ⊣At a �rst glan
e, 
ondition (a) is just related to Proposition 2.2 and not toRamsey's Theorem. However, the following fa
t shows that this is not the
ase. Moreover, even Proposition 2.8 is related to Ramsey ultra�lters (theproofs are left to the reader).Fa
t 10.8. For every free ultra�lter U , the following 
onditions are equiva-lent:(a) U is a Ramsey ultra�lter, i.e., for every 
olouring π : [ω]2 → 2 thereexists an x ∈ U whi
h is homogeneous for π.(b) For any n ∈ ω, for any positive integer r ∈ ω, and for every 
olouring
π : [ω]n → r, there exists an x ∈ U whi
h is homogeneous for π.(
) Let {rk : k ∈ ω} and {nk : k ∈ ω} be two (possibly �nite) sets of positiveintegers, and for ea
h k ∈ ω let πk : [ω]nk → rk be a 
olouring. Then thereexists an x ∈ U whi
h is almost homogeneous for ea
h πk.It is time now to address the problem of the existen
e of Ramsey ultra�l-ters. On the one hand, it 
an be shown that there are models of ZFC in whi
hno Ramsey ultra�lters exist (see Proposition 25.11). Thus, the existen
e ofRamsey ultra�lters is not provable in ZFC. On the other hand, if we assume forexample CH (or just p = c), then we 
an easily 
onstru
t a Ramsey ultra�lter.Proposition 10.9. If p = c, then there exists a Ramsey ultra�lter.Proof. Let {πα : α ∈ c} be an enumeration of the set of all 2-
olourings of
[ω]2, i.e., for every 
olouring π : [ω]2 → 2 there exists an α ∈ c su
h that
π = πα. By trans�nite indu
tion we �rst 
onstru
t a sequen
e 〈xα : α ∈ c〉 ⊆
[ω]ω su
h that {xα : α ∈ c} has the �nite interse
tion property and for all
α ∈ c, πα|[xα+1]2 is 
onstant. Let x0 := ω and assume that for some α ∈ c we
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onstru
ted xβ (β ∈ α) su
h that {xβ : β ∈ α} has the �niteinterse
tion property and for all γ+1 ∈ α we have πγ |[xγ+1]2 is 
onstant. If α isa su

essor ordinal, say α = β0+1, then let xα ∈ [xβ0 ]
ω be su
h that πβ0 |[xα]2is 
onstant (noti
e that by Ramsey's Theorem 2.1, xα+1 exists). If α is alimit ordinal, then let xα be a pseudo-interse
tion of {xβ : β ∈ α} (noti
e thatsin
e |α| < p, xα+1 exists). In either 
ase, the family {xβ : β ∈ α} has therequired properties. In parti
ular, the family E = {xα : α ∈ c} has the �niteinterse
tion property and for ea
h 
olouring π : [ω]2 → 2 there is an x ∈ Esu
h that π|[x]2 is 
onstant. Finally, extend the family E to an ultra�lter U .Then U is a Ramsey ultra�lter. ⊣

P -points and Q-pointsBelow, we 
onsider ultra�lters whi
h are weaker than Ramsey ultra�lters, butwhi
h share with them some 
ombinatorial properties.A free ultra�lter U is a P -point if for ea
h partition {un ⊆ ω : n ∈ ω}of ω, either un ∈ U for a (unique) n ∈ ω, or there exists an x ∈ U su
h thatfor ea
h n ∈ ω, x ∩ un is �nite.Furthermore, a free ultra�lter U is a Q-point if for ea
h partition of ωinto �nite pie
es {In ⊆ ω : n ∈ ω}, (i.e., for ea
h n ∈ ω, In is �nite), thereexists an x ∈ U su
h that for ea
h n ∈ ω, x ∩ In has at most one element.Comparing these de�nitions of P -points and Q-points with Proposi-tion 10.7.(b), it is evident that a Ramsey ultra�lter is both, a P -point aswell as a Q-point; but also the 
onverse is true:Fa
t 10.10. U is a Ramsey ultra�lter if and only if U is a P -point and a
Q-point.Proof. (⇒) This follows immediately from Proposition 10.7.(b) and the def-initions of P -points and Q-points.(⇐) Let U be a P -point and a Q-point and let {un ⊆ ω : n ∈ ω} be a partitionof ω. We have to show that either un ∈ U for a (unique) n ∈ ω, or there existsan x ∈ U su
h that for ea
h n ∈ ω, x∩un has at most one element. If there isa un ∈ U , then we are done. So, assume that for all n ∈ ω, un /∈ U . Sin
e Uis a P -point, there exists a y0 ∈ U su
h that for ea
h n ∈ ω, y0 ∩ un is �nite.For n ∈ ω let I2n := y0∩un. Further, let {ai : i ∈ ω} = ω \⋃n∈ω{I2n : n ∈ ω}and for n ∈ ω let I2n+1 := {an}. Then {In : n ∈ ω} is a partition of ω into�nite pie
es. Sin
e U is a Q-point, there exists a y1 ∈ U su
h that for ea
h
n ∈ ω, y1 ∩ In has at most one element. Now, let x = y0 ∩ y1. Then x ∈ Uand for ea
h n ∈ ω, x ∩ un has at most one element. ⊣Below, we give a few other 
hara
terisations of P -points and Q-points.The proofs are straightforward and are left to the reader.Fa
t 10.11. For every free ultra�lter U , the following 
onditions are equiv-alent:



P -points and Q-points 233(a) U is a P -point.(b) For every family {xn : n ∈ ω} ⊆ U there is an x ∈ U su
h that for all
n ∈ ω, x ⊆∗ xn (i.e., x \ xn is �nite).(
) For every family {xn : n ∈ ω} ⊆ U there is a fun
tion f ∈ ωω and a set
x ∈ U su
h that for all n ∈ ω, x \ f(n) ⊆ xn.Fa
t 10.12. For every free ultra�lter U , the following 
onditions are equiv-alent:(a) U is a Q-point.(b) For every family {xn : n ∈ ω} ⊆ U there is an x ∈ U su
h that for all
n ∈ ω, x ∩ (ω \ xn) is �nite.There are also 
hara
terisations of P -points whi
h are not so obvious:Proposition 10.13. For a free ultra�lter U , the following 
onditions areequivalent:(a) U is a P -point.(b) For every family {xn : n ∈ ω} ⊆ U there is an x ∈ U su
h that forin�nitely many n ∈ ω, x \ n ⊆ xn.Proof. Sin
e (b)⇒(a) is obvious, we just prove (a)⇒(b) : Sin
e U is a P -point, by Fa
t 10.11.(
) there exists a fun
tion f ∈ ωω and a set y ∈ U su
hthat for all n ∈ ω, y \ f(n) ∈ xn. Hen
e, there exists also a fun
tion g ∈ ωωsu
h that g(0) = 0 and for all k ∈ ω we have y\g(k+1) ⊆ xg(k). Sin
e U is anultra�lter, either y0 =

⋃
k∈ω

[
g(2k+1), g(2k+2)

) or y1 =
⋃
k∈ω

[
g(2k), g(2k+

1)
) belongs to U . Let x = y ∩ yε, where ε ∈ {0, 1} is su
h that yε ∈ U . Thenfor every k ∈ ω we have x \ g(2k + ε) = x \ g(2k + ε+ 1) ⊆ x2k+ε. ⊣

P -points and Q-points, and 
onsequently Ramsey ultra�lters, 
an also be
hara
terised in terms of fun
tions, but before we have to introdu
e the notionof �nite-to-one fun
tions: A fun
tion f ∈ ωω is �nite-to-one if for every
k ∈ ω, the set {n ∈ ω : f(n) = k

} is �nite.Proposition 10.14. Let U be a free ultra�lter.(a) U is a P -point if and only if for every fun
tion f ∈ ωω there exists an
x ∈ U su
h that f |x is 
onstant or �nite-to-one.(b) U is a Q-point if and only if for every �nite-to-one fun
tion f ∈ ωω thereexists an x ∈ U su
h that f |x is one-to-one.(
) U is a Ramsey ultra�lter if and only if for every fun
tion f ∈ ωω thereexists an x ∈ U su
h that f |x is 
onstant or one-to-one.Proof. Let f ∈ ωω be an arbitrary but �xed fun
tion. For k ∈ ω de�ne
uk :=

{
n ∈ ω : f(n) = k

}. Then {uk : k ∈ ω} is a partition of ω. The proofnow follows from Fa
t 10.10 and the following observations (the details areleft to the reader):
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• For any x ∈ [ω]ω, f |x is 
onstant i� there is a k ∈ ω su
h that x ⊆ uk.
• For any x ∈ [ω]ω, f |x is �nite-to-one i� for all k ∈ ω we have x ∩ uk is�nite.
• The fun
tion f is �nite-to-one i� ea
h uk is �nite.
• For any x ∈ [ω]ω, f |x is one-to-one i� for all k ∈ ω, x ∩ uk has at mostone element. ⊣The next result shows that ultra�lters, and espe
ially Q-points, must 
on-tain quite �sparse� sets.Proposition 10.15. For free families U ⊆ [ω]ω we have:(a) If U is a free ultra�lter, then the family {fx ∈ ωω : x ∈ U } is unbounded.(b) If U is a Q-point, then the family {fx ∈ ωω : x ∈ U } is dominating.Proof. (a) Let f ∈ ωω be arbitrary. De�ne g(0) = max

{
f(0), 1

} and for
k ∈ ω de�ne g(k + 1) := g(k) + f

(
g(k)

). Further, let x0 =
[
0, g(0)

), and ingeneral, for n ∈ ω let xn =
[
g(2n), g(2n+1)

) and yn =
[
g(2n+1), g(2n+2)

).Finally, let x =
⋃
n∈ω xn and y =

⋃
n∈ω yn. We leave it as an exer
ise to thereader to verify that fx �∗ f and fy �∗ f . Hen
e, f dominates neither fx nor

fy. Now, sin
e U is an ultra�lter, either x or y belongs to U . Hen
e, f doesnot dominate the family B = {fx ∈ ωω : x ∈ U }, and sin
e f was arbitrary,
B is unbounded.(b) Let g ∈ ωω be arbitrary. Without loss of generality we may assume that gis stri
tly in
reasing. For n ∈ ω let In =

[
g(2n), g(2n+2)

). Then {In : n ∈ ω}is a partition of ω into �nite pie
es. Sin
e U is a Q-point, there exists an
x ∈ U su
h that for ea
h n ∈ ω, x∩In has at most one element whi
h impliesthat g <∗ fx. Hen
e, fx dominates g, and sin
e g was arbitrary, the family
{fx ∈ ωω : x ∈ U } is dominating. ⊣As we have seen above (Proposition 10.9), p = c implies the existen
e ofa Ramsey ultra�lter. On the other hand, one 
an show that d = c is not suf-�
ient to prove the existen
e of Ramsey ultra�lters (see Proposition 25.11).However, as a 
onsequen
e of the next result, we get that d = c is su�
ientto prove the existen
e of P -points� whi
h shows that P -points are easier toget than Ramsey ultra�lters (
f. Related Results 66& 67).Theorem 10.16. d = c if and only if every free �lter over a 
ountable setwhi
h is generated by less than c sets 
an be extended to a P -point. In par-ti
ular, d = c implies the existen
e of P -points.Proof. (⇐) Suppose that E ⊆ ωω is a family of 
ardinality less than c. For
f ∈ E and n ∈ ω de�ne
xf =

{
〈n, k〉 ∈ ω × ω : f(n) < k

} and xn =
{
〈m, k〉 ∈ ω × ω : n ≤ m

}
,and let
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C =

{
xf : f ∈ E

}
∪
{
xn : n ∈ ω

}
∪
{
z ⊆ ω × ω : (ω × ω) \ z is �nite} .Noti
e that |C | < c and that ea
h set in C is an in�nite subsets of the
ountable set ω×ω. Moreover, for any �nitely many members y0, . . . , yn ∈ Cwe have y0 ∩ · · · ∩ yn is in�nite. Now, the family C generates a free �lter over

ω × ω, whi
h, by assumption, 
an be extended to a P -point U ⊆ [ω × ω]ω.Consider the partition {un : n ∈ ω} of ω×ω, where for n ∈ ω, un := {n}×ω.Noti
e that no un (for n ∈ ω) belongs to U . Sin
e U is a P -point, there existsa y ∈ U su
h that for all n ∈ ω, y ∩ un is �nite. Let us de�ne the fun
tion
g ∈ ωω by stipulating g(n) = ⋃{

k ∈ ω : 〈n, k〉 ∈ y∩un
}. Sin
e y ∈ U , for all

f ∈ E we have y ∩ xf is in�nite. Hen
e, for every f ∈ E there are in�nitelymany n ∈ ω su
h that g(n) > f(n). In other words, g is not dominated byany fun
tion f ∈ E , whi
h shows that no family of 
ardinality less than c isdominating.(⇒) The proof is by indu
tion using the followingClaim. Suppose that the free �lter F ⊆ [ω]ω is generated by less than d setsand let {xn : n ∈ ω} ⊆ F . Then there exists x ∈ [ω]ω su
h that for all n ∈ ω,
x ⊆∗ xn, and for all y ∈ F , x ∩ y is in�nite.Proof of Claim. Without loss of generality we may assume that for all n ∈ ω,
xn+1 ⊆ xn. For y ∈ F de�ne gy ∈ ωω by stipulating gy(n) =

⋂
(y ∩ xn).Noti
e that the set y∩xn is non-empty, and that if y ⊆ y′, then for all n ∈ ω,

gy′(n) ≤ gy(n). Now, sin
e F is generated by less than d sets, and sin
e everyfree ultra�lter generated by less than d sets has a basis of less than d sets,there exists a fun
tion f ∈ ωω su
h that for all y ∈ F we have f �∗ gy.Finally let
x =

⋃

n∈ω

(
xn ∩ f(n)

)
.We leave it to the reader to verify that x has the required properties. ⊣ClaimBy the 
laim and the assumption that d = c we indu
tively 
onstru
t a P -point as follows: Let {Xα ⊆ [ω]ω : |Xα| ≤ ω ∧α ∈ c} be an enumeration of all
ountable subsets of [ω]ω. Let F0 be any free �lter whi
h is generated by lessthan d sets and assume that we have already 
onstru
ted Fα for some α ∈ c. If

Xα ∪Fα has the �nite interse
tion property, then we use the 
laim to obtaina set xα+1 su
h that {xα+1} ∪ Fα has the �nite interse
tion property and
xα+1 is a pseudo-interse
tion of Xα; and let Fα+1 be the �lter generated by
Fα and xα+1. If Xα ∪Fα does not have the �nite interse
tion property, thenlet Fα+1 = Fα. Further, if α ∈ c is a limit ordinal and for all β ∈ α we havealready 
onstru
ted Fβ , then let Fα =

⋃
β∈αFβ . Finally, let F =

⋃
α∈c Fα.Then F is a P -point: Firstly, by 
onstru
tion, F is a �lter, and sin
e the free�lter F0 is 
ontained in F , F is even a free �lter. Se
ondly, for any x ∈ [ω]ωthere exists a β ∈ c su
h that Xβ = {x}. Thus, either x ∈ Fβ+1 or there isa y ∈ Fβ su
h that x ∩ y is �nite, whi
h implies that x
 ∈ Fβ . Hen
e, Fis a free ultra�lter. Finally, for every set {xn : n ∈ ω} ⊆ F there exists a
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γ ∈ c su
h that Xγ = {xn : n ∈ ω}. Sin
e Xγ ∪ Fγ has the �nite interse
tionproperty, there is an xγ+1 ∈ Fγ+1 su
h that for all n ∈ ω, xγ+1 ⊆∗ xn. ⊣Ramsey families and P -familiesBelow, we give 
hara
terisations of Ramsey ultra�lters and P -points in termsof games, whi
h lead to so-
alled Ramsey families and P -families respe
tively.The two games we shall 
onsider are in�nite and played between two play-ers. Now, a run of an in�nite two-player game 
onsists of an in�nite sequen
e
〈x0, y0, x1, y1, . . .〉 whi
h is 
onstru
ted alternately by the two players. Morepre
isely, the �rst player starts the game with x0 and the se
ond player re-sponds with y0, then the �rst player plays x1 and the se
ond player respondswith y1, and so on. Of 
ourse, in order to get a proper game we have to in-trodu
e also some rules de�ning legal moves and telling whi
h player wins aparti
ular run of the game.Before we introdu
e some further game-theoreti
al notions, let us illustratethe notion of rules by the following in�nite two-player game, played betweenDeath and the Maiden.Let E be an arbitrary free family. Asso
iated with E we de�ne two quitesimilar games, denoted G

E
and G∗

E
, between two players, say Death and theMaiden.In the game G

E
, the Maiden always plays members of E and then Deathresponds with an element of Maiden's move. Thus, a run of G

E

an be illus-trated as follows:Maiden x0

∋

��=
==

==
==

= ⊇ x1
∋

��=
==

==
==

= ⊇ x2
∋

��=
==

==
==

= ⊇

G
E
: . . .Death a0

@@��������
< a1

@@��������
< a2

���
<More formally, the rules for G

E
are as follows: For ea
h i ∈ ω, xi ∈ E and

ai ∈ xi. Furthermore, we require that for ea
h i ∈ ω, xi+1 ⊆ xi and ai < ai+1.Finally, Death wins the game G
E
if and only if {ai : i ∈ ω} belongs to thefamily E .In the game G∗

E
, Death has slightly more freedom, sin
e he 
an play now�nite sequen
es instead of just singletons. A run of G∗

E

an be illustrated asfollows: Maiden x0

)

��=
==

==
==

⊇ x1
)

��=
==

==
==

⊇ x2
)

��=
==

==
==

⊇

G∗
E
: . . .Death s0

@@�������
s1

@@�������
s2

���Again, the sets xi played by the Maiden must belong to the free family Eand ea
h �nite set si played by Death must be a subset of the 
orresponding
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xi. Furthermore, for ea
h i ∈ ω we require that xi+1 ⊆

(
xi \

⋃
j≤i sj

). Noti
ethat the �nite sets si may be empty. Finally, Death wins the game G∗
E
if andonly if ⋃{si : i ∈ ω} belongs to the family E .Now we de�ne the notion of a strategy for theMaiden. Roughly speaking,a strategy for the Maiden is a �rule� that tells her how to play, for ea
h

n ∈ ω, her nth move xn, given Death' previous moves m0, . . . ,mn. In fa
t, astrategy for theMaiden in the game G
E
is a 
ertain mapping from seq(E ∪ω)to E . Intuitively, with respe
t to G

E
, a strategy σ for the Maiden worksas follows: The Maiden starts playing x0 ∈ E , where x0 = σ(∅) and thenDeath responds by playing an element a0 ∈ x0. Then the Maiden plays

x1 = σ(x0, a0), whi
h� by the rules of the game� is a set in E and a subsetof x0, and Death responds with an element a1 ∈ x1 where a1 > a0. Ingeneral, for positive integers n, xn = σ(x0, a0, . . . , xn−1, an−1), where xn ∈ E ,
xn ⊆ xn−1, a0, . . . , an−1 are the moves of Death, and x0, . . . , xn−1 are theprevious moves of the Maiden.A strategy σ for the Maiden is a winning strategy if, whenever theMaiden follows the strategy σ, she wins the game� no matter how sophisti-
ated Death plays. For example, σ is a winning strategy for the Maiden inthe game G

E
, if whenever {an : n ∈ ω} ⊆ ω is su
h that a0 ∈ σ(∅) and for all

n ∈ ω, an < an+1 and an+1 ∈ σ(x0, a0, . . . , xn+1), then {an : n ∈ ω} /∈ E .Now, a free family E is 
alled a Ramsey family if the Maiden has nowinning strategy in the game G
E
. In other words, no matter how sophisti
atedher strategy is, if E is a Ramsey family, then Death 
an win the game.Ramsey families will play an important role in the investigation of Mathiasfor
ing notions (see Chapter 24).Furthermore, a free family E is 
alled a P -family if the Maiden has nowinning strategy in the game G∗
E
. P -families will play an important role inthe investigation of restri
ted Silver for
ing. In fa
t, in Chapter 22 it will beshown that Silver for
ing restri
ted to a P -family (
alled Silver-like for
ing)has the same 
ombinatorial properties as unrestri
ted Silver for
ing and asGrigorie� for
ing, whi
h is Silver for
ing restri
ted to a P -point.Obviously, the family [ω]ω is a Ramsey family and every Ramsey family isalso a P -family. Now, the reader might guess that [ω]ω is not the only exampleand that there must be some relation between Ramsey families and Ramseyultra�lters, as well as between P -families and P -points; this is indeed the 
ase:Theorem 10.17. For free ultra�lters U ⊆ [ω]ω we have:(a) U is a Ramsey ultra�lter if and only if U is a Ramsey family.(b) U is a P -point if and only if U is a P -family.Proof. (a) We have to show that U ⊆ [ω]ω is a Ramsey ultra�lter i� wheneverthe Maiden plays the game G

U
by following a strategy, Death 
an win.

(⇐) Under the assumption that the free ultra�lter U is not Ramsey we
onstru
t a winning strategy for the Maiden in the game G
E
. If U is not aRamsey ultra�lter, then, by Proposition 10.6, there exists a set {xn : n ∈
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ω} ⊆ U su
h that for ea
h fun
tion f ∈ ωω with f(0) ∈ x and f(n+1) ∈ xf(n)we have f [ω] /∈ U . Let σ(∅) := x0, and for n ∈ ω let σ(x0, a0, . . . , xn, an) :=
xan . By the rules of G

U
, an+1 ∈ xan . De�ne f ∈ ωω by stipulating f(n) = an.Then f(0) ∈ x0 and for all n ∈ ω we have f(n + 1) ∈ xf(n), and therefore{

f(n) : n ∈ ω
}
/∈ U . Thus, {an : n ∈ ω} /∈ U , whi
h shows that Death losesthe game (i.e., σ is a winning strategy for the Maiden), and 
onsequently, Uis not a Ramsey family.

(⇒) Under the assumption that the free ultra�lter U is Ramsey we showthat no strategy for the Maiden is a winning strategy. Let σ be any strategyfor the Maiden, let x∅ := σ(∅), and for s = {c0, . . . , cn} ∈ fin(ω) let
xs =

{
σ(x0, c0, . . . , xn, cn) if ∀k ≤ n(ck ∈ xk),
ω otherwise.Noti
e that in the �rst 
ase, σ(x0, c0, . . . , xn, cn) = xn+1. If U is a Ramseyultra�lter, then U is happy. Thus, there exists an x ∈ U su
h that x ⊆ x∅and x \ s̄+ ⊆ xs whenever s̄ ∈ x. In parti
ular, if x = {an : n ∈ ω} with

an < an+1 (for all n ∈ ω), then a0 ∈ x0 and for all n ∈ ω, x \ {a0, . . . , an} =
{an+1, an+2, . . .} ⊆ x{a0,...,an} = xn+1. Hen
e, for all n ∈ ω we have an ∈ xn.In parti
ular, whenever the Maiden follows the strategy σ, Death wins thegame by playing the sequen
e 〈an : n ∈ ω〉. So, σ is not a winning strategy forthe Maiden, and sin
e σ was arbitrary, the Maiden does not have a winningstrategy.(b) The proof is similar to that of (a), i.e., we show that the Maiden has awinning strategy in the game G∗

U
i� the free ultra�lter U is not a P -point.

(⇐) Suppose that U is not a P -point. Then, by Fa
t 10.11.(b), there existsa set {yn : n ∈ ω} ⊆ U su
h that whenever y ∈ [ω]ω has the property that forall n ∈ ω, y\yn is �nite, then y /∈ U . Let σ(∅) := y0 (i.e., x0 = y0), and for any
k ∈ ω and {s0, . . . , sk} ⊆ fin(ω) let σ(x0, s0, . . . , xk, sk) := ⋂

i≤k yi\
⋃
i≤k si. Ifthe Maiden follows that strategy σ and the sequen
e 〈sk : k ∈ ω〉 representsthe moves of Death, then for all n ∈ ω we have (⋃

k∈ω sk
)
\ xn is �nite.Hen
e, ⋃k∈ω sk /∈ U , whi
h shows that Death loses the game, or in otherwords, σ is a winning strategy for the Maiden.

(⇒) Under the assumption that U is a P -point we show that no strategyfor the Maiden is a winning strategy. Let σ be any strategy for the Maiden.We have to show that Death 
an win. De�ne Xn as the family of sets playedby the Maiden in her �rst n + 1 moves, assuming that she is following thestrategy σ and Death plays in his �rst n moves only sets sk ⊆ n (for k < n).More formally, x0 = σ(∅), and for positive integers k ≤ n, xk ∈ Xn i� thereare s0, . . . , sk−1 ⊆ n su
h that for all i < k, si ⊆ xi ∩ n+, where xi+1 =
σ(x0, s0, . . . , xi, si). Clearly, for every n ∈ ω, Xn is �nite, and sin
e U is anultra�lter, yn :=

⋂
Xn belongs to U . Moreover, sin
e U is a P -point, byFa
t 10.11.(
) there is a set y ∈ U and a stri
tly in
reasing fun
tion f ∈ ωωsu
h that for all n ∈ ω, y \ f(n) ⊆ yn. Let k0 := f(0), and in general, for

n ∈ ω let kn+1 := f(kn). Sin
e U is an ultra�lter, either
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y0 =

⋃

n∈ω

[
k2n, k2n+1

) or y1 = ω \ y0belongs to U . Without loss of generality we may assume that y1 ∈ U , inparti
ular, y1 ∩ y ∈ U . Consider the run
〈x0, s0, x1, s1, . . .〉of the game G∗

U
, where the Maiden plays a

ording to the strategy σ andDeath plays

sn =

{[
k2j+1, k2j+2

)
∩ y if n = k2j (for some j ∈ ω),

∅ otherwise.It is 
lear that the Maiden loses the game (i.e., ⋃n∈ω sn ∈ U ). It remains to
he
k that the moves of Death are legal (i.e., satisfy the rules of the game
G∗

U
). Firstly noti
e that for all positive integers j, sk2j−2 ⊆ k2j . Thus, if

n = k2j , then for all k < n we have sk ⊆ n. Now, if n = k2j for some j ∈ ω,then sn = sk2j =
[
k2j+1, k2j+2

)
∩ y. Further, we have

y \ k2j+1 = y \ f(k2j) ⊆ yk2j =
⋂{

x0, . . . , xk2j
}
,and in parti
ular, for n = k2j we get sn = sk2j ⊆ xk2j = xn. Hen
e, for all

n ∈ ω, sn ⊆ xn. ⊣Roughly speaking, Ramsey families are a kind of generalised Ramsey ul-tra�lters and P -families are a kind of generalised P -points.Let us turn ba
k to happy families and let us 
ompare them with Ram-sey families. At a �rst glan
e, happy families and Ramsey families look verysimilar. However, it turns out that the 
onditions for a Ramsey family areslightly stronger than for a happy family. This is be
ause in the de�nitionof happy families we require that they 
ontain sets whi
h diagonalise 
ertainsubfamilies having the �nite interse
tion property. On the other hand, a strat-egy of the Maiden in the game G
E

an be quite arbitrary: Even though thesets played by her in a run of G

E
form a de
reasing sequen
e, the family ofpossible moves of theMaiden does not ne
essarily have the �nite interse
tionproperty. Of 
ourse, by restri
ting the set of strategies theMaiden 
an 
hoosefrom, we 
ould make sure that all happy families are Ramsey. In fa
t we justhave to require that all the moves of the Maiden�no matter what Deathis playing� belong to some family whi
h has the �nite interse
tion property.However, the de�nition of Ramsey families given above has the advantagethat the Maiden is able � by a winning strategy� to defeat Death in thegame G

E
even in some 
ases when E is happy (see Proposition 10.19).Below, we show �rst that every Ramsey family is happy, and then we showthat there are happy families whi
h are not even P -families. Thus, Ramseyfamilies are smaller �
lans� (i.e., families who originate from the same familyand have the same name) than happy families.
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t 10.18. Every Ramsey family is happy.Proof. Let E be a free family whi
h is not happy. Thus, there is exists aset C =
{
ys : s ∈ fin(ω)

}
⊆ E su
h that fil(C ) ⊆ E but no y ∈ E diago-nalises A . Let σ(∅) := x∅ and for n ∈ ω and s = {a0, . . . , an} ∈ fin(ω) let

σ(x0, a0, . . . , xn, an) :=
⋂
s′⊆s ys. It is not hard to verify that in the game G

E
,

σ is a winning strategy for the Maiden. ⊣By Proposition 10.5 we know that every mad family indu
es a happyfamily. This type of happy families provides examples of happy families whi
hare not Ramsey families, in fa
t, whi
h are not even P -families.Proposition 10.19. Not every happy family is Ramsey; moreover, not everyhappy family is a P -family.Proof. It is enough to 
onstru
t a happy family whi
h is not a P -family: Let
{tk : k ∈ ω} be an enumeration of ⋃n∈ω

nω su
h that for all i, j ∈ ω, ti ⊆ tjimplies i ≤ j, in parti
ular, t0 = ∅. For fun
tions f ∈ ωω de�ne the set
xf ∈ [ω]ω by stipulating
xf :=

{
k ∈ ω : ∃n, i, j ∈ ω

(
f |n = ti ∧ f |n+1 = tj ∧ i ≤ k < j ∧ ti ⊆ tk

)}
.Obviously, for any distin
t fun
tions f, g ∈ ωω, xf ∩xg is �nite (
ompare withthe sets 
onstru
ted in the proof of Proposition 8.6). Now, let A0 := {xf :

f ∈ ωω}. Then A0 ⊆ [ω]ω is a set of pairwise almost disjoint sets whi
h 
anbe extended to a mad family, say A . Re
all that by Proposition 10.5, F
+

Ais a happy family.We show that F
+

A
is not a P -family: Let k0 := 0 and let x0 := ω bethe �rst move of the Maiden, and let s0 be Death' response. In general,if sn is the nth move of Death, then the Maiden 
hooses kn+1 su
h that

kn+1 ≥ max(sn), |tkn+1 | = n+ 1, and tkn ⊆ tkn+1 , and then she plays
xn+1 =

{
i ∈ ω : tkn+1 ⊆ si

}
.Obviously, for every n ∈ ω we have xn+1  xn. Moreover, all moves of theMaiden are legal:Claim. For every n ∈ ω, xn ∈ F

+
A
.Proof of Claim. Firstly, for every n ∈ ω, xn has in�nite interse
tion within�nitely many members of A0. Indeed, xn∩xf is in�nite whenever f |n = tkn .Se
ondly, for every z ∈ FA there are �nitely many y0, . . . , yk ∈ A su
h that

(y0 ∪ . . .∪ yk)
 ⊆∗ z. Now, for xn let xf ∈ A0 \ {y0, . . . , yk} su
h that xf ∩ xnis in�nite. Then, sin
e xf ∩ (y0 ∪ . . . ∪ yk) is �nite, xf ⊆∗ z. Hen
e, xn ∩ z isin�nite whi
h shows that xn ∈∈ F
+

A
. ⊣ClaimBy theMaiden's strategy, ⋃n∈ω tkn = f for some parti
ular fun
tion f ∈ ωω.Moreover, ⋃n∈ω sn ⊆ xf ∈ A0, and sin
e subsets of members of A0 do notbelong to F

+
A
, ⋃n∈ω sn /∈ F

+
A
. Hen
e, Death loses the game, no matter whathe is playing, whi
h shows that the Maiden has a winning strategy in thegame G∗

F
+

A

. In other words, the happy family F
+

A
is not a P -family. ⊣



Related Results 241NotesHappy families and Ramsey ultra�lters. Happy families were introdu
ed byMathias [8℄ in order to investigate the Ramsey property as well as Ramsey ultra-�lters. Furthermore, happy families are 
losely related to Mathias for
ing �alsointrodu
ed in [8℄ �whi
h will be dis
ussed in Chapter 24. Fa
t 10.3 and Propo-sition 10.5 are taken from Mathias [8, p. 61 �.℄. Proposition 10.6 is due to Math-ias [8, Proposition 0.8℄ and the 
hara
terisation of Ramsey ultra�lters (i.e., Propo-sition 10.7 and Fa
t 10.8) is taken from Bartoszy«ski and Judah [1, Theorem 4.5.2℄and Booth [3, Theorem 4.9℄ (a

ording to Booth [3, p. 19℄, most of [3, Theorem 4.9℄is due to Kunen).On P -points. A point x of a topologi
al spa
e X is 
alled a P -point if every in-terse
tion of 
ountably many open sets 
ontaining x, 
ontains an open set 
ontaining
x. Now, the ultra�lters we 
alled P -points are in fa
t the P -points of the topologi
alspa
e βω \ ω (de�ned on page 222). The existen
e of P -points of the spa
e βω \ ω
annot be shown in ZFC (see Related Result 68). However, by Theorem 10.16,whi
h is due to Ketonen [6℄ (see also Bartoszy«ski and Judah [1, Theorem 4.4.5℄), itfollows that P -points exist if we assume CH�whi
h was �rst proved by Rudin [10℄.Ramsey families and P -families. Ramsey families and P -families were �rstintrodu
ed and studied by La�amme in [7℄, where the �lters asso
iated to a Ramseyfamily are 
alled +-Ramsey �lters, and the �lters asso
iated to a P -family are 
alled
P+-�lters. However, Theorem 10.17 is due to Galvin and Shelah (see Bartoszy«skiand Judah [1, Theorems 4.5.3 &4.4.4℄), and Proposition 10.19 is a generalisationof Halbeisen [4, Proposition 6.2℄.Related Results64. On the existen
e of Ramsey ultra�lters. Mathias showed that under CH, everyhappy family 
ontains a Ramsey ultra�lter (see Mathias [8, Proposition 0.11℄).In parti
ular, this shows that Ramsey ultra�lters exist if we assume CH (a

ord-ing to Booth [3, p. 23℄, this was �rst shown by Galvin). However, by Proposi-tion 10.9 we know that p = c is su�
ient for the existen
e of Ramsey ultra�lters.With Martin's Axiom in pla
e of p = c, this result is due to Booth [3, Theo-rem 4.14℄. Furthermore, Keisler showed that if we assume CH, then there are 2cmutually non-isomorphi
 Ramsey ultra�lters (see Blass [2, p. 148℄). Finally, by
ombining the proofs of Keisler and Booth, Blass [2, Theorem 2℄ showed that

t = c (for t see Chapter 8 |Related Result 52) is enough to get 2c mutuallynon-isomorphi
 Ramsey ultra�lters (see Proposition 13.9 for a slightly moregeneral result). On the other hand, we shall see in Chapter 25 that the existen
eof Ramsey ultra�lters is independent of ZFC (see also Chapter 21 |Related Re-sult 114).65. There may exist a unique Ramsey ultra�lter. We have seen above that we 
anhave in�nitely many Ramsey ultra�lters or none. So, it is natural to ask whetherit is also 
onsistent with ZFC that there exists, up to permutations of ω, a uniqueRamsey ultra�lter. Now, Shelah [12, VI �5℄ proved that this is indeed the 
ase.



242 10 Happy Families and their RelativesMoreover, it is even 
onsistent with ZFC that there are, up to permutations of
ω, exa
tly two Ramsey ultra�lters (see Shelah [12, p. 335℄).66. There may be P -points whi
h are not Ramsey. Booth [3, Theorem 4.12℄ showedthat if we assume CH (or Martin's Axiom), there are P -points whi
h are notRamsey (i.e., whi
h are not Q-points). For examples of P -points whi
h are not
Q-points see Proposition 25.11.67. On the existen
e of Q-points. Mathias [Proposition 10℄[9℄ showed that d =
ω1 implies the existen
e of Q-points. Re
all that by Proposition 10.9, p = cimplies the existen
e of Ramsey ultra�lters; in parti
ular the existen
e of P -points and Q-points. Thus, the existen
e of Q-points is 
onsistent with d > ω1.However, if there are just P -points but no Q-points, then we must have d > ω1.68. On the existen
e of P -points. P -points were studied by Rudin [10℄, who proved,assuming CH, that they exist and that any of them 
an be mapped to any otherby a homeomorphism of βω\ω onto itself. In parti
ular, CH implies the existen
eof P -points. Of 
ourse, this follows from the fa
t that CH implies the existen
eof Ramsey ultra�lters, and Ramsey ultra�lters are P -points. However, as wehave seen above, the 
onverse is not true (and there are models of ZFC in whi
hthere are P -points but no Ramsey ultra�lters). Now, it is natural to ask whetherthere are models of ZFC in whi
h there are no P -points. Let us 
onsider howmodels of ZFC are 
onstru
ted in whi
h there are no Ramsey ultra�lters. Inorder to 
onstru
t a model of ZFC in whi
h there are no Ramsey ultra�lters,one usually makes sure that the model does not 
ontain any Q-points (see forexample the proof of Proposition 25.11). To some extent, P -points are weakerthan Q-points and therefore it is more di�
ult to 
onstru
t a model in whi
hthere are no P -points. However, Shelah 
onstru
ted su
h a model in [11℄ (seealso Shelah [12, VI �4℄, Wimmers [14℄, or Bartoszy«ski and Judah [1, 4.4.7℄).Moreover, like for Ramsey ultra�lters, it is 
onsistent with ZFC that, up to uppermutations of ω, there exists a single P -point (see Shelah [12, XVIII �4℄).69. Simple Pκ-points. For any regular un
ountable 
ardinal κ, a free ultra�lter
U ⊆ [ω]ω is 
alled a simple Pκ-point if U is generated by an almost de
reasing(i.e., modulo �nite) κ-sequen
e of in�nite subsets of ω. Clearly, every simple Pκ-point is a P -point. It is 
onje
tured that the existen
e of both, a simple Pω1-pointand a Pω2-point, is 
onsistent with ZFC. (For weak P -points and other pointsin βω \ ω see for example van Mill [13, Se
tion 4℄.)70. Rapid and unbounded �lters. A free �lter F ⊆ [ω]ω is 
alled a rapid �lter iffor ea
h f ∈ ωω there exists an x ∈ F su
h that for all n ∈ ω, ∣∣x ∩ f(n)

∣∣ ≤ n.By de�nition, if F is rapid �lter, then {fx : x ∈ F} is a dominating family. Itis not hard to verify that all Q-points are rapid (see Fa
t 25.10), but the 
on-verse does not hold (see for example Bartoszy«ski and Judah [1, Lemma 4.6.3℄and in parti
ular the remark after the proof of that lemma). However, like for
P -points or Q-points, the existen
e of rapid �lter is independent of ZFC (seeProposition 25.11). A weaker notion than that of rapid �lters is the notionof unbounded �lters, where a free �lter F ⊆ [ω]ω is 
alled unbounded ifthe family {fx : x ∈ F} is unbounded. Sin
e every free ultra�lter indu
es anunbounded family (
f. Proposition 10.15.(a)), unbounded �lters always exist.Furthermore, one 
an show that every unbounded �lter indu
es a set whi
h does
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es 243not have the Ramsey property (for a slightly more general result see Judah [5,Fa
t 8℄).71. Another 
hara
terisation of Ramsey ultra�lters. Let U ⊆ [ω]ω be an ultra�lter.The game G′
U is de�ned as follows.Maiden (a0, x0)

��=
==

==
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==
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U : . . .Death y0

@@�������
y1

@@�������
y2

			The sets yi and xi played byDeath and theMaiden respe
tively must belong tothe ultra�lter U , and for ea
h i ∈ ω, ai+1 must be a member of yi. Furthermore,for ea
h i ∈ ω we require that xi+1 ⊆ yi ⊆ xi and that ai < min(xi). Finally,the Maiden wins the game G′
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alledstrongly maximal almost disjoint if given 
ountably many members of F
+

A
,then there is a member of A that meets ea
h of them in an in�nite set.For a free family E , 
onsider the following game: The moves of the Maiden aremembers of E and Death responses like in the game G

E
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h set played by the Maiden.If A is a mad family, then obviously, in the game des
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11Coda: A Dual Form of Ramsey's Theorem
Musi
ians wanted 
ompositions to end on a perfe
t
onsonan
e, be
ause they 
orre
tly say that the per-fe
tion of anything depends upon and is judged byits end. Sin
e they found that among 
onsonan
esno greater perfe
tion 
ould be found than in theo
tave, they made it a �xed rule that ea
h 
om-position should terminate on the o
tave or unisonand no other interval. Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558In this 
hapter we shall present some results in dual Ramsey Theory, i.e.,Ramsey type results dealing with partitions of ω. The word �dual� is motivatedby the following fa
t: Ea
h in�nite subset of ω 
orresponds to the imageof an inje
tive fun
tion from ω into ω, whereas ea
h in�nite partition of ω
orresponds to the set of pre-images of elements of ω of a surje
tive fun
tionfrom ω onto ω. Similarly, n-element subsets of ω 
orrespond to images ofinje
tive fun
tions from n into ω, whereas n-blo
k partitions of ω 
orrespondto pre-images of surje
tive fun
tions from ω onto n. Thus, to some extent,subsets of ω and partitions of ω are dual to ea
h other.The Hales-Jewett TheoremSin
e we introdu
edRamsey's Theorem in Chapter 2, we have used di�erentforms of this powerful 
ombinatorial tool in various appli
ations. However,Ramsey's Theorem is neither the only nor the earliest Ramsey-type result.In fa
t, the following theorem is one of the earliest results in Ramsey Theory.



246 11 A Dual Form of Ramsey's TheoremTheorem 11.1 (van der Waerden). For any positive integers r and n,there is a positive integer N su
h that for every r-
olouring of the set
{0, 1, . . . , N} we �nd always a mono
hromati
 (non-
onstant) arithmeti
 pro-gression of length n.Instead of a proof, let us 
onsider van der Waerden's Theorem from amore 
ombinatorial point of view: Firstly, for some positive integer l, identifythe integers a ∈ [0, nl) with the l-tuples 〈a0 . . . al−1〉 formed from the base-nrepresentation of a, i.e., a =

∑
i∈l ain

i and for all i ∈ l, 0 ≤ ai < n. Con
erningarithmeti
 progressions, noti
e that for example the l-tuples
〈a0 . . . ai−1 0 ai+1 . . . aj−1 0 aj+1 . . . al−1〉
〈a0 . . . ai−1 1 ai+1 . . . aj−1 1 aj+1 . . . al−1〉
〈a0 . . . ai−1 2 ai+1 . . . aj−1 2 aj+1 . . . al−1〉... ... ... ... ...
〈a0 . . . ai−1 n− 2 ai+1 . . . aj−1 n− 2 aj+1 . . . al−1〉
〈a0 . . . ai−1 n− 1 ai+1 . . . aj−1 n− 1 aj+1 . . . al−1〉
orrespond to an arithmeti
 progression of length n with 
ommon di�eren
e

ni + nj. Let us 
all for the moment arithmeti
 progressions of length n ofthat type spe
ial arithmeti
 progressions. Noti
e that not every arithmeti
progression of length n is spe
ial. However, if we 
ould show that for allpositive integers n and r there exists a positive integer l su
h that for every
r-
olouring of [0, nl) we �nd a mono
hromati
 spe
ial arithmeti
 progression,then this would obviously prove van der Waerden's Theorem.Now, identify the set of l-tuples 〈a0 . . . al−1〉 with the set of fun
tions ffrom l to n, denoted ln, by stipulating f(k) = ak (for all k ∈ l). Consequently,we 
an identify every r-
olouring of [0, nl) with an r-
olouring of ln. Noti
ethat for a non-empty set s ⊆ l and a fun
tion g : l \ s → r, the set {f ∈ ln :

f |l\s = g∧f |s is 
onstant} 
orresponds to a spe
ial arithmeti
 progression. Inthe example of a spe
ial arithmeti
 progression given above we have s = {i, j}and g(m) = am (for allm ∈ l\s). Hen
e, in terms of fun
tions from l to n, vander Waerden's Theorem is just a 
orollary of the following Ramsey-typetheorem.Theorem 11.2 (Hales-Jewett Theorem). For all positive integers n, r ∈
ω there exists a positive integer l ∈ ω su
h that for any r-
olouring of lnthere is always a non-empty set s ⊆ l and a fun
tion g : l \ s → n su
h that{
f ∈ ln : f |l\s = g ∧ f |s is 
onstant} is mono
hromati
.For given positive integers n, r ∈ ω, theHales-Jewett fun
tion HJ(n, r)denotes the smallest su
h integer l. In parti
ular, for all positive integers r,
HJ(1, r) = 1.Hales and Jewett proved their theorem almost 40 years after van der Waer-den proved his. In the original proof, they used� like van der Waerden� a
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tion whi
h led to an extremely fast growing upper bound for theHales-Jewett fun
tion HJ(n, r). The proof of the Hales-Jewett Theoremgiven here� whi
h is due to Shelah and modi�ed by Matet involving the Fi-nite Ramsey Theorem�uses just simple indu
tion on n and provides amu
h better bound for the asso
iated fun
tion HJ(n, r).Before we 
an give a proof of the Hales-Jewett Theorem, in
ludingthe bounds for HJ(n, r), we have to introdu
e a kind of Ramsey number(
f. Chapter 2 |Related Result 1): By the Finite Ramsey Theorem 2.3we know that for any positive integers r, p, and q, where q ≤ p, there existsa positive integer m su
h that for every r-
olouring π : [m]q → r we �nd a
p-element set t ∈ [m]p su
h that π|[t]q is 
onstant; let Rqr(p) denote the leastsu
h m.Theorem 11.3. For positive integers n and r let l = HJ(n, r), a = (n+1)l−
nl, k = ra, and m = R2l−1

k (2l). Then HJ(n+ 1, r) < m.Proof. Let F be the set of all non-de
reasing fun
tions f ∈ 2lm (i.e., f(0) ≤
f(1) ≤ . . . ≤ f(2l − 1)) su
h that 2l − 1 ≤

∣∣f [2l]
∣∣ (i.e., f(i) = f(i + 1) for atmost one i ≤ 2l − 2). Let F0 =

{
f ∈ F :

∣∣f [2l]
∣∣ = 2l

} and let F1 = F \ F0).Noti
e that for ea
h f ∈ F1 there exists a unique i ≤ 2l − 2 su
h that
f(i) = f(i + 1). So, for every i ≤ 2l − 2 let Fi = {

f ∈ F1 : f(i) = f(i + 1)
}.Then F1 =

⋃
0≤i≤2l−2 Fi.For f ∈ F and i ∈ [1, 2l−1] let Ifi =

[
f(i−1), f(i)

), and let If0 =
[
0, f(0)

)and If2l = [
f(2l− 1),m

). Noti
e, if f(0) = 0 then If0 = ∅, if f(2l− 1) = m− 1then If2l = {m}, and if f ∈ Fi, for some i ≤ 2l − 2, then Ifi+1 = ∅. De�ne
g : l(n+ 1)× F → m−1n+ 1 su
h that for ea
h j ≤ 2l, g(h, f)|

I
f
j

is 
onstant,where
g(h, f)|

I
f
j

is 
onstantlyn− 1 if j ≡ 0 mod 4,
n if j ≡ 2 mod 4,
h
(
(j − 1)/2

) otherwise.For h ∈ l(n+ 1) and f ∈ F , g(h, f) is visualised by the following �gure:
0

f(0) f(1) f(2) f(3) f(2l− 2) f(2l− 1)
m− 1

I
f
0 I

f
1 I

f
2 I

f
3

I
f

2l−1 I
f
2l

n− 1 h(0) n h(1) h(l− 1) n or n − 1Noti
e that for f ∈ F2i and h ∈ H we have the following situation.
g(h, t) :

f(2i) = f(2i + 1)I
f
2i

I
f
2i+2

n or n− 1 n− 1 or nFor i ∈ l, let Hi ⊆ l(n+ 1) be the set of all fun
tions h : l → (n+ 1) su
hthat h(i) = n and for all j < n, h(j) < n. Let H =
⋃
i∈lHi. Noti
e that H



248 11 A Dual Form of Ramsey's Theoremis the set of all fun
tions h ∈ l(n+ 1) su
h that h(i) = n for some i ∈ l. Forea
h i ∈ l de�ne a fun
tion gi : Hi × [m]2l−1 → m−1(n+ 1) by stipulating
gi(h, s) = g(h, fs,i) ,where fs,i ∈ F2i is su
h that fs,i[2l] = s.Fix a 
olouring π : (m−1)(n+ 1) → r. Noti
e that we 
an apply π to

g(h, f) (where h ∈ l(n+ 1) and f ∈ F) as well as to gi(h, s) (where h ∈ Hiand s ∈ [m]2l−1). Re
all that we want to show HJ(n+ 1, r) ≤ m − 1, where
m = R2l−1

k (2l). By de�nition of m, for every 
olouring τ : [m]2l−1 → k we�nd a 2l-element set t ∈ [m]2l su
h that τ |[t]2l−1 is 
onstant. In order to applythe properties of m, we have to �nd a suitable k-
olouring of [m]2l−1. Firstly,re
all that k = ra, where a = (n+1)l−nl. Now, |l(n+ 1)\H| = nl, and sin
e
|l(n+ 1)| = (n+ 1)l we get |H| = (n+ 1)l − nl. Thus, a = |H|, and therefore
k = |Hr|. Now, de�ne the 
olouring τ : [m]2l−1 → Hr by stipulating

τ(s)(h) = π
(
gi(h, s)

) whenever h ∈ Hi for some i ∈ l .By de�nition of m, there exists a 2l-element set t ∈ [m]2l su
h that τ |[t]2l−1 is
onstant. In parti
ular, for any s0, s1 ∈ [t]2l−1 and any h ∈ Hi we have
π
(
gi(h, s0)

)
= π

(
gi(h, s1)

)
. (∗)Let ft ∈ F0 be su
h that ft[2l] = t and de�ne the 
olouring π′ : ln → r bystipulating π′(h) := π

(
g(h, ft)

). Sin
e l = HJ(n, r), there exists a non-emptyset u0 ⊆ l and a fun
tion h̃ : l \ u0 → n su
h that
Ĥ =

{
h ∈ ln : h|l\u0

= h̃ ∧ h|u0
is 
onstant}is mono
hromati
. Noti
e that Ĥ ⊆ ln ⊆ l(n+ 1) and that π|{g(h,ft):h∈Ĥ} is
onstant. Let h0 ∈ l(n+ 1) be su
h that h0|l\u0
= h̃ and h0|u0

is 
onstantly
n. If we 
an show that {g(h, ft) : h ∈ Ĥ ∨h = h0} is mono
hromati
, then weare done. In fa
t, it is enough to show that π(g(h0, ft)) = π

(
g(ĥ0, ft)

), where
ĥ0 ∈ Ĥ is su
h that for all i ∈ l, ĥ0(i) := min

{
h0(i), n− 1

}. This is done byindu
tion on the size of u0, but �rst we have to do some preliminary work:For i ∈ l and h ∈ Hi de�ne h′ ∈ l(n+ 1) by stipulating
h′(j) =

{
n− 1 if j = i,
h(j) otherwise.Noti
e that either h′ ∈ Hi′ for some i′ > i, or h′ ∈ ln. We show now that forevery h ∈ Hi, π(g(h, ft)) = π

(
g(h′, ft)

). We 
onsider the 
ases i odd and ieven separately.For i odd and h ∈ Hi we have the following situation:
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g
(
h, ft

)
:

ft(2i) ft(2i+ 1)

n h(i) = n n− 1

gi
(
h, t \ {ft(2i)}

)
:

ft(2i) ft(2i+ 1)

n n n− 1

gi
(
h, t \ {ft(2i+ 1)}

)
:

ft(2i) ft(2i+ 1)

n n− 1 n− 1

g
(
h′, ft

)
:

ft(2i) ft(2i+ 1)

n h′(i) = n− 1 n− 1Similarly, for i even and h ∈ Hi we get:
g
(
h, ft

)
:

ft(2i) ft(2i+ 1)

n− 1 h(i) = n n

gi
(
h, t \ {ft(2i+ 1)}

)
:

ft(2i) ft(2i+ 1)

n− 1 n n

gi
(
h, t \ {ft(2i)}

)
:

ft(2i) ft(2i+ 1)

n− 1 n− 1 n

g
(
h′, ft

)
:

ft(2i) ft(2i+ 1)

n− 1 h′(i) = n− 1 nBy (∗) we have π(gi(h, t \ {ft(2i)})) = π
(
gi(h, t \ {ft(2i+1)})

), and sin
e weobviously have
g(h, ft) = gi

(
h, t \ {ft(2i)}

)

g(h′, ft) = gi
(
h, t \ {ft(2i+ 1)}

)




 if i is odd,and
g(h, ft) = gi

(
h, t \ {ft(2i+ 1)}

)

g(h′, ft) = gi
(
h, t \ {ft(2i)}

)



 if i is even,we get

π
(
g(h, ft)

)
= π

(
g(h′, ft)

)
.Now we are ready to show that π(g(h0, ft)) = π

(
g(ĥ0, ft)

): For j < |u0| let
hj+1 := h′j. Then, by the pre
eding fa
t we have

π
(
g(h0, ft)

)
= π

(
g(h1, ft)

)
= . . . = π

(
g(h|u|, ft)

)
,and sin
e h|u| = ĥ0, we �nally get π(g(h0, ft)) = π

(
g(ĥ0, ft)

), whi
h 
ompletesthe proof of Theorem 11.3 as well as of the Hales-Jewett Theorem. ⊣



250 11 A Dual Form of Ramsey's TheoremThe Hales-Jewett Theorem will be used to start the indu
tion in theproof of Carlson's Lemma (see Claim 2), where Carlson's Lemma is the
ru
ial part in the proof of a generalisation of Ramsey's Theorem in termsof partitions� the main result of this 
hapter whi
h will be 
alled PartitionRamsey Theorem.The Partition Ramsey Theorem is a very strong 
ombinatorial resultwhi
h implies the Hales-Jewett Theorem as well as some other Ramsey-type results like the Weak Halpern-Läu
hli Theorem 11.6. However, be-fore we 
an formulate and prove the Partition Ramsey Theorem, we haveto introdu
e �rst the 
orresponding terminology.Families of PartitionsEven though partitions have already been used in Chapter 10, let us introdu
ethe notion of partition in a more formal way.A set P ⊆ P(S) is a partition of the set S, if ∅ /∈ P , ⋃P = S, and for alldistin
t p1, p2 ∈ P we have p1 ∩ p2 = ∅. A member of a partition P is 
alled ablo
k of P and Dom(P ) :=
⋃
P is 
alled the domain of P . A partition P is
alled in�nite, if |P | is in�nite (where |P | denotes the 
ardinality of the set

P ); otherwise, the partition P is 
alled �nite.If P and Q are two partitions with the same domain, then P is 
oarserthan Q, or equivalently Q is �ner than P , if ea
h blo
k of P is the unionof blo
ks of Q. Noti
e that the relation �
oarser� is a partial ordering on theset of partitions with a given domain, and that there are unique �nest and
oarsest partitions. For example with respe
t to partitions of ω, the �nestpartition is {{n} : n ∈ ω
} and the 
oarsest partition is {ω}.Below, we are mainly interested in in�nite partitions of ω, denote by 
apitalletters like X,Y, Z, . . ., as well as in (�nite) partitions of natural numbers,usually denoted by 
apital letters like S, T, U, . . . . So, let (ω)ω denote the setof all in�nite partitions of ω and let (N) denote the set of all (�nite) partitions

S with Dom(S) ∈ ω. Noti
e that S ∈ (N) i� S is a partition of some naturalnumber n ∈ ω.The following notation allows us to 
ompare partitions with di�erent do-mains: For partitions P and Q (e.g., P ∈ (N) and Q ∈ (ω)ω) we write
P ⊑ Q if for all blo
ks p ∈ P the set p ∩ Dom(Q) is the union of somesets qi ∩ Dom(P ), where ea
h qi is a blo
k of Q. Noti
e that in general,
P ⊑ Q ⊑ P does not imply P = Q, ex
ept when Dom(P ) = Dom(Q). Fur-thermore, let P ⊓ Q (P ⊔ Q) denote the �nest (
oarsest) partition R su
hthat Dom(R) = Dom(P )∪Dom(Q) and R is 
oarser (�ner) than P and Q. Inparti
ular, if Dom(P ) ⊆ Dom(Q) then P ⊓Q ⊑ Q ⊑ P ⊔Q.Let S ∈ (N) and X ∈ (ω)ω . If for ea
h s ∈ S there exists an x ∈ Xsu
h that x ∩ Dom(S) = s, we write S 4 X . Similarly, for S, T ∈ (N), where
Dom(S) ⊆ Dom(T ), we write S 4 T if for ea
h s ∈ S there exists a t ∈ Tsu
h that t∩Dom(S) = s. Roughly speaking, P 4 Q is the same as saying �Q



Families of partitions 251restri
ted to Dom(P ) is equal to P �. Noti
e that for S ⊑ X , where S ∈ (N)and X ∈ (ω)ω, we have S 4 (S ⊓X) ⊑ X .At a �rst glan
e, the set of partitions of ω, with the partitions {ω} and{
{n} : n ∈ ω

} and the operations �⊔� and �⊓�, looks similar to the Booleanalgebra (P(ω),∪,∩,−, ∅, ω
). However, partitions of ω behave di�erently thansubsets of ω. The main di�eren
e between partitions and subsets is that par-titions do not have proper 
omplements. For example if x, y, z ∈ [ω]ω are su
hthat x ∪ y = x ∪ z = ω and x ∩ y = x ∩ z = ∅, then y = z. This is not the
ase for partitions: It is not hard to �nd partitions X,Y, Z ∈ (ω)ω su
h that

X ⊔Y = X ⊔Z = Y ⊔Z =
{
{n} : n ∈ ω

} and X⊓Y = X ⊓Z = Y ⊓Z = {ω},e.g., letX =
{
{3i, 3i+1} : i ∈ ω

}
∪
{
{3i+2} : i ∈ ω

}, Y =
{
{3i+1, 3i+2} : i ∈

ω
}
∪
{
{3i} : i ∈ ω

}, and Z =
{
{3i, 3i+2} : i ∈ ω

}
∪
{
{3i+1} : i ∈ ω

}. We leaveit as an exer
ise to the reader to 
onstru
t in�nite partitions X,Y, Z ∈ (ω)ωwith the same property but su
h that all blo
ks of X , Y , and Z, are in�nite.Now, let us de�ne a topology on (ω)ω whi
h is similar to the Ellentu
ktopology on [ω]ω (de�ned on page 216): For S ∈ (N) and X ∈ (ω)ω with
S ⊑ X , let

(S,X)ω =
{
Y ∈ (ω)ω : S 4 Y ⊑ X

}
.A set (S,X)ω, where S andX are as above, is usually 
alled a dual Ellentu
kneighbourhood. We leave it as an exer
ise to the reader to show that theinterse
tion of �nitely many dual Ellentu
k neighbourhoods is either emptyor a dual Ellentu
k neighbourhood. The topology on (ω)ω generated by thedual Ellentu
k neighbourhoods is 
alled dual Ellentu
k topology.The usual tri
k to get subsets of ω from partitions is as follows: For apartition P of a subset of ω, e.g., P ∈ (ω)ω or P ∈ (N), let

Min(P ) =
{
min(p) : p ∈ P

}
.Obviously, if X ∈ (ω)ω then Min(X) ∈ [ω]ω and if S ∈ (N) then Min(S) ∈

fin(ω). Further we have that for any X,Y ∈ (ω)ω, X ⊑ Y implies Min(X) ⊆
Min(Y ).A non-empty family C ⊆ (ω)ω is 
alled free, if for every X ∈ C there isa Y ∈ C su
h that Y ⊑ X , but for all S ∈ (N), (S ⊓X) 6⊑ Y .A family C ⊆ (ω)ω is 
losed under re�nement if X ⊑ Y and X ∈ Cimplies Y ∈ C , and it is 
losed under �nite 
oarsening if S ∈ (N) and
X ∈ C implies (S ⊓ X) ∈ C . Noti
e that a family C ⊆ (ω)ω is 
losed underre�nement and �nite 
oarsening i� for all S ∈ (N) and Y ∈ (ω)ω, X ⊑ (S⊓Y )and X ∈ C implies Y ∈ C .A family C ⊆ (ω)ω is 
alled 
omplete, if C is free and 
losed underre�nement and �nite 
oarsening.In order to de�ne the game whi
h plays a key role in the proof of thePartition Ramsey Theorem, we have to introdu
e the following nota-tion. For S ∈ (N), let S∗ denote the partition S ∪

{
{Dom(S)}

}. Noti
ethat |S∗| = |S| + 1. Further, noti
e that whenever (S∗, X)ω is a dual El-
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k neighbourhood, then every Y ∈ (S∗, X)ω has a blo
k y su
h that
y ∩Dom(S) = ∅ and y ∩Dom(S∗) =

{
Dom(S)

}.With respe
t to a 
omplete family C ⊆ (ω)ω we de�ne the in�nite two-player game G
C

as follows.Maiden (S0, X0)

  @
@@

@@
@@

(S1, X1)

  @
@@

@@
@@

(S2, X2)

  @
@@

@@
@@

G
C

: . . .Death Y0

>>~~~~~~~
Y1

>>~~~~~~~
Y2

��We require that the �rst move (S0, X0) of the Maiden is su
h that X0 ∈ Cand that (S∗
0 , X0)

ω is a dual Ellentu
k neighbourhood. Further, we requirethat for ea
h n ∈ ω, the nth move of Death Yn is su
h that Yn ∈ (S∗
n, Xn)

ωand Yn ∈ C , and that the Maiden plays (Sn+1, Xn+1) su
h that
• S∗

n 4 Sn+1, |Sn+1| = |Sn|+ 1, S∗
n+1 ⊑ Yn, and

• Xn+1 ∈ (S∗
n+1, Yn)

ω ∩ C .Finally, theMaiden wins the game G
C
if and only if ⋂n∈ω(Sn, Xn)

ω∩C = ∅,i.e., the (unique) in�nite partition X ∈ (ω)ω su
h that Sn ≺ X (for all n ∈ ω)does not belong to the family C .Now, a 
omplete family C ⊆ (ω)ω is 
alled a Ramsey partition-familyif the Maiden has no winning strategy in the game G
C

(
ompare with thegame introdu
ed in Chapter 10 |Related Result 71).Obviously, the set (ω)ω is an example for a Ramsey partition-family andit is not hard to 
onstru
t Ramsey partition-families whi
h are proper subsetsof (ω)ω, e.g., for any partition X ∈ (ω)ω, (X)ω is a Ramsey partition-family.For a non-trivial example of a Ramsey partition-family take a Ramsey ultra-�lter F ⊆ [ω]ω and let C =
{
X ∈ (ω)ω : Min(X) ∈ F

}. Then, by Chap-ter 10 |Related Result 71, we get that C is a Ramsey partition-family (forother non-trivial examples of Ramsey partition-families see Chapter 26).It turns out that Ramsey partition-families have very strong 
ombinatorialproperties, and to some extent, they are proper generalisations of Ramsey fam-ilies (see also Chapter 26). The 
ombinatorial strength of Ramsey partition-families is used for example in the proof of Carlson's Lemma, whi
h is� asmentioned above� the 
ru
ial part in the proof of the Partition RamseyTheorem.Carlson's Lemma and the Partition Ramsey TheoremBefore we formulate and prove the Partition Ramsey Theorem, let us �rst
onsider a few possible generalisations ofRamsey's Theorem in terms of par-titions: Ramsey's Theorem states that whenever we 
olour [ω]n (i.e., the
n-element subsets of ω) with �nitely many 
olours, then we �nd an x ∈ [ω]ω(i.e., an in�nite subsets of ω) su
h that [x]n is mono
hromati
 (i.e., all whose
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n-element subsets have the same 
olour). If we try to formulate Ramsey'sTheorem in terms of partitions, we �rst have to de
ide whi
h partitions 
orre-spond to the �n-element subsets of ω� and �in�nite subsets of ω� respe
tively.It seems natural that in�nite subsets of ω 
orrespond to in�nite partitionsof ω, i.e., x ∈ [ω]ω is repla
ed by X ∈ (ω)ω. Similarly, we 
ould say that
n-element subsets of ω 
orrespond to n-blo
k partitions of ω, and thereforewe would repla
e [ω]n by (ω)n :=

{
X ∈ (ω)ω : |X | = n

}. This leads to thefollowing �rst attempt of a generalisation of Ramsey's Theorem in termsof partitions:Generalisation 1. For every 
olouring of (ω)n with �nitely many 
olours,there exists an in�nite partition X ∈ (ω)ω su
h that (X)n is mono
hromati
,where (X)n :=
{
Y ∈ (ω)n : Y ⊑ X ∧ |Y | = n

}.Unfortunately, this generalisation of Ramsey's Theorem fails. In fa
t,by trans�nite indu
tion we 
an 
onstru
t a 
ounterexample even for the 
asewhen n = 2: Firstly noti
e that for ea
h X ∈ (ω)ω, |(X)2| = |(ω)ω| = c. Let
{Xα : α ∈ c} be an enumeration of (ω)ω . For ea
h α ∈ c 
hoose two distin
tpartitions

Y 0
α , Y

1
α ∈

(
(Xα)

2 \
{
Y 0
β , Y

1
β : β ∈ α

})
.Finally, de�ne π : (ω)2 → {0, 1} by stipulating π(Y ) = 0 i� there is an α ∈ csu
h that Y = Y 0

α . By 
onstru
tion, for every X ∈ (ω)ω we �nd Y 0 and Y 1in (X)2 su
h that π(Y 0) = 0 and π(Y 1) = 1. Thus, for every X ∈ (ω)ω , (X)nis di
hromati
.One might ask why is it not possible to 
onstru
t a similar 
ounterexamplefor Ramsey's Theorem? The reason is simple: For any partition X ∈ (ω)ω ,
(X)2 is of 
ardinality c, whereas for any x ∈ [ω]ω and n ∈ ω, the set [x]n is
ountable.Now, one might ask why are n-element subsets of ω so di�erent from n-blo
k partitions? A reason is that n-element subsets of ω are proper �nitaryobje
ts, whereas an n-blo
k partition Y ∈ (ω)n ne
essarily 
ontains in�nitesets. Furthermore, every n-element subset of ω is a subset of some k ∈ ω,whi
h is not the 
ase for partitions Y ∈ (ω)n. However, it is true for partitions
S ∈ (N). So, let us repla
e now [ω]n and [x]n by (ω)(n) and (X)(n) respe
tively,where

(ω)(n) =
{
S ∈ (N) : |S| = n

}
,and for X ∈ (ω)ω ,

(X)(n) =
{
S ∈ (ω)(n) : S ⊑ X

}
.Generalisation 2. For every 
olouring of (ω)(n) with �nitely many 
olours,there exists an in�nite partition X ∈ (ω)ω su
h that (X)(n) is mono
hromati
.Unfortunately, this generalisation fails as well. Again, we 
an 
onstru
t a
ounterexample even for the 
ase when n = 2: For this, 
onsider the 
olouring

π : (ω)(2) → {0, 1} de�ned by stipulating
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π
(
{s0, s1}

)
= 0 ⇐⇒ 0 ∈ s0 ∧max(s0) < max(s1) .We leave it as an exer
ise to the reader to show that for every X ∈ (ω)ω ,

(X)(n) is di
hromati
.After these two failures, let us now formulate Ramsey's Theorem di-re
tly in terms of partitions of subsets of ω: A partition P of a subset of ωis segmented if for any distin
t p0, p1 ∈ P , either max(p0) < min(p1) or
max(p1) < min(p0). Let 〈ω〉ω denote the set of all segmented partitions of
ω. Noti
e that if P ∈ 〈ω〉ω, then all blo
ks P are �nite. For the moment let
ω̇ := ω \ {0}. For an in�nite set of positive integers x = {ki : i ∈ ω̇} ∈ [ω̇]ω ,where ki < ki+1 for all i ∈ ω̇, we de�ne Px ∈ 〈ω〉ω by stipulating

Px =
{
[ki, ki+1) : i ∈ ω

}
,where k0 := 0. Noti
e that 〈ω〉ω =

{
Px : x ∈ [ω̇]ω

}. Similarly, for an n-elementset s = {k1, . . . , kn} ∈ [ω̇]n, where ki < ki+1 for 1 ≤ i ≤ n, we de�ne
Qs =

{
[ki, ki+1) : i ∈ n

}
,where again k0 = 0. Noti
e that for all s ∈ fin(ω̇), Qs is a segmented partitionwith Dom(Qs) = max(s). Now, let 〈ω〉(n) = {

Qs : s ∈ [ω̇]n
} and for P ∈ 〈ω〉ωlet

〈P 〉(n)∗ =
{
Q ∈ 〈ω〉(n) : Q∗ ⊑ P

}
.Re
all that for s ∈ fin(ω̇), Q∗

s = Qs ∪
{
Dom(Qs)

}
= Qs ∪

{
max(s)

}, andnoti
e that for all x ∈ [ω̇]ω, 〈Px〉(n)∗ = {
Q∗
s : s ∈ [x]n

}.Now we are ready to formulateRamsey's Theorem in terms of segmentedpartitions� we leave it as an exer
ise to the reader to show that Ramsey'sTheorem is indeed equivalent to the following statement.Ramsey's Theorem. For every 
olouring of 〈ω〉(n) with �nitely many
olours, there exists an in�nite segmented partition P ∈ 〈ω〉ω su
h that 〈P 〉(n)∗is mono
hromati
.So, we �nally found a formulation of Ramsey's Theorem in terms ofsegmented partitions. The next step is to �nd a general formulation whi
hworks for all, and not just for segmented partitions. For this, we only haveto repla
e the angle bra
kets by round bra
kets and de�ne the meaning of
(X)(n)

∗: For n ∈ ω and X ∈ (ω)ω let
(X)(n)

∗

=
{
S ∈ (ω)(n) : S∗ ⊑ X

}
.Similarly, for a dual Ellentu
k neighbourhood (S,X)ω, where |S| ≤ n, let

(S,X)(n)
∗

=
{
U ∈ (ω)(n) : S 4 U ∧ U∗ ⊑ X

}
.Now we are ready to state the sought partition form of Ramsey's Theorem:



Carlson's Lemma and the Partition Ramsey Theorem 255Theorem 11.4 (Partition Ramsey Theorem). For any Ramsey partition-family C ⊆ (ω)ω and for any 
olouring of (ω)(n) with r 
olours, where r and
n are positive integers, there is an X ∈ C su
h that (X)(n)

∗ is mono
hromati
.The Partition Ramsey Theorem will follow from Carlson's Lemma.With respe
t to Ramsey partition-families, Carlson's Lemma states as fol-lows:Lemma 11.5 (Carlson's Lemma). Let C ⊆ (ω)ω be an arbitrary but �xedRamsey partition-family. For any 
olouring π : (ω)(n) → r, where r and n arepositive integers, and for any dual Ellentu
k neighbourhood (S0, X0)
ω, where

|S0| = n and X ∈ C , there is a X̄ ∈ (S0, X0)
ω whi
h belongs to C su
h that

(S0, X̄)(n)
∗ is mono
hromati
.Proof. Before we begin with the proof, let us �rst introdu
e the followingnotion: For a dual Ellentu
k neighbourhood (S,X)ω and for a positive integer

m ∈ ω, a set D ⊆ (ω)(m) is 
alled C -dense in (S,X)(m)∗ if for all Y ∈
(S,X)ω∩C , (S, Y )(m)∗∩D 6= ∅. Noti
e that for every 
olouring π : (ω)(n) → r,there exists a 
olour c ∈ r and a partition X ′

0 ∈ (S0, X0)
ω ∩ C su
h thatthe set Dc :=

{
S ∈ (ω)(n) : π(S) = c

} is C -dense in (S0, X
′
0)

(n)∗. Indeed,if D0 is C -dense in (S0, X0)
(n)∗ then we are done. Otherwise, there existsan X1 ∈ (S0, X0)

ω ∩ C su
h that (S0, X1)
(n)∗ ∩ D0 = ∅. Now, either D1is C -dense in (S0, X1)

(n)∗, or there exists an X2 ∈ (S0, X1)
ω ∩ C su
h that

(S0, X2)
(n)∗ ∩ D1 = ∅. Pro
eeding this way, we �nally �nd a c ∈ r su
h thatfor all Y ∈ (S0, Xc)

ω ∩ C , (S0, Y )(n)
∗∩Dc 6= ∅ ; let X ′

0 = Xc.After this preliminary remark, we 
an now begin with the proof: With-out loss of generality we may assume that the dual Ellentu
k neighbourhood
(S0, X0)

ω is su
h that D0 is C -dense in (S0, X0)
(n)∗.The proof is now given in several steps. Firstly we show that there existsan S̃ ∈ (N) with S0 4 S̃ ⊑ X0, su
h that for all T ∈ (N) with S̃ 4 T ⊑ X0,there is a T ′ ⊑ T su
h that Dom(T ′) = Dom(T ), |T ′| = n, S0 4 T ′, and

T ′ ∈ D0. To state this in a more formal way, we introdu
e the following twonotations: For S, T ∈ (N), where S 4 T and |S| ≤ m, let
(S, T )m =

{
U ∈ (N) : Dom(U) = Dom(T ) ∧ S 4 U ⊑ T ∧ |U | = m

}
,and for a dual Ellentu
k neighbourhood (U,Z)ω, let

(U,Z)(<ω)
∗

=
⋃

k∈ω

(U,Z)(k)
∗

.In other words, (U,Z)(<ω)∗ = {
S ∈ (N) : U 4 S∗ ⊑ Z

} and (S, T )m is the setof all m-blo
k partitions of Dom(T ) whi
h 
ontain S as a �sub-partition� andare 
oarser than T .Claim 1. There is a Z0 ∈ (S0, X0)
ω ∩ C and an S̃ ∈ (S0, Z0)

(<ω)∗ su
h thatfor all S ∈ (S̃, Z0)
(<ω)∗, (S0, S)

n ∩D0 6= ∅.
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laim fails, then for every Y ∈ (S0, X0)
ω∩C and ea
h

T ∈ (S0, Y )(<ω)
∗ there is an S ∈ (T, Y )(<ω)

∗ su
h that (S0, S)
n ∩D0 = ∅ ; inparti
ular, there is an S′ ∈ (T, Y )(|T |)∗ su
h that (S0, S

′)n∩D0 = ∅. We de�nea strategy for the Maiden in the game G
C
. The Maiden starts the gamewith (S0, X0) and replies the ith move Yi of Death with (Si+1, Xi+1), where

Xi+1 = Yi and Si+1 is 
onstru
ted as follows: Take any Ti+1 ∈ (S∗
i , Yi)

(n+i+1)∗and let Si+1 ∈ (Ti+1, Yi)
(n+i+1)∗ be su
h that (S0, Si+1)

n ∩ D0 = ∅. As C isa Ramsey-partition family, �x a play where the Maiden follows this strategybut Death wins. Let Z ∈ (ω)ω be the unique in�nite partition su
h that forall i ∈ ω we have Si ≺ Z. Sin
e C is a Ramsey partition-family, the partition
Z belongs to C . By 
onstru
tion, S0 ≺ Z and (S0, Z)

(n)∗∩D0 = ∅. Thus, D0is not C -dense in (S0, X0)
(n)∗, a 
ontradi
tion. ⊣Claim 1The next step is where the Hales-Jewett Theorem 
omes in:Claim 2. Let Z0 ∈ (S0, X0)

ω ∩ C be as in Claim 1. Then there is a Ũ ∈
(S0, Z0)

(n+1)∗ su
h that (S0, Ũ)n ⊆ D0.Proof of Claim 2. Let S̃ ∈ (S0, Z0)
(<ω)∗ be as in Claim 1, i.e., for all W ∈

(S̃, Z0)
(<ω)∗ there is a W ′ ∈ (S0,W )n su
h that W ′ ∈ D0. Let m = |S̃|,

r0 =
∣∣(S0, S̃)

n
∣∣, and let {Uk : k ∈ r0} be an enumeration of (S0, S̃)

n. By theHales-Jewett Theorem 11.2, or more pre
isely by a partition form of it,there is a positive integer l = HJ(m, r0) su
h that for any T ∈ (S̃, Z0)
(m+l)∗and any r0-
olouring of (S̃, T )m there is aW0 ∈ (S̃, T )m+1 su
h that (S̃,W0)

mis mono
hromati
 (the details are left to the reader). Fix an arbitrary T̃ ∈
(S̃, Z0)

(m+l)∗. Then, by the 
hoi
e of S̃, for all W ∈ (S̃, T̃ )m there is a U ∈
(S0,W )n su
h that U ∈ D0. Moreover, there is a k ∈ r0 su
h that Uk ≺ U ,and sin
e |Uk| = |U | = n we have U = Uk ⊓W . Hen
e, for everyW ∈ (S̃, T̃ )mthere is a k ∈ r0 su
h that Uk ⊓W ∈ D0. Now, for ea
h W ∈ (S̃, T̃ )m let

τ(W ) = min{k ∈ r0 : Uk ⊓W ∈ D0} .Then τ is an r0-
olouring of (S̃, T̃ )m. Sin
e T̃ ∈ (S̃, Z0)
(m+l)∗ there is a W0 ∈

(S̃, T̃ )m+1 su
h that (S̃,W0)
m. is mono
hromati
, say of 
olour k0. Thus,for all W ∈ (S̃,W0)

m, Uk0 ⊓ W ∈ D0. Finally, let Ũ = Uk0 ⊓ W0. Then
Ũ ∈ (S0,W0)

n+1, hen
e Ũ ∈ (S0, Z0)
(n+1)∗, and (S0, Ũ)n ⊆ D0 as required.

