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As the original design of casting Peals of Bells was in
order to make pleasant Musick thereon; so the Notes in
every Peal are formed apt for that end and purpose, ev-
ery Peal of Bells being tun’d according to the principles
of Musick.

Yet the Notes may be so placed in ringing that their
Musick may be rendred much more pleasant: for in Mu-
sick there are Concords, which indeed may be term’d
the very life and soul of it.

For this Musical end were changes on Bells first prac-
ticed, changes being nothing else but a moving and plac-
ing of the Notes in ringing; wherein ’tis to be observed
as a general Rule, That every change must be made
betwizt two notes that strike next to each other.

FABIAN STEDMAN
Campanalogia, 1677

By the campanologist, the playing of tunes is considered
to be a childish game; the proper use of bells is to work
out mathematical permutations and combinations.

His passion finds its satisfaction in mathematical com-
pleteness and mechanical perfection.

DOROTHY L. SAYERS
The Nine Tailors, 1934






Preface

This book provides a self-contained introduction to Axiomatic Set Theory
with main focus on Infinitary Combinatorics and the Forcing Technique. The
book is intended to be used as a textbook in undergraduate and graduate
courses of various levels, as well as for self-study. To make the book valuable
for experienced researchers also, some historical background and the sources of
the main results have been provided in the NOTES, and some topics for further
studies are given in the section RELATED RESULTS — where those containing
open problems are marked with an asterisk.

The axioms of Set Theory ZFC, consisting of the axioms of Zermelo-
Fraenkel Set Theory (denoted ZF) and the Aziom of Choice, are the foun-
dation of Mathematics in the sense that essentially all Mathematics can be
formalised within ZFC. On the other hand, Set Theory can also be consid-
ered as a mathematical theory, like Group Theory, rather than the basis for
building general mathematical theories. This approach allows us to drop or
modify axioms of ZFC in order to get, for example, a Set Theory without
the Aziom of Choice (see Chapter 4) or in which just a weak form of the
Aziom of Choice holds (see Chapter 7). In addition, we are also allowed to
extend the axiomatic system ZFC in order to get, for example, a Set Theory
in which, in addition to the ZFC axioms, we also have Martin’s Aziom (see
Chapter 13), which is a very powerful axiom with many applications for In-
finitary Combinatorics as well as other fields of Mathematics. However, this
approach prevents us from using any kind of Set Theory which goes beyond
ZFC, which is used, for example, to prove the existence of a countable model
of ZFC (see the Lowenheim-Skolem Theorem in Chapter 15).

Most of the results presented in this book are combinatorial results, in
particular the results in Ramsey Theory (introduced in Chapter 2 and further
developed in Chapter 11), or those results whose proofs have a combinatorial
flavour. For example, we get results of the latter type if we work in Set Theory
without the Aziom of Choice, since in the absence of the Axziom of Choice,
the proofs must be constructive and therefore typically have a much more
combinatorial flavour than proofs in ZFC (examples can be found in Chap-
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ters 4& 7). On the other hand, there are also elegant combinatorial proofs
using the Aziom of Choice. An example is the proof in Chapter 6, where it is
shown that one can divide the solid unit ball into five parts, such that one can
build two solid unit balls out of these five parts — another such paradoxical
result is given in Chapter 17, where it is shown that it might be possible in ZF
to decompose a square into more parts than there are points on the square.

Even though the ZFC axiomatic system is the foundation of Mathematics,
by Gddel’s Incompleteness Theorem — briefly discussed at the end of Chap-
ter 3—no axiomatic system of Mathematics is complete in the sense that
every statement can either be proved or disproved; in other words, there are
always statements which are independent of the axiomatic system. The main
tool to show that a certain statement is independent of the axioms of Set
Theory is Cohen’s Forcing Technique, which he originally developed in the
early 1960s in order to show that there are models of ZF in which the Aziom
of Choice fails (see Chapter 17) and that the Continuum Hypothesis is inde-
pendent of ZFC (see Chapter 14). The Forcing Technique is introduced and
discussed in great detail in Part IT, and in Part III it is used to investigate
combinatorial properties of the set of real numbers. This is done by comparing
the Cardinal Characteristics of the Continuum introduced in Chapter 8.