⊣Claim 2As an obvious generalisation of Claim 2 we getClaim 2∗. For ea
h X ∈ (S0, X0)
ω ∩C there is a U ∈ (S0, X)(n+1)∗ su
h that

(S0, U)n ⊆ D0.The next step is 
ru
ial in the 
onstru
tion of X̄:Claim 3. Let Z0 ∈ (S0, X0)
ω ∩ C be as in Claim 1. Then there are S ∈

(S0, Z0)
(n+1)∗ and X ∈ (S,Z0)

ω ∩ C su
h that the set
{
T ∈ (S,X)(n+1)∗ : (S0, T )

n ⊆ D0

}is C -dense in (S,X)(n+1)∗.
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ontradi
tion that the 
laim fails. Then,for any S ∈ (S0, Z0)
(n+1)∗ and ea
h Y ∈ (S,X0)

ω ∩ C there exists a Z ∈
(S, Y )ω ∩ C , su
h that for all T ∈ (S,Z)(n+1)∗ we have (S0, T )

n * D0. Wede�ne a strategy for the Maiden in the game G
C
. The Maiden starts thegame with (S0, Z0) and replies the ith move Yi of Death with (Si+1, Zi+1),where Zi+1 ∈ (S∗

i , Yi)
ω ∩ C and Si+1 ∈ (S∗

i , Zi+1)
(n+i+1)∗ are su
h that forall S ∈ (S0, Si+1)

n+1 and all T ∈ (S,Zi+1)
(n+1)∗ we have (S0, T )

n * D0 : For
i = 0, let S1 ∈ (S0, Y0)

(n+1)∗ be arbitrary and let Z1 ∈ (S∗
1 , Y0)

ω ∩ C be su
hthat for all T ∈ (S1, Z1)
(n+1)∗ we have (S0, T )

n * D0. For i > 0, we 
onstru
t
Si+1 and Zi+1 as follows. Firstly, let {Ti,k : k ∈ hi} be an enumeration of
(S0, Si)

n+1. Se
ondly, let Zi,0 = Yi and for k ∈ hi let Zi,k+1 ∈ (Si, Zi,k)
ω ∩ Cbe su
h that for all T ∈ (Ti,k, Zi,k+1)

(<ω)∗ we have (S0, T )
n * D0. Finally, let

Zi+1 = Zi,hi
and let Si+1 ∈ (S∗

i , Zi+1)
(n+i+1)∗. Fix a play where the Maidenfollows this strategy but Death wins. Sin
e C is a Ramsey partition-family,the unique in�nite partition Z ∈ (ω)ω su
h that for all i ∈ ω we have Si ≺ Zbelongs to C . Now, by 
onstru
tion, for any U ∈ (S0, Z)

(n+1)∗ we �nd apositive integer i ∈ ω as well as a k ∈ hi su
h that U ∈ (Ti,k, Zi+1)
(n+1)∗.Thus, for all U ∈ (S0, Z)

(n+1)∗ we have (S0, U)n * D0, but sin
e (S0, Z)
ω ⊆

(S0, Z0)
ω , this 
ontradi
ts Claim 2∗. ⊣Claim 3The following 
laim is just a generalisation of Claim 3:Claim 3∗. Let (T0, Y0)

ω ⊆ (S0, X0)
ω be a dual Ellentu
k neighbourhood,where Y0 ∈ C and |T0| = m. If E ⊆ (ω)(m) is C -dense in (T0, Y0)

(m)∗,then there exist S ∈ (T0, Y0)
(m+1)∗ and X ∈ (S, Y0)

ω ∩ C su
h that the set{
T ∈ (S, Y0)

(m+1)∗ : (T0, T )
m ⊆ E

} is C -dense in (S,X)(m+1)∗.Proof of Claim 3 ∗. In the proofs of the pre
eding 
laims, just repla
e S0 by
T0, X0 by Y0, and D0 by E. ⊣Claim 3∗Now we 
onstru
t the �rst pie
e of the sought partition X̄:Claim 4. There is a U0 ∈ (S0, X0)

(n)∗ su
h that π(U0) = 0, i.e., U0 ∈ D0, andin addition there is an X ∈ (U∗
0 , X0)

ω ∩ C su
h that the set
{
T ∈ (U0, X)(n+1)∗ : (S0, T )

n ⊆ D0

}is C -dense in (U0, X)(n+1)∗.Proof of Claim 4. We de�ne a strategy for the Maiden in the game G
C
. TheMaiden starts the game with (S0, X0) and replies the ith move Yi of Deathwith (Si+1, Xi+1), where Si+1 and Xi+1 are 
onstru
ted as follows: For i = 0,let S1 ∈ (S0, Y0)

(n+1)∗ and X1 ∈ (S1, Y0)
ω ∩ C be su
h that the set

E1 =
{
T ∈ (S1, X1)

(n+1)∗ : (S0, T )
n ⊆ D0

}is C -dense in (S1, X1)
(n+1)∗. Noti
e that by Claim 3∗, S1 and X1 exist. Simi-larly, for i > 0 let Si+1 ∈ (Si, Yi)

(n+1)∗ and Xi+1 ∈ (Si, Yi)
ω ∩ C be su
h thatthe set

Ei+1 =
{
T ∈ (Si+1, Xi+1)

(n+i+1)∗ : (Si, T )
n+i ⊆ Ei

}
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(n+i+1)∗. By indu
tion on i one veri�es that for all

i ∈ ω we have
Ei+1 ⊆

{
T ∈ (Si+1, Xi+1)

(n+i+1)∗ : (S0, T )
n ⊆ D0

}
,where E0 := D0 (the details are left to the reader). Finally, �x a play wherethe Maiden follows this strategy but Death wins, and let X ∈ (ω)ω bethe unique in�nite partition su
h that for all i ∈ ω we have Si ≺ X . Sin
e

C is a Ramsey partition-family, X belongs to C . Now, sin
e D0 is C -densein (S0, X0)
ω and X ∈ (S0, X0)

ω ∩ C , there is a U0 ∈ (S0, X)(n)
∗ su
h that

U0 ∈ D0. Choose i0 ∈ ω large enough su
h that there is an S ∈ (S0, Si0)
n+1for whi
h we have U∗

0 4 S. Sin
e (S0, S)
n ⊆ (S0, Si0)

n we get that {
T ∈

(S,Xi0)
(n+1)∗ : (S0, T )

n ⊆ D0

} is C -dense in (S,Xi0)
(n+1)∗. In parti
ular, theset {T ∈ (S,X)(n+1)∗ : (S0, T )

n ⊆ D0

} is C -dense in (S,X)(n+1)∗, and sin
e
π(U0) = 0 and U∗

0 4 S, U0 has the required properties. ⊣Claim 4We leave it as an exer
ise to the reader to prove the following generalisationof Claim 4:Claim 4∗. If Ui ∈ (S0, X0)
(n+i)∗ is su
h that (S0, Ui)

n ⊆ D0 and Y ∈
(U∗

i , X0)
ω∩C is su
h that {T ∈ (Ui, Y )(n+i+1)∗ : (S0, T )

n ⊆ D0

} is C -dense in
(Ui, Y )(n+1)∗, then there are Ui+1 ∈ (U∗

i , Y )(n+i+1)∗ and X ∈ (U∗
i+1, Y )ω ∩ Csu
h that {

T ∈ (Ui+1, X)(n+i+2)∗ : (S0, T )
n ⊆ D0

}is C -dense in (Ui+1, X)(n+1)∗ and (S0, Ui+1)
n ⊆ D0.Now we are ready to 
onstru
t an in�nite partition X̄ ∈ (S0, X0)

ω ∩ C su
hthat for every U ∈ (S0, X̄)(n)
∗ we have π(U) = 0, i.e., (S0, X̄)(n)

∗ ⊆ D0 :Indeed, by de�ning a suitable strategy for the Maiden in the game G
C

(ap-plying Claim 4∗), we 
an 
onstru
t partitions Ui ∈ (S0, X0)
(<ω)∗ su
h thatfor all i ∈ ω we have

|Ui| = n+ i , U∗
i 4 Ui+1 , (S0, Ui)

n ⊆ D0 , (❦)and the unique partition X̄ ∈ (ω)ω su
h that Ui ≺ X̄ (for all i ∈ ω) belongsto the Ramsey partition-family C . By (❦), for all U ∈ (S0, X̄)(n)
∗ we have

(S0, U)n ⊆ D0, i.e., (S0, X̄)(n)
∗ is mono
hromati
, whi
h 
ompletes the proofof Carlson's Lemma. ⊣Having Carlson's Lemma at hand, we are now able to prove the main resultof this 
hapter:Proof of the Partition Ramsey Theorem. The proof is by indu
tion on n.For n = 1, the Partition Ramsey Theorem follows immediately by thePigeon-Hole Prin
iple. So, let n, r ∈ ω be given, where r is positive and n > 1,and assume that the Partition Ramsey Theorem is already proved for allpositive integers n′ < n.



A weak form of the Halpern-Läu
hli Theorem 259Fix an arbitrary 
olouring π : (ω)n → r. Take an arbitrary partition
X0 ∈ C and let S0 ∈ (N) be su
h that |S0| = n− 1 and S∗

0 ≺ X0.We de�ne a strategy for the Maiden in the game G
C

and as byprodu
twe get a partial mapping τ from (ω)n−1 to r. The Maiden starts the gamewith (S0, X0) and replies the ith move Yi of Death with (Si+1, Xi+1), where
Si+1 and Xi+1 are 
onstru
ted as follows: Let {

Tk ∈ (N) : k ∈ hi
} be anenumeration of all T ⊑ Si with Dom(T ) = Dom(Si) and |T | = n−1. Let Z0 :=

Yi, and for ea
h k ∈ hi, let Zk+1 ∈ (S∗
i , Zk)

ω ∩ C be su
h that π|(T∗
k
,Zk+1)(n)∗is 
onstant and de�ne

τ(Tk) = π(U) for some U ∈ (T ∗
k , Zk+1)

(n)∗.Now, the partition Zk+1 ∈ C we 
onstru
t by applying �rst Carlson'sLemma 11.5 with respe
t to the dual Ellentu
k neighbourhood (T ∗
k , Zk)

ω andthen by re�ning the resulting partition su
h that it belongs to the dual Ellen-tu
k neighbourhood (S∗
i , Zk)

ω. Let Xi+1 := Zhi
and let Si+1 ∈ (N) be su
hthat S∗

i+1 ≺ Xi+1 and |Si+1| = (n− 1) + (i+ 1). Finally, �x a play where theMaiden follows this strategy but Death wins, and let Z ∈ (ω)ω be the uniquein�nite partition su
h that for all i ∈ ω we have Si ≺ Z. Sin
e C is a Ramseypartition-family, the partition Z belongs to C . For ea
h T ∈ (Z)(n−1)∗ thereexist unique numbers i, k ∈ ω su
h that k ∈ hi and T = Tk. Thus, τ is an
r-
olouring of (Z)(n−1)∗. By the indu
tion hypothesis we �nd an X ∈ (Z)ω∩Csu
h that τ |(X)(n−1)∗ is 
onstant, say τ(T ) = j for all T ∈ (X)(n−1)∗. Now,take any S ∈ (X)(n)

∗ and let S̃∗ ≺ S be su
h that |S̃| = n− 1. Noti
e that thedomain of S̃ is equal to Dom(Si) for some i ∈ ω. Consider the partition Xi+1.By the 
onstru
tion of Xi+1 we know that (T ∗, Xi+1)
(n)∗ is mono
hromati
whenever T ⊑ Si with |T | = n − 1 and Dom(T ) = Dom(Si), and by the
onstru
tion of the partition X , π|(T∗,Xi+1)(n)∗ is 
onstantly j. In parti
ular,

π(U) = j whenever U ∈ (S̃∗, Xi+1)
(n)∗, and sin
e S ∈ (S̃∗, Xi+1)

(n)∗, we get
π(S) = j, whi
h 
ompletes the proof. ⊣A Weak Form of the Halpern-Läu
hli TheoremOne 
an show that for example the Hales-Jewett Theorem, a weakenedform of the Halpern-Läu
hli Theorem, Ramsey's Theorem, as well asthe Finite Ramsey Theorem and a partition form of it, are all derivablefrom the Partition Ramsey Theorem. Below, we just give the proof oftheWeak Halpern-Läu
hli Theorem (for the other results see RelatedResult 75).To state this weakened form of theHalpern-Läu
hli Theorem, we haveto give �rst some notations: A set T ⊆ seq(2), where seq(2) =

⋃
n∈ω

n2, is atree if for every s ∈ T and k ∈ dom(s) we have s|k ∈ T . In parti
ular, seq(2)is a tree. For a tree T ⊆ seq(2) and l ∈ ω let
T (l) = {s ∈ T : dom(s) = l} .
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t of trees T = T0 × . . . × Td−1 ⊆
(
seq(2)

)d (i.e., for all
k ∈ d, where d ∈ ω, Tk ⊆ seq(2) is a tree), and for l ∈ ω, let

T (l) =
{
s ∈ T : s ∈ T0(l)× . . .× Td−1(l)

}
.A tree T ⊆ seq(2) is perfe
t if for ea
h s ∈ T there is an n > dom(s) andtwo distin
t fun
tions t0, t1 ∈ n2 ∩ T su
h that t0|dom(s) = t1|dom(s) = s. Inother words, for ea
h s ∈ T there are t0, t1 ∈ T and k ∈ dom(t0) ∩ dom(t1)su
h that t0|dom(s) = t1|dom(s) = s and t0(k) = 1− t1(k).Now we are ready to state and proof the following result.Theorem 11.6 (Weak Halpern-Läu
hli Theorem). For every positive

d ∈ ω and for every 
olouring of ⋃
l∈ω(

l2)d with �nitely many 
olours, thereexists a produ
t of perfe
t trees T = T0× . . .×Td−1 and an in�nite set H ⊆ ωsu
h that ⋃l∈H T (l) is mono
hromati
.Proof. Let d be a �xed positive integer and let n := 2d. Be
ause |d2| = 2d,there exists a one-to-one 
orresponden
e ζ between n and d2. For any l ∈ ω, anelement 〈s0, . . . , sd−1〉 ∈ (l2)d is a sequen
e of length d of fun
tions si : l → 2.For any l ∈ ω, de�ne the fun
tion ξ : (l2)d → (d2)l by stipulating
ξ(〈s0, . . . , sd−1〉) = 〈t0, . . . , tl−1〉 where tj(i) := si(j) ,in other words, for any fun
tion s : d→ l2, ξ(s)(j)(i) = s(i)(j). Noti
e that forea
h l ∈ ω, the fun
tion ξ is a one-to-one fun
tion from (l2)d onto (d2)l. Let

S = {uk : k ∈ n} ∈ (ω)n be su
h that min(u0) < min(u1) < . . .min(un−1).For j ∈ uk let tSj (i) := ξ(k)(i). Now, de�ne the fun
tion η : (ω)n →
(
seq(2)

)dby stipulating
η(S) = ξ−1

(
〈tS0 , . . . , tSDom(S)−1〉

)
.Noti
e that for S ∈ (ω)n with Dom(S) = l, η(S) ∈ (l2)d. Finally, for any
olouring π :

⋃
l∈ω(

l2)d → r, where r is a positive integer, we de�ne the
olouring τ : (ω)n → r by stipulating τ(S) := π
(
η(S)

). Let X ∈ (ω)ω be asin the 
on
lusion of the Partition Ramsey Theorem 11.4 (with respe
t tothe 
olouring τ). Let S∗
0 ≺ X be su
h that |S0| = n and let H := Min(X) \

Min(S0). Further, let
S =

{
S ∈ (ω)n : S 4 S0 ∨ S0 4 S ⊑ X

}and de�ne
T =

{
s ∈

(
seq(2)

)d
: ∃S ∈ S

(
s = η(S)

)}
.We leave it as an exer
ise to the reader to 
he
k that T and H are as desiredand that they have the desired properties. ⊣For the full version of the Halpern-Läu
hli Theorem see RelatedResult 77. However, in many appli
ations the Weak Halpern-Läu
hli



Notes 261Theorem is strong enough. For example theWeak Halpern-Läu
hli The-orem is su�
ient to prove that a �nite produ
t of Sa
ks for
ing does not addsplitting reals (see Chapter 22 |Related Result 121).NotesVan der Waerden's Theorem. The theorem of van der Waerden 
an be 
onsid-ered as the beginning of Ramsey Theory and it was �rst proved by van der Waerdenin [34℄. For a short but not easy proof of van der Waerden's Theorem see Gra-ham and Roths
hild [8℄, and for a 
ombinatorial proof of a slightly more generalresult see Pin [22, Chapter 3℄.For a des
ription of how van der Waerden found hisproof we refer the reader to [35℄.The Hales-Jewett Theorem. In Graham, Roths
hild, and Spen
er [9, p. 35 �.℄ we
an read the following remark: Van der Waerden's Theorem should be regarded,not as a result dealing with integers, but rather as a theorem about �nite sequen
esformed from �nite sets. The Hales-Jewett Theorem strips van der Waer-den's Theorem of its unessential elements and reveals the heart of Ramsey theory.As mentioned above, the original proof of Hales and Jewett [13℄ (
f. Prömel andVoigt [28, p. 117 f.℄) uses a double indu
tion whi
h leads to an extremely fast grow-ing upper bound for the Hales-Jewett fun
tion HJ(n, r). In 1987, Shelah [30℄ founda fundamentally new proof of the Hales-Jewett Theorem whi
h just uses simpleindu
tion on n and provides a mu
h better bound for HJ(n, r). The proof of theHales-Jewett Theorem (i.e., of Theorem 11.3) presented here is Shelah's proofmodi�ed by Matet [23℄, who repla
ed what is sometimes 
alled �Shelah's pigeonholelemma� by the Finite Ramsey Theorem. For the Hales-Jewett Theorem, andin parti
ular for Shelah's proof, see also Graham, Roths
hild, and Spen
er [9, Chap-ter 2℄, Nilli [25℄, Prömel and Voigt [28, p. 119 �.℄, and Jukna [19, Chapter 29℄.Carlson's Lemma and the Partition Ramsey Theorem. A

ording to Carl-son and Simpson [4, p. 268℄, Carlson proved Lemma 2.4 of [4℄ in 1982. In fa
t, heproved a stronger result involving so-
alled �spe
ial partitions�, whi
h are essentiallysegmented partitions where �nitely many blo
ks may be in�nite; and in the proof ofLemma 11.5 we essentially followed Carlson's proof of that stronger result, whi
h isTheorem 6.3 of [4℄. Carlson's Lemma, or more pre
isely Lemma 2.4 of [4℄, plays akey role in the proof of the Dual Ramsey Theorem, whi
h is the main result ofCarlson and Simpson [4℄. The Dual Ramsey Theorem 
orresponds to our Gen-eralisation 1 �where the set (ω)n is 
oloured with �nitely many 
olours � ex
eptthat the set of admissible 
olours of (ω)n is restri
ted to Borel 
olourings. Thus, theDual Ramsey Theorem is in a 
ertain sense the dual of Ramsey's Theorem.However, it was natural to seek a partition form (i.e., dual form) ofRamsey's Theo-rem whi
h works for arbitrary 
olourings. Su
h a result we found in the PartitionRamsey Theorem (see also Related Result 75). The proof of the PartitionRamsey Theorem 11.4 is taken from Halbeisen [10, Chapter IV.2℄ (for the relationbetween the Partition Ramsey Theorem and other Ramsey-type results we referthe reader to Halbeisen [10, Chapter IV.4℄)..The Halpern-Läu
hli Theorem. What we stated as Weak Halpern-Läu
hliTheorem 11.6 is just a 
onsequen
e of the Halpern-Läu
hli Theorem (see Re-lated Result 77), whi
h was �rst proved by Halpern and Läu
hli in [15℄ and later



262 11 A Dual Form of Ramsey's Theoremby Halpern in [14℄ (see also Argyros, Felouzis and Kanellopoulos [1℄, Todor£evi¢ [32,Chapter 3℄, or Todor£evi¢ and Farah [33℄). A

ording to Pin
us and Halpern [26,p. 549℄ (
f. [16, p. 97℄) the original purpose of the Halpern-Läu
hli Theorem wasto show that in ZF, the Prime Ideal Theorem does not imply the Axiom of Choi
e,whi
h was proved by Halpern and Lévy in [16℄ (
f. Theorem 7.16, where it is shownthat in ZFA, PIT does not imply AC). As mentioned above, in many appli
ations,a weak form or a parti
ular 
ase of the Halpern-Läu
hli Theorem is su�
ient(e.g., Halpern and Lévy [16, p. 97℄). The version of theHalpern-Läu
hli Theoremgiven above� as well as the idea of proof � is taken from Carlson and Simpson [4,p. 272℄. For some appli
ations and other weak forms of the Halpern-Läu
hli The-orem see Related Result 77.Related Results73. Van der Waerden numbers. For positive integers r and l1, l2, . . . , lr, the vander Waerden number w(l1, l2, . . . , lr; r) is the least positive integer N su
h thatfor every r-
olouring of set {1, 2, . . . , N}, there is a mono
hromati
 arithmeti
progression of length li of 
olour i for some i. In [3℄, Brown, Landman, andRobertson gave asymptoti
 lower bounds for w(l,m; 2) for �xed m, as well asfor w(4, 4, . . . , 4; r).74. Non-repetitive sequen
es and van der Waerden's Theorem∗. A �nite set of oneor more 
onse
utive terms in a sequen
e is 
alled a segment of the sequen
e. Asequen
e on a �nite set of symbols is 
alled non-repetitive if no two adja
entsegments are identi
al, where adja
ent means abutting but not overlapping.It is known that there are in�nite non-repetitive sequen
es on three symbols(see Pleasants [27℄), and on the other hand, it is obvious that a non-repetitivesequen
e on two symbols is at most of length 3. Erd®s has raised in [6℄ thequestion of the maximum length of a sequen
e on k symbols, su
h that no twoadja
ent segments are permutations of ea
h other. Su
h a sequen
e is 
alledstrongly non-repetitive. Keränen [20℄ has shown that four symbols are enoughto 
onstru
t an in�nite strongly non-repetitive sequen
e.Now, repla
ing the �nite set of symbols of an in�nite strongly non-repetitivesequen
e by di�erent prime numbers, one gets an in�nite sequen
e on a �niteset of integers su
h that no two adja
ent segments have the same produ
t. Itis natural to ask whether one 
an repla
e in the statement above �produ
t�by �sum�, whi
h leads to the following question: Is it possible to 
onstru
t anin�nite sequen
e on a �nite set of integers su
h that no two adja
ent segmentshave the same sum? By an appli
ation of van der Waerden's Theorem, itis not hard to show that the answer to this question is negative. Moreover, inany in�nite sequen
e on a �nite set of integers we always �nd arbitrary large�nite sets of adja
ent segments su
h that all these segments have the samesum (see Hungerbühler and Halbeisen [11℄). However, it is still open whetherthere exists an in�nite sequen
e on a �nite set of integers su
h that no twoadja
ent segments of the same length have the same sum. It seems that vander Waerden's Theorem alone is not strong enough to solve this problem.75. Corollaries of the Partition Ramsey Theorem. Below, we present a few 
orollar-ies of the Partition Ramsey Theorem. We would like to mention that these
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orollaries � like for example the Weak Halpern-Läu
hli Theorem�alsofollow from the so-
alled Dual Ramsey Theorem, whi
h is due to Carlsonand Simpson [4℄.Firstly we derive Ramsey's Theorem from the Partition Ramsey Theo-rem: To every r-
olouring π : [ω]n → r of the n-element subsets of ω we 
anassign an r-
olouring τ : (ω)n → r by stipulating τ (S) := π
(
Min(S∗) \ {0}

).Now, if (X)(n)
∗ is mono
hromati
 for τ for some X ∈ (ω)ω, then Min(X) \ {0}is mono
hromati
 for π, and sin
e Min(X) ∈ [ω]ω, this shows that Ramsey'sTheorem 2.1 is just a spe
ial 
ase of the Partition Ramsey Theorem. Sim-ilarly, the Finite Ramsey Theorem 2.3 as well as the Hales-Jewett The-orem 11.2 follows from the following �nite version of the Partition RamseyTheorem whi
h is originally due to Graham and Roths
hild [7, Corollary 10℄.Graham-Roths
hild Result: For all m,n, r ∈ ω, where r ≥ 1 and n ≤ m,there exists an N ∈ ω, where N ≥ m, su
h that for every r-
olouring of (N)nthere exists a partition H ∈ (N)m, all of whose n-blo
k 
oarsenings have thesame 
olour.The relation between these results is illustrated by the following �gure.Partition Ramsey Theorem //

��

Ramsey's Theorem
��Graham-Roths
hild Result //

��

Finite Ramsey TheoremHales-Jewett TheoremAs a matter of fa
t we would like to remind the reader that we used the Fi-nite Ramsey Theorem to prove the Hales-Jewett Theorem, that we usedthe Hales-Jewett Theorem to start the indu
tion in the proof of Carl-son's Lemma 11.5, and that Carlson's Lemma was 
ru
ial in the proof of thePartition Ramsey Theorem.76. A generalisation of the Partition Ramsey Theorem. By 
ombining Carlson'sLemma with the Graham-Roths
hild Result, Halbeisen and Matet [12℄proved a result whi
h is even stronger than the Partition Ramsey Theo-rem.77. The Halpern-Läu
hli Theorem. Before we 
an state the full Halpern-Läu
hliTheorem of Halpern and Läu
hli [15℄, we have to introdu
e some terminology.A set T ⊆ <ωω, where <ωω =
⋃
n∈ω

nω, is a �nitely bran
hing tree if T is a tree(i.e., for every s ∈ T and k ∈ dom(s), s|k ∈ T ) su
h that for all s ∈ T , the set{
t ∈ T : s ⊆ t ∧ |t| = |s|+ 1

} is �nite. An element s ∈ T of a tree T ⊆ <ωω isa leaf if {t ∈ T : s  t} = ∅}. If A and B are subsets of a tree T ⊆ <ωω, thenwe say that A supports (dominates) B if for all t ∈ B there exists an s ∈ Asu
h that s ⊆ t (t ⊆ s). A subset D of a tree T ⊆ <ωω is said to be (h, k)-denseif there is an s ∈ T with |s| = h su
h that {
t ∈ T : s ⊆ t ∧ |t| = h + k

} isdominated by D. Let ∏i∈d Ti = T0× . . .×Td−1 be a produ
t of trees Ti ⊆ <ωω.



264 11 A Dual Form of Ramsey's TheoremA produ
t ∏
i∈dAi ⊆

∏
i∈d Ti, where ea
h Ai is (h, k)-dense in Ti, is 
alled a

(h, k)-matrix. Now we 
an state Theorem 1 of Halpern and Läu
hli [15℄.Halpern-Läu
hli Theorem: Let ∏
i∈d Ti be a �nite produ
t of �nitelybran
hing trees Ti ⊆ <ωω without leaves, and let Q ⊆ ∏

i∈d Ti. Then either(a) for ea
h k, Q 
ontains a (0, k)-matrix, or(b) there exists h su
h that for ea
h k, (∏i∈d Ti
)
\Q 
ontains an (h, k)-matrix.There exist many reformulations, weakenings, and generalised forms of theHalpern-Läu
hli Theorem. For example Hans Läu
hli proved in a studentseminar at the ETH Züri
h a weak form of the Halpern-Läu
hli Theoremin whi
h the trees T ⊆ <ωω were repla
ed by ⋃
n∈ω

{
[ k
2n
, k+1

2n
) : k ∈ 2n

},and in whi
h the set [0, 1)2 was 
oloured with two 
olours. The Halpern-Läu
hli Theorem is a very strong 
ombinatorial statement and even weakforms of it have interesting appli
ations (see for example Chapter 22 |RelatedResult 121, Blass [2, Polarized Theorem℄, or Milliken [24℄). However, there arealso some generalisations of the Halpern-Läu
hli Theorem: For exampleLaver [21℄ generalised the perfe
t tree version of the Halpern-Läu
hli The-orem to in�nite produ
ts (see also Ramovi¢ [29℄), and Shelah [31℄ repla
ed thetrees T ⊆ <ωω of height ω by trees of un
ountable height (see also Dºamonja,Larson, and Mit
hell [5℄).78. Partition regularity. A �nite or in�nite matrix A with rational entries in whi
hthere are only a �nite number of non-zero entries in ea
h row is 
alled parti-tion regular if, whenever the natural numbers are �nitely 
oloured, there is amono
hromati
 ve
tor x (i.e., all entries of x have the same 
olour) with Ax = 0.Many of the 
lassi
al theorems of Ramsey Theory may naturally be interpretedas assertions that parti
ular matri
es are partition regular. For example, S
hur'sTheorem (i.e., Corollary 2.5) is the assertion that the 1×3-matrix (1, 1,−1) ispartition regular; or van der Waerden's Theorem is (with the strengtheningthat we may also 
hoose the 
ommon di�eren
e of the arithmeti
 progression tohave the same 
olour) exa
tly the statement that a 
ertain (m− 1)× (m+ 1)-matrix is partition regular (see Hindman, Leader, and Strauss [18℄). While inthe �nite 
ase partition regularity is well understood, very little is known inthe in�nite 
ase. For a survey of results on partition regularity of matri
es seeHindman [17℄. Referen
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Part II
From Martin's Axiom to Cohen's For
ing





...
hanges of genus are brought about not by theintrodu
tion of major or minor thirds, divided orundivided, but by a melodi
 progression through in-tervals proper to 
ertain genera. It remains to benoted that the 
hange from one genus to anotheris also a

ompanied by a 
hange in melodi
 style....a di�eren
e of genus may be assumed when anotable divergen
e in melodi
 style is heard, withrhythm and words suitably a

ommodated to it.Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558





12The Idea of For
ing
For
ing is a te
hnique� invented by Cohen in the early 1960s� for provingthe independen
e, or at least the 
onsisten
y, of 
ertain statements relative toZFC. In fa
t, starting from a model of ZFC, Cohen 
onstru
ted in 1962 modelsof ZF in whi
h the Axiom of Choi
e fails as well as models of ZFC in whi
h theContinuum Hypothesis fails. On the other hand, starting from a model of ZF,Gödel 
onstru
ted a model of ZFC in whi
h the Continuum Hypothesis holds(
f. Chapter 5). By 
ombining these results we get that the Axiom of Choi
e isindependent of ZF and that the Continuum Hypothesis is independent of ZFC.Before we dis
uss Cohen's for
ing te
hnique, let us brie�y re
all what itmeans for a senten
e ϕ to be independent of ZFC: From a synta
ti
al pointof view it means that neither ϕ nor its negation is provable from ZFC. Froma semanti
al point of view it means that there are models of ZFC in whi
h ϕholds and some in whi
h ϕ fails. Equivalently we 
an say that ϕ is independentof ZFC i� ϕ as well as its negation is 
onsistent with ZFC (i.e., ZFC + ϕ aswell as ZFC+ ¬ϕ has a model).Now, in order to proof that a given senten
e ϕ is 
onsistent with ZFC, wehave to show that ZFC + ϕ is 
onsistent� ta
itly assuming the 
onsisten
yof ZFC. This 
an be done in di�erent ways: For example one 
ould apply theCompa
tness Theorem 3.7 and show that whenever ZFC∗ ⊆ ZFC is a �niteset of axioms, then ZFC∗ + ϕ has a model (i.e., ZFC∗ + ϕ is 
onsistent); or,starting from a model of ZFC, one 
ould 
onstru
t dire
tly a model of ZFC+ϕ.These two approa
hes 
orrespond to two di�erent ways to look at for
ing:In the latter point of view we 
onsider for
ing as a te
hnique for extendingmodels of ZFC in su
h a way that ϕ holds in the extended model. Ex
ept forChapter 16, we will mainly take this approa
h whi
h will be demonstrated inChapter 14. Before we dis
uss the former approa
h, let us give two exampleshow a model of a given theory 
an be extended.An example from Group Theory : Consider the group G = (Q+, · ) (i.e.,
G � GT, the domain of G is the set of all positive rational numbers with



272multipli
ation as operation), and let ϕ be the statement ∃x (x · x = 2). Obvi-ously we have G 2 ϕ.Now, extend the domain of G by elements of the form qX , where q ∈ Q+,and for all p, q ∈ Q+ de�ne:
• p ∗ q := p · q
• p ∗ qX := (p · q)X
• pX ∗ q := (p · q)X
• pX ∗ qX := 2 · p · q
• (pX)−1 :=

(
1
2 · p−1

)
XLet Q+[X ] = Q+∪{pX : p ∈ Q+} and G[X ] = (Q+[X ], ∗ ). We leave it as anexer
ise to the reader to show that G[X ] � GT. Now, G[X ] � 1X ∗ 1X = 2,and therefore, G[X ] � ϕ. Thus, the extended model G[X ] is a model of GTand the statement ϕ, whi
h failed in G, holds in G[X ]. So, by extending anexisting model we were able to �for
e� that a given statement be
ame true.An example from Peano Arithmeti
: Assume that PA is 
onsistent and let

N = (N, 0, s,+, · )�where for n ∈ N, s(n) := n + 1�be a model of PA.Let ψ be the statement ∃x (x + x = 1), where 1 := s(0). Obviously we have
N 2 ψ. Now, let us try the same tri
k as above: So, extend the domain of Nby elements of the form n +X , where n ∈ N, and extend the operation �+�by stipulating X + X := 1. Now, the 
orresponding model N[X ] is surely amodel of ψ, but do we also have N[X ] � PA?By setting ϕ(x) ≡ (x = 0)∨∃y (x = s(y)) in PA7, we get that ea
h numberis either equal to 0 or a su

essor. Now, sin
e X 6= 0, it must be a su

essor.Thus, there is a y su
h that X = y + 1, and sin
e X 6= 1, by PA2 we get
y 6= 0. Similarly we 
an show that there is a z su
h that y = z + 1, and
onsequently X = (z + 1) + 1. Now, 1 = X +X = X +

(
(z + 1) + 1

) and byPA4 we get X+
(
(z+1)+1

)
=

(
X+(z+1)

)
+1, whi
h implies (by PA2) that

X + (z + 1) = 0. Applying again PA4 we �nally get (X + z) + 1 = 0, whi
h
ontradi
ts PA1. Thus, N[X ] is not a model of PA.This example shows that just extending an existing model of a theory Tin order to �for
e� that a given statement be
omes true may result in a modelwhi
h is no longer a model of T.Let us now dis
uss the other approa
h to for
ing (demonstrated in Chap-ter 16), where one shows that whenever ZFC∗ is a �nite set of axioms of ZFC,then ZFC∗ + ϕ is 
onsistent (as always, we ta
itly assume the 
onsisten
y ofZFC): Let ZFC∗ be an arbitrary �nite set of axioms of ZFC and let V be amodel of ZFC (e.g.,V = L). The so-
alledRefle
tion Prin
iple (dis
ussedin Chapter 15) tells us that for every �nite fragment ZFC∗ of ZFC (i.e., forevery �nite set of axioms of ZFC) there is a set model M su
h that M � ZFC∗where the domain of M is a set M in the model V. The goal is now to showthat for any �nite set Φ of axioms of ZFC, there is a �nite fragment ZFC∗of ZFC su
h that it is possible to extend any set model M of ZFC∗ to a setmodel M[X ] of Φ + ϕ (i.e., we �for
e� that ϕ as well as the formulae in Φ



273be
ome true in M[X ]). Then, sin
e Φ was arbitrary, by the Compa
tnessTheorem 3.7 we get the 
onsisten
y of ZFC+ ϕ.The advantage of this approa
h is that the entire for
ing 
onstru
tion 
anbe 
arried out in the model V: Be
ause M , the domain of M, is a set in themodel V (but not in the model M), we 
an extend the model M within Vto the desired model M[X ], su
h that the domain of M[X ] is still a set in V.So, all takes pla
e within the model V.To illustrate this approa
h let us 
onsider again the group-theoreti
 examplefrom above: Let us work with the group G = (R+, · ), where R+ is the set ofpositive real numbers. Now, the group G = (Q+, · ) is just a subgroup of Gand in G we 
an extend G to the group G[
√
2] with domain Q+ ∪

{
p ·

√
2 :

p ∈ Q+
}, whi
h is still a subgroup of G.A di�eren
e to the other approa
h is that we look now at the modelG fromthe larger model G (i.e., from �outside�), and extend G within this model.Another di�eren
e is that in the former example, the symbol X�at least forpeople living in G� is just a symbol with some spe
i�ed properties, whereasin the latter example, √2�at least for people living in G� is a proper realnumber. Of 
ourse, for people living in G, √2 is also just a symbol and is notmore real than any other symbol. On the other hand, in the latter examplethe people living in G know already that √

2 exists, whereas in the formerexample there are no su
h people, sin
e our universe is just G.Before the notion of for
ing is introdu
ed in Chapter 14, we present in thenext 
hapter the so-
alled Martin's Axiom. We do so be
ause on the one hand,Martin's Axiom is a statement 
losely related to for
ing, involving also partiallyordered sets and 
ertain generi
 �lters, but on the other hand, unlike for
ing,it does not involve any model-theoreti
 or even metamathemati
al arguments.Furthermore, Martin's Axiom is a proper set-theoreti
al axiom whi
h is widelyused in other bran
hes of Mathemati
s, espe
ially in Topology.





13Martin's Axiom
In this 
hapter, we shall introdu
e a set-theoreti
 axiom, known as Martin'sAxiom, whi
h is independent of ZFC. In the presen
e of the Continuum Hy-pothesis,Martin's Axiom be
omes trivial, but if the Continuum Hypothesis fails,then Martin's Axiom be
omes an interesting 
ombinatorial statement as wellas an important tool in Combinatori
s. Furthermore, Martin's Axiom providesa good introdu
tion to the for
ing te
hnique whi
h will be introdu
ed in thenext 
hapter.Filters on Partially Ordered SetsBelow, we introdu
e (and re
all respe
tively) some properties of partially or-dered sets, whi
h will play an important role in the development and investi-gation of for
ing 
onstru
tions.Let P = (P,≤) be a partially ordered set. The elements of P are usually
alled 
onditions, sin
e in the 
ontext of for
ing, elements of partially or-dered sets are 
onditions for senten
es to be true in generi
 extensions. Two
onditions p1 and p2 of P are 
alled 
ompatible, denoted p1 | p2, if there ex-ists a q ∈ P su
h that p1 ≤ q ≥ p2; otherwise they are 
alled in
ompatible,denoted p1 ⊥ p2.A typi
al example of a partially ordered set is the set of �nite partialfun
tions with in
lusion as partial ordering: Let I and J be arbitrary sets.Then Fn(I, J) is the set of all fun
tions p su
h that
• dom(p) ∈ fin(I), i.e., dom(p) is a �nite subset of I, and
• ran(p) ⊆ J .For p, q ∈ Fn(I, J) de�ne:

p ≤ q ⇐⇒ dom(p) ⊆ dom(q) ∧ q|dom(p) ≡ pIf we 
onsider fun
tions as sets of ordered pairs, as we usually do, then p ≤ q isjust p ⊆ q. We leave it as an exer
ise to the reader to verify that (Fn(I, J),⊆)is indeed a partially ordered set.



276 13 Martin's AxiomLet P = (P,≤) be a partially ordered set, and for the moment let C ⊆ P .Then C is 
alled dire
ted if for any p1, p2 ∈ C there is a q ∈ C su
h that
p1 ≤ q ≥ p2, C is 
alled open if p ∈ C and q ≥ p implies q ∈ C, and C is
alled downwards 
losed if p ∈ C and q ≤ p implies q ∈ C. Furthermore,
C is 
alled dense if for every 
ondition p ∈ P there is a q ∈ C su
h that
q ≥ p. For example with respe
t to (

Fn(I, J),⊆
), for every x ∈ I the set{

p ∈ Fn(I, J) : x ∈ dom(p)
} is open and dense. Finally, a non-empty set

F ⊆ P is a �lter (on P ) if it is dire
ted and downwards 
losed. Noti
e thatthis de�nition of ��lter� reverses the ordering from the de�nition given inChapter 5. Let D ⊆ P(P ) be a set of open dense subsets of P . A �lter G ⊆ Pis a D-generi
 �lter on P if G ∩ D 6= ∅ for every open dense set D ∈ D .As an example 
onsider again (
Fn(I, J),⊆

): If F is a �lter on Fn(I, J), then⋃
F : X → J is a fun
tion, where X is some (possibly in�nite) subset of I.Proposition 13.1. If (P,≤) is a partially ordered set and D is a 
ountableset of open dense subsets of P , then there exists a D-generi
 �lter on P .Moreover, for every p ∈ P there exists a D-generi
 �lter G on P whi
h
ontains p.Proof. For D = {Dn : n ∈ ω} and p−1 := p, 
hoose for ea
h n ∈ ω a pn ∈ Dnsu
h that pn ≥ pn−1, whi
h is possible sin
e Dn is dense. Then the set

G =
{
q ∈ P : ∃n ∈ ω (q ≤ pn)

}is a D-generi
 �lter on P and p ∈ G. ⊣A set A ⊆ P is an anti-
hain in P if any two distin
t elements of Aare in
ompatible. As mentioned in Chapter 5, this de�nition of �anti-
hain� isdi�erent from the one used in Order Theory. A partially ordered set P = (P,≤)satis�es the 
ountable 
hain 
ondition, denoted 


, if every anti-
hain in
P is at most 
ountable (i.e., �nite or 
ountably in�nite).As a 
onsequen
e of the following lemma we get that Fn(I, J) satis�es 


whenever J is 
ountable.Lemma 13.2 (∆-System Lemma). Let E be an un
ountable family of �nitesets. Then there exist an un
ountable family C ⊆ E and a �nite set ∆ su
hthat for any distin
t elements x, y ∈ C : x ∩ y = ∆.Proof. We shall 
onsider two 
ases.Case 1 : There exists an un
ountable E ′ ⊆ E su
h that for every a ∈ ⋃

E ′,
{x ∈ E ′ : a ∈ x} is 
ountable. Firstly noti
e that for su
h a set E ′, ⋃E ′ isun
ountable, and that for any 
ountable set C ⊆ ⋃

E ′, also the set {x ∈ E ′ :
x ∩ C = ∅} must be un
ountable. By trans�nite indu
tion we 
onstru
t anun
ountable family {xα : α ∈ ω1} ⊆ E ′ of pairwise disjoint sets as follows: Let
x0 be any member of E ′. If we have already 
onstru
ted a set Cα = {xξ : ξ ∈
α ∈ ω1} ⊆ E ′ of pairwise disjoint sets, let xα ∈ E ′ be su
h that xα∩⋃Cα = ∅.Then C = {xα : α ∈ ω1} and ∆ = ∅ are as required.



Filters on partially ordered sets 277Case 2 : For every un
ountable E ′ ⊆ E there exists an a ∈ ⋃
E ′ su
h that

{x ∈ E ′ : a ∈ x} is un
ountable. In this 
ase, 
onsider the fun
tion ν : E → ω,where for all x ∈ E , ν(x) := |x|. Sin
e E is un
ountable, there is an n ∈ ωand an un
ountable set E ′ ⊆ E su
h that ν|E ′ ≡ n, i.e., for all x ∈ E ′ we have
ν(x) = n.The proof is now by indu
tion on n: If n = 1, then for any two distin
telements x, y ∈ E ′ we have x ∩ y = ∅, thus, ∆ = ∅ and in this 
ase C = E ′.Now, let us assume that ν|E ′ ≡ n + 1 for some n ≥ 1 and that thelemma holds for n. Sin
e we are in Case 2, there is an a ∈ ⋃

E ′ su
h that
{x ∈ E ′ : a ∈ x} is un
ountable. Thus, we 
an apply the indu
tion hypothesisto the family E ′

a :=
{
x \ {a} : x ∈ E ′ ∧ a ∈ x

} and obtain an un
ountablefamily Ca ⊆ E ′
a and a �nite set∆a su
h that for any distin
t elements x, y ∈ Cawe have x∩ y = ∆a. Then C :=

{
x∪ {a} : x ∈ Ca

} and ∆ := ∆a ∪ {a} are asrequired. ⊣Corollary 13.3. If I is arbitrary and J is 
ountable, then Fn(I, J) satis�esthe 
ountable 
hain 
ondition.Proof. Let F ⊆ Fn(I, J) be an un
ountable family of partial fun
tions. Wehave to show that F is not an anti-
hain, i.e., we have to �nd at least twodistin
t 
onditions in F whi
h are 
ompatible. Let E :=
{
dom(p) : p ∈ F

}.Then E is obviously a family of �nite sets. Further, sin
e J is assumed to be
ountable, for every �nite set K ∈ fin(I) the set {
p ∈ E : dom(p) = K

} is
ountable, and therefore, sin
e F is un
ountable, E is un
ountable as well.Applying the ∆-System Lemma 13.2 to the family E yields an un
ount-able family C ⊆ F and a �nite set ∆ ⊆ I, su
h that for all distin
t p, q ∈ C ,
dom(p) ∩ dom(q) = ∆.Sin
e J is 
ountable and ∆ is �nite, un
ountably many 
onditions of Cmust agree on ∆, i.e., for some p0 ∈ Fn(I, J) with dom(p0) = ∆, the set
C ′ =

{
q ∈ C : q|∆ = p0

} is un
ountable. So, C ′ is an un
ountable subsetof F 
onsisting of pairwise 
ompatible 
onditions, hen
e, F is not an anti-
hain. ⊣The following hypothesis 
an be regarded as a generalisation of Proposi-tion 13.1� for the reason why P must satisfy 


 see Proposition 13.4.MA(κ): If P = (P,≤) is a partially ordered set whi
h satis�es 


, and
D is a set of at most κ open dense subsets of P , then there exists a
D-generi
 �lter on P .On the one hand, MA(ω) is just Proposition 13.1, and therefore, MA(ω)is provable in ZFC. On the other hand, MA(c) is just false as we will seein Proposition 13.5. However, the following statement 
an neither be provednor disproved in ZFC and 
an therefore be 
onsidered as a proper axiom ofSet Theory (espe
ially when CH fails):



278 13 Martin's AxiomMartin's Axiom (MA): If P = (P,≤) is a partially ordered set whi
hsatis�es 


, and D is a set of less than c open dense subsets of P , thenthere exists a D-generi
 �lter on P . In other words, MA(κ) holds forea
h 
ardinal κ < c.If we assume CH, then κ < c is the same as saying κ ≤ ω, thus, by Proposi-tion 13.1, CH implies MA. On the other hand, MA 
an repla
e the ContinuumHypothesis in many proofs that use CH; whi
h is important sin
e MA is 
on-sistent with ZFC+ ¬CH (see Chapter 19).It might be tempting to generalise Martin's Axiom by weakening itspremise: Firstly, one might try to omit 


, and se
ondly, one might try toallow larger families of open dense subsets of P . However, both attempts togeneralise MA fail.Proposition 13.4. There exist a (non 


) partially ordered set P = (P,≤)and a set D of 
ardinality ω1 of open dense subsets of P su
h that no �lteron P is D-generi
.Proof. Consider the partially ordered set (Fn(ω, ω1),⊆
). For ea
h α ∈ ω1, theset

Dα =
{
p ∈ Fn(ω, ω1) : α ∈ ran(p)

}is an open dense subset of Fn(ω, ω1): Obviously, Dα is open. To see that Dαis also dense, take any p ∈ Fn(ω, ω1). If α ∈ ran(p), then p ∈ Dα and we aredone. Otherwise, let n ∈ ω be su
h that n /∈ dom(p) (noti
e that su
h an nexists sin
e dom(p) is �nite). Now, let q := p ∪ {〈n, α〉}; then q ∈ Dα and
q ≥ p. Similarly, for ea
h n ∈ ω, the set En =

{
p ∈ Fn(ω, ω1) : n ∈ dom(p)

}is open dense.Let D = {Dα : α ∈ ω1} ∪ {En : n ∈ ω}; then |D | = ω1. Assume that
G ⊆ Fn(ω, ω1) is a D-generi
 �lter on Fn(ω, ω1). Sin
e for ea
h n ∈ ω, G ∩
En 6= ∅, fG =

⋃
G is a fun
tion from ω to ω1. Further, sin
e for ea
h α ∈ ω1,

G ∩ Dα 6= ∅, the fun
tion fG : ω → ω1 is even surje
tive, whi
h 
ontradi
tsthe de�nition of ω1. ⊣Proposition 13.5. MA(c) is false.Proof. Consider the partially ordered set (
Fn(ω, 2),⊆

). Then Fn(ω, 2) is
ountable and 
onsequently satis�es 


. For ea
h g ∈ ω2, the set
Dg =

{
p ∈ Fn(ω, 2) : ∃n ∈ ω

(
p(n) = 1− g(n)

)}is an open dense subset of Fn(ω, 2): Obviously, Dg is open, and for p /∈ Dg let
q := p∪ {〈n, 1− g(n)〉} where n /∈ dom(p). Then q ∈ Dg and q ≥ p. Similarly,for ea
h n ∈ ω, the set Dn =

{
p ∈ Fn(ω, 2) : n ∈ dom(p)

} is open dense.Let D = {Dg : g ∈ ω2} ∪ {Dn : n ∈ ω}. Then |D | = |ω2| = c. Assumethat G ⊆ Fn(ω, 2) is a D-generi
 �lter on Fn(ω, 2). Sin
e for ea
h n ∈ ω,
G ∩ Dn 6= ∅, fG =

⋃
G is a fun
tion from ω to 2. Further, sin
e for ea
h

g ∈ ω2, G∩Dg 6= ∅, fG 6= g. Thus, fG would be a fun
tion from ω to 2 whi
hdi�ers from every fun
tion g ∈ ω2, whi
h is impossible. ⊣
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onsequen
es of MA(σ-
entred) 279Weaker Forms of MABelow, we introdu
e a few forms of Martin's Axiom whi
h are in fa
t properweakenings of MA (
f. Related Result 81).Let P = (P,≤) be a partially ordered set. P is said to be 
ountable ifthe set P is 
ountable; and P is said to be σ-
entred if P is the union of atmost 
ountably many 
entred sets, where a set Q ⊆ P is 
alled 
entred, ifany �nite set q1, . . . , qn ∈ Q has an upper bound in Q.Let P be any property of partially ordered sets, e.g., P = σ-
entred,
P = 


, or P = 
ountable. Then MA(P) is the following statement.MA(P): If P = (P,≤) is a partially ordered set having the property P ,and D is a set of less than c open dense subsets of P , then there existsa D-generi
 �lter on P .Sin
e every 
ountable partially ordered set is σ-
entred, and every σ-
entredpartially ordered set satis�es 


, we obviously get:MA ⇒ MA(σ-
entred) ⇒ MA(
ountable)Below, we present some 
onsequen
es of Martin's Axiom for 
ountable and
σ-
entred partially ordered sets.Some 
onsequen
es of MA(σ-
entred)Theorem 13.6. MA(σ-
entred) implies p = c.Proof. Let κ < c be an in�nite 
ardinal and let F = {xα : α ∈ κ} ⊆ [ω]ω be afamily with the strong �nite interse
tion property (i.e., interse
tions of �nitelymany members of F are in�nite) of 
ardinality κ. Under the assumption ofMA(σ-
entred) we 
onstru
t an in�nite pseudo-interse
tion of F .Let P be the set of all ordered pairs 〈s, E〉 su
h that s ∈ [ω]<ω and
E ∈ fin(κ); and for 〈s, E〉, 〈t, F 〉 ∈ P de�ne

〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧ E ⊆ F ∧ (t \ s) ⊆
⋂{

xα ∈ F : α ∈ E
}
.For s ∈ [ω]<ω let Ps :=

{
〈s, E〉 ∈ P : E ∈ fin(κ)

}. Then any �nite set
〈s, E1〉, . . . , 〈s, En〉 ∈ Ps has an upper bound, namely 〈

s,
⋃n
i=1Ei

〉, and sin
e
[ω]<ω is 
ountable and P =

⋃{
Ps : s ∈ [ω]<ω

}, the partially ordered set
(P,≤) is σ-
entred. For ea
h α ∈ κ and n ∈ ω, the set

Dα,n =
{
〈s, E〉 ∈ P : α ∈ E ∧ |s| > n

}is an open dense subset of P . Let D = {Dα,n : α ∈ κ∧n ∈ ω}. Then |D | = κ,in parti
ular, |D | < c. So, by MA(σ-
entred) there exists a D-generi
 �lter
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G on P . Let xG :=

⋃{
s ∈ [ω]<ω : ∃E ∈ fin(κ)

(
〈s, E〉 ∈ G

)}. Then, by
onstru
tion, xG is in�nite. Moreover, for every α ∈ κ there is a 
ondition
〈s, E〉 ∈ G su
h that α ∈ E, whi
h implies that xG \ s ⊆ xα. Hen
e, for ea
h
α ∈ κ we have xG ⊆∗ xα, and therefore, xG is an in�nite pseudo-interse
tionof F . ⊣The key idea in the proof that MA(σ-
entred) =⇒ 2κ = c for all in�nite
ardinals κ < c is to en
ode subsets of an almost disjoint family of 
ardinality
κ < c by subsets of ω. For the premise of the following lemma� in whi
h the�
odes� are 
onstru
ted� re
all that there is always an almost disjoint familyof 
ardinality c, and therefore of any 
ardinality κ ≤ c (
f. Proposition 8.6).Lemma 13.7. Let κ < c be an in�nite 
ardinal and let A = {xα : α ∈ κ} ⊆
[ω]ω be an almost disjoint family of 
ardinality κ. Furthermore, let B ⊆ Abe any subfamily of A and let C = A \ B. If we assume MA(σ-
entred),then there exists a set c ⊆ ω su
h that for all x ∈ A :

|c ∩ x| = ω ⇐⇒ x ∈ BProof. Similar as in the proof of Theorem 13.6, let P be the set of all orderedpairs 〈s, E〉 su
h that s ∈ [ω]<ω and E ∈ fin(C ); and for 〈s, E〉, 〈t, F 〉 ∈ Pde�ne
〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧ E ⊆ F ∧ (t \ s) ∩

⋃
E = ∅ .Similar as above, one shows that the partially ordered set (P,≤) is σ-
entred.Now, for ea
h xγ ∈ C , the set

Dxγ
=

{
〈s, E〉 ∈ P : xγ ∈ E

}is an open dense subset of P ; and for ea
h xβ ∈ B and ea
h k ∈ ω, the set
Dxβ,k =

{
〈s, E〉 ∈ P : |s ∩ xβ | ≥ k

}is also an open dense subset of P . Noti
e that we do not require that C or B isnon-empty. Finally, let D = {Dxγ
: xγ ∈ C }∪{Dxβ,k : xβ ∈ B∧k ∈ ω}. Then

|D | = κ, and sin
e κ < c we get |D | < c. So, by MA(σ-
entred) there exists a
D-generi
 �lter G on P . Let c = ⋃{

s ∈ [ω]<ω : ∃E ∈ fin(C )
(
〈s, E〉 ∈ G

)}
.Then for any xβ ∈ B, |c∩xβ | = ω; and, like in the proof of Theorem 13.6, forany xγ ∈ C , |c∩xγ | < ω. Thus, the set c ⊆ ω has the required properties. ⊣Now we are ready to prove the following 
onsequen
es of MA(σ-
entred):Theorem 13.8. If we assume MA(σ-
entred), then for all in�nite 
ardinals

κ < c we have 2κ = c, and as a 
onsequen
e we get that c is regular.



MA(
ountable) implies the existen
e of Ramsey ultra�lters 281Proof. Let κ < c be an in�nite 
ardinal. We have to show that 2κ = c. For this,�x an almost disjoint family A = {xα : α ∈ κ} ⊆ [ω]ω of 
ardinality κ, and forea
h u ∈ P(κ) let Bu := {xα ∈ A : α ∈ u}. Then, by Lemma 13.7, there is aset cu ⊆ ω su
h that for ea
h x ∈ A we have |cu∩x| = ω ⇐⇒ x ∈ Bu. Noti
ethat for any distin
t u, v ∈ P(κ) we have cu 6= cv. Indeed, if u, v ∈ P(κ) aredistin
t, then without loss of generality we may assume that there exists an
α ∈ κ su
h that α ∈ u \ v. So, cu ∩xα is in�nite, whereas cv ∩xα is �nite, andhen
e, cu 6= cv. Thus, the mapping

P(κ) → P(ω)
u 7→ cuis one-to-one, whi
h implies that 2κ ≤ c. Now, sin
e ω ≤ κ, and 
onsequently

c ≤ 2κ, we �nally get 2κ = c.To see that c is regular assume towards a 
ontradi
tion that κ = cf(c) < c.Then, by Corollary 5.12, c < cκ, but sin
e c = 2κ we get that cκ =
(
2κ

)κ
=

2κ = c, a 
ontradi
tion. ⊣MA(
ountable) implies the existen
e of Ramsey ultra�ltersAs a 
onsequen
e of MA(
ountable) we get that there are 2c mutuallynon-isomorphi
 Ramsey ultra�lters. By Chapter 10 |Related Result 64, itwould be enough to show that MA(
ountable) implies p = c; however, this isnot the 
ase (
f. Related Results 79�81 and Corollary 21.11).Proposition 13.9. MA(
ountable) implies that there exist 2c mutually non-isomorphi
 Ramsey ultra�lters.Proof. Sin
e there are just c permutation of ω, in order to get 2c mutuallynon-isomorphi
 Ramsey ultra�lters it is enough to �nd 2c distin
t Ramseyultra�lters. The 2c mutually distin
t Ramsey ultra�lters are 
onstru
ted bytrans�nite indu
tion: For every γ : c → 2 and every α ∈ c we 
onstru
t a set
Fγ|α = {xβ,γ(β) : β ∈ α} ⊆ [ω]ω with the �nite interse
tion property su
h thatthe �lter generated by ⋃

α∈c Fγ|α is a Ramsey ultra�lter. In addition we makesure that for any two distin
t γ, γ′ ∈ c2, the �lters generated by ⋃
α∈c Fγ|αand ⋃

α∈c Fγ′|α are distin
t. In order to get Ramsey ultra�lters at the end,by Proposition 10.7.(b) it is enough to make sure that for every partition
{Yn : n ∈ ω} of ω, either there is an n0 ∈ ω su
h that Yn0 ∈ ⋃

α∈c Fγ|α , orthere exists an x ∈ ⋃
α∈c Fγ|α su
h that for all n ∈ ω, |x ∩ Yn| ≤ 1.Let {Pα : α ∈ c} be the set of all in�nite partitions of ω. Thus, for ea
h

α ∈ c, Pα = {Y αn : n ∈ ω} is a set of pairwise disjoint subsets of ω su
h that⋃
Pα = ω. Further, let x0,0 := {2n : n ∈ ω}, x0,1 := {2n+ 1 : n ∈ ω}, andfor δ ∈ {0, 1} let F{〈0,δ〉} := {x0,δ} ∪

{
x ⊆ ω : |ω \ x| < ω

}. Obviously, bothsets F{〈0,0〉} and F{〈0,1〉} have the �nite interse
tion property. Let α ∈ c andassume that for ea
h η ∈ α2 and ea
h β ∈ α we already have 
onstru
ted aset Fη|β ⊆ [ω]ω with the �nite interse
tion property, and su
h that for any
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β0 ∈ β1 ∈ α we have Fη|β0

⊆ Fη|β1
. In order to 
onstru
t Fη we have to
onsider two 
ases:

α limit ordinal : If α is a limit ordinal, then let
Fη =

⋃

β∈α

Fη|β .Sin
e the sets Fη|β are in
reasing and ea
h of these sets has the �nite inter-se
tion property, Fη has the �nite interse
tion property as well.
α su

essor ordinal : If α is a su

essor ordinal, say α = β0 + 1, then we pro-
eed as follows: Consider the partition Pβ0 = {Yn : n ∈ ω} and noti
e thateither there is an n0 ∈ ω su
h that Fη|β0

∪ {Yn0} has the �nite interse
tionproperty, or for every n ∈ ω, Yn belongs to the dual ideal of Fη|β0
, i.e., isa subset of the 
omplement of a �nite interse
tion of members of Fη|β0

. We
onsider the two 
ases separately:Case 1 : Let n0 ∈ ω be su
h that Fη|β0
∪ {Yn0} has the �nite interse
tionproperty. Let P1 = Fn(Yn0 , 2) and for p, q ∈ P1 let p ≤ q ⇐⇒ p ⊆ q. Then

(P1,≤) is 
ountable and for every �nite set E ∈ fin(β0), every n ∈ ω and ea
h
δ ∈ {0, 1}, the set

DE,n,δ =
{
p ∈ P1 :

∣∣p−1(δ) ∩
⋂

ι∈E

xι,η(ι)
∣∣ ≥ n

}is an open dense subset of P1. Now let D =
{
DE,n,δ : E ∈ fin(β0) ∧ n ∈

ω ∧ δ ∈ {0, 1}
}. Then |D | ≤ max{|α|, ω} < c and by MA(
ountable) thereexists a D-generi
 �lter G on P1. For δ ∈ {0, 1}, let

xβ0,δ :=
⋃{

p−1(δ) : p ∈ G
}
.For δ ∈ {0, 1} we get that xβ0,δ ∈ [Yn0 ]

ω and that Fη := Fη|β0
∪ {xβ0,η(β0)}has the �nite interse
tion property. Finally, let η, η′ ∈ α2 be su
h that η(β0) =

1− η′(β0). Sin
e xβ0,0 ∩ xβ0,1 = ∅ we obviously have Fη 6= Fη′ . Moreover, by
onstru
tion we get that Fη ∪ Fη′ la
ks the �nite interse
tion property, andtherefore no ultra�lter 
an extend both Fη and Fη′ .Case 2 : If for ea
h n ∈ ω, Yn belongs to the dual ideal of Fη|β0
, then ea
h�nite interse
tion of members of Fη|β0

meets in�nitely many sets of Pβ0 . Let
P2 ⊆ Fn(ω, 2) be su
h that p ∈ P2 i� for every Y ∈ Pβ0 we have

max
{
|p−1(0) ∩ Y |, |p−1(1) ∩ Y |

}
≤ 1 ,and for p, q ∈ P2 let p ≤ q ⇐⇒ p ⊆ q. Like before, (P2,≤) is 
ountable andfor every �nite set E ∈ fin(β0), every n ∈ ω and ea
h δ ∈ {0, 1}, the set

DE,n,δ =
{
p ∈ P2 :

∣∣p−1(δ) ∩
⋂

ι∈E

xι,η(ι)
∣∣ ≥ n

}



Related Results 283is an open dense subset of P2. Let D =
{
DE,n,δ : E ∈ fin(β0) ∧ n ∈ ω ∧

δ ∈ {0, 1}
} and let G be a D-generi
 �lter on P2. Finally, for δ ∈ {0, 1} let

xβ0,δ :=
⋃{

p−1(δ) : p ∈ G
}. Then Fη := Fη|β0

∪ {xβ0,η(β0)} has the �niteinterse
tion property, and in addition there exists a set x ∈ Fη su
h that forall n ∈ ω, |x ∩ Yn| ≤ 1. Further, for η, η′ ∈ α2 with η(β0) = 1 − η′(β0), noultra�lter 
an extend both Fη and Fη′ .Finally, for ea
h γ ∈ c2, let Fγ be the �lter generated by the set ⋃α∈c Fγ|α .By 
onstru
tion, for any two distin
t γ, γ′ ∈ c2, Fγ and Fγ′ are two distin
tRamsey ultra�lters, and 
onsequently there exist 2c mutually non-isomorphi
Ramsey ultra�lters. ⊣NotesMartin's Axiom. MA was �rst dis
overed by Martin and Solovay [8℄. The paper
ontains various equivalent formulations ofMA and numerous appli
ations (in
ludingTheorem 13.8). They also stress the usefulness of MA as a viable alternative to CHand point out that many of the traditional problems solved using CH 
an be solvedusing MA. Roughly speaking, this is be
ause under MA, sets of 
ardinality less than
c usually behave like 
ountable sets (but of 
ourse, there are ex
eptions).For equivalents of MA, 
onsequen
es, weaker forms, history, et 
eterawe refer thereader to Kunen [7, Chapter II, �2��5℄, Fremlin [4℄, Weiss [12℄, Rudin [10℄, Blass [2,Se
tion 7℄, and Je
h [6, Chapter 16℄.MA(
ountable) and Ramsey ultra�lters. Proposition 13.9 is due to Canjar [3℄(who a
tually proved even more), but the proof given above was 
ommuni
atedto me by Mi
hael Hru²ák (
ompare Proposition 13.9 with Chapter 10 |RelatedResult 64).The ∆-System Lemma. This useful 
ombinatorial result was �rst proved byShanin [11℄ (see Kunen [7, Chapter II, �1℄ for a slightly more general result).Related Results79. MA(σ-
entred) ⇐⇒ p = c. As we have seen above in Theorem 13.6,MA(σ-
entred) implies p = c. On the other hand, also the 
onverse is true,i.e., p = c implies MA(σ-
entred). This somewhat surprising result was �rstproved by Bell [1℄ (see also Fremlin [4, 14C℄ or the proof of Theorem 19.4).80. MA(
ountable) ⇐⇒ 
ov(M) = c. Fremlin and Shelah showed in [5℄ thatMA(
ountable) is equivalent to 
ov(M) = c, where 
ov(M) denotes the 
over-ing number of the meagre ideal (de�ned in Chapter 21). See also Martin andSolovay [8, �4℄, Blass [2, Theorem 7.13℄, and Miller [9℄ for some further results
on
erning 
ov(M).81. MA(σ-linked). A partially ordered set (P,≤) is said to be σ-linked if we 
anwrite P =

⋃
n∈ω Pn, where ea
h set Pn 
onsists of pairwise 
ompatible elements.On the one hand, it is easily veri�ed thatMA =⇒ MA(σ-linked) =⇒ MA(σ-
entred) =⇒ MA(
ountable) ,
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onverse impli
ations holdrequires quite sophisti
ated te
hniques. For the 
orresponding referen
es we referthe reader to Fremlin [4, Appendix B1℄.Referen
es1. Murray G. Bell, On the 
ombinatorial prin
iple P (c), Fundamenta Math-emati
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eed-ings of the Ameri
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s], Springer-Verlag, Berlin,2003.7. Kenneth Kunen, Set Theory, an Introdu
tion to Independen
e Proofs,
[Studies in Logi
 and the Foundations of Mathemati
s 102], North-Holland,Amsterdam, 1983.8. Donald A. Martin and Robert M. Solovay, Internal Cohen extensions,Annals of Mathemati
al Logi
, vol. 2 (1970), 143�178.9. Arnold W. Miller, The Baire 
ategory theorem and 
ardinals of 
ountable
o�nality , The Journal of Symboli
 Logi
, vol. 47 (1982), 275�288.10. Mary Ellen Rudin, Martin's axiom, in Handbook of Mathemati
al Logi
(J. Barwise, ed.), North-Holland, Amsterdam, 1977, pp. 491�501.11. Nikolai A. Shanin, A theorem from the general theory of sets, Comptes Ren-dus (Doklady) de l'A
adémie des S
ien
es de l'URSS (N.S.), vol. 53(1946), 399�400.12. William Weiss, Versions of Martin's axiom, in Handbook of Set-Theoreti
Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam,1990, pp. 827�886.



14The Notion of For
ing
In this 
hapter we present a general te
hnique, 
alled for
ing, for extendingmodels of ZFC. The main ingredients to 
onstru
t su
h an extension are amodel V of ZFC (e.g., V = L), a partially ordered set P = (P,≤) 
ontainedin V, as well as a spe
ial subset G of P whi
h will not belong to V. Theextended model V[G] will then 
onsist of all sets whi
h 
an be �des
ribed�or �named� in V, where the �naming� depends on the set G. The main taskwill be to prove that V[G] is a model of ZFC as well as to de
ide (within V)whether a given statement is true or false in a 
ertain extension V[G].To get an idea how this is done, think for a moment that there are peopleliving in V. For these people, V is the unique set-theoreti
 universe whi
h
ontains all sets. Now, the key point is that for any statement, these peopleare able to 
ompute whether the statement is true or false in a parti
ularextension V[G], even though they have almost no information about the set
G (in fa
t, they would a
tually deny the existen
e of su
h a set).The Language of For
ingThe notion of for
ing notion. In fa
t, a for
ing notion is just a partiallyordered set P = (P,≤) with a smallest element, i.e.,

∃p ∈ P ∀q ∈ P (p ≤ q) .Noti
e that this 
ondition implies that P is non-empty. Further noti
e thatwe do not require that P is anti-symmetri
 (i.e., p ≤ q and q ≤ p does notne
essarily imply p = q), even though most of the for
ing notions 
onsidered inthis book are a
tually anti-symmetri
. In fa
t, for every for
ing notion P thereexists an equivalent for
ing notion P̃ whi
h is anti-symmetri
 (see Fa
t 14.5below).In order to make sure that for
ing with a for
ing notion P yields a non-trivial extension, we require that a for
ing notion P = (P,≤) has the propertythat there are in
ompatible elements above ea
h p ∈ P , i.e.,
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ing
∀p ∈ P ∃q1 ∈ P ∃q2 ∈ P

(
p ≤ q1 ∧ p ≤ q2 ∧ q1 ⊥ q2

)
.Noti
e that this property implies that there is no maximal element in P , i.e.,

∀p ∈ P ∃q ∈ P (p < q). Later on, when we shall be somewhat familiar withfor
ing, the se
ond 
ondition will be ta
itly 
an
elled in order to allow alsotrivial for
ing notions like for example P =
(
{∅}, ⊆

).Usually, for
ing notions are named after the person who investigated �rstthe 
orresponding partially ordered set in the 
ontext of for
ing (e.g., the for
-ing notion de�ned below is 
alled Cohen for
ing). As in the previous 
hapter,the elements of P are 
alled �
onditions�. Furthermore, if p and q and two
onditions and p ≤ q, then we say that p is weaker than q, or equivalently,that q is stronger than p.Below, we give two quite di�erent examples of for
ing notions. The �rstone is the for
ing notion whi
h is used to prove that ¬CH is 
onsistent withZFC, and the se
ond one is a for
ing notion whi
h will a

ompany us� indi�erent forms� throughout this book.1. Re
all that Fn(I, J) is the set of all �nite partial fun
tions from I to J(de�ned in the previous 
hapter). Now, for 
ardinal numbers κ > 0 de�nethe partially ordered set
Cκ =

(
Fn(κ× ω, 2), ⊆

)
,i.e., for p, q ∈ Fn(κ×ω, 2), p is stronger than q i� the fun
tion p extends q.Obviously, the smallest (i.e., weakest) element of Fn(κ×ω, 2) is ∅ (i.e., theempty fun
tion), thus, Cκ has a smallest element. Furthermore, for ea
h
ondition (i.e., fun
tion) p ∈ Fn(κ×ω, 2) there is an ordered pair 〈α, n〉 ∈

κ × ω whi
h does not belong to dom(p). Now, let q1 := p ∪
{〈

〈α, n〉, 1
〉}and q2 := p ∪

{〈
〈α, n〉, 0

〉}. Obviously, q1, q2 ∈ Fn(κ × ω, 2), q1 ⊥ q2,and q1 ⊇ p ⊆ q2. This shows that there are in
ompatible elements aboveea
h p ∈ Fn(κ × ω, 2). Hen
e, Cκ is a for
ing notion. The for
ing notion
C1, denoted C, is 
alled Cohen for
ing, and Cκ is in fa
t just a kind ofprodu
t of κ 
opies of Cohen for
ing (
f. Chapter 21).2. A natural example of a partially ordered set is the set of in�nite subsets of
ω together with the superset relation. However, let us 
onsider a slightlydi�erent partially ordered set: De�ne an equivalen
e relation on [ω]ω bystipulating

x ∼ y ⇐⇒ x△y is �niteand let [ω]ω/ fin :=
{
[x]̃ : x ∈ [ω]ω

}. On [ω]ω/ fin we de�ne a partialordering �≤ � by stipulating
[x]̃ ≤ [y]̃ ⇐⇒ y ⊆∗ x ,i.e., [x]̃ ≤ [y]̃ i� y \ x is �nite, and let
U =

(
[ω]ω/ fin,≤

)
.
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ing 287Then U is a partially ordered. Moreover, U is a for
ing notion: Obviously,the weakest element of U is [ω]̃ (the set of all 
o-�nite subsets of ω), thus,
U has a smallest element. Furthermore, for ea
h x ∈ [ω]ω one easily �ndsdisjoint sets y1 and y2 in [x]ω. This shows that there are in
ompatibleelements above any 
ondition [x]̃ . This for
ing notion�whi
h does nothave an established name�we shall 
all ultra�lter for
ing (the nameis motivated by Proposition 14.18).Making names for sets. Let V be a model of ZFC and let P = (P,≤) bea for
ing notion whi
h belongs to V, i.e., the set P as well as the relation �≤�(whi
h is a subset of P ×P ) belongs to the model V. The goal is to extend theso-
alled ground model V, by adding a 
ertain subset G ⊆ P to V, and then
onstru
t a model V[G] of ZFC whi
h 
ontains V. In order to get a properextension of V, the set G�even though it is a subset of P �must not belongto V. However, this seemingly paradoxi
al property of G does not a�e
t the
onstru
tion of the model V[G].Roughly speaking, V[G] 
onsists of all sets whi
h 
an be 
onstru
ted from

G by applying set-theoreti
 pro
esses de�nable in V. In fa
t ea
h set in theextension will have a name in V, whi
h tells how it has been 
onstru
ted from
G. We use symbols like x

˜
, y
˜
, f
˜
, X
˜
, et 
etera for ordinary names, but also x

˙
,

y
˙
, c
˙
, G
˙
, et 
etera for some spe
ial names (e.g., names for sets in V).Informally, a name, or more pre
isely a P-name, is a possibly empty setof ordered pairs of the form 〈x

˜
, p〉, where x

˜
is a P-name and p ∈ P . The 
lassof all P-names is denoted by VP.Formally, VP is de�ned by trans�nite indu
tion (similar to the 
umulativehierar
hy of sets de�ned in Chapter 3):

VP0 = ∅

VPα =
⋃
β∈αV

P
β if α is a limit ordinal

VPα+1 = P
(
VPα ×P

)and let
VP =

⋃

α∈Ω

VPα .Noti
e that VP is a proper sub
lass of V. The formal de�nition of VP allowsto de�ne a rank-fun
tion on the 
lass of names: For P-names x
˜
∈ VP let

rk(x
˜
) :=

⋃{
rk(y

˜
) + 1 : ∃p ∈ P

(
〈y
˜
, p〉 ∈ x

˜

)}
.Consider for example the three U-
onditions u1 = [ω]̃ , u2 = [{2n : n ∈ ω}]̃ ,and u3 = [{3n : n ∈ ω}]̃ , as well as the three U-names x

˜
=

{
〈∅, u2〉, 〈∅, u3〉

},
y
˜
=

{
〈x
˜
, u2〉, 〈∅, u1〉

}, and z
˜
=

{
〈y
˜
, u1〉, 〈x

˜
, u2〉, 〈∅, u2〉, 〈∅, u3〉, 〈y

˜
, u3〉

}. Then
rk(x

˜
) = 1, rk(y

˜
) = 2, and rk(z

˜
) = 3.
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ingMaking sets from names. Names are obje
ts in V intended to designatesets in the extension V[G] (where G is a 
ertain subset of P ). In other words,names are spe
ial sets in V whi
h stand for sets in the extension. So, the nextstep in the 
onstru
tion of V[G] is to transform the names to the sets theystand for: Let G be a subset of P (later, G will always be a generi
 �lter).Then by trans�nite re
ursion on P-names x
˜
we de�ne

x
˜
[G] =

{
y
˜
[G] : ∃q ∈ G (〈y

˜
, q〉 ∈ x

˜
)
}
,and in general let

V[G] =
{
x
˜
[G] : x

˜
∈ VP

}
.Noti
e that if G = ∅, then V[G] = ∅. For example let us 
onsider again thethree U-names x

˜
, y
˜
, z
˜
, and the three U-
onditions u1, u2, u3, from above andlet G1 = {u1}, G1,2 = {u1, u2}, and G3 = {u3}. Then x

˜
[G1] = 0, x

˜
[G1,2] = 1,

x
˜
[G3] = 1, y

˜
[G1] = 1, y

˜
[G1,2] = 2, y

˜
[G3] = 0, z

˜
[G1] = {1}, z

˜
[G1,2] = 3,

z
˜
[G3] = 2 (re
all that 0 = ∅, 1 = {0}, 2 = {0, 1}, et 
etera).A sau
erful of names. Sin
e V[G] is supposed to be an extension of V, wehave to show that V is in general a sub
lass of V[G]. Furthermore, G shouldbelong to V[G], no matter whether G belongs to V or not.Firstly, let us show thatV is a sub
lass ofV[G] wheneverG ⊆ P is non-empty.Below, we always assume that G 
ontains 0 where 0 denotes the smallestelement of P . For every set x ∈ V there is a 
anoni
al name x

˙
∈ V[G] su
hthat x

˙
[G] = x: By trans�nite re
ursion de�ne

x
˙
=

{
〈y
˙
,0〉 : y ∈ x

}
.For example ∅

˙
= ∅, 1

˙
=

{
〈∅
˙
,0〉

}, 2
˙
=

{
〈∅
˙
,0〉, 〈1

˙
,0〉

}, et 
etera. Noti
e thatsin
e 0 ∈ G, for all x ∈ V we have x
˙
[G] =

{
y
˙
[G] : y ∈ x

}. It remains to showthat for ea
h x ∈ V we have x
˙
[G] = x.Fa
t 14.1. If G ⊆ P with 0 ∈ G, then for every x ∈ V we have x

˙
[G] = x.Proof. The proof is by trans�nite indu
tion on rk(x

˙
). If rk(x

˙
) = 0, then x

˙
=

∅
˙
= ∅, and

∅
˙
[G] =

{
y
˙
[G] : y ∈ ∅)

}
= ∅ .Now let rk(x

˙
) = α and assume that y

˙
[G] = y for all P-names y

˙
with rk(y

˙
) ∈ α.Then

x
˙
[G] =

{
y
˙
[G] : y ∈ x

}
=

{
y : y ∈ x

}
= xwhi
h 
ompletes the proof. ⊣In order to make sure that G belongs to V[G], we need a P-name G

˜
for Gsu
h that G

˜
[G] = G. For example de�ne

G
˜
=

{
〈p
˙
, p〉 : p ∈ P

}
.As an immediate 
onsequen
e of Fa
t 14.1 we get the following
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ing 289Fa
t 14.2. For every G ⊆ P whi
h 
ontains 0 we have G
˜
[G] = G.Proof. We just have to evaluate the P-name G

˜
:

G
˜
[G] =

{
p
˙
[G] : ∃q ∈ G

(
〈p
˙
, q〉 ∈ G

˜
)}

=
{
p
˙
[G] : p ∈ G

}
=

{
p : p ∈ G

}
= G

⊣Hen
e, for any subsetG ⊆ P we haveG = G
˜
[G]. Thus, the nameG

˜
, usuallydenoted G

˙
, is the 
anoni
al name for G. Furthermore, we see that G ∈ V[G],no matter whether G�belonging to some set-theoreti
 universe� belongsto V.We 
an also de�ne names for unordered and ordered pairs of sets: For

P-names x
˜
and y

˜
de�ne

up(x
˜
, y
˜
) =

{
〈x
˜
,0〉, 〈y

˜
,0〉

}and
op(x

˜
, y
˜
) =

{〈
{〈x
˜
,0〉},0

〉
,
〈
{〈x
˜
,0〉, 〈y

˜
,0〉},0

〉}
.We leave it as an exer
ise to the reader to verify that for every G ⊆ P with

0 ∈ G we have up(x
˜
, y
˜
)[G] =

{
x
˜
[G], y

˜
[G]

} and op(x
˜
, y
˜
)[G] =

〈
x
˜
[G], y

˜
[G]

〉.The for
ing language. We are now ready to introdu
e a kind of logi
al lan-guage, the so-
alled for
ing language. A senten
es ψ of the for
ing languageis like a �rst-order senten
e, ex
ept that the parameters appearing in ψ aresome names in VP, i.e., spe
i�
 sets in V. Senten
es of the for
ing languageuse the names in VP to assert something about V[G] (for 
ertain G ⊆ P ).The people living in the ground model V may not know whether a givensenten
e ψ is true in V[G]. The truth or falsity of ψ in V[G] will in generaldepend on the set G ⊆ P . For example 
onsider the U-name x
˜
=

{
〈∅
˙
, p0〉

}with p0 = [{2n : n ∈ ω}]̃ , and the senten
e ψ ≡ ∃y(y ∈ x
˜
) of the for
inglanguage whi
h asserts that x

˜
is non-empty. Now, ψ is true in V[G] if andonly if V[G] � ∃y

(
y ∈ x

˜
[G]

), whi
h is the 
ase if and only if p0 ∈ G. Hen
e,depending on G ⊆ [ω]ω, ψ be
omes true or false in V[G].However, even though people living in V do not know whether V[G] � ψ,they know that V[G] � ψ i� p0 ∈ G. Thus, in order to de
ide whether
V[G] � ψ they just need to know whether G 
ontains the 
ondition p0.This leads to one of the key features of for
ing: By knowing whether a
ertain 
ondition p belongs to G ⊆ P , people living in V 
an �gure outwhether a given senten
e of the for
ing language is true or false in V[G].Moreover, it will turn out that people living in V are able to verify that in
ertain models V[G] all axioms of ZFC remain true. In the following se
tionwe shall see how this is done.
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ingGeneri
 ExtensionsLet again P = (P,≤) be an arbitrary for
ing notion whi
h belongs to a model
V of ZFC. Below, we de�ne �rst the notion of a generi
 �lter (whi
h is aspe
ial subset G ⊆ P ) and the 
orresponding generi
 model V[G]; then weintrodu
e the for
ing relation and show how people in V 
an de
ide whethera given senten
e is true or false in a parti
ular generi
 model. Finally we
onstru
t a generi
 model in whi
h the Continuum Hypothesis fails and dis
ussthe existen
e of generi
 �lters.Generi
 �lters and generi
 models. Let us brie�y re
all some de�nitionsfrom the previous 
hapter: A set D ⊆ P is open dense if p ∈ D and q ≥ pimplies q ∈ D (open), and if for every p ∈ P there is a q ∈ D su
h that q ≥ p(dense). A set A ⊆ P is an anti-
hain in P if any two distin
t elements of
A are in
ompatible, and it is maximal if it is not properly 
ontained in anyanti-
hain in P . A non-empty set G ⊆ P is a �lter (on P ) if p ∈ G and q ≤ pimplies q ∈ G (downwards 
losed), and if for any p1, p2 ∈ G there is a q ∈ Gsu
h that p1 ≤ q ≥ p2 (dire
ted).Now, a �lter G ⊆ P is said to be P-generi
 over V if G ∩ D 6= ∅ forevery open dense set D ⊆ P whi
h belongs to V (
ompare with the notionof a D-generi
 �lter, whi
h was introdu
ed in the previous 
hapter). In otherwords, a �lter G on P is P-generi
 over V if it meets every open dense subsetof P whi
h belongs to V. The restri
tion that the open dense subsets haveto belong to V�whi
h at a �rst glan
e seems to be super�
ial � is in fa
t
ru
ial.Equivalent for
ing notions. It may happen that two di�erent for
ing no-tions P = (P,≤P ) and Q = (Q,≤Q) yield the same generi
 models, in whi
h
ase we say that P and Q are equivalent, denoted P ≈ Q.z More pre
isely,
P ≈ Q if for every G ⊆ P whi
h is P-generi
 over V, there exists an H ⊆ Qwhi
h is Q-generi
 over V su
h that V[G] = V[H ], and vi
e versa, for every
Q-generi
 H there is a P-generi
 G su
h that V[H ] = V[G]. Noti
e that �≈ �is indeed an equivalen
e relation on the 
lass of for
ing notions.In order to prove that two for
ing notions P = (P,≤P ) and Q = (Q,≤Q)are equivalent, it is su�
ient to show the existen
e of a so-
alled dense em-bedding from P to Q (or vi
e versa), where a fun
tion h : P → Q is 
alled adense embedding if it satis�es the following 
onditions:
• ∀p0, p1 ∈ P

(
p0 ≤P p1 ↔ h(p0) ≤Q h(p1)

)

• ∀q ∈ Q ∃p ∈ P
(
q ≤Q h(p)

)Noti
e that the fun
tion h is not ne
essarily surje
tive, in parti
ular, h is ingeneral not an isomorphism. However, it is not hard to verify that the for
ingnotions P and Q are equivalent whenever there exists a dense embedding
h : P → Q. The proof of the following fa
t is left to the reader.
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t 14.3. Let P = (P,≤) and Q = (Q,≤) be any for
ing notions. If thereexists a dense embedding h : P → Q, then P and Q are equivalent. In fa
t, if
G ⊆ P is P-generi
 over V, then the set

H =
{
q ∈ Q : ∃p ∈ G

(
q ≤ h(p)

)}is Q-generi
 over V and V[G] = V[H ]. Conversely, if a set H ⊆ Q is Q-generi
over V, then the set
G =

{
p ∈ P : h(p) ∈ H

}is P-generi
 over V and V[H ] = V[G].The pre
eding fa
t implies that it is enough to 
onsider for
ing notions ofthe form (κ,≤, ∅), where κ is a 
ardinal number, �≤ � is a partial ordering on
κ, and ∅ is the smallest element (with respe
t to ≤) in κ. More pre
isely, weget the followingFa
t 14.4. Every for
ing notion P = (P,≤,0), where 0 is a smallest elementin P , is equivalent to some for
ing notion (κ,4, ∅), where κ = |P |. In parti
u-lar, we may always identify the smallest element of a for
ing notion with theempty set.Proof. Let h : P → κ be a bije
tion, where h(0) = ∅, and let

h(p) 4 h(q) ⇐⇒ p ≤ q .Then h is obviously a dense embedding. ⊣As another 
onsequen
e of Fa
t 14.3 we get that every for
ing notion is equiv-alent to some anti-symmetri
 for
ing notion.Fa
t 14.5. Let P = (P,≤) be any for
ing notion and let P̃ := (P̃ ,≤˜), where
p ∼ q ⇐⇒ p ≤ q ∧ q ≤ p, P̃ =

{
[p]̃ : p ∈ P

}, and [p]̃ ≤˜[q]̃ ⇐⇒ p ≤ q.Then P̃ is anti-symmetri
 and equivalent to P.Proof. Firstly noti
e that P̃ is a for
ing notion. Now de�ne h : P → P̃ bystipulating h(p) := [p]̃ . Then h is obviously a dense embedding and therefore
P ≈ P̃. Finally, if we have [p]̃ ≤˜[q]̃ and [q]̃ ≤˜[p]̃ , then [p]̃ = [q]̃ , whi
hshows that P̃ is anti-symmetri
. ⊣Alternative de�nitions of generi
 �lters. It is sometimes useful to havea few alternative de�nitions of P-generi
 �lters at hand whi
h are sometimeseasier to apply.Fa
t 14.6. Let P = (P,≤) be a for
ing notion whi
h belongs to a model V ofZFC. Then, for a �lter G on P , the following statements are equivalent:(a) G is P-generi
 over V.(b) G meets every maximal anti-
hain in P whi
h belongs to V.(
) G meets every dense subset of P whi
h belongs to V.
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ingProof. (a)⇒(b) Let A ⊆ P be a maximal anti-
hain in P whi
h belongs to
V. Then DA :=

{
p ∈ P : ∃q ∈ A (p ≥ q)

} is open dense in P : DA is obviouslyopen, and sin
e A is a maximal anti-
hain in P , for every p0 ∈ P there is a
ondition q0 ∈ A su
h that p0 and q0 are 
ompatible, i.e., there is a p ∈ DAsu
h that q0 ≤ p ≥ p0, whi
h implies that DA is dense. Now, if G is P-generi
over V, then G meets DA, and sin
e G is downwards 
losed, it meets themaximal anti-
hain A.(b)⇒(
) Let D ⊆ P be a dense subset of P whi
h belongs to V. Then byKurepa's Prin
iple (introdu
ed in Chapter 5) there is a maximal anti-
hain Ain D. Sin
e D is dense in P , A is also a maximal anti-
hain in P (otherwise,there would be a 
ondition p ∈ P whi
h is in
ompatible with all 
onditionsof D, 
ontradi
ting the fa
t that D is dense in P ). Now, if G meets everymaximal anti-
hain in P (whi
h belongs to V), then G meets A, and sin
e Ais a subset of D, it meets the dense set D.(
)⇒(a) If G meets every dense subset of P whi
h belongs to V, then itobviously meets also every open dense subset of P whi
h belongs to V. ⊣Let p ∈ P ; then a set D ⊆ P is dense above p if for any p′ ≥ p there isa q ∈ D su
h that q ≥ p′. Noti
e that if D ⊆ P is dense above p (for some
p ∈ P ) and q ≥ p, then D is also dense above q.The proof of the following 
hara
terisation of P-generi
 �lters is left to thereader.Fa
t 14.7. Let P = (P,≤) be a for
ing notion whi
h belongs to a model Vof ZFC, and let G ⊆ P be a �lter on P whi
h 
ontains the 
ondition p. Then
G is P-generi
 over V if and only if G meets every set D ⊆ P whi
h is denseabove p.If the �lter G ⊆ P is P-generi
 overV, then the 
lass V[G] is 
alled a generi
extension of V, or just a generi
 model.ZFC in Generi
 ModelsIn order to prove that a generi
 model V[G] is indeed a model of ZFC, we�rst have to develop a te
hnique whi
h allows us to verify within V that allaxioms of ZFC remain true in V[G].The for
ing relationship. In this se
tion, we shall de�ne a relationship, de-noted P , between 
onditions p ∈ P and senten
es ψ of the for
ing language.Even though the relationship � P � involves formulae and is therefore not ex-pressible in the language of First-Order Logi
, we write p P ψ (�p for
es ψ�)to mean that if G is P-generi
 over V and 
ontains p, then ψ is true in V[G],where we ta
itly assume that for every p ∈ P there is a P-generi
 �lter over Vwhi
h 
ontains p. Surprisingly, the de�nition of the relationship � P � takespla
e in the model V without a
tually knowing any P-generi
 �lter.
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 models 293Definition 14.8. Let p0 ∈ P be a 
ondition, let ψ(x1, . . . , xn) be a �rst-orderformula with all free variables shown, and let x
˜
1, . . . , x

˜
n ∈ VP be any P-names.The relationship p0 P ψ(x

˜
1, . . . , x

˜
n) is essentially de�ned by indu
tion onthe 
omplexity of ψ. However, for atomi
 formulae ψ we have to use a doubleindu
tion on the ranks of the names that are substituted for the variables in

ψ:(a) p0 P x
˜
1 = x

˜
2 if and only if(α) for all 〈y

˜
1, s1〉 ∈ x

˜
1, the set

{
q ≥ p0 : q ≥ s1 → ∃〈y

˜
2, s2〉 ∈ x

˜
2

(
q ≥ s2 ∧ q P y

˜
1 = y

˜
2

)}is dense above p0, and(β) for all 〈y
˜
2, s2〉 ∈ x

˜
2, the set

{
q ≥ p0 : q ≥ s2 → ∃〈y

˜
1, s1〉 ∈ x

˜
1

(
q ≥ s1 ∧ q P y

˜
1 = y

˜
2

)}is dense above p0.(b) p0 P x
˜
1 ∈ x

˜
2 if and only if the set
{
q ≥ p0 : ∃〈y

˜
, s〉 ∈ x

˜
2

(
q ≥ s ∧ q P y

˜
= x

˜
1

)}is dense above p0.(
) p0 P ¬ϕ(x
˜
1, . . . , x

˜
n) if and only if for all q ≥ p0 we have

q / P ϕ(x
˜
1, . . . , x

˜
n) ,i.e., for no q ≥ p0 we have q P ϕ(x

˜
1, . . . , x

˜
n).(d) p0 P ϕ1(x

˜
1, . . . , x

˜
n) ∧ ϕ2(x

˜
1, . . . , x

˜
n) if and only if

p0 P ϕ1(x
˜
1, . . . , x

˜
n) and p0 P ϕ2(x

˜
1, . . . , x

˜
n) .(e) p0 P ∃zϕ(z, x

˜
1, . . . , x

˜
n) if and only if the set

{
q ≥ p0 : ∃z

˜
∈ VP

(
q P ϕ(z

˜
, x
˜
1, . . . , x

˜
n)
)}is dense above p0.As an immediate 
onsequen
e of Definition 14.8 we get the followingFa
t 14.9. For any senten
e ψ of the for
ing language we have:(a) If p P ψ and q ≥ p, then q P ψ.(b) The set ∆ψ :=

{
p ∈ P : (p P ψ) ∨ (p P ¬ψ)

} is open dense in P .
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ingProof. Part (a) is obvious. For (b) noti
e that for every p ∈ P , either there isa q ≥ p su
h that q P ψ, or for all q ≥ p we have q / P ψ. In the former 
ase,
q ∈ ∆ψ, and in the latter 
ase we get p P ¬ψ and 
onsequently p ∈ ∆ψ. ⊣Until now, we did not prove that the for
ing relationship is doing what wewant, e.g., p P ψ should imply p / P ¬ψ. However, this follows impli
itly fromthe proof of the For
ing Theorem 14.10, whi
h is the 
ore result of for
ing.The For
ing Theorem. In order to prove that ZFC holds in every generi
extension of any model V of ZFC, we need a tool whi
h allows us to de
idewithinV whether a given �rst-order formula is true or false in a 
ertain generi
model. The following theorem is the required tool.Theorem 14.10 (For
ing Theorem). Let ψ(x1, . . . , xn) be a �rst-orderformula with all free variables shown, i.e., free(ψ) ⊆ {x1, . . . , xn}. Let V bea model of ZFC, let P = (P,≤) be a for
ing notion whi
h belongs to V, let
x
˜
1, . . . , x

˜
n ∈ VP be any P-names, and let G ⊆ P be P-generi
 over V.(1) If p ∈ G and p P ψ(x

˜
1, . . . , x

˜
n), then V[G] � ψ

(
x
˜
1[G], . . . , x

˜
n[G]

).(2) If V[G] � ψ
(
x
˜
1[G], . . . , x

˜
n[G]

), then ∃p ∈ G
(
p P ψ(x

˜
1, . . . , x

˜
n)
).Proof. The proof is by indu
tion on the 
omplexity of ψ(x

˜
1, . . . , x

˜
n)
). So, we�rst prove (1) and (2) for atomi
 formulae ψ.

ψ(x
˜
1, x
˜
2) ≡ (x

˜
1 = x

˜
2) : When ψ(x

˜
1, x
˜
2) is x

˜
1 = x

˜
2, the proof is bytrans�nite indu
tion on rk(x

˜
1, x
˜
2) := max{rk(x

˜
1), rk(x

˜
2)}, using 
lause (a) ofDefinition 14.8: If rk(x

˜
1, x
˜
2) = 0, then x

˜
1 = x

˜
2 = ∅. Now, ∅[G] = ∅, whi
himplies (1), and for all p ∈ P we have p P ∅ = ∅, whi
h implies (2). For

rk(x
˜
1, x
˜
2) > 0 we shall 
he
k (1) and (2) separately.(1) : Assume that p ∈ G and p P x

˜
1 = x

˜
2, and that (1) holds for all names

y
˜
1, y
˜
2 with rk(y

˜
1, y
˜
2) < rk(x

˜
1, x
˜
2). We show x

˜
1[G] = x

˜
2[G] by proving that

x
˜
1[G] ⊆ x

˜
2[G] using (α) of Definition 14.8.(a); the proof of x

˜
2[G] ⊆ x

˜
1[G]using (β) is the same. Every element of x

˜
1[G] is of the form y

˜
1[G], where

〈y
˜
1, s1〉 ∈ x

˜
1 for some s1 ∈ G. We must show that y

˜
1[G] ∈ x

˜
2[G]. Sin
e G isdire
ted, there is an r ∈ G with s1 ≤ r ≥ p. By Fa
t 14.9.(a), r P x

˜
1 = x

˜
2,and by Definition 14.8.(a).(α) and Fa
t 14.7, there is a q ∈ G su
h that

q ≥ r (in parti
ular q ≥ s1) and
∃〈y
˜
2, s2〉 ∈ x

˜
2

(
q ≥ s2 ∧ q P y

˜
1 = y

˜
2

)
. (∃)Fix 〈y

˜
2, s2〉 ∈ x

˜
2 as in (∃), then rk(y

˜
1, y
˜
2) < rk(x

˜
1, x
˜
2) and by our assumptionwe get y

˜
1[G] = y

˜
2[G]. Further, sin
e q ≥ s2 and G is downwards 
losed we have

s2 ∈ G whi
h implies y
˜
2[G] ∈ x

˜
2[G], and 
onsequently we get y

˜
1[G] ∈ x

˜
2[G].(2) : To 
he
k (2), assume x

˜
1[G] = x

˜
2[G], and that (2) holds for all names

y
˜
1, y
˜
2 with rk(y

˜
1, y
˜
2) < rk(x

˜
1, x
˜
2). Let Dx

˜
1,x
˜
2 ⊆ P be the set of all 
onditions

r ∈ P su
h that either r P x
˜
1 = x

˜
2, or we are at least in one of the followingtwo 
ases:
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 models 295(α′) there exists a name 〈y
˜
1, s1〉 ∈ x

˜
1 su
h that r ≥ s1 and

∀〈y
˜
2, s2〉 ∈ x

˜
2∀q ∈ P

(
(q ≥ s2 ∧ q P y

˜
1 = y

˜
2) → q ⊥ r

)
,(β′) there exists a name 〈y

˜
2, s2〉 ∈ x

˜
2 su
h that r ≥ s1 and

∀〈y
˜
1, s1〉 ∈ x

˜
1∀q ∈ P

(
(q ≥ s1 ∧ q P y

˜
1 = y

˜
2) → q ⊥ r

)
.First we show that no 
ondition r ∈ G 
an satisfy (α′) or (β′): Indeed, if r ∈ Gand 〈y

˜
1, s1〉 ∈ x

˜
1 as in (α′), then s1 ∈ G and therefore y

˜
1[G] ∈ x

˜
1[G] = x

˜
2[G](by our assumption). Now, �x 〈y

˜
2, s2〉 ∈ x

˜
2 with s2 ∈ G and y

˜
1[G] = y

˜
2[G].Sin
e rk(y

˜
1, y
˜
2) < rk(x

˜
1, x
˜
2) there is a 
ondition q0 ∈ G su
h that q0 P y

˜
1 =

y
˜
2, and sin
e G is dire
ted there is a q ∈ G su
h that q0 ≤ q ≥ s2. ByFa
t 14.9.(a) we have q P y

˜
1 = y

˜
2, and hen
e by (α′) we get q ⊥ r, whi
h
ontradi
ts the fa
t that G is dire
ted.If there is no r ∈ G su
h that r P x
˜
1 = x

˜
2, then Dx

˜
1,x
˜
2 ∩ G = ∅. We wouldbe done if we 
ould show that Dx

˜
1,x
˜
2 is dense in P sin
e this would 
ontradi
tthe fa
t that G meets every dense set in V: Fix an arbitrary 
ondition p ∈ P .Either p P x

˜
1 = x

˜
2, or otherwise, (α) or (β) of Definition 14.8.(a) fails.If (α) fails, then there are 〈y

˜
1, s1〉 ∈ x

˜
1 and r ≥ p su
h that r ≥ s1 and for all

q ≥ r we have:
∀〈y
˜
2, s2〉 ∈ x

˜
2

(
¬(q P y

˜
1 = y

˜
2) ∧ q ≥ s2

) (∀)If 〈y
˜
2, s2〉 ∈ x

˜
2, q ≥ s2, and q P x

˜
1 = x

˜
2, then q ⊥ r, sin
e a 
ommonextension q′ of q and r would 
ontradi
t (∀). Thus, r ≥ p and r satis�es (α′),in parti
ular r ∈ Dx

˜
1,x
˜
2 . Likewise, if (β) fails then there is a 
ondition r ≥ pwhi
h satis�es (β′).

ψ(x
˜
1, x
˜
2) ≡ (x

˜
1 ∈ x

˜
2) : When ψ(x

˜
1, x
˜
2) is x

˜
1 ∈ x

˜
2 we 
he
k again (1)and (2) separately.(1) : Assume that there is a 
ondition p ∈ G su
h that p P x

˜
1 ∈ x

˜
2. Then,by Definition 14.8.(b), the set

Dp =
{
q ∈ P : ∃〈y

˜
, s〉 ∈ x

˜
2

(
q ≥ s ∧ q P y

˜
= x

˜
1

)}is dense above p. Fix a 
ondition q ∈ G ∩Dp and a P-name 〈y
˜
, s〉 ∈ x

˜
2 su
hthat q ≥ s and q P y

˜
= x

˜
1. Sin
e s ∈ G and 〈y

˜
, s〉 ∈ x

˜
2 we get y

˜
[G] ∈ x

˜
2[G],and sin
e q ∈ G and q P y

˜
= x

˜
1, by (1) applied to y

˜
= x

˜
1 we also get

y
˜
[G] = x

˜
1[G]. Thus, we have y

˜
[G] ∈ x

˜
2[G] as well as y

˜
[G] = x

˜
1[G], whi
hobviously implies that x

˜
1[G] ∈ x

˜
2[G].(2) : Assume now x

˜
1[G] ∈ x

˜
2[G]. By de�nition of x

˜
2[G] there is a name

〈y
˜
, s〉 ∈ x

˜
2 su
h that s ∈ G and y

˜
[G] = x

˜
1[G]. By (1) for y

˜
[G] = x

˜
1[G], thereis an r ∈ G su
h that

r P y
˜
= x

˜
1 .Finally, let p ∈ G be su
h that s ≤ p ≥ r. Then

∀q ≥ p
(
q ≥ s ∧ q P y

˜
∈ x
˜
2

)
,and 
onsequently p P x

˜
1 ∈ x

˜
2.
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ingThis 
on
ludes the proof of (1) and (2) for atomi
 formulae. The proofsfor non atomi
 formulae are mu
h easier than the pre
eding proofs, but eventhough it is enough to prove (1) and (2) for formulae ψ of the form ¬ϕ, ϕ1∧ϕ2,and ∃xϕ(x), there are still six 
ases to be 
he
ked.
ψ(x

˜
1, . . . , x

˜
n) ≡ ¬ϕ : Let ψ(x

˜
1, . . . , x

˜
n) be a negated formula, i.e., ofthe form ¬ϕ for some formula ϕ.(1) : We assume (2) for ϕ and 
on
lude (1) for ¬ϕ. Assume p ∈ G and

p P ¬ϕ. We have to show that V[G] � ¬ϕ: If V[G] � ϕ, then by (2) for ϕthere is a q ∈ G su
h that q P ϕ. Sin
e G is dire
ted, there is an r ∈ G su
hthat q ≤ r ≥ p and by Fa
t 14.9.(a) we would have r P ϕ, 
ontradi
ting thede�nition of p P ¬ϕ.(2) : We assume (1) for ϕ and 
on
lude (2) for ¬ϕ. Assume thatV[G] � ¬ϕ.We have to show that there is a 
ondition p ∈ G su
h that p P ¬ϕ. Considerthe set ∆ϕ :=
{
r ∈ P : (r P ϕ) ∨ (r P ¬ϕ)

}. By Fa
t 14.9.(b), ∆ϕ is opendense in P and therefore ∆ϕ∩G 6= ∅. Fix a 
ondition p ∈ ∆ϕ∩G. If p P ¬ϕ,then we are done; and if p P ϕ, then by (1) for ϕ we have V[G] � ϕ, a
ontradi
tion.
ψ(x

˜
1, . . . , x

˜
n) ≡ ϕ1 ∧ ϕ2 : Let ψ(x

˜
1, . . . , x

˜
n) be of the form ϕ1∧ϕ2 forsome formulae ϕ1 and ϕ2.(1) : We assume (1) for ϕ1 and ϕ2 and 
on
lude (1) for ϕ1 ∧ ϕ2. Assume

p ∈ G and p P ϕ1 ∧ϕ2. Then p P ϕ1 and p P ϕ2, hen
e, by (1) for ϕ1 and
ϕ2 we have V[G] � ϕ1 and V[G] � ϕ2 whi
h implies V[G] � ϕ1 ∧ ϕ2.(2) : We assume (2) for ϕ1 and ϕ2 and 
on
lude (2) for ϕ1 ∧ ϕ2. Assume
V[G] � ϕ1 ∧ϕ2. By (2) for ϕ1 and ϕ2 there are p1, p2 ∈ G su
h that p1 P ϕ1and p2 P ϕ2. Let r ∈ G be su
h that p1 ≤ r ≥ p2. Then r P ϕ1 and r P ϕ2,hen
e, r P ϕ1 ∧ ϕ2.
ψ(x

˜
1, . . . , x

˜
n) ≡ ∃xϕ(x) : Let ψ(x

˜
1, . . . , x

˜
n) be an existential formulaof the form ∃xϕ(x) for some formula ϕ.(1) : We assume (1) for ϕ(x

˜
) and 
on
lude (1) for ∃xϕ(x). Assume p ∈ Gand p P ∃xϕ(x). Then the set

{
r ∈ P : ∃x

˜

(
r P ϕ(x

˜
)
)}is dense above p. So, we �nd a q ∈ G and a P-name x

˜
0 ∈ VP su
h that

q P ϕ(x
˜
0). By (1) for ϕ(x

˜
0) we get V[G] � ϕ

(
x
˜
0[G]

), and therefore V[G] �
∃xϕ(x).(2) : We assume (2) for ϕ(x

˜
[G]

) and 
on
lude (2) for ∃xϕ(x). Assume
V[G] � ∃xϕ(x). Then there exists an x0 ∈ V[G] su
h that V[G] � ϕ(x0)and let x

˜
0 be su
h that V[G] � x

˜
0[G] = x0. By (2) for ϕ(x

˜
0[G]

) there is a
p ∈ G su
h that p P ϕ(x

˜
0). Then for all r ≥ p we have r P ϕ(x

˜
0), whi
himplies that p P ∃xϕ(x). ⊣One might be tempted to prove the following result (whi
h is to someextent the 
onverse of the For
ing Theorem 14.10): If for all P-generi
 �lters
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G ⊆ P 
ontaining a 
ertain P-
ondition p we have V[G] � ψ (for a givensenten
e ψ), then p P ψ. For the proof we noti
e �rst that p / P ψ wouldimply that there exists a 
ondition q > p su
h that q P ¬ψ. Now, if we
ould show that there exists a P-generi
 �lter G 
ontaining q we would have
V[G] � ¬ψ, whi
h 
ontradi
ts our assumption. However, as we shall see below,the existen
e of a P-generi
 �lter G (no matter if it 
ontains q or not) 
annotbe proved within ZFC.However, assume for the moment� as we shall later always do� that forany 
ondition q there exists a generi
 �lter 
ontaining q. As an appli
ation ofthe For
ing Theorem 14.10 we prove the following lemma, whi
h is one ofthe standard results about for
ing.Lemma 14.11. Let P = (P,≤) be a for
ing notion, let G be P-generi
 over
V, and let p ∈ G.(a) If p P z

˜
∈ y

˜
, then there exist a P-name x

˜
with rk(x

˜
) < rk(y

˜
) and a

P-
ondition q ≥ p in G su
h that q P z
˜
= x

˜
.(b) If p P f

˜
∈ A

˜B˜
∧ x
˜
0 ∈ A

˜
, then there is a P-name 〈y

˜
, r〉 ∈ B

˜
with r ∈ Gand a 
ondition q ≥ p in G su
h that q P f

˜
(x
˜
0) = y

˜
.Proof. (a) Sin
e p ∈ G, V[G] � z

˜
[G] ∈ y

˜
[G], and sin
e y

˜
[G] =

{
x
˜
[G] : x

˜
∈ y
˜

},there is a name 〈x
˜
0, r〉 ∈ y

˜
with r ∈ G su
h that x

˜
0[G] = z

˜
[G]. In parti
ular,

rk(x
˜
0) < rk(y

˜
). Now, sin
e V[G] � x

˜
0[G] = z

˜
[G], there is a 
ondition p′ ∈ Gsu
h that p′ P z

˜
= x

˜
0. Further, sin
e G is dire
ted, there is a q ∈ G su
hthat p ≤ q ≥ p′. Thus, q P z

˜
= x

˜
0.(b) Sin
e p ∈ G, there is a set z ∈ V[G] su
h that

V[G] � z ∈ B
˜
[G] ∧

〈
x
˜
0[G], z

〉
∈ f
˜
[G] .Let z

˜
be a P-name in V for z (i.e., z

˜
[G] = z). By the proof of (a) there is a

P-name 〈y
˜
, r〉 ∈ B

˜
with r ∈ G and a p′ ∈ G su
h that p′ P y

˜
= z

˜
∧ y
˜
∈ B

˜
.Sin
e G is dire
ted, there is a q ∈ G su
h that p ≤ q ≥ p′. Thus, we have

q P op(x
˜
0, y
˜
) ∈ f

˜
, or in other words, q P f

˜
(x
˜
0) = y

˜
. ⊣The Generi
 Model Theorem. With the For
ing Theorem 14.10 wewould now be able to prove that generi
 extensions of models of ZFC are alsomodels of ZFC (however, we omit most of the quite tedious proof).Theorem 14.12 (Generi
 Model Theorem). Let V be a transitive stan-dard model of ZFC (i.e., a transitive model with the standard membershiprelation), let P = (P,≤) be a for
ing notion whi
h belongs to V, and let

G ⊆ P be P-generi
 over V. Then V[G] � ZFC. Moreover, the 
lass V isa sub
lass of V[G], G ∈ V[G], and every transitive standard model of ZFC
ontaining V as a sub
lass and G as an element also 
ontains V[G] (i.e., V[G]is the smallest standard model of ZFC 
ontaining V as a sub
lass and G as aset). Furthermore, ΩV[G] = ΩV, i.e., every ordinal in V[G] belongs to V, andvi
e versa.
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ingInstead of the full Generi
 Model Theorem, let us just prove the followingfour partial results.Fa
t 14.13. If V � ZFC and G is P-generi
 over V, then V[G] satis�es theAxiom of Pairing.Proof. Let G be an arbitrary P-generi
 �lter and let x
˜
and y

˜
be P-names forsome sets x and y in V[G] (i.e., x

˜
[G] = x and y

˜
[G] = y respe
tively). Be
ause

G is downwards 
losed we have 0 ∈ G and therefore we get
up(x

˜
, y
˜
)[G] =

{
x
˜
[G], y

˜
[G]

}
= {x, y} .Thus, if x and y belong to V[G], then also {x, y} belongs to V[G]. ⊣Proposition 14.14. If V � ZFC and G is P-generi
 over V, thenV[G] � AC.Proof. Let x ∈ V[G] be an arbitrary set. Sin
e the Well-Ordering Prin
ipleimplies AC, it is enough to prove that inV[G] there exists an inje
tive fun
tionfrom x into Ω (noti
e that the empty fun
tion is inje
tive). Let x

˜
be a P-namein V for x and let

ȳ =
{
y
˜
: ∃p ∈ P (〈y

˜
, p〉 ∈ x

˜
)
}
.Obviously, ȳ is a set of P-names whi
h belongs to V. By the Axiom of Choi
e,whi
h holds in V, we 
an write ȳ = {y

˜
α : α ∈ κ}, where κ = |ȳ| is a 
ardinalin V. Now let

R
˜
=

{
op(α

˙
, y
˜
α) : α ∈ κ

}
×
{
0
}whi
h is a P-name in V for a set of ordered pairs in V[G]. Sin
e 0 ∈ G, R

˜
[G]indu
es a surje
tion from {

α ∈ κ : ∃p ∈ G(〈y
˜
α, p〉 ∈ x

˜
)
}
⊆ κ onto the set

x = x
˜
[G] =

{
y
˜
α[G] : ∃p ∈ G(〈y

˜
α, p〉 ∈ x

˜
)
}, and 
onsequently the set x ∈ V[G]
an be well-ordered. Hen
e, sin
e x was arbitrary, V[G] � AC. ⊣Fa
t 14.15. If V � ZFC and G is P-generi
 over V, then G ∈ V[G] and Vis a sub
lass of V[G].Proof. Let G be an arbitrary P-generi
 �lter. By de�nition of G

˙
, G
˙
[G] = G,and hen
e, by de�nition of V[G], G ∈ V[G]. Further, G is downwards 
losedand therefore 
ontains 0 (the smallest element of P ). Hen
e, for ea
h x ∈ Vwe have x

˙
[G] = x and 
onsequently x ∈ V[G]. ⊣Proposition 14.16. Let V � ZFC, let P be a for
ing notion in V, and let Gbe P-generi
 over V; then ΩV[G] = ΩV.Proof. Sin
e V ⊆ V[G], we obviously have ΩV ⊆ ΩV[G]. On the other hand,assume towards a 
ontradi
tion that there exists an ordinal in V[G] whi
hdoes not belong to V. Sin
e the 
lass ΩV[G] is well-ordered in V[G] by ∈,there is a smallest ordinal in V[G], say γ, whi
h does not belong to V. Let

γ
˜
be a P-name for γ, i.e., γ = γ

˜
[G]. Then {

x
˜
: ∃p(〈x

˜
, p〉 ∈ γ

˜
)
} is a set in V,hen
e, the 
olle
tion of all ordinals α ∈ γ is in fa
t a set in V. This impliesthat γ belongs to V and 
ontradi
ts our assumption. ⊣
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 models 299Until now we did not show that generi
 �lters exist, but let us postpone thistopi
 until the end of this 
hapter and let us show �rst how a statement (e.g.,�there are Ramsey ultra�lters�) 
an be for
ed to be
ome true in a 
ertaingeneri
 model.For
ing notions whi
h do not add reals. In this se
tion, we shall seethat the for
ing notion U adds a Ramsey ultra�lter to the ground model V.In fa
t we shall see that whenever G is U-generi
 over V, then G indu
es a�lter over ω su
h that for any 
olouring π : [ω]2 → 2 in V there is an x ∈ Gsu
h that π|[x]2 is 
onstant. However, in order to make this approa
h work wehave to show that for
ing with U does not add any new reals (i.e., subsets of
ω or fun
tions [ω]2 → 2) to V; if U would add new reals to V, there might bea 
olouring ρ : [ω]2 → 2 in V[G] su
h that no set x ∈ G is homogeneous for ρ,and 
onsequently, {x ∈ [ω]ω : ∃y ∈ G(y ⊆ x)

} would just be a �lter in V[G].So, let us �rst prove that whenever G is U-generi
 over V, then [ω]ω∩V =
[ω]ω ∩ V[G], i.e., every subset of ω whi
h is in V[G] is also in V, and vi
eversa.A for
ing notion P = (P,≤) is said to be σ-
losed if whenever 〈pn : n ∈ ω〉is an in
reasing sequen
e of elements of P (i.e., m < k → pm ≤ pk), then thereexists a 
ondition q ∈ P su
h that for all n ∈ ω, q ≥ pn.By the proof of the fa
t that p is un
ountable (
f. Theorem 8.1) we getthat the for
ing notion U is σ-
losed.The next result shows that for
ing with a σ-
losed for
ing notion does notadd new reals to the ground model.Lemma 14.17. Let P = (P,≤) be a σ-
losed for
ing notion, G a P-generi
�lter over V, X a set in V, and f : ω → X a fun
tion in V[G], i.e., V[G] �
f ∈ ωX; then f belongs to V.Proof. Let f ∈ ωX be a fun
tion in V[G] and let f

˜
be a P-name for f . Assumetowards a 
ontradi
tion that f

˜
[G] /∈ V. By the For
ing Theorem 14.10.(2)there is a 
ondition q ∈ P (in fa
t, q ∈ G) su
h that

q P f
˜
∈ ωX

˜
∧ f
˜
/∈ q
ωX .Noti
e the di�eren
e between ωX

˜
(whi
h is a P-name for the set ωX ∈

V[G]) and q
ωX (whi
h is the 
anoni
al P-name for the set ωX ∈ V). ByLemma 14.11.(b), let p0 ≥ q be su
h that p0 P f

˜
(0
˙
) = x

˙
0 (for some x0 ∈ X),and for n ∈ ω let pn+1 ≥ pn be su
h that pn+1 P f

˜
(n
˙
+ 1

˙
) = x

˙
n+1 (for some

xn+1 ∈ X). Noti
e that by Lemma 14.11.(b), p0 and pn+1 exist and that the
onstru
tion 
an be 
arried out in V. Finally, let p ∈ P be su
h that for all
n ∈ ω, p ≥ pn. Then, by Fa
t 14.9.(a), for all n ∈ ω there is an xn ∈ X su
hthat p P f

˜
(n
˙
) = x

˙
n. Thus,

p P f
˜
∈ q
ωX ,whi
h is a 
ontradi
tion to our assumption. ⊣
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ingSin
e U is σ-
losed and every real x ∈ [ω]ω 
orresponds to a fun
tion fx ∈ ω2(stipulating fx(n) = 1 ⇐⇒ n ∈ x), by Lemma 14.17, ultra�lter for
ing Udoes not add any new reals to the ground model V. In other words, if G is
U-generi
 over V, then [ω]ω ∩V = [ω]ω ∩V[G]. With this observation we areready to prove the following result.Proposition 14.18. If G is U-generi
 over V. Then ⋃

G is a Ramsey ul-tra�lter in V[G] whi
h is di�erent from all ultra�lters in V, i.e., ultra�lterfor
ing U adds a new Ramsey ultra�lter to V. In parti
ular, V[G] 
ontains aRamsey ultra�lter.Proof. Firstly we show that ⋃G =
{
x ∈ [ω]ω : [x]̃ ∈ G

} is an ultra�lter over
ω whi
h is di�erent from all ultra�lters in V: Sin
e G is downwards 
losed,dire
ted, and meets every maximal anti-
hain in [ω]ω/ fin whi
h belongs to
V (in parti
ular all anti-
hains of the form {

[z ]̃ , [ω \ z ]̃
} for 
o-in�nite sets

z ∈ [ω]ω), and sin
e for
ing with U does not add reals, ⋃G is an ultra�lterover ω. Let now U ∈ V be an arbitrary ultra�lter over ω. Then
DU =

{
[x]̃ ∈ [ω]ω : x /∈ U

}is an open dense subset of [ω]ω/ fin. Thus,G∩DU 6= ∅ whi
h implies⋃G 6= U ,and sin
e U was arbitrary, the ultra�lter ⋃G is di�erent from all ultra�ltersin V.Se
ondly we show that ⋃G is a Ramsey ultra�lter: Let π : [ω]2 → 2 be anarbitrary 
olouring in V[G]. Sin
e for
ing with U does not add reals, π ∈ V.Now the set
Dπ :=

{
[x]̃ ∈ [ω]ω : π|[x]2 is 
onstant}is an open dense subset of [ω]ω/ fin. Thus, G ∩ Dπ 6= ∅ whi
h implies thatthere exists an [x]̃ ∈ G su
h that π|[x]2 is 
onstant, and sin
e π was arbitrary,⋃

G is a Ramsey ultra�lter. ⊣The pre
eding theorem is a typi
al example how to for
e the existen
e of a
ertain set whose existen
e 
annot be proved in ZFC: By the same for
ing
onstru
tion as above we shall see in Chapter 24 that there may be a Ramseyultra�lter even in the 
ase when p < c.For
ing notions whi
h do not 
ollapse 
ardinals. Now we 
onsider thefor
ing notion Cκ (for an arbitrary 
ardinal κ) and show that the for
ingnotion Cκ adds κ reals to the ground model V. As a 
onsequen
e we get thatwhenever G is Cκ-generi
 over V, then V[G] � c ≥ κ (where c denotes the
ardinality of the 
ontinuum). In parti
ular, for κ > ω1 we get V[G] � ¬CH.However, in order to make this approa
h work we have to show that κ is thesame 
ardinal in V[G] as it is in V. Let us explain this problem in greaterdetail: Let P be a for
ing notion and let G be P-generi
 over V. Further, let κbe an arbitrary in�nite 
ardinal in V. By de�nition, κ is an ordinal su
h thatthere is no bije
tion between κ and any of its elements (re
all that the elements
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 models 301of ordinal are ordinals). Sin
e V and V[G] 
ontain the same ordinals, κ is anordinal number inV[G]. However, sin
eV[G] is an extension ofV, there mightbe an inje
tive fun
tion in V[G] whi
h maps κ to one of its elements. In otherwords, the ordinal number κ, whi
h is a 
ardinal in V, might be
ome anordinary ordinal in V[G], i.e., we might have V � |κ| = κ but V[G] � |κ| ∈ κ.If this is the 
ase, then we say that P 
ollapses κ; otherwise, we say that Ppreserves κ. If P preserves all 
ardinal numbers, i.e., |κ|V[G] = κ whenever
|κ|V = κ, then we simply say that P preserves 
ardinalities. Noti
e that all�nite 
ardinals are preserved by any for
ing notion, and 
onsequently also ωmust be preserved, i.e., we always have |ω|V = |ω|V[G] = ω. On the other hand,any un
ountable 
ardinal number 
an be 
ollapsed; moreover, any un
ountable
ardinal 
an be for
ed to be
ome a 
ountable ordinal.Now, let us prove that the for
ing notion Cκ preserves 
ardinals, but �rstwe prove a slightly more general result.Re
all that a for
ing notion P = (P,≤) is said to satisfy the 
ount-able 
hain 
ondition, denoted 


, if every anti-
hain in P is at most
ountable� in whi
h 
ase we usually just say �P satis�es 


�. For example,by Corollary13.3 we know that the for
ing notion Cκ satis�es 


.In order to show that a for
ing notion whi
h satis�es 


 does not 
ollapseany 
ardinal, we shall show the slightly more general result that a for
ingnotion whi
h preserves 
o�nalities also preserves 
ardinalities: A for
ing notion
P preserves 
o�nalities if wheneverG is P-generi
 overV and κ is a 
ardinalin V, then cf(κ)V = cf(κ)V[G].Lemma 14.19. If P preserves 
o�nalities, then P preserves 
ardinalities.Proof. Assume P preserves 
o�nalities and let G be P-generi
 over V.Firstly, let κ be a regular 
ardinal in V, i.e., V � cf(κ) = κ. Then, sin
e
P preserves 
o�nalities, the ordinal cf(κ)V is equal to the ordinal cf(κ)V[G].Thus, V[G] � κ = cf(κ) whi
h shows that the ordinal κ, whi
h is a regular
ardinal in V, is still a regular 
ardinal in V[G].Se
ondly, if λ > ω is a limit 
ardinal in V, then the set of 
ardinals
C = {κ < λ : κ regular} is 
o�nal in λ (re
all that by Proposition 5.10su

essor 
ardinals are regular), and sin
e the 
ardinals in C remain (regular)
ardinals in V[G], CV = CV[G] and 
onsequently λ is a 
ardinal (in fa
t alimit 
ardinal) in V[G] as well. ⊣Lemma 14.20. If P = (P,≤) is a for
ing notion whi
h satis�es 


, then Ppreserves 
o�nalities as well as 
ardinals.Proof. Let P = (P,≤) be a for
ing notion whi
h satis�es 


 and whi
h belongsto some model V of ZFC, and let G be P-generi
 overV. By Lemma 14.19 it isenough to prove that P preserves 
o�nalities. Let κ be an in�nite 
ardinal in
V and let S

˜
be a P-name for a stri
tly in
reasing sequen
e of length λ = cf(κ)in V[G] whi
h is 
o�nal in κ, i.e., we have S

˜
[G] : λ → κ with ⋃{

S
˜
[G](α) :

α ∈ λ
}
= κ. Thus, there is a P-
ondition p ∈ G su
h that
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p P S˜

∈ λκ
˜

∧
⋃{

S
˜
(α
˙
) : α

˙
∈ λ

˙

}
= κ

˙
.Work for a moment in the ground model V: For ea
h α ∈ λ let

Dα =
{
q ≥ p : ∃y

(
q P S˜

(α
˙
) = y

)}
.Then, by Fa
t 14.9.(b), Dα is open dense above p. For ea
h α ∈ λ de�ne

Yα =
{
γ ∈ κ : ∃q ∈ Dα

(
q P S˜

(α
˙
) = γ

˙

)}
.Then, for every α ∈ λ, the set Yα ⊆ κ is in V, and sin
e P satis�es 


,

|Yα| ≤ ω. Indeed, if q1 P S˜
(α
˙
) = γ1

˙
and q2 P S˜

(α
˙
) = γ2

˙
, where γ1 6= γ2,then q1 ⊥ q2.Let us turn ba
k to the model V[G]: For every α ∈ λ let Aα be a maximalanti-
hain in Dα. By Fa
t 14.6.(b) and Fa
t 14.7, G meets every set Aα,whi
h implies that for every α ∈ λ, S

˜
[G](α) ∈ Yα. Let Y :=

⋃{Yα : α ∈ λ};then Y ⊆ κ is a set in V su
h that ⋃Y = κ. Sin
e the 
ardinal λ is in�nitewe get |Y | ≤ λ · ω = λ, whi
h implies that cf(κ)V ≤ λ. Thus, sin
e λ =
cf(κ)V[G] ≤ cf(κ)V, we have cf(κ)V = cf(κ)V[G]. ⊣Independen
e of CH: The Gentle WaySin
e Cκ satis�es 


, in order to prove the following result we just have toshow that for
ing with Cκ adds κ di�erent real numbers to the ground model
V, i.e., the 
ontinuum in V[G] is at least of 
ardinality κ.Theorem 14.21. If V � ZFC and G is Cκ-generi
 overV, then V[G] � c ≥ κ.In parti
ular, if κ > ω1, then V[G] � ¬CH.Proof. Let G be Cκ-generi
 over V. Sin
e Cκ satis�es 


, by Lemma 14.20it is enough to prove that with G one 
an 
onstru
t κ di�erent real numbers.To keep the notation short let Cκ := Fn(κ× ω, 2).Firstly we show that ⋃

G is a fun
tion from κ × ω to 2: For α ∈ κ and
n ∈ ω let

Dα,n =
{
p ∈ Cκ : 〈α, n〉 ∈ dom(p)

}
.Then for any α ∈ κ and n ∈ ω, Dα,n is an open dense subset of Cκ andtherefore G ∩ Dα,n 6= ∅. Thus, for every α ∈ κ and for every n ∈ ω there isa p ∈ G su
h that p is de�ned on 〈α, n〉, and sin
e G is dire
ted, ⋃G is afun
tion with dom

(⋃
G
)
= κ× ω.Se
ondly we show how to 
onstru
t κ di�erent real numbers from G: Forea
h α ∈ κ de�ne rα ∈ ω2 by stipulating rα(n) := ⋃

G
(
〈α, n〉

) (for all n ∈ ω).Now, for α, β ∈ κ let
Dα,β =

{
p ∈ Cκ : ∃n ∈ ω({〈α, n〉, 〈β, n〉} ⊆ dom(p) ∧ p(〈α, n〉) 6= p(〈β, n〉)

}
.
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e of CH: the gentle way 303Then for any distin
t ordinals α, β ∈ κ, Dα,β is an open dense subset of Cκand therefore G ∩Dα,β 6= ∅. Thus, for any distin
t α, β ∈ κ there is an n ∈ ωand a p ∈ G su
h that p(〈α, n〉) 6= p(〈β, n〉), and therefore rα(n) 6= rβ(n).We 
an even show that G adds κ new reals to the ground model V: Tosee this, let f : ω → 2 be an arbitrary fun
tion in V, and for any α ∈ κ let
Df,α =

{
p ∈ Cκ : ∃n ∈ ω

(
〈α, n〉 ∈ dom(p) ∧ p(〈α, n〉) 6= f(n)

)}
.Sin
e Df,α is obviously open dense in Cκ, rα 6= f , and sin
e the fun
tion

f ∈ V was arbitrary, for ea
h α ∈ κ we have rα /∈ V. ⊣Now we show that for ea
h ordinal α, the statement 2ωα = ωα+1 is 
onsistentwith ZFC. In parti
ular, for α = 0 we get the relative 
onsisten
y of theContinuum Hypothesis; but �rst we have to introdu
e some notations.Let κ be an in�nite 
ardinal. We say that a for
ing notion P = (P,≤) is
κ-
losed if whenever γ < κ and {pξ : ξ ∈ γ} is an in
reasing sequen
e ofelements of P (i.e., ξ0 < ξ1 → pξ0 ≤ pξ1), then there exists a 
ondition q ∈ Psu
h that for all ξ ∈ γ, q ≥ pξ. In parti
ular, ω1-
losed is the same as σ-
losed.The following fa
t is just a generalisation of Lemma 14.17 and we leavethe proof as an exer
ise to the reader.Fa
t 14.22. Let P = (P,≤) be a κ-
losed for
ing notion, λ an ordinal in κ,
G a P-generi
 �lter over V, X a set in V, and f : λ→ X a fun
tion in V[G];then f belongs to V.For ordinals α let Kα be the set of all fun
tions p from a subset of ωα+1to P(ωα) su
h that ∣∣ dom(p)

∣∣ < ωα+1 (i.e., ∣∣dom(p)
∣∣ ≤ ωα), and let Kα :=

(Kα,⊆). Sin
e ωα+1 is an in�nite su

essor 
ardinal, it is regular, and therefore
Kα is ωα+1-
losed. Thus, by Fa
t 14.22, for ea
h ordinal β, every fun
tionfrom ωα to β in a Kα-generi
 extension belongs to the ground model. As a
onsequen
e we get that the for
ing notion Kα preserves all 
ardinals ≤ωα+1and does not add new subsets of ωα.With the for
ing notion Kα we 
an now easily 
onstru
t a generi
 model inwhi
h 2ωα = ωα+1.Theorem 14.23. If V � ZFC and Gα is Kα-generi
 over V, then V[Gα] �
2ωα = ωα+1. In parti
ular we get V[G0] � CHProof. We shall show that ⋃

Gα is a surje
tive fun
tion from ωα+1 onto
P(ωα). Work in V. For ξ ∈ ωα+1 and x ∈ P(ωα) let

Dξ,x =
{
p ∈ Kα : ξ ∈ dom(p) ∧ x ∈ ran(p)

}
.Then for every ξ ∈ ωα+1 and every x ∈ P(ωα),Dξ,x is an open dense subset of

Kα and therefore Gα ∩Dξ,x 6= ∅. Thus, for all ξ ∈ ωα+1 and x ∈ P(ωα) thereis a p ∈ Gα su
h that ξ ∈ dom(p) and x ∈ ran(p), and sin
e Gα is dire
ted,this implies that the set ⋃Gα (in V[G]) is indeed a surje
tive fun
tion from
ωα+1 onto P(ωα). Hen
e, V[Gα] �

∣∣P(ωα)
∣∣ ≤ ωα+1, and sin
e 2ωα ≥ ωα+1we �nally get V[Gα] � 2ωα = ωα+1. ⊣
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ingBy the two pre
eding theorems it follows that there are models of ZFC inwhi
h the Continuum Hypothesis holds as well as some in whi
h it fails, andas a 
onsequen
e we get that CH is independent of ZFC. However, the 
on-stru
tion of the 
orresponding generi
 models relied on the existen
e of the
orresponding generi
 �lters, and it is now time to dis
uss this issue.On the Existen
e of Generi
 FiltersLet V be again a model of ZFC and let P = (P,≤) be a for
ing notion whi
hbelongs to V. We know from Chapter 5 that if ZF is 
onsistent, then so is ZFCand that there is a smallest standard model of ZFC 
ontaining the ordinals,namely Gödel's 
onstru
tible universe L. So, we 
an assume V = L (in fa
twe have no other 
hoi
e be
ause L is the only model of ZFC we know of). Nowassume that the set G ⊆ P is P-generi
 over V, where P belongs to V and Vis a model of ZFC (e.g., V = L). We �rst show that G does not belong to themodel V.Fa
t 14.24. If V is a model of ZFC, P = (P,≤) a for
ing notion in V, and
G ⊆ P is P-generi
 over V, then the set G does not belong to V.Proof. Let DG = P \G and let p ∈ P be an arbitrary P-
ondition. Sin
e P is afor
ing notion, there are in
ompatible elements above p, i.e., ∃q1, q2 ∈ P

(
p ≤

q1 ∧ p ≤ q2 ∧ q1 ⊥ q2
). Now, sin
e G is dire
ted, at most one of these twoelements belongs to G, or in other words, at least one of these two elementsbelongs to DG. Therefore, DG is dense in P and sin
e G is downwards 
losed,

DG is also open. Hen
e, DG is an open dense subset of P . If G belongs to V,then DG belongs to V as well, but obviously G ∩DG = ∅ whi
h implies that
G is not P-generi
 over V. ⊣This leads to the following question: If P-generi
 �lters do not belong to theground model V, why do we know that P-generi
 �lters exist? Informally,people living in V may ask: Is there life beyond V ?Unfortunately, one 
annot prove within ZFC that P-generi
 �lters exist,but at least, this one 
an prove: Consider the 
onstru
tible universe L. Allsets in L are 
onstru
tible, and vi
e versa, all 
onstru
tible sets are in L. Ifwe add the statement all sets are 
onstru
tible, denoted V = L, as a kindof axiom to ZFC, then there exists just a single transitive standard model ofZFC+V = L 
ontaining all the ordinals, namely L (at the same time we getthat V = L is 
onsistent with ZFC). Thus, as a 
onsequen
e of V = L we getthat there are no P-generi
 �lters whatsoever.Let us now explain how to get around this di�
ulty: Firstly 
onstru
t a small(i.e., 
ountable) model M of a large enough fragment of ZFC inside V, andthen extend M within V to a suitable generi
 model M[G]. For example toshow that ¬CH is 
onsistent with ZFC, by the Compa
tness Theorem 3.7
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es 305it is enough to show that whenever Φ is a �nite set of axioms of ZFC, then
Φ + ¬CH has a model. Let Φ ⊆ ZFC be an arbitrary but �xed �nite set ofaxioms. Now, take a 
ountable set M ∈ V su
h that M 
an be extended in Vto a set model M[G] (still in V) su
h that M[G] � Φ but also M[G] � ¬CH.Be
ause Φ was arbitrary, this shows that ¬CH is 
onsistent with ZFC.In the next 
hapter we show how to 
onstru
t 
ountable models for arbi-trary �nite fragments of ZFC and in Chapter 16 we �nally show how to getproper independen
e proofs. However, in later 
hapters we shall skip this quitetedious 
onstru
tion and just work with the� in fa
t equivalent � approa
hpresented here. NotesThe 
reation of for
ing. The notion of for
ing and of generi
 sets were introdu
edby Paul Cohen [1℄ in 1963 to prove that ¬AC is 
onsistent with ZF and that ¬CHis 
onsistent with ZFC, and sin
e Gödel's 
onstru
tible universe L is a model ofZF + AC + CH, this implies that AC and CH are even independent of ZF and ZFCrespe
tively. Cohen's original approa
h and notation were modi�ed for example byS
ott, who de�ned essentially the for
ing relationship given in Definition 14.8 andintrodu
ed the 
orresponding for
ing symbol � � (this de�nition of for
ing andthe 
orresponding symbol were �rst published in Feferman [6, p. 328 f.℄). Noti
e thesimilarity between � � and �⊢�, and 
ompare the For
ing Theorem 14.10 withGödel's Completeness Theorem 3.4. For a des
ription of how Cohen had 
ometo for
ing we refer the reader to Cohen [5℄, and a history of the origins and the earlydevelopment of for
ing 
an be found in Moore [9℄ and Kanamori [7℄ (but see alsoCohen [1, 2, 3, 4℄).The approa
h taken here. The way we introdu
ed for
ing was motivated byKunen [8, Chapter VII, ��2�5℄, from where for example Definition 14.8 as wellas the proof of the For
ing Theorem 14.10 were taken, and where one 
analso �nd a 
omplete proof of the Generi
 Model Theorem 14.12 (
f. [8, Chap-ter VII, Theorem 4.2℄). However, Kunen 
onsiders generi
 extensions of 
ountabletransitive models of �nite fragments of ZFC (whereas we 
onsidered generi
 exten-sions of models of full ZFC). This way he gets model-theoreti
 theorems whereas wejust get results in the metatheory.Referen
es1. Paul J. Cohen, The independen
e of the 
ontinuum hypothesis I., Pro
eedingsof the National A
ademy of S
ien
es (U.S.A.), vol. 50 (1963), 1143�1148.2. , The independen
e of the 
ontinuum hypothesis II., Pro
eedings of theNational A
ademy of S
ien
es (U.S.A.), vol. 51 (1964), 105�110.3. , Independen
e results in set theory , in The Theory of Models, Pro
eed-ings of the 1963 International Symposium at Berkeley (J.W. Addison, L. Henkin,and A. Tarski, eds.), [Studies in Logi
 and the Foundation of Mathemati
s],North-Holland, Amsterdam, 1965, pp. 39�54.
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ations of the notions of for
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sets, Fundamenta Mathemati
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 Logi
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tion to Independen
e Proofs,
[Studies in Logi
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ing , in Logi
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 and the Foundation of Mathemati
s 124],North-Holland, Amsterdam, 1988, pp. 143�173.



15Models of �nite fragments of Set Theory
In this 
hapter we summarise the model-theoreti
 fa
ts whi
h will be used inthe next 
hapter in whi
h the independen
e of the Continuum Hypothesis willbe proved. Most of the following statements are 
lassi
al results and are statedwithout proper proofs (for whi
h we refer the reader to standard textbooksin axiomati
 Set Theory like Je
h [4℄ or Kunen [5℄).Basi
 Model-Theoreti
al Fa
tsLet L be an arbitrary but �xed language. Two L -stru
tures M and N withdomain A and B respe
tively are 
alled isomorphi
 if there is a bije
tion
f : A→ B between A and B su
h that:
• f

(
cM

)
= cN (for ea
h 
onstant symbol c ∈ L )

• RM
(
a1, . . . , an

)
⇐⇒ RN

(
f(a1), . . . , f(an)

) (for ea
h n-ary relation sym-bol R ∈ L )
• f

(
FM(a1, . . . , an)

)
= FN(f(a1), . . . , f(an)

) (for ea
h n-ary fun
tion sym-bol F ∈ L )If the L -stru
tures M and N are isomorphi
 and f : A → B is the 
orre-sponding bije
tion, then for all a1, . . . , an ∈ A and ea
h formula ϕ(x1, . . . , xn)we have:
M � ϕ

(
a1, . . . , an

)
⇐⇒ N � ϕ

(
f(a1), . . . , f(an)

)This shows that isomorphi
 L -stru
tures are essentially the same, ex
ept thattheir elements have di�erent �names�, and therefore, isomorphi
 stru
tures areusually identi�ed. For example the dihedral group of order six and S3 (i.e.,the symmetri
 group of order six) are isomorphi
; whereas C6 (i.e., the 
y
li
group of order six) is not isomorphi
 to S3 (e.g., 
onsider ϕ(x1, x2) ≡ x1◦x2 =
x2◦x1).



308 15 Models of �nite fragments of Set TheoryIfM and N are L -stru
tures and B ⊆ A, then N is said to be an elemen-tary substru
ture of M, denoted N ≺ M, if for every formula ϕ(x1, . . . , xn)and every b1, . . . , bn ∈ B:
N � ϕ(b1, . . . , bn) ⇐⇒ M � ϕ(b1, . . . , bn)For example the linearly ordered set (Q, <) is an elementary substru
tureof (R, <). On the other hand, (Z, <) is not an elementary substru
ture of

(Q, <), e.g., ∀x∀y(x < y → ∃z(x < z < y)
) is false in (Z, <) but true in

(Q, <).The key point in 
onstru
tion of elementary substru
tures of a given stru
-ture M with domain A is the following fa
t: A stru
ture N with domain
B ⊆ A is an elementary substru
ture of M if and only if for every formula
ϕ(u, x1, . . . , xn) and all b1, . . . , bn ∈ B:

∃a ∈ A : M � ϕ(a, b1, . . . , bn) ⇐⇒ ∃b ∈ B : M � ϕ(b, b1, . . . , bn)Noti
e that the impli
ation from the right to the left is obviously true (sin
e
B ⊆ A). Equivalently we get that N ≺ M if for every formula ϕ(u, x1, . . . , xn)and all b1, . . . , bn ∈ B:

∀a ∈ A : M � ϕ(a, b1, . . . , bn) ⇐⇒ ∀b ∈ B : M � ϕ(b, b1, . . . , bn)Noti
e that in this 
ase, the impli
ation from the left to the right is obviouslytrue.The following theorem is somewhat similar to Corollary 15.5 below, eventhough it goes beyond ZFC (see Related Result 86). However, it is notused later, but it is a ni
e 
onsequen
e of the 
hara
terisation of elementarysubmodels given above.Theorem 15.1 (Löwenheim-Skolem Theorem). Every in�nite model fora 
ountable language has a 
ountable elementary submodel. In parti
ular,every model of ZFC has a 
ountable elementary submodel.The Re�e
tion Prin
ipleInstead of aiming for a set model of all of ZFC, we 
an restri
t our attentionto �nite fragments of ZFC (i.e., to �nite sets of axioms of ZFC), denoted byZFC∗.We will see that for every �nite fragment ZFC∗ of ZFC, there is a set whi
his a model of ZFC∗, but before we 
an state this result we have to give somefurther notions from model theory.Let V � ZFC, let M ∈ V be any set, and let M = (M,∈) be an ∈-stru
ture with domain M . An ∈-stru
ture M = (M,∈), where M ∈ V isa set, is 
alled a set model. Noti
e that this de�nition of model is slightly



The Re�e
tion Prin
iple 309di�erent to the one given in Chapter 3, where we de�ned models with re-spe
t to a set of formulae. For any formula ϕ we de�ne ϕM, the rela-tivisation of ϕ to M, by indu
tion on the 
omplexity of the formula ϕ:
• (x = y)M is x = y.
• (x ∈ y)M is x ∈ y.
• (ψ1 ∧ ψ2)

M is ψM

1 ∧ ψM

2 .
• (¬ψ)M is ¬(ψM).
• (∃xψ)M is ∃x (x ∈M ∧ ψM).In other words, ϕM is the formula obtained from ϕ by repla
ing the quan-ti�ers �∃x� by �∃x ∈ M �. If ϕ(x1, . . . , xn) is a formula and x1, . . . , xn ∈ M ,then ϕM(x1, . . . , xn) is the same as ϕ(x1, . . . , xn) ex
ept that the bound vari-ables of ϕ range over M . (For x1, . . . , xn not all in M , the interpretation of
ϕM(x1, . . . , xn) is irrelevant.) Noti
e that in the de�nition of ϕM, the inter-pretation of the non-logi
al symbol �∈� remains un
hanged. Further, noti
ethat also the sets themselves remain un
hanged (whi
h will not be the 
asefor example when we apply Mostowski's Collapsing Theorem 15.4).For a formula ϕ and a set model M, M � ϕ means ϕM (where the freevariables take arbitrary values inM). Similarly, for a set of formulae Φ,M � Φmeans M � ϕ for ea
h formula ϕ ∈ Φ. If M = (M,∈) and for all formulae
ϕ ∈ Φ we have

M � ϕ ⇐⇒ V � ϕ ,then we say that M re�e
ts Φ.The following theorem shows that if ZFC is 
onsistent, then any �nitefragment of ZFC has a set model.Theorem 15.2 (Refle
tion Prin
iple). Assume that ZFC has a model,say V, let M0 ∈ V be an arbitrary set, and let ZFC∗ ⊆ ZFC be an arbitrarilylarge �nite fragment of ZFC. Then we have:(a) There is a set M ⊇M0 in V su
h that M re�e
ts ZFC∗. In other words,there is a set M ⊇M0 su
h that for M = (M,∈) we have
M � ZFC∗ .(b) There is even a transitive set M ⊇ M0 that re�e
ts ZFC∗ (re
all that aset x is transitive if z ∈ y ∈ x implies z ∈ x).(
) Moreover, there is a limit ordinal λ su
h that Vλ ⊇ M0 and the set Vλre�e
ts ZFC∗.(d) There is anM ⊇M0 su
h thatM re�e
ts ZFC∗ and |M | ≤ max

{
|M0|, ω

}.In parti
ular, for M0 = {∅}, there is a 
ountable set M that re�e
ts ZFC∗.The 
ru
ial point in the proof of the Refle
tion Prin
iple 15.2 is to showthat for any existential formula ∃xϕ(x, y) and any set M0 there exists a set
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M ⊇M0 with the property that whenever V 
ontains a so-
alled witness for
∃xϕ(x, y), i.e., a set a ∈ V su
h that for all b ∈ M, V � ϕ(a, b), then there isalready a witness for ∃xϕ(x, y) in M :Lemma 15.3. Let V be a model of ZFC and let ϕ(x, y1, . . . , yn) be a formulawith {x, y1, . . . , yn} ⊆ free(ϕ). For ea
h non-empty set M0 there is a set
M ⊇M0 (where M ∈ V) su
h that for all c1, . . . cn ∈M we have:

V � ∃xϕ(x, c1, . . . , cn) → ∃a ∈M ϕ(a, c1, . . . , cn)Moreover, we 
an 
onstru
t M ′ ⊇ M0 su
h that |M ′| ≤ max{|M0|, ω}, inparti
ular, if M0 is 
ountable, then M ′ is 
ountable as well.Proof. Let V � ZFC and letM0 be any non-empty set, e.g.,M0 = {∅}. Firstly,de�ne in V the 
lass fun
tion H : Vn → V as follows:If V � ∃xϕ(x, u1, . . . , un) for some u1, . . . , un ∈ V, then let
H(u1, . . . , un) =

⋂{
Vα : α ∈ Ω ∧ ∃x ∈ Vα ϕ(x, u1, . . . , un)

}
,otherwise, H(u1, . . . , un) := {∅}.Now, we 
onstru
t the set M ⊇M0 by indu
tion: For i ∈ ω let

Mi+1 =Mi ∪
⋃{

H(c1, . . . , cn) : c1, . . . , cn ∈Mi

}and let
M =

⋃

i∈ω

Mi .If c1, . . . , cn ∈ M , then there is an i ∈ ω su
h that c1, . . . , cn ∈ Mi, and
onsequently, if V � ∃xϕ(x, c1, . . . , cn), then there is an a ∈ M su
h that
V � ϕ(a, c1, . . . , cn).By AC, �x a well-ordering < of M , and de�ne the partial fun
tion
h(c1, . . . , cn) : Mn → M as follows: If H(c1, . . . , cn) = {∅}, then let
h(c1, . . . , cn) := ∅; otherwise, let a ∈ M be the <-minimal element of
H(c1, . . . , cn) ⊆M and let h(c1, . . . , cn) := a. We 
onstru
t the set M ′ ⊇M0again by indu
tion: For i ∈ ω let

M ′
i+1 =M ′

i ∪
{
h(c1, . . . , cn) : c1, . . . , cn ∈M ′

i

}and let
M ′ =

⋃

i∈ω

M ′
i .For all i ∈ ω we have |M ′

i+1| ≤ | seq(M ′
i)| = max{|M ′

i |, ω}, and therefore,
|M ′| ≤ max{|M0|, ω}. ⊣
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tion Prin
iple 311Proof of Theorem 15.2 (Sket
h). Let ZFC∗ be an arbitrary �nite fragment ofZFC. Let ϕ1, . . . , ϕl be the �nite list of all subformulae of formulae 
ontainedin ZFC∗. We may assume that the formulae ϕ1, . . . , ϕl are written in theset-theoreti
 language {∈} and that no universal quanti�er o

urs in theseformulae (i.e., repla
e �∀x� by �¬∃x¬�).Applying the proof of Lemma 15.3 to all these formulae simultaneously,yields a set M su
h that for ea
h i with 1 ≤ i ≤ l we have:
V � ∃xϕi → ∃x ∈M ϕiA formula ϕ(x1, . . . , xn) is said to be absolute for M = (M,∈) and V, iffor all a1, . . . , an ∈M we have V � ϕ(a1, . . . , an) ⇐⇒ M � ϕ(a1, . . . , an)

M.The proof is now by indu
tion on the 
omplexity of the formulae ϕ1, . . . , ϕl:Let i, j, k be su
h that 1 ≤ i, j, k ≤ l. If ϕi is atomi
, i.e., ϕi is equivalent to
x = y or x ∈ y, then ϕi is obviously absolute for M and V. If ϕi is of theform ¬ϕj , ϕj ∨ ϕk, ϕj ∧ ϕi, or ϕj → ϕk, where ϕj and ϕi are absolute for Mand V, then ϕi is absolute for M and V too. Finally, if ϕi ≡ ∃xϕj , then by
onstru
tion of M , ϕi is absolute for M and V.Hen
e, M ⊇M0, and the model M = (M,∈) has the desired properties.

⊣The Refle
tion Prin
iple 15.2 
an be 
onsidered as a kind of ZFC-versionof the Löwenheim-Skolem Theorem 15.1, and even though it is weakerthan that theorem, it has many interesting 
onsequen
es and important ap-pli
ations, espe
ially in 
onsisten
y proofs.Some remarks:(1) If we 
ompare (b) with (d) we see that we may require that the set M istransitive or that |M | ≤ max
{
|M0|, ω

}, but in general not both.For example let ZFC∗ be ri
h enough to de�ne ω1 as the smallest un-
ountable ordinal and assume that M = (M,∈) re�e
ts ZFC∗. If M is
ountable, then M 
annot be transitive; and if M is transitive, then Mmust be un
ountable.(2) As a 
onsequen
e of the Refle
tion Prin
iple 15.2 and of Gödel'sSe
ond In
ompleteness Theorem 3.9, it follows that ZFC is not�nitely axiomatisable (i.e., there is no way to repla
e the two axioms
hemata by just �nitely many single axioms).On the other hand, by the Refle
tion Prin
iple 15.2 we get that forea
h �nite fragment ZFC∗ of ZFC, there is a proof in ZFC that ZFC∗ has aset model, whereas byGödel's Se
ond In
ompleteness Theorem 3.9the existen
e of a model of ZFC is not provable within ZFC.(3) Let ZFC∗ be a �nite fragment of ZFC and assume that ZFC∗ ⊢ ϕ (for somesenten
e ϕ). Further, assume that M re�e
ts ZFC∗ and let M = (M,∈).Then, in the model-theoreti
 sense, M � ZFC∗, and 
onsequently, M � ϕ.As we will see later, this is the �rst step in order to show that a given
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e ϕ is 
onsistent with ZFC: By the Compa
tness Theorem 3.7it is enough to show that whenever Φ ⊆ ZFC is a �nite fragment of ZFC,then Φ+ϕ has a model. Let Φ be an arbitrary but �xed �nite set of axiomsof ZFC. Now, let M ∈ V be a set model of Ψ, where Ψ is a 
ertain �nitefragment of ZFC whi
h makes sure that the model M 
an be extended to aset modelM[X ] su
h that M[X ] � Φ+ϕ. Thus, sin
e Φ was arbitrary, thisshows that ϕ is 
onsistent with ZFC. (This method is used and explainedagain in Chapter 16.)Countable Transitive Models of Finite Fragments of ZFCAs mentioned above, a set model M = (M,∈) of a �nite fragment of ZFC 
anbe taken to be 
ountable or transitive, but in general not both. However, as a
onsequen
e of Mostowski's Collapsing Theorem 15.4 we 
an get also atransitive set model whi
h is isomorphi
 to M . This is done by reinterpretingthe elements ofM and as a result we get a model whi
h is 
ountable and tran-sitive, but whi
h is not a submodel of M. Before we 
an state Mostowski'sCollapsing Theorem 15.4, we have to introdu
e some notions.Let M be an arbitrary set. For a binary relation E ⊆ M ×M on M andea
h x ∈M let
extE(x) = {z ∈M : z E x}be the extension of x.A binary relation E on M is said to be well-founded if every non-emptysubset ofM has an E-minimal element (i.e., for ea
h non-empty A ⊆M thereis an x0 ∈ A su
h that extE(x0) ∩ A = ∅).A well-founded binary relation E on M is extensional if for all x, y ∈Mwe have
extE(x) = extE(y) → x = y .In other words, E is extensional i� (M,E) satis�es the Axiom of Extensionality(with respe
t to the binary relation E).The following result shows that for every stru
ture (M,E) whi
h satis�esthe Axiom of Extensionality, there exists a transitive set N su
h that (M,E)and (N,∈) are isomorphi
.Theorem 15.4 (Mostowski's Collapsing Theorem). If E is a well-founded and extensional binary relation on a setM , then there exists a uniquetransitive set N and an isomorphism π between (M,E) and (N,∈), i.e., π :

M → N is a bije
tion and for all x, y ∈M , y E x↔ π(y) ∈ π(x).Proof (Sket
h). Let x0 ∈ M be an E-minimal element of M . Sin
e E isextensional, x0 is unique. De�ne π(x0) := ∅ and let A0 = {x0}. If, for some
α ∈ Ω, Aα is already de�ned and M \ Aα 6= ∅, then let Xα be the set of all
E-minimal elements of M \ Aα, let Aα+1 := Aα ∪ Xα, and for ea
h x ∈ Xα
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π(y) : y E x

}. Now, M =
⋃
α∈λAα (for some λ ∈ Ω) and wede�ne N := π[M ]. We leave it as an exer
ise to the reader to show that π and

(N,∈) have the required properties and that (N,∈) is unique. ⊣It is worth mentioning that not just the set N , but also the isomorphism
π is unique. We also would like to mention that Mostowski's CollapsingTheorem 15.4 is a ZFC result and that π is just a mapping between two sets.As an immediate 
onsequen
e of Mostowski's Collapsing Theorem 15.4we getCorollary 15.5. Let V be a model of ZFC and let M = (M,∈) be a 
ount-able set model in V. If ZFC∗ is a �nite fragment of ZFC 
ontaining the Axiomof Extensionality and M � ZFC∗, then there is a 
ountable transitive set N in
V su
h that N = (N,∈) is a set model in V whi
h is isomorphi
 to M (inparti
ular, N � ZFC∗).Proof. Let M = (M,∈) be a 
ountable set model of ZFC∗. Be
ause M isa set, the relation �∈� is obviously a well-founded and extensional binaryrelation on M . Thus, by Mostowski's Collapsing Theorem 15.4, there isa transitive set N su
h that M = (M,∈) and N = (N,∈) are isomorphi
, andsin
e π :M → N is a bije
tion, N is 
ountable. ⊣Let ZFC∗ be any �nite fragment of ZFC and let V be a model of ZFC. Then,by the Refle
tion Prin
iple 15.2.(d), there is a 
ountable setM in V thatre�e
ts ZFC∗ and for M = (M,∈) we have M � ZFC∗. Thus, by Corol-lary 15.5, there is a 
ountable transitive set N that re�e
ts ZFC∗. In otherwords, for any �nite fragment ZFC∗  ZFC there is a 
ountable transitivemodel N in V su
h that N � ZFC∗.Let us brie�y dis
uss the pre
eding 
onstru
tions: We start with a model Vof ZFC and an arbitrary large but �nite set of axioms ZFC∗  ZFC. By theRefle
tion Prin
iple 15.2.(d) there is a 
ountable set M in V su
h that
M = (M,∈) is a model of ZFC∗. By applying Mostowski's CollapsingTheorem 15.4 to (M,∈) we obtain a 
ountable transitive model N = (N,∈)in V su
h that the models N = (N,∈) and M are isomorphi
, and 
onse-quently, N is a model of ZFC∗.It is worth mentioning that the model M = (M,∈) is a genuine submodelof V and therefore 
ontains the real sets of V. For example if

M � �λ is the least un
ountable ordinal�then λ = ω1, i.e., ω1 ∈M . However, sin
e the set M is 
ountable in V, thereare 
ountable ordinals in V whi
h do not belong to the set M , and thereforenot to the model M (whi
h implies that M is not transitive). In other words,
V � λ = ω1 ∧ ω1 ∈M ∧ |λ ∩M | = ω .On the one hand, the model N = (N,∈) is in general not a submodel of Vand just 
ontains a kind of 
opies of 
ountably many set of V. For example if
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N � �λ is the least un
ountable ordinal�then λ, whi
h 
orresponds to ω1 in N, is just a 
ountable ordinal in V. How-ever, sin
e N is transitive, every ordinal in V whi
h belongs to λ also belongsto the set N , and therefore to the model N. In other words,

V � λ ∈ ω1 ∧ λ ∈ N ∧ λ ∩N = λ .The relationships between the three models V, M, and N, are illustrated bythe following �gure:
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As we shall see in the next 
hapter, 
ountable transitive models of �nitefragments of ZFC play a key role in 
onsisten
y and independen
e proofs.NotesFor 
on
epts of model theory and model-theoreti
al terminology we refer thereader to Hodges [3℄ or to Chang and Keisler [1℄. However, the pre
eding results(in
luding proofs) 
an also be found in Je
h [4, Chapter 12℄.The Löwenheim-Skolem Theorem 15.1 was already dis
ussed in the notes ofChapter 3; the Refle
tion Prin
iple 15.2 was introdu
ed by Montague [7℄ (seealso Lévy [6℄); and the transitive 
ollapse was de�ned by Mostowski [8℄.Related Results82. A model of ZF− Inf and the 
onsisten
y of PA. Vω � ZF− Inf, where Inf denotesthe Axiom of In�nity, and moreover, we even have Con(PA) ⇐⇒ Con(ZF− Inf)(see Je
h [4, Exer
ise 12.9℄ and Kunen [5, Chapter IV,Exer
ise 30℄).83. Models of Z. Let Z be ZF without the Axiom S
hema of Repla
ement. For everylimit ordinal λ > ω we have Vλ � Z (see Je
h [4, Exer
ise 12.7℄ or Kunen [5,Chapter IV,Exer
ise 6℄).



Referen
es 315For every in�nite regular 
ardinal κ let Hκ :=
{
x : |TC(x)| < κ

}. The elements of Hκare said to be hereditarily of 
ardinality < κ. In parti
ular, Hω �whi
h 
oin
ideswith Vω � is the set of hereditarily �nite sets and Hω1 is the set of hereditarily
ountable sets.84. Models of ZFC−P. If AC holds in V, then for all 
ardinals κ > ω we have Hκ �Z−P, where P denotes the Axiom of Power Set. Moreover, for regular 
ardinals
κ > ω we even have Hκ � ZFC − P (see Kunen [5, Chapter IV,Exer
ise 7℄ andKunen [5, Chapter IV,Theorem 6.5℄).An un
ountable regular 
ardinal κ is said to be ina

essible if for all λ < κ, 2λ < κ.The ina

essible 
ardinals owe their name to the fa
t that they 
annot be obtained(or a

essed) from smaller 
ardinals by the usual set-theoreti
al operations. To someextent, an ina

essible 
ardinal is to smaller 
ardinals what ω is to �nite 
ardinalsand what is re�e
ted by the fa
t that Hω � ZFC − Inf (
f. Je
h [4, Exer
ise 12.9℄).Noti
e that by Cantor's Theorem 3.25, every ina

essible 
ardinal is a regularlimit 
ardinal. One 
annot prove in ZFC that ina

essible 
ardinals exist; moreover,one 
annot even prove that un
ountable regular limit 
ardinals exist (see Kunen [5,Chapter VI,Corollary 4.13℄ but also Hausdor�'s remark [2, p. 131℄).85. Models of ZFC. If κ is ina

essible, then Hκ � ZFC (
f. Kunen [5, Chap-ter IV,Theorem 6.6℄). Let us show that if ZFC is 
onsistent, then ZFC 0 Ina

,where Ina

 denotes the axiom �∃κ (κ is ina

essible)�. Sin
e Hκ � ZFC (if κis ina

essible), it is provable from ZFC + Ina

 that ZFC has a model whi
his equivalent to saying that ZFC is 
onsistent. Now, if ZFC ⊢ Ina

, then we
onsequently get that ZFC proves its own 
onsisten
y, whi
h is impossible byGödel's Se
ond In
ompleteness Theorem 3.9 (unless ZFC is in
onsistent).86. The Löwenheim-Skolem Theorem. Even though the Löwenheim-Skolem The-orem 15.1 for ZFC�whi
h says that every model of ZFC has a 
ountable ele-mentary submodel� is somewhat similar to Corollary 15.5, it 
an neither beformulated in First-Order Logi
 nor 
an it be proved in ZFC: Firstly, noti
e thatZFC 
onsists of in�nitely many axioms. Thus, we 
annot write these axioms as asingle formula as we have done above in order to prove the Refle
tion Prin-
iple 15.2. Furthermore, even in the 
ase when we would work in higher orderLogi
, if every model V of ZFC would have a 
ountable elementary submodel
V

′, then the set of ordinals in V
′ (i.e., ΩV ∩V

′) would be 
ountable in V (butnot in V
′, of 
ourse). Now, in V we 
an build the sequen
e α0 :=

⋃
ΩV ∩ V

′,
α1 :=

⋃
ΩV′∩V

′′, and so on. This would result in an in�nite, stri
tly de
reasingsequen
e α0 ∋ α1 ∋ . . . of ordinals in V, whi
h is a 
ontradi
tion to the Axiomof Foundation. Referen
es1. Chen Chung Chang and H. Jerome Keisler, Model Theory, 2nd ed.,
[Studies in Logi
 and the Foundations of Mathemati
s 73], North-Holland,Amsterdam, 1977.2. Felix Hausdorff, Grundzüge der Mengenlehre, de Gruyter, Leipzig, 1914
[reprint: Chelsea, New York, 1965].
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h, Set Theory, The Third Millennium Edition, Revised andExpanded, [Springer Monographs in Mathemati
s], Springer-Verlag, Berlin, 2003.5. Kenneth Kunen, Set Theory, an Introdu
tion to Independen
e Proofs,
[Studies in Logi
 and the Foundations of Mathemati
s 102], North-Holland,Amsterdam, 1983.6. Azriel Lévy, Axiom s
hemata of strong in�nity in axiomati
 set theory , Pa
i�
Journal of Mathemati
s, vol. 10 (1960), 223�238.7. Ri
hard Montague, Fraenkel's addition to the axioms of Zermelo, in Essayson the Foundations of Mathemati
s, Magnes Press, Hebrew University,Jerusalem, 1961, pp. 91�114.8. Andrzej Mostowski, An unde
idable arithmeti
al statement , FundamentaMathemati
ae, vol. 36 (1949), 143�164.



16Proving Unprovability
Consisten
y and Independen
e Proofs: The Proper WayWe have seen in Chapter 14 how we 
ould extend models of ZFC to modelsin whi
h for example CH fails � supposed we have suitable generi
 �lters athand. On the other hand, we have also seen in Chapter 14 that there is noway to prove that generi
 �lters exist.However, in order to show that for example CH is independent of ZFC wehave to show that ZFC + CH as well as ZFC + ¬CH has a model. In otherwords we are not interested in the generi
 �lters themselves, but rather in thesenten
es whi
h are true in the 
orresponding generi
 models; on the otherhand, if there are no generi
 �lters, then there are also no generi
 models.The tri
k to avoid generi
 �lters (over models of ZFC) is to 
arry out thewhole for
ing 
onstru
tion within a given model V of ZFC�or alternativelyin ZFC: In V we �rst 
onstru
t a 
ountable model N of a suitable �nitefragment of ZFC. Then we de�ne a kind of �mini-for
ing� P whi
h belongs tothe model N and show that there is a set G in V whi
h is P-generi
 over N.From the point of view of N, N[G] is a proper generi
 extension of N, andsin
e G is a set in V, also N[G] belongs to V. This shows that 
ertain generi
extensions exist, in parti
ular generi
 extensions of 
ountable models of �nitefragments of ZFC.What we gain with this approa
h is that the whole 
onstru
tion takespla
e in the model V, but the pri
e we pay is that neither N nor N[G] is amodel of ZFC; but now it is time to des
ribe the proper way for obtaining
onsisten
y and independen
e results in greater detail:0. The goal : Suppose we would like to show that a given senten
e ϕ is 
onsis-tent with ZFC, i.e., we have to show that Con(ZFC) implies Con(ZFC+ϕ).By Gödel's Completeness Theorem 3.4 this is equivalent to showingthat ZFC+ ϕ has a model whenever there is a model V of ZFC.



318 16 Proving Unprovability1. Getting started : By theCompa
tness Theorem 3.7, ZFC+ϕ is 
onsistentif and only if for every �nite set of axioms Φ of ZFC, Φ + ϕ is 
onsistent,i.e., Φ + ϕ has a model. Below, we show how to 
onstru
t a model of
Φ0 + ϕ, where Φ0 is an arbitrary but �xed �nite set of axioms of ZFC.2. A suitable for
ing notion P: In the model V de�ne a for
ing notion P =
(P,≤) whi
h has the property that there is a 
ondition p0 ∈ P su
h that
p0 P ϕ. For example if ϕ is ¬CH, then by the methods presented inChapter 14, Cω2 would have the required properties.3. Choosing a suitable �nite set of axioms : Let ZFC∗  ZFC be a �nitefragment of ZFC su
h that:(a) Ea
h axiom of Φ0 belongs to ZFC∗.(b) ZFC∗ is strong enough to de�ne the for
ing notion P, the existen
e ofthe 
ondition p0, as well as some properties of P like satisfying 


,being σ-
losed, et 
etera.(
) ZFC∗ is strong enough to prove that every senten
e in Φ0 is for
ed tobe true in any P-generi
 extension of V.(d) ZFC∗ is strong enough to prove that various 
on
epts like ��nite�,�partial ordering and dense sets�, et 
etera, are absolute for all 
ount-able transitive models.The properties (b)�(d) of ZFC∗ are ne
essary to prove Theorem 16.1;however, we will omit most of the quite tedious and te
hni
al proof ofthat theorem.4. The 
orresponding 
ountable transitive model N: Let M0 = {p0, P,R≤},whereR≤ =

{
〈p, q〉 ∈ P×P : p ≤ q

}. By theRefle
tion Prin
iple 15.2there is a 
ountable set M ⊇M0 in V su
h that M re�e
ts ZFC∗, i.e., for
M = (M,∈) we have M � ZFC∗. By Corollary 15.5 and Mostowski'sCollapsing Theorem 15.4, there is a 
ountable transitive model N =
(N,∈) in V su
h that N � ZFC∗, and in addition there is a bije
tion
π : M → N su
h that for all x, y ∈ M , y ∈ x ↔ π(y) ∈ π(x). De�ne
PN := π[P ] and ≤N:= π[R≤]. Noti
e that for all p, q ∈ PN, N � p ≤N qi� π−1(p) ≤ π−1(q).5. Relativisation of P-generi
 �lters to N: For a set G ⊆ PN let

N[G] = {x
˜
[G] : x

˜
is a P-name in N} .A set G ⊆ PN is PN-generi
 over N if it meets every open dense subset

D ⊆ PN whi
h is in N.6. Relativisation of the Generi
 Model Theorem: There is even a relativisationof the Generi
 Model Theorem 14.12 whi
h states as follows.Theorem 16.1. Let V be a model of ZFC, let P = (P,≤) be a for
ingnotion in V and let p0 be an arbitrary 
ondition in P . Furthermore, let
Φ0 and ZFC∗ be as above and let N = (N,∈) be a 
ountable transitive
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h that N � ZFC∗. Then there is a set G ⊆ PN in V whi
h
ontains p0 and whi
h is PN-generi
 over N. Moreover,N[G] = (N [G],∈)is a 
ountable transitive model in V and N[G] � Φ0.Proof (Sket
h). Firstly, let us show that there exists a set G ⊆ PN in
V whi
h is PN-generi
 over N and 
ontains p0: Be
ause the model Nis 
ountable in V, from the point of view of V, the model N 
ontainsjust 
ountably many sets whi
h are open dense subsets of PN. Let {Dn :
n ∈ ω} be this 
ountable set. Sin
e D0 is dense, we 
an take a 
ondition
q0 ∈ D0 su
h that q0 ≥ p0; and in general, for n ∈ ω take qn+1 ∈ Dn+1su
h that qn+1 ≥ qn. Finally let

G =
{
p ∈ PN : ∃n ∈ ω(p ≤ qn)

}
.Then G ⊆ PN is a set in V whi
h 
ontains p0 and meets every open densesubset of PN whi
h belongs to N, and hen
e, G is PN-generi
 over N.Noti
e that even though ea
h qn belongs to the model N, the sequen
e

{qn : n ∈ ω}�and 
onsequently the set G�does not belong to N.Noti
e also that sin
e N is 
ountable in V, there are only 
ountably manynames in N and 
onsequently N [G] is 
ountable in V.Se
ondly, let us show that N[G] � Φ0: By the 
hoi
e of ZFC∗ (in step 3)we 
an show in N, by using the te
hnique introdu
ed in Chapter 14, thatwhenever G is PN-generi
 over N and 
ontains p0, then N[G] � Φ0. ⊣7. The �nal step: In step 2 we assumed that V[G] � ϕ whenever G is P-generi
 over V and 
ontains p0. Thus, by Theorem 16.1, we get that
N[G] � ϕwhenever G is PN-generi
 over N and p0 ∈ G. On the other hand, by the
hoi
e of the set of axioms ZFC∗ and sin
e N � ZFC∗ we get N[G] � Φ0,hen
e,

N[G] � Φ0 + ϕwhi
h shows that Φ0 + ϕ is 
onsistent.8. Con
lusion: Sin
e the �nite set of axioms Φ0 we have 
hosen in step 1 wasarbitrary, Φ+ ϕ is 
onsistent for every �nite set of axioms Φ of ZFC, and
onsequently we get that ϕ is 
onsistent with ZFC. This is what we wereaiming for and what is summarised by the following result.Proposition 16.2. Let ϕ be an arbitrary senten
e in the language of SetTheory. If there is a for
ing notion P = (P,≤) and a 
ondition p ∈ P su
hthat p P ϕ, then ϕ is 
onsistent with ZFC.



320 16 Proving UnprovabilityThe model-theoreti
 part of the above 
onstru
tion is illustrated by the fol-lowing �gure:

V
�

ZFC

N
[G
] �

Φ
0
+
ϕ

N
�

ZFC∗Ω

p0

G

ω1

The most inelegant part in the proof of the 
onsisten
y of ϕ is surely step 3,where we have to �nd a �nite set of axioms ZFC∗  ZFC whi
h is strongenough to prove that whenever N � ZFC∗ and G is P-generi
 over N, then
N[G] � Φ0. On the other hand, for a 
onsisten
y proof it is not ne
essary todisplay expli
itly the axioms in ZFC∗; it is su�
ient to know that su
h a �niteset of axioms exists.The 
ru
ial point in the proof of the 
onsisten
y of ϕ is step 2, where wehave to �nd (or de�ne) a for
ing notion P su
h that there is a P-
ondition
p0 whi
h for
es ϕ. In fa
t it will turn out that p0 is always equal to 0, inwhi
h 
ase we say that P for
es ϕ, i.e., ϕ is true in all P-generi
 extensions of
V. For example K0 and Cω2 (both de�ned in Chapter 14) for
e CH and ¬CHrespe
tively.Now, let us turn our attention to independen
e results: Firstly re
all that asenten
e ϕ is independent of ZFC if ϕ as well as ¬ϕ is 
onsistent with ZFC. So,in order to show that a senten
e ϕ is independent of ZFC we would have to gotwi
e through the pro
edure des
ribed above. However, sin
e the only 
ru
ialpoint in the proof is step 2, all what we have to do is to �nd two suitablefor
ing notions:In order to show that a given set-theoreti
 senten
e ϕ is independentof ZFC, we have to show that there are two for
ing notions su
h thatone for
es ϕ and the other one for
es ¬ϕ.As a �rst example let us 
onsider the 
ase when ϕ is CH.Theorem 16.3. CH is independent of ZFC.Proof. On the one hand, by Theorem 14.21 we get that whenever G is Cκ-generi
 over V and κ > ω1, then V[G] � ¬CH, and therefore we get that
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Con(ZFC) ⇒ Con(ZFC + ¬CH). On the other hand, by Theorem 14.23 weget that whenever G is K0-generi
 over V, then V[G] � CH, whi
h shows that
Con(ZFC) ⇒ Con(ZFC+ CH). ⊣The Cardinality of the ContinuumUntil now we just have seen that for ea
h in�nite 
ardinal κ there is a modelin whi
h c ≥ κ, but we did not give any estimate how large c a
tually is insu
h a model. Of 
ourse, sin
e cω = c, c = κ implies that κ must also satisfy
κω = κ. Surprisingly, this is the only demand for κ to make it possible to for
ethat c = κ.Theorem 16.4. For every 
ardinal κ whi
h satis�es κω = κ we have:

Con(ZFC) ⇒ Con(ZFC+ c = κ)Proof. Let V � ZFC and let κ be a 
ardinal in V whi
h satis�es κω = κ.Consider the for
ing notion Cκ =
(
Fn(κ × ω, 2), ⊆

). For 
onvenien
e, wewrite Cκ instead of Fn(κ×ω, 2). If G is Cκ-generi
 over V, then V[G] � c ≥ κ(
f. Theorem 14.21). Thus, it remains to show that V[G] � c ≤ κ.Firstly we investigate Cκ-names for subsets of ω: Let x
˜
be an arbitrary

Cκ-name for a subset of ω. For ea
h n ∈ ω let
∆n

˙
∈x
˜
=

{
p ∈ Cκ : (p Cκ

n
˙
∈ x
˜
) ∨ (p Cκ

n
˙
/∈ x
˜
)
}
.By Fa
t 14.9.(b), for ea
h n ∈ ω the set ∆n

˙
∈x
˜
is open dense in Cκ. For ea
h

n ∈ ω 
hoose a maximal anti-
hain An in ∆n
˙
∈x
˜
and de�ne

x
˙
=

{
〈n
˙
, p〉 : p ∈ An ∧ p Cκ

n
˙
∈ x
˜

}
.A name for a subset of ω of the form like x

˙
is 
alled a ni
e name (i.e.,ni
e names are a spe
ial kind of names for subsets of ω). Now we show that

0 Cκ
x
˙
= x

˜
by showing that for ea
h n ∈ ω the set

Dn =
{
q ∈ Cκ : q Cκ

n
˙
∈ x

˙
↔ n

˙
∈ x
˜

}is dense in Cκ. Fix n ∈ ω and let p be an arbitrary Cκ-
ondition. Sin
e ∆n
˙
∈x
˜
isdense in Cκ there is a p0 ⊇ p su
h that p0 ∈ ∆n

˙
∈x
˜
, and sin
e An is a maximalanti-
hain in ∆n

˙
∈x
˜
, there is a q0 ∈ An su
h that p0 and q0 are 
ompatible.Thus, there is a q ∈ Cκ su
h that p0 ⊆ q ⊇ q0. By 
onstru
tion we get

q Cκ
n
˙
∈ x

˙
↔ n

˙
∈ x
˜
,and sin
e p ⊆ q and p was arbitrary this shows that Dn is dense in Cκ. Inparti
ular we get that for every Cκ-name x

˜
for a subset of ω there exists ani
e name x

˙
su
h that 0 Cκ

x
˙
= x

˜
.
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ondly we 
ompute the 
ardinality of the set of ni
e names: Sin
e κ isin�nite, ∣∣[κ× ω × 2]<ω
∣∣ = κ (
f. Corollary 5.8), and 
onsequently |Cκ| = κ(we leave the details as an exer
ise to the reader). Re
all that Cκ satis�es


, i.e., every anti-
hain in Cκ is at most 
ountable. Now, every ni
e nameis the 
ountable union of at most 
ountable sets of ordered pairs, where ea
hordered pair is of the form 〈n

˙
, p〉 for some n ∈ ω and p ∈ Cκ. Thus, there areat most (

(ω · κ)ω
)ω

= κω·ω = κω = κni
e names for subsets of ω. Now, be
ause ea
h set x ⊆ ω whi
h is in V[G] hasa Cκ-name in V, and be
ause every Cκ-name for a subset of ω 
orresponds toa ni
e name, there are at most κ subsets of ω in V[G]. Hen
e, V[G] � c ≤ κand we �nally get V[G] � c = κ. ⊣NotesApproa
hes to for
ing. There are di�erent ways of presenting the for
ing te
h-nique, and even though they all yield pre
isely the same 
onsisten
y proofs, they
an be quite di�erent in their metamathemati
al 
on
eption. The approa
h to for
-ing presented in this 
hapter is essentially taken from Kunen [4, Chapter VII℄.Another approa
h� taken for example by Je
h in [3, Chapter 14℄ and in [2,Part I, Se
tion 1℄ � uses Boolean-valued models. For a dis
ussion of di�erent ap-proa
hes, as well as for some histori
al ba
kground, we refer the reader to Kunen [4,Chapter VII, �9℄. Related Results87. The κ-
hain 
ondition. Let κ be a regular 
ardinal. We say that a for
ing notion
P = (P,≤) satis�es the κ-
hain 
ondition, denoted κ-

, if every anti-
hain in
P has 
ardinality <κ (i.e., stri
tly less than κ). In parti
ular, ω1-

 is equivalentto 


.One 
an show that if a for
ing notion P satis�es the κ-

, then for
ing with Ppreserves all 
ardinals ≥κ (see for example Kunen [4, Chapter VII, Lemma 6.9℄or Je
h [2, Part I, Se
tion 2℄).88. On the 
onsisten
y of 2ωα > ωα+1. With essentially the same 
onstru
tion asin the proof of Theorem 16.4, but repla
ing the 


 for
ing notion by a similarone satisfying the ωα+1-
hain 
ondition, one 
an show that 2ωα = κ is 
onsistentwith ZFC whenever cf(κ) > ωα. Noti
e that by Corollary 5.12, the 
ondition
cf(κ) > ωα is ne
essary. A more general result is obtained using Easton for
ing(see Easton [1℄ or Chapter 18 |Related Result 100).Referen
es1. William B. Easton, Powers of regular 
ardinals, Annals of Pure and Ap-plied Logi
, vol. 1 (1970), 139�178.
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17Models in whi
h AC fails
In Chapter 7 we have 
onstru
ted models of Set Theory in whi
h the Axiom ofChoi
e failed. However, these models were models of Set Theory with atoms,denoted ZFA, where atoms are obje
ts whi
h do not have any elements butare distin
t from the empty set. In this 
hapter we shall demonstrate how one
an 
onstru
t models of Zermelo-Fraenkel Set Theory (i.e., models of ZF) inwhi
h AC fails. Moreover, we shall also see how we 
an embed arbitrary largefragments of permutation models (i.e., models of ZFA) into models of ZF.Symmetri
 Submodels of Generi
 ExtensionsLet V be a model of ZFC and let P = (P,≤) be a for
ing notion whi
h isde�ned in V with smallest element 0. A mapping α : P → P is 
alled anautomorphism of P if α is a one-to-one mapping from P onto P su
h thatfor all p, q ∈ P :

αp ≤ αq ⇐⇒ p ≤ q .In parti
ular we get α0 = 0. If α is an automorphism of P, then we de�ne, byindu
tion on rk(x
˜
), an automorphism of the 
lass of P-namesVP by stipulating

αx
˜
=

{
〈αy

˜
, αp〉 : 〈y

˜
, p〉 ∈ x

˜

}
.Noti
e that in parti
ular we have α∅ = ∅. Moreover, if x

˙
=

{
〈y
˙
,0〉 : y ∈ x

} isthe 
anoni
al P-name for a set x ∈ V and α is an arbitrary automorphism of
P, then αx

˙
= x

˙
. Furthermore, with respe
t to the for
ing relationship � P �we have
p P ϕ(x

˜
1, . . . , x

˜
n) ⇐⇒ αp P ϕ(αx

˜
1, . . . , αx

˜
n)where ϕ(x1, . . . , xn) is a �rst-order formula with all free variables shown and

x
˜
1, . . . , x

˜
n ∈ VP are arbitrary P-names.
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h AC failsLet now G be an arbitrary but �xed group of automorphisms of P. In otherwords, let G be an arbitrary subgroup of the automorphism group of P.For ea
h P-name x
˜
we de�ne the symmetry group symG (x

˜
) ⊆ G of x

˜
bystipulating

symG (x
˜
) =

{
α ∈ G : αx

˜
= x

˜

}
.In parti
ular, if x

˙
is the 
anoni
al P-name for a set x ∈ V, then symG (x

˙
) = G .Further, if β ∈ symG (x

˜
) and α is an arbitrary automorphisms of P, then

(αβα−1)(αx
˜
) = αx

˜
, and therefore

symG (αx
˜
) = α symG (x

˜
)α−1 ,whi
h shows that β ∈ symG (x

˜
) i� αβα−1 ∈ symG (αx

˜
).A set F of subgroups of G is a normal �lter on G if for all subgroups

H,K of G we have:
• G ∈ F

• if H ∈ F and H ⊆ K, then K ∈ F

• if H ∈ F and K ∈ F , then H ∩K ∈ F

• if α ∈ G and H ∈ F , then αHα−1 ∈ FLet F be an arbitrary but �xed normal �lter on G . Then x
˜
∈ VP is saidto be symmetri
 if symG (x

˜
) ∈ F . In parti
ular, 
anoni
al P-names x

˙
forsets x ∈ V are symmetri
 (sin
e symG (x

˙
) = G and G ∈ F ), and if x

˜
issymmetri
 and α ∈ G , then also αx

˜
is symmetri
 (sin
e symG (x

˜
) ∈ F i�

symG (αx
˜
) ∈ F ).The 
lass HS of hereditarily symmetri
 names is de�ned by indu
tionon rk(x

˜
):

x
˜
∈ HS ⇐⇒ x

˜
is symmetri
 and {

y
˜
: ∃p ∈ P

(
〈y
˜
, p〉 ∈ x

˜

)}
⊆ HS.Sin
e for all x ∈ V and ea
h automorphism α of P we have αx
˙
= x

˙
, all
anoni
al names for sets in V are in HS. Furthermore, if a P-name x
˜

ishereditarily symmetri
 and α ∈ G , then also αx
˜
is hereditarily symmetri
.Thus, for all α ∈ G we have αx

˜
∈ HS i� x

˜
∈ HS.Now, for any G ⊆ P whi
h is P-generi
 over V de�ne

V̂ =
{
x
˜
[G] : x

˜
∈ HS

}
.In other words, V̂ is the sub
lass of V[G] whi
h 
ontains all elements of V[G]that have a hereditarily symmetri
 P-name. Sin
e P-names for P-generi
 �ltersare in general not symmetri
, the set G, whi
h belongs to V[G], is in generalnot a member of V̂. However, V̂ is a transitive model of ZF whi
h is 
alledsymmetri
 submodel of V[G].Proposition 17.1. Every symmetri
 submodel V̂ of V[G] is a transitivemodel of ZF whi
h 
ontains V, i.e., V ⊆ V̂ ⊆ V[G] and V̂ � ZF.



Symmetri
 submodels of generi
 extensions 327Proof (Sket
h). Like for theGeneri
 Model Theorem 14.12, we shall provejust a few fa
ts; the remaining parts of the proof are left as an exer
ise to thereader.The heredity of the 
lass HS implies that the 
lass V̂ is transitive, and bythe de�nition of V̂ we get V̂ ⊆ V[G]. Further, sin
e x
˙
∈ HS for every x ∈ V,we get V ⊆ V̂.As a 
onsequen
e of the transitivity of V̂ we get that V̂ satis�es the Axiomof Extensionality as well as the Axiom of Foundation.To see that the Axiom of Empty Set and the Axiom of In�nity are validin V̂, just noti
e that the 
anoni
al P-names for ∅ and ω respe
tively arehereditarily symmetri
.For the Axiom of Pairing, let x0 and x1 be arbitrary sets in V̂ and let

x
˜
0, x
˜
1 ∈ HS be P-names for x0 and x1 respe
tively. Let y

˜
:=

{
〈x
˜
0,0〉, 〈x

˜
1,0〉

}.Then y
˜
[G] = {x0, x1}, and sin
e y

˜
∈ HS we get {x0, x1} ∈ V̂.For the Axiom S
hema of Separation, let ϕ(x, y1, . . . , yn) be a �rst-orderformula with free(ϕ) ⊆ {x, y1, . . . , yn}. Let u, a1, . . . , an be sets in V̂ and let

u
˜
, a
˜
1, . . . , a

˜
n be the 
orresponding hereditarily symmetri
 P-names for thesesets. We have to �nd a hereditarily symmetri
 P-name for the set

w =
{
v ∈ u : ϕ(v, a1, . . . , an)

}
.For this, let ū

˜
:=

{
〈v
˜
, p〉 : ∃q ∈ P

(
q ≤ p ∧ 〈v

˜
, q〉 ∈ u

˜

)} and let
w
˜
=

{
〈v
˜
, p〉 ∈ ū

˜
: p P ϕ(v

˜
, a
˜
1, . . . , a

˜
n)
}
.Obviously we have w

˜
[G] = w and it remains to show that w

˜
∈ HS. Sin
e

u
˜
∈ HS, also ū

˜
∈ HS, and it is enough to show that symG (w

˜
) ∈ F . Let

I := symG (ū
˜
)∩symG (a

˜
1)∩· · · symG (a

˜
n). Then I, as the interse
tion of �nitelymany groups in F , belongs to F . For any α ∈ I we have αū

˜
= ū

˜
and forevery 1 ≤ i ≤ n we have αa

˜
i = a

˜
i Further we have

αw
˜
=

{
〈αv

˜
, αp〉 : 〈v

˜
, p〉 ∈ w

˜

}

=
{
〈αv

˜
, αp〉 : 〈v

˜
, p〉 ∈ ū

˜
∧ p P ϕ(v

˜
, a
˜
1, . . . , a

˜
n)
}

=
{
〈αv

˜
, αp〉 : 〈αv

˜
, αp〉 ∈ ū

˜
∧ αp P ϕ(αv

˜
, αa

˜
1, . . . , αa

˜
n)
}

=
{
〈αv

˜
, αp〉 ∈ ū

˜
: αp P ϕ(αv

˜
, a
˜
1, . . . , a

˜
n)
}

=
{
〈v
˜
, p〉 ∈ ū

˜
: p P ϕ(v

˜
, a
˜
1, . . . , a

˜
n)
}
= w

˜Thus, I ⊆ symG (w
˜
) ∈ F and we �nally have w

˜
∈ HS. ⊣As we shall see in the following examples, V̂ does in general not satisfy theAxiom of Choi
e. Thus, in general we have V̂ 2 ZFC, even though V as wellas V[G] are models of ZFC.
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h AC failsExamples of Symmetri
 ModelsA model in whi
h the reals 
annot be well-orderedIn this se
tion we shall 
onstru
t a symmetri
 model V̂ in whi
h there existsan in�nite set A of real numbers (i.e., A ⊆ [ω]ω) su
h that A is Dedekind-�nitein V̂, i.e., there is no inje
tion in V̂ whi
h maps ω into A.Consider the for
ing notion Cω =
(
Fn(ω × ω, 2),⊆

) 
onsisting of �nitepartial fun
tions from ω × ω to {0, 1}. To keep the notation short let Cω :=
Fn(ω × ω, 2). Re
all that the smallest element of Cω is ∅ and for p, q ∈ Cω, pis stronger than q i� the fun
tion p extends q.Before we 
onstru
t the symmetri
 model V̂, let us de�ne a Cω-name A

˜for a set of reals. For ea
h n ∈ ω de�ne the Cω-name a
˜
n by stipulating

a
˜
n =

{
〈k
˙
, p〉 : k ∈ ω ∧ p ∈ Cω ∧ p

(
〈n, k〉

)
= 1

}and let
A
˜
=

{
〈a
˜
n, ∅〉 : n ∈ ω

}
.First we show that A

˜
[G] is an in�nite set inV[G] wheneverG is Cω-generi
over some model V of ZFC. For this, let G ⊆ Cω be an arbitrary Cω-generi
�lter over V. Then we obviously have A

˜
[G] =

{
a
˜
n[G] : n ∈ ω

}. Sin
e for anyintegers n, l ∈ ω the set
{
p ∈ Cω : ∃k ∈ ω(k ≥ l ∧ 〈k

˙
, p〉 ∈ a

˜
n)
}is open dense in Cω we get V[G] � a

˜
n[G] ∈ [ω]ω. Furthermore, for any distin
tintegers n,m ∈ ω, also

{
p ∈ Cω : ∃k ∈ ω

(
〈n, k〉 ∈ dom(p)∧〈m, k〉 ∈ dom(p)∧ p(〈n, k〉) 6= p(〈m, k〉)

)}is open dense in Cω and therefore
V[G] � “A

˜
[G] is in�nite�. (∞)Now we 
onstru
t a symmetri
 submodel V̂ of V[G] in whi
h A

˜
[G] isDedekind-�nite. If π is a permutation of ω (i.e., π is a one-to-one mappingfrom ω onto ω), then π indu
es an automorphism απ of Cω by stipulating

απ p =
{〈

〈πn, k〉, i
〉
:
〈
〈n, k〉, i

〉
∈ p

}
,i.e., απ p(〈πn, k〉) = p

(
〈n, k〉

).Let G be the group of all automorphisms of Cω that are indu
ed by per-mutations of ω, i.e.,
G = {απ : π is a permutation of ω} .



A model in whi
h the reals 
annot be well-ordered 329For every �nite set E ∈ fin(ω) let
fixG (E) =

{
απ ∈ G : πn = n for ea
h n ∈ E

}
.Let F be the �lter on G generated by the subgroups {fixG (E) : E ∈ fin(ω)

},i.e., a subgroup H ⊆ G belongs to F i� there is an E ∈ fin(ω) su
hthat fixG (E) ⊆ H . Then F is a normal �lter (noti
e for example that
απ fixG (E)α−1

π = fixG (πE) or see Chapter 7).Finally, let HS be the 
lass of all hereditarily symmetri
 Cω-names andlet V̂ be the 
orresponding symmetri
 submodel of V[G].In order to see that the set A
˜
[G] belongs to V̂ we have to verify that A

˜
∈

HS. Firstly noti
e that ea
h automorphism απ 
orresponds to a permutationof the set {a
˜
n : n ∈ ω}. In fa
t, for ea
h n ∈ ω we have

απ a
˜
n =

{
〈απ k

˙
, απ p〉 : 〈k

˙
, p〉 ∈ a

˜
n

}

=
{
〈k
˙
, απ p〉 : απ p

(
〈πn, k〉

)
= 1

}

=
{
〈k
˙
, q〉 : q

(
〈πn, k〉

)
= 1

}
= a

˜
πn .In parti
ular, απ a

˜
n = a

˜
n i� πn = n. Thus, for ea
h n ∈ ω, fixG

(
{n}

)
=

symG (a
˜
n), and sin
e {

k
˙
: ∃p ∈ Cω

(
〈k
˙
, p〉 ∈ a

˜
n

)}
⊆ HS, ea
h a

˜
n belongs to

HS. Furthermore, for ea
h απ ∈ G we have
απA˜

=
{
〈απ a

˜
n, απ ∅〉 : 〈a

˜
n, ∅〉 ∈ A

˜
}

=
{
〈a
˜
πn, ∅〉 : 〈a

˜
n, ∅〉 ∈ A

˜
}
= A

˜
,whi
h shows that symG (A˜

) = G . Thus, A
˜

∈ HS whi
h implies that A
˜
[G]belongs to V̂. In fa
t, by (∞), A

˜
[G] is an in�nite set of reals whi
h belongsto the model V̂, i.e.,̂

V � “A
˜
[G] ⊆ [ω]ω and A

˜
[G] is in�nite� .On the other hand we shall see that

V̂ � “A
˜
[G] is D-�nite� .Assume towards a 
ontradi
tion that the fun
tion f : ω →֒ A

˜
[G] is an inje
tionwhi
h belongs to the model V̂. Then there is a hereditarily symmetri
 Cω-name f

˜
∈ HS for f and a 
ondition p ∈ Cω su
h that

p Cω
f
˜
: ω
˙
→֒ A

˜
.Let the �nite set E0 ∈ fin(ω) be su
h that fixG (E0) ⊆ symG (f

˜
). Sin
e f

˜
is aninje
tive fun
tion with dom(f

˜
) = ω, there is an n0 ∈ ω \ E0, a k ∈ ω, and a
ondition p0 ≥ p su
h that
p0 Cω

f
˜
(k
˙
) = a

˜
n0 .
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h AC failsLet now π be a permutation of ω su
h that απ ∈ fixG (E0), πn0 6= n0, but απ p0and p0 are 
ompatible (i.e., there is an r ∈ Cω su
h that απ p0 ≤ r ≥ p0). Thenthe 
orresponding automorphism απ ∈ G belongs to symG (f
˜
), in parti
ular

απ f
˜

= f
˜
. Re
all that απ k

˙
= k

˙
(for all k ∈ ω). If r ∈ Cω is su
h that

απ p0 ≤ r ≥ p0, then we have
r Cω

f
˜
(k
˙
) = a

˜
n0 ,be
ause r ≥ p0, as well as

r Cω
f
˜
(k
˙
) = a

˜
πn0 ,be
ause r ≥ απ p0. Hen
e, r Cω

a
˜
n0 = a

˜
πn0 , but this 
ontradi
ts the fa
tthat n0 6= πn0 → a

˜
n0 [G] 6= a

˜
πn0 [G]. Obviously, this shows that there is nohereditarily symmetri
 name for an inje
tion f : ω →֒ A

˜
[G], in other words,

V̂ � “A
˜
[G] is D-�nite� .Con
lusion: Starting from a model V of ZFC we 
onstru
ted a symmetri
model V̂ of ZF in whi
h there exists an in�nite but D-�nite set of reals. Thus,there is a model of ZF in whi
h the reals 
annot be well-ordered. In parti
ular,the Well-Ordering Prin
iple is not provable in ZF.A model in whi
h every ultra�lter over ω is prin
ipalThe following 
onstru
tion of a symmetri
 model V̂ in whi
h every ultra�lterover ω is prin
ipal is essentially the same as in the example above, ex
ept thatthe set {
a
˜
n[G] : n ∈ ω

} will not belong to the model V̂. Thus, let V be amodel of ZFC and 
onsider again the for
ing notion Cω =
(
Fn(ω × ω, 2),⊆

).For ea
h n ∈ ω let a
˜
n =

{
〈k
˙
, p〉 : k ∈ ω ∧ p ∈ Cω ∧ p

(
〈n, k〉

)
= 1

}, and let
G ⊆ Cω be Cω-generi
 over V; then V[G] � a

˜
n[G] ∈ [ω]ω.For every X ⊆ ω × ω we de�ne an automorphism αX of Cω by stipulating

αX p : dom(p) −→ {0, 1}

〈n,m〉 7−→
{
p
(
〈n,m〉

) if 〈n,m〉 /∈ X ,
1− p

(
〈n,m〉

) if 〈n,m〉 ∈ X .Let G be the group of all automorphisms αX , where X ⊆ ω × ω, and let Fbe the normal �lter on G generated by {
fixG (E × ω) : E ∈ fin(ω)

}, where
fixG (E × ω) =

{
αX : X ∩ (E × ω) = ∅

}
.Finally, let HS be the 
lass of all hereditarily symmetri
 names and let V̂ bethe 
orresponding symmetri
 model.Below, we show that whenever U ∈ V̂ is an ultra�lter over ω, then U is



A model with a paradoxi
al de
omposition of the real line 331prin
ipal, i.e., U 
ontains a �nite set. Let U
˜

∈ HS be a name for U and let
p ∈ G be su
h that

p Cω
�U
˜

is an ultra�lter over ω
˙
� .Let E0 ∈ fin(ω) be su
h that fixG (E0 × ω) ⊆ symG

(
U
˜
) and �x an naturalnumber l /∈ E0. Then there is a q ≥ p su
h that q ∈ ∆a

˜
l∈U

˜
∩G, i.e., q ∈ G and

q de
ides whether or not a
˜
l ∈ U

˜
. Let us assume that q Cω

a
˜
l /∈ U

˜
(the 
asewhen q Cω

a
˜
l ∈ U

˜
is similar). Let m0 be su
h that for all integers m ≥ m0we have 〈l,m〉 /∈ dom(q) and let
X0 =

{
〈l,m〉 : m ≥ m0

}
⊆ ω × ω .Let U := U

˜
[G], al := a

˜
l[G], and for b

˜
l := αX0 a

˜
l let bl := b

˜
l[G]. Then, for ea
h

m ≥ m0, m ∈ al ↔ m /∈ bl, whi
h implies that (ω\al)∩(ω\bl) is �nite. Noti
ethat sin
e q Cω
a
˜
l /∈ U

˜
, αX0 q Cω

αX0 a
˜
l /∈ αX0 U

˜
. By de�nition of X0 wefurther have αX0 ∈ fixG (E0×ω) ⊆ symG

(
U
˜
) and therefore αX0 U

˜
= U

˜
, andsin
e αX0 q = q and αX0 a

˜
l = b

˜
l we have q Cω

b
˜
l /∈ U

˜
. Thus, sin
e q ∈ G, weget that neither al nor bl belongs to U . Be
ause U is an ultra�lter, ω \ al aswell as ω \ bl belongs to U , and therefore (ω \ al) ∩ (ω \ bl) ∈ U . Hen
e, U
ontains a �nite set, or in other words, U is prin
ipal.Con
lusion: Starting from a model V of ZFC we 
onstru
ted a symmetri
model V̂ of ZF in whi
h every ultra�lter over ω is prin
ipal. Thus, there is amodel of ZF in whi
h for example the Fré
het ideal 
annot be extended to aprime ideal. In parti
ular we get that the Prime Ideal Theorem is not provablein ZF.A model with a paradoxi
al de
omposition of the real lineBelow, we shall 
onstru
t a model of ZF in whi
h the real line R 
an bepartitioned into a family R, su
h that |R| > |R|. (Re
all that R is a partitionofR if R ⊆ P(R) su
h that⋃R = R and for any distin
t x, y ∈ R, x∩y = ∅.)By Corollary 4.13 it is enough to 
onstru
t a model in whi
h the set ofreals P(ω) is a 
ountable union of 
ountable sets.In order to 
onstru
t a symmetri
 model in whi
h P(ω) is a 
ountableunion of 
ountable sets we start with a model V of ZFC su
h that for ea
h

n ∈ ω, V � 2ωn = ωn+1. Su
h a model is for example Gödel's 
onstru
tibleuniverse L. Alternatively, su
h a model is also obtained by an iterated appli-
ation of Theorem 14.23, or more pre
isely, by iterating the for
ing notionsof Theorem 14.23 using the iteration te
hnique given in Chapter 18 (see alsoRelated Result 100 of that 
hapter).Now, let
P =

{
p ∈ Fn(ω × ω, ωω) : ∀〈n,m〉 ∈ dom(p)

(
p(〈n,m〉) ∈ ωn

)}
.Then P := (P,⊆) is a for
ing notion.
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h AC failsLet G ⊆ P be P-generi
 over V. We 
onstru
t a symmetri
 submodel V̂of V[G] su
h that in V̂, the set of reals is a 
ountable union of 
ountable sets.For this, let G be the group of all permutations π of ω × ω su
h that
π〈n, i〉 = 〈m, j〉 → n = m.Now, for ea
h π ∈ G and every n ∈ ω let πn be the permutation of ω su
hthat for every i ∈ ω,

π〈n, i〉 = 〈n, πni〉 .Every π ∈ G indu
es an automorphism απ of P by stipulating
απ p =

{〈
〈n, πn i〉, α

〉
:
〈
〈n, i〉, α

〉
∈ p

}
.For every n ∈ ω, let Hn be the group of all π ∈ G su
h that for all k ∈ n,the 
orresponding permutation πk is the identity, and let F be the �lter on

G generated by the subgroups {Hn : n ∈ ω}. We leave it as an exer
ise tothe reader to verify that F is a normal �lter. Finally, let V̂ be the symmetri
submodel of V[G] whi
h is determined by F .Now, we show that there are 
ountably many 
ountable sets of reals Rn in
V̂ su
h that V̂ � P(ω) =

⋃
n∈ω Rn. Firstly we 
onstru
t 
anoni
al names forreals in V̂: Let x

˜
∈ HS be a name for a real (i.e., for a subset of ω), or morepre
isely, let x

˜
⊆

{
〈k
˜
, p〉 : k

˜
∈ HS ∧ p ∈ P

} be su
h that for ea
h 〈k
˜
, p〉 ∈ x

˜
,

p P k
˜
∈ ω

˙
(noti
e that we also have p P k

˜
∈ x
˜
). Sin
e x

˜
∈ HS there is an

n0 ∈ ω su
h that Hn0 ⊆ symG (x
˜
), whi
h implies that for all απ ∈ Hn0 wehave

x
˜
=

{
〈k
˜
, p〉 : 〈k

˜
, p〉 ∈ x

˜

}
=

{
〈απ k

˜
, απ p〉 : 〈k

˜
, p〉 ∈ x

˜

}
= απx

˜
.With respe
t to x

˜
, the 
anoni
al name x

˙
∈ HS is de�ned as follows:

x
˙
=

{
〈m
˙
, q〉 : ∃〈k

˜
, p〉 ∈ x

˜
∃r ≥ p

(
q = r|n0×ω ∧ r Pm

˙
= k

˜

)}Claim. V[G] � x
˙
[G] = x

˜
[G].Proof of Claim. First we show that x

˙
[G] ⊆ x

˜
[G] : Let 〈m

˙
, q〉 be an arbitrarybut �xed element of x

˙
su
h that q ∈ G. In parti
ular, m

˙
[G] ∈ x

˙
[G]. We showthat m

˙
[G] ∈ x

˜
[G]. By de�nition of x

˙
, there is a 〈k

˜
, p〉 ∈ x

˜
and a 
ondition

r0 ≥ p su
h that q = r0|n0×ω and r0 Pm
˙

= k
˜
∧ k
˜

∈ x
˜
. Now, for every
ondition r′ ≥ q we 
an �nd an automorphism απ ∈ Hn0 and a 
ondition rsu
h that r′ ≤ r ≥ απ r0, whi
h implies that r Pm

˙
= απ k

˜
∧ απ k

˜
∈ x
˜
(re
allthat απx

˜
= x

˜
and that for all π ∈ G , απm

˙
= m

˙
). Sin
e απ ∈ Hn0 we get

απ r|n0×ω = r|n0×ω = q and therefore the set {r ≥ q : r Pm
˙
∈ x
˜

} is denseabove q. Thus, m
˙
[G] ∈ x

˜
[G], and sin
e 〈m

˙
, q〉 ∈ x

˙
was arbitrary (with theproperty that q ∈ G), we get V[G] � x

˙
[G] ⊆ x

˜
[G].Now we show that x

˜
⊆ x

˙
: If V[G] � m ∈ x

˜
[G], then there exist an r ∈ Gand a name 〈k

˜
, p〉 ∈ x

˜
su
h that r ≥ p and r Pm

˙
= k

˜
∈ x

˜
, whi
h impliesthat 〈m

˙
, r|n0×ω〉 ∈ x

˙
and shows that V[G] � x

˜
[G] ⊆ x

˙
[G]. ⊣Claim
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al de
omposition of the real line 333Thus, ea
h real x ∈ V̂ (i.e., ea
h subset of ω in V̂) has a 
anoni
al name
x
˙
whi
h is a subset of {

〈m
˙
, q〉 : m ∈ ω ∧ q ∈ Pn0

}, where n0 ∈ ω and
Pn0 :=

{
p ∈ P : ∀〈n,m〉 ∈ dom(p)

(
n ∈ n0

)}. If x
˙
is a 
anoni
al name fora real x ∈ V̂ with Qx ⊆ Pn, where Qx =

{
q ∈ P : ∃m

˙
(〈m

˙
, q〉 ∈ x

˙
)
}, then

symG (x
˙
) ⊇ Hn and sin
e m

˙
∈ HS for any m ∈ ω, x

˙
∈ HS. Moreover, forevery α ∈ G , if x

˙
is a 
anoni
al name for a real then also αx

˙
is a 
anoni
alname for a real. To see this, let x

˜
∈ HS be a name for some real x ∈ V̂, let x

˙be the 
anoni
al name for x whi
h 
orresponds to x
˜
, and let α ∈ G . Then αx

˜is a hereditarily symmetri
 name for a real in V̂ with 
orresponding 
anoni
alname αx
˙
.Now, for ea
h n ∈ ω let

Rn
˜

=
{
〈x
˙
, ∅〉 : x

˙
is a 
anoni
al name for a real x with Qx ⊆ Pn

}
.Noti
e that Rn

˜
is in V and that for ea
h n ∈ ω and all α ∈ G we have

αRn
˜

= Rn
˜
, whi
h shows that symG (Rn

˜
) = G , and sin
e symG (x

˙
) ⊇ Hn forall x

˙
∈ Rn

˜
, we even have Rn

˜
∈ HS, i.e., Rn

˜
[G] ∈ V̂. Moreover, also thefun
tion whi
h maps ea
h n ∈ ω to Rn

˜
[G] belongs to V̂ (noti
e that thename {

〈op(n
˙
, Rn
˜
), ∅〉 : n ∈ ω

} is hereditarily symmetri
). Further, the set⋃{Rn
˜
[G] : n ∈ ω} 
ontains all reals in V̂. So, in order to prove that the set ofreals in V̂ 
an be written as a 
ountable union of 
ountable sets, it is enoughto prove that ea
h Rn

˜
[G] is 
ountable in V̂, whi
h is done in two steps:Firstly re
all that V � 2ωn = ωn+1 for ea
h n ∈ ω. Now, by 
ounting (in theground model V) the 
anoni
al names whi
h belong to Rn

˜
we get that forea
h n ∈ ω, ∣∣Rn

˜

∣∣ = (ωn+1)
V.Se
ondly, for ea
h n ∈ ω de�ne

fn
˜

=
{
〈op(k

˙
, α
˙
), p〉 : p ∈ Pn+1 ∧ 〈n, k〉 ∈ dom(p) ∧ p

(
〈n, k〉

)
= α

}
.Then, for every n ∈ ω, fn

˜
is a name for a fun
tion from ω to ωn, symG (fn

˜
) ⊇

Hn+1, and fn
˜

∈ HS, hen
e fn
˜
[G] ∈ V̂. Moreover, fn

˜
[G] : ω ։ ωV

n is surje
tivewhi
h implies that ωV

n is 
ountable in V̂. Now, sin
e ∣∣Rn
˜

∣∣ = (ωn+1)
V (for ea
h

n ∈ ω), ea
h Rn
˜
[G] is 
ountable in V̂�whereas⋃{

Rn
˜
[G] : n ∈ ω

}
= P(ω)V̂is un
ountable in V̂.Con
lusion: Starting from a model V of ZFC + ∀n ∈ ω (2ωn = ωn+1) we
onstru
ted a symmetri
 model V̂ of ZF in whi
h the set of reals is a 
ountableunion of 
ountable sets. In parti
ular, this shows that without some form ofAC we 
annot prove that 
ountable unions of 
ountable sets are 
ountable.Furthermore, we get that in the absen
e of AC it might be possible that thereal line R 
an be partitioned into a family R, su
h that |R| > |R|. Moreover,by Fa
t 4.3 we know that ∣∣[0, 1]2∣∣ = ∣∣R

∣∣ is provable in ZF only, and thereforewe get that in the absen
e of AC, it might be possible to de
ompose a squareinto more parts than there are points on the square.
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h AC failsSimulating Permutation Models by Symmetri
 ModelsThe following theorem provides a method whi
h enables us to embed an ar-bitrarily large fragment of a given permutation model (i.e., a model of ZFA)into a well-founded model of ZF. In parti
ular, if ϕ is a statement whi
h holdsin a given permutation model and whose validity depends only on a 
ertainfragment of that model, then there is a well-founded model of ZF in whi
h ϕholds as well. For example assume that there are two sets R and S in somepermutation model V of ZFA su
h that V � |R| < |S| ∧ |S| ≤∗ |R|, i.e., thereis an inje
tion from R into S, a surje
tion from R onto S, but no bije
tionbetween the two sets (
f. Theorem 4.21 and Proposition 7.14). Noti
e thatthe surje
tion from R onto S indu
es a partition R of R of 
ardinality |S|, i.e.,
|R| > |R|. Now, the validity of the senten
e ∃R ∃S

(
|R| < |S| ∧ |S| ≤∗ |R|

),whi
h holds in V , depends only on a 
ertain fragment of that model, and thus,by the following theorem, there is a well-founded model of ZF in whi
h we�nd sets R̂ and Ŝ su
h that |R̂| < |Ŝ| ∧ |Ŝ| ≤∗ |R̂|.Theorem 17.2 (Je
h-So
hor Embedding Theorem). Let V � ZFA be apermutation model in whi
h AC holds in the kernel of V. Furthermore, let Abe the set of all atoms of V, let γ be an arbitrary but �xed ordinal number,and let Vγ := Pγ(A) ∩ V. Then there exist a symmetri
 model V̂ (i.e., amodel of ZF) and an embedding x 7→ x̂ of V into V̂ whose restri
tion to Vγis an ∈-isomorphism between the sets Vγ and Pγ(Â)V̂, where f : S → T isan ∈-isomorphism between S and T if f is a bije
tion and for all x, y ∈ S,
x ∈ y ⇐⇒ f(x) ∈ f(y). In other words, one 
an simulate arbitrarily largefragments of permutation models by symmetri
 models, whi
h is visualisedby the following �gure:

A

Vγ

V
�

ZFA
Â

V̂
�

ZF
∅Proof. Let M be a model of ZFA + AC and let V := P∞(∅) ⊆ M be thekernel of M; then V � ZFC. Let A0 be the set of all atoms of M. We 
onsider
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 models 335a group G0 of permutations of A0 and a normal �lter F0 on G0, and let V ⊆ Mbe the permutation model (i.e., a model of ZFA) given by G0 and F0. Further,let γ be an arbitrary but �xed ordinal number and let Vγ := Pγ(A) ∩V .In order to 
onstru
t a symmetri
 submodel of a generi
 extension, wehave to work in a ground model of ZFC. So, we shall work in the model Vand �rst 
onstru
t a generi
 extension V[G] of V: Let Ā be a set in V su
hthat M � |Ā| = |A0| and �x in M a bije
tion ι : A0 → Ā. Let κ be a regular
ardinal (in V) su
h that κ >
∣∣Pγ(Ā)

∣∣. The set P of for
ing 
onditions
onsists of fun
tions p : dom(p) → {0, 1} su
h that dom(p) ⊆ (Ā× κ)× κ and
| dom(p)| < κ. As usual let p ≤ q ⇐⇒ p ⊆ q. Then, by the 
hoi
e of κ, P =
(P,≤) is a κ-
losed for
ing notion. Below, for p ∈ P and 〈

〈ā, ξ〉, η
〉
∈ dom(p)we shall write p(ā, ξ, η) instead of p(〈〈ā, ξ〉, η〉). For ea
h a ∈ A0 and ea
h

ξ ∈ κ let
x
˙
aξ =

{
〈η
˙
, p〉 : p(ιa, ξ, η) = 1

}
,and for ea
h a ∈ A0 de�ne

a
˙
=

{
〈x
˙
aξ, ∅〉 : ξ ∈ κ

}and let A
˙
= {a

˙
: a ∈ A0}. Having now de�ned a

˙
for ea
h a ∈ A0, by trans�nitere
ursion we de�ne x

˙
for ea
h x ∈ M by stipulating

x
˙
=

{
〈y
˙
, ∅〉 : M � y ∈ x

}
.Claim 1. If G is P-generi
 over V, then for all x, y ∈ M:

M � y ∈ x ⇐⇒ V[G] � y
˙
[G] ∈ x

˙
[G]

M � y = x ⇐⇒ V[G] � y
˙
[G] = x

˙
[G]Proof of Claim 1. Noti
e �rst that x

˙
aξ[G] 6= x

˙
a′ξ′ [G] whenever 〈a, ξ〉 6= 〈a′, ξ′〉,that x

˙
aξ[G] 6= x

˙
[G] whenever x ∈ V, and that for all x ∈ M and a ∈ A0,

x
˙
[G] /∈ a

˙
[G]. Consequently we have a

˙
[G] 6= a′

˙
[G] whenever a 6= a′ are atomsand that the atoms do not 
ontain any elements of the form x

˙
[G]. Further, forall a ∈ A0, all ξ ∈ κ, and every x ∈ M, we have x

˙
[G] 6= x

˙
a,ξ[G]. To see this,noti
e that on the one hand, for all x ∈ V we have x

˙
[G] = x

˙
[G] and therefore

x
˙
[G] 6= x

˙
a,ξ[G]; on the other hand, if x ∈ M\V then TC(x) (i.e., the transitive
losure of x) 
ontains an atom a0 ∈ A0, and hen
e, x

˙
a0ζ [G] ∈ TC

(
x
˙
[G]

) (forevery ζ ∈ κ), whereas for example x
˙
a00[G] /∈ TC

(
x
˙
aξ[G]

).Now we 
an prove the 
laim simultaneously for �∈� and �=� by indu
tionon rank, where, for a set x, rkM(x) is the least α ∈ Ω su
h that x ∈ Pα(A0).Noti
e that rkM(∅) = 1, whereas rkM(a) = 0 for all atoms a ∈ A0. Assumethat the 
laim is valid for y ∈ z and y = z whenever rkM(z) < rkM(x); weshall show that the 
laim is also valid for y ∈ x and y = x.
(∈) : If M � y ∈ x, then V[G] � y

˙
[G] ∈ x

˙
[G] follows by de�nition of

x
˙
.Conversely, if V[G] � y

˙
[G] ∈ x

˙
[G], then x

˙

an neither be the name for
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h AC failsan atom nor for the empty set, sin
e otherwise we would have p P y
˙
∈ x

˙
(forsome p ∈ P ), whi
h is obviously impossible. Hen
e, V[G] � y

˙
[G] = z

˙
[G] forsome z

˙
∈ x

˙
(i.e., z ∈ x), and we have M � y = z by the indu
tion hypothesis,thus M � y ∈ x.

(=) : Obviously, if M � y = x, then V[G] � y
˙
[G] = x

˙
[G]. Conversely, if

M � y 6= x, then either both x and y are atoms or the empty set and then
V[G] � y

˙
[G] 6= x

˙
[G]; or for example x 
ontains some z whi
h is not in y,and then, by the ∈ part already proved, V[G] � z

˙
[G] ∈ x

˙
[G] \ y

˙
[G], hen
e,

V[G] � y
˙
[G] 6= x

˙
[G]. ⊣Claim 1Noti
e that the proof of Claim 1 does not depend on the parti
ular P-generi
�lter G.The next step is to 
onstru
t a symmetri
 submodel V̂ of V[G] whi
hre�e
ts to some extent the model V: We de�ne a group Ḡ of automorphismsof P and a normal �lter F̄ on Ḡ as follows. For every permutation σ of A0,let σ̄ be the set of all permutations π of Ā × κ su
h that for all a ∈ A0 andall ξ ∈ κ:

π〈ιa, ξ〉 =
〈
ισ(a), ξ′

〉 for some ξ′ ∈ κ .One 
an visualise the set Ā×κ as a set Ā of pairwise disjoint blo
ks, ea
h blo
k
onsisting of κ elements. Every permutation σ of A0 indu
es a permutation
σ′ of the blo
ks and every π ∈ σ̄ permutes the elements of Ā × κ in su
h away that π a
ts on the blo
ks exa
tly as σ′ does.Let

Ḡ =
⋃{

σ̄ : σ ∈ G0

}and for every subgroup H of G0 let H̄ =
⋃{σ̄ : σ ∈ H}. Sin
e every permuta-tion π of Ā× κ 
orresponds to an automorphism of P by stipulating

πp
(
π〈ā, ξ〉, η

)
:= p(ā, ξ, η) ,we 
onsider Ḡ as well as its subgroups as groups of automorphisms of P. Forevery �nite E ∈ fin(Ā× κ) let

fixḠ (E) =
{
π ∈ Ḡ : πx = x for ea
h x ∈ E

}
.We let F̄ be the �lter on Ḡ generated by

{
H̄ : H ∈ F0

}
∪
{
fixḠ : E ∈ fin(Ā× κ)

}
.We leave it as an exer
ise to the reader to 
he
k that F̄ is a normal �lter.Now, let HS be the 
lass of all hereditarily symmetri
 names (with respe
tto Ḡ and F̄ ), let G be P-generi
 over V, and let V̂ =

{
x
˜
[G] : x

˜
∈ HS

} be the
orresponding symmetri
 submodel of V[G]. As an immediate 
onsequen
e ofthe de�nition of F̄ we have:
• x

˙
aξ[G] ∈ V̂ for all a ∈ A0 and ξ ∈ κ, be
ause symḠ (x

˙
aξ) = fixḠ

(
{〈ιa, ξ〉}

).
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• a

˙
[G] ∈ V̂ for all a ∈ A0, be
ause symḠ (a

˙
) = symG0

(a), i.e., for every
σ ∈ symḠ (a

˙
), σ̄ ⊆ symG0

(a
˙
).

• A
˙
[G] ∈ V̂, be
ause symḠ (A

˙
) = Ḡ .Below, we shall write x̂ for x

˙
[G]. So, in parti
ular we have â ∈ V̂ and Â ∈ V̂,i.e., the �atoms� (more pre
isely, the surrogates of atoms introdu
ed by thefor
ing) as well as the set of all �atoms� belongs to the model V̂.The next task is to show that x ∈ V i� x̂ ∈ V̂, whi
h is done in the followingtwo steps.Claim 2. For all x ∈ M: x ∈ V ⇐⇒ x

˙
∈ HS.Proof of Claim 2. It su�
es to show that

symG0
(x) ∈ F0 ⇐⇒ symḠ (x

˙
) ∈ F̄ .If σ ∈ G0 and π ∈ σ̄, then απx

˙
is the 
anoni
al name for σx, and therefore

symḠ (x
˙
) = symG0

(x). Thus, if symG0
(x) ∈ F0, then symḠ (x

˙
) ∈ F̄ . On theother hand, if symḠ (x

˙
) ∈ F̄ , then symG0

(x) ⊇ H̄ ∩ fixḠ (E) for some H ∈ F0and a �nite set E ∈ fin(Ā× κ). Let E|A0 =
{
a ∈ A0 : ∃ξ(〈ιa, ξ〉 ∈ E)

}. Then
symG0

(x) ⊇ H ∩ fixG0(E|A0), and sin
e F0 is a normal �lter on G0 we have
fixG0(E|A0) ∈ F0 and hen
e symG0

(x) ∈ F0. ⊣Claim 2Claim 3. For all x ∈ M: x ∈ V ⇐⇒ x̂ ∈ V̂ .Proof of Claim 3. By Claim 2, it su�
es to show that if x̂ ∈ V̂, then x ∈ V .Assume towards a 
ontradi
tion that there exists an x ∈ M su
h that x̂ ∈ V̂and x /∈ V, but for all y ∈ x, y ∈ V. Thus x ⊆ V, and sin
e x̂ ∈ V̂, thereexist a name z
˜
∈ HS and a 
ondition p0 ∈ G su
h that p0 P z

˜
= x

˙
. In otherwords, x

˙
/∈ HS but there exists a name z

˜
∈ HS su
h that x̂ = z

˜
[G], and
onsequently x̂ ∈ V̂. Sin
e we have symḠ (z

˜
) ∈ F̄ , there is a group H0 ∈ F0and a �nite set E0 ∈ fin(Ā× κ) su
h that symḠ (z

˜
) ⊇ H̄0 ∩ fixḠ (E0). Assumethere are permutations σ ∈ G0 and π ∈ σ̄ su
h that(a) π ∈ H̄0 ∩ fixḠ (E0),(b) σx 6= x, and(
) πp0 and p0 are 
ompatible.Then we have πz

˜
= z

˜
by (a), p0 P πx

˙
6= x

˙
by (b) and Claim 1, and sin
e

πp0 P πz
˜
= πx

˙
, by (
) there is a q0 ∈ P su
h that πp0 ≤ q0 ≥ p0 and
q0 P (z

˜
= x

˙
) ∧ (x

˙
6= πx

˙
) ∧ (πx

˙
= z
˜
) ,a 
ontradi
tion. To see that permutations σ and π with the above propertiesexist, noti
e �rst that sin
e x is not symmetri
 (i.e., x /∈ V), there exists a

σ ∈ H0 ∩ fixG0(E0|A0) su
h that σx 6= x. Sin
e | dom(p)| < κ, there is a δ ∈ κsu
h that
{
〈a, ξ〉 : a ∈ A0 ∧ δ ∈ ξ ∈ κ

}
∩ (dom(p) ∪ E0) = ∅and we de�ne π ∈ σ̄ as follows.
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• If a ∈ E0|A0, then for all ξ ∈ κ:

π〈ιa, ξ〉 = 〈ιa, ξ〉 .

• If a /∈ E0|A0 and ξ ∈ δ, then
π〈ιa, ξ〉 = 〈ι(σa), δ + ξ〉

π〈ιa, δ + ξ〉 = 〈ι(σa), ξ〉 .

• If a /∈ E0|A0 and δ ∈ ξ + 1 ∈ κ, then
π〈ιa, δ + ξ〉 = 〈ι(σa), δ + ξ〉 .By de�nition it follows that π ∈ H̄0 ∩ fixḠ (E0) and that πp0 and p0 are
ompatible. ⊣Claim 3The �nal step in the proof of Theorem 17.2 is to show that the embedding

x 7→ x̂ is a bije
tion between Vγ and Pγ(Â)V̂.Claim 4. {x̂ : x ∈ Vγ
}
= Pγ(Â)V̂Proof of Claim 4. By Claim 3, the left-hand side is in
luded in the right-handside; thus, it su�
es to show that Pγ(Â)V̂ ⊆

{
x̂ : x ∈ Vγ

}, whi
h will be doneby trans�nite re
ursion: Let x ∈ Vγ and let y ∈ V̂ be su
h that V̂ � y ∈ x̂.We have to show that y = ẑ for some z ∈ V. Let y
˜
be a P-name for y. Sin
e

P is κ-
losed and κ > |x| (sin
e κ > ∣∣Pγ(Ā)
∣∣), there is a p ∈ G whi
h de
ides

u
˙
∈ y
˜
for all u ∈ x; more formally, p ∈ G ∩⋂

u∈x∆u
˙
∈y
˜
. Hen
e, y = ẑ, where

z =
{
u ∈ x : p P u

˙
∈ y
˜

}, and sin
e ẑ ∈ V̂, by Claim 3 we get z ∈ V. ⊣Claim 4Finally, by Claim 4 we get that the embedding x 7→ x̂ of V into V̂ is su
hthat {x̂ : x ∈ Vγ
}
= Pγ(Â)V̂, and for all x, y ∈ Vγ we have V � y ∈ x i�

V̂ � ŷ ∈ x̂, whi
h shows that Vγ and Pγ(Â)V̂ are indeed ∈-isomorphi
, i.e.,the embedding x 7→ x̂ restri
ted to Vγ is an ∈-isomorphism between Vγ and
Pγ(Â)V̂. ⊣Corollary 17.3. Let ν be an ordinal and let ϕ be a senten
e of the form
∃Xψ(X, ν), where the only quanti�ers we allow in ψ are the restri
ted quan-ti�ers ∃u ∈ Pν(X) and ∀u ∈ Pν(X). If V � ZFA is a permutation model inwhi
h AC holds in the kernel and V � ϕ, then there exists a symmetri
 model
V̂ � ZF su
h that V̂ � ϕ.Proof. Let X ∈ V be su
h that V � ψ(X, ν) and let γ ∈ Ω be su
h that
Pν(X) ⊆ Pγ(A), where A is the set of atoms of V. By the Je
h-So
horEmbedding Theorem 17.2 there exists a symmetri
 model V̂ of ZF su
hthat Vγ and Pγ(Â) are ∈-isomorphi
. Now, by the 
hoi
e of γ and sin
e
V � ψ(X, ν) we have (Vγ ,∈) � ψ(X, ν), and therefore (Vγ ,∈) � ϕ. Hen
e,(
Pγ(Â),∈

)
� ϕ whi
h shows that V̂ � ϕ. ⊣



Related Results 339Appli
ations : Most of the results of Chapter 7� obtained by permutationmodels � 
an now be transferred to proper models of ZF. For examplethe existen
e of a set X , su
h that ∣∣X2
∣∣ <

∣∣[X ]2
∣∣ is 
onsistent with ZF(
f. Proposition 7.18), or in other words, ZF 0 ∀X

(∣∣X2
∣∣ ≮

∣∣[X ]2
∣∣). Similarlywe 
an show that ZF 0 ∀X

(∣∣ seq(X)
∣∣ ≮

∣∣ fin(X)
∣∣) (
f. Proposition 7.17).NotesSymmetri
 submodels of generi
 extensions. The idea of using symmetryarguments to 
onstru
t models in whi
h the Axiom of Choi
e fails goes ba
k toFraenkel [6℄. Cohen in
orporated the symmetry arguments into his method and
onstru
ted for example the model given above in whi
h the reals are not well-orderable. The formulation of Cohen's method in terms of symmetri
 submodels ofgeneri
 extensions is due to S
ott and Je
h (
f. Je
h [11, Chapter 15℄).Three examples of symmetri
 models. The �rst model (i.e., the one in whi
hthe reals are not well-orderable) is due to Cohen (
f. [3, Chapter IV, �9℄) and issometimes 
alled the basi
 Cohen model (
f. Je
h [9, Chapter 5, �3℄); the se
ondmodel we presented (i.e., the one in whi
h every ultra�lter over ω is prin
ipal) isdue to Feferman [4℄; and the third model (i.e., the one in whi
h the set of reals isa 
ountable union of 
ountable sets) is due to Feferman and Lévy [5℄. However, the
onstru
tions 
an also be found in Je
h [11, Chapter 15℄, and in greater detail inJe
h [10, Chapter 3, Se
tion 21℄ and [9, Chapter 10, �1℄ respe
tively.Simulating permutation models by symmetri
 models. The Je
h-So
horEmbedding Theorem 17.2 is due to Je
h and So
hor [12, 13℄, where numerousappli
ations of the theorem are given in the se
ond paper [13℄ (see also Je
h [9,Theorem 6.1℄ and [11, Chapter 15℄). The limits of the Je
h-So
hor EmbeddingTheorem 17.2 are dis
ussed in Related Result 93.Related Results89. Choi
e prin
iples in the basi
 Cohen model. We have seen that in the basi
Cohen model� the model in whi
h the reals 
annot be well-ordered� there isan in�nite set of reals whi
h does not 
ontain a 
ountable in�nite subset andthus, the Axiom of Choi
e fails in that model. On the other hand, the following
hoi
e prin
iples are still valid in the basi
 Cohen model:

• If X is in�nite, then P(X) is trans�nite, i.e., ℵ0 ≤
∣∣P(X)

∣∣ (see Je
h [9,p. 81, Problem 20℄).
• For every family F of sets, ea
h 
ontaining at least two elements, there isa fun
tion F su
h that for ea
h set S ∈ F , ∅ 6= F (S)  S (see Je
h [9,p. 82, Problem 21℄).
• Every family of non-empty well-orderable sets has a 
hoi
e fun
tion (seeJe
h [9, p. 82, Problem 22℄ and 
ompare with Chapter 7 |Related Re-sult 48).90. A model in whi
h every ultra�lter is prin
ipal. Blass 
onstru
ted in [1℄ amodel� similar to Feferman's model given above� in whi
h every ultra�lter(and not just ultra�lters over ω) is prin
ipal.
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h AC fails91. ω1 
an be singular. It is provable in ZF that there exists a surje
tion from thereals onto ω1 (
f. Theorem 4.11). Hen
e, in the model in whi
h the set of realsis a 
ountable union of 
ountable sets, ω1 is a limit of a 
ountable sequen
e of
ountable ordinals, and therefore ω1 is singular in that model (
ompare withProposition 5.10 where it is shown that in the presen
e of AC, su

essor 
ar-dinals are always regular).92. ω1 
an be even measurable. An un
ountable aleph κ is 
alled a measurable
ardinal if there exists a non-prin
ipal ultra�lter U over κ whi
h is κ-
omplete,i.e., if α ∈ κ and {xξ : ξ ∈ α} ⊆ U , then
⋂{

xξ : ξ ∈ α
}
∈ U .In the presen
e of AC, measurable 
ardinals are extremely large, even mu
hlarger than ina

essible 
ardinals, on whi
h Hausdor� [7, p. 131℄ wrote that al-ready the smallest of those 
ardinals � if they exist � is of an exorbitant mag-nitude. However, under the assumption that there is a measurable 
ardinal inthe ground model, Je
h 
onstru
ted in [8℄ a symmetri
 model of ZF in whi
h ω1is measurable (see also Je
h [9, Chapter 12, �1℄).93. Nontransferable statements. Not every statement whi
h hold in a permutationmodel (i.e., in a model of ZFA) 
an be transferred into ZF. There are evenstatements whi
h imply AC in ZF but are weaker than AC in ZFA. For exampleMultiple Choi
e and Kurepa's Prin
iple are su
h statements (see Theorem 5.4and Je
h [9, Theorem 9.2℄).94. Bases in ve
tor spa
es and the Axiom of Choi
e∗. In Chapter 5 we have seenthat the Axiom of Choi
e follows in ZF from the assertion that every ve
tor spa
ehas a basis (
f. Theorem 5.4). However, it is still open whether the Axiom ofChoi
e is dedu
ible in ZFA from the assertion that every ve
tor spa
e has a basis,or at least from the assertion that in every ve
tor spa
e every independent setis in
luded in a basis.95. Ina

essible 
ardinals in ZF. In [2℄, Blass, Dimitriou, and Löwe introdu
e andinvestigate de�nitions for ina

essible 
ardinals (see page 315) in the absen
e ofAC. They produ
e four possible de�nitions that are equivalent in ZFC but not inZF, and provide a 
omplete impli
ation diagram (in ZF) for these four di�erent
on
epts. Referen
es1. Andreas Blass, A model without ultra�lters, Bulletin de l'A
adémiePolonaise des S
ien
es, Série des S
ien
es Mathématiques, As-tronomiques et Physiques, vol. 25 (1977), 329�331.2. Andreas Blass, Ioanna Dimitriou, and Löwe Benedikt, Ina

essible 
ar-dinals without the axiom of 
hoi
e, Fundamenta Mathemati
ae, vol. 194(2007), 179�189.3. Paul J. Cohen, Set Theory and the Continuum Hypothesis, Benjamin,New York, 1966.4. Solomon Feferman, Some appli
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18Combining For
ing Notions
In this 
hapter we shall investigate how one 
an 
ombine various for
ing no-tions. For this we �rst 
onsider just two (not ne
essarily distin
t) for
ingnotions, say P = (P,≤P ) and Q = (Q,≤Q).The simplest way to 
ombine P and Q is to form the disjoint union of Pand Q (where 
onditions of P are in
omparable with those of Q). Obviously,a generi
 �lter of the disjoint union is either P-generi
 or Q-generi
, andtherefore, this 
onstru
tion is useless for independen
e proofs.Another way to 
ombine P and Q is to build the produ
t P × Q = (P ×
Q,≤P×Q). Sin
e the for
ing notion P × Q belongs to V, for
ing with P × Qis in fa
t just a one-step extension of V. Produ
ts of for
ing notions willbe investigated in the �rst part of this 
hapter, where the fo
us will be onprodu
ts of Cohen for
ing notions.A more sophisti
ated way to 
ombine P and Q is to iterate P and Q, i.e.,we �rst for
e with P and then� in the P-generi
 extension� by Q. In this
ase, the for
ing notion Q does not ne
essarily belong to V. To see this, let Gbe P-generi
 overV and let Q =

(
Fn(G, 2), ⊆

). Obviously, the for
ing notion
Q does not belong to V. However, sin
e Q belongs to V[G], there is a P-name
Q
˜
in V su
h Q

˜
[G] = Q. Two-step iterations of this type are denoted by P ∗Q

˜
.In the se
ond part of this 
hapter we shall see how to transform a two-stepiteration into a one-step for
ing extension. Furthermore, we shall see di�erentways to de�ne general iterations of for
ing notions.From now on, a for
ing notion is just a partially ordered set P = (P,≤)with a smallest element; in parti
ular, we no longer require that there arein
ompatible 
onditions above ea
h p ∈ P .
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ing NotionsProdu
tsGeneral Produ
ts of For
ing NotionsBefore we investigate produ
ts of Cohen for
ing notions�whi
h will be themost frequently used produ
t of for
ing notions�we 
onsider �rst the general
ase.For two for
ing notions P0 = (P0,≤0,00) and P1 = (P1,≤1,01), the prod-u
t for
ing notion
P0 × P1 = (P0 × P1,≤,0)is de�ned by stipulating 0 := 〈00,01〉 and

〈p0, p1〉 ≤ 〈q0, q1〉 ⇐⇒ p0 ≤ q0 ∧ p1 ≤ q1 .We leave it as an exer
ise to the reader to show that P0×P1 = (P0×P1,≤,0)is indeed a for
ing notion.In general, if κ is a non-zero 
ardinal number and 〈Pα : α ∈ κ〉 is a sequen
eof for
ing notions, where for all α ∈ κ, Pα = (Pα,≤α,0α), then we de�ne theprodu
t for
ing notion
∏

α∈κ

Pα =
( ∏

α∈κ

Pα, ≤, 0
)by stipulating 0 := 〈0α : α ∈ κ〉 and

〈pα : α ∈ κ〉 ≤ 〈qα : α ∈ κ〉 ⇐⇒ ∀α ∈ κ (pα ≤α qα) .Let us now have a 
loser look at the produ
t ∏
α∈κ Pα for some κ ≥ 2.If G is ∏α∈κ Pα-generi
 over V, then G ⊆ ∏

α∈κ Pα. Thus, ea
h p ∈ G is ofthe form p =
〈
p(α) : α ∈ κ

〉. For ea
h α ∈ κ let G(α) :=
{
p(α) : p ∈ G

};in parti
ular, G ⊆ ∏
α∈κG(α). Obviously, for ea
h α ∈ κ, G(α) is Pα-generi
over V. Moreover, we have G =

∏
α∈κG(α), whi
h implies that V[G] =

V
[∏

α∈κG(α)
]
= V

[
〈G(α) : α ∈ κ〉

] (the details are left as an exer
ise tothe reader). In fa
t, we 
an prove even more:Lemma 18.1. Let κ be a 
ardinal, let ∏α∈κ Pα be a produ
t of for
ing notions
Pα = (Pα,≤α,0α), and let G be ∏

α∈κ Pα-generi
 over V. Then, for ea
h
γ ∈ κ, G(γ) is Pγ-generi
 over V

[
〈G(α) : α ∈ κ \ {γ}〉

].Proof. The 
ases when κ = 0 or κ = 1 are trivial. For the other 
ases, noti
e�rst that it is enough to prove the result just in the 
ase when κ = 2, for we
an always 
onsider the produ
t P×Q where P := Pγ and Q :=
∏
α∈κ\{γ} Pα.So, let G(0) be P-generi
 over V, where P = (P,≤,0P ). We have to showthat G(1) is Q-generi
 over V

[
G(0)

], where Q = (Q,≤,0Q). Let D ⊆ Qbe an open dense set whi
h belongs to the model V[
G(0)

]�noti
e that D
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ing 345does not ne
essarily belong to V. In V there exist a P-name D
˜

for D and a
P-
ondition p0 ∈ G(0) su
h that

V � p0 P “D˜
is an open dense subset of Q

˙
� .In other words, for every r ∈ Q there exists a P-name q

˜
for a 
ondition in Qsu
h that p0 P q

˜
≥ r ∧ q

˜
∈ D

˜
. Now, let

D′
1 =

{
〈p, q〉 ∈ P ×Q : p ≥ p0 ∧ p P q

˙
∈ D

˜
}
⊆ P ×Q .We leave it as an exer
ise to the reader to show that D′

1 is dense above
〈p0,0Q〉. Sin
e p0 ∈ G(0) and G(1) is Q-generi
 over V, by Fa
t 14.7 thereare 
onditions p′ ∈ P and q′ ∈ Q su
h that 〈p′, q′〉 ∈ D′

1 ∩
(
G(0) ×G(1)

). Inparti
ular we have p′ ∈ G(0) and p′ P q
˙

′ ∈ D
˜
, whi
h implies that V[

G(0)
]
�

q′ ∈ D
˜
[G(0)]. Finally, sin
e q′ ∈ G(1) and D

˜
[G(0)] = D, we get q′ ∈ D∩G(1),i.e., D ∩G(1) is non-empty. ⊣We now introdu
e the notion of support of a 
ondition� a notion whi
hwe shall meet again in the de�nition of iterated for
ing.Let p =

〈
p(α) : α ∈ κ

〉 be a ∏
α∈κ Pα-
ondition, i.e., for ea
h α ∈ κ wehave p(α) ∈ Pα, where Pα = (Pα,≤α,0α). Then the set {α ∈ κ : p(α) 6= 0α

}is 
alled the support of p and is denoted by supp(p). Noti
e that for any∏
α∈κ Pα-
onditions p and q, p ≤ q implies supp(p) ⊆ supp(q). A �nitesupport produ
t of for
ing notions is a produ
t of for
ing notions 
onsistingof those 
onditions that have �nite support.Produ
ts of Cohen For
ingIn this se
tion we show that a �nite support produ
t of 
ountably many Cohenfor
ing notions is essentially the same as Cohen for
ing.For this, let us �rst 
onsider Cohen for
ing C =

(
Fn(ω, 2), ⊆

), as it wasde�ned in Chapter 14. If G is C-generi
 over some ground model V, then
c :=

⋃
G is a fun
tion in V[G] from ω to {0, 1} (i.e., c ∈ ω2) whi
h has theproperty that the set {

p ∈ Fn(ω, 2) : p ⊆ c
} is C-generi
 over V. A real

c ∈ ω2 (in some model V′) with this property is 
alled a Cohen real over
V. Obviously, every C-generi
 �lter over V 
orresponds to a Cohen real, andvi
e versa, every Cohen real over V 
orresponds to a C-generi
 �lter over V.Sometimes it is 
onvenient to 
onsider a Cohen real, de�ned as an elementof ω2, as a fun
tion from ω to ω. Of 
ourse, there exist natural mappingsbetween the sets ω2 and ωω. However, there is a more elegant way to getCohen reals c ∈ ωω : Consider again Cohen for
ing C =

(
Fn(ω, 2), ⊆

), andfor the moment let C̄ :=
(⋃

n∈ω
n2, ⊆

), C(ω) := (
Fn(ω, ω), ⊆

), and C̄(ω) :=(⋃
n∈ω

nω, ⊆
).We shall show that the for
ing notions C̄, C(ω), and C̄(ω), are all equivalentto Cohen for
ing C, i.e., no matter whether we for
e (over some ground model

V) with C or with one of C̄, C(ω), or C̄(ω), we always get the same generi
extension.
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ing NotionsProposition 18.2. C ≈ C̄ ≈ C(ω) ≈ C̄(ω).Proof. In order to prove that two for
ing notions P = (P,≤) and Q = (Q,≤)are equivalent, it is enough to show that there exists a dense embedding
h : P → Q (see Fa
t 14.3).
C ≈ C̄ and C(ω) ≈ C̄(ω) : The identities ι1 :

⋃
n∈ω

n2 → Fn(ω, 2) and
ιω :

⋃
n∈ω

nω → Fn(ω, ω) are obviously dense embeddings.
C̄(ω) ≈ C̄ : We shall de�ne a dense embedding h :

⋃
n∈ω

nω → ⋃
n∈ω

n2.For this, take an arbitrary fun
tion p : n0 → ω. If n0 = 0, then h(p) := ∅.Otherwise, by indu
tion on n0 we �rst de�ne integers bk su
h that for all
k ∈ n0 we have

bk =

{
p(0) if k = 0,
bk−1 + p(k) + 1 if k > 0.Let xp := {bk : k ∈ n0} and de�ne the fun
tion h(p) : bn0−1 + 1 → 2 bystipulating

h(p)(j) =

{
1 if j ∈ xp,
0 if j /∈ xp.Noti
e that we always have h(p)(bn0−1) = 1. On the other hand, if the fun
tion

q : k0 + 1 → 2 is su
h that q(k0) = 1, then there exists a p : l → ω, where
l =

∣∣{m ∈ k0 + 1 : q(m) = 1
}∣∣, su
h that h(p) = q. In fa
t, h(p) is thesequen
e of p(0) zeros, a single 1, p(1) zeros, a single 1, et 
etera. We leave itas an exer
ise to the reader to verify that h is indeed a dense embedding. ⊣Sin
e the for
ing notions C, C̄, C(ω), C̄(ω), are all equivalent, we shall notdistinguish between these four for
ing notions, and in order to simplify theterminology, ea
h of these four for
ing notions is 
alled Cohen for
ing andis denoted by C.Let us now 
onsider produ
ts of Cohen for
ing: For any ordinal λ ∈ Ωlet Cλ =

(
Fn(ω × λ, 2), ⊆

) and let Cλ denote the �nite support produ
t of
λ 
opies of Cohen for
ing C =

(
Fn(ω, 2), ⊆

). We shall show that for anyordinal λ, Cλ ≈ Cλ, and in addition, if λ is a non-zero 
ountable ordinal, thenboth for
ing notions are equivalent to Cohen for
ing C.Proposition 18.3. For every ordinal λ we have Cλ ≈ C|λ| ≈ C|λ| ≈ Cλ, andfor every non-zero 
ountable ordinal γ we have C ≈ Cγ ≈ Cγ .Proof. It is su�
ient to show that for every non-zero 
ountable ordinal γ wehave C ≈ Cγ , and that for every ordinal λ we have Cλ ≈ C|λ|, Cλ ≈ C|λ|, and
Cλ ≈ Cλ.
C ≈ Cγ : Let ξ : ω×γ → ω be a bije
tion and let h : Fn(ω×γ, 2) → Fn(ω, 2)be su
h that for ea
h p ∈ Fn(ω × γ, 2), dom(

h(p)
)
= ξ[dom(p)] and for all

j ∈ ξ[dom(p)] we have h(p)(j) = p
(
ξ−1(j)

). Then h is obviously a denseembedding; in fa
t, h is even an isomorphism.
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Cλ ≈ Cλ : Sin
e Cλ is a �nite support produ
t, for every Cλ-
ondition p =〈
p(β) : β ∈ λ

〉, the set supp(p) = {
β ∈ λ : p(β) 6= 0

} is �nite. Now, for every
Cλ-
ondition p let h(p) ∈ Fn(ω × λ, 2) be su
h that

dom
(
h(p)

)
=

{
〈β, n〉 ∈ supp(p)× ω : n ∈ dom

(
p(β)

)}and h(p)(〈β, n〉) = p(β)(n). Then h is obviously a dense embedding; in fa
t,it is even an isomorphism.Finally, let ζ : λ→ |λ| be a bije
tion. Then ζ indu
es a bije
tion between ω×λand ω × |λ|, as well as a bije
tion between the set of Cλ-
onditions and theset of C|λ|-
onditions, whi
h shows that Cλ ≈ C|λ| and that Cλ ≈ C|λ|. ⊣As an immediate 
onsequen
e of Proposition 18.3 we get that for every non-zero 
ountable ordinal λ, ea
h Cλ-generi
 �lter 
an be en
oded by a singleCohen real. Roughly speaking, adding one Cohen real is the same as adding
ountably many Cohen reals. Sin
e this is one of the main features of Cohenfor
ing, we state it in a more formal way.Fa
t 18.4. If G is Cλ-generi
 over V and G′ is Cλ-generi
 over V, where λis a non-zero 
ountable ordinal, then there are Cohen reals c and c′ over Vsu
h that V[G] = V[c] and V[G′] = V[c′].A Model in whi
h a < cAs a �rst appli
ation of a produ
t of Cohen for
ing we shall 
onstru
t a modelof ZFC in whi
h c is large and a is small. Re
all that a is the least 
ardinalityof an in�nite, maximal almost disjoint family (
alled mad family), where afamily F ⊆ [ω]ω is almost disjoint if any two distin
t elements of F have�nite interse
tion (see Chapter 8).Proposition 18.5. ω1 = a < c is 
onsistent with ZFC.Proof. Let V be a model of ZFC+CH, let κ ≥ ω2 be a 
ardinal, and let G be
Cκ-generi
 over V (by Proposition 18.3 we 
ould equally well work with the�nite support produ
t Cκ). By Theorem 14.21 we know that V[G] � c ≥ κ.Thus, it remains to show that V[G] 
ontains a mad family of size ω1. Firstly,we shall 
onstru
t a family A0 ⊆ [ω]ω of size ω1 in V su
h that whenever
g is C-generi
 over V, then V[g] � �A0 is mad �. Then we shall show that
A0 �whi
h is obviously an almost disjoint family in V[G]� is still maximalin V[G].Constru
tion of A0 in V: Consider Cohen for
ing C =

(
Fn(ω, 2), ⊆

).Within V, let {
〈pξ, x

˜
ξ〉 : ω ≤ ξ ∈ ω1

} be an enumeration of all pairs 〈p, x
˜
〉su
h that p ∈ Fn(ω, 2) and x

˜
is a ni
e name for a subset of ω, i.e., for all

〈n
˙
, q1〉, 〈n

˙
, q2〉 ∈ x

˜
, either q1 = q2 or q1 ⊥ q2 (see the proof of Theorem 16.4).Noti
e that sin
e V � CH, there are just ω1 ni
e names in V for subsetsof ω. The set A0 = {Aξ ∈ [ω]ω : ξ ∈ ω1} is 
onstru
ted as follows: Let
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{An ∈ [ω]ω : n ∈ ω} be any family of pairwise disjoint in�nite subsets of ω.Let ω ≤ ξ ∈ ω1 and assume that we have already de�ned Aη for all η ∈ ξ.Then, 
hoose Aξ ∈ [ω]ω su
h that the following 
onditions are satis�ed:(1) For all η ∈ ξ, Aη ∩ Aξ is �nite.(2) If

pξ C |x
˜
ξ| = ω

˙
∧ ∀η ∈ ξ

(
pξ C

∣∣x
˜
ξ ∩ A

˙
η

∣∣ < ω
˙

)
, (∗∗)then the set {r ≥ pξ : r C |A

˙
ξ ∩ x

˜
ξ| = ω

˙

} is dense above pξ.To see that Aξ may be 
hosen that way, noti
e that whenever (∗∗) fails, then wejust have to take 
are of (1) and we simply apply the fa
t that ξ is 
ountableand therefore the almost disjoint family {Aη : η ∈ ξ} 
annot be maximal. Onthe other hand, if (∗∗) holds, then whenever g is C-generi
 over V and pξ ∈ gwe have
V[g] � x

˜
ξ[g] ∈ [ω]ω ∧ ∀η ∈ ξ

(∣∣x
˜
ξ[g] ∩ Aη

∣∣ < ω
)
.In other words, x

˜
ξ[g] witnesses that the almost disjoint family {Aη : η ∈ ξ} isnot maximal in V[g].Now, we 
onstru
t Aξ, satisfying (1), su
h that V[g] � |x

˜
ξ[g] ∩ Aξ| = ω:For this, let {Bi : i ∈ ω} be an enumeration of the set {Aη : η ∈ ξ} and let{

〈ni, qi〉 : i ∈ ω
} be an enumeration of ω×{

q : q ≥ pξ
}. By (∗∗), for ea
h i ∈ ωwe obviously have

qi C

∣∣x
˜
ξ \ (B

˙
0 ∪ . . . ∪B

˙
i)
∣∣ = ω

˙
.Thus, we �nd a C-
ondition ri ≥ qi as well as an integer mi ≥ ni su
h that

mi /∈
(
B0 ∪ . . . ∪ Bi

) and ri Cm
˙
i ∈ x

˜
ξ, and de�ne Aξ := {mi : i ∈ ω}.What have we a
hieved? By (∗∗), for every q ≥ pξ, every n ∈ ω, and every�nite set {η0, . . . , ηk} ⊆ ξ, there is a 
ondition q′ ≥ q and an integer m ≥ nsu
h q′ Cm ∈ x

˜
ξ ∧ m

˙
/∈ ⋃

i∈k A˙
ηi . Thus, x

˜
ξ[g] is not a witness for thestatement �{Aη : η ∈ ξ + 1} is not a mad family in V[g]�, whi
h implies that

A0 = {Aξ ∈ [ω]ω : ξ ∈ ω1} is in fa
t a mad family in V[g]. In other words, A0is a mad family in V whi
h remains mad after adding a single Cohen real. Inthe next step we show that the same is true even if we add many Cohen reals.
A0 is mad in V[G]: Consider now the for
ing notion Cκ. Let G be Cκ-generi
 over V and assume towards a 
ontradi
tion that

V[G] � ∃x ∈ [ω]ω ∀Aξ ∈ A0

(
|x ∩ Aξ| < ω

)
.Then there would be a Cκ-name x

˜
for a subset of ω and a Cκ-
ondition p su
hthat for all ξ ∈ ω1,

p Cκ
|x
˜
| = ω

˙
∧ |x

˜
∩ A

˙
ξ| < ω

˙
.By the fa
ts proved earlier and sin
e Cκ satis�es 


 and every Cκ-
onditionis �nite, there is a 
ountable set I0 ⊆ κ su
h that, with respe
t to CI0 =
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(
Fn(ω × I0, 2), ⊆

), there is a ni
e CI0 -name x
˜
0 for a subset of ω as well as a

CI0 -
ondition p0 su
h that for all ξ ∈ ω1,
p0 CI0

|x
˜
0| = ω

˙
∧ |x

˜
0 ∩ A

˙
ξ| < ω

˙
.By Proposition 18.3, C ≈ CI0 , and hen
e we 
an repla
e CI0 by C. Thus,there exists a pair 〈pξ0 , x

˜
ξ0〉, 
onsisting of a C-
ondition pξ0 and a ni
e name

x
˜
ξ0 for a subset of ω, su
h that for all ξ ∈ ω1,

pξ0 C |x
˜
ξ0 | = ω

˙
∧ |x

˜
ξ0 ∩ A

˙
ξ| < ω

˙
.In parti
ular, for Aξ0 we would have

pξ0 C |x
˜
ξ0 ∩A

˙
ξ0 | < ω

˙
,whi
h 
ontradi
ts the 
onstru
tion of Aξ0 . ⊣For a proof using iterated for
ing (introdu
ed below) seeRelated Result 99.IterationsBelow, we shall develop some methods to add generi
 �lters step by step.The simplest 
ase, whi
h we 
onsider �rst, is when only two generi
 �lters areadded. This so-
alled two-step iteration is quite easy to understand, but be-
ause it involves most of the tools whi
h are used to handle longer iterations,it is worthwhile to 
onsider this 
ase in greater detail. Nevertheless, the situa-tion be
omes more di�
ult when the length of the iteration is in�nite � whi
hwill be dis
ussed in a slightly less detailed way.Two-Step IterationsLet us start with an example: Let V be a model of ZFC. Assume we want to
onstru
t an in�nite set H ⊆ ω in some generi
 extension of V whi
h is almosthomogeneous for ea
h 
olouring π : [ω]n → r whi
h belongs to V (where

n ∈ ω and r is a positive integer). Re
all that an in�nite set H ⊆ ω is almosthomogeneous for a 
olouring π : [ω]n → r, if there is a �nite set K ∈ fin(ω)su
h that [H \K]n is mono
hromati
. There are many di�erent ways to obtainsu
h a real H . For example, if there is a Ramsey ultra�lter U in V, then itwould be enough to for
e the existen
e of a set H ∈ [ω]ω whi
h is almost
ontained in ea
h x ∈ U . Why? Sin
e U is a Ramsey ultra�lter, for every
olouring π : [ω]n → r there is an x ∈ U whi
h is homogeneous for π. Now,if H is almost 
ontained in x, then H is almost homogeneous for π. However,if there is no Ramsey ultra�lter in V (see for example Proposition 25.11),we �rst have to for
e the existen
e of a Ramsey ultra�lter. In order to for
ea Ramsey ultra�lter we use the for
ing notion U =
(
[ω]ω/ fin,≤

) whi
h was
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ing Notionsintrodu
ed in Chapter 14. Let G0 be U-generi
 over V and let U =
⋃
G0.Then, by Proposition 14.18, U is a Ramsey ultra�lter in V[G0]. Now, wefor
e the existen
e of a set H ∈ [ω]ω whi
h is almost 
ontained in ea
h x ∈ U :In V[G0], 
onsider the for
ing notion QU = (QU ,≤), where QU is the setof all ordered pairs 〈s, E〉 su
h that s ∈ fin(ω) and E ∈ fin(U ), and for all

〈s, E〉, 〈t, F 〉 ∈ QU we de�ne
〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧ E ⊆ F ∧ (t \ s) ⊆

⋂
E .If G1 is QU -generi
 over V[G0], then the set

H0 =
⋃{

s ∈ fin(ω) : ∃E ∈ fin(U )
(
〈s, E〉 ∈ G1

)}
,whi
h belongs to the model V[G0][G1], is almost homogeneous for all 
olour-ings π : [ω]n → r whi
h belong to V.Noti
e that the for
ing notion QU belongs to V[G0], so, there is a U-name

Q
˜

U in V for QU . For
ing �rst with U over V, followed by for
ing with QUoverV[G0], is a two-step �pro
ess� whi
h we shall denote by U∗Q
˜

U . The goalis now to �nd a for
ing notion P in V su
h that P is equivalent to U ∗ Q
˜

U ,in other words, the goal is to write the two-step �pro
ess� U ∗Q
˜

U as a singlefor
ing extension over the ground model V.More generally, we have the following situation: We start in some groundmodel V of ZFC, where in V we have a for
ing notion P = (P,≤P,0P). If
G is P-generi
 over V, then V[G] is again a model of ZFC. Assume that
Q = (Q,≤Q,0Q) is a for
ing notion in V[G] (whi
h is not ne
essarily in V)and that H is Q-generi
 over V[G]. Then V[G][H ] is a model of ZFC, too.Sin
e Q belongs to V[G], there is a P-name Q

˜
in V for Q. So, by 
ombiningthe 
onditions in P with P-names for Q-
onditions, it should be possible towrite the so-
alled two-step iteration P ∗Q

˜
as a single for
ing notion R whi
hbelongs to the ground model V. Furthermore, it would be interesting to knowwhether some 
ombinatorial properties of P and Q are preserved in the two-step iteration. For example, if P and Q both satisfy 


, does this imply that

R also satis�es 


? Before we 
an answer this question (in the a�rmative),we �rst have to show that P ∗Q
˜
is indeed equivalent to a single for
ing notionwhi
h belongs to V�whi
h is 
onsequently denoted by P ∗Q

˜
.Let V be a model of ZFC and let P = (P,≤P,0) be a for
ing notion in

V with smallest element 0. Noti
e that by Fa
t 14.4 we may always assumethat the smallest element of a for
ing notion is ∅, i.e., 0 = ∅. A P-name in Vfor a for
ing notion Q = (Q,4, ∅) in the P-generi
 extension of V is a tripleof P-names 〈Q
˜
,4
˜
, ∅
˙
〉 whi
h has the following properties:(a) ∅ P “4

˜
is a partial ordering of Q

˜
� (re
all that a partial ordering is a bi-nary relation whi
h is transitive, re�exive, and anti-symmetri
).(b) If p P q

˜
∈ Q

˜
for some P-name q

˜
, then there is a P-
ondition p′ su
h that

p ≤P p′, and there are P-names r
˜
1 and r

˜
2 su
h that

p′ P r
˜
1 ∈ Q

˜
∧ r
˜
2 ∈ Q

˜
∧ q
˜
4
˜
r
˜
1 ∧ q

˜
4
˜
r
˜
2 ∧ r

˜
1⊥˜

r
˜
2 .
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) ∅ P ∅
˙
∈ Q

˜
.(d) If p P q

˜
∈ Q

˜
, then p P ∅

˙
4
˜
q
˜
.Now, we �rst de�ne a for
ing notion R in V, whi
h depends on P & Q

˜
,and then we show that for
ing with R yields the same generi
 extension asthe two-step iteration P ∗Q

˜
.Let R = (R,≤R,0R) where

R =
{
〈p, q

˜
〉 : p ∈ P ∧ p P q

˜
∈ Q
˜

} and 0R = 〈∅, ∅
˙
〉 ,and for all 〈p1, q

˜
1〉, 〈p2, q

˜
2〉 ∈ R, let

〈p1, q
˜
1〉 ≤R 〈p2, q

˜
2〉 ⇐⇒ p1 ≤P p2 ∧ p2 P q

˜
1 4
˜
q
˜
2 .Before we show that for
ing with R is equivalent to P∗Q

˜
, we have to showthat R = (R,≤R,0R) is a for
ing notion with smallest element 0R.For this, we �rst show that the binary relation ≤R is a partial ordering,i.e., we show that ≤R is (1) re�exive, (2) transitive, and (3) has the propertythat (

〈p1, q
˜
1〉 ≤R 〈p2, q

˜
2〉 ∧ 〈p2, q

˜
2〉 ≤R 〈p1, q

˜
1〉
)
→ (p1 = p2)and that p1 P q

˜
1 = q

˜
2: For (1)�(3), let 〈p, q

˜
〉, 〈p1, q

˜
1〉, 〈p2, q

˜
2〉, 〈p3, q

˜
3〉, bearbitrary R-
onditions.(1) 〈p, q

˜
〉 ≤R 〈p, q

˜
〉 ⇐⇒ p ≤P p ∧ p P q

˜
4
˜
q
˜
.Sin
e ≤P is a partial ordering, p ≤P p, and by (a) we have p P q

˜
4
˜
q
˜
.(2) 〈p1, q

˜
1〉 ≤R 〈p2, q

˜
2〉 ∧ 〈p2, q

˜
2〉 ≤R 〈p3, q

˜
3〉 ⇐⇒

p1 ≤P p2 ∧ p2 ≤P p3︸ ︷︷ ︸whi
h implies p1 ≤P p3

∧ p2 P q
˜
1 4
˜
q
˜
2 ∧ p3 P q

˜
2 4
˜
q
˜
3︸ ︷︷ ︸sin
e p2 ≤P p3 we get p3 P q

˜
1 4

˜
q
˜
2 ∧ q

˜
2 4

˜
q
˜
3By (a) we get p3 P q

˜
14
˜
q
˜
3, and hen
e, 〈p1, q

˜
1〉 ≤R 〈p3, q

˜
3〉.(3) 〈p1, q

˜
1〉 ≤R 〈p2, q

˜
2〉 ∧ 〈p2, q

˜
2〉 ≤R 〈p1, q

˜
1〉 ⇐⇒

p1 ≤P p2 ∧ p2 ≤P p1︸ ︷︷ ︸whi
h implies p1=p2 ∧ p2 P q
˜
1 4
˜
q
˜
2 ∧ p1 P q

˜
2 4
˜
q
˜
1︸ ︷︷ ︸sin
e p1=p2 we get p1 P q

˜
1 4

˜
q
˜
2 ∧ q

˜
2 4

˜
q
˜
1By (a), 4

˜
is for
ed to be anti-symmetri
, thus, p1 P q

˜
1 = q

˜
2.Now, we show that 0R (i.e., 〈∅, ∅

˙
〉) belongs to R and that 0R is the smallestelement (with respe
t to the partial ordering ≤R):

• 〈∅, ∅
˙
〉 ∈ R ⇐⇒ ∅ P ∅

˙
∈ Q
˜
, whi
h is just (
).

• Let 〈p, q
˜
〉 be an arbitrary R-
ondition. Sin
e 〈p, q

˜
〉 ∈ R we have p P q

˜
∈ Q

˜
,and further we have 〈∅, ∅

˙
〉 ≤R 〈p, q

˜
〉 ⇐⇒ p P ∅

˙
4
˜
q
˜
, whi
h is in fa
tjust (d).
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ing NotionsFinally, we show that R = (R,≤R) is indeed a for
ing notion: For this wehave to show that there are in
ompatible 
onditions above ea
h 〈p, q
˜
〉 ∈ R. Let

p1, p2 ∈ P be su
h that p ≤P p1, p ≤P p2, and p1 ⊥P p2. Then 〈p, q
˜
〉 ≤R 〈p1, q

˜
〉,

〈p, q
˜
〉 ≤R 〈p2, q

˜
〉, and 〈p1, q

˜
〉 ⊥R 〈p2, q

˜
〉, as required.It remains to show that for
ing with R is equivalent to the two-step itera-tion P ∗Q

˜
. We shall give a detailed proof of one dire
tion and leave the otherdire
tion as an exer
ise to the reader.Proposition 18.6. Let V be a model of ZFC and let G be R-generi
 over

V. Then there are sets G0 and G1 in V[G], su
h that G0 is P-generi
 over Vand G1 is Q
˜
[G0]-generi
 over V[G0].Proof. In the model V[G] we de�ne

G0 =
{
p ∈ P : ∃q

˜
∈ Q

˜
(〈p, q

˜
〉 ∈ G)

}and
G1 =

{
q
˜
[G0] ∈ Q

˜
[G0] : ∃p ∈ G0(〈p, q

˜
〉 ∈ G)

}
.We �rst show that G0 and G1 are �lters, i.e., G0 and G1 are both down-wards 
losed and dire
ted.

G0 is downwards 
losed and dire
ted : If p ∈ G0, then there is a q
˜
∈ Q

˜
su
hthat 〈p, q

˜
〉 ∈ G, and for any p′ ≤ p we have 〈p′, ∅

˙
〉 ≤ 〈p, q

˜
〉. Sin
e G is down-wards 
losed, this implies 〈p′, ∅

˙
〉 ∈ G, and therefore p′ ∈ G0. Furthermore, if p0and p1 belong to G0, then we �nd 〈p0, q

˜
0〉 and 〈p1, q

˜
1〉 in G, and sin
e G is di-re
ted, there is an R-
ondition 〈p, q

˜
〉 ∈ G su
h that 〈p0, q

˜
0〉 ≤ 〈p, q

˜
〉 ≥ 〈p1, q

˜
1〉.Thus, p ∈ G0 and p0 ≤ p ≥ p1.

G1 is downwards 
losed and dire
ted : If q
˜
0[G0] ∈ G1, then there is a

p0 ∈ G0 su
h that 〈p0, q
˜
0〉 ∈ G. Assume that in V[G0], q

˜
1[G0] ≤ q

˜
0[G0].We have to show that q

˜
1[G0] ∈ G1. Firstly, there is a p′ ∈ G0 su
h that

p′ P q
˜
1 ≤ q

˜
0. Se
ondly, sin
e G is dire
ted, there is a 〈p1, q

˜
2〉 ∈ G su
h that

〈p′, ∅
˙
〉 ≤ 〈p1, q

˜
2〉 ≥ 〈p0, q

˜
0〉, in parti
ular we get p1 P q

˜
0 ≤ q

˜
2. Now, sin
e

p1 ≥ p′, we also have p1 P q
˜
1 ≤ q

˜
0. Thus, p1 P q

˜
1 ≤ q

˜
2, whi
h implies

〈p1, q
˜
2〉 ≥ 〈p1, q

˜
1〉, and sin
e G is downwards 
losed, 〈p1, q

˜
1〉 ∈ G. Hen
e,

q
˜
1[G0] ∈ G1. Furthermore, if q

˜
0[G0] and q

˜
1[G0] belong to G1, then we �nd

〈p0, q
˜
0〉 and 〈p1, q

˜
1〉 in G, and sin
e G is dire
ted, there is an R-
ondition

〈p, q
˜
〉 ∈ G�and therefore q

˜
[G0] ∈ G1 � su
h that 〈p0, q

˜
0〉 ≤ 〈p, q

˜
〉 ≥ 〈p1, q

˜
1〉.Thus, p P q

˜
0 ≤ q

˜
≥ q

˜
1, and sin
e p ∈ G0 we get q

˜
0[G0] ≤ q

˜
[G0] ≥ q

˜
1[G0].Now we show that G0 and G1 are generi
, i.e., G0 and G1 meet every opendense set in V and V[G0] respe
tively.

G0 is generi
: Let D0 ⊆ P be an open dense subset of P and let
D′

0 =
{
〈p, q

˜
〉 ∈ R : p ∈ D0

}
.Then D′

0 is an open dense subset of R, and sin
e G is R-generi
 over V, thereis an R-
ondition 〈p, q
˜
〉 ∈ G�and therefore p ∈ G0 � su
h that p belongs to

D0. Hen
e, G0 ∩D0 6= ∅, whi
h shows that G0 is P-generi
 over V.
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G1 is generi
: Let D1 be an arbitrary open dense subset of Q

˜
[G0]. Thenthere is a P-name D

˜ 1 for D1 and a P-
ondition p0 ∈ G0 su
h that
p0 P “D˜ 1 is open dense in Q

˜
� .With respe
t to D

˜ 1 de�ne
D′

1 =
{
〈p, q

˜
〉 ∈ R : p P q

˜
∈ D

˜ 1

}
.Then D′

1 ⊆ R is open dense above 〈p0, ∅
˙
〉, and sin
e 〈p0, ∅

˙
〉 ∈ G (be
ause

p0 ∈ G0), we get that G ∩ D′
1 6= ∅, say 〈p1, q

˜
1〉 ∈ G ∩D′

1. Now, 〈p1, q
˜
1〉 ∈ Gimplies that p1 ∈ G0 and that q

˜
1[G0] ∈ G1. Furthermore, by de�nition of D′

1we get p1 P q
˜
1 ∈ D

˜ 1, and therefore q
˜
1[G0] ∈ D1. Hen
e, q

˜
1[G0] ∈ G1 ∩ D1,whi
h shows that G1 is Q

˜
[G0]-generi
 over V[G0]. ⊣In the next se
tion we shall investigate general iterations, but before letus show that two-step iterations of 


 for
ing notions satisfy 


.Lemma 18.7. If P satis�es 


 and
0P P “Q

˜
satis�es 


 �then also P ∗Q

˜
satis�es 


.Proof. Let P = (P,≤) and let Q

˜
= (Q

˜
,4
˜
). Assume towards a 
ontradi
tionthat in the ground modelV there are un
ountably many pairwise in
ompatible

P ∗ Q
˜
-
onditions {

〈pξ, q
˜
ξ〉 : ξ ∈ ω1

}. Let x
˜
=

{
〈ξ
˙
, pξ〉 : ξ ∈ ω1

}; then x
˜
is a

P-name for a subset of ω1, i.e., 0P P x
˜

⊆ ω1
˙
. Let G be P-generi
 over V.Then x

˜
[G] = {ξ ∈ ω1 : pξ ∈ G}. We shall show that there is an ordinal β ∈ ω1su
h that 0P P x

˜
⊆ β

˙
, but �rst we prove the followingClaim 1. In V[G], the set {q

˜
ξ[G] : ξ ∈ x

˜
[G]

} is an anti-
hain in Q
˜
[G].Proof of Claim 1. Assume towards a 
ontradi
tion that there are distin
t

ξ, η ∈ x
˜
[G], su
h that q

˜
ξ[G] and q

˜
η[G] are 
ompatible elements of Q

˜
[G]. Thiswould imply that there is a P-
ondition p ∈ G, as well as a P-name q
˜
for a

Q
˜
[G]-
ondition, su
h that

p P q
˜
∈ Q
˜
∧ q
˜
ξ 4
˜
q
˜
∧ q
˜
η 4
˜
q
˜
.In fa
t, by extending p if ne
essary, we get a P ∗ Q

˜
-
ondition 〈p, q

˜
〉 whi
h isstronger than both 〈pξ, q

˜
ξ〉 and 〈pη, q

˜
η〉, 
ontradi
ting our assumption that{

〈pξ, q
˜
ξ〉 : ξ ∈ ω1

} is a set of pairwise in
ompatible P ∗Q
˜
-
onditions. ⊣Claim 1Sin
e 0P P “Q

˜
satis�es 


 �, and therefore preserves ω1 (by Lemma 14.20),we get that V[G] �

∣∣x
˜
[G]

∣∣ < ω1 whenever G is P-generi
 over V, hen
e,
0P P |x

˜
| < ω1

˙
.Claim 2. There is an ordinal β ∈ ω1 su
h that 0P P x

˜
⊆ β

˙
.



354 18 Combining For
ing NotionsProof of Claim 2. In V, let
E =

{
α ∈ ω1 : ∃r ∈ P ∀β ∈ α

(
r P x

˜
⊆ α

˙
∧ x
˜
* β

˙

)}
.Further, for every α ∈ E 
hoose a P-
ondition rα su
h that for all β ∈ α,

rα P x
˜
⊆ α

˙
∧ x
˜
* β

˙
. The set {rα : α ∈ E}, whi
h belongs to V, is an anti-
hain in P , and sin
e P satis�es 


, |E| < ω1. Thus, there exists a β ∈ ω1su
h that E ⊆ β, whi
h implies that 0P P x

˜
⊆ β

˙
. ⊣Claim 2By de�nition of x

˜
, for all ξ ∈ ω1 we have pξ P ξ

˙
∈ x

˜
. In parti
ular we get

pβ P β
˙
∈ x
˜
, whi
h is a 
ontradi
tion to 0P P x

˜
⊆ β

˙
. ⊣As a matter of fa
t we would like to mention that Lemma 18.7 does nothave an analogue for produ
ts; in other words, the produ
t of two 


 for
ingnotions does not ne
essarily satisfy 


 (see Related Result 98).General IterationsIn the previous se
tion we have 
onstru
ted a two-step iteration U∗Q

˜
U in su
ha way that whenever G is U ∗Q

˜
U -generi
 over V, then there is an in�nite set

H0 ∈ [ω]ω ∩V[G] whi
h is almost homogeneous for all 
olourings π : [ω]n → rwhi
h belong to the ground model V. Obviously, su
h a set H0 
annot belongto V. Now, we 
an ask what happens if we iterate the for
ing notion U∗Q
˜

U ?As we have seen, at ea
h stage we obtain a new set H ∈ [ω]ω whi
h is almosthomogeneous for all �old� 
olourings π : [ω]n → r. So, for example an ω1-stage iteration of U ∗ Q
˜

U , starting in a model V of ZFC in whi
h c = ω2,would generate a family {Hα : α ∈ ω1} of size ωV
1 , where ea
h Hα is almosthomogeneous with respe
t to all �old� 
olourings π : [ω]n → r. Re
all thatfor any integers n, r ≥ 2 there exists a bije
tion between the set of 
olourings

π : [ω]n → r and the set of real numbers, thus, every �old� 
olouring 
an been
oded by an �old� real (and vi
e versa). Now, if every 
olouring π : [ω]n → r(i.e., real number) appears at some stage α ∈ ω1 in the iteration, and if the
ardinal numbers ωV

1 , ωV

2 , cV are the same as ω1, ω2, c in the �nal generi
extension, then we would get a model in whi
h ω1 = hom < ω2 = c. But dowe really get su
h a model?To understand the previous example as well as iterations in general, wehave to answer questions like:1. Is every iteration of for
ing notions equivalent to a single for
ing notion?2. How is the iteration de�ned at limit stages?3. Does the iteration add reals at limit stages of un
ountable 
o�nality?4. Does the iteration preserve 
ardinals?Below, we shall give a 
omplete answer to Questions 1�3 and we shallgive an answer to Question 4 with respe
t to for
ing notions satisfying 


;regarding the for
ing notion U ∗ Q
˜
, we refer the reader to Chapter 20 andChapter 23 |Related Result 138.
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onsider α-stage iterations of for
ing notions for arbitraryordinals α (re
all that by Fa
t 14.4 we may always assume that the smallestelement of a for
ing notion is ∅).For α = 1 we get ordinary for
ing, and for α = 2 we get two-step iterationswhi
h we already dis
ussed in the previous se
tion.For α = 3 we start with an arbitrary for
ing notion P1 = (P1,≤) whi
hbelongs to some ground model V. Let Q
˜
1 be a P1-name for a for
ing notion

(Q1,≤) in the P1-generi
 extension of V and let P2 := P1 ∗ Q
˜
1. Further, let

Q
˜
2 be a P2-name for a for
ing notion (Q2,≤) in the P2-generi
 extension of

V and let P3 := P2 ∗Q
˜
2. Then every P3-
ondition is of the form 〈

〈q0, q
˜
1〉, q

˜
2

〉,where q0 ∈ P1, q0 P1 q
˜
1 ∈ Q

˜
1, and 〈q0, q

˜
1〉 P2 q

˜
2 ∈ Q

˜
2.To form an α-stage iteration for 3 < α ∈ ω, we just repeat this pro-
edure. Thus, for positive integers n, every Pn-
ondition is of the form

〈〈· · · 〈〈q0, q
˜
1〉, q

˜
2〉 · · · q

˜
n−2〉, q

˜
n−1〉, for whi
h we shall write the typographi
allyless 
umbersome (and easier to read) n-tuple 〈q0, q

˜
1, . . . , q

˜
n−1〉. With this 
on-vention, for positive integers n, Pn-
onditions are sequen
es of length n.For n = 0 let P0 :=

(
{∅}, ⊆

). When we de�ne P0-names, we �nd that
G = {∅} is the unique P0-generi
 �lter over V. In parti
ular we get that a
0-stage extension of V is just V.The sequen
e of for
ing notions P0,P1, . . . ,Pn, where Pk = (Pk,≤, ∅), hasthe property that if p = 〈q0, q

˜
1, . . . , q

˜
n−1〉 ∈ Pn, then for all k ∈ n, p|k ∈ Pkand p|k Pk q

˜
k ∈ Q

˜
k, where Q

˜
k is a Pk-name for a for
ing notion (Qk,≤)in the Pk-generi
 extension of V. In parti
ular, P1 = Q

˜
0 is a P0-name for afor
ing notion (Q0,≤) in the P0-generi
 extension of V, whi
h is just V itself.In other words, P1 is a P0-name for for
ing notion (P1,≤) whi
h belongs to

V. Thus, every Pn-
ondition is of the form 〈q
˜
0, q
˜
1, . . . , q

˜
n−1〉, where q

˜
0 is a P0-name for a Q0-
ondition. This 
ompletes the de�nition of α-stage iterationsfor α ∈ ω.Similarly, we de�ne (α+1)-stage iterations for arbitrary ordinals α: If the

α-stage iteration Pα =
〈
Q
˜
β : β ∈ α

〉 is already de�ned and Q
˜
α is a Pα-namefor a for
ing notion in the Pα-generi
 extension, then Pα+1 := Pα ∗Q

˜
α.Let us now 
onsider the 
ase when α is a limit ordinal. At �rst glan
e,the set of Pα-
onditions 
onsists of all α-sequen
es 〈q

˜
β : β ∈ α〉, but havinga 
loser look we see that there is some freedom in de�ning the set of Pα-
onditions. For example we 
an require that q

˜
β = ∅

˙
for all but �nitely many

β ∈ α, whi
h is 
alled �nite support iteration, or that q
˜
β = ∅

˙
for all but
ountably many β ∈ α, whi
h is 
alled 
ountable support iteration.For Pα-
onditions p = 〈q

˜
β : β ∈ α〉 we de�ne

supp(p) =
{
β ∈ α : q

˜
β 6= ∅

˙

}
,and like for produ
ts we 
all supp(p) the support of p. For example, a 
ount-able support iteration Pα 
onsists of all Pα-
onditions p that have 
ountablesupport, i.e., | supp(p)| ≤ ω.Be
ause of the following result (whi
h will be stated without proof), �nitesupport iterations are often used in iterations of for
ing notions satisfying 


.
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ing NotionsProposition 18.8. Any �nite support iteration of 


 for
ing notions satis-�es 


. In other words, if Pα is a �nite support iteration of 〈
Q
˜
β : β ∈ α

〉,where for ea
h β ∈ α we have
0β β “Q

˜
β satis�es 


 � ,then also Pα satis�es 


.Before we give an example of a �nite support iteration, let us �rst settlesome notation: Let Pα =

〈
Q
˜
γ : γ ∈ α

〉 be any α-stage iteration and let G be
Pα-generi
 over some model V. Then, for β ∈ α, let

G(β) =
{
qβ : ∃〈p

˜
γ : γ ∈ α〉 ∈ G

˜
(
qβ = p

˜
β [G]

)}and
G|β =

{
〈qγ : γ ∈ β〉 : ∃〈p

˜
γ : γ ∈ α〉 ∈ G

˜
∀γ ∈ β

(
qβ = p

˜
β[G]

)}
.In other words, G|β denotes the Pβ-generi
 �lter generated by G. In abuse ofnotation, for Pα =

〈
Q
˜
γ : γ ∈ α

〉 we usually write Pα =
〈
Qγ : γ ∈ α

〉, wherefor all γ ∈ α, Qγ := Q
˜
γ

[
G|γ

]. In other words, we usually 
onsider an α-stageiteration Pα, starting in some model V, as an α-sequen
e of for
ing notions
Qγ (not just Pγ-names for for
ing notions), where for ea
h γ ∈ α, Qγ belongsto the Pγ-generi
 extension V

[
G|γ

]. Consequently, for β ∈ α we also write
V
[
〈G(γ) : γ ∈ β〉

] instead of V[
G|β

], having in mind that we add one generi
�lter after the other, rather than adding just the single generi
 �lter G|β .We 
on
lude this se
tion by showing that in �nite support or 
ountablesupport iterations or produ
ts of 
ertain for
ing notions (e.g., 


 for
ingnotions), no new reals are added at limit stages of un
ountable 
o�nality� aresult whi
h will be used quite often in the forth
oming 
hapters.Lemma 18.9. Let λ be an in�nite limit ordinal of un
ountable 
o�nality (i.e.,
cf(λ) > ω), let Pλ =

〈
Q
˜
α : α ∈ λ

〉 be any �nite support or 
ountable supportiteration or produ
t of arbitrary for
ing notions Qα, and let G be Pλ-generi
over some model V of ZFC. If V[G] � cf(λ) > ω, then no new reals are addedat stage λ; more formally,
ωω ∩V[G] =

⋃

α∈λ

ωω ∩V[G|α] .Proof. Let f
˜
be a Pλ-name for a fun
tion in ωω∩V[G]. For every β ∈ λ de�nea Pβ-name g

˜
β for a partial fun
tion from ω to ω by stipulating
g
˜
β =

{〈
op(n

˙
,m
˙
), p

〉
∈ f
˜
: supp(p) ⊆ β ∧ p ∈ G

}
,where op(n

˙
,m
˙
) is the 
anoni
al Pλ-name for the ordered pair 〈n

˙
,m
˙
〉 (whi
hwas de�ned in Chapter 14). Now, we show that there exist an α ∈ λ su
h



A model in whi
h i < c 357that V[G|α] � f
˜
[G|α] = g

˜
α[G|α], i.e., the fun
tion f

˜
[G] appears already in themodel V[G|α]: Let us work in the model V[G]. For every n ∈ ω we 
an 
hoosea pn ∈ G whi
h de
ides the value of f

˜
(n), i.e., 〈 op(n

˙
,m
˙
), pn

〉
∈ f
˜
for some

m ∈ ω. Using the fa
t that V[G] � cf(λ) > ω and that the supports of the pn'sare at most 
ountable (i.e., �nite or 
ountably in�nite), we get that in V[G],⋃
n∈ω supp(pn)  λ. Thus, there is an α ∈ λ su
h that ⋃

n∈ω supp(pn) ⊆ α,and by 
onstru
tion we have g
˜
α[G|α] ∈ ωω∩V[G|α] and V[G] � f

˜
[G] = g

˜
α[G].

⊣A Model in whi
h i < cIn this se
tion we shall 
onstru
t� by a �nite support iteration of 


 for
ingnotions� a model in whi
h i < c, where i is the least 
ardinality of a maximalindependent family; but �rst, let us re
all a few notions: A set I ⊆ [ω]ω isan independent family, denoted i.f., if for any A,B ∈ fin(I ) with A ∩B = ∅we have ⋂
A \ ⋃

B is in�nite, where we stipulate ⋂ ∅ := ω (see Chapter 8).Furthermore, for independent families I , let bc (I ) be the set of all �niteboolean 
ombinations of distin
t elements of I , in other words,
bc (I ) =

{⋂
A \

⋃
B : {A,B} ⊆ fin(I ) ∧ A ∩B = ∅

}
.Noti
e that bc (I ) ⊆ [ω]ω and that for I = ∅ we have bc (I ) = {ω}.The following lemma�whi
h is in fa
t a ZFC result� will be 
ru
ial in the
onstru
tion of the for
ing notion whi
h will be used in the iteration below.Lemma 18.10. Let V be an arbitrary model of ZFC and let I ⊆ [ω]ω be anarbitrary i.f. in V. Then there exists an ideal I ⊆ P(ω) in V su
h that(a) I ∩ bc (I ) = ∅, and(b) for every y ∈ [ω]ω ∩V there exists an x ∈ bc (I ) su
h that x∩ y or x \ ybelongs to I.Proof. Let {yα ∈ [ω]ω : α ∈ c} be an arbitrary enumeration of [ω]ω. Withrespe
t to this enumeration we 
onstru
t the ideal I by indu
tion on c. Firstly,let I0 := fin(ω). Then I0 is an ideal and I0 ∩ bc (I ) = ∅. Assume that wehave already de�ned the ideal Iα for some α ∈ c. If there are x ∈ bc (I ) and

u ∈ Iα su
h that
x ⊆ yα ∪ u ,then Iα+1 := Iα; otherwise, Iα+1 is the ideal generated by Iα ∪ {yα}, i.e.,

u ∈ Iα+1 i� there is an A ∈ fin
(
Iα ∪ {yα}

) su
h that u ⊆ ⋃
A. Further, forlimit ordinals λ ∈ c let Iλ :=

⋃
α∈λ Iα, and let
I =

⋃

α∈c

Iα .
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ing NotionsIt remains to show that the ideal I has the required properties (we leave it asan exer
ise to the reader to show that I is indeed an ideal):(a) Assume towards a 
ontradi
tion that there is an x ∈ bc (I ) ∩ I. Sin
e
I0 ∩ bc (I ) = ∅, there exists a least ordinal α ∈ c su
h that x ∈ Iα+1. Inparti
ular, x /∈ Iα, whi
h implies that Iα+1 6= Iα. Hen
e, Iα+1 must be theideal generated by Iα ∪ {yα}. Thus, by 
onstru
tion, there is no u ∈ Iα su
hthat x ⊆ yα ∪ u. In other words, for ea
h u ∈ Iα we have x * yα ∪ u, whi
h
ontradi
ts the fa
t that x ∈ Iα+1.(b) Take any y ∈ [ω]ω and let α ∈ c be su
h that y = yα. If there are x ∈ bc (I )and u ∈ Iα su
h that x ⊆ yα ∪ u, then x \ yα ⊆ u, and 
onsequently x \ y ∈ I;otherwise, yα ∈ Iα+1, whi
h implies that x ∩ yα ∈ Iα+1, and 
onsequently
x ∩ y ∈ I. ⊣Now we are ready to 
onstru
t a model in whi
h i < c.Proposition 18.11. i < c is 
onsistent with ZFC.Proof. The proof will be given in two steps: In the �rst step, with respe
t tosome i.f. I we shall 
onstru
t a for
ing notion QI (where I and I are as inLemma 18.10), and will show that QI adds a generi
 real g ∈ [ω]ω (over somemodel V) whi
h has the following properties:
• I ∪ {g} is an i.f. in V[g].
• If y ∈ [ω]ω ∩ V is su
h that I ∪ {y} is independent and y /∈ I , then

I ∪ {g, y} is not independent.In the se
ond step, by a �nite support iteration of length ω1 of for
ing notions
QI , we shall 
onstru
t a generi
 model in whi
h the set of generi
 reals, addedby the for
ing notions QI , is a maximal i.f. of size ω1.1st Step: Let V be an arbitrary model of ZFC and let I ⊆ [ω]ω be anarbitrary 
ountable i.f. in V. Furthermore, let I ⊆ P(ω) be the ideal 
on-stru
ted in Lemma 18.10 with respe
t to I , i.e., I ∩ I = ∅, and for every
y ∈ [ω]ω ∩ V there exists an x ∈ bc (I ) su
h that x ∩ y or x \ y belongsto I. With respe
t to the ideal I we de�ne the for
ing notion QI = (QI ,≤)as follows: A QI -
ondition is an ordered pair 〈s, E〉 where s ∈ fin(ω) and
E ∈ fin(I), and for QI-
onditions 〈s, E〉 and 〈t, F 〉 we de�ne

〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧ E ⊆ F ∧ (t \ s) ∩
⋃

u∈E

u = ∅ .Noti
e that for any E,F ∈ fin(I) and any s ∈ fin(ω), 〈s, E〉 and 〈s, F 〉 are
ompatible, and sin
e the set fin(ω) is 
ountable, QI satis�es 


.Let G be QI-generi
 over V and let
g =

⋃{
s ∈ fin(ω) : ∃E ∈ fin(I)

(
〈s, E〉 ∈ G

)}
.



A model in whi
h i < c 359We leave it as an exer
ise to the reader to show that g ∈ [ω]ω and that
V[g] = V[G]. Thus, we 
an equally well work with g instead of G, in otherwords, g is a QI -generi
 real over V.Now, we show that I ∪ {g} is an i.f. in V[g] whi
h is even maximal withrespe
t to the reals y whi
h belong to V�noti
e that this property of g doesnot depend on the parti
ular ideal I whi
h is involved in the 
onstru
tion ofthe for
ing notion QI .Claim. If g is QI -generi
 over V, then I ∪ {g} is an independent family in
V[g], but for all y ∈ [ω]ω ∩V with y /∈ I , I ∪ {g, y} is not independent.Proof of Claim. Firstly we show that I ∪ {g} is an i.f. in V[g], i.e., we haveto show that for every x ∈ bc (I ), both sets g ∩ x and (ω \ g)∩ x are in�nite:For every x ∈ bc (I ) and every n ∈ ω de�ne

An,x =
{
〈s, E〉 ∈ QI : |s ∩ x| > n

}
,

Bn,x =
{
〈s, E〉 ∈ QI :

∣∣⋃E ∩ x
∣∣ > n

}
.We leave it as an exer
ise to the reader to show that for all x ∈ bc (I ) and

n ∈ ω, An,x and Bn,x are open dense subsets of QI , whi
h implies that I ∪{g}is an i.f. in V[g].Now, we show that for all y ∈ [ω]ω ∩ V with y /∈ I , I ∪ {g, y} is notindependent: Let y ∈ [ω]ω ∩ V be an arbitrary real. If for all u ∈ I and
x ∈ bc (I ) we have x * y ∪ u, then let

Cy =
{
〈s, E〉 ∈ QI : y ∈ E

}
,otherwise, there is a u0 ∈ I and an x ∈ bc (I ) su
h that x ⊆ y ∪ u0 and wede�ne

Cy =
{
〈s, E〉 ∈ QI : u0 ∈ E

}
.By the properties of the ideal I we get that Cy is an open dense subset of QIfor all y ∈ [ω]ω. This implies that for ea
h y ∈ [ω]ω we �nd an x ∈ bc (I )su
h that g ∩ y is �nite (in the 
ase when y ∈ I), or g ∩ (x \ y) is �nite (inthe 
ase when x ⊆ y ∪ u for some u ∈ I). However, in both 
ases we get that

I ∪ {g, y} is not independent whenever y ∈ [ω]ω \ I . ⊣Claim2nd Step: Now, we are ready to de�ne the �nite support iteration whi
hwill yield a generi
 model in whi
h there exists a maximal independent family
I of 
ardinality ω1: Let V be an arbitrary model of ZFC in whi
h c > ω1.We 
onstru
t the i.f. I by indu
tion on α ∈ ω1. Let I0 = ∅ and assume thatwe have already 
onstru
ted the i.f. Iα for some α ∈ ω1. Furthermore, let
Iα ⊆ P(ω) be the ideal 
onstru
ted in the proof of Lemma 18.10 with respe
tto the i.f. Iα, and let gα be a QIα-generi
 real over V[

〈gγ : γ ∈ α〉
]. Now, let

Iα+1 := Iα ∪ {gα}; and for limit ordinals λ ∈ ω1 let Iλ :=
⋃
β∈λIβ . Noti
ethat for ea
h α ∈ ω1, Iα = {gγ : γ ∈ α} is a 
ountable i.f. in V
[
〈gγ : γ ∈ α〉

].Let Pω1 =
〈
QIα : α ∈ ω1

〉 be the �nite support iteration of the for
ingnotions QIα , let G = 〈gα : α ∈ ω1〉, and let I = {gα : α ∈ ω1}. Then G is Pω1-generi
 over V and I is an i.f. in V[G] of 
ardinality ω1. It remains to show



360 18 Combining For
ing Notionsthat I is maximal and that V[G] � c > ω1: Sin
e Pω1 is a �nite support itera-tion of 


 for
ing notions (re
all that QI satis�es 


), by Proposition 18.8we get that also Pω1 satis�es 


, and therefore, by Lemma 14.20, all 
ardinalsare preserved. In parti
ular, sin
e V � c > ω1, we get that V[G] � c > ω1.Furthermore, by Lemma 18.9 we know that the iteration does not add newreals at stage ω1. Thus, for every real y ∈ [ω]ω ∩V[G] there exists an α ∈ ω1su
h that y ∈ V
[
〈gγ : γ ∈ α〉

]. Now, by the Claim we know that for ea
h
y ∈ [ω]ω ∩V

[
〈gγ : γ ∈ α〉

] whi
h does not belong to Iα, Iα ∪ {gα, y} is notindependent. Consequently, for ea
h y ∈ [ω]ω∩V[G] we get that I ∪{y} is notindependent whenever y /∈ I . This shows that I is a maximal independentfamily in V[G], and sin
e |I | = ω1 and ω1 < c, we get that ω1 = i < c is
onsistent with ZFC. ⊣Considering the diagram at the end of Chapter 8, we see that the independen
enumber i appears on the top of the diagram. However, as we have seen above,
i 
an be quite small 
ompared to c. In the next 
hapter we 
onsider a 
ardinal
hara
teristi
 on the bottom of the diagram, namely p, and show that p 
anbe equal to c, even in the 
ase when c > ω1.NotesProdu
ts and iterations. For a more detailed introdu
tion to produ
ts and iter-ations of for
ing notions we refer the reader to Kunen [5, Chapter VIII℄, Baumgart-ner [1℄, and Goldstern [3℄ �where one 
an also �nd many more appli
ations of thesefor
ing tools. In parti
ular, Proposition 18.5 is taken from Kunen [5, p. 256, The-orem 2.3℄ and the idea for the proof of Proposition 18.11 is taken from Kunen [5,p. 289, A12℄ (where the a
tual 
onstru
tion is due to Jörg Brendle).Related Results96. Iterating Cohen for
ing. A spe
ial feature of Cohen for
ing C =

(
Fn(ω, 2), ⊆

)is that the set Fn(ω, 2) is the same in every transitive model of ZFC. In parti
u-lar, for any 
ardinal κ we get that (�nite/
ountable support) iterations of length
κ of Cohen for
ing C are equivalent to (�nite/
ountable support) produ
ts of κ
opies of C (
f. Lemma 21.9).97. Produ
ts as two-step iterations. Let P0 and P1 be some for
ing notions in somemodel V of ZFC, let G be P0 × P1-generi
 over V, and let G(0) and G(1) beas above. Then G(0) is P0-generi
 over V[G(1)] and G(1) is P1-generi
 over
V[G(0)] (see for example Kunen [5, Chapter VIII,Theorem 1.4℄ and 
omparewith Lemma 18.1).98. Produ
ts and the 
ountable 
hain 
ondition. It is 
onsistent with ZFC that thereare for
ing notions P and Q, both satisfying 


, su
h that produ
t P×Q doesnot satisfy 


 (
ompare with Lemma 18.7). Examples of su
h for
ing notions
an be found in Kunen [5, Chapter VIII, p. 291 f.℄.



Referen
es 36199. The 
onsisten
y of c > a revisited. Let V be a model in whi
h c > ω1 and let
A ⊆ [ω]ω be a 
ountable almost disjoint family. With respe
t to A we de�nethe following for
ing notion QA : The 
onditions of QA are of the form 〈s,X〉,where s is a �nite sequen
e of ω and X ∈ [A ]<ω and we de�ne 〈s,X〉 ≤ 〈s′, X ′〉if s ⊆ s′, X ⊆ X ′, and (s′ \ s) ∩ ⋃

X = ∅. For B =
{
B ∈ [ω]ω : ∀A ∈

A (|B ∩A| < ω)
} we get that the generi
 real A ∈ [ω]ω, generated by the �nitesets s, is almost disjoint from every member of A and has in�nite interse
tionwith ea
h member of B (
f. Kunen [5, Chapter II, Lemma 2.17℄). Thus, A ∪{A}is a mad family for the old reals (i.e., every real x ∈ [ω]ω in the ground model

V has in�nite interse
tion with either A or an element of A ). Furthermore,it is not hard to show that the for
ing notion QA satis�es 


 (
f. Kunen [5,Chapter II, Lemma 2.14℄). Now, let A0 be an arbitrary 
ountable almost disjointfamily in V and for non-zero ordinals α ∈ ω1 de�ne Aα by trans�nite indu
tionas follows: If α is a limit ordinal, then Aα :=
⋃
β∈αAβ, and if α = β + 1, thenlet Aα := Aβ ∪ {Aβ}, where Aβ ∈ [ω]ω is QAβ
-generi
 over V

[
〈Aγ : γ ∈ β〉

].Finally, by the fa
ts mentioned above we get that the �nite support iteration〈
QAα : α ∈ ω1

〉, starting in V, yields a model in whi
h we have still c > ω1 andin whi
h there exists a mad family of size ω1, namely A0 ∪ {Aα : α ∈ ω1}.100. Easton for
ing. With so-
alled Easton for
ing, whi
h is a produ
t for
ingnotion, one 
an modify the powers of in�nitely many regular 
ardinals aton
e. In fa
t, one 
an show that 
ardinal exponentiation on the regular 
ar-dinals 
an be anything not �obviously false�. For example one 
an for
e that
∀n ∈ ω (2ωn = ωω1+n), but one 
annot for
e that 2ω = ωω+ω (sin
e cf(2ω) > ω).For Easton for
ing see Easton [2℄ or Kunen [5, Chapter VIII, �4℄.101. Preservation of κ-
hain 
ondition. In Chapter 16 |Related Result 87 wegeneralised the notion of 


 by saying that a for
ing notion P = (P,≤) satis�esthe κ-
hain 
ondition if every anti-
hain in P has 
ardinality <κ. Now, if κ isa regular un
ountable 
ardinal and Pα =

〈
Q
˜
β : β ∈ α

〉 is a �nite support itera-tion, where for ea
h β ∈ α we have 0β β “Q
˜
β satis�es the κ-
hain 
ondition�,then Pα satis�es the κ-
hain 
ondition too (see for example Kunen [5, Chap-ter VIII, Lemma 5.12℄ or Je
h [4, Part II, Theorem 2.7℄).Referen
es1. James E. Baumgartner, Iterated for
ing , in Surveys in Set Theory (A.R.D.Mathias, ed.), [London Mathemati
al So
iety Le
ture Note Series 87], CambridgeUniversity Press, Cambridge, 1983, pp. 1�59.2. William B. Easton, Powers of regular 
ardinals, Annals of Pure and Ap-plied Logi
, vol. 1 (1970), 139�178.3. Martin Goldstern, Tools for your for
ing 
onstru
tion, in Set Theory of theReals (H. Judah, ed.), [Israel Mathemati
al Conferen
e Pro
eedings], Bar-IlanUniversity, Israel, 1993, pp. 305�360.4. Thomas Je
h, Multiple For
ing, [Cambridge Tra
ts in Mathemati
s], Cam-bridge University Press, Cambridge, 1986.5. Kenneth Kunen, Set Theory, an Introdu
tion to Independen
e Proofs,

[Studies in Logi
 and the Foundations of Mathemati
s 102], North-Holland,Amsterdam, 1983.





19Models in whi
h p = c

In this 
hapter we shall 
onsider models of ZFC in whi
h p = c. Sin
e ω1 ≤ p(by Theorem 8.1) and p ≤ c, we have p = c in all models in whi
h c = ω1,but of 
ourse, these are not the models we are interested in.By Theorem 13.6 we know that MA(σ-
entred) implies p = c, moreover,by Chapter 13 |Related Result 79 we even have MA(σ-
entred) ⇐⇒ p =
c. On the other hand, in a model in whi
h ω1 < p = c we do not ne
essarilyhave MA (be
ause MA(σ-
entred) is weaker than MA) and in fa
t it is slightlyeasier to for
e just ω1 < p = c than to for
e MA + ¬CH. Thus, we shall�rst 
onstru
t a model of ω1 < p = c, whi
h� by Chapter 13 |RelatedResult 79�proves the 
onsisten
y of MA(σ-
entred) + ¬CH with ZFC, andthen we shall sket
h the 
onstru
tion of a generi
 model in whi
h we haveMA + ¬CH. Finally, we shall 
onsider the 
ase when a single Cohen real c isadded to a model V � ZFC in whi
h MA+ ¬CH holds. Even though full MAfails in V[c] (see Related Result 104), we shall see that p = c still holds in
V[c]�a result whi
h will be used in Chapter 27.A Model in whi
h p = c = ω2In this se
tion, we shall 
onstru
t a generi
 model in whi
h p = c = ω2 � forthe general 
ase see Related Result 102.Proposition 19.1. p = c = ω2 is 
onsistent with ZFC.Proof. We start with a model V � ZFC+CH in whi
h we have V � 2ω1 = ω2.In order to obtain su
h a model, use the te
hniques developed in Chapter 14or see Chapter 18 |Related Result 100.In V we shall de�ne a �nite support iteration Pω2 =

〈
Qξ : ξ ∈ ω2

〉 of


 for
ing notions Qξ, su
h that in the Pω2-generi
 model V[G] we have
V � p = c. Sin
e for ea
h ξ ∈ ω2 the for
ing notion Qξ will satisfy 


, byProposition 18.8 we get that also ea
h Pξ will satisfy 


, and therefore, by
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h p = cLemma 18.9 and the proof of Theorem 16.4, for any ξ ∈ ω2 we shall have
V[G|ξ] � c = ω1 ∧ 2ω1 = ω2. Furthermore, sin
e for ea
h ξ ∈ ω2 the for
ingnotion Qξ will be of 
ardinality at most ω1, also Pξ will be of 
ardinality atmost ω1.Like in the proof of Theorem 16.4, one 
an show that for any ν ∈ ω2,there are ω1 ni
e Pν-names for subsets of ω, and be
ause V[G|ν ] � 2ω1 = ω2,for ea
h ν ∈ ω2 there exists a bije
tion Aν : ω2 → P

(
[ω]ω

) in V[G|ν ]. Inparti
ular, for all ν, η ∈ ω2 we have Aν(η) ⊆ [ω]ω, and sin
e c = ω1 we get
|Aν(η)| ≤ ω1. Stri
tly speaking, we should work with some Pν-name for Aν ,not with the a
tual fun
tion, but for the sake of simpli
ity we shall omit thiste
hni
al di�
ulty and leave it as an exer
ise to the reader.Now we are ready to 
onstru
t the 


 for
ing notions Qξ: To start with,�x a bije
tion g : ω2 → ω2 × ω2 in V (whi
h will serve as a bookkeepingfun
tion) su
h that for every ξ ∈ ω2 we have

(
g(ξ) = 〈ν, η〉

)
→ ν ≤ ξ .Let ξ ∈ ω2 be an arbitrary but �xed ordinal number and let 〈ν, η〉 := g(ξ).Sin
e ν ≤ ξ, V[G|ν ] ⊆ V[G|ξ], and the set Aν(η) ⊆ [ω]ω, originally de�ned in

V[G|ν ], also belongs to V[G|ξ].In order to de�ne Qξ = (Qξ,≤) we work in V[G|ν ] and 
onsider the fol-lowing two 
ases: If the family Aν(η) ⊆ [ω]ω has the strong �nite interse
tionproperty s�p (i.e., interse
tions of �nitely many members of Aν(η) are in�-nite), then we de�ne
Qξ =

{
〈s, E〉 : s ∈ fin(ω) ∧ E ∈ fin

(
Aν(η)

)}
,and for 〈s, E〉, 〈t, F 〉 ∈ Qξ we stipulate

〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧ E ⊆ F ∧ (t \ s) ⊆
⋂
E .In the 
ase when Aν(η) does not have the s�p, let Qξ be the trivial for
ingnotion (

{∅},⊆
).The for
ing notion Qξ (in the 
ase when Qξ is non-trivial) was alreadyintrodu
ed in the proof of Theorem 13.6, where it was shown that Qξ satis�es


 and that the generi
 �lter indu
es a pseudo-interse
tion of Aν(η). Hen
e,we either have V[G|ξ+1] = V[G|ξ] (in the 
ase when Qξ is trivial), or thefamily Aν(η) has a pseudo-interse
tion in V[G|ξ+1]. In parti
ular, the family

Aν(η), whi
h is a family of 
ardinality at most ω1, is not a witness for p = ω1.Let G be Pω2-generi
 over V and let F ⊆ [ω]ω be an arbitrary fam-ily in V[G] of 
ardinality ω1 whi
h has the s�p. Sin
e for ea
h ξ ∈ ω2, Qξsatis�es 


, by Proposition 18.8, also Pω2 satis�es 


, and therefore, byLemma 18.9, V[G] � c = ω2.Sin
e |F | = ω1, similar to Claim 2 in the proof of Proposition 24.12,there exists a ν ∈ ω2 su
h that the family F belongs to V[G|ν ]. In parti
ular,there is an η ∈ ω2 su
h that V[G|ν ] � F = Aν(η). Hen
e, for ξ = g−1(〈ν, η〉),



On the 
onsisten
y of MA + ¬CH 365there is a pseudo-interse
tion for F in V[G|ξ+1], and sin
e F was arbitrary,we get V[G] � p ≥ ω2. Now, sin
e V[G] � c = ω2, we �nally get V[G] � p =
c = ω2. ⊣On the Consisten
y of MA+ ¬CHIn this se
tion we shall sket
h the proof that MA+ c = ω2 is 
onsistent withZFC (for the general 
ase see Related Result 103). The 
ru
ial point in theproof is the fa
t that every 


 for
ing notion is equivalent to a for
ing notionof 
ardinality stri
tly less than c; but let us re
all �rst Martin's Axiom:Martin's Axiom (MA): If P = (P,≤) is a partially ordered set whi
hsatis�es 


, and D is a set of less than c open dense subsets of P , thenthere exists a D-generi
 �lter on P .At �rst glan
e, we 
an build a model in whi
h we haveMA+¬CH by starting insome model of ZFC+¬CH, and then add a D-generi
 �lters for every partiallyordered set P = (P,≤) satisfying 


. However, the 
olle
tion of all partiallyordered sets satisfying 


 is a proper 
lass. So, we �rst have to show thatit is enough to 
onsider just the set of 


 partially ordered sets P = (P,≤)satisfying |P | < c:Lemma 19.2. The following statements are equivalent:(a) MA.(b) If P = (P,≤) is a partially ordered set that satis�es 


 and |P | < c,and if D is a set of less than c open dense subsets of P , then there exists a
D-generi
 �lter on P .Proof. Obviously it is enough to prove that (b) implies (a): Let P be a 


partially ordered set, and let D be a family of fewer than c open dense subsetsof P , i.e., |D | = κ for some κ < c. For ea
h D ∈ D , let AD ⊆ D be amaximal in
ompatible subset of D. Then, sin
e P satis�es 


, ea
h AD is
ountable. Now, we 
an 
onstru
t a set Q ⊆ P of 
ardinality at most κsu
h that Q 
ontains ea
h AD, and whenever p, q ∈ Q are 
ompatible in
P , then they are also 
ompatible in Q (i.e., there is an r ∈ Q su
h that
p ≤ r ≥ q) � for the latter noti
e that ∣∣[κ]2

∣∣ = κ. By 
onstru
tion of Q weget that for ea
h D ∈ D , AD is a maximal anti-
hain in Q. Finally, for ea
h
D ∈ D let ED =

{
q ∈ Q : ∃p ∈ AD (q ≥ p)

}. Then ea
h ED is open dense in
Q. Now, (Q,≤) is a partially ordered set whi
h satis�es 


 and |Q| ≤ κ < c.Thus, by (b), there is a �lter G on Q that meets every open dense set ED, and
onsequently, Ḡ =

{
p ∈ P : ∃q ∈ G (p ≤ q)

} is a D-generi
 �lter on P . ⊣



366 19 Models in whi
h p = cProposition 19.3. MA+ c = ω2 is 
onsistent with ZFC.Proof (Sket
h). The proof is essentially the same as the proof of Proposi-tion 19.1. We start again in a model V of ZFC in whi
h c = ω1 and 2ω1 = ω2,and extend V by a �nite support iteration Pω2 =
〈
Qξ : ξ ∈ ω2

〉, where forea
h ξ ∈ ω2, Qξ = (Qξ,≤) satis�es 


 and Qξ ⊆ ω1. Sin
e in the �nal model
V[G] we have c = ω2, by Lemma 19.2 we 
an arrange the iteration so thatevery 


 for
ing notion in V[G] of size < ω2 is isomorphi
 to some for
ingnotion Qξ (for some ξ ∈ ω2). A minor problem is that by adding new generi
sets, we also might add new dense subsets to old partially ordered sets. Thisproblem is solved by making sure that every 


 for
ing notion Qξ appearsarbitrarily late in the iteration, whi
h is done by a bookkeeping fun
tion sim-ilar to that used in the proof of Proposition 19.1. ⊣

p = c is Preserved under Adding a Cohen RealThe following result, whi
h will be used in the proof of Proposition 27.9,shows that p = c is preserved under adding a Cohen real (
f. Related Re-sult 104).Theorem 19.4. If V � p = c and c is a Cohen real over V, then V[c] � p = c.Proof. Throughout this proof, we shall 
onsider the Cohen for
ing notion
C =

(⋃
n∈ω

n2, ⊆
). Let V be a model of ZFC and let c ∈ ω2 be a Cohen realover V.If V � CH, then also V[c] � CH whi
h implies V[c] � p = c. So, let usassume thatV � c > ω1 and therefore, sin
e Cohen for
ing preserves 
ardinals,

V[c] � c > ω1.We have to show that every family {
Xα ∈ [ω]ω : α ∈ κ < c

} in V[c] whi
hhas the s�p has also a pseudo-interse
tion. To start with, �x a 
ardinal κ with
ω1 ≤ κ < c, and let {Xα : α ∈ κ} ⊆ [ω]ω be an arbitrary but �xed family in
V[c] whi
h has the s�p. Furthermore, let

{
X
˜ α

: α ∈ κ
}be a set of C-names su
h that {X

˜ α
[c] : α ∈ κ} = {Xα : α ∈ κ}. Now, sin
e

{Xα : α ∈ κ} has the s�p in V[c], there exists a C-
ondition q su
h that forall E ∈ fin(κ) we have
q C

∣∣⋂ {X
˜ α

: α ∈ E}
∣∣ = ω ,where we de�ne ⋂ ∅ := ω. For the sake of simpli
ity, let us assume that q = 0.The goal is now to 
onstru
t a set Y ∈ V[c] whi
h is a pseudo-interse
tionof {X

˜ α
[c] : α ∈ κ

}. For this, we de�ne (in V) the following σ-
entred for
ingnotion P = (P,≤):



p = c is preserved under adding a Cohen real 367The set of P-
onditions P 
onsists of pairs 〈h,A〉, where A ∈ fin(κ) and
h :

⋃ {
k2 : k ∈ m

}
→ fin(ω) for some m ∈ ω .For 〈h,A〉, 〈l, B〉 ∈ P , let 〈h,A〉 ≤ 〈l, B〉 if and only if

• h ⊆ l, A ⊆ B, and
• for ea
h p ∈ dom(l) \ dom(h) we have p C l(p) ⊆

⋂{
X
˜ α : α ∈ A

}.We leave it as an exer
ise to the reader to show that |P | = κ and that Pis σ-
entred� for the latter, noti
e that for any 〈h,A〉, 〈h,B〉 ∈ P we have
〈h,A〉 ≤ 〈h,A ∪ B〉 ≥ 〈h,B〉. Now, for every α ∈ κ and n ∈ ω we de�ne theset Dα,n ⊆ P by stipulating 〈h,A〉 ∈ Dα,n if and only if
• α ∈ A,
• dom(h) =

{
k2 : k ∈ m

} for some m ≥ n,
• for ea
h p ∈ m2, ∣∣⋃i∈m h(p|i)

∣∣ ≥ n.We leave it as an exer
ise to the reader to show that every set Dα,n is an opendense subset of P and that ∣∣{Dα,n : α ∈ κ ∧ n ∈ ω}
∣∣ = κ. The open densesets Dα,n make sure that the set Y , 
onstru
ted below, will be a pseudo-interse
tion of {

X
˜ α

[c] : α ∈ κ
}, in parti
ular, Y will be in�nite. At themoment, just noti
e the following fa
t: If 〈h,A〉 ∈ Dα,n and 〈h,A〉 ≤ 〈l, B〉,where dom(l) =

{
k2 : k ∈ m

}, then for ea
h p ∈ m2 we have ∣∣⋃i∈m l(p|i)
∣∣ ≥ n,and for ea
h p ∈ dom(l) \ dom(h) we have p C l(p) ⊆ X

˜ α
.The 
ru
ial point is now to show that there exists a �lter G ⊆ P in Vwhi
h meets every set Dα,n.Claim. Let D = {Dα,n : n ∈ ω ∧ α ∈ κ}. Then there exists in V a D-generi
�lter G on P , i.e., there exists a dire
ted and downwards 
losed set G ⊆ Pwhi
h meets every open dense subset of P whi
h belongs to D .Proof of Claim. The following proof is essentially the proof of the fa
t that

p = c is equivalent to MA(σ-
entred) (see Chapter 13 |Related Result 79).Firstly noti
e that for ea
h m ∈ ω there are just 
ountably many fun
tions
h :

⋃ {k2 : k ∈ m} → fin(ω). For ea
hm ∈ ω �x an enumeration {hm,i : i ∈ ω}of all these 
ountably many fun
tions and let η : ω × ω → ω be a bije
tion.For ea
h n ∈ ω we de�ne the set Pn ⊆ P by stipulating
Pn =

{
〈hm,i, A〉 ∈ P : η(〈m, i〉) = n

}
.Noti
e that ⋃

n∈ω Pn = P and that ea
h Pn 
onsists of pairwise 
ompatible
P-
onditions.Se
ondly, for ea
h P-
ondition p = 〈h,A〉 ∈ P and for every open denseset D ∈ D let

[p,D] =
{
n ∈ ω : ∃q ∈ Pn(q ∈ D ∧ q ≥ p)

}
.
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h p = cNoti
e that [p,D] ∈ [ω]ω. Furthermore, for all k, r ∈ ω, any P-
onditions
〈h,A0〉, . . . , 〈h,Ak〉 ∈ Pr, and any open dense sets D0, . . . , Dk ∈ D , we getthat ⋂i≤k

[
〈h,Ai〉, Di

] is in�nite. This implies that for ea
h r ∈ ω, the family
Fr =

{
[p,D] : p ∈ Pr ∧ D ∈ D

} has the s�p. Now, sin
e V � p = c and
|Fr| = |Pr × D | ≤ κ × κ = κ < c, we have V � |Fr| < p. Hen
e, in V thereexists a pseudo-interse
tion Ir of Fr. In other words, for every r ∈ ω there isan Ir ∈ [ω]ω su
h that for all p ∈ Pr and D ∈ D , Ir \ [p,D] is �nite.In the following step we en
ode the elements of the sets Ir by �nite se-quen
es: Let seq(ω) be the set of all �nite sequen
es whi
h 
an be formed withelements of ω. For s ∈ seq(ω) and i ∈ ω, s⌢i denotes the 
on
atenation of thesequen
es s and 〈i〉.Now, de�ne the fun
tion ν : seq(ω) → ω by stipulating
• ν(∅) = 0, and
• for all s ∈ seq(ω): {ν(s⌢i) : i ∈ ω

} enumerates Iν(s) in as
ending order.In parti
ular, {ν(〈i〉) : i ∈ ω
}

= I0, where for all i, i′ ∈ ω, i < i′ implies
ν(〈i〉) < ν(〈i′〉).Furthermore, for every D ∈ D and every s ∈ seq(ω) we 
hoose a P-
ondition
psD ∈ Pν(s) su
h that for all i ∈ ω,

ν(s
⌢
i) ∈

[
psD, D

]
→

(
psD ≤ ps

⌢
i

D

)
∧
(
ps

⌢
i

D ∈ D
)
. (∗)Noti
e that for any D ∈ D and s ∈ seq(ω), Iν(s) \ [psD, D] is �nite. Thus, forea
h D ∈ D and ea
h s ∈ seq(ω) there is a least integer gD(s) ∈ ω su
h thatfor every i ≥ gD(s) we have ν(s⌢i) ∈ [

psD, D
]. So, for every D ∈ D , we obtaina fun
tion gD : seq(ω) → ω. Then, the family E = {gD : D ∈ D} is a familyof size κ of fun
tions from the 
ountable set seq(ω) to ω.Now we show that E is bounded: For this, re
all �rst that for the boundingnumber b we have p ≤ b ≤ c (see Chapter 8). Sin
e in V we have p = c, inparti
ular V � b = c, and sin
e |E | = κ < c, V � |E | < b. Thus, E is boundedin V, i.e., in V there exists a fun
tion g : seq(ω) → ω su
h that for ea
h

D ∈ D ,
gD(s) < g(s) for all but �nitely many s ∈ seq(ω) .By indu
tion on n ∈ ω, de�ne the fun
tion f ∈ ωω su
h that for all n ∈ ω,

f(n) := g(f |n). Then, by de�nition of f and the property of g, for ea
hD ∈ D ,
gD(f |n) < f(n) for all but �nitely many n ∈ ω .In other words, for every D ∈ D there exists an integer mD ∈ ω su
h that forall n ≥ mD, f(n) > gD(f |n).We are now ready to de�ne the D-generi
 set G ⊆ P , but before we do so,let us summarise a few fa
ts whi
h we have a
hieved so far: Let D ∈ D and

n ≥ mD be arbitrary, and let s := f |n and i := f(n).



p = c is preserved under adding a Cohen real 369(0) f(n) = g(f |n) = g(s), i.e., i = g(s), and f(n+ 1) = g(f |n+1) = g(s
⌢
i).(1) Sin
e n ≥ mD, we get g(f |n) > gD(f |n), i.e., g(s) > gD(s), and therefore

i > gD(s).(2) Sin
e i > gD(s), we get ν(s⌢i) ∈ [
psD, D

], i.e.,
ν(f |n+1) ∈

[
p
f |n
D , D

]
.(3) Thus, by (∗) and (2) we get psD ≤ ps

⌢
i

D and ps⌢iD ∈ D, i.e.,
p
f |n
D ≤ p

f |n+1
D and p

f |n+1
D ∈ D .Now, let G ⊆ P be de�ned by

G =
{
q ∈ P : ∃D ∈ D ∃n ∈ ω

(
n ≥ mD ∧ q ≤ p

f |n
D

)}
.It remains to 
he
k that G has the required properties, i.e., G is a �lter whi
hmeets every D ∈ D .

G is a �lter : By de�nition,G is downwards 
losed. To see thatG is dire
ted,take any q, q′ ∈ G and, for some D,D′ ∈ D and n, n′ ∈ ω, let pf |nD , p
f |n′
D′ ∈ Gbe su
h that q ≤ p

f |n
D and q′ ≤ p

f |n′
D′ . Without loss of generality we mayassume that n ≥ n′. Then pf |nD′ ≥ p
f |n′
D′ . Now, pf |nD and pf |nD′ both belong to

Pν(f |n) and are therefore 
ompatible. Thus, there exists an r ∈ Pν(f |n) su
hthat pf |nD ≤ r ≥ p
f |n
D′ , and 
onsequently we have q ≤ r ≥ q′ where r ∈ G.

G is D-generi
: By (3), for ea
h D ∈ D and every n ≥ mD we have
p
f |n+1
D ∈ D ∩G, and hen
e, G ∩D 6= ∅. ⊣ClaimWith the D-generi
 �lter G ⊆ P 
onstru
ted above we de�ne the fun
tion

H =
⋃{

h : ∃
[
〈h,A〉 ∈ G

]}
.By 
onstru
tion, the fun
tion H :

⋃
n∈ω

n2 → ω has the following property: If
α ∈ κ and 〈h,A〉 ∈ G with α ∈ A, then for every p ∈ ⋃

n∈ω
n2 \ dom(h) wehave

p C H(p) ⊆ X
˜ α

.In parti
ular, if c is a Cohen real over V, then for Y :=
⋃
n∈ωH(c|n), whi
his a set in V[c], we have

V[c] � ∀α ∈ κ
(
Y ⊆∗ X

˜ α[c]
)
.We leave it as an exer
ise to the reader to show that V[c] � |Y | = ω (for this,re
all the de�nition of the open dense sets Dα,n). Thus, in V[c], the arbitrarily
hosen family {

X
˜ α[c] : α ∈ κ < c

} has a pseudo-interse
tion, whi
h showsthat V[c] � p = c. ⊣
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h p = cNotesThe 
onsisten
y of MA+¬CH. A 
omplete proof for the 
onsisten
y ofMA+¬CHwith ZFC 
an be found for example in Kunen [5, Chapter VIII, �6℄ (see also Martinand Solovay [6℄).On p = c after adding one Cohen real. Theorem 19.4 is due to Roitman [7℄,but the proof given here follows the proof of Bartoszy«ski and Judah [1, Theo-rem 3.3.8℄, where the proof of the Claim, originally proved by Bell [2℄, is taken fromFremlin [3, 14C℄. Related Results102. On the 
onsisten
y of p = κ. Let V be a model of ZFC+GCH and assume thatin V, κ is an un
ountable regular 
ardinal su
h that ∣∣[κ]<κ
∣∣ = κ. Then, by aslight modi�
ation of the proof of Proposition 19.1, we get a generi
 extensionof V in whi
h p = κ.103. On the 
onsisten
y of MA + c = κ. As in Related Result 103, let V beagain a model of ZFC+GCH and assume that in V, κ is an un
ountable regular
ardinal su
h that ∣∣[κ]<κ

∣∣ = κ. Then there exists a 


 for
ing notion P in V,su
h that in the P-generi
 extension V[G] we have MA + c = κ (for a proof seeKunen [5, Chapter VIII,Theorem 6.3℄).104. Martin's Axiom and Cohen reals. By Chapter 13 |Related Result 79, whi
hasserts p = c ⇐⇒ MA(σ-
entred), we get that V � MA(σ-
entred) if and onlyif V � p = c. Hen
e, Theorem 19.4 implies that MA(σ-
entred) is preservedunder Cohen for
ing, i.e., if V � MA(σ-
entred) and c is a Cohen real over V,then V[c] � MA(σ-
entred). However, this is not the 
ase for full MA. In fa
tone 
an show that if V � ¬CH and c is a Cohen real over V, then V[c] � ¬MA.The proof uses the fa
t that if V � MA(ω1), then there is no Suslin tree in V(see for example Je
h [4, Theorem 16.16℄). On the other hand, one 
an showthat whenever c is a Cohen real over V, then V[c] 
ontains a Suslin tree (seeShelah [8, �1℄, Todor£evi¢ [9℄, or Bartoszy«ski and Judah [1, Se
tion 3.3.A℄).Referen
es1. Tomek Bartoszy«ski and Haim Judah, Set Theory: on the stru
ture ofthe real line, A.K.Peters, Wellesley, 1995.2. Murray G. Bell, On the 
ombinatorial prin
iple P (c), Fundamenta Mathe-mati
ae, vol. 114 (1981), 149�157.3. David H. Fremlin, Consequen
es of Martin's axiom, Cambridge Tra
ts inMathemati
s 84, Cambridge University Press, Cambridge, 1984.4. Thomas Je
h, Set Theory, The Third Millennium Edition, Revised andExpanded, [Springer Monographs in Mathemati
s], Springer-Verlag, Berlin, 2003.5. Kenneth Kunen, Set Theory, an Introdu
tion to Independen
e Proofs,
[Studies in Logi
 and the Foundations of Mathemati
s 102], North-Holland,Amsterdam, 1983.6. Donald A. Martin and Robert M. Solovay, Internal Cohen extensions,Annals of Mathemati
al Logi
, vol. 2 (1970), 143�178.
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Part III
Combinatori
s of For
ing Extensions





...the parts sing one after another in so-
alledfugue (fuga) or 
onsequen
e (
onsequenza), whi
hsome also 
all reditta. All mean the same thing:a 
ertain repetition of some notes or of an entiremelody 
ontained in one part by another part, afteran interval of time. The se
ond part sings the samenote values or di�erent ones, and the same inter-vals of whole tones, semitones, or similar ones.There are two type of fugues or 
onsequen
esnamely stri
t and free.In free writing, the imitating voi
e dupli
ates theother in fugue or 
onsequen
e only up to a point;beyoind that point it is free to pro
eed indepen-dently. Gioseffo ZarlinoLe Istitutioni Harmoni
he, 1558





20Properties of For
ing Extensions
In this 
hapter we shall introdu
e some 
ombinatorial properties of for
ingnotions whi
h will a

ompany us throughout the remainder of this book. Fur-thermore, these properties will be the main tool in order to investigate various
ombinatorial properties of generi
 models of ZFC.However, before we start with some de�nitions, let us modify our notation
on
erning names in the for
ing language: Let P be a for
ing notion and let
G be P-generi
 over some ground model V.
• Instead of 
anoni
al P-names for sets in V like ∅

˙
, 27
˙
, ω
˙
, et 
etera, we justwrite ∅, 27, ω, et 
etera.

• If f
˜
is a P-name for a fun
tion in V[G] with domain A ∈ V and a ∈ A,then we write

f
˜
(a) instead of f(a)

˜
.For example, if P = C and c

˙
is the 
anoni
al name for a Cohen real c ∈ ωω,then, for k ∈ ω, c

˙
(k) =

{
〈m
˙
, p〉 : p ∈ ⋃

n∈ω
nω ∧ k ∈ dom(p) ∧ p(k) = m

}denotes the 
anoni
al C-name for the integer c(k)�properly denoted by c(k)
˙
.Dominating, Splitting, Bounded, and Unbounded RealsFirst we re
all some notions de�ned in Chapter 8: For two fun
tions f, g ∈ ωωwe say that g is dominated by f , denoted g <∗ f , if there is an n ∈ ω su
hthat for all k ≥ n we have g(k) < f(k). For two sets x, y ∈ [ω]ω we say that xsplits y if y ∩ x as well as y \ x is in�nite.Now let V be any model of ZFC and let V[G] be a generi
 extension (i.e.,

G is P-generi
 over V with respe
t to some for
ing notion P). Let f ∈ ωω be afun
tion in the model V[G]. Then f is 
alled a dominating real (over V) ifea
h fun
tion g ∈ ωω ∩V is dominated by f , and f is 
alled an unboundedreal (overV) if it is not dominated by any fun
tion g ∈ ωω∩V. Furthermore,a set x ∈ [ω]ω in V[G] is 
alled a splitting real (over V) if it splits ea
h set
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ing Extensions
y ∈ [ω]ω in the ground model V. Noti
e that we identify fun
tions f ∈ ωωwith real numbers.Fa
t 20.1. If V[G] 
ontains a dominating real, then it also 
ontains a split-ting real.Proof. We 
an just follow the proof of Theorem 8.4: Whenever a fun
tion
f ∈ ωω belongs V[G], then also the set

σf =
⋃{[

f2n(0), f2n+1(0)
)
: n ∈ ω

}belongs to V[G], where [a, b) = {k ∈ ω : a ≤ k < b} and fn+1(0) = f
(
fn(0)

)with f0(0) := 0. Now let f ∈ ωω be a dominating real. Without loss ofgenerality we may assume that f is stri
tly in
reasing and that f(0) > 0.Fix any x ∈ [ω]ω ∩V and let gx : ω → x be the (unique) stri
tly in
reasingbije
tion between ω and x. Sin
e f is dominating we have gx <∗ f , whi
himplies that there is an n0 ∈ ω su
h that for all k ≥ n0 we have gx(k) < f(k).For ea
h k ∈ ω we have k ≤ fk(0) as well as k ≤ gx(k). Moreover, for k ≥ n0we have
fk(0) ≤ gx

(
fk(0)

)
< f

(
fk(0)

)
= fk+1(0)and therefore gx(fk(0)) ∈

[
fk(0), fk+1(0)

). Thus, for all k ≥ n0 we have
gx
(
fk(0)

)
∈ σf i� k is even, whi
h shows that both x ∩ σf ∩ x and x \ σf arein�nite. Hen
e, sin
e x ∈ [ω]ω was arbitrary, σf is a splitting real. ⊣It is worth mentioning that the 
onverse of Fa
t 20.1 does not hold, i.e.,we 
annot 
onstru
t a dominating real from a splitting real (
f. Lemma 21.2and Lemma 21.3).A for
ing notion P is said to add dominating (unbounded, splitting) reals ifevery P-generi
 extension of V 
ontains a dominating (unbounded, splitting)real. More formally, let V � ZFC and let P ∈ V be a for
ing notion. Then wesay that

P adds dominating reals i� 0 P ∃f
˜
∈ ωω

˜
∀g ∈ ωω(g <∗ f

˜
) ,

P adds unbounded reals i� 0 P ∃f
˜
∈ ωω

˜
∀g ∈ ωω(f

˜
≮∗ g) ,and

P adds splitting reals i� 0 P ∃x
˜
⊆ ω ∀y ∈ [ω]ω

(
|y ∩ x

˜
| = |y \ x

˜
| = ω

)
.Noti
e that in this 
ontext, i.e., in statements being for
ed, ωω and [ω]ω standfor the 
anoni
al names for sets in the ground model, whereas for example ωω
˜is a P-name for the set ωω in the P-generi
 extension.A for
ing notion P is 
alled ωω-bounding if there are no unboundedreals in P-generi
 extensions. In other words, if P is ωω-bounding and G is

P-generi
 over V, then every fun
tion f ∈ ωω in V[G] is dominated by some
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tion from the ground model V. Obviously, a for
ing notion whi
h addsa dominating real also adds unbounded reals and therefore 
annot be ωω-bounding, and by Fa
t 20.1, su
h a for
ing notion also adds splitting reals.On the other hand, none of these impli
ations is reversible. An example of afor
ing notion whi
h is ωω-bounding but adds splitting reals is Silver for
ing(investigated in Chapter 22), and Cohen for
ing, dis
ussed in the next 
hapter,is an example of a for
ing notion whi
h adds unbounded and splitting realsbut does not add dominating reals. Furthermore, Miller for
ing (dis
ussedin Chapter 23) adds unbounded reals but does not add splitting reals, andMathias for
ing (dis
ussed in Chapter 24) adds dominating reals but does notadd Cohen reals.The Laver Property and Not Adding Cohen RealsIn the following 
hapters we shall investigate di�erent for
ing notions likeCohen for
ing, Silver for
ing, Mathias for
ing, et 
etera. In fa
t, we shallinvestigate what kind of new reals (e.g., dominating reals or Cohen reals) areadded by (an iteration of) a given for
ing notion. In parti
ular, we have tode
ide whether an iteration of a given for
ing notion adds Cohen reals. Ourmain tool to solve this problem will be the following 
ombinatorial property.Laver Property: Let F be the set of all fun
tions S : ω → fin(ω) su
hthat for every n ∈ ω, |S(n)| ≤ 2n. A for
ing notion P has the Laverproperty if and only if for every fun
tion f ∈ ωω ∩V in the groundmodel and every P-name g
˜
for a fun
tion in ωω su
h that 0 P ∀n ∈

ω
(
g
˜
(n) ≤ f(n)

), we have 0 P ∃S ∈ F ∩V ∀n ∈ ω
(
g
˜
(n) ∈ S(n)

).Roughly speaking, if a for
ing notion has the Laver property, then for everyfun
tion g ∈ ωω in the generi
 extension whi
h is bounded by a fun
tion fromthe ground model, and for every n ∈ ω, the value g(n) belongs to some �niteset of size 2n and the sequen
e of these �nite sets is in the ground model.Now we show that a for
ing notion whi
h has the Laver property does notadd Cohen reals.Proposition 20.2. If the for
ing notion P has the Laver property, then Pdoes not add Cohen reals.Proof. Suppose that P has the Laver property. Let {In : n ∈ ω} be a partitionof ω (in the ground modelV) su
h that for all n ∈ ω, |In| = 2n andmax(In) <
min(In+1). Let h

˜
be a P-name for an arbitrary element of ω2, i.e., 0 P h

˜
∈ ω2

˜
.We show that h

˜
is not the name for a Cohen real, i.e., h

˜
is not the name for areal whi
h 
orresponds to a C-generi
 �lter over V, where C =

(⋃
n∈ω

n2, ⊆
).For every n ∈ ω, let H

˜
(n) := h

˜
|In . Then H

˜
(n) : In → 2, and sin
e

|In| = 2n, H
˜
(n) amounts to an element of 2n2. Thus, we 
an en
ode H

˜
(n)
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ing Extensionsby a P-name for an integer in 22n; let η(H
˜
(n)

) be that 
ode and let g
˜
(n) :=

η
(
H
˜
(n)

). Thus, 0 P ∀n ∈ ω
(
g
˜
(n) ≤ 22n

), and sin
e P has the Laver property,
0 P ∃S ∈ F ∩V ∀n ∈ ω

(
g
˜
(n) ∈ S(n)

). In the ground model V, let p0 be a P-
ondition su
h that for some S ∈ F ∩V we have p0 P ∀n ∈ ω
(
g
˜
(n) ∈ S(n)

).Further, let
D =

{
s ∈

⋃

n∈ω

n2 : ∃k
(
Ik ⊆ dom(s) ∧ η(s|Ik ) /∈ S(k)

)}
.Then D is an open dense subset of ⋃

n∈ω
n2. Indeed, for any m ∈ ω andany t ∈ m2 there exists k > m su
h that Ik ∩ dom(t) = ∅, and we �nd an

s ∈ ⋃
n∈ω

n2 su
h that t ⊆ s, Ik ⊆ dom(s), and η(s|Ik ) /∈ S(k)�here we usethat for any positive integer k, |S(k)| ≤ 2k < 22k =
∣∣Ik2

∣∣.Now, for every n ∈ ω de�ne An =
{
x ∈ ω2 : η(x|In ) ∈ S(n)

}
⊆ ω2 and let

A =
⋂
n∈ω An. Sin
e p0 P ∀n ∈ ω

(
g
˜
(n) ∈ S(n)

), we have p0 P h
˜
∈ A, and
onsequently we get that p0 P ∀k ∈ ω

(
h
˜
|k /∈ D

). Hen
e, h
˜
is not a P-namefor a Cohen real over V, whi
h 
ompletes the proof. ⊣So, we know that if a for
ing P has the Laver property, then for
ing with

P does not add Cohen reals; but what 
an we say about produ
ts or iterationsof P ? On the one hand, it is possible that P×P adds Cohen reals, even though
P has the Laver property (see for example Chapter 24). On the other hand,in the next se
tion we shall see that the Laver property is preserved under
ountable support iteration of proper for
ing notions. More pre
isely, if P is afor
ing notion whi
h is proper (see below) and has the Laver property, thenany 
ountable support iteration of P has the Laver property, and thereforedoes not add Cohen reals.Proper For
ing Notions and Preservation TheoremsThe Notion of PropernessBy Proposition 18.8 we know that �nite support iterations of 


 for
ingnotions satisfy 


. In other words, 


 is preserved under �nite support iter-ation of 


 for
ing notions. Below, we shall present a generalisation of thatresult, but before we have to introdu
e some preliminary de�nitions: For everyin�nite regular 
ardinal χ let

Hχ =
{
x ∈ Vχ : |TC(x)| < χ

}
.For example the sets in Hω are the hereditarily �nite sets and the sets in

H(ω1) are the hereditarily 
ountable sets. Noti
e that ea
h Hχ is transitiveand that x ∈ Hχ i� |TC(x)| < χ, i.e., Hχ 
ontains all sets whi
h are hered-itarily of 
ardinality <χ. It is worth mentioning that for every regular un-
ountable 
ardinal χ, Hχ is a model of ZFC minus the Axiom of Power Set(
f. Chapter 15 |Related Result 84).



Proper for
ing notions and preservation theorems 381For the following dis
ussion, let χ be a �large enough�regular 
ardinal,where �large enough�means that for all for
ing notions P = (P,≤) we shall
onsider in the forth
oming 
hapters we have P(P ) ∈ Hχ, i.e., the power setof P is hereditarily of size <χ. If we assume that GCH holds in the groundmodel, then χ = ω3 would be su�
ient, but to be on the safe side we let
χ = i+

ω ,where the so-
alled beth fun
tion iα is de�ned by indu
tion on α ∈ Ω, stipu-lating i0 := ω, iα+1 := 2iα , and for limit ordinals α, iα :=
⋃{

iβ : β ∈ α
}.Let N = (N,∈) be an elementary submodel of (Hχ,∈), i.e., (N,∈) ≺

(Hχ,∈). Furthermore, let P = (P,≤) be a for
ing notion su
h that (P,≤) ∈ N.Sin
e N is an elementary submodel of (Hχ,∈), for all p, q ∈ P ∩ N we have
N � p ⊥ q implies V � p ⊥ q, i.e., if p and q are in
ompatible in N, thenthey are also in
ompatible in the ground model V. We say that G ⊆ P is
N-generi
 for P if G has the following property.Whenever D ∈ N and N � “D ⊆ P is an open dense subset of P � ,then G ∩N ∩D 6= ∅.Noti
e that G is N-generi
 i� G ∩ N is N-generi
. By Fa
t 14.6, we 
anrepla
e �open dense� for example by �maximal anti-
hain�. Furthermore, wesay that a 
ondition q ∈ P , whi
h is not ne
essarily in N , is N-generi
 if

V � q P “G
˙
is N-generi
� ,where G

˙
is the 
anoni
al P-name for the P-generi
 �lter over the ground model

V. Noti
e that if q is N-generi
 and q′ ≥ q, then q′ is N-generi
 too.Now, a for
ing notion P = (P,≤) is 
alled proper, if for all 
ountableelementary submodels N = (N,∈) ≺ (Hχ,∈) whi
h 
ontain P, and for all
onditions p ∈ P ∩ N , there exists a 
ondition q ≥ p (in V) whi
h is N-generi
.As a �rst example let us show that any for
ing notion P = (P,≤) whi
hsatis�es 


 is proper: Firstly, for any 
ountable set A ∈ N we have A ⊆ N .For this, noti
e that sin
e (N,∈) ≺ (Hχ,∈), A must be the range of a fun
tion
f : ω → ⋃

N whi
h belongs to N, and sin
e for all n ∈ ω, n ∈ N , we alsohave f(n) ∈ N for all n ∈ ω, whi
h shows that A ⊆ N . Now, let A ∈ N be amaximal anti-
hain in P . Then, sin
e P satis�es 


, A is 
ountable and wehave A ⊆ N . Further, 0 P A ∩ G
˙

6= ∅, and therefore, 0 P A ∩ N ∩ G
˙

=
A ∩G

˙
6= ∅.As a se
ond example let us show that any for
ing notion P(P,≤) whi
h is

σ-
losed is proper: Sin
e the model N is 
ountable, there are just 
ountablymany open dense subsets of P whi
h belong to N, say {Dn : n ∈ ω}. Let
p ∈ P ∩ N and let 〈qn : n ∈ ω〉 be su
h that q0 ≥ p and for ea
h n ∈ ω,
qn+1 ≥ qn and qn ∈ Dn. Now, sin
e P is σ-
losed, we �nd a 
ondition q su
hthat for all n ∈ ω, q ≥ qn. Obviously, q ≥ p and q is N-generi
.



382 20 Properties of For
ing ExtensionsLet us �nish this se
tion by introdu
ing a property of for
ing notionswhi
h is slightly stronger than properness, but whi
h is often easier to verifythan properness (e.g., for the for
ing notions introdu
ed in the forth
oming
hapters).Axiom A : A for
ing notion P = (P,≤) is said to satisfy Axiom A ifthere exists a sequen
e {≤n: n ∈ ω} of orderings on P (not ne
essarilytransitive) whi
h has the following properties:(1) For all p, q ∈ P , if q ≤n+1 p then q ≤n p and q ≤ p.(2) If 〈pn ∈ P : n ∈ ω〉 is a sequen
e of 
onditions su
h that pn ≤n
pn+1, then there exists a q ∈ P su
h that for all n ∈ ω, pn ≤n q.(3) If A ⊆ P is an anti-
hain, then for ea
h p ∈ P and every n ∈ ω thereis a q ∈ P su
h that p ≤n q and {r ∈ A : r and q are 
ompatible}is 
ountable.Examples of for
ing notions satisfying Axiom A are for
ing notions whi
h are

σ-
losed or satisfy 


. Furthermore, one 
an show that every for
ing notionwhi
h satis�es Axiom A is proper, but not vi
e versa (for a proof and a 
oun-terexample see Baumgartner [4℄, Theorem 2.4 and Se
tion 3 respe
tively).Preservation Theorems for Proper For
ing NotionsBelow, we state without proofs some preservation theorems for 
ountable sup-port iteration of proper for
ing notions. These preservation theorems will be
ru
ial in the following 
hapters, where we 
onsider 
ountable support itera-tions of length ω2 of various proper for
ing notions� usually starting with amodel in whi
h CH holds.The �rst of these preservation theorems states that proper for
ing notionsdo not 
ollapse ω1 and that properness is preserved under 
ountable supportiteration of proper for
ing notions (for proofs see Goldstern [6, Corollary 3.14℄and Shelah [9, III. �3℄).Theorem 20.3. (a) If P is proper and cf(δ) > ω, then 0 P cf(δ) > ω. Inparti
ular, ω1 is not 
ollapsed.(b) If Pα is a 
ountable support iteration of 〈
Q
˜
β : β ∈ α

〉, where for ea
h
β ∈ α we have 0β β “Q

˜
β is proper�, then Pα is proper.The following lemma is in fa
t just a 
onsequen
e of Theorem 20.3.Lemma 20.4. Let Pα be a 
ountable support iteration of 〈Q

˜
β : β ∈ α

〉, wherefor ea
h β ∈ α we have 0β β “Q
˜
β is a proper for
ing notion of size ≤c�. IfCH holds in the ground model and α ≤ ω2, then for all β ∈ α, 0β β CH.



Proper for
ing notions and preservation theorems 383Sin
e, by Lemma 18.9, no new reals appear at the limit stage ω2 one 
anprove the following theorem� a result whi
h we shall use quite often in theforth
oming 
hapters.Theorem 20.5. Let Pω2 be a 
ountable support iteration of 〈
Q
˜
β : β ∈ ω2

〉,where for ea
h β ∈ ω2 we have
0β β “Q

˜
β is a proper for
ing notion of size ≤c whi
h adds new reals� .Further, let V be a model of ZFC + CH and let G be Pω2-generi
 over V.Then we have(a) V[G] � c = ω2, and(b) for every set of reals F ⊆ [ω]ω ∩V[G] of size ≤ω1 there is a β ∈ ω2 su
hthat F ⊆ V[G|β ].Now, let us say a few words 
on
erning preservation of the Laver propertyand of ωω-boundedness: It 
an be shown that a 
ountable support iteration ofproper ωω-bounding for
ing notions is ωω-bounding (for a proof see Se
tion 5and Appli
ation 1 of Goldstern [6℄).Theorem 20.6. If Pα is a 
ountable support iteration of 〈Q

˜
β : β ∈ α

〉, wherefor ea
h β ∈ α we have 0β β “Q
˜
β is proper and ωω-bounding�, then Pα is

ωω-bounding.Further, one 
an show that the Laver property is preserved under 
ountablesupport iteration of proper for
ing notions whi
h have the Laver property (fora proof see Se
tion 5 and Appli
ation 4 of Goldstern [6℄).Theorem 20.7. If Pα is a 
ountable support iteration of 〈Q
˜
β : β ∈ α

〉, wherefor ea
h β ∈ α we have 0β β “Q
˜
β is proper and has the Laver property�,then Pα has the Laver property.Another property whi
h is preserved under 
ountable support iteration ofproper for
ing notions is preservation of P -points: A for
ing notion P is saidto preserve P -points if for every P -point U ⊆ [ω]ω,

0 P “U generates an ultra�lter over ω � ,i.e., for every set x ∈ [ω]ω in the P-generi
 extension there exists a y ∈ Usu
h that either y ⊆ x or y ⊆ ω \ x. In parti
ular, if the for
ing notion P isproper and CH holds in the ground model, then the ultra�lter in the P-generi
extension whi
h is generated by the P -point U is again a P -point.One 
an show that preservation of P -points is preserved under 
ountablesupport iteration of proper for
ing notions (for a proof see Blass and Shelah [5℄or Bartoszy«ski and Judah [2, Theorem 6.2.6℄).Theorem 20.8. If Pα is a 
ountable support iteration of 〈Q
˜
β : β ∈ α

〉, wherefor ea
h β ∈ α we have 0β β “Q
˜
β is proper and preserves P -points�, then

Pα preserves P -points.



384 20 Properties of For
ing ExtensionsThere are many more preservation theorems for 
ountable support itera-tion of proper for
ing notions. However, what we presented here is all that weshall use in the forth
oming 
hapters.NotesThe notion of properness, whi
h is slightly more general than Axiom A (intro-du
ed by Baumgartner [3℄), was dis
overed and investigated by Shelah [8, 9℄, whorealised that properness is a property that is preserved under 
ountable supportiteration and that allows to prove several preservation theorems (see for exampleShelah [9, VI. ��1�2℄, where one 
an �nd also proofs of the preservation theoremsgiven above). For a brief introdu
tion to proper for
ing we refer the reader to Gold-stern [6℄ and for appli
ations of the Proper For
ing Axiom, whi
h is a generalisationof Martin's Axiom, see Baumgartner [4℄.Related Results105. Reals of minimal degree of 
onstru
tibility. Let P = (P,≤) be a for
ing notionand let g be a real in some P-generi
 extension of V. Then g is said to be ofminimal degree of 
onstru
tability, or just minimal, if g does not belong to Vand for every real f in V[g] we have either f ∈ V or g ∈ V[f ], where V[f ]is the smallest model of ZFC 
ontaining f and V. In the latter 
ase we saythat f re
onstru
ts g. For example no Cohen real is minimal. Indeed, if c ∈ ωωis a Cohen real over V, then the real c′ ∈ ωω ∩ V[c] de�ned by stipulating
c′(n) := c(2n) (for all n ∈ ω) is also a Cohen real over V. Moreover, c is even
C-generi
 over V[c′], whi
h implies that c does not belong to V[c′].106. Alternative de�nitions of properness. The notion of properness 
an also bede�ned in terms of games or with stationary sets (see for example Je
h [7,Part III℄ or Baumgartner [4, Se
tion 2℄).107. Preservation of ultra�lters. In general, a for
ing notion whi
h adds reals doesnot preserve all ultra�lters. More pre
isely, for any for
ing notion whi
h adds anew real, say r, to the ground model V, there exists an ultra�lter U in V whi
hdoes not generate an ultra�lter in V[r]. (see Bartoszy«ski, Goldstern, Judah,and Shelah [1℄ or Bartoszy«ski and Judah [2, Theorem 6.2.2℄).Further, one 
an show that any for
ing notion whi
h adds Cohen, dominating,or random reals, does not preserve P -points (see Bartoszy«ski and Judah [2,Theorem 7.2.22℄). Referen
es1. Tomek Bartoszy«ski, Martin Goldstern, Haim Judah, and SaharonShelah, All meager �lters may be null , Pro
eedings of the Ameri
an Math-emati
al So
iety, vol. 117 (1993), 515�521.2. Tomek Bartoszy«ski and Haim Judah, Set Theory: on the stru
ture ofthe real line, A.K.Peters, Wellesley, 1995.
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21Cohen For
ing revisited
Properties of Cohen For
ingSin
e Cohen for
ing is 
ountable, it satis�es 


, hen
e, Cohen for
ing isproper. Furthermore, sin
e for
ing notions with the Laver property do notadd Cohen reals, Cohen for
ing obviously does not have the Laver property.Not so obvious are the fa
ts that Cohen for
ing adds unbounded andsplitting, but no dominating reals.Cohen For
ing adds Unbounded but no Dominating RealsLemma 21.1. Cohen for
ing adds unbounded reals.Proof. Consider Cohen for
ing C =

(⋃
i∈ω

iω, ⊆
), whi
h is � as we have seenin Chapter 18� equivalent to the for
ing notion (⋃

i∈ω
i2, ⊆

). Let c ∈ ωω be
C-generi
 over some ground model V and let c

˙
be the 
anoni
al C-name for

c. We show that the fun
tion c is not dominated by any fun
tion g ∈ ωω ∩V.Firstly noti
e that for every C-
ondition p we have
p C c

˙
|dom(p) = p

˙
.Let g ∈ ωω be any fun
tion in the ground model V (i.e., g ∈ ωω ∩V) and let

n ∈ ω. Then there exist k ≥ n and a C-
ondition q ≥ p su
h that k ∈ dom(q)and q(k) > g(k). This implies that for every n ∈ ω, the set of C-
onditions qsu
h that
q C ∃k ≥ n

(
g(k) < c

˙
(k)

)is open dense in ⋃
i∈ω

iω. Hen
e, there is no C-
ondition whi
h for
es that c isdominated by some fun
tion g ∈ ω2∩V. Consequently, c is not dominated byany fun
tion from the ground model, or in other words, the fun
tion c ∈ ωωis unbounded. ⊣



388 21 Cohen For
ing revisitedLemma 21.2. Cohen for
ing does not add dominating reals.Proof. Consider Cohen for
ing C =
(
Fn(ω, 2), ⊆

). Let c ∈ ω2 be C-generi
over some ground model V. Further, let f ∈ ωω be an arbitrary but �xedfun
tion in V[c] and let f
˜
be a C-name for f . In order to show that f is notdominating we have to �nd a fun
tion g ∈ ωω ∩V su
h that for every n ∈ ωthere is a k ≥ n su
h that g(k) ≥ f(k). Let {pk : k ∈ ω} be an enumerationof Fn(ω, 2), i.e., {pk : k ∈ ω} = Fn(ω, 2). For every k ∈ ω de�ne

g(k) = min
{
n : ∃q ≥ pk

(
q C f

˜
(k) = n

)}
.For every C-
ondition p and every n ∈ ω there is a k ≥ n su
h that pk ≥ p,and we �nd a q ≥ pk su
h that q C f

˜
(k) = g(k). Consequently, for every

n ∈ ω, the set of C-
onditions q su
h that
q C ∃k ≥ n

(
f
˜
(k) = g(k)

)is open dense in Fn(ω, 2). Hen
e, g ∈ ωω ∩V is not dominated by f ∈ V[c],and sin
e f was arbitrary, this shows that there are no dominating fun
tionsin V[c], or in other words, Cohen for
ing does not add dominating reals. ⊣Cohen For
ing adds Splitting RealsLemma 21.3. Cohen for
ing adds splitting reals.Proof. Consider Cohen for
ing C =
(⋃

n∈ω
i2, ⊆

). We show that any real cwhi
h is C-generi
 over some ground model V generates a splitting real: Let
σc :=

{
k ∈ ω : c(k) = 1

} and let σc
˙
be its 
anoni
al C-name. Then for anyin�nite set x ∈ [ω]ω ∩V and any n ∈ ω, the set of C-
onditions p su
h that

p C |x ∩ σc
˙
| > n ∧ |x \ σc

˙
| > nis open dense, and therefore, σc splits every real in the ground model V, or inother words, σc is a splitting real. ⊣Cohen Reals and the Covering Number of Meagre SetsBelow, we shall give a topologi
al 
hara
terisation of Cohen reals, but beforewe introdu
e a topology on ωω and show how to en
ode �basi
� meagre setsby reals.For ea
h �nite sequen
e s = 〈n0, . . . , nk−1〉 of natural numbers, i.e., s ∈

seq(ω), de�ne the basi
 open set
Os = {f ∈ ωω : f |k = s} .A set A ⊆ ωω is said to be open (in ωω) if there is a family S ⊆ seq(ω)of �nite sequen
es in ω su
h that A =

⋃{Os : s ∈ S }. In parti
ular, ∅ as



Cohen reals and the 
overing number of meagre sets 389well as ωω are open. Noti
e that a set A ⊆ ωω is open i� for all x ∈ A thereexists an s ∈ seq(ω) su
h that x ∈ Os ⊆ A. Furthermore, a set A ⊆ ωω is
alled 
losed (in ωω) if ωω \A is open. Evidently, arbitrary unions and �niteinterse
tions of open sets are open; or equivalently, arbitrary interse
tions and�nite unions of 
losed sets are 
losed. On the other hand, an interse
tion of
ountably many open sets is not ne
essarily open, and a union of 
ountablymany 
losed sets is not ne
essarily 
losed (see below). Now, interse
tions of
ountably many open sets are 
alled Gδ sets, and unions of 
ountably many
losed sets are 
alled Fσ sets. Noti
e that every open (
losed) set is a Gδ set(Fσ set), and that by De Morgan laws, ea
h Fσ set is the 
omplement of a
Gδ set and vi
e versa. For example the set C0 ⊆ ωω of eventually 
onstantfun
tions (i.e., f ∈ C0 i� there is an n ∈ ω su
h that f |ω\n is 
onstant) is an
Fσ set whi
h is neither 
losed nor open.A subset of ωω is dense (in ωω) if it meets every non-empty open subsetof ωω. For example C0 is dense in ωω. Noti
e that every dense subset of ωωmust be in�nite. On the other hand, A ⊆ ωω is 
alled nowhere dense if
ωω \ A 
ontains an open dense set. Noti
e that every nowhere dense set is
ontained in a 
losed nowhere dense set (i.e., the 
losure of a nowhere denseset is nowhere dense).Now, a subset of ωω is 
alled meagre if it is 
ontained in the union of
ountably many nowhere dense sets. For example C0 is meagre. Sin
e the
losure of a nowhere dense set is nowhere dense, we get that every meagre setis 
ontained in some meagre Fσ set, and that the 
omplement of a meagre set
ontains a 
o-meagre Gδ set. Moreover, we have the following result.Theorem 21.4 (Baire Category Theorem). The interse
tion of 
ount-ably many open dense sets is dense. In parti
ular, the 
omplement of meagreset is always dense.Proof. Let 〈Dn : n ∈ ω be a sequen
e of open dense subsets of ωω. We haveto show that D =

⋂
n∈ωDn is dense, i.e., we have to show that for ea
h basi
open set Os, D ∩ Os 6= ∅. Let Os0 be an arbitrary but �xed basi
 open set.By indu
tion on n ∈ ω we 
onstru
t a sequen
e t0 ⊆ t1 ⊆ . . . of elementsof seq(ω) su
h that ⋂n∈ω Otn ⊆ D ∩ Os0 . In fa
t, we just have to make surethat ⋃n∈ω tn ∈ ωω and that for all n ∈ ω, Otn ⊆ Dn. Sin
e D0 is open dense,there exists a t0 ∈ seq(ω) su
h that s0 ⊆ t0 and Ot0 ⊆ (D0 ∩ Os0). Assumethat tn ∈ seq(ω) is already 
onstru
ted for some n ∈ ω. Then, sin
e Dn+1is open dense, there is a tn+1 ∈ seq(ω) su
h that Otn+1 ⊆ (Dn+1 ∩ Otn) and

|tn+1| ≥ n + 1. Now, by 
onstru
tion, the sequen
e t0 ⊆ t1 ⊆ . . . has therequired properties. ⊣By de�nition, subsets of meagre sets as well as 
ountable unions of meagresets are meagre. Thus, the 
olle
tion of meagre subsets of ωω, denoted by M ,is an ideal on P
(
ωω

). By the Baire Category Theorem 21.4, ωω /∈ M butfor every f ∈ ωω we have {f} ∈ ωω, and therefore the set ωω 
an be 
overedby c meagre sets. This observation leads to the following 
ardinal number.
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ing revisitedDefinition. The 
overing number of M , denoted 
ov(M ), is the smallestnumber of sets in M with union ωω; more formally
ov(M ) = min
{
|C | : C ⊆ M ∧⋃

C = ωω
}
.Sin
e 
ountable unions of meagre sets are meagre, and sin
e we 
an 
over ωωby c meagre sets, we obviously have ω1 ≤ 
ov(M ) ≤ c. Moreover, we 
anshow slightly more:Theorem 21.5. p ≤ 
ov(M ).Proof. Let {Aα ⊆ ωω : α ∈ κ < p} be any in�nite family of 
ardinality κ < pof meagre subsets of ωω. We have to show that ⋃α∈κAα 6= ωω, or equivalently,we have to show that for any family D = {Dα : α ∈ κ < p} of open densesubsets of ωω we have ⋂

D 6= ∅. Noti
e the similarity with the proof of theBaire Category Theorem 21.4. Let ν : seq(ω) → ω be a bije
tion. Forevery s ∈ seq(ω) and every α ∈ κ, let
Is,α =

{
t ∈ seq(ω) : s ⊆ t ∧Ot ⊆ Dα

}
.Sin
e Dα is open dense, the set ys,α :=

{
ν(t) : t ∈ Is,α

} is an in�nite subsetof ω.For the moment, let s be an arbitrary but �xed element of seq(ω). Thenfor any �nitely many ordinals α0, . . . , αk−1 in κ we get that ⋂i∈k ys,αi
∈ [ω]ω.Consider the family Fs = {ys,α : α ∈ κ} ⊆ [ω]ω. Obviously, Fs has the strong�nite interse
tion property, and sin
e κ < p, Fs has a pseudo-interse
tion, say

xs. Thus, for every α ∈ κ there exist a k ∈ ω su
h that xs \ k ⊆ ys,α.Now, for ea
h α ∈ κ de�ne hα : seq(ω) → ω by stipulating hα(s) :=
min{k ∈ ω : xs \ k ⊆ ys,α}, and let gα ∈ ωω be su
h that for all n ∈ ω,
gα(n) := hα

(
ν−1(n)

). Sin
e κ < p and p ≤ b, there is a fun
tion f ∈ ωωwhi
h dominates ea
h gα. By 
onstru
tion,
U =

⋃

s∈seq(ω)

{
Ot ⊆ ωω : ν(t) ∈ xs \ f

(
ν(s)

)}is an open dense subset of ωω whi
h has the property that for ea
h α ∈ κ thereis a �nite set Eα ∈
[
seq(ω)

]<ω su
h that UEα
⊆ Dα, where for E ⊆ seq(ω),

UE =
⋃

s∈seq(ω)

{
Ot ⊆ ωω : ν(t) ∈ xs \ f

(
ν(s)

)
∧ t /∈ E

}
.Noti
e that for ea
h E ∈

[
seq(ω)

]<ω, UE is open dense, and sin
e there areonly �nitely many �nite subsets of seq(ω), by the Baire Category Theo-rem 21.4 we get that
T =

⋂{
UE : E ∈ [seq(ω)]<ω

}is dense, and sin
e T is 
ontained in ea
h Dα we have T ⊆ ⋂
α∈κDα. ⊣
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overing number of meagre sets 391With a produ
t of Cohen for
ing we shall 
onstru
t a model in whi
h
p < 
ov(M ) (see Corollary 21.11). The 
ru
ial point in the 
onstru
tionwill be the fa
t that Cohen reals overV are not 
ontained in any meagre Fσ setwhi
h 
an be en
oded (explained later) by a real r ∈ ωω whi
h belongs to theground model V. For this, we have to show the relationship between Cohenreals and meagre sets and have to explain how to en
ode meagre Fσ sets byreal numbers; but �rst we give the relationship between Cohen reals and opendense subsets of ωω.Consider Cohen for
ing C =

(⋃
n∈ω

nω, ⊆
). To every C-
ondition s weasso
iate the open set Os ⊆ ωω. Similarly, to every dense set D ⊆ ⋃

n∈ω
nωwe asso
iate the set

O(D) =
⋃{

Os ⊆ ωω : s ∈ D
}
,whi
h is an open dense subset of ωω. On the other hand, if O ⊆ ωω is an opendense subset of ωω, then the set

D(O) =
{
s ∈

⋃

n∈ω

nω : Os ⊆ O
}is an open dense subset of ⋃

n∈ω
nω. Noti
e that for every open dense set

O ⊆ ωω there is a dense set D ⊆ ⋃
n∈ω

nω su
h that O = O(D). Hen
e, if
c ∈ ωω is a Cohen real over V, then in V[c] we have

V[c] � c ∈
⋂{

O(D) : D is dense in ⋃

n∈ω

nω ∧D ∈ V
}
.Considering the dense set D ⊆ ⋃

n∈ω
nω as the 
ode for the open dense set

O(D) ⊆ ωω, we get the followingFa
t 21.6. A real c ∈ ωω is a Cohen real over V if and only if c is 
ontainedin every open dense subset of ωω whose 
ode belongs to V.In order to make the notion of 
odes more pre
ise, we show how one 
anen
ode meagre Fσ sets by real numbers r ∈ ωω. For this, take two bije
tions
h1 : ω → seq(ω) and h2 : ω × ω → ω, and for r ∈ ωω let

ηr : ω × ω −→ seq(ω)

〈n,m〉 7−→ h1
(
r
(
h2(n,m)

))
.For every Fσ set A =

⋃
m∈ω

⋂
n∈ω

ωω \ Osn,m
, there is a real r ∈ ωω, 
alled
ode of A, su
h that for all n,m ∈ ω we have ηr(n,m) = sn,m. On the otherhand, for every real r ∈ ωω let Ar ⊆ ωω be de�ned by

Ar =
{
f ∈ ωω : ∃m ∈ ω ∀n ∈ ω

(
ηr(n,m) * f

)}
.As a 
ountable union of 
losed sets, Ar is an Fσ set. Thus, every real r ∈ ωωen
odes an Fσ set, and vi
e versa, every Fσ set 
an be en
oded by a real
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r ∈ ωω. Now, an Fσ set A =

⋃
m∈ω

⋂
n∈ω

ωω \Osn,m
is meagre i� ⋃

n∈ω Osn,mis dense for ea
h m ∈ ω. So, for r ∈ ωω we have
Ar is meagre i� ∀s ∈ seq(ω)∀m ∈ ω ∃n ∈ ω

(
s ⊆ ηr(n,m) ∨ ηr(n,m) ⊆ s

)
.The way we have de�ned Ar, it does not only depend on the real r, butalso on the model in whi
h we 
onstru
t Ar from r (noti
e that this fa
t alsoapplies to the sets Os). So, in order to distinguish the sets Ar 
onstru
ted indi�erent models, for models V of ZFC and r ∈ ωω ∩V we write

AV

r =
{
f ∈ ωω ∩V : ∃m ∈ ω ∀n ∈ ω

(
ηr(n,m) * f

)}
.By Fa
t 21.6 we get that if c ∈ ωω is a Cohen real over V, then c is not
ontained in any meagre Fσ set AV

r with r ∈ ωω ∩V. Now, let V and V′ betwo transitive models of ZFC. Then, for every real r ∈ ωω whi
h belongs toboth models V and V′ we have
V � AV

r is meagre i� V′
� AV

′

r is meagre .As a 
onsequen
e we get the following 
hara
terisation of Cohen reals:Proposition 21.7. Let V be a model of ZFC, let P be a for
ing notion in
V, and let G be P-generi
 over V. Then the real c ∈ ωω ∩V[G] is a Cohenreal over V if and only if c does not belong to any meagre Fσ set AV[G]

r with
ode r in V.Proof. (⇒) If c ∈ ωω ∩V[G] belongs to some meagre Fσ set AV[G]
r with 
ode

r in V, then c ∈ ⋃
m∈ω

⋂
n∈ω

ωω \ Oηr(n,m). Thus, there is an m0 ∈ ω su
hthat c does not belong to the open dense set ⋃n∈ω Oηr(n,m0). Now, 
onsiderCohen for
ing C =
(⋃

i∈ω
iω, ⊆

) and let D := {ηr(n,m0) : n ∈ ω}. Then D isan open dense subset of ⋃i∈ω
iω whi
h belongs to the model V. On the otherhand we have {c|n : n ∈ ω} ∩D = ∅ whi
h shows that c is not a Cohen realover V.(⇐) Firstly, re
all that every meagre set is 
ontained in some meagre Fσ setand that AV

r is meagre i� A
V[G]
r is meagre, and se
ondly, noti
e that AV

r ⊆
A

V[G]
r . Hen
e, a real c ∈ ωω ∩ V[G] whi
h does not belong to any meagre

Fσ set AV[G]
r with 
ode r in V does belong to every open dense subset of ωωwhose 
ode belongs to V, and therefore, by Fa
t 21.6, c is a Cohen real over

V. ⊣Corollary 21.8. Let P be a for
ing notion whi
h does not add Cohen realsand let G be P-generi
 over V, where V is a model of ZFC + CH. Then
V[G] � 
ov(M ) = ω1, in parti
ular, V[G] � p = ω1.Proof. In V, let C = {r ∈ ωω : Ar is meagre}. Then |C| = ω1 and weobviously have ⋃

r∈C Ar = ωω. In other words, the set of meagre sets {Ar :
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h a < d = r = 
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r ∈ C} is of 
ardinality ω1 whi
h 
overs ωω. Now, sin
e P does not add Cohenreals, inV[G] we have ωω\⋃r∈C A

V[G]
r = ∅. Hen
e,V[G] �

⋃
r∈C A

V[G]
r = ωω,and sin
e 
ov(M ) is un
ountable we get V[G] � 
ov(M ) = ω1. In parti
ular,by Theorem 21.5, V[G] � p = ω1. ⊣We have seen that 
ov(M ) ≤ c and by Theorem 21.5 we know that

p ≤ 
ov(M ). So, 
ov(M ) is an un
ountable 
ardinal number whi
h is lessthan or equal to c. Below, we shall 
ompare the 
overing number 
ov(M )with other 
ardinal 
hara
teristi
s of the 
ontinuum and give a model of ZFCin whi
h p < 
ov(M ).A Model in whi
h a < d = r = 
ov(M )The following lemma will be 
ru
ial in our proof that ω1 < r = 
ov(M ) = c is
onsistent with ZFC (
f. Lemma 18.1 and Chapter 18 |Related Result 97).Lemma 21.9. Let α be an ordinal number, let Cα+1 be the �nite supportprodu
t of α + 1 
opies of Cohen for
ing C =
(
Fn(ω, 2), ⊆

), and let Gbe Cα+1-generi
 over some model V of ZFC. Then G(α) is C-generi
 over
V[G|α], in parti
ular, ⋃G(α) is a Cohen real over V[G|α].Proof. Firstly noti
e that sin
e Fn(ω, 2) 
ontains only �nite sets, for all tran-sitive models V′,V′′ of ZFC we have Fn(ω, 2)V′ = Fn(ω, 2)V

′′ , i.e., Fn(ω, 2) isthe same in all transitive models of ZFC, and 
onsequently we get CV
′

= CV
′′ .In parti
ular, CV[G|α] = CV.To simplify the notation, let us work with the for
ing notion Cα =

(
Fn(ω×

α, 2), ⊆
) instead of Cα (re
all that by Proposition 18.3, Cα ≈ Cα). Now,in the model V[G], �x an arbitrary dense set D ⊆ Fn(ω, 2) and let D

˜
be a

Cα-name for D. Further, let p0 ∈ G|α be su
h that
p0 C “D˜

is dense in Fn(ω, 2)� ,and let
E =

{
〈q0, q1〉 ∈ Fn(ω × α, 2)× Fn(ω, 2) : q0 ≥ p0 ∧ q0 C q1

˙
∈ D

˜
}
.We leave it as an exer
ise to the reader to show that E, whi
h is a subset of

Fn(ω × α, 2) × Fn(ω, 2), is dense above 〈p0, ∅〉. Thus, sin
e 〈p0, ∅〉 ∈
(
G|α ×

G(α)
), there is some 〈q0, q1〉 ∈ (

G|α×G(α
)
∩E. So, q0 C q1

˙
∈ D

˜
where q0 ∈

G|α, and sin
e q1 ∈ G(α) we get that q1 ∈ D whi
h shows that G(α)∩D 6= ∅.Sin
e D ⊆ Fn(ω, 2) was 
hosen arbitrarily, we �nally get that G(α) is C-generi
 over V[G|α], or in other words, ⋃G(α) is a Cohen real over V[G|α].
⊣Proposition 21.10. ω1 < d = r = 
ov(M ) = c is 
onsistent with ZFC.



394 21 Cohen For
ing revisitedProof. Let V be a model of ZFC + CH, let κ ≥ ω2 be a regular 
ardinal,and let G be Cκ-generi
 over V. Sin
e κ is regular and by Proposition 18.3
CCκ ≈ Cκ, by Theorem 14.21 we have V[G] � c = κ. Thus, it remains toshow that V[G] is a model in whi
h d = r = 
ov(M ) = c.By Lemma 18.9, for every real x in V[G] there is an αx ∈ κ su
h that
x ∈ V[G|αx

]. Moreover, sin
e κ is regular, for every set of reals X ∈ V[G]with |X | < κ we get that ⋃{αx : x ∈ X} ∈ κ.Let E ,C ⊆ ωω ∩ V[G] and F ⊆ [ω]ω ∩ V[G] be three families in V[G],ea
h of 
ardinality stri
tly less than κ. Then there is an ordinal γ ∈ κ su
hthat all three families E , C , and F , belong to V[G|γ ].Sin
e Cohen for
ing adds splitting reals (by Lemma 21.3) and sin
e G(γ)is C-generi
 overV[G|γ ] (by Lemma 21.9), in V[G|γ+1] there is a real s ∈ [ω]ωwhi
h is a splitting real over V[G|γ ]. Hen
e, the family F , whi
h belongs to
V[G|γ ], is not a reaping family, and sin
e F was arbitrary, we must have
V[G] � r = c. Similarly, sin
e Cohen for
ing adds unbounded reals (byLemma 21.1), in V[G|γ+1] there is a fun
tion f ∈ ωω whi
h is unboundedover V[G|γ ]. Hen
e, the family E , whi
h belongs to V[G|γ ], is not a dominat-ing family, and sin
e E was arbitrary, we must have V[G] � d = c.Assume now that C is a set of 
odes of meagre Fσ sets, i.e., for every r ∈ C ,
A

V[G]
r ⊆ ωω is a meagre Fσ set. Again, sin
e G(γ) is C-generi
 over V[G|γ ],⋃
G(γ) ∈ ⋂

r∈C

(
ω \AV[G|γ ]

). Hen
e, in V[G] we get ⋃r∈C
AV[G] 6= ωω, andsin
e C was arbitrary, we must have V[G] � 
ov(M ) = c. ⊣As an immediate 
onsequen
e of Proposition 18.5 and Proposition 21.10(using the fa
t that Cκ ≈ Cκ), we get the following 
onsisten
y result.Corollary 21.11. ω1 = a < d = r = 
ov(M ) = c is 
onsistent with ZFC.In parti
ular, sin
e p ≤ a, we get that p < 
ov(M ) is 
onsistent with ZFC.A Model in whi
h s = b < dThe idea is to start with a modelV in whi
h we have ω1 < p = c (in parti
ular,

V � s = b = d = c), and then add ω1 Cohen reals to V. It is not hard toverify that in the resulting model we have ω1 = s = b. Slightly more di�
ultto prove is the fa
t that we still have d = c, whi
h is a 
onsequen
e of thefollowing result.Lemma 21.12. Let P = (P,≤) be a for
ing notion and let G be P-generi
 oversome model V of ZFC. If V � |P | < b, then for every fun
tion f ∈ ωω∩V[G]we 
an 
onstru
t a fun
tion gf ∈ ωω∩V su
h that for all h ∈ ωω∩V we have
h <∗ f → h <∗ gf ,i.e., whenever the fun
tion h is dominated by f (in the model V[G]), it isalso dominated by the fun
tion gf from the ground model V. In parti
ular, if

V � b > ω1 and G is Cω1-generi
 over V, then V[G] � d ≥ dV.



Notes 395Proof. Let f ∈ ωω ∩V[G] and let f
˜
be a P-name for f (in the ground model

V) su
h that 0 P f
˜
∈ ωω

˜
. For every P-
ondition p ∈ P de�ne the fun
tion

fp ∈ ωω ∩V by stipulating
fp(n) = min

{
k ∈ ω : ∃q ≥ p

(
q P f

˜
(n) = k

)}
.Consider the family F = {fp : p ∈ P} ⊆ ωω. Sin
e |P | < b, there exists afun
tion gf ∈ ωω (in the ground model V) whi
h dominates ea
h member of

F . Thus, whenever p P h <
∗ f
˜
we have h <∗ fp <

∗ gf , whi
h shows that gfdominates h.In order to see that V[G] � d ≥ dV whenever V � b > ω1 and G is
Cω1-generi
 over V, re
all that Cω1 ≈ Cω1 and noti
e that ∣∣Fn(ω ×ω1, ω)

∣∣ ≤∣∣ fin(ω × ω1 × ω)
∣∣ = ω1. ⊣The proof of the following result will be 
ru
ial in the proof of Proposi-tion 27.9.Proposition 21.13. ω1 = s = b < d = c is 
onsistent with ZFC.Proof. Let V be a model of ZFC + c = p > ω1 and let G = 〈cα : α ∈ ω1〉 be

Cω1-generi
 over V, where we work with C =
(⋃

n∈ω
nω, ⊆

). We shall showthat V[G] � ω1 = s = b < d = c = cV.Sin
e Cω1 satis�es 


, all 
ardinals are preserved and we obviously have
V[G] � c = cV > ω1. Furthermore, by Lemma 18.9, for all f ∈ ωω and
x ∈ [ω]ω whi
h belong to V[G] there is a γ0 ∈ ω1 su
h that f and x belongto V[〈cα : α ∈ γ0〉].Sin
e Cohen for
ing adds unbounded reals (by Lemma 21.1) and sin
e cγ0is C-generi
 over V[G|γ0 ] (by Lemma 21.9), cγ0 ∈ ωω is not dominated by anyfun
tion in V[〈cα : α ∈ γ0〉], in parti
ular, cγ0 is not bounded by f . Thus,in V[G], the family {cα : α ∈ ω1} is an unbounded family of 
ardinality ω1,whi
h shows that V[G] � ω1 = b.Similarly, let σγ0 be the splitting real over V[〈cα : α ∈ γ0〉] we get fromthe Cohen real cγ0 using the 
onstru
tion in the proof of Lemma 21.3. Then
σγ0 every in�nite subset of ω, in parti
ular, σγ0 splits x. Thus, in V[G], thefamily {σα : α ∈ ω1} is a splitting family of 
ardinality ω1, whi
h shows that
V[G] � ω1 = s.Finally, by Lemma 21.12 we have V[G] � d = dV > ω1 whi
h shows that

V[G] � ω1 = s = b < d = c .
⊣NotesThe results presented in this 
hapter are all 
lassi
al and most of them 
an befound in textbooks like Kunen [8℄ or Bartoszy«ski and Judah [3℄ (for example themodel in whi
h c > a = ω1 as well as the 
orresponding proofs are taken fromKunen [8, Chapter VIII, �2℄ and Lemma 21.12 is just Lemma 3.3.19 of Bartoszy«skiand Judah [3℄).
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ing revisitedRelated Results108. A 
ombinatorial 
hara
terisation of 
ov(M ). Bartoszy«ski [2℄ (see also Bar-toszy«ski and Judah [3, Theorem 2.4.1℄) showed that 
ov(M ) is the 
ardinalityof the smallest family F ⊆ ωω with the following property: For ea
h g ∈ ωωthere is an f ∈ F , su
h that for all but �nitely many n ∈ ω we have f(n) 6= g(n).For another 
hara
terisation of 
ov(M ) see Chapter 13 |Related Result 80.109. p ≤ add(M ). The additivity of M , denoted add(M ), is the smallest numberof meagre sets su
h that the union is not meagre. Noti
e that we obviously haveadd(M ) ≤ 
ov(M ). Piotrowski and Szyma«ski showed in [12℄ that p ≤ add(M )whi
h follows from the fa
t that add(M ) = min{
ov(M ), b} (see Miller [10℄and Truss [16℄, or Bartoszy«ski and Judah [3, Corollary 2.2.9℄). For possible(i.e., 
onsistent with ZFC) relations between add(M ) and 
ov(M ) and other
ardinal 
hara
teristi
s of the 
ontinuum we refer the reader to Bartoszy«skiand Judah [3, Chapter 7℄.110. Cohen-stable families of subsets of integers. Kurili
 showed in [9℄ that adding aCohen real destroys a splitting family S if and only if S is isomorphi
 to a split-ting family on the set of rational numbers whose elements have nowhere denseboundaries. Consequently, |S | < 
ov(M ) implies the Cohen-indestru
tibilityof S . Further, he showed that for a mad family in order to remain maximalin any Cohen extension, it is ne
essary and su�
ient that every bije
tion from
ω to the set of rational numbers must have a somewhere dense image on somemember of the family.A for
ing notion, introdu
ed by Solovay [13, 14℄, whi
h is 
losely related to Cohenfor
ing C is the so-
alled random for
ing, denoted B, whi
h is de�ned as follows:

B-
onditions are 
losed sets A ⊆ R of positive Lebesgue measure, and for two B-
onditions A and B let A ≤ B ⇐⇒ A ⊆ B. Further, if G is B-generi
 (over somemodel V), then r = ⋂
G is 
alled a random real.111. Properties of random for
ing. Obviously, random for
ing satis�es 


, andtherefore, random for
ing is proper. Furthermore, random for
ing is ωω-bounding(see Je
h [5, Part I, Lemma 3.3.(a)℄), hen
e, random for
ing does not add Co-hen reals. For more properties of random for
ing see Bartoszy«ski and Judah [3,Se
tion 3.2℄ or Blass [4, Se
tion 11.4℄.112. Random reals versus Cohen reals. Let c be a Cohen real over V and let r be arandom real over V[c]. Then, in V[c][r], there is a Cohen real (but no randomreal) over V[r] (see Pawlikowski [11, Corollary 3.2℄).113. On partitions of ωω into ω1 disjoint 
losed sets. If CH holds, then the set ofsingletons {

{x} : x ∈ ωω
} is obviously a partition of ωω into ω1 disjoint 
losedsets. However, if CH fails, then the existen
e of a partition of ωω into ω1 disjoint
losed sets is independent of ZFC:Now, Stern [15, �1℄ showed that if G is Cω2-generi
 over V, where V � GCH,then, in V[G], there is no partition of ωω into ω1 disjoint 
losed sets. On theother hand, Stern [15, �2℄ also showed that adding ω2 random reals to a modelin whi
h GCH holds, yields a model in whi
h CH fails, but in whi
h su
h apartition of ωω still exists.
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es 397114. On the existen
e of Ramsey ultra�lters. It 
an be shown that 
ov(M ) = c i�every �lter generated by < c elements 
an be extended to a Ramsey ultra�lter(see Bartoszy«ski and Judah [3, Theorem 4.5.6℄). In parti
ular, adding ω2 Cohenreals to a model in whi
h GCH holds, yields a model in whi
h Ramsey ultra�ltersexist. On the other hand, Kunen showed in [7℄ that adding ω2 random reals toa model in whi
h GCH holds, yields a model in whi
h there are no Ramseyultra�lters (see also Je
h [6, Theorem 91℄).115. Random for
ing and the ideal of Lebesgue measure zero sets. Like the set ofmeagre sets M , also the set N of Lebesgue measure zero sets forms an ideal.So, we 
an investigate add(N ) and 
ov(N ), and 
ompare these 
ardinal 
har-a
teristi
s with add(M ) and 
ov(M ).For example, Bartoszy«ski showed in [1℄ that add(N ) ≤ add(M ). Further-more, by Theorem 20.6 (using the fa
t that random for
ing is proper and ωω-bounding) it follows that a 
ountable support iteration of length ω2, starting ina model for CH, yields a model in whi
h 
ov(N ) > 
ov(M ) (
f. Bartoszy«skiand Judah [3, Model 7.6.8℄). For more results 
on
erning random reals and theideal N see Bartoszy«ski and Judah [3, Se
tion 3.2℄.Referen
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22Silver-Like For
ing Notions
On the one hand, we have seen that every for
ing notion whi
h adds domi-nating reals also adds splitting reals (see Fa
t 20.1). On the other hand, wehave seen in the previous 
hapter that Cohen for
ing is a for
ing notion whi
hadds splitting reals, but whi
h does not add dominating reals. However, Cohenfor
ing adds unbounded reals and as an appli
ation we 
onstru
ted a modelin whi
h s = b < d = r. One might ask whether there exists a for
ing notionwhi
h is even ωω-bounding but still adds splitting reals. In this 
hapter, weshall present su
h a for
ing notion and as an appli
ation we shall 
onstru
t amodel in whi
h s = b = d < r.Below, let E be an arbitrary but �xed P -family (introdu
ed in Chapter 10).For a set x ⊆ ω, let x2 denote the set of all fun
tions form x to {0, 1}. Silver-like for
ing with respe
t to E , denoted SE = (SE ,≤), is de�ned as follows:

SE =
⋃{

x2 : x
 ∈ E
}where x
 := ω \ x, and for p, q ∈ SE we stipulate

p ≤ q ⇐⇒ dom(p) ⊆ dom(q) ∧ q|dom(p) = p .If E = [ω]ω, then we 
all SE just Silver for
ing, and if E is a P -point, then
SE is usually 
alled Grigorie� for
ing.As in the 
ase of Cohen for
ing we 
an identify every SE -generi
 �lterwith a real g ∈ ω2, 
alled Silver real, whi
h is in fa
t just the union of thefun
tions whi
h belong to the generi
 �lter. More formally, if G is SE -generi
over some model V, then the 
orresponding Silver real g ∈ ω2 is de�ned by

g =
⋃{

f ∈ SE : f ∈ G
}
.On the other hand, from a Silver real one 
an always re
onstru
t the 
orre-sponding generi
 �lter, and therefore, V[G] = V[g] (we leave the re
onstru
-tion as an exer
ise to the reader). Furthermore, Silver reals 
an be 
hara
-terised as follows: A real g ∈ ω2 is a Silver real over a model V of ZFC i� forevery open dense subset D ⊆ SE there is a p ∈ D su
h that g|dom(p) = p.
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ing NotionsProperties of Silver-Like For
ingSilver-Like For
ing is Proper and ωω-boundingBefore we show that Silver-like for
ing SE is proper and ωω-bounding, let usintrodu
e the following notation: For a 
ondition p ∈ SE (i.e., p : x → {0, 1}where x
 ∈ E ) and a �nite set t ⊆ dom(p) let
p˜t =

{
q ∈ SE : dom(q) = dom(p) ∧ q|dom(q)\t = p|dom(p)\t

}
.Lemma 22.1. Silver-like for
ing SE is proper.Proof. As des
ribed in Chapter 20, let χ be a su�
iently large regular 
ar-dinal. We have to show that for all 
ountable elementary submodels N =

(N,∈) ≺ (Hχ,∈) whi
h 
ontain SE , and for all 
onditions p ∈ SE ∩N , thereexists an SE -
ondition q ≥ p (in V) whi
h is N-generi
 (i.e., if g ∈ ω2 is aSilver real over V and q ⊆ g, then g is also a Silver real over N).So, let N = (N,∈) be an arbitrary 
ountable elementary submodel of
(Hχ,∈) and let p ∈ SE ∩N be an arbitrary SE -
ondition whi
h belongs to N.We shall 
onstru
t in V an SE -
ondition q ≥ p whi
h is N-generi
 by usingthe fa
t that E is a P -family. Firstly, let {Dn : n ∈ ω} be an enumeration(in V) of all open dense subsets of SE whi
h belong to N and 
hoose (in V)some well-ordering �≺ � on SE ∩ N . We 
onstru
t the sought SE -
ondition
q ≥ p by running the game G∗

E
: The Maiden starts the game by playing

x0 := dom(q0)

, where q0 ∈ N is the ≺-least 
ondition su
h that q0 ≥ p and

q0 ∈ D0, and Death responds with some �nite set s0 ⊆ x0. Assume that forsome n ∈ ω we already have xn, qn, and sn. Let t = ⋃
0≤i≤n si and y = xn \ t.Now, the Maiden plays xn+1 ⊆ y su
h that xn+1 = dom(qn+1)


, where
qn+1 ∈ N is the ≺-least 
ondition su
h that qn+1 ≥ qn and qn+1 ˜t ⊆ Dn+1,and Death responds with some �nite set sn+1 ⊆ xn+1.Sin
e E is a P -family, this strategy of theMaiden is not a winning strategyand Death 
an play so that x′ = ⋃

n∈ω sn belongs to E . For q′ = ⋃
n∈ω qnwe have x′ ⊆ dom(q′), and thus, the fun
tion q := q′|x′
 is an SE -
ondition.In addition, if g is a Silver real over V su
h that q ⊆ g, then, by 
onstru
tionof q and the properties of the qn's, for every n ∈ ω we have g|dom(qn) ∈ Dn,whi
h shows that g is a Silver real over N. ⊣Lemma 22.2. Silver-like for
ing SE is ωω-bounding.Proof. Let G be SE -generi
 over V, let f ∈ ωω be a fun
tion in V[G], and let

f
˜
be an SE -name for f . In order to show that f is bounded by some fun
tionin the ground model, it is enough to prove that for every SE -
ondition p ∈ SEthere is a 
ondition q0 ≥ p and a fun
tion g ∈ ωω in the ground model V su
hthat q0 SE

�g dominates f
˜
�.Firstly, 
hoose some well-ordering �≺ � on SE . We 
onstru
t the 
ondition

q0 by running the game G∗
E
where theMaiden plays a

ording to the following



A model in whi
h d < r 401strategy: Let m0 ∈ ω be the smallest integer for whi
h there exists a 
ondition
r ≥ p su
h that r SE

f
˜
(0) < m0 and let p0 be the least su
h 
ondition r withrespe
t to the well-ordering �≺ �. Then the Maiden plays x0 = dom(p0)


.For positive integers i ∈ ω let ti = ⋃
k∈i sk, where s0, . . . , si−1 are the movesof Death, and let p0 ≤ · · · ≤ pi−1 be an in
reasing sequen
e of 
onditions.Further, let mi ∈ ω be the least number for whi
h there exists a 
ondition

r ≥ pi−1 with dom(r) ⊇ dom(pi−1) ∪ ti su
h that for all q ∈ r˜ti we have
r SE

f
˜
(i) < mi, and again, let pi be the least su
h 
ondition r (with respe
tto �≺ �). Then the Maiden plays xi = dom(pi)


.Sin
e E is a P -family, Death 
an play so that ⋃
i∈ω si ∈ E . Let h =⋃

i∈ω pi; then h ∈ x2 for some x ⊆ ω (but h is not ne
essarily an SE -
ondition).Now, let q0 ∈ SE be su
h that dom(q0) = dom(h)\⋃i∈ω si and q0 ≡ h|dom(q0),and de�ne the fun
tion g ∈ ωω by stipulating g(i) := mi (for all i ∈ ω). Then
g belongs to the ground model V and by 
onstru
tion we have

q0 SE
∀i ∈ ω

(
f
˜
(i) < g(i)

)
,whi
h shows that q0 for
es that f is dominated by g. ⊣Silver-Like For
ing adds Splitting RealsLemma 22.3. Silver-like for
ing SE adds splitting reals.Proof. Let g ∈ ω2 be a Silver real overV. We 
an identify g with the fun
tion

f ∈ ωω by stipulating
f(n) = k ⇐⇒ g(k) = 1 ∧

∣∣{m < k : g(m) = 1
}∣∣ = n .Then the set

σf =
⋃{[

f(2n), f(2n+ 1)
)
: n ∈ ω

}splits every real in the ground model, where [a, b) := {k ∈ ω : a ≤ k < b}. Tosee this, re
all that E is a free family, and noti
e that for ea
h real x ∈ [ω]ωin the ground model V and for every n ∈ ω, the set
Dx,n =

{
p ∈ SE : p SE

(
|x ∩ σf

˜
| > n ∧ |x \ σf

˜
| > n

)}is open dense in SE . ⊣A Model in whi
h d < rProposition 22.4. ω1 = d < r = c is 
onsistent with ZFC.Proof. Let V be a model of ZFC + CH, let Pω2 be an ω2-stage, 
ountablesupport iteration of Silver for
ing (i.e., Silver-like for
ing SE with E = [ω]ω),
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ing Notionsand let G be Pω2-generi
 over V. Sin
e Silver for
ing is of size c, by Theo-rem 20.5.(a) we get V[G] � c = ω2. Furthermore, sin
e Silver for
ing is properand ωω-bounding, by Theorem 20.6 we get that Pω2 is ωω-bounding, whi
himplies that in V[G], ωω ∩ V is a dominating family of size ω1 (re
all that
V � CH), and therefore we have V[G] � d = ω1. Finally, sin
e Silver for
ingadds splitting reals, by Theorem 20.5.(b) we get that no family F ⊆ [ω]ωof size ω1 
an be a reaping family, thus, V[G] � r = ω2. Hen
e, we get
V[G] � ω1 = d < r = ω2 = c. ⊣NotesMost of the results presented here 
an be found in Grigorie� [10℄ and Halbeisen [11℄(see also Je
h [12, p. 21 f.℄ and Mathias [16℄).Related Results116. Silver-like for
ing SE is minimal. Grigorie� proved in [10℄ that SE is minimalwhenever E is a P -point and in Halbeisen [11℄ it is shown how Grigorie�'s proof
an be generalised to arbitrary P -families.117. Silver-like for
ing has the Laver property. By similar arguments as in the proofof Lemma 22.2 one 
an show that Silver-like for
ing has the Laver property.118. n-Silver for
ing. For integers n ≥ 2, the n-Silver for
ing notion Sn 
onsistsof fun
tions f : A → n, where A ⊂ ω and ω \ A is in�nite. Sn is ordered byin
lusion, i.e., f ≤ g i� g extends f . Noti
e that S2 is the same as Silver for
ing.If G is Sn-generi
, then the fun
tion ⋃

G : ω → n is 
alled an Sn-generi
 real. Asa 
orollary of a more general result, it is shown in Rosªanowski and Stepr	ans [18℄that no 
ountable support iteration of S2 adds an S4-generi
 real.119. Another model in whi
h d < r. A model in whi
h ω1 = a = d < r = ω2 = cwe get if we add ω2 random reals to a model V of ZFC + CH (see for exampleBlass [2, Se
tion 11.4℄).A for
ing notion, introdu
ed by Sa
ks [19℄, whi
h is somewhat similar to Silver-like for
ing, is the so-
alled Sa
ks for
ing, denoted S,. To show the similarity toSilver-like for
ing we shall de�ne Sa
ks for
ing in terms of perfe
t sets� but one
an equally well de�ne Sa
ks for
ing in terms of trees. We say that a set T ⊆ ω2 isperfe
t if for every f ∈ T and every n ∈ ω there is a g ∈ T and an integer k ≥ nsu
h that g|n = f |n and f(k) 6= g(k). The set of S-
onditions 
onsists of all perfe
tsets T ⊆ ω2, and for any S-
onditions S and T we stipulate S ≤ T ⇐⇒ T ⊆ S.Furthermore, if G is S-generi
 then the real ⋂G ∈ ω2 is 
alled a Sa
ks real.120. Properties of Sa
ks for
ing. One 
an show that Sa
ks for
ing has the followingproperties:
• Sa
ks for
ing is proper.
• Sa
ks for
ing is ωω-bounding.
• Sa
ks for
ing has the Laver property.
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• Sa
ks for
ing is minimal and every new real is a Sa
ks real.
• Sa
ks for
ing 
ollapses c to b.For these and further properties of Sa
ks for
ing, as well as for some appli
ationsof Sa
ks for
ing to Ramsey Theory, see Sa
ks [19℄, Ges
hke and Qui
kert [9℄,Brendle [3, 4, 5℄, Simon [20℄, Blass [2, Se
tion 11.5℄, Brendle and Löwe [7℄, andBrendle, Halbeisen, and Löwe [6℄.121. Sa
ks for
ing and splitting reals. Baumgartner and Laver [1℄ showed that Sa
ksfor
ing does not add splitting reals (see also Miller [17, Prop. 3.2℄). Now, byapplying theWeak Halpern-Läu
hli Theorem 11.6, one 
an show that also�nite produ
ts of Sa
ks for
ing do not add splitting reals (see Miller [17, Re-mark, p. 149℄ and 
ompare with Chapter 23 |Related Result 127). Moreover,Laver [15℄ showed that even arbitrarily large 
ountable support produ
ts ofSa
ks for
ing do not add splitting reals.122. Splitting families and Sa
ks for
ing. Using the methods developed by Brendleand Yatabe in [8℄, Kurili
 investigated in [14℄ the stability of splitting familiesin several for
ing extensions. For example, he proved that a splitting family ispreserved by Sa
ks for
ing if and only if it is preserved by some for
ing notionwhi
h adds new reals (
ompare with Chapter 21 |Related Result 110).123. Sa
ks reals out of nowhere. Kellner and Shelah showed in [13℄ that there is a
ountable support iteration of length ω whi
h does not add new reals at �nitestages, but whi
h adds a Sa
ks real at the limit stage ω.Referen
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ing
So far we have seen that Cohen for
ing adds unbounded as well as splittingreals, but not dominating reals (see Chapter 21), and that Silver for
ing addssplitting reals but not unbounded reals (see Chapter 22). Furthermore, it wasmentioned that Sa
ks for
ing adds neither splitting nor unbounded reals (seeChapter 22 |Related Result 120). In this 
hapter we shall introdu
e a for
-ing notion, 
alled Miller for
ing, whi
h adds unbounded reals but no splittingreals. As an appli
ation of that for
ing notion we shall 
onstru
t a model inwhi
h r < d.Before we introdu
e Miller for
ing, let us �rst �x some terminology. Weshall identify seq(ω) (the set of �nite sequen
es of ω) with ⋃

n∈ω
nω. Conse-quently, for s ∈ seq(ω) with |s| = n + 1 we 
an write s =

〈
s(0), . . . , s(n)

〉.Furthermore, for s, t ∈ seq(ω) with |s| ≤ |t| we write s 4 t if t||s| = s (i.e., s isan initial segment of t). A set T ⊆ seq(ω) is a tree, if it is 
losed under initialsegments, i.e., t ∈ T and s 4 t implies s ∈ T . Elements of a tree are usually
alled nodes. Let T ⊆ seq(ω) be a tree and let s ∈ T be a node of T . Thenthe tree Ts is de�ned by
Ts = {t ∈ T : t 4 s ∨ s 4 t} .Further, the set of immediate su

essors of s (with respe
t to T ) is de�ned bysu

T (s) = {

t ∈ T : ∃n ∈ ω
(
t = s⌢n

)}
,where s⌢n denotes the 
on
atenation of the sequen
es s and 〈n〉, and �nallylet nextT (s) = {n ∈ ω : s⌢n ∈ T } .A tree T ⊆ seq(ω) is 
alled superperfe
t, if for every t ∈ T there is an

s ∈ T su
h that t 4 s and |su

T (s)| = ω, i.e., above every node t thereis a node s with in�nitely many immediate su

essors. If T ⊆ seq(ω) is asuperperfe
t tree, then let
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ingsplit(T ) = {
s ∈ T : |su

T (s)| = ω

}
.Thus, a tree T ⊆ seq(ω) is superperfe
t if and only if for ea
h s ∈ T thereexists a t ∈ split(T )�a so-
alled splitting node � su
h that s 4 t. For k ∈ ωand T ⊆ seq(ω), letsplitk(T ) = {

s ∈ split(T ) : |{t ∈ split(T ) : t 4 s}| = k + 1
}
,i.e., a splitting node s ∈ split(T ) belongs to splitk(T ) if and only if there are

k splitting nodes below s.Now, Miller for
ing, denoted by M = (M,≤), also known as rationalperfe
t set for
ing, is de�ned as follows:
M =

{
T ⊆ seq(ω) : T is a superperfe
t tree} ,and for T, T ′ ∈M we stipulate

T ≤ T ′ ⇐⇒ T ′ ⊆ T .As in the 
ase of Cohen and Silver for
ing we 
an identify everyM-generi
�lter with a real g ∈ ωω, 
alled Miller real, whi
h is in fa
t the union ofthe interse
tion of the trees in the generi
 �lter. More formally, if G is M-generi
 over some model V, then the 
orresponding Miller real g ∈ ωω hasthe property that for ea
h n ∈ ω we have
g|n ∈

⋂{
T ∈M : T ∈ G

}
.Sin
e we 
an re
onstru
t the generi
 �lter from the 
orresponding Miller real,we obviously have V[G] = V[g] (we leave the re
onstru
tion as an exer
ise tothe reader).Properties of Miller For
ingMiller For
ing is Proper and adds Unbounded RealsLemma 23.1. Miller for
ing is proper.Proof. As des
ribed in Chapter 20, let χ be a su�
iently large regular 
ar-dinal. We have to show that for all 
ountable elementary submodels N =

(N,∈) ≺ (Hχ,∈) whi
h 
ontain M, and for all 
onditions S ∈ M ∩ N , thereexists an M-
ondition T ⊆ S (in V) whi
h is N-generi
.So, let N = (N,∈) be an arbitrary 
ountable elementary submodel of
(Hχ,∈) and let S ∈M ∩N be an arbitrary M-
ondition whi
h belongs to N.We shall 
onstru
t a superperfe
t tree T ⊆ S whi
h meets every open densesubset ofM whi
h belongs to N: In V, let {Dn : n ∈ ω} be an enumeration ofall open dense subsets ofM whi
h belong to N. Firstly, 
hoose a superperfe
t
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ing does not add splitting reals 407tree T 0 ⊆ S su
h that T 0 ∈ (D0 ∩ N). Assume we have already 
onstru
ted
T 0 ⊇ · · · ⊇ T n su
h that for ea
h i ≤ n, T i ∈ (Di ∩N). Let {sj : j ∈ ω} bean enumeration of splitn+1(T

n). For every j ∈ ω and for ea
h t ∈ su

Tn(sj)
hoose a superperfe
t tree T j,t ⊆ T nt su
h that T j,t ∈ (Dn+1 ∩N) and let
T n+1 =

⋃{
T j,t ∈M : j ∈ ω ∧ t ∈ su

Tn(sj)

}
.Then T n+1 is a superperfe
t tree and T n+1 ⊆ T n. In addition, if G is M-generi
 over V and T n+1 ∈ G, then there exists a T j,t ⊆ T n+1 whi
h belongsto G, and be
ause T j,t ∈ Dn+1, we get G∩Dn+1 6= ∅. Now, let T =

⋂
n∈ω T

n.Then T ⊆ S is a superperfe
t tree whi
h is N-generi
. ⊣Lemma 23.2. Miller for
ing adds unbounded reals.Proof. In order to prove that Miller for
ing adds unbounded reals, it is enoughto show that whenever g ∈ ωω is a Miller real over some model V, then g isunbounded. Let f ∈ ωω be an arbitrary fun
tion in V and let
Df =

{
T ∈M : ∀s ∈ split(T )∀n ∈ nextT (s) (f(|s|) < n

)}
.We leave it as an exer
ise to the reader to show that Df is open dense in M ,whi
h shows that g �∗ f . Thus, g is not dominated by f , and sin
e f wasarbitrary, g is unbounded. ⊣Miller For
ing does not add Splitting RealsLemma 23.3. Miller for
ing does not add splitting reals.Proof. Let V be a model of ZFC, let G be M-generi
 over V, and let Y

˜
bean M-name for a subset of ω in V[G], i.e., there is an M-
ondition S ∈ Msu
h that S M Y˜

⊆ ω. We shall 
onstru
t an M-
ondition S′ ⊆ S and an
X ∈ [ω]ω (in V) su
h that S′

M (X ⊆ Y
˜
) ∨ (X ∩ Y

˜
= ∅), whi
h shows that

Y
˜

is not a splitting real.The 
onstru
tion of the superperfe
t tree S′ and the in�nite set X ∈ [ω]ωis done in the following three steps.Claim 1. There is an M-
ondition T ⊆ S and a sequen
e 〈
Ys : s ∈ split(T )〉(in V) of subsets of ω, su
h that for every s ∈ split(T ), ea
h k ∈ ω, and forall but �nitely many n ∈ nextT (s) we have

T
s
⌢
n M Y˜

∩ k = Ys ∩ k ,i.e., for every k ∈ ω there exists an nk ∈ ω su
h that for all n′ ∈ nextT (s)with n′ ≥ nk, Ts⌢n′ M Y˜
∩ k = Ys ∩ k.Proof of Claim 1. We 
onstru
t the 
ondition T by indu
tion. In parti
ular,the superperfe
t tree T will be the interse
tion of superperfe
t trees T i, where
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T 0 = S , T i+1 =

⋃

s∈spliti(T i)

T̃ is , and T̃ is ⊆ T is ,and where the superperfe
t trees T̃ is are 
onstru
ted as follows: Fix an i ∈ ωand a splitting node s ∈ spliti(T i). For ea
h n ∈ nextT i(s), 
hoose a super-perfe
t tree T̃ i
s
⌢
n
⊆ T i

s
⌢
n
su
h that, for some �nite set bn ∈ fin(ω), we have

T̃ i
s
⌢
n M Y˜

∩ n = bn .For every k ∈ ω, let Fk =
{
bn ∩ k : n ∈ nextT i(s)

}. Noti
e that all sets
Fk are �nite, in fa
t, Fk ⊆ P(k). Consider now the tree T with the in�nitevertex set {

〈b, k〉 : k ∈ ω ∧ b ∈ Fk
}, where two verti
es 〈b, k〉 and 〈b′, k′〉are joined by an edge i� b ⊆ (b′ ∩ k) and k′ = k + 1. Noti
e that T isan in�nite, �nitely bran
hing tree. Hen
e, by König's Lemma, T 
ontains anin�nite bran
h, say (

〈∅, 0〉, 〈a1, 1〉, . . . , 〈ak, k〉, . . .
). Let Ys =

⋃
k∈ω ak andde�ne the stri
tly in
reasing sequen
e 〈nj : j ∈ ω〉 of elements of nextT i(s) sothat for ea
h k ∈ ω and for all nj ≥ k we have

T̃ i
s
⌢
nj

M Y˜
∩ k = ak .Hen
e, for ea
h k ∈ ω and for all but �nitely many j ∈ ω we have

T̃ i
s
⌢
nj

M Y˜
∩ k = Ys ∩ k .Now, let T̃ is =

⋃
j∈ω T̃

i

s
⌢
nj
. Then, for ea
h k ∈ ω and for all but �nitely many

n ∈ nextT̃ i
s
(s) we have

T̃ i
s
⌢
n M Y˜

∩ n = Ys ∩ n .Finally, let T i+1 =
⋃{

T̃ is : s ∈ spliti(T i)}. Noti
e that for all j ≤ i,splitj(T i+1) = splitj(T i); thus, T =
⋂
i∈ω T

i is a superperfe
t tree. By 
on-stru
tion, for every s ∈ split(T ), for ea
h k ∈ ω, and for all but �nitely many
n ∈ nextT (s) we have

T
s
⌢
n M Y˜

∩ k = Ys ∩ k ,where 〈Ys : s ∈ split(T )〉 is an in�nite sequen
e of subsets of ω whi
h belongsto the ground model V. ⊣Claim 1In the next step we prune the tree T so that the 
orresponding sets Ys (ortheir 
omplements) have the strong �nite interse
tion property s�p (i.e., in-terse
tions of �nitely many sets are in�nite).Claim 2. There exists a superperfe
t tree T ′ ⊆ T su
h that(1) {
Ys : s ∈ split(T ′)

} has the s�p; or(2) {
ω \ Ys : s ∈ split(T ′)

} has the s�p.
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ing does not add splitting reals 409Proof of Claim 2. Let U ⊆ [ω]ω be an arbitrary ultra�lter over ω. We partitionthe set split(T ) a

ording to whether the set Ys belongs to U or not. Morepre
isely, let U =
{
s ∈ split(T ) : Ys ∈ U

} and V =
{
s ∈ split(T ) : (ω \ Ys) ∈

U
}. Then U ∩ V = ∅ and U ∪ V = split(T ). We are in at least one of thefollowing two 
ases:

• There exists an s ∈ split(T ) su
h that split(Ts) ⊆ U .
• For all s ∈ split(T ) there exists a t ∈ split(Ts) with t ∈ V .In the former 
ase, let T ′ = Ts, and in the latter 
ase, we 
an 
onstru
t asuperperfe
t tree T ′ ⊆ T su
h that split(T ′) ⊆ V �we leave the 
onstru
tionof T ′ as an exer
ise to the reader.If split(T ′) ⊆ U , then {

Ys : s ∈ split(T ′)
} has the s�p; and if split(T ′) ⊆ V ,then {

ω \ Ys : s ∈ split(T ′)
} has the s�p. ⊣Claim 2In the last step we 
onstru
t a set X ∈ [ω]ω whi
h is not split by Y

˜
.Claim 3. Let T ′ ⊆ T be a superperfe
t tree su
h that

Y0 =
{
Ys : s ∈ split(T ′)

} or Y1 =
{
ω \ Ys : s ∈ split(T ′)

}has the s�p. Then there exists a sequen
e of superperfe
t trees 〈T i : i ∈ ω〉,where T 0 ⊆ T ′ and T i+1 ⊆ T i (for all i ∈ ω), as well as a sequen
e of naturalnumbers 〈mi : i ∈ ω〉, where mi < mi+1 (for all i ∈ ω), su
h that ⋂i∈ω T
i isa superperfe
t tree and either

∀i ∈ ω
(
T i Mmi ∈ Y

˜
) or ∀i ∈ ω

(
T i Mmi /∈ Y

˜
)
.Proof of Claim 3. We just 
onsider the 
ase when Y1 has the s�p, in whi
h
ase we shall later get X ∩ Y

˜
= ∅; the other 
ase, in whi
h would later get

X ⊆ Y
˜
, is handled analogously and is left as an exer
ise to the reader.In order to get ⋂

i∈ω T
i ∈ M , we shall 
onstru
t an auxiliary sequen
e

〈Fi : i ∈ ω〉 of in
reasing �nite subsets of split(T i), i.e., for every i ∈ ω,
Fi ⊆ Fi+1 and Fi ∈ fin

(split(T i)). Moreover, we shall 
onstru
t 〈Fi : i ∈ ω〉su
h that ⋃i∈ω Fi is in�nite and ⋃
i∈ω Fi = split (⋂i∈ω T

i
).Let T−1 := T ′, m−1 := 0, and let F−1 = {s} for some s ∈ split(T ′).Assume that for some i ∈ ω, we have already 
onstru
ted a superperfe
t tree

T i−1 ∈M , mi−1 ∈ ω, and Fi−1 ∈ fin
(split(T i−1)

). Choose a natural number
mi > mi−1 su
h that mi ∈

⋂
s∈Fi−1

(ω \ Ys). This 
an be done sin
e Y1 hasthe s�p, i.e., ⋂s∈Fi−1
(ω \ Ys) is in�nite. Now, with respe
t to the �nite set

Fi−1 de�ne
[Fi−1] =

{
t ∈ seq(ω) : ∃s ∈ Fi−1(t 4 s)

}
.Then [Fi−1] is a �nite subtree of T i−1. Suppose that s0 ∈ [Fi−1] is a terminalnode of [Fi−1], i.e., for all n ∈ ω, s0⌢n /∈ [Fi−1]. By 
onstru
tion of Ys0 , for allbut �nitely many n ∈ nextT i−1(s0) we have

T i−1

s0
⌢
n

M Y˜
∩ (mi + 1) = Ys0 ∩ (mi + 1) .



410 23 Miller For
ingHen
e, sin
e mi /∈ Ys0 , for all but �nitely many n ∈ nextT i−1(s0) we have
T i−1

s0
⌢
n

Mmi /∈ Y
˜
.Now, we prune T i−1 by deleting the �nitely many subtrees T i−1

s0
⌢
n
with

T i−1

s0
⌢
n
/ Mmi /∈ Y

˜
.Furthermore, we do exa
tly the same for all other terminal nodes of the �nitetree [Fi−1]. Then, we do the same for all interior nodes of [Fi−1], ex
ept thatwe retain all subtrees T i−1

s
⌢
n

with s⌢n ∈ [Fi−1].The resulting tree T i is superperfe
t and has the property that
T i Mmi /∈ Y

˜
.Noti
e that by 
onstru
tion, if s ∈ [Fi−1] is an interior node of [Fi−1] and

s⌢n ∈ [Fi−1] (for some n ∈ ω), then s⌢n ∈ T i. Now, 
hoose a �nite set Fi su
hthat Fi−1 ⊆ Fi ∈ fin
(split(T i)) whi
h has the following property: For ea
h

s ∈ Fi−1, for whi
h there is an ns ∈ ω su
h that s⌢ns ∈ T i \ [Fi−1], there existsa t ∈ Fi \ Fi−1 su
h that s⌢ns 4 t. We leave it as an exer
ise to the reader toverify that the resulting tree ⋂
i∈ω T

i is superperfe
t. ⊣Claim 3Now, let X := {mi : i ∈ ω} and S′ :=
⋂
i∈ω T

i. Then, in the 
ase when Y1has the s�p, we have
S′

M X ∩ Y
˜

= ∅ ,and otherwise we have
S′

M X ⊆ Y
˜
.In other words, whenever G is M-generi
 over V, then Y

˜
[G] is not a splittingreal over V, and sin
e Y

˜
was an M-name for an arbitrary subset of ω, thisshows that Miller for
ing does not add splitting reals. ⊣As an immediate 
onsequen
e we getFa
t 23.4. Miller for
ing does not add dominating reals.Proof. By Fa
t 20.1 we know that every for
ing notion whi
h adds domi-nating reals also adds splitting reals. Thus, sin
e Miller for
ing does not addsplitting reals, it also does not add dominating reals. ⊣Miller For
ing Preserves P -PointsBy a similar 
onstru
tion as in the proof of Lemma 23.3 we 
an show thatevery P -point in the ground model generates an ultra�lter in the M-generi
extension.Lemma 23.5. Miller for
ing preserves P -points.
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ing preserves P -points 411Proof. Suppose that U ⊆ [ω]ω is a P -point in the ground model V and that
G is M-generi
 over V. We have to show that U generates an ultra�lter in
V[G], i.e., for every Y ⊆ ω in V[G] there exists an X ∈ U in V su
h thateither X ⊆ Y or X ∩ Y = ∅. For this, let Y

˜
be an M-name for an arbitrarybut �xed subset of ω in V[G] (i.e., there is an M-
ondition S ∈ M su
h that

S M Y˜
⊆ ω). We shall 
onstru
t anM-
ondition S′ ⊆ S and an X ∈ U in Vsu
h that either S′

M X ⊆ Y
˜

or S′
M X ∩ Y

˜
= ∅. Sin
e Y

˜
[G] is arbitrary,this would imply that the �lter in V[G], generated by U , is an ultra�lter.As in the proof of Lemma 23.3, we �rst 
onstru
t an M-
ondition T ⊆ Sand a sequen
e 〈

Ys : s ∈ split(T )〉 of subsets of ω, su
h that for every s ∈split(T ), for ea
h k ∈ ω, and for all but �nitely many n ∈ nextT (s), we have
T
s
⌢
n M Y˜

∩ k = Ys ∩ k .Now, we 
onstru
t a superperfe
t tree T ′ ⊆ T su
h that either {
Ys : s ∈split(T ′)

}
⊆ U or {

ω \ Ys : s ∈ split(T ′)
}

⊆ U . Sin
e U is a P -point,there exists an X ′ ∈ U su
h that for all s ∈ split(T ′), either X ′ ⊆∗ Ys or
X ′ ⊆∗ (ω \ Ys).Below we just 
onsider the 
ase when X ′ ⊆∗ Ys and leave the other 
aseas an exer
ise to the reader.In the next step we build a sequen
e sn ∈ split(T ′), su
h that both sets,
{s2n : n ∈ ω} and {s2n+1 : n ∈ ω}, will be the splitting nodes of some M-
ondition. At the same time we build a stri
tly in
reasing sequen
e of naturalnumbers 〈kn : n ∈ ω〉, su
h that for all n ∈ ω, X ′ \ kn ⊆ Ysn .The 
onstru
tion is by indu
tion on n: Firstly, let s0 ∈ split0(T ′), let
s1 = s0, and let k0 = 0. If ne
essary, modify X ′ su
h that X ′ ⊆ Ys0 = Ys1 .Assume that for some n ∈ ω, we have already 
onstru
ted s2n, s2n+1, k2n,and k2n+1. Let i, j ∈ ω be su
h that

n+ 1 =
(i+ j)(i + j + 1)

2
+ i .Noti
e that i and j are unique and that n + 1 > i. Now, we 
hoose a newsplitting node s2n+2 ∈ split(T ′), i.e., s2n+2 /∈ {sl : l ≤ 2n + 1}, su
h that

s2i
⌢m0 4 s2n+2 for some m0 ∈ nextT ′(s2i) with m0 > k2n+1, and

Ys2n+2 ∩ k2n+1 = Ys2i ∩ k2n+1 .In order to see that su
h a splitting node s2n+2 exists, noti
e that 2n+2 > 2iand that for all but �nitely many m ∈ nextT ′(s2i),
T ′
s2i

⌢
m M Y˜

∩ k2n+1 = Ys2i ∩ k2n+1 .Hen
e, there exists an m0 ∈ nextT ′(s2i) with m0 > k2n+1, su
h that for all
s2n+2 < s2i

⌢m0 we have Ys2n+2 ∩ k2n+1 = Ys2i ∩ k2n+1. Finally, we 
hoose
k2n+2 > k2n+1 large enough su
h that

X ′ \ k2n+2 ⊆ Ys2n+2 .
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ingThe splitting node s2n+3 ∈ split(T ′) (with s2i+1
⌢m0 4 s2n+3) and the integer

k2n+3 > k2n+2 are 
hosen similarly.Noti
e that by 
onstru
tion, for ea
h node s ∈ {s2n : n ∈ ω} there arein�nitely many nodes t ∈ {s2n : n ∈ ω} su
h that s 4 t, and the same holdsfor the set {s2n+1 : n ∈ ω}. Thus, {s2n : n ∈ ω} and also {s2n+1 : n ∈ ω}are the splitting nodes of superperfe
t subtrees of T ′. Let S0, S1 ⊆ T ′ be su
hthat split(S0) = {s2n : n ∈ ω} and split(S1) = {s2n+1 : n ∈ ω} respe
tively.Further, let
X0 = X ′ ∩

⋃{
[k2n, k2n+1) : n ∈ ω

}and
X1 = X ′ ∩

⋃{
[k2n+1, k2n+2) : n ∈ ω

}where [k, k′) = {m ∈ ω : k ≤ m < k′}. Without loss of generality we mayassume that X0 ∈ U . The goal is to show that S0 M X0 ⊆ Y
˜
, whi
h is donein the following two 
laims:Claim 1. For every s ∈ split(S0), X0 ⊆ Ys.Proof of Claim 1. Firstly, noti
e that for every s ∈ split(S0) there is an n ∈ ωsu
h that s = s2n. We prove that X0 ⊆ Ys2n by indu
tion on n: By the 
hoi
eof X ′ we have X ′ ⊆ Ys0 ; hen
e, X0 ⊆ Ys0 . If n > 0, then by the 
hoi
e of k2nwe have

X0 \ k2n ⊆ Ys2n ,and by the de�nition of X0 we have
X0 ∩ k2n = X0 ∩ k2n−1 .Therefore, we �nd an i < n su
h that

Ys2n ∩ k2n−1 = Ys2i ∩ k2n−1 .Now, by indu
tion we have X0 ⊆ Ys2i , thus, (X0 ∩ k2n−1) ⊆ Ys2i ∩ k2n−1.Sin
e (X0 ∩ k2n) = (X0 ∩ k2n−1) and (X0 \ k2n) ⊆ Ys2n , we �nally get
X0 = (X0 ∩ k2n) ∪ (X0 \ k2n) ⊆ (Ys2n ∩ k2n−1) ∪ Ys2n = Ys2n .

⊣Claim 1Claim 2. S0 M X0 ⊆ Y
˜
.Proof of Claim 2. Assume towards a 
ontradi
tion that there is an M-
ondition S̃ ⊆ S0 and an m ∈ X0 su
h that

S̃ Mm /∈ Y
˜
.Let s ∈ split0(S̃). By 
onstru
tion of T , and sin
e S̃ ⊆ T , for ea
h k ∈ ω andfor all but �nitely many n ∈ nextS̃(s) we have S̃s⌢n M Y˜

∩ k = Ys ∩ k. Inparti
ular, for k = m+ 1 and for some n0 ∈ nextS̃(s) we have
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h r < d 413
S̃
s
⌢
n0

Mm ∈ Y
˜

↔ m ∈ Ys .Sin
e X0 ⊆ Ys and m ∈ X0, this implies
S̃s⌢n0

Mm ∈ Y
˜
,whi
h 
ontradi
ts our assumption that S̃ Mm /∈ Y

˜
. ⊣Claim 2Thus, in the 
ase when for all s ∈ split(T ′), X ′ ⊆∗ Ys, there is an X ∈ U(where X is either X0 or X1) and an M-
ondition S′ ⊆ T ′ (where S′ is either

S0 or S1) su
h that S′
M X ⊆ Y

˜
. In the other 
ase (whi
h was left to thereader), in whi
h for all s ∈ split(T ′), X ′ ⊆∗ (ω \ Ys), there is an X ∈ U andan S′ ⊆ T ′ su
h that S′

M X ∩ Y
˜

= ∅. So, in both 
ases, U generates anultra�lter in the M-generi
 extension, whi
h is what we had to show. ⊣A Model in whi
h r < dBelow we show that after adding ω2 Miller reals to a model V of ZFC+CH, weget a model V[G] in whi
h r = ω1 and d = ω2. The reason why V[G] � d = ω2is that Miller for
ing adds unbounded reals, and the reason whyV[G] � r = ω1is in fa
t a 
onsequen
e of the followingFa
t 23.6. If there exists an ultra�lter U whi
h is generated by some �lter
F ⊆ [ω]ω of 
ardinality κ, then r ≤ κ.Proof. Firstly noti
e that for all x ∈ [ω]ω, either x ∈ U or (ω \ x) ∈ U .Se
ondly, sin
e F generates U , for all x′ ∈ U there is a y ∈ F su
h that
y ⊆ x′. This shows that F is a reaping family. ⊣Proposition 23.7. ω1 = r < d = c is 
onsistent with ZFC.Proof. Let Pω2 be a 
ountable support iteration of Miller for
ing, let V be amodel of ZFC+ CH, and let G be Pω2-generi
 over V.Sin
e Miller for
ing is of size c, by Theorem 20.5.(a) we getV[G] � c = ω2,and sin
e Miller for
ing adds unbounded reals, by Theorem 20.5.(b) we getthat no family F ⊆ [ω]ω of size ω1 
an be a dominating family. Hen
e, we get
V[G] � d = ω2.Now we show that V[G] � r = ω1: Firstly, noti
e that CH implies thatevery ultra�lter is of 
ardinality ω1, and re
all that CH implies the existen
eof P -points. Thus, sin
e V � CH, there are P -points in V of 
ardinality
ω1. Sin
e Miller for
ing is proper and the iteration is a 
ountable supportiteration, by Theorem 20.8 we get that every P -point F (of 
ardinality ω1)in the ground model V generates an ultra�lter U ⊆ [ω]ω in V[G]. Thus, byFa
t 23.6, we have V[G] � r = ω1. ⊣



414 23 Miller For
ingNotesAll non-trivial results presented in this 
hapter are essentially due to Miller and 
anbe found in [14℄. In that paper, he introdu
ed what is now 
alled Miller for
ing, butwhi
h he 
alled rational perfe
t set for
ing. Miller thought about this for
ing notionwhen he worked on his paper [13℄, where he used a fusion argument whi
h involvedpreserving a dynami
ally 
hosen 
ountable set of points (see [13, Lemmata 8&9℄).This led him to perfe
t sets in whi
h the rationals in them are dense, and shortlyafter, he realised that this is equivalent to for
ing with superperfe
t trees. Eventhough superperfe
t trees appeared �rst in papers of Ke
hris [10℄ and Louveau [12℄,Miller was the �rst who investigated the 
orresponding for
ing notion.Related Results124. Chara
terising Miller reals. By the proof of Lemma 23.2 we know that everyMiller real g is unbounded. On the other hand, one 
an show that every fun
tion
f ∈ ωω in theM-generi
 extension V[g] whi
h is unbounded (i.e., not dominatedby any fun
tion in V) is a Miller real (see Miller [14, Proposition 2℄). Further-more, one 
an show that Miller for
ing is minimal (see Miller [14, p. 147℄).125. Miller for
ing has the Laver property. One 
an show that Miller for
ing has theLaver property (see Bartoszy«ski and Judah [1, Theorem 7.3.45℄) and thereforedoes not add Cohen reals. Sin
e the Laver property is preserved under 
ountablesupport iterations, there are no Cohen reals in the model 
onstru
ted in theproof of Proposition 23.7.126. Miller for
ing does not add Cohen, dominating, or random reals. Sin
e everyfor
ing notion whi
h preserves P -points does not add Cohen, dominating, orrandom reals (see Chapter 20 |Related Result 107), Miller for
ing adds nei-ther Cohen, nor dominating, nor random reals.127. M ×M adds splitting reals. Even though Miller for
ing does not add splittingreals, a produ
t of Miller for
ingM×M always adds splitting reals (see Miller [14,Remark, p. 151℄ and 
ompare with Chapter 22 |Related Result 121).128. Miller for
ing satis�es Axiom A. Miller for
ing is not just proper, it even sat-is�es the slightly stronger Axiom A (see Bartoszy«ski and Judah [1, p. 360℄).129. Miller for
ing preserves MA(σ-
entred). If V � MA(σ-
entred) and g is a Millerreal over V, then V[g] � MA(σ-
entred) (see Brendle [5℄). Re
all that by Chap-ter 13 |Related Result 79, MA(σ-
entred) ⇐⇒ p = c, and 
ompare thisresult with Theorem 19.4, whi
h says that Cohen for
ing preserves p = c.130. Cardinal 
hara
teristi
s in Miller's model. In Miller's model, whi
h is the model
onstru
ted in the proof of Proposition 23.7, we also have ω1 = a = s (see forexample Blass [2, Se
tion 11.9℄). Furthermore, the proof of Proposition 23.7shows that in Miller's model we even have u < d (see also Blass and Shelah [3℄).Another for
ing notion with superperfe
t trees as 
onditions, whi
h was introdu
edby Laver in [11℄, is the so-
alled Laver for
ing, denoted L: L-
onditions are ordered



Related Results 415pairs (s, T ), where T ⊆ seq(ω) is a superperfe
t tree, s ∈ T , and for all t ∈ T wehave either t 4 s or s 4 t ∧ t ∈ split(T ) (i.e., Ts = T and every node t < s is asplitting node of T ). For L-
onditions (s, T ) and (s′, T ′) let (s, T ) ≤ (s′, T ′) ⇐⇒
s 4 s′ ∧ T ′ ⊆ T . Furthermore, for ultra�lters U ⊆ [ω]ω we de�ne restri
tedLaver for
ing, denoted LU , as follows: A pair (s, T ) is an LU -
ondition if it is an
L-
ondition whi
h has the property that for all t ∈ split(T ) we have nextT (t) ∈ U .131. Laver for
ing and Borel's 
onje
ture. A set X ⊆ R has strong measure zeroif for every sequen
e of positive reals {εn : n ∈ ω} there exists a sequen
eof intervals {In : n ∈ ω}, su
h that for all n ∈ ω, µ(In) ≤ εn, and X ⊆⋃

n∈ω In. Furthermore, Borel's 
onje
ture is the statement that there are noun
ountable strong measure zero sets (see Borel [4℄). Now, Goldstern, Judah,and Shelah [6℄ showed that b = ω1 implies that Borel's 
onje
ture fails. On theother hand, using Laver for
ing, Laver showed in [11℄ that Borel's 
onje
ture is
onsistent with ZFC+ c = ω2 (
f. Bartoszy«ski and Judah [1, Se
tion 8.3℄).132. Combinatorial properties of Laver for
ing. Laver for
ing satis�es Axiom A (seeBartoszy«ski and Judah [1, Lemma 7.3.27℄), and therefore, Laver for
ing isproper. Sin
e Laver for
ing has the Laver property (see Bartoszy«ski and Ju-dah [1, Theorem 7.3.29℄), it does not add Cohen reals. However, Laver for
ingadds dominating reals (see Bartoszy«ski and Judah [1, Lemma 7.3.28℄), andtherefore, Laver for
ing adds splitting reals. Furthermore, one 
an show thatLaver for
ing is minimal (see Gray [8℄).133. L× L adds Cohen reals. Even though Laver for
ing does not add Cohen reals,by a similar argument as in the proof of Fa
t 24.9, one 
an show that a produ
tof Laver for
ing L× L always adds Cohen reals.134. Two Laver reals added iteratively always for
e CH. Brendle [5, Theorem 3.4℄showed that Laver for
ing 
ollapses d to ω1, and Goldstern, Repi
ký, Shelah,and Spinas [7, Theorem 2.7℄ showed that Laver for
ing (as well as Miller for
ing)
ollapses c to a 
ardinal ≤ h. Thus, two Laver reals added iteratively always for
eCH (
f. Chapter 24 |Related Result 139).135. On the 
onsisten
y of s < b. An ω2-stage iteration with 
ountable supportof Laver for
ing, starting in a model of ZFC + CH, yields a model in whi
h
ω1 = s < b = c (see Blass [2, Se
tion 11.7℄).136. Combinatorial properties of restri
ted Laver for
ing LU . If U ⊆ [ω]ω is anultra�lter, then restri
ted Laver for
ing LU obviously satis�es 


. It is not hardto show that restri
ted Laver for
ing LU adds dominating reals and thereforeadds splitting reals. Furthermore, sin
e restri
ted Laver for
ing LU has purede
ision (see Judah and Shelah [9, Theorem 1.7℄), by a similar argument as inthe proof of Corollary 24.8, one 
an show that LU has the Laver property.137. Restri
ted Laver for
ing LU 
ollapses d to ω1. Brendle [5, Corollary 3.10.(a)℄showed that restri
ted Laver for
ing LU 
ollapses d to ω1 (
f. Related Re-sult 134).138. On the 
onsisten
y of hom < c. Judah and Shelah showed in [9, Theorem 1.16℄that if a real r ∈ [ω]ω is LU -generi
 over V, then for ea
h 
olouring π : [ω]2 → 2in the ground model there exists an n ∈ ω su
h that π|[r\n]2 is 
onstant. Now,
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inglet Pω1 = 〈Qα : α ∈ ω1〉 be an ω1-stage iteration with �nite support, where forea
h α ∈ ω1, Qα is restri
ted Laver for
ing LU (for some ultra�lter U ⊆ [ω]ω).Further, let V be a model of ZFC in whi
h c > ω1 and let G be Pω1-generi
 over
V. Then V[G] is a model in whi
h ω1 = hom < c.Referen
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24Mathias For
ing
In this 
hapter we investigate a for
ing notion whi
h is 
losely related toRamsey's Theorem 2.1 and to Ramsey ultra�lters (de�ned in Chapter 10).So, it is not surprising that also Ramsey families (also de�ned in Chapter 10)are involved.With respe
t to an arbitrary but �xed Ramsey family E we de�ne Math-ias for
ing ME = (ME ,≤) as follows:

ME =
{
(s, x) : s ∈ fin(ω) ∧ x ∈ E ∧ max(s) < min(x)

}

(s, x) ≤ (t, y) ⇐⇒ s ⊆ t ∧ y ⊆ x ∧ t \ s ⊆ xIf E = [ω]ω, then we write just M instead ofME . The �nite set s of a Mathias
ondition (s, x) is 
alled the stem of the 
ondition. Ea
h ME -generi
 �lter G
orresponds to a generi
 real m ∈ [ω]ω, 
alled Mathias real, whi
h is in fa
tjust the union of the stems of the 
onditions whi
h belong to the generi
 �lter
G, i.e., m =

⋃{
s ∈ fin(ω) : ∃x ∈ E

(
(s, x) ∈ G

)}.Properties of Mathias For
ingMathias For
ing adds Dominating RealsLemma 24.1. Mathias for
ing ME adds dominating reals.Proof. We show that a Mathias real is always dominating: Let m be ME -generi
 over the ground model V, let p = (s, x) be an arbitraryME -
ondition,and let g ∈ ωω ∩V be an arbitrary fun
tion in V. It is enough to show thatthere exists an ME -
ondition q ≥ p su
h that q ME
�m
˙
dominates g �. Inorder to 
onstru
t the 
ondition q we run the game G

E
where the Maidenplays a

ording to the following strategy: The Maiden's �rst move is

x0 = x \
(
g(n0)

+
)
,
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ingwhere n0 = |s|, and for i ∈ ω she plays
xi+1 = xi \max

{
g(n0 + i)+, a+i

}
,where ai is the ith move of Death. Sin
e E is a Ramsey family, this strategyis not a winning strategy for the Maiden and Death 
an play su
h that

y := {ai : i ∈ ω} ∈ E . Now, by 
onstru
tion we get that (s, y) ≥ p and
(s, y) ME

∀k ≥ n0

(
m
˙
(k) > g(k)

)
,whi
h shows that m is a dominating real over V. ⊣Together with Fa
t 20.1 we getCorollary 24.2. Mathias for
ing ME adds splitting reals.Mathias For
ing is Proper and has the Laver PropertyProperness of Mathias for
ing and that it has the Laver property follow quiteeasily from the fa
t that for every 
ondition (s, x) and every senten
e ϕ of thefor
ing language there is a (s, y) whi
h de
ides ϕ. This property of Mathiasfor
ing is known as pure de
ision and is one of the main features of Mathiasfor
ing.Theorem 24.3. Let (s, x) be an ME -
ondition and let ϕ be a senten
e ofthe for
ing language. Then there is an (s, y) ≥ (s, x)�with the same stemas (s, x)� su
h that either (s, y) ME

ϕ or (s, y) ME
¬ϕ (i.e., (s, y) de
idesthe senten
e ϕ).Before we 
an prove the theorem, we have to introdu
e some terminologyand prove some auxiliary results: For every ME -
ondition (s, x) ∈ME let

[s, x]ω =
{
z ∈ [ω]ω : s ⊆ z ⊆ s ∪ x

}
.Noti
e that the sets [s, x]ω agree with the sets of the base for the Ellentu
ktopology whi
h was introdu
ed in Chapter 9.For a (�xed) open set O ⊆ ME let Ō :=

⋃{
[s, x]ω : (s, x) ∈ O

}. An
ME -
ondition (s, x) is 
alled good (with respe
t to O), if there is a 
ondition
(s, y) ≥ (s, x) su
h that [s, y]ω ⊆ Ō; otherwise it is 
alled bad. Furthermore,the 
ondition (s, x) is 
alled ugly if (s ∪ {a}, x \ a+

) is bad for all a ∈ x.Noti
e that if (s, x) is ugly, then (s, x) is bad, too. Finally, (s, x) is 
alled
ompletely ugly if (s ∪ {a0, . . . , an}, x \ a+n
) is bad for all {a0, . . . , an} ⊆ xwith a0 < . . . < an.Lemma 24.4. If an ME -
ondition (s, x) is bad, then there is a 
ondition

(s, y) ≥ (s, x) whi
h is ugly.



Mathias for
ing is proper and has the Laver property 419Proof. We run the game G
E

where the Maiden plays a

ording to the fol-lowing strategy: She starts the game by playing x0 := x, and then, for i ∈ ω,she plays xi+1 ⊆ (xi \ a+i ) su
h that [s ∪ {ai}, xi+1]
ω ⊆ Ō if possible, and

xi+1 = (xi \a+i ) otherwise. Stri
tly speaking we assume that E is well-orderedand that xi+1 is the �rst element of E with the required properties. However,sin
e this strategy is not a winning strategy for theMaiden, Death 
an playso that z := {ai : i ∈ ω} ∈ E . Now, let y =
{
ai ∈ z : [s ∪ {ai}, xi+1]

ω ⊆ Ō
}.Be
ause E is a free family, by Lemma 10.2 we get that y or z \ y belongs to

E . If y ∈ E , then [s, y]ω ⊆ Ō whi
h would imply that (s, x) is good, but this
ontradi
ts the premise of the lemma. Hen
e, z \ y ∈ E , whi
h implies that
(s, z \ y) is ugly. ⊣Lemma 24.5. If an ME -
ondition (s, x) is ugly, then there is a 
ondition
(s, y) ≥ (s, x) su
h that (s, y) is 
ompletely ugly.Proof. This follows by an iterative appli
ation of Lemma 24.4. In fa
t, forevery i ∈ ω, the Maiden 
an play a set xi ∈ E su
h that for ea
h t ⊆
{a0, . . . , ai−1}, either the 
ondition (s ∪ t, xi) is ugly or [s ∪ t, xi]ω ⊆ Ō. NowDeath 
an play su
h that y := {ai : i ∈ ω} ∈ E . Assume that there exists a�nite set t ⊆ y su
h that (s ∪ t, y \max(t)+) is good. Noti
e that sin
e (s, x)was assumed to be ugly, t 6= ∅. Now let t0 be a smallest �nite subset of y su
hthat q0 = (s ∪ t0, y \ max(t0)

+) is good and let t−0 = t0 \ {max(t0)}. Thenby de�nition of t0, the 
ondition q−0 =
(
s ∪ t−0 , y \max(t0)

) is not good, andhen
e, by the strategy of the Maiden, it must be ugly, but if q−0 is ugly, then
q0 is bad, whi
h is a 
ontradi
tion to our assumption. Thus, there is no �niteset t ⊆ y su
h that (s ∪ t, y \max(t)+) is good, whi
h implies that all these
onditions are ugly, and therefore (s, y) is 
ompletely ugly. ⊣Now we are ready to prove that Mathias for
ing ME has pure de
ision:Proof of Theorem 24.3. Let (s, x) be an ME -
ondition and let ϕ be a sen-ten
e of the for
ing language. With respe
t to ϕ we de�ne O1 := {q ∈ ME :
q ME

ϕ} and O2 := {q ∈ME : q ME
¬ϕ}. Clearly O1 and O2 are both openand O1∪O2 is even dense inME . By Lemma 24.5 we know that for any (s, x)there exists (s, y) ≥ (s, x) su
h that either [s, y]ω ⊆ Ō1 or [s, y]ω ∩ Ō1 = ∅.In the former 
ase we have (s, y) ME
ϕ and we are done. In the latter 
asewe �nd (s, y′) ≥ (s, y) su
h that [s, y′]ω ⊆ Ō2. (Otherwise we would have

[s, y]ω ∩ (Ō1 ∪Ō2) = ∅, whi
h is impossible by the density of O1∪O2.) Hen
e,
(s, y′) ME

¬ϕ. ⊣As a 
onsequen
e of Theorem 24.3 we 
an show that ea
h in�nite subsetof a Mathias real is a Mathias real.Corollary 24.6. If m ∈ [ω]ω is a Mathias real over V and m′ is an in�nitesubset of m, then m′ is a Mathias real over V too.
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ingProof. Let D ⊆ ME be an arbitrary open dense subset of ME whi
h belongsto V and let D′ be the set of all 
onditions (s, z) ∈ME su
h that for all t ⊆ s,
[t, z]ω ⊆ D̄. Noti
e that D′ belongs to V.First we show that D′ is a dense (and by de�nition also open) subset of
ME : For this take an arbitrary 
ondition (s, x) ∈ D and let {ti : 0 ≤ i ≤ h} bean enumeration of all subsets of s. Be
ause D is open dense in ME we �nd a
ondition (t0, y0) su
h that y0 ⊆ x and [t0, y0]

ω ∈ D̄. Moreover, for ea
h i < hwe �nd a 
ondition (ti+1, yi+1) su
h that yi+1 ⊆ yi and [ti+1, yi+1]
ω ∈ D̄.Now, let y := yh. Then (s, y) ∈ D′, whi
h implies that D′ is dense in ME .Let m ∈ [ω]ω be a Mathias real over V and let m′ be an in�nite subsetof m. Sin
e D′ is an open dense subset of ME and m is an ME -generi
 real,there exists a 
ondition (s, x) ∈ D′ su
h that s ⊆ m ⊆ s ∪ x. For t = m′ ∩ swe get t ⊆ m′ ⊆ t ∪ x, and by de�nition of D′ we have [t, x]ω ⊆ D̄. Thus, m′meets the open dense set D, and sin
e D was arbitrary, this 
ompletes theproof. ⊣As a 
onsequen
e we get properness of Mathias for
ing:Corollary 24.7. Mathias for
ing ME is proper.Proof. Let V be a model of ZFC. Further, let N = (N,∈) be a 
ountableelementary submodel of (Hχ,∈) whi
h 
ontains ME , and let (s, x) ∈ME ∩N .Sin
e N is 
ountable (in V), there exists a Mathias real m ∈ [s, x]ω ∩V over

N. Noti
e that (s,m \ s) ≥ (s, x) and that (s,m \ s) belongs to V. Now, byCorollary 24.6, every m′ ∈ [s,m \ s]ω is a Mathias real over N, and hen
e,the ME -
ondition (s,m \ s) is N-generi
. ⊣In Chapter 21 we have seen that Cohen for
ing adds unbounded reals,but not dominating reals. Now we shall show that Mathias for
ing ME , eventhough it adds dominating reals, it does not add Cohen reals (but see alsoFa
t 24.9):Corollary 24.8. Mathias for
ing ME has the Laver property and thereforedoes not add Cohen reals.Proof. Let f ∈ ωω∩V be an arbitrary fun
tion whi
h belongs to V and let g
˜be an ME -name for a fun
tion in ωω su
h that 0 ME

∀n ∈ ω
(
g
˜
(n) ≤ f(n)

).Further, let F be the set of all fun
tions S : ω → fin(ω) su
h that for every
n ∈ ω, |S(n)| ≤ 2n. We have to show that 0 ME

∃S ∈ F ∩V ∀n ∈ ω
(
g
˜
(n) ∈

S(n)
). In other words, we have to show that for every ME -
ondition (s, x)there exists an (s, y) ≥ (s, x) and an S ∈ F ∩V su
h that (s, y) ME

∀n ∈
ω
(
g
˜
(n) ∈ S(n)

).By Theorem 24.3, and sin
e g
˜
is bounded by f(n), for everyME -
ondition

(t, z) and for every n ∈ ω there exists a 
ondition (t, z′) ≥ (t, z) whi
h de
ides
g
˜
(n), i.e., (t, z′) ME

g
˜
(n) = k for some k ≤ f(n). Let (s, x) be any ME -
ondition. We run the game G

E
where the Maiden plays a

ording to thefollowing strategy: She starts the game by playing x0 ⊆ x su
h that (s, x0)
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ing is proper and has the Laver property 421de
ides g
˜
(0), and we de�ne S(0) :=

{
k ≤ f(0) : (s, x0) ME

g
˜
(n) = k

}.Noti
e that |S(0)| = 1 = 20. In general, for n ∈ ω, the Maiden plays xn+1 ⊆
(xn \ a+n ) su
h that for every ā ⊆ {a0, . . . , an}, (s ∪ ā, xn+1) de
ides g

˜
(n+ 1),and we de�ne S(n + 1) as the set of all k ≤ f(n + 1) su
h that, for some

ā ⊆ {a0, . . . , an}, (s ∪ ā, xn+1) ME
g
˜
(n + 1) = k. Noti
e that |S(n + 1)| ≤

|P
(
{a0, . . . , an}

)
= 2n+1. Sin
e this strategy is not a winning strategy forthe Maiden, Death 
an play su
h that y := {an : n ∈ ω} ∈ E . Now, by
onstru
tion, S ∈ F ∩V and for ea
h n ∈ ω we have (s, y) ME

g
˜
(n) ∈ S(n).Thus, the set S and the ME -
ondition (s, y) have the required properties,whi
h 
ompletes the proof. ⊣Sin
e Mathias for
ing has the Laver property and is proper, a 
ountablesupport iteration of Mathias for
ing notions does not add Cohen reals. How-ever, the next result shows that this is not true for a produ
t of Mathiasfor
ing (
ompare with Chapter 23 |Related Result 127 and with Chap-ter 22 |Related Result 121):Fa
t 24.9. The produ
t of any two Mathias for
ing notions always adds Co-hen reals.Proof. Let G1 ×G2 be ME ×ME -generi
 over some model V of ZFC and let

m1 and m2 be the 
orresponding Mathias reals (re
all that m1,m2 ∈ [ω]ω).Further, let m̄1, m̄2 ∈ ωω be the (unique) stri
tly in
reasing fun
tions whi
hmap ω ontom1 andm2 respe
tively (i.e., for i ∈ {1, 2}, m̄i is stri
tly in
reasingand m̄i[ω] = mi). We shall show that cm1,m2 ∈ ω2, de�ned by stipulating
cm1,m2(k) =

{
0 if m̄1(k) ≤ m̄2(k),
1 otherwise,is a Cohen real over V.For s ∈ fin(ω) we de�ne s̄ ∈ |s|ω similarly, i.e., s =

{
s̄(k) : k ∈ |s|

} andfor all k, l ∈ |s| with k < l we have s̄(k) < s̄(l). Further, for s, t ∈ fin(ω) with
|s| = |t| let γs,t ∈ |s|ω be su
h that

γs,t(k) =

{
0 if s̄(k) ≤ t̄(k),
1 otherwise.Now, let

E =
{〈

(s, x), (t, y)
〉
∈ME ×ME : |s| = |t|

}and 
onsider the following fun
tion:
Γ : E −→ ⋃

n∈ω

n2

〈
(s, x), (t, y)

〉
7−→ γs,tObviously, whenever D ⊆ ⋃

n∈ω
n2 is open dense, then Γ−1[D] =

{
p ∈ME ×

ME : Γ (p) ∈ E
} is dense inME ×ME , and sin
e 〉m1,m2〉 isME ×ME -generi
over V, we get that cm1,m2 is a Cohen real over V. ⊣
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ingA Model in whi
h p < hBefore we 
onstru
t a model in whi
h p < h, we shall show that M ≈ U∗MU
˙
,where U =

(
[ω]ω/ fin,≤

) (whi
h was introdu
ed in Chapter 14). To simplifythe notation we write ∗ω instead of [ω]ω/ fin.Lemma 24.10. M ≈ U ∗MU
˙
, where U

˙
is the 
anoni
al U-name for the U-generi
 ultra�lter.Proof. Firstly, re
all that every (U∗MU

˙
)-
ondition is of the form 〈

[z ]̃ , (t, y)
˜

〉,where
[z ]̃ U �(t, y)

˜
is an MU

˙
-
ondition�,in parti
ular, [z ]̃ U y

˜
∈ U

˙
. Furthermore, sin
e U does not add new reals, forevery U-name (t, y)

˜
for anMU

˙
-
ondition, and for every U-
ondition [z ]̃ , thereis an M-
ondition (s, x) in the ground model and a U-
ondition [z′]̃ ≥ [z ]̃su
h that

[z′]̃ U (s, x)
˙

= (t, y)
˜

.With these fa
ts one 
an show that the fun
tion
h : M −→ ∗

ω ×MU

˜
(s, x) 7−→

〈
[x]̃ , (s, x)

˙

〉is a dense embedding�we leave the details as an exer
ise to the reader.Hen
e, by Fa
t 14.3, we get that Mathias for
ing M is equivalent to the two-step iteration U ∗MU
˙
. ⊣As a side-result of Lemma 24.10 we get that whenever m ∈ [ω]ω is a Mathiasreal over V, then the set U = {x ⊆ ω : m ⊆∗ x} is U-generi
 over V, inparti
ular, U is a Ramsey ultra�lter in V[U ]. The following fa
t is just areformulation of this observation.Fa
t 24.11. If m is a Mathias real over V, then m is almost homogeneousfor all 
olourings π : [ω]2 → 2 whi
h belong to V.Proposition 24.12. p = 
ov(M) < h is 
onsistent with ZFC.Proof. By Theorem 21.5, and sin
e ω1 ≤ p, it is enough to show that ω1 =
ov(M) < h = ω2 is 
onsistent with ZFC.First we show that a ω2-iteration with 
ountable support of Mathias for
-ing, starting from a model V of ZFC+ CH, yields a model in whi
h h = ω2.Let Pω2 =

〈
Q
˜
α : α ∈ ω2

〉 be a 
ountable support iteration of Mathiasfor
ing, i.e., for all α ∈ ω2 we have 0α Pα “Q
˜
α is Mathias for
ing�. ByLemma 24.10 we may assume that for all α ∈ ω2 we have

0α Pα “Q
˜
α is the two-step iteration U ∗MU

˙
� .



A model in whi
h p < h 423Let V be a model of ZFC + CH and let G be Pω2 -generi
 over V. Sin
eMathias for
ing is proper, by Theorem 20.5.(a) we have V[G] � c = ω2. Inorder to show that V[G] � h = ω2 it is enough to show that in V[G], theinterse
tion of any family of size ω1 of open dense subsets of ∗ω is non-empty.Claim 1. If ea
h family {Dν : ν ∈ ω1} of open dense subsets of ∗
ω whi
hbelongs to V[G] has non-empty interse
tion, then h > ω1.Proof of Claim 1. The proof is by 
ontraposition. Assume that H = {Aν :

ν ∈ ω1} is a shattering family. For every ν ∈ ω1 let
Dν =

{
y ∈ [ω]ω : ∃z ∈ Aν (y ⊆∗ z)

}
.Sin
e H is shattering, for every x ∈ [ω]ω there is a ν0 ∈ ω1 su
h that x hasin�nite interse
tion with at least two distin
t members of Aν0 , whi
h impliesthat x /∈ Dν0 and shows that ⋂{Dν : ν ∈ ω1} = ∅. ⊣Claim 1The following 
laim is a kind of re�e
tion prin
iple (
f. Theorem 15.2).Claim 2. Let {Dν : ν ∈ ω1} be a family of open dense subsets of ∗

ω whi
hbelongs to V[G]. Then there is an α ∈ ω2 su
h that for every ν ∈ ω1 the set
Dν ∩V[G|α] belongs to V[G|α] and is open dense in ∗

ω
V[G|α].Proof of Claim 2. It is enough to �nd an ordinal α ∈ ω2 su
h that for every ν ∈

ω1, Dν∩V[G|α] belongs toV[G|α] and is dense in ∗
ω
V[G|α] � that Dν∩V[G|α]is open in ∗

ω
V[G|α] follows from the fa
t that V[G|α] is transitive.Sin
e Mathias for
ing is proper and V � CH, by Lemma 20.4 we get thatfor ea
h γ ∈ ω2, V[G|γ ] � CH. For every γ ∈ ω2 let {xγη : η ∈ ω1} be anenumeration of [ω]ω ∩ V[G|γ ]. Sin
e no new reals are added at limit stagesof un
ountable 
o�nality (see Lemma 18.9), for all η, ν ∈ ω2 there is a leastordinal γνη > γ, γνη ∈ ω2, su
h that there is a set yνη ∈ Dν ∩ V[G|γν

η
] with

yνη ⊆∗ xγη . Let β(γ) = ⋃{
γνη : 〈η, ν〉 ∈ ω1 × ω1

} and for ξ ∈ ω1 let
βξ(0) =






⋃
ξ′∈ξ β

ξ′(0) if ξ is a limit ordinal,
β
(
βξ
′

(0)
) if ξ = ξ′ + 1.Then α =

⋃{
βξ(0) : ξ ∈ ω1

}, whi
h is a limit ordinal below ω2 of 
o�nality
ω1, has the required properties. ⊣Claim 2For every ν ∈ ω1 let D′

ν = Dν ∩ V[G|α]. Further, let Uα be the U-generi
Ramsey �lter over V[G|α], determined by G. In the model V[G|α][Uα], Uαmeets every D′
ν (i.e., for every ν ∈ ω1, Uα ∩ D′

ν 6= ∅). Now, for mα, the
MUα

-generi
 Mathias real over V[G|α][Uα] (i.e., the se
ond 
omponent of thede
omposition of Mathias for
ing), we have mα ∈ ⋂{D′
ν : ν ∈ ω1} whi
hshows that ⋂{D′

ν : ν ∈ ω1} is non-empty. Thus, by Claim 1 and sin
e V[G] �
c = ω2, V[G] � h = ω2.It remains to show that V[G] � ω1 = 
ov(M). For this, re
all thatMathias for
ing has the Laver property and therefore, by Proposition 20.2,
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ingMathias for
ing does not add Cohen reals. Now, sin
e the Laver prop-erty is preserved under 
ountable support iteration of proper for
ing no-tions (see Theorem 20.7), a 
ountable support iteration of Mathias for
ingdoes not add Cohen reals to the ground model. Hen
e, by Corollary 21.8(whi
h says that 
ov(M) is preserved if no Cohen reals are added) we have
V[G] � ω1 = 
ov(M). ⊣NotesMathias for
ing restri
ted to happy families (whi
h are slightly more general thanRamsey families) was introdu
ed and investigated by Mathias in [11℄. However, mostof the results presented in this 
hapter 
an be found in Halbeisen [5℄.Related Results139. Mathias for
ing 
ollapses c to h and d to ω1. The fa
t that Mathias for
ing
ollapses c to h is just a 
onsequen
e of Lemma 24.10 and the fa
t that ultra�lterfor
ing U 
ollapses c to h (see Chapter 25 |Related Result 144). Furthermore,Brendle [2, Corollary 3.10.(
)/(d)℄ showed that Mathias for
ing 
ollapses d to

ω1, and sin
e h ≤ d, one gets that two Mathias reals added iteratively alwaysfor
e CH (
f. Chapter 23 |Related Result 134).140. Mathias for
ing and Borel's 
onje
ture. By adding random reals to the model
onstru
ted in the proof of Proposition 24.12, Judah, Shelah, and Woodin [10℄showed that Borel's 
onje
ture is 
onsistent with c being arbitrarily large(
f. Chapter 23 |Related Result 131), and see also Bartoszy«ski and Judah [1,Theorem 8.3.7℄).141. Restri
ted Mathias for
ing whi
h does not add dominating reals. Canjar showedin [3℄ that under the assumption d = c, there exists an ultra�lter U over ωsu
h that MU does not add dominating reals. Further, he showed that su
h anultra�lter is ne
essarily a P -point.142. Between Laver and Mathias for
ing. If U is an ultra�lter, then restri
ted Math-ias for
ing MU is equivalent to restri
ted Laver for
ing LU if and only if Uis a Ramsey ultra�lter (see Judah and Shelah [8, Theorem 1.20℄). On the otherhand, if U is not a Ramsey ultra�lter, then MU and LU 
an be quite di�erent(see Judah and Shelah [9℄).143. The Ramsey property of proje
tive sets∗. The hierar
hy of proje
tive subsetsof [ω]ω is de�ned as follows: Let A ⊆
(
[ω]ω)k be a k-dimensional set (for somepositive integer k). Then A is a Σ

1
1-set if A the proje
tion along [ω]ω of a 
losedset C ⊆

(
[ω]ω)k+1, and A is a Π

1
1-set if it is the 
omplement of a Σ

1
1-set. Ingeneral, for integers n ≥ 1, A is a Σ

1
n+1-set if A the proje
tion along [ω]ω of a

(k + 1)-dimensional Π1
n
-set, and A is a Π

1
n+1-set if it is the 
omplement of a

Σ
1
n+1-set. Furthermore, we say that A is a ∆

1
n
-set if A is a Σ

1
n
-set as well asa Π

1
n
-set. Below, Σ1

n
, Π1

n
, and ∆

1
n
, denote the 
olle
tions of the 
orrespondingsubsets of [ω]ω. The sets A ⊆ [ω]ω belonging to one of the 
olle
tions Σ

1
n
, Π1

n
,



Referen
es 425or ∆1
n
, are 
alled proje
tive sets. With respe
t to in
lusion, we get the followingdiagram:

Σ
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1 Σ

1
2 Σ

1
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∆
1
1 ∆

1
2 ∆

1
3

. . .

 
 

 
 

 
 

Π
1
1 Π

1
2 Π

1
3If all Σ1

n
-sets A ⊆ [ω]ω have the Ramsey property (de�ned in Chapter 9), thenwe shall writeΣ1

n
(R); the notationsΠ1

n
(R) and∆

1
n
(R) are de�ned a

ordingly.It is natural to ask whether all proje
tive sets have the Ramsey property. Eventhough the answer to this question is not de
idable in ZFC, one 
an show thefollowing fa
ts:

• For all n ∈ ω: Σ1
n
(R) ⇐⇒ Π

1
n
(R) (trivial).

• ∆
1
2(R) ⇐⇒ Σ

1
2(R) (see Judah and Shelah [8, Theorem 2.7℄).

• ZFC ⊢ Σ
1
1(R) (see Silver [13℄ or Ellentu
k [4℄).

• L 2∆
1
2(R) (
f. Judah and Shelah [8, Lemma 2.2℄).

• Con(ZFC) ⇒ Con
(ZFC+∆

1
3(R)

) (see Judah [7, Theorem 0.8℄).Furthermore, Mathias showed in [11, Se
tion 5℄ � using Mathias for
ing� thatif ZFC+ �there is a strongly ina

essible 
ardinal � is 
onsistent (where κ isstrongly ina

essible if κ is a regular limit 
ardinal and for all λ < κ, 2λ < κ),then so is ZFC+ �every proje
tive set has the Ramsey property �. However, itis still open whether one 
an take �Mathias' ina

essible� away, i.e., whetherone 
an 
onstru
t a model of ZFC in whi
h all proje
tive sets have the Ram-sey property without assuming the existen
e of a strongly ina

essible 
ardinal(
f. Shelah [12℄). Moreover, it is not even known whether Σ
1
3(R) implies theexisten
e of a strongly ina

essible 
ardinal. For partial results see Halbeisenand Judah [6, Theorem 5.3℄ and Brendle [2, Proposition 4.3℄.Referen
es1. Tomek Bartoszy«ski and Haim Judah, Set Theory: on the stru
ture ofthe real line, A.K.Peters, Wellesley, 1995.2. Jörg Brendle, Combinatorial properties of 
lassi
al for
ing notions, Annalsof Pure and Applied Logi
, vol. 73 (1995), 143�170.3. R. Mi
hael Canjar, Mathias for
ing whi
h does not add dominating re-als, Pro
eedings of the Ameri
an Mathemati
al So
iety, vol. 104 (1988),1239�1248.4. Erik Ellentu
k, A new proof that analyti
 sets are Ramsey , The Journalof Symboli
 Logi
, vol. 39 (1974), 163�165.5. Lorenz Halbeisen, A playful approa
h to Silver and Mathias for
ings, inFoundations of the Formal S
ien
es V: In�nite Games (Stefan Bold,Benedikt Löwe, Thoralf Räs
h, and Johan van Benthem, eds.), Papers of a Con-feren
e held in Bonn, November 26�29, 2004, [Studies in Logi
, vol. 11], CollegePubli
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, vol. 61 (1996), 177�193.
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25On the Existen
e of Ramsey Ultra�lters
So far we have seen that p = c implies the existen
e of Ramsey ultra�lters (seeProposition 10.9). In parti
ular, if we assume CH, then Ramsey ultra�ltersexist. Moreover, by Proposition 13.9 we know that MA(
ountable) impliesthe existen
e of 2c mutually non-isomorphi
 Ramsey ultra�lters. Furthermore,by Theorem 21.5 we know that p ≤ 
ov(M), and Chapter 13 |Related Re-sult 80 tells us that MA(
ountable) is equivalent to 
ov(M) = c. Hen
e,
ov(M) = c is a su�
ient 
ondition for the existen
e of Ramsey ultra�ltersand it is natural to ask whether 
ov(M) = c is ne
essary, too. In the �rstse
tion of this 
hapter we shall give a negative answer to this question by 
on-stru
ting a model of ZFC+
ov(M) < c in whi
h there is a Ramsey ultra�lter.Sin
e in that model we have h = c and h is related to the Ramsey property(
f. Chapter 9), one might think that perhaps h = c implies the existen
e ofa Ramsey ultra�lter; but this is not the 
ase, as we shall see in the se
ondse
tion of this 
hapter.There may be a Ramsey Ultra�lter and 
ov(M ) < cIn the proof of Proposition 24.12 we have 
onstru
ted a model V of ZFC,usually 
alled Mathias' model, in whi
h 
ov(M ) < c. Furthermore, Propo-sition 14.18 states that if G is U-generi
 over V, where U =

(
[ω]ω/ fin,≤

),then ⋃
G is a Ramsey ultra�lter in V[G]; in parti
ular, ultra�lter for
ing Uadds a Ramsey ultra�lter to V. Re
all that [ω]ω/ fin =

{
[x]̃ : x ∈ [ω]ω

} and
[x]̃ ≤ [y]̃ ⇐⇒ y ⊆∗ x. So, at �rst glan
e we just have to for
e with Uover Mathias' model. However, in order to get a model in whi
h there existsa Ramsey ultra�lter and 
ov(M ) < c, it has to be shown that ultra�lter for
-ing U does not 
ollapse c to 
ov(M )� for this, we �rst show that ultra�lterfor
ing U does not 
ollapse c to any 
ardinal below h.Lemma 25.1. If G is U-generi
 over V, then V[G] � c ≥ hV, in other words,ultra�lter for
ing U does not 
ollapse c to any 
ardinal κ < hV.



428 25 On the Existen
e of Ramsey Ultra�ltersProof. Let G be U-generi
 over some modelV of ZFC. Sin
e the for
ing notion
U is σ-
losed (by the proof ofTheorem 8.1), and sin
e σ-
losed for
ing notionsdo not add reals (by Lemma 14.17), ultra�lter for
ing U does not add any newreals to the ground model V. In parti
ular we have V[G] � c ≤ cV. Thus, inorder to show that V[G] � c ≥ hV, it is enough to prove that in V[G] there isno surje
tion from some κ < hV onto c (whi
h implies c ≮ hV).Let κ be a 
ardinal with V � κ < h and let g ∈ V[G] be a fun
tion from κto c. In order to prove that g fails to be surje
tive, it is enough to show that
g is in the ground model V�noti
e that this would imply V � c ≤ κ < h,
ontradi
ting the fa
t that h ≤ c. Let g

˜
be a U-name for g and let x0 ∈ [ω]ωbe su
h that [x0 ]̃ U g

˜
: κ→ c. For ea
h α ∈ κ let

Dα =
{
[y]̃ : |y ∩ x0| < ω ∨

(
y ⊆∗ x0 ∧ ∃γ ∈ c ([y]̃ U g

˜
(α) = γ)

)}
.Ea
h Dα is open dense. Thus, for ea
h α ∈ κ we 
an 
hoose a mad family

A ⊆ ⋃
Dα. Now, by Lemma 8.14 there is a mad family A ⊆ [ω]ω su
h that

∀α ∈ κ ∀y ∈ Aα ∃x ∈ A (x ⊆∗ y) .Furthermore, let D =
{
[y]̃ : ∃x ∈ A (y ⊆∗ x)

}. Then D is open dense andtherefore G ∩ D is non-empty. For [y0 ]̃ ∈ (G ∩ D) we get [y0 ]̃ ≤ [x0 ]̃ , inparti
ular, [y0 ]̃ U g
˜
: κ→ c. Moreover, by 
onstru
tion of D,
∀α ∈ κ ∃γ ∈ c

(
[y0 ]̃ U g

˜
(α) = γ

)
.Let g0 : κ → c be su
h that for all α ∈ κ, [y0 ]̃ U g

˜
(α) = g0(α). Then g0belongs to the ground model V and in addition we have [y0 ]̃ U g

˜
= g0. Now,sin
e [y0 ]̃ ∈ G, this shows that g = g

˜
[G] belongs to V. ⊣With this result, we easily 
an 
onstru
t a model with a Ramsey ultra�lter inwhi
h cov(M ) < c.Proposition 25.2. The existen
e of a Ramsey ultra�lter is 
onsistent withZFC+ 
ov(M ) < c.Proof. Let V be Mathias' model (i.e., the model 
onstru
ted in the proof ofProposition 24.12), and let G be U-generi
 over V. Then we have

V � ω1 = 
ov(M ) < h = c = ω2 ,and by Lemma 25.1 we get V[G] � hV = c, in parti
ular,
V[G] � 
ov(M ) < c .Finally, by Proposition 14.18 we get that ⋃

G is a Ramsey ultra�lter in
V[G], and therefore, V[G] is a model with a Ramsey ultra�lter in whi
h
cov(M ) < c. ⊣



There may be no Ramsey ultra�lter and h = c 429There may be no Ramsey Ultra�lter and h = cThe goal of this se
tion is to show that there are no Ramsey ultra�lters inMathias' model � whi
h is a model of h = c. In fa
t we prove that not evenrapid �lters exist in that model. For this we �rst prove a few auxiliary results
on
erning ω2-iterations of Mathias for
ing. Then we re
all the de�nition ofrapid �lters (
f. Chapter 10 |Related Result 70) and show that every Ram-sey ultra�lter is a rapid �lter; and �nally we prove that there are no rapid�lters in Mathias' model.Let us start by re
alling some terminology of Mathias for
ingM = (M,≤)and by introdu
ing some notation: Let (s, x) and (t, y) be two M-
onditions.Re
all that
(s, x) ≤ (t, y) ⇐⇒ s ⊆ t ∧ y ⊆ x ∧ t \ s ⊆ x .Now, let us de�ne
(s, x) ≤0 (t, y) ⇐⇒ (s, x) ≤ (t, y) ∧ s = t .In order to de�ne �≤n � for positive integers n ∈ ω, we write sets x ∈ [ω]ω inin
reasing order, i.e., x = {ak : k ∈ ω} where k < k′ → ak < ak′ . By abuseof notation we shall just write x = {a0 < a1 < · · · }. Now, for n ∈ ω and

x = {a0 < a1 < · · · } we de�ne
(s, x) ≤n (t, y) ⇐⇒ (s, x) ≤0 (t, y) ∧ ∀k ∈ n (ak ∈ y) .In this notation, the fa
t that Mathias for
ing has pure de
ision (see The-orem 24.3) 
an be expressed as follows: Let p ∈ M be an M-
ondition andlet ϕ be a senten
e of the for
ing language. Then there exists a q ∈ M with

p ≤0 q su
h that either q M ϕ or q M ¬ϕ.In order to get familiar with this notation we prove the following fa
t.Noti
e that this fa
t was already used impli
itly in the previous 
hapter (e.g.,in the proof of Corollary 24.8).Fa
t 25.3. Let g
˜
be an M-name for a fun
tion g ∈ ωω and let n0 ∈ ω be a�xed integer. Further, let p ∈M and k ∈ ω be su
h that

p M g
˜
(n0) ∈ k .Then there are q ∈M and l0 ∈ k su
h that p ≤0 q and

q M g
˜
(n0) = l0 .Proof. Sin
e Mathias for
ing has pure de
ision (see Theorem 24.3), there isa q0 ∈M with p ≤0 q0 su
h that

q0 M g
˜
(n0) = 0 or q0 M

∨

0<l<k

g
˜
(n0) = l ,
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e of Ramsey Ultra�lterswhere ∨0<l<k ϕl is an abbreviation for ϕ1 ∨ · · · ∨ ϕk−1. In the latter 
ase, bypure de
ision we �nd a q1 ∈M with q0 ≤0 q1 su
h that
q1 M g

˜
(n0) = 1 or q1 M

∨

1<l<k

g
˜
(n0) = l .Pro
eeding this way, we �nally �nd a q ∈ M with p ≤0 q and an l0 ∈ k su
hthat q M g

˜
(n0) = l0. ⊣To prove the following lemma, we just have to iterate this pro
edure.Lemma 25.4. Let g

˜
be an M-name for a fun
tion g ∈ ωω and let n0 ∈ ω be a�xed integer. Further, let p ∈M and k ∈ ω be su
h that

p M g
˜
(n0) ∈ k .Then, for every i ∈ ω, there are qi ∈ M and Ii ⊆ k su
h that p ≤i qi,

|Ii| ≤ i+ 1, and
qi M

∨

l∈Ii

g
˜
(n0) = l .Proof. The proof is by indu
tion on i: For i = 0, this is just Fa
t 25.3. So,let us assume that the lemma holds for some i ∈ ω. In other words, there are

qi ∈M and Ii ⊆ k su
h that p ≤i qi, |Ii| ≤ i+ 1, and qi M
∨
l∈Ii

g
˜
(n0) = l.Let p = (s, x) and qi = (s, yi), where x = {a0 < a1 < · · · } and yi = {b0 <

b1 < · · · } respe
tively. Noti
e that for all j ∈ i, aj = bj . If ai = bi, then, for
Ii+1 := Ii and qi+1 := qi, we get

qi+1 M

∨

l∈Ii+1

g
˜
(n0) = l .Otherwise, we have ai < bi (sin
e p ≤i qi), and by Fa
t 25.3, we �nd y′ ⊆ y\aiand li+1 ∈ k su
h that

(
s ∪ {aj : j ≤ i}, y′

)
M g
˜
(n0) = li+1 .Now, for Ii+1 := Ii ∪ {li+1} and qi+1 :=

(
s ∪ {aj : j ≤ i}, y′

) we get
qi+1 M

∨

l∈Ii+1

g
˜
(n0) = l ,where by 
onstru
tion, p ≤i+1 qi+1 and |Ii+1| ≤ i+ 2. ⊣The next result uses the fa
t that Mathias for
ing is proper (see Corol-lary 24.7).



There may be no Ramsey ultra�lter and h = c 431Lemma 25.5. Let V be a model of ZFC, let {α
˜
k : k ∈ ω} be a 
ountable setof M-names for ordinals, su
h that for some p ∈M we have

p M ∀k ∈ ω (α
˜
k ∈ ω2) .Then, for every i ∈ ω, there is a 
ountable set A ⊆ ω2 in V, as well as a

q ∈M with p ≤i q, su
h that
q M ∀k ∈ ω (α

˜
k ∈ A) .Proof. Let N = (N,∈) be a 
ountable elementary submodel of (Hχ,∈) whi
h
ontains M, {α

˜
k : k ∈ ω}, and p, where p = (s, x). Sin
e N is 
ountable(in V), there exists a Mathias real mG ∈ [s, x]ω ∩ V over N. Noti
e that

(s,mG \ s) ≥ (s, x) and that (s,mG \ s) belongs to V. By Corollary 24.6,every m′
G ∈ [s,mG \ s]ω is a Mathias real over N, and hen
e, the M-
ondition

q = (s,mG \ s) is N-generi
. Now, for A := N ∩ ω2, whi
h is 
ountable in
V, we get that q M ∀k ∈ ω (α

˜
k ∈ A), whi
h proves the lemma in the 
asewhen i = 0. For i > 0, we 
an pro
eed as in the proof of Lemma 25.4� thedetails are left as an exer
ise to the reader. ⊣In the following result we introdu
e what is 
alled a fusion argument:Fa
t 25.6. Let 〈pn : n ∈ ω〉 be a sequen
e of M-
onditions su
h that for all

n ∈ ω, pn ≤ pn+1. Further assume that there is an m0 ∈ ω su
h that for all
n ≥ m0, pn ≤n pn+1. Then there exists an M-
ondition pω su
h that for all
n ≥ m0, pn ≤n pω.Proof. For n ∈ ω, let pn = (sn, xn) where xn = {xn(0) < xn(1) < · · · }, andde�ne

pω =
(
sm0 ∪ {xm0(i) : i ∈ m0}, {xi(i − 1) : m0 ∈ i ∈ ω}

)
.We leave it as an exer
ise to the reader to show that pω has the requiredproperties. ⊣Below we shall generalise the previous results to 
ountable support itera-tions of Mathias for
ing, but �rst let us introdu
e some notations: Let V bea model of ZFC, let Pω2 = 〈Qγ : γ ∈ ω2〉 be the 
ountable support iteration oflength ω2 of Mathias for
ing M, and let G = 〈G(γ) : γ ∈ ω2〉 be Pω2-generi
over V. Furthermore, for β ≤ ω2, K ∈ fin(β), Pβ-
onditions p and q, and

n ∈ ω, de�ne
p ≤nK q ⇐⇒ p ≤ q ∧ ∀γ ∈ K

(
q|γ Pγ p(γ) ≤n q(γ)

)
.The next result shows how fusion arguments work in 
ountable supportiterations of Mathias for
ing.
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e of Ramsey Ultra�ltersLemma 25.7. Let β be an ordinal with 1 ≤ β ≤ ω2 and let 〈pn : n ∈ ω〉 bea sequen
e of Pβ-
onditions. Furthermore, let 〈Kn : n ∈ ω〉 be an in
reasing
hain of �nite subsets of β (i.e., n < n′ → Kn ⊆ Kn′) su
h that
⋃

n∈ω

Kn =
⋃

n∈ω

supp(pn) and ∀n ∈ ω (pn ≤nKn
pn+1) .Then there is a Pβ-
ondition pω su
h that for ea
h n ∈ ω, pn ≤nKn

pω.Proof. For every γ ∈ β, pn(γ) is a Pγ-name for anM-
ondition. Thus, pn(γ) =
(s
˜
n, x
˜
n) where x

˜
n = {x

˜
n(0) < x

˜
n(1) < · · · }. For γ ∈ ⋃

n∈ωKn, let m0 =
min{n ∈ ω : γ ∈ Kn} and de�ne

pω(γ) =
(
s
˜
m0 ∪ {x

˜
m0(i) : i ∈ m0}, {x

˜
i(i − 1) : m0 ∈ i ∈ ω}

)
.In the 
ase when γ /∈ ⋃

n∈ωKn de�ne pω(γ) = 0γ . We leave it as an exer
iseto the reader to show that pω has the required properties. ⊣In order to state the next result, we have to introdu
e again some notation:For ordinals α < β ≤ ω2 we say that q is a Pαβ-
ondition i� there is a Pω2-
ondition p = 〈p(γ) : γ ∈ ω2〉 su
h that q = 〈p(γ) : α ≤ γ < β〉. In parti
ular,
P0β-
onditions are the same as Pβ-
onditions.Lemma 25.8. Let β be an ordinal with 1 ≤ β ≤ ω2 and let p be a Pβ-
ondition. Furthermore, let K = {α1 < · · · < αi} be a �nite subset of β (i.e.,
i ∈ ω) and let n ∈ ω.(a) Let {α

˜
k : k ∈ ω} be a 
ountable set of Pβ-names for ordinals su
h that

p Pβ ∀k ∈ ω (α
˜
k ∈ ω2) .Then there is a 
ountable set A ⊆ ω2 in V and a Pβ-
ondition p′ with p ≤nK p′su
h that

p′ Pβ ∀k ∈ ω (α
˜
k ∈ A) .(b) Let δ be an ordinal, where β < δ ≤ ω2, and assume that for some Pβ-name

r
˜
we have

p Pβ “r
˜
is a Pβδ-
ondition�.Then there is a Pβ-
ondition p′ with p ≤nK p′ and a Pβδ-
ondition q su
h that

p′ Pβ r
˜
= q .In parti
ular, p′ ∪ q is a Pδ-
ondition (whi
h is in general not the 
ase for

p′ ∪ r
˜
).(
) Let g

˜
be a Pβ-name for a fun
tion g ∈ ωω and let n0 ∈ ω be a �xedinteger. Further, assume that for some k ∈ ω,

p Pβ g
˜
(n0) ∈ k .



There may be no Ramsey ultra�lter and h = c 433Then there is an I ⊆ k with |I| ≤ (n+1)i and a Pβ-
ondition p0 with p ≤nK p0su
h that
p0 Pβ

∨

l∈I

g
˜
(n0) = l .Proof. (a) Firstly re
all that sin
e Mathias for
ing is proper, also Pδ, as a
ountable support iteration of proper for
ing notions, is proper (see Theo-rem 20.3.(b)). Thus, let N = (N,∈) be a 
ountable elementary submodel of

(Hχ,∈) whi
h 
ontains Pδ, {α
˜
k : k ∈ ω}, p, and r

˜
. Now, by similar argumentsas in the proof of Lemma 25.5 we 
an 
onstru
t a Pβ-
ondition p′ with therequired properties� the details are left as an exer
ise to the reader.(b) As a 
onsequen
e of (a), there is a Pβ-
ondition p′ with p ≤nK p′ as wellas a 
ountable set A ⊆ [β, δ) in V su
h that

p′ Pβ supp(r
˜
) ⊆ A .For γ ∈ [β, δ) \A, let q(γ) := 0γ . Otherwise, for γ ∈ A, let q(γ) := r

˜
(γ). Then

q ∈ Pβδ and p′ Pβ r
˜
= q , as required.(
) The proof is by indu
tion on β, where 1 ≤ β ≤ ω2: Thus, we have to
onsider the 
ase when β = 1, whi
h we have already done in Lemma 25.4,the 
ase when β is a su

essor ordinal, and the 
ase when β is a limit ordinal.For β = δ+1, where 1 ≤ δ, we just 
onsider the 
ase when δ = αi and leavethe other 
ase� whi
h is similar to the 
ase when β is a limit ordinal� asan exer
ise to the reader. For p(δ) = (s

˜
, x
˜
), where x

˜
= {x

˜
(0) < x

˜
(1) < · · · },and for every j ≤ n let

r
˜
j =

(
s
˜
∪ {x

˜
(i) : i ∈ j}, {x

˜
(i) : j ≤ i ∈ ω}

)
.Noti
e that r

˜
j is a Pδ-name for an M-
ondition. In parti
ular, if p|δ ∈ G|δ,where G|δ is Pδ-generi
 over V, then V[G|δ] � “r

˜
j [G|δ] is an M-
ondition�.Sin
e Lemma 25.4 holds in V[G|δ], there is a Pδ-name r

˜
′
j for an M-
onditionsu
h that

p|δ Pδ

(
r
˜
j ≤0 r

˜
′
j ∧ ∃l ∈ k

(
r
˜
′
j M g

˜
(n0) = l

))
.In parti
ular, if p|δ ∈ G|δ, then, for some l ∈ k,V[G|δ] � r

˜
′
j [G|δ] M g

˜
(n0) = l.Now, by indu
tion on j, where 0 ≤ j ≤ n, we 
an 
onstru
t Pδ-
onditions qj ,

Pδ-names for M-
onditions r
˜
′
j , as well as subsets Ij ⊆ k, whi
h satisfy thefollowing 
onditions:

• p|δ ≤nK∩δ q0 ≤nK∩δ · · · ≤nK∩δ qn,
• for ea
h j ≤ n we have |Ij | ≤ (n+ 1)i−1,
• for ea
h j ≤ n, qj Pδ r

˜
′
j M g

˜
(n0) ∈ Ij (for this, en
ode r

˜
′
j M g

˜
(n0) = lby a fun
tion g

˜
r
˜
′
j
, stipulating g

˜
r
˜
′
j
(n0) = l ⇔ r

˜
′
j M g

˜
(n0) = l, and applyLemma 25.4),

• r
˜
′
n is su
h that qn ∪ r

˜
′
n Pβ g

˜
(n0) ∈

⋃
j≤n Ij .
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e of Ramsey Ultra�ltersThen, for p0 := qn ∪ r
˜
′
n and I :=

⋃
j≤n Ij we have p ≤nK p0, |I| ≤ (n + 1)i,and p0 Pβ

∨
l∈I g

˜
(n0) = l, as required.Assume now that β is a limit ordinal and that the lemma is true for αi+1(noti
e that αi + 1 < β). Let r

˜
be a Pαi+1-name for some Pαi+1β-
onditionsu
h that

p|αi+1 Pαi+1

(
p|[αi+1β) ≤ r

˜
∧ ∃l ∈ k

(
r
˜

Pαi+1β
g
˜
(n0) = l

))
.Applying part (b) of the lemma to αi + 1, we get a Pαi+1-
ondition p′ with

p|αi+1 ≤nK p′ and a Pαi+1β-
ondition q su
h that
p′ Pαi+1 r

˜
= q .By indu
tion hypothesis, there is a Pαi+1-
ondition q′ with p′ ≤nK q′ and an

I ⊆ k with |I| ≤ (n+ 1)i, su
h that
q′ Pαi+1 ∃l ∈ I

(
q Pαi+1β

g
˜
(n0) = l

)
.Finally, let p0 = q′ ∪ q. Then p0 has the required properties. ⊣The next result, whi
h will be 
ru
ial in the proof that there are no rapid�lters in Mathias' model, 
on
ludes our investigation of ω2-stage 
ountablesupport iterations of Mathias for
ing.Lemma 25.9. Let V be a model of ZFC, let Pω2 be the 
ountable supportiteration of length ω2 of Mathias for
ing M, and let G = 〈G(γ) : γ ∈ ω2〉 be

Pω2-generi
 over V. Furthermore, let f
˜
be an M-name for the �rst Mathiasreal, more pre
isely, f

˜
is the name for a stri
tly in
reasing fun
tion in ωω su
hthat

0ω2 Pω2

{
f
˜
(i) : i ∈ ω

}
=

⋃{
s : ∃x ∈ [ω]ω

(
(s, x) ∈ G

˙
(0)

)}
.If g

˜
is a Pω2 -name for a stri
tly in
reasing fun
tion in ωω su
h that for some

Pω2-
ondition p we have
p Pω2

∀i ∈ ω
(
f
˜
(i) < g

˜
(i)

)
,then there are in�nite sets I0,I1 ⊆ ω in V, where I0 ∩ I1 is �nite, and

Pω2-
onditions p̂0, p̂1, where p̂0 ≥ p ≤ p̂1, su
h that
p̂0 Pω2

g
˜
[ω] ⊆ I0 and p̂1 Pω2

g
˜
[ω] ⊆ I1 .Proof. Before we 
an start the proof, we have to introdu
e some notations:Firstly noti
e that if q is a Pω2 -
ondition, then q(0) is an M-
ondition, i.e.,

q(0) = (s, x) where s ∈ fin(ω) and x ∈ [ω]ω. We 
all s the stem of q(0)and write s = stem
(
q(0)

). Let q be a Pω2-
ondition su
h that the stem of
q(0) is empty, i.e., q(0) = (∅, x) for some x ∈ [ω]ω. For every t ∈ fin(x) let
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q(0)t := (t, x\t̄+), where t̄+ = max(t)+1. Noti
e that q(0)t is anM-
ondition,
stem

(
q(0)t

)
= t, and q(0) ≤ q(0)t.Now, let us begin with the proof: Assume that for some Pω2-
ondition pwe have

p Pω2
∀i ∈ ω

(
f
˜
(i) < g

˜
(i)

)
.By indu
tion on n we shall 
onstru
t an in�nite sequen
e 〈pn : n ∈ ω〉 of

Pω2-
onditions su
h that p = p0 and for every n ∈ ω we have pn ≤nKn
pn+1,where the �nite sets Kn ⊆ ω2 are su
h that 0 ∈ K0, n < n′ → Kn ⊆ Kn′ , and⋃

n∈ωKn =
⋃
n∈ω supp(pn) (the 
onstru
tion of the Kn's with the requiredproperties is left as an exer
ise to the reader).For the sake of simpli
ity, let us assume that the stem of p(0) is empty(i.e., p = (∅, x) for some x ∈ [ω]ω), whi
h implies that the stems of the pn'sare empty, too. This way we even get in�nite sets I0,I1 ⊆ ω su
h that

I0 ∩ I1 = ∅. We leave it as an exer
ise to the reader to verify that the 
asewhen the stem of p(0) is non-empty yields in�nite sets I0 and I1 su
h thatthe interse
tion I0 ∩ I1 is still �nite.The goal is that for ea
h n ∈ ω and for ea
h t = {k0 < · · · < kn+1} ⊆ xn+1,where pn+1(0) = (∅, xn+1), we have
pn+1(0)t

⌢pn+1|[1,ω2) Pω2
g
˜
[ω] ∩ [kn, kn+1) ⊆ It ,where It ⊆ [kn, kn+1) is su
h that |It| ≤ (n + 1) · (n + 1)|Kn|. The in�nitesequen
e 〈pn : n ∈ ω〉 is 
onstru
ted as follows: Assume that we have already
onstru
ted pn for some n ∈ ω (re
all that p0 = p). So, pn = (∅, xn) for some

xn ∈ [ω]ω. Let t = {k0 < · · · < kn+1} ⊆ xn be an arbitrary but �xed subsetof xn of 
ardinality n+ 2 and let pt := pn(0)t
⌢pn|[1,ω2). Then, for ea
h i ≤ n,we obviously have

pt Pω2
g
˜
(i) ≥ kn+1 ∨

∨

l∈kn+1

g
˜
(i) = l .Noti
e that sin
e pt Pω2

∀i ≤ n + 1
(
f
˜
(i) = ki

), and sin
e g
˜
is stri
tly in-
reasing, pt Pω2

∀i > n
(
g
˜
(i) > kn+1

). Hen
e, by applying Lemma 25.8.(
)
(n + 1)-times (for ea
h i ≤ n), we �nd a Pω2-
ondition qt with pt ≤nKn

qt, aswell as a set It ⊆ [kn, kn+1), su
h that |It| ≤ (n+ 1) · (n+ 1)|Kn| and
qt Pω2

g
˜
[ω] ∩ [kn, kn+1) ⊆ It .Sin
e t was arbitrary, for ea
h t ∈ fin(xn) of 
ardinality n + 2 we �nd a qtwith pt ≤nKn

qt su
h that qt Pω2
g
˜
[ω] ∩ [kn, kn+1) ⊆ It, where It is as above.Moreover, by indu
tion on max(t) (similar to the proof of Claim below),we 
an 
onstru
t a Pω2-
ondition pn+1 su
h that pn+1(0) = (∅, xn+1) and

pn ≤nKn
pn+1, and for every �nite set t = {k0 < · · · < kn+1} ⊆ xn+1 of
ardinality n+ 2 we have

pn+1(0)t M pn+1|[1,ω2) = qt|[1,ω2)
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e of Ramsey Ultra�ltersand
pn+1(0)t

⌢pn+1|[1,ω2) Pω2
g
˜
[ω] ∩ [kn, kn+1) ⊆ It .Thus, pn+1 has the required properties, whi
h 
ompletes the 
onstru
tion ofthe sequen
e 〈pn : n ∈ ω〉.By Lemma 25.7, let pω be the fusion of the pn's. Sin
e p ≤0 pω, the stemof pω is empty, and therefore pω = (∅, z) for some z ∈ [ω]ω. By 
onstru
tion,for ea
h t = {k0 < · · · < km+1} ∈ fin(z), where m ∈ ω, we have

pω(0)t
⌢pω|[1,ω2) Pω2

g
˜
[ω] ∩ [km, km+1) ⊆ It .It remains to 
onstru
t in�nite sets I0,I1 ⊆ ω in V, where I0 ∩I1 is �nite,and Pω2-
onditions p̂0, p̂1, where p̂0 ≥ pω ≤ p̂1, su
h that p̂0 Pω2

g
˜
[ω] ⊆ I0and p̂1 Pω2

g
˜
[ω] ⊆ I1. For this, we �rst prove the followingClaim. Let pω(0) = (∅, z) (for some z ∈ [ω]ω), and for every x ∈ [z]ω, let

Ix :=
⋃{

It : t ∈ fin(x)}, where It is as above. Then there are in�nite sets
x̂, ŷ ∈ [z]ω su
h that Ix̂ ∩ Iŷ is �nite. Moreover, sin
e we assumed that
stem

(
pω(0)) = ∅, we even get Ix̂ ∩ Iŷ = ∅.Proof of Claim. By 
onstru
tion, for every t = {k0 < · · · < kn+1} ∈ fin(z),

It ⊆ [kn, kn+1) and |It| ≤ (n+1)|Kn|+1. Noti
e that the size of It depends on
|t|, but not on the parti
ular set t. For every n ∈ ω, let F (n) := (n+1)|Kn|+1.Then, for every non-empty t ∈ fin(z) we have |It| ≤ F (|t|) (noti
e that forevery k0 ∈ z, I{k0} = ∅). For ea
h non-empty set s = {k0 < · · · < kn} ∈ fin(z)let su

z(s) = {

t ∈ fin(z) : t = {k0 < · · · < kn < kn+1}
}
,i.e., t ∈ su

z(s) i� t = s ∪ {kn+1} for some kn+1 ∈ z with kn+1 > kn.Then, for ea
h non-empty set s = {k0 < · · · < kn} ∈ fin(z) we get that

Es =
{
It : t ∈ su

z(s)} is an in�nite set of �nite subsets of [kn, ω), wherethe 
ardinality of the �nite sets It ∈ Es is bounded by F (|s|+ 1

). By similararguments as in the proof of the ∆-System Lemma 13.2, for ea
h non-emptyset s = {k0 < · · · < kn} ∈ fin(z) we 
an 
onstru
t an in�nite set z′ ∈ [z]ω anda �nite set ∆s ⊆ [kn, ω), su
h that for any distin
t t, t′ ∈ su

z′(s) we have
It ∩ It′ ⊆ ∆s. In other words, for any distin
t t, t′ ∈ su

z′(s), It \ ∆s and
It′ \∆s are disjoint. Moreover, we 
an 
onstru
t an in�nite set z0 ∈ [z]ω, andfor every non-empty s = {k0 < · · · < kn} ∈ fin(z0) a �nite set ∆s ⊆ [kn, ω),su
h that for any distin
t t, t′ ∈ su

z0(s) we have

It ∩ It′ ⊆ ∆s . (∆)Now, we are ready to 
onstru
t the sets x̂ and ŷ in [z]ω with the requiredproperties: Firstly, let x0 and y0 be two disjoint in�nite subsets of z0. Let
k0 = min(x0) and let l0 ∈ y0 be su
h that l0 > max

(
∆{k0}

). By (∆) we �ndsets x1 ∈ [x0]
ω and y1 ∈ [y0]

ω su
h that for all t ∈ su

x1({k0}) and all t′ ∈su

y1({l0}), It ∩ It′ = ∅. Now, 
hoose k1 ∈ x1 su
h that k1 > k0, and l1 ∈ y1su
h that l1 > max
{
max(∆{k1}),max(∆{k0,k1})

}. Again by (∆) we �nd sets
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x2 ∈ [x1]

ω and y2 ∈ [y1]
ω su
h that for all t ∈ su

x2({k1})∪ su

x2({k0, k1})and all t′ ∈ su

y2({l1}) ∪ su

y2({l0, l1}), It ∩ It′ = ∅. Pro
eeding this way,we �nally get x̂, ŷ ∈ [z0]
ω su
h that for all t ∈ fin(x̂) and all t′ ∈ fin(ŷ) wehave It ∩ It′ = ∅, and hen
e, Ix̂ ∩ Iŷ = ∅. ⊣ClaimNow, let p̂0 := (∅, x̂)⌢pω|[1ω2) and p̂1 := (∅, ŷ)⌢pω|[1ω2). Then p̂0 ≥ p ≤ p̂1,and by 
onstru
tion of x̂ and ŷ we have

p̂0 Pω2
g
˜
[ω] ⊆ Ix̂ and p̂1 Pω2

g
˜
[ω] ⊆ Iŷ ,where Ix̂ ∩ Iŷ = ∅, whi
h 
ompletes the proof. ⊣Before we show that every Ramsey ultra�lter is rapid, let us brie�y re
allthe notion of rapid �lters (given in Chapter 10 |Related Result 70), as wellas the notion of Q-points (also given in Chapter 10):A free �lter F ⊆ [ω]ω is 
alled a rapid �lter if for ea
h f ∈ ωω thereexists an x ∈ F su
h that for all n ∈ ω, ∣∣x ∩ f(n)

∣∣ ≤ n. Furthermore, a freeultra�lter U ⊆ [ω]ω is a Q-point if for ea
h partition of ω into �nite pie
es
{In ⊆ ω : n ∈ ω}, (i.e., for ea
h n ∈ ω, In is �nite), there is an x ∈ U su
hthat for ea
h n ∈ ω, |x ∩ In| ≤ 1. The following fa
t is just a 
onsequen
e ofthese de�nitions.Fa
t 25.10. Every Q-point is a rapid �lter.Proof. Let U ⊆ [ω]ω be a Q-point and let f ∈ ωω be any stri
tly in
reasingfun
tion. Let I0 :=

[
0, f(0)

), and for n ∈ ω let In+1 :=
[
f(n), f(n+1)

). Then
{In ⊆ ω : n ∈ ω} is obviously a partition of ω into �nite pie
es. Sin
e Uis a Q-point (in parti
ular a free ultra�lter), there is an x ∈ U su
h that
x∩f(0) = ∅ and for ea
h n ∈ ω, |x∩In| ≤ 1, i.e., for all n ∈ ω, |x∩f(n)| ≤ n.Thus, U is a rapid �lter. ⊣By Fa
t 10.10 we know that every Ramsey ultra�lter is a Q-point, and there-fore, every Ramsey ultra�lter is rapid.Now, we are ready to prove the main result of this se
tion.Proposition 25.11. It is 
onsistent with ZFC+h = c that there are no rapid�lters. In parti
ular, sin
e every Ramsey ultra�lter is rapid, it is 
onsistentwith ZFC+ h = c that there are no Ramsey ultra�lters.Proof. Sin
e h = c in Mathias' model, it is obviously enough to prove thatthere are no rapid �lters in Mathias' model. So, let Pω2 = 〈Qγ : γ ∈ ω2〉 bethe 
ountable support iteration of length ω2 of Mathias for
ing M, starting ina model V of ZFC+CH. Furthermore, let F

˜
be a Pω2-name for a �lter in the

Pω2-generi
 extension of V (i.e., 0ω2 Pω2
“F
˜

is a �lter�) and let G be Pω2-generi
 over V. Then, similar to Claim 2 in the proof of Proposition 24.12,there is an α < ω2 su
h that F
˜
[G] ∩V[G|α] ∈ V[G|α].Let us work in the model V[G|α], i.e., we 
onsider V[G|α] as the ground
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e of Ramsey Ultra�ltersmodel: In V[G|α], let f
˜
be an M-name in V[G|α] for the next Mathias real,i.e., f

˜
is the M-name for a stri
tly in
reasing fun
tion in ωω su
h that
0αω2 Pαω2

{
f
˜
(n) : n ∈ ω

}
=

⋃{
s : ∃x ∈ [ω]ω

(
(s, x) ∈ G

˙
(α)

)}
.Assume towards a 
ontradi
tion that F

˜
is rapid. Then there is a Pαω2-name

g
˜
for a stri
tly in
reasing fun
tion in ωω and a Pαω2-
ondition p, su
h that

p Pαω2
∀n ∈ ω

(
g
˜
(n) > f

˜
(n)

)
∧ g
˜
[ω] ∈ F

˜
. (∗)By Lemma 25.9 (with respe
t to the ground model V[G|α]), there are Pαω2-
onditions p̂0 and p̂1 with p̂0 ≥ p ≤ p̂1, and almost disjoint sets I0,I1 ∈ [ω]ωin V[G|α], su
h that

p̂0 Pαω2
g
˜
[ω] ⊆ I0 and p̂1 Pαω2

g
˜
[ω] ⊆ I1 .In parti
ular, if p̂0 Pαω2

g
˜
[ω] ∈ F

˜
[G|α], then p̂1 Pαω2

g
˜
[ω] /∈ F

˜
[G|α], andvi
e versa. Hen
e, p / Pαω2

g
˜
[ω] ∈ F

˜
[G|α], whi
h is a 
ontradi
tion to (∗).Thus, sin
e F

˜
was arbitrary, there are no rapid �lters in V[G]. ⊣NotesUsing results of Laver's ([7, Lemmata 5&6℄), Miller [8℄ showed that there are norapid �lters in Laver's model (
f. Related Result 146). In the proof that there areno rapid �lters in Mathias' model given above, we essentially followed Miller's proofby translating the 
orresponding results of Laver's to iterations of Mathias for
ing.Related Results144. Ultra�lter for
ing U 
ollapses c to h. By Lemma 25.1 we already know thatultra�lter for
ing U does not 
ollapse c to any 
ardinal κ < h, i.e., if G is U-generi
 over V, thenV[G] � c ≥ hV. Thus, in order to show thatV[G] � c = hV,it is enough to show that V[G] � c ≤ hV. In parti
ular, it is enough to showthat there is a surje
tion in V[G] whi
h maps hV onto c: Let us work in themodel V. By the Base Matrix Lemma 2.11 of Bal
ar, Pelant, and Simon [1℄(see Chapter 8 |Related Result 51), there exists a shattering family H0 ={

Aξ ⊆ [ω]ω : ξ ∈ h
} whi
h has the property that for ea
h x ∈ [ω]ω there is a

ξ ∈ h and an A ∈ Aξ su
h that A ⊆∗ x. Now, for ea
h A ∈ [ω]ω let CA ⊆ [A]ωbe an almost disjoint family of 
ardinality c and let hA : CA ։ c be a surje
tion.Furthermore, we de�ne the U-name f
˜
for a fun
tion from some subset of h to cby stipulating

f
˜
=

{〈
〈ξ, γ〉

˙
, [x]̃

〉
: ξ ∈ h ∧ γ ∈ c ∧ ∃A ∈ Aξ

(
x ∈ CA ∧ hA(x) = γ

)}
.In parti
ular, if 〈〈ξ, γ〉

˙
, [x]̃

〉
∈ f
˜
, then

[x]̃ U f
˜
(ξ) = γ .
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es 439By the properties of H0, for every y ∈ [ω]ω there is a ξ ∈ h and an A ∈ Aξ su
hthat A ⊆∗ y. Thus, there exists an x ∈ CA (in parti
ular, x ⊆∗ y), su
h that
hA(x) = γ. In other words, for every y ∈ [ω]ω and ea
h γ ∈ c, there are x ⊆∗ yand ξ ∈ h su
h that [x]̃ U f

˜
(ξ) = γ. Hen
e,

Dγ =
{
[x]̃ : [x]̃ U ∃ξ ∈ c

(
f
˜
(ξ) = γ

)}is an open dense subset of [ω]ω/fin, and therefore, f
˜
[G] is a surje
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26Combinatorial Properties of Sets of Partitions
In this 
hapter we shall investigate 
ombinatorial properties of sets of par-titions of ω, where we try to 
ombine as many topi
s or voi
es (to use amusi
al term) as possible. As explained in Chapter 11, partitions of ω are tosome extent the dual form of subsets of ω. Thus, we shall use the term �dual�to denote the partition forms of Mathias for
ing, of Ramsey ultra�lters, of
ardinal 
hara
teristi
s, et 
etera. Firstly, we shall investigate 
ombinatorialproperties of a dual form of unrestri
ted Mathias for
ing (whi
h was intro-du
ed in Chapter 24). In parti
ular, by using the Partition Ramsey The-orem 11.4, whi
h is a dual form of Ramsey's Theorem 2.1 (and whi
h wasthe main result of Chapter 11), we shall prove that dual Mathias for
ing haspure de
ision. Se
ondly, we shall dualise the shattering number h (introdu
edin Chapter 8 and further investigated in Chapter 9), and show how it 
an bein
reased by iterating dual Mathias for
ing (
f. Proposition 24.12). Finally,we shall dualise the notion of Ramsey ultra�lters (introdu
ed and investigatedin Chapter 10), and show� using the methods developed in Part II and theprevious 
hapter� that the existen
e of these dual Ramsey ultra�lters is 
on-sistent with ZFC+ CH as well as with ZFC+ ¬CH.A Dual Form of Mathias For
ingFirstly, let us re
all some terminology� for more detailed de�nitions seeChapter 11: The set of all in�nite partitions of ω is denoted by (ω)ω, and
(N) denotes the set of all (�nite) partitions of natural numbers. For P ∈ (N)or P ∈ (ω)ω, let Min(P ) :=

{
min(p) : p ∈ P

} and Dom(P ) :=
⋃
P . Forpartitions P and Q (e.g., P ∈ (N) and Q ∈ (ω)ω) we write P ⊑ Q if Qrestri
ted to Dom(P ) is �ner than P . Furthermore, for partitions P and

Q, let P ⊓ Q (P ⊔ Q) denote the �nest (
oarsest) partition R su
h that
Dom(R) = Dom(P ) ∪ Dom(Q) and R is 
oarser (�ner) than P and Q. Let
S ∈ (N) and X ∈ (ω)ω. If for ea
h s ∈ S there exists an x ∈ X su
h that
x ∩ Dom(S) = s, then we write S 4 X . Similarly, for S, T ∈ (N), where
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Dom(S) ⊆ Dom(T ), we write S 4 T if for ea
h s ∈ S there exists a t ∈ Tsu
h that t∩Dom(S) = s. Finally, for S ∈ (N) and X ∈ (ω)ω with S ⊑ X , let

(S,X)ω =
{
Y ∈ (ω)ω : S 4 Y ⊑ X

}
.A set (S,X)ω, where S and X are as above, is 
alled a dual Ellentu
kneighbourhood.Now, we are ready to de�ne a dual form of Mathias for
ing (i.e., a form ofMathias for
ing in terms of partitions): Similar to Mathias for
ing M, intro-du
ed in Chapter 24, we de�ne dual Mathias for
ing M∗ = (M∗,≤) bystipulating:

M∗ =
{
(S,X) : S ∈ (N) ∧ X ∈ (ω)ω ∧ S 4 X

}

(S,X) ≤ (T, Y ) ⇐⇒ (T, Y )ω ⊆ (S,X)ωNoti
e that (S,X) ≤ (T, Y ) ⇐⇒ S 4 T ∧Y ⊑ X . Thus, we get dual Mathiasfor
ing from Mathias for
ing by repla
ing subsets of ω with partitions of ω.However, as we shall see below, dual Mathias for
ing is mu
h stronger thanMathias for
ing (see also Related Result 151), but �rst, let us show thatdual Mathias for
ing is at least as strong as Mathias for
ing:Fa
t 26.1. Dual Mathias for
ing adds Mathias reals and 
onsequently it alsoadds dominating reals.Proof. Firstly, let M0 be the set of all M-
onditions (s, x) for whi
h we have
0 ∈ s, or, in 
ase s = ∅, 0 ∈ x, and let M0 = (M0,≤). Obviously, the for
ingnotions M0 and M are equivalent. Se
ondly, de�ne the fun
tion h :M∗ →M0by stipulating

h : M∗ −→ M0

(S,X) 7−→
(
Min(S),Min(X) \Min(S)

)
.Then, the fun
tion h satis�es the following 
onditions:

• for all q0, q1 ∈M∗, if q0 ≤M∗ q1 then h(q0) ≤M h(q1),
• for all q ∈ M∗ and ea
h p ∈ M0 with h(q) ≤M p, there is a q′ ∈ M∗ with

q ≤M∗ q′ su
h that p ≤M h(q′).We leave it as an exer
ise to the reader to verify that this implies that whenever
G∗ is M∗-generi
, then {(

Min(S),Min(X) \ Min(S)
)
∈ M0 : (S,X) ∈ G∗

}is M0-generi
. Thus, dual Mathias for
ing M∗ adds Mathias reals, and sin
eMathias reals are dominating, it also adds dominating reals. ⊣One of the main features of Mathias for
ing is that it has pure de
ision.This is also the 
ase for dual Mathias for
ing and the proof is essentially thesame as the proof for the 
orresponding result for Mathias for
ing. However,at a 
ru
ial point we have to use the Partition Ramsey Theorem 11.4�adual form of Ramsey's Theorem 2.1�whi
h will serve as a kind of Pigeon-Hole Prin
iple.



A dual form of Mathias for
ing 443Theorem 26.2. Let (S0, X0) be an M∗-
ondition and let ϕ be a senten
e ofthe for
ing language. Then there exists an M∗-
ondition (S0, Y0) ≥ (S0, X0)su
h that either (S0, Y0) M∗ ϕ or (S0, Y0) M∗ ¬ϕ (i.e., (S0, Y0) de
ides ϕ).Proof. We follow the proof of Theorem 24.3: For any set O ⊆ M∗ whi
h isopen with respe
t to the dual Ellentu
k topology, let
Ō :=

⋃{
(S,X)ω : (S,X) ∈ O

}
.With respe
t to a �xed open set O ⊆M∗, we 
all the 
ondition (S,X) goodif there is a Y ∈ (S, Y )ω su
h that (S,X)ω ⊆ Ō; otherwise, we 
all it bad.Furthermore, we 
all (S,X) ugly if (T ∗, X) is bad for all S 4 T ∗ ⊑ X with

|T | = |S|, where T ∗ := T ∪
{
Dom(T )

}.Claim 1. If the 
ondition (S,X) is bad, then there is a Y ∈ (S,X)ω su
h that
(S, Y ) is ugly.Proof of Claim 1. We follow the proof of Lemma 24.4: Let Z0 := X and let
T0 := S. Assume we have already de�ned Zn−1 ∈ (ω)ω and Tn−1 ∈ (N)for some positive integer n. Let Tn be su
h that S 4 Tn, |Tn| = |S| + n,and T ∗

n 4 Zn−1. Let {Ui : i ≤ m} be an enumeration of all T su
h that
S 4 T ⊑ Tn, |T | = |S| and Dom(T ) = Dom(Tn). Further, let Z−1 := Zn−1.Now, 
hoose for ea
h i ≤ m a partition Zi ∈ (ω)ω su
h that Zi ⊑ Zi−1,
T ∗
n 4 Zi and either (U∗

i , Ui⊓Zi
) is bad or (U∗

i , Z
i)ω ⊆ Ō, and let Zn+1 := Zm.Finally, let Z ∈ (ω)ω be the only partition su
h that for all n ∈ ω, Tn 4 Z.By 
onstru
tion of Z, for all T ∈ (S,Z)(|S|)

∗, where
(S,Z)(|S|)

∗

=
{
T ∈ (N) : |T | = |S| ∧ S 4 T ∧ T ∗ ⊑ Z

}
,we have either (T ∗, Z)ω ⊆ Ō or (T ∗, Z) is bad. Now, for n = |S|, de�ne thesets C0 :=

{
T ∈ (S,Z)(n)

∗

: (T ∗, Z) is bad} and C1 :=
{
T ∈ (S,Z)(n)

∗

:

(T ∗, Z)ω ⊆ Ō
}. Then, by the properties of Z, C0 ∪C1 = (S,Z)(n)

∗. Hen
e, bythe Partition Ramsey Theorem 11.4, there exists a Y ∈ (S,Z) su
h thateither (S, Y )(n)
∗ ⊆ C0 or (S, Y )(n)

∗ ⊆ C1. Thus, sin
e (S,X) is bad, (S, Y ) isugly. ⊣Claim 1Moreover, by a similar 
onstru
tion as in the proof of Lemma 24.5 we 
anprove the followingClaim 2. If the 
ondition (S,X) is bad, then there is a Y ∈ (S,X)ω su
h that
(S, Y )ω ∩ Ō = ∅.Proof of Claim 2. By Claim 1, there is a Z0 ∈ (S,X)ω su
h that (S,Z0)is ugly, i.e., for all T ∈ (N) with S 4 T ∗ ⊑ Z0 and |T | = |S|, (T ∗, Z0)is bad. Let T0 ∈ (N) be su
h that T ∗

0 4 Z0 and |T0| = |S|. Then, sin
e
(S,Z0) is ugly, (T ∗

0 , Z0) is bad. Assume that for some n ∈ ω we have already
onstru
ted (Tn, Zn) ≥ (T0, Z0) with T ∗
n 4 Zn and |Tn| = |S|+ n, su
h thatfor all T ∈ (N) with T0 4 T ⊑ Tn and Dom(T ) = Dom(Tn) we have either

(T ∗, T ⊓Zn) is bad or (T, Zn)ω ⊆ Ō. Let Tn+1 be su
h that T ∗
n 4 T ∗

n+1 4 Zn



444 26 Combinatorial Properties of Sets of Partitionsand |Tn+1| = |Tn|+1. By applying Claim 1 to every T ∈ (N) with T0 4 T ⊑
Tn+1 and Dom(T ) = Dom(Tn+1), we �nd a Zn+1 ∈ (T ∗

n+1, Zn)
ω su
h that forall T ∈ (N) with T0 4 T ⊑ Tn+1 and Dom(T ) = Dom(Tn+1), we have either

(T ∗, T ⊓Zn+1) is bad or (T, Zn+1)
ω ⊆ Ō. Let Y =

⋃
n∈ω Tn, i.e., Y is the only(in�nite) partition su
h that for all n ∈ ω, Tn 4 Y .Assume towards a 
ontradi
tion that (S, Y )ω ∩ Ō 6= ∅. Then there are

T ∈ (N) with S 4 T ⊑ Y su
h that (T, Y )ω ⊆ Ō, i.e., (T, T ⊓ Y ) is good.Choose T0 (with S 4 T0 ⊑ Y ) of least 
ardinality su
h that (T0, T0⊓Y ) is good.Sin
e (S, Y ) is ugly, |T0| > |S|. Hen
e, we �nd a T1 ⊑ Y with S 4 T ∗
1 4 T0and |T1| = |T0| − 1. By 
onstru
tion of Y , (T1, T1 ⊓ Y ) is either ugly or good.In the former 
ase, (T0, T0 ⊓ Y ) would be bad (a 
ontradi
tion to the 
hoi
eof T0), and in the latter 
ase, T0 would not be of least 
ardinality (again a
ontradi
tion to the 
hoi
e of T0). Thus, (S, Y )ω ∩ Ō = ∅, whi
h 
ompletesthe proof. ⊣Claim 2Now, let ϕ be a senten
e of the for
ing language. With respe
t to ϕ we de�ne

O1 := {q ∈M∗ : q M∗ ϕ} and O2 := {q ∈M∗ : q M∗ ¬ϕ}. Noti
e that O1∪
O2 is an open dense subset of M∗. If the M∗-
ondition (S0, X0) is good withrespe
t to Ō1, there is a Y0 ∈ (S0, X0)

ω su
h that (S0, Y0)
ω ⊆ Ō1. Otherwise,if (S0, X0) is bad with respe
t to Ō1, by Claim 2 there is a Y0 ∈ (S0, X0)

ωsu
h that (S0, Y0)
ω∩Ō1 = ∅. In the former 
ase we have (S0, Y0) M∗ ϕ and weare done. In the latter 
ase we pro
eed as follows: Sin
e (S0, Y0)

ω∩Ō1 = ∅ and
O1 ∪O2 is dense, for every (S0, Z0) ≥ (S0, Y0) there exists a (T, Z) ≥ (S0, Z0)su
h that (T, Z) ∈ O2. This implies that (S0, Y0) 
annot be bad with respe
tto Ō2, sin
e otherwise, by Claim 2 we would �nd an (S0, Z0) ≥ (S0, Y0) su
hthat (S0, Z0)

ω ∩ (O1 ∪O2) = ∅. Thus, (S0, Y0) is good with respe
t to Ō2 andwe �nd (S0, Y
′
0) ≥ (S0, Y0) su
h that (S0, Y

′
0)
ω ⊆ Ō2, i.e., (S0, Y

′
0) M∗ ¬ϕ.

⊣Now, having Theorem 26.2 at hand, it is not hard to show that dualMathias for
ing is proper and has the Laver property: Firstly, noti
e that toea
h G ⊆ M∗ whi
h is M∗-generi
 over some model V there exists a uniquein�nite partition XG ∈ (ω)ω with the property that for all S ∈ (N),
S 4 XG ⇐⇒ ∃Y ∈ (ω)ω

(
(S, Y ) ∈ G

)
.Thus, every M∗-generi
 set G ⊆M∗ 
orresponds to a unique M∗-generi
 par-tition XG ∈ (ω)ω, whi
h we 
all Mathias partition. Following the proof ofCorollary 24.6 we 
an show that if XG is a Mathias partition over V and

Y ⊑ XG is an in�nite partition, then Y is a Mathias partition overV, too. Fur-thermore, by similar arguments as in the proofs of Corollaries 24.7& 24.8,one 
an show that dual Mathias for
ing is proper and has the Laver property,in parti
ular, dual Mathias for
ing does not add Cohen reals (the details areleft as an exer
ise to the reader).A feature of Mathias for
ing is that it 
an be written as a two-step iter-ation. More pre
isely, M ≈ U ∗MU
˙
, where U

˙
is the 
anoni
al U-name for
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ing 445the U-generi
 ultra�lter (see Lemma 24.10). Before we 
an prove the 
orre-sponding result with respe
t to dual Mathias for
ing, we have to introdu
e adual form of U and have to de�ne restri
ted dual Mathias for
ing: Firstly, for
X,Y ∈ (ω)ω let Y ⊑∗ X ⇐⇒ ∃F ∈ fin(ω)

(
Y ⊓ {F} ⊑ X

); noti
e that {F}is a one-blo
k partition with domain F . Now, let U∗ =
(
(ω)ω,≤

), where
X ≤ Y ⇐⇒ Y ⊑∗ X .Stri
tly speaking, ((ω)ω,≤ ) is not a partially ordered set sin
e �≤ � is notanti-symmetri
 (i.e., X ≤ Y and Y ≤ X does not imply X = Y ). However, itis slightly easier to drop anti-symmetry than to work with equivalen
e 
lasses.Furthermore, for any family of in�nite partitions F ∗ ⊆ (ω)ω , let M∗

F∗
=

(M∗
F∗
,≤), where M∗

F∗
is the set of all M∗-
onditions (S,X) su
h that X ∈

F ∗. Now, the dual form of Lemma 24.10 reads as follows.Lemma 26.3. M∗ ≈ U∗ ∗M∗
U
˙
∗ , where U

˙
∗ is the 
anoni
al U∗-name for the

U∗-generi
 �lter.Before we prove Lemma 26.3, we �rst show that the for
ing notion U∗ is σ-
losed and that it adds Ramsey ultra�lters.Lemma 26.4. The for
ing notion U∗ is σ-
losed, and whenever U ∗ is U∗-generi
 over V, then there is a Ramsey ultra�lter in V [U ∗].Proof. U∗ is σ-
losed: LetX0 ≤ X1 ≤ · · · be an in
reasing sequen
e of in�nitepartitions (i.e., for all i ∈ ω, Xi+1 ⊑∗ Xi). Choose a sequen
e 〈Fi : i ∈ ω〉 of�nite sets of natural numbers su
h that for all i ∈ ω, Xi+1 ⊓ {Fi} ⊑ Xi. ForeveryX ∈ (ω)ω, order the blo
ks ofX by their least element, and for k ∈ ω, let
X(k) denote the kth blo
k with respe
t to this ordering. De�ne y0 := X0(0),and for positive integers n, let yn := Xn(k), where k := n+

⋃
i∈n(

⋃
Fi). Now,let Y := {yi : i ∈ ω} ∪ (ω \⋃i∈ω yi). Then, for ea
h i ∈ ω we have Y ⊑∗ Xi,whi
h shows that U∗ is σ-
losed.

U∗ adds Ramsey ultra�lters: We show that the set {Min(X)\{0} : X ∈ U ∗
}is a Ramsey ultra�lter over ω\{0}: Firstly, re
all that a for
ing notion whi
h is

σ-
losed does not add new reals to the ground model (see Lemma 14.17). Let
π : [ω]2 → 2 be an arbitrary 
olouring and let Y ∈ (ω)ω . Then, by Ramsey'sTheorem 2.1, there exists an in�nite set x ⊆ Min(Y ) with 0 /∈ x su
h that πis 
onstant on [x]2. Now, let

X =
{
b : b ∈ Y ∧min(b) ∈ x

}
∪
⋃{

b : b ∈ Y ∧min(b) /∈ x
}
.Then X ⊑ Y , X ∈ (ω)ω, and Min(X) \ {0} = x. Consequently we get that

Dπ :=
{
X ∈ (ω)ω : π|[Min(X)\{0}]2 is 
onstant}is open dense, whi
h implies that Dπ ∩ U ∗ 6= ∅. Finally, sin
e the 
olouring

π was arbitrary, this shows that {
Min(X) \ {0} : X ∈ U ∗

} is a Ramseyultra�lter over ω \ {0}. ⊣
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onsequen
e we get the followingFa
t 26.5. For
ing with U∗ does not add new partitions to the ground model.Proof. First, noti
e that partitionsX 
an be en
oded by real numbers rX ⊆ ω,for example let
rX =

{
k ∈ ω : ∃n,m ∈ ω

(
k = η{n,m} ∧ ∃l

(
{n,m} ⊆ X(l)

))}
,where η is a bije
tion between ω × ω and ω, and X(l) is as above.Now, by Lemma 14.17 we know that σ-
losed for
ing notions do not addnew reals� and therefore no new partitions� to the ground model. ⊣Now we are ready to give theProof of Lemma 26.3. Sin
e U∗ does not add new partitions, for every U∗-name (T, Y )

˜
for an M∗

U
˙
∗ -
ondition, and for every partition Z ∈ (ω)ω, thereis an M∗-
ondition (S,X) in the ground model as well as a partition Z ′ ⊑∗ Zsu
h that
Z ′

U∗ (S,X)
˙

= (T, Y )
˜

.We leave it as an exer
ise to the reader to show that
h : M∗ −→ (ω)ω ×M∗

U ∗

˜
(S,X) 7−→

〈
X, (S,X)

˙

〉is a dense embedding. Hen
e, by Fa
t 14.3, dual Mathias for
ingM∗ is equiv-alent to the two-step iteration U∗ ∗M∗
U
˙
∗ . ⊣At this point, we would like to say a few words about the two-step itera-tions U ∗MU

˙
and U∗ ∗M∗

U
˙
∗ respe
tively: At �rst glan
e, the iterations lookvery similar and in both 
ases we start with a for
ing notion whi
h is σ-
losed.However,MU

˙
satis�es 


, whi
h is not the 
ase forM∗

U
˙
∗ . The reason for thisis that partitions of ω� in 
ontrast to subsets of ω�do not have �
omple-ments�, whi
h 
hanges the situation drasti
ally, espe
ially when we work withpartition ultra�lters (see below).In order to investigate dual Mathias for
ing in greater details, we haveto de�ne �rst a dual form of the shattering 
ardinal h: Two partitions

X,Y ∈ (ω)ω are 
alled almost orthogonal, denoted X⊥∗Y , if X⊓Y /∈ (ω)ω ,otherwise they are 
alled 
ompatible. A family A ∗ ⊆ (ω)ω is 
alled maxi-mal almost orthogonal (mao) if A ∗ is a maximal family of pairwise almostorthogonal partitions. Furthermore, a family H ∗ of mao families of partitionsshatters a partition X ∈ (ω)ω, if there are A ∗ ∈ H ∗ and two distin
t par-titions Y, Y ′ ∈ A ∗ su
h that X is 
ompatible with both Y and Y ′. Finally, afamily of mao families of partitions is shattering, if it shatters ea
h memberof (ω)ω . Now, the dual shattering number H is the smallest 
ardinality ofa shattering family; more formally
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ing 447
H = min

{
|H ∗| : H

∗ is shattering} .What 
an we say about the size of H? Now, like for h we 
an show thatthe 
ardinal H is un
ountable and less than or equal to c.Fa
t 26.6. ω1 ≤ H ≤ c.Proof. ω1 ≤ H : Let H ∗
ω = {A ∗

n : n ∈ ω} be a 
ountable set of mao families.We 
onstru
t a partition X ∈ (ω)ω whi
h is not shattered by H ∗
ω : Let X0 ∈

A ∗
0 , and for n ∈ ω, let Xn+1 = Xn ⊓ Yn+1, where Yn ∈ A ∗

n+1 is su
h that
Xn ⊓ Yn+1 ∈ (ω)ω. Then, by the �rst part of Lemma 26.4, there exists an Xsu
h that for all n ∈ ω, X ⊑∗ Xn.
H ≤ c : Re
all that ea
h partition X ∈ (ω)ω 
an be en
oded by a real rX .Now, for ea
h X ∈ (ω)ω 
hoose a mao family A ∗

X whi
h 
ontains two distin
tpartitions Y0, Y1 ∈ (ω)ω su
h that both, Y0 and Y1, are 
ompatible with X .Then {
A ∗
X : X ∈ (ω)ω

} is a shattering family of 
ardinality less than or equalto c. ⊣Compared to other 
ardinal 
hara
teristi
s of the 
ontinuum, H is quite small,in fa
t we getProposition 26.7. H ≤ h.Proof. Noti
e �rst that for every mad family A ⊆ [ω]ω there is a mao family
A ∗ ⊆ (ω)ω 
onsisting of partitions X ∈ (ω)ω su
h that Min(X) \ {0} is
ontained in some element of A . Let H = {Aξ : ξ ∈ h} be a shattering familyof mad families and let H ∗ = {A ∗

ξ : ξ ∈ h} be the 
orresponding family ofmao families. By 
ontraposition we show that if H ∗ is not shattering, thenalso H is not shattering: So, suppose that H ∗ is not shattering. Then thereis a partition X ∈ (ω)ω whi
h is not shattered by A ∗
ξ (for any ξ ∈ h). Thus,for every ξ ∈ h, we �nd an Xξ ∈ A ∗

ξ su
h that X ⊑∗ Xξ, and therefore,
Min(X) ⊆ Min(Xξ). Hen
e, Min(X) is not shattered by any Aξ, whi
h showsthat H is not a shattering family. ⊣Another small 
ardinal 
hara
teristi
 whi
h is less than or equal to h is
p. So, it is natural to 
ompare H with p. On the one hand, one 
an showthat p = H < h is 
onsistent with ZFC (see Related Result 151). On theother hand, one 
an show that also H < h = p is 
onsistent with ZFC (seeRelated Result 152). Hen
e, H 
an be small even in the 
ase when p or h islarge. However, by a 
ountable support iteration of dual Mathias for
ing we
an enlarge H without 
hanging the size of p and show that also p < H = h is
onsistent with ZFC.Proposition 26.8. p = 
ov(M) < H = h is 
onsistent with ZFC.Proof (Sket
h). Sin
e p ≤ 
ov(M) (by Theorem 21.5), and sin
e ω1 ≤ p,it is enough to show that ω1 = 
ov(M) < H = ω2 is 
onsistent with ZFC.



448 26 Combinatorial Properties of Sets of PartitionsWe 
an just follow Proposition 24.12 (repla
ing Mathias for
ing with dualMathias for
ing). Thus, let Pω2 =
〈
Q
˜
α : α ∈ ω2

〉 be a 
ountable supportiteration of dual Mathias for
ing and let G be Pω2-generi
 over some model
V of ZFC+ CH.Firstly, show that V[G] � H = h = ω2: For this, use the fa
t that dualMathias for
ing, like Mathias for
ing, is proper, that M∗ ≈ U∗ ∗M∗

U
˙
∗ , andthat H ≤ h.Se
ondly, show that V[G] � ω1 = 
ov(M): For this, use the fa
t that dualMathias for
ing, like Mathias for
ing, has the Laver property and thereforedoes not add Cohen reals. Furthermore, re
all that the Laver property ispreserved under 
ountable support iteration of proper for
ing notions andthat 
ov(M) remains un
hanged if no Cohen reals are added. Thus, sin
e

V � CH, we get V[G] � ω1 = 
ov(M). ⊣A Dual Form of Ramsey Ultra�ltersIn Chapter 10 we have seen several equivalent de�nitions of Ramsey ultra-�lters. For example, a �lter U ⊆ [ω]ω is a Ramsey ultra�lter if for every
olouring π : [ω]2 → 2 there is an x ∈ U su
h that π|[x]2 is 
onstant, whi
his equivalent to saying that the Maiden does not have a winning strategy inthe game G
U
, de�ned byMaiden x0

∋

��=
==

==
==

= ⊇ x1
∋

��=
==

==
==

= ⊇ x2
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��=
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���
<in whi
h Death wins the game G

U
if and only if {ai : i ∈ ω} belongs to U .Moreover, by Chapter 10 |Related Result 71, U ⊆ [ω]ω is a Ramseyultra�lter i� the Maiden does not have a winning strategy in the game G′

U
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in whi
h the Maiden wins the game G′
U

if and only if {ai : i ∈ ω} does notbelong to U . The dual form of the latter game is in fa
t just the game G
U
∗whi
h we introdu
ed in Chapter 11:Maiden (S0, X0)

  @
@@

@@
@@

(S1, X1)

  @
@@

@@
@@

(S2, X2)

  @
@@

@@
@@

G
U
∗ : . . .Death Y0

>>~~~~~~~
Y1

>>~~~~~~~
Y2
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A dual form of Ramsey ultra�lters 449In that game, we require that the �rst move (S0, X0) of the Maiden is su
hthat X0 ∈ U ∗ and that (S∗
0 , X0)

ω is a dual Ellentu
k neighbourhood. Fur-thermore, we require that for ea
h n ∈ ω, the nth move of Death Yn is su
hthat Yn ∈ (S∗
n, Xn)

ω and Yn ∈ U ∗, and that the Maiden plays (Sn+1, Xn+1)su
h that
• S∗

n 4 Sn+1, |Sn+1| = |Sn|+ 1, S∗
n+1 ⊑ Yn, and

• Xn+1 ∈ (S∗
n+1, Yn)

ω ∩ U ∗.Finally, the Maiden wins the game G
U
∗ if and only if the (unique) in�nitepartition X ∈ (ω)ω su
h that Sn 4 X (for all n ∈ ω) does not belong to thefamily U ∗.With respe
t to the game G

U
∗ we de�ne dual Ramsey ultra�lters as follows(for another dual form of Ramsey ultra�lters see Related Result 158): Afamily F ∗ ⊆ (ω)ω is a partition-�lter if F ∗ is 
losed under re�nement and�nite 
oarsening, and if for all X,Y ∈ F ∗ we have X⊓Y ∈ F ∗. Furthermore,a partition-�lter U ∗ ⊆ (ω)ω is a partition-ultra�lter if U ∗ is not properly
ontained in any partition-�lter. Finally, a partition-ultra�lter U ∗ ⊆ (ω)ω isa Ramsey partition-ultra�lter if the Maiden does not have a winningstrategy in the game G

U
∗ .It is easy to show that every Ramsey partition-ultra�lter U ∗ ⊆ (ω)ωgenerates a Ramsey ultra�lter U ⊆ [ω]ω. In fa
t, if U ∗ is a Ramsey partition-ultra�lter, then {

Min(X)\{0} : X ∈ U ∗
}
⊆ [ω]ω is a Ramsey ultra�lter over

ω \ {0}. On the other hand, it is not at all 
lear whether Ramsey ultra�ltersalso generate Ramsey partition-ultra�lters� in fa
t it seems that Ramseypartition-ultra�lters are mu
h stronger than Ramsey ultra�lters. However,the following result shows that the existen
e of Ramsey partition-ultra�ltersis 
onsistent with ZFC.Theorem 26.9. If U ∗ is U∗-generi
 over V, then U ∗ is a Ramsey partition-ultra�lter in V[U ∗].Proof. Be
ause U ∗ is U∗-generi
 over V, U ∗ ⊆ (ω)ω is a partition-�lter in
V[U ∗]. Furthermore, sin
e U∗ is σ-
losed (by Lemma 26.4), U∗ does not addnew partitions whi
h implies that U ∗ is a partition-ultra�lter in V[U ∗].It remains to show that in V[U ∗], the Maiden does not have a winningstrategy in the game G

U
∗ . For this, let σ

˜
be a U∗-name for a strategy for theMaiden in the game G

U
˙
∗ , i.e.,

0 U∗ “σ
˜
is a strategy for the Maiden in the game G

U
˙

∗ � ,where U
˙

∗ is the 
anoni
al U∗-name for the U∗-generi
 �lter. Let us assumethat the Maiden follows the strategy σ
˜
[U ∗] in the model V[U ∗]. Further-more, let Z0 ∈ (ω)ω be su
h that

Z0 U∗ σ
˜
(∅) = (S

˜0, X˜ 0) .



450 26 Combinatorial Properties of Sets of PartitionsIn parti
ular, sin
e σ
˜
is the U

˙
-name for a strategy,
Z0 U∗ X˜ 0 ∈ U

˙
∗.Assume that for some n ∈ ω we have already 
onstru
ted an M∗-
ondition

Zn ≥ Z0 su
h that
Zn U∗ σ

˜

(
(S
˜ 0, X˜ 0), Y˜ 0, . . . , (S˜n−1, X˜ n−1), Y˜ n−1

)
= (S

˜n
, X
˜ n

) .Then, sin
e does not add new partitions, we �nd a U∗-
ondition Z ′
n ≥ Zn(i.e., Z ′

n ⊑∗ Zn) and a dual Ellentu
k neighbourhood (Sn, Xn) in V su
h that
Z ′
n U∗ (S˜n

, X
˜ n

) = (Sn, Xn) .Be
ause Z ′
n ≥ Zn, we have

Z ′
n U∗ σ

˜

(
(S
˜ 0, X˜ 0), Y˜ 0, . . . , (S˜n−1, X˜ n−1), Y˜ n−1

)
= (Sn, Xn) .In parti
ular, Z ′

n U∗ Xn ∈ U
˙

∗, whi
h implies that Z ′
n and Xn are 
om-patible. Finally, Death plays a partition Yn su
h that Yn ⊑∗ (Z ′

n ⊓ Xn)and Yn ∈ (S∗
n, Xn)

ω. Pro
eeding this way, we get an in
reasing sequen
e
S0 4 S1 4 · · · of partitions of (N).Now, let W ∈ (ω)ω be the unique partition su
h that for all n ∈ ω,
Sn 4 W . Noti
e that W belongs to V. Then W is an in�nite partition (i.e.,an U∗-
ondition), W U∗ W ∈ U

˙
∗, and for ea
h n ∈ ω, W ⊑∗ (Z ′

n ⊓ Xn).Thus, by 
onstru
tion we get
W U∗ “σ

˜
is not a winning strategy for the Maiden in the game G

U
˙

∗ �,and sin
e σ
˜
was an arbitrary strategy, the Maiden does not have a winningstrategy at all. ⊣As a 
onsequen
e we get that the existen
e of Ramsey partition-ultra�ltersis 
onsistent with ZFC + CH (just for
e with U∗ over a model in whi
h CHholds). Unlike for Ramsey ultra�lters, it is not known whether CH impliesthe existen
e of Ramsey partition-ultra�lters. On the other hand, repla
ing

U with U∗ in the proof that ultra�lter for
ing U 
ollapses c to h (see Chap-ter 25 |Related Result 144), one 
an show that the for
ing notion U∗ 
ol-lapses c to H, and sin
e H > ω1 is 
onsistent with ZFC (by Proposition 26.8),we get that the existen
e of Ramsey partition-ultra�lters is also 
onsistentwith ZFC+ ¬CH. NotesDual Mathias for
ing was introdu
ed and investigated by Carlson and Simpsonin [4℄ (e.g., they showed that dual Mathias for
ing has pure de
ision). The dualshattering number was introdu
ed and investigated by Ci
ho«, Kraw
zyk, Maj
her-Iwanow, and W�eglorz in [5℄ (e.g., they showed that H ≤ h). However, most of theresults presented in this 
hapter are taken from Halbeisen [6, 7℄.



Related Results 451Related Results150. Dualising 
ardinal 
hara
teristi
s of the 
ontinuum. The �rst who studied sys-temati
ally the dual forms of 
ardinal 
hara
teristi
s of the 
ontinuum were Ci-
ho«, Kraw
zyk, Maj
her-Iwanow, and W�eglorz. For example they showed that
H is regular, that H ≤ h, and that R ≤ r. Before their work [5℄ was publishedin 2000, the paper was already available as a preprint in 1994 and motivated forexample the work of Brendle [2℄, Spinas [15℄ and Halbeisen [6℄.151. On the 
onsisten
y of p = H < h. Spinas [15, Theorem 4.2℄ showed that inMathias' model, whi
h is the model we get after a 
ountable support iterationof length ω2 of Mathias for
ing starting in a model of ZFC + CH, we have
p = H < h. In parti
ular, this shows that Mathias for
ing does not add Mathiaspartitions; otherwise, by the proof of Proposition 26.8 (originally proved inHalbeisen [6℄), we would have H = h in Mathias' model.152. On the 
onsisten
y of H < p. Brendle [2℄ showed that H < h is 
onsistent withZFC+MA. In parti
ular, also H < p = h is 
onsistent with ZFC. To some extentthis shows that dual Mathias for
ing is far away from being a 


 for
ing notion,even in the 
ase when we restri
t dual Mathias for
ing to a partition-ultra�lter.153. Dualisations of a and t. We have seen above how one 
ould dualise the shatter-ing 
ardinal h, and we have seen that both statements, H = ω1 = H and H = ω2,are 
onsistent with ZFC. Now, it is somewhat surprising that the dual forms of aand t are absolute (i.e., they 
annot be moved). In parti
ular, Kraw
zyk provedin [5℄ that the size of a maximal almost orthogonal family (i.e., the dualisationof a mad family) is always equal to c, and Carlson proved that the dual towernumber is always equal to ω1 (see Matet [13, Proposition 43℄).154. Converse dual 
ardinal 
hara
teristi
s. If we repla
e the ordering �⊑� on (ω)ωwith �⊒�, we obviously get other kinds of dual 
ardinal 
hara
teristi
s: Theso-
alled 
onverse dual 
ardinal 
hara
teristi
s were �rst introdu
ed and in-vestigated by Maj
her-Iwanow [12℄, whose work was 
ontinued by Brendle andZhang in [3℄, where it is shown for example that the 
onverse dual tower numberis equal to p.155. The dual Ramsey property. In Chapter 9 we have seen that the shattering 
ar-dinal h is 
losely related to the Ramsey property. Now, one 
an show in a similarway that the dual shattering 
ardinal H is 
losely related to the so-
alled dualRamsey property, whi
h was introdu
ed and investigated by Carlson and Simp-son in [4℄, and further investigated by Halbeisen in [6, 7℄ and by Halbeisen andLöwe in [9℄.156. Ultra�lter spa
es on the semilatti
e of partitions. There is essentially just oneway to de�ne a topology on the set of ultra�lters over ω. This topologi
alspa
e is usually denoted by βω (
f. Chapter 9 |Related Result 63). On theother hand, there are four natural ways to de�ne a topology on the set ofpartition-ultra�lters. Moreover, one 
an show that the 
orresponding four spa
esof partition-ultra�lters are pairwise non-homeomorphi
, but still have some ofthe ni
e properties of βω (see Halbeisen and Löwe [10℄).157. Partition-�lters. In [14℄, Matet introdu
ed partition-�lters asso
iated withHindman's Theorem and the Milliken-Taylor Theorem respe
tively (see



452 26 Combinatorial Properties of Sets of PartitionsChapter 2 |Related Result 3) and investigated the existen
e as well as 
om-binatorial properties of these partition-�lters. For a slightly di�erent approa
hto �lters asso
iated to Hindman's Theorem see Blass [1℄.158. Ramsey partition-ultra�lters versus Ramseyan ultra�lters∗. Above, we have in-trodu
ed Ramsey partition-ultra�lters in terms of the game G
U
∗ , whi
h is, byChapter 10 |Related Result 71, related to Ramsey ultra�lters U ⊆ [ω]ω. Fur-thermore, we have seen that the existen
e of these Ramsey partition-ultra�ltersis 
onsistent with ZFC (see also Halbeisen [7, Theorem 5.1℄). Ramsey partition-ultra�lters have very strong 
ombinatorial properties (see for example Halbeisenand Matet [11℄), and it seems that they are signi�
antly stronger than Ram-sey ultra�lters. For example it is not known whether CH implies the existen
eof Ramsey partition-ultra�lters, whereas CH implies the existen
e of 2c mutu-ally non-isomorphi
 Ramsey ultra�lters (see Chapter 10 |Related Result 64).Now, instead of de�ning Ramsey partition-ultra�lters in terms of the game G

U
∗ ,we 
ould equally well take another approa
h: In Chapter 10 we de�ned Ramseyultra�lters in terms of 
olourings of [ω]2, i.e., U ⊆ [ω]ω is a Ramsey ultra�l-ter if for every 
olouring π : [ω]2 → 2 there is an x ∈ U su
h that π|[x]2 is
onstant. Dualising � and slightly strengthening� this property, we get whatis 
alled a Ramseyan ultra�lter. A partition-ultra�lter U

∗ ⊆ (ω)ω is a Ram-seyan ultra�lter if for every �nite 
olouring of (ω)(n), there is an X ∈ U
∗ su
hthat (X)(n)

∗ is mono
hromati
. Unlike for Ramsey partition-ultra�lters, it isknown that CH implies that there are 2c mutually non-isomorphi
 Ramseyanultra�lters (see Halbeisen [8, Theorem 2.2.1℄). Thus, it seems that Ramseyanultra�lters are somewhat weaker than Ramsey partition-ultra�lters � but it isalso possible that they are equivalent.Referen
es1. Andreas Blass, Ultra�lters related to Hindman's �nite-unions theorem and itsextensions, in Logi
 and Combinatori
s (Stephen G. Simpson, ed.), Con-temporary Mathemati
s, vol. 65, [Pro
eedings of a Summer Resear
h Confer-en
e held August 4�10, 1985], Ameri
an Mathemati
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iety, Providen
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al Logi
 Quarterly, vol. 46 (2000), 241�248.3. Jörg Brendle and Shuguo Zhang, Converse dual 
ardinals, The Journalof Symboli
 Logi
, vol. 71 (2006), 22�34.4. Timothy J. Carlson and Steve G. Simpson, A dual form of Ramsey'sTheorem, Advan
es in Mathemati
s, vol. 53 (1984), 265�290.5. Ja
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zyk, Barbara Maj
her-Iwanow, and Bog-dan We�glorz, Dualization of the van Douwen diagram, The Journal ofSymboli
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27Suite
In this 
hapter we shall demonstrate how the tools we developed in the previ-ous 
hapters 
an be used to shed new light on a 
lassi
al problem in MeasureTheory.Assuming the Continuum Hypothesis, Bana
h and Kuratowski proved a
ombinatorial theorem whi
h implies that a �nite measure de�ned for ea
hsubset of R vanishes identi
ally if it is zero for points (for the notion ofmeasure we refer the reader to Oxtoby [3, p. 14℄). We shall 
onsider thisresult� whi
h will be 
alled Bana
h-Kuratowski Theorem� from a set-theoreti
al point of view, and among others it will be shown that the Bana
h-Kuratowski Theorem is equivalent to the existen
e of a K-Lusin set of size
c and that the existen
e of su
h a set is independent of ZFC+ ¬CH.The original proof of the Bana
h-Kuratowski Theorem is due to Ba-na
h and Kuratowski [1℄, Theorem 27.1 is due to Halbeisen, and the non-
lassi
al results of this 
hapter are all due to Bartoszy«ski. Referen
es andsome more results related to the Bana
h-Kuratowski Theorem 
an befound in Bartoszy«ski and Halbeisen [2℄.PreludeHistori
al ba
kground. In a paper of 1929, Bana
h and Kuratowski in-vestigated the following problem in Measure Theory: Does there exist a non-vanishing �nite measure de�ned for ea
h subset of R whi
h is zero for points?They showed that su
h a measure does not exist if one assumes CH. In fa
t,assuming CH, they proved the following 
ombinatorial theorem and showedthat it implies the non-existen
e of su
h a measure (noti
e that it is su�
ientto 
onsider just measures on subsets of the unit interval [0, 1]).Theorem of Bana
h and Kuratowski. If CH holds, then there is anin�nite matrix Aik ⊆ [0, 1], where i, k ∈ ω, su
h that:(a) For ea
h i ∈ ω, [0, 1] = ⋃

k∈ω A
i
k.
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h i ∈ ω, if k 6= k′ then Aik ∩ Aik′ = ∅.(
) For every in�nite sequen
e 〈k0, k1, . . . , ki, . . .〉 of natural numbers,
⋂

i∈ω

(
Ai0 ∪Ai1 ∪ . . . ∪Aiki

) is 
ountable .Below, we 
all an in�nite matrix Aik ⊆ [0, 1] (where i, k ∈ ω) for whi
h (a),(b), and (
) hold a BK-Matrix.Con
erning the measure-theoreti
al problem we would like to mention thatUlam [4℄ proved the following generalisation of the Bana
h-KuratowskiTheorem: If no 
ardinal less than or equal to c is weakly ina

essible, thenevery �nite measure de�ned for all subset of R whi
h is zero for points vanishesidenti
ally. For further results in this 
ontext we refer the reader to Oxtoby [3,Chapter 5℄.AllemandeA 
ardinal 
hara
teristi
 
alled l. Before we give a slightly modi�edversion of the original proof of the Bana
h-Kuratowski Theorem we in-trodu
e the following notion.Re
all that for fun
tions f, g ∈ ωω, f ≤ g ⇐⇒ f(n) ≤ g(n) for all
n ∈ ω. Now, for F ⊆ ωω, let λ(F ) denote the least 
ardinality su
h that forea
h g ∈ ωω, the 
ardinality of the set {f ∈ F : f ≤ g} is stri
tly less than
λ(F ). For any family F ⊆ ωω we obviously have λ(F ) ≤ c+. Furthermore,for families F ⊆ ωω of size c one 
an easily show that ω1 ≤ λ(F ). Thus,for families F ⊆ ωω of size c we have ω1 ≤ λ(F ) ≤ c+, whi
h leads to thefollowing de�nition:

l = min
{
λ(F ) : F ⊆ ωω ∧ |F | = c

}If one assumes CH, then one 
an easily 
onstru
t a family F ⊆ ωω of 
ardi-nality c su
h that λ(F ) = ω1, hen
e, CH implies l = ω1.In our notation, the 
ru
ial point in the original proof of Bana
h andKuratowski reads as follows.Theorem 27.1. The existen
e of a BK-Matrix is equivalent to l = ω1.Proof. (⇐) Let F ⊆ ωω be a family of 
ardinality c with λ(F ) = ω1. Inparti
ular, for ea
h g ∈ ωω, the set {f ∈ F : f ≤ g} is at most 
ountable.Sin
e the interval [0, 1] has 
ardinality c, there is a one-to-one fun
tion h from
[0, 1] onto F . For x ∈ [0, 1], let nxi := h(x)(i). Now, for i, k ∈ ω, de�ne thesets Aik ⊆ [0, 1] as follows:

x ∈ Aik ⇐⇒ k = nxi .



Courante 457We leave it as an exer
ise to the reader to 
he
k that these sets satisfythe 
onditions (a) and (b) of a BK-Matrix. For (
), take any sequen
e
〈k0, k1, . . . , ki, . . .〉 of ω and pi
k an arbitrary x ∈ ⋂

i∈ω(A
i
0 ∪ Ai1 ∪ . . . ∪ Aiki).By de�nition, for ea
h i ∈ ω, x is in Ai0 ∪ Ai1 ∪ . . . ∪ Aiki . Hen
e, for ea
h

i ∈ ω we get nxi ≤ ki, whi
h implies that for g ∈ ωω with g(i) := ki we have
h(x) ≤ g. Now, sin
e λ(F ) = ω1, h(x) ∈ F and x was arbitrary, the set{
x ∈ [0, 1] : h(x) ≤ g

}
=

⋂
i∈ω

(
Ai0 ∪ Ai1 ∪ . . . ∪ Aiki

) is at most 
ountable.(⇒) Let Aik ⊆ [0, 1], where i, k ∈ ω, be a BK-Matrix and let F ⊆ ωω be thefamily of all fun
tions f ∈ ωω su
h that ⋂
i∈ω A

i
f(i) is non-empty. Is is easyto see that F has 
ardinality c. Now, for any sequen
e 〈k0, k1, . . . , ki, . . .〉 ofnatural numbers, the set ⋂i∈ω(A

i
0∪Ai1∪ . . .∪Aiki) is at most 
ountable, whi
himplies that for g ∈ ωω with g(i) := ki, the set {f ∈ F : f ≤ g} is at most
ountable. Hen
e, λ(F ) = ω1. ⊣CouranteLusin and K-Lusin sets. Before we 
an de�ne the notions of Lusin andK-Lusin sets respe
tively, we have to introdu
e the notion of a 
ompa
t set (forthe notions open, 
losed, dense, andmeagre we refer the reader to Chapter 21).A set X ⊆ ωω is 
ompa
t if for every set S ⊆ seq(ω) of �nite sequen
es in ωsu
h that X ⊆ ⋃

s∈S
Os, there exists a �nite subset {s0, . . . sm−1} ⊆ S su
hthat X ⊆ ⋃

i∈mOsi . In other words, X ⊆ ωω is 
ompa
t if every open 
overof X has a �nite sub
over.The following lemma gives a 
ombinatorial 
hara
terisation of 
ompa
tsubsets of ωω.Lemma 27.2. The 
losure of a set A ⊆ ωω is 
ompa
t if and only if there is afun
tion f0 ∈ ωω su
h that A ⊆ {f ∈ ωω : f ≤ f0}.Proof. For A ⊆ ωω let TA =
{
g|n : g ∈ A∧n ∈ ω

}. Then (TA,⊆) is obviouslya tree. Noti
e that if Ā denotes the 
losure of A, then TA = TĀ. Now, (TA,⊆)is �nitely bran
hing if and only if for ea
h n ∈ ω, {g(n) : g ∈ A
} is �nite; inwhi
h 
ase we 
an de�ne f0 ∈ ωω by stipulating f0(n) := max

{
g(n) : g ∈ A

}(and get that for all g ∈ A, g ≤ f0). Thus, it is enough to prove that a 
losedset A is 
ompa
t if and only if (TA,⊆) is �nitely bran
hing.(⇒) If (TA,⊆) is not �nitely bran
hing, then there is an n0 ∈ ω su
h that
Sn0 = {g|n0

: g ∈ A} is in�nite. On the one hand, A ⊆ ⋃{
Os : s ∈ Sn0

},but on the other hand, for any �nite subset {s0, . . . sm−1} ⊆ Sn0 we have
A *

⋃
i∈mOsi , hen
e, A is not 
ompa
t.(⇐) Assume that (TA,⊆) is �nitely bran
hing. Let S ⊆ seq(ω) be su
hthat A ⊆ ⋃

s∈S
Os and let T̃A =

{
g|n : g ∈ A ∧ n ∈ ω ∧ ∀k ≤ n(g|k /∈

S )
}
. First we show that T̃A is �nite: Assume towards a 
ontradi
tion that

T̃A is in�nite. Then, by König's Lemma, (T̃A,⊆) 
ontains an in�nite bran
h,



458 27 Suitesay g0 ∈ ωω. Now, g0 belongs to A (sin
e A is 
losed), but by 
onstru
tion
g0 /∈ ⋃

s∈S
Os, a 
ontradi
tion. We say that t ∈ T̃A is a leaf of T̃A if forall n ∈ ω, t⌢n /∈ T̃A. Let L(T̃A) denote the �nite set of leaves of T̃A. Now,let S0 =

{
t
⌢
n : t ∈ T̃A ∧ n ∈ ω ∧ t

⌢
n ∈ TA

}. Noti
e that S0 ∩ T̃A = ∅.Then, sin
e (TA,⊆) is �nitely bran
hing, S0 is �nite, and by de�nition weget S0 ⊆
{
t
⌢
n : t ∈ T̃A ∧ n ∈ ω ∧ t⌢n ∈ S

}. Moreover, A ⊆ ⋃{Os : s ∈ S0},whi
h shows that A is 
ompa
t. ⊣An un
ountable set X ⊆ ωω is a Lusin set if for ea
h meagre set M ⊆ ωω,
X ∩M is 
ountable; and an un
ountable set X ⊆ ωω is a K-Lusin set if forea
h 
ompa
t set K ⊆ ωω, X ∩K is 
ountable.Fa
t 27.3. Every Lusin set is a K-Lusin set.Proof. By Lemma 27.2, every 
ompa
t set K ⊆ ωω is meagre (even nowheredense), and therefore, every Lusin set is a K-Lusin set. ⊣Let Q be a 
ountable dense subset of ωω. Then X ⊆ ωω is 
on
entratedon Q if every open subset of ωω 
ontaining Q, 
ontains all but 
ountablymany elements of X . Finally, a subset of ωω is 
alled 
on
entrated if it is
on
entrated on some 
ountable dense subset of ωω.Proposition 27.4. The following statements are equivalent:(a) There exists a K-Lusin set of 
ardinality c.(b) There exists a 
on
entrated set of 
ardinality c.Proof. (b)⇒(a) Let X ⊆ ωω be 
on
entrated on some 
ountable dense set
Q ⊆ ωω. One 
an show that there exists a homeomorphism between ωω \ Qand ωω, i.e., there exists a bije
tion h : ωω \ Q → ωω whi
h maps open setsto open sets and 
losed sets to 
losed sets (the details are left to the reader).Let K be an arbitrary 
ompa
t subset of ωω. Then h−1[K] is also 
ompa
t,and therefore ωω \ h−1[K] is an open set 
ontaining Q. Thus, sin
e X is
on
entrated on Q, ωω \ h−1[K] 
ontains all but 
ountably many elements of
X and 
onsequently h[X ] ∩K is 
ountable; and sin
e K was arbitrary, thisimplies that the image under h of a set 
on
entrated on Q of 
ardinality c isa K-Lusin set of the same 
ardinality.(a)⇒(b) Similarly, if Q ⊆ ωω is a 
ountable dense set and h : ωω \Q→ ωω isa homeomorphism, then the pre-image under h of a K-Lusin set of 
ardinality
c is a 
on
entrated set of the same 
ardinality. ⊣SarabandeThe 
ardinal l and the existen
e of large K-Lusin sets. The followingresult� even though it follows quite easily from the de�nitions� is in fa
tthe heart of our set-theoreti
al investigation of the Bana
h-KuratowskiTheorem.



Gavotte I& II 459Theorem 27.5. l = ω1 if and only if there is a K-Lusin set of 
ardinality c.Proof. (⇒) Assume l = ω1 and let F ⊆ ωω be a set of 
ardinality c su
hthat for ea
h g ∈ ωω, {f ∈ F : f ≤ g} is 
ountable. By Lemma 27.2, forea
h 
losed and 
ompa
t set K ⊆ ωω there is a fun
tion gK ∈ ωω su
h that
K ⊆ {g ∈ ωω : g ≤ gK}. Thus, for every 
losed and 
ompa
t set K we have
F ∩ K ⊆ {f ∈ F : f ≤ gK} is 
ountable, hen
e, F is a K-Lusin set of
ardinality c.(⇐) Let X ⊆ ωω be a K-Lusin set of 
ardinality c. By Lemma 27.2, forea
h g ∈ ωω the set Kg = {f ∈ ωω : f ≤ g} is 
losed and 
ompa
t. Thus,
X ∩Kg = {f ∈ X : f ≤ g} is 
ountable. Hen
e, λ(X) = ω1 and sin
e |X | = cwe have l = ω1. ⊣Gavotte I& II
K-Lusin sets and the 
ardinals b and d.Proposition 27.6. The existen
e of a K-Lusin set of 
ardinality c implies
b = ω1 and d = c.Proof. Let X ⊆ ωω be a K-Lusin set of 
ardinality c. On the one hand, everyun
ountable subset of X is unbounded, so, b = ω1. On the other hand, everyfun
tion g ∈ ωω dominates only 
ountably many elements of X . Hen
e, nofamily F ⊆ ωω of 
ardinality stri
tly less than c 
an dominate all elements of
X , and thus, d = c. ⊣By the de�nition of K-Lusin sets we get that K-Lusin sets are exa
tly those(un
ountable) subsets of ωω all whose un
ountable subsets are unbounded,whi
h explains thatK-Lusin sets are also 
alled strongly unbounded; K-Lusinsets play an important role in preserving unbounded families in iterations ofproper for
ing notions.The existen
e of K-Lusin sets of 
ardinality c.Lemma 27.7. If G is Cc-generi
 over V, then

V[G] � �there is a Lusin set of 
ardinaltiy c� .Proof. With G we 
an 
onstru
t a set C =
{
cα : α ∈ c

} of Cohen reals of
ardinality c. Further, let r
˜
be a Cc-name for the 
ode of a meagre Fσ set

Ar ∈ V[G] and let I = supp(r
˜
) (
f. Chapter 21). Clearly, I ⊆ c is 
ountable,and by Proposition 21.7, for ea
h α ∈ c \ I we have V[G] � cα /∈ Ar. Hen
e,

C ∩Ar is 
ountable in V[G], and sin
e Cc preserves 
ardinalities and Ar wasarbitrary, V[G] � �C is a Lusin set of 
ardinaltiy c� .Theorem 27.8. The existen
e of aK-Lusin set of 
ardinality c is independentof ZFC+ ¬CH. Equivalently, the existen
e of a BK-Matrix is independent ofZFC+ ¬CH.



460 27 SuiteProof. Firstly, noti
e that by Theorem 27.1 and Theorem 27.5 the existen
eof a BK-Matrix is equivalent to the existen
e of a K-Lusin set of 
ardinality
c. Now, by Lemma 27.7 and Fa
t 27.3 it is 
onsistent with ZFC that thereis a K-Lusin set (even a Lusin set) of 
ardinality c. On the other hand, it is
onsistent with ZFC that b > ω1 or that d < c (
f. Chapter 18). Therefore, byProposition 27.6, it is 
onsistent with ZFC that there are no K-Lusin setsof 
ardinality c. ⊣

K-Lusin sets and the 
ardinals b and d. As an immediate 
onsequen
eof Proposition 27.6 and Theorem 27.8 we get that ω1 = b < d = c is
onsistent with ZFC. Sin
e Cohen reals are unbounded and sin
e Cohen for
ingdoes not add dominating reals (see Chapter 21), Proposition 27.6 is in fa
tjust a 
onsequen
e of Lemma 27.7.In the next se
tion, a very similar 
onstru
tion will be used to show thatthe 
onverse of Proposition 27.6 is not provable in ZFC.GigueA model without K-Lusin sets in whi
h b = ω1 and d = c.Proposition 27.9. It is 
onsistent with ZFC that b = ω1 and d = c, butthere is no K-Lusin set of 
ardinality c.Proof. Let V be a model of ZFC in whi
h p = c = ω2. Let G =
〈
cα : α ∈ ω1

〉be Cω1-generi
 over V. In the resulting model V[G] we have b = ω1 and
d = ω2 (see Proposition 21.13). On the other hand, there is no K-Lusin setof 
ardinality c in V[G]. Why? Suppose X ⊆ ωω has 
ardinality ω2. Take a
ountable ordinal α and a subset X ′ ⊆ X of 
ardinality ω2 su
h that X ′ ⊆
V[G|α], where G|α =

〈
cβ : β ∈ α

〉. Now, V[G|α] = V[c] for some Cohen real c(by Fa
t 18.4), and V[c] � p = c (by Theorem 19.4), and sin
e p ≤ b we have
V[c] � b = ω2. Thus, there is a fun
tion whi
h dominates un
ountably manyelements of X ′. Hen
e, by the remark after Proposition 27.6, X 
annot bea K-Lusin set. ⊣

One after another, the bells jangled into silen
e,lowered their shouting mouths and were at pea
e.Dorothy L. SayersThe Nine Tailors, 1934
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