The following table indicates which of the main topics appear in which chapter,
where *=** means that it is the main topic of that chapter, ** means that some
new results in that topic are proved or at least that the topic is important for
understanding certain proofs, and * means that the topic appears somewhere
in that chapter, but not in an essential way:

e NN RN NN TN YT Y
Chapter —lnlwls|oja|N|e|olo|Rlv|w|a|o|o|N|e|e] S|~ |N|w koo~
* * * *

H H * * [ %] * X[ * | XX | *|*|*

Forcing Technique * Rl |RIR IR 5 5 5| 5| x| x| *|#|*|%
. . %% % % %
Axiom of Choice & ZF [#|*|%|%|%|¥|% %
2% % % %
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Ramsey Theor, * | % *| X | X x|x|x *lx * x| ¥ %

y y * * ¥lxlx|% * * %

Cardinal Characteristics | * | * 35| * wlel xx xix]s 2%

a a aracteristics % H x HH ML

Part I Part I1 Part I11

For example Ramsey’s Theorem, which is the nucleus of Ramsey Theory, is the
main topic in Chapter 2, it is used in some proofs in Chapters 4 & 7, it is used
as a choice principle in Chapter 5, it is related to two Cardinal Characteristics
defined in Chapter 8, it is used to define what is called a Ramsey ultrafilter
in Chapter 10, it is used in the proof of the Hales-Jewett Theorem in Chap-
ter 11, and it is used to formulate a combinatorial feature of Mathias reals in
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Chapter 24. Furthermore, one can see that Cardinal Characteristics are our
main tool in Part IIT in the investigation of combinatorial properties of various
forcing notions, even in the cases when — in Chapters 25 & 26 — the existence
of Ramsey ultrafilters are investigated. Finally, in Chapter 27 we show how
Cardinal Characteristics can be used to shed new light on a classical prob-
lem in Measure Theory. On the other hand, the Cardinal Characteristics are
used to describe some combinatorial features of different forcing notions. In
particular, it will be shown that the cardinal characteristic h (introduced in
Chapter 8 and investigated in Chapter 9) is closely related to Mathias forc-
ing (introduced in Chapter 24), which is used in Chapter 25 to show that the
existence of Ramsey ultrafilters is independent of ZFC.

I tried to write this book like a piece of music, not just writing note by
note, but using various themes or voices —like Ramsey’s Theorem and the
cardinal characteristic h — again and again in different combinations. In this
undertaking, I was inspired by the English art of bell ringing and tried to base
the order of the themes on Zarlino’s introduction to the art of counterpoint.

Acknowledgement. First of all, T would like to thank Andreas Blass for his
valuable remarks and comments, as well as for his numerous corrections, which
improved the quality of the book substantially. Furthermore, I would like to
thank my spouse Stephanie Halbeisen, not only for reading Chapters 1 & 12
and parts of Chapters 5 & 13, but also for her patience during the last seven
years. I would also like to thank Dandolo Flumini for reading Chapters 2,
3, 13, 14, 15, Toanna Dimitriou for reading Chapters 16 & 17, and Gearo6idin
Diserens for reading Chapter 1 as well as the introductory comments of several
chapters. Finally, I would like to thank Jorg Sixt, editor of Springer-Verlag,
for making every effort to ensure that the book was published in the optimal
style.

Winterthur, October 2011 Lorenz Halbeisen
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1

The Setting

For one cannot order or compose anything, or un-
derstand the nature of the composite, unless one
knows first the things that must be ordered or com-
bined, their nature, and their cause.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

Combinatorics with all its various aspects is a broad field of Mathematics
which has many applications in areas like Topology, Group Theory and even
Analysis. A reason for its wide range of applications might be that Combi-
natorics is rather a way of thinking than a homogeneous theory, and conse-
quently Combinatorics is quite difficult to define. Nevertheless, let us start
with a definition of Combinatorics which will be suitable for our purpose:

Combinatorics is the branch of Mathematics which studies collections
of objects that satisfy certain criteria, and is in particular concerned
with deciding how large or how small such collections might be.

Below we give a few examples which should illustrate some aspects of infinitary
Combinatorics. At the same time, we present the main topics of this book,
which are the Axiom of Choice, Ramsey Theory, cardinal characteristics of
the continuum, and forcing.

Let us start with an example from Graph Theory: A graph is a set of
vertices, where some pairs of vertices are connected by an edge. Connected
pairs of vertices are called neighbours. A graph is infinite if it has an infinite
number of vertices. A tree is a cycle-free (i.e., one cannot walk in proper
cycles along edges), connected (i.e., any two vertices are connected by a path
of edges) graph, where one of its vertices is designated as the root. A tree
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is finitely branching if every vertex has only a finite number of neighbours.
Furthermore, a branch through a tree is a maximal edge-path beginning at
the root, in which no edge appears twice.

Now we are ready to state Kénig's Lemma, which is often used implicitly in
fields like Combinatorics, Topology, and many other branches of Mathematics.

Koénig's Lemma: Every infinite, finitely branching tree contains an infi-
nite branch.

At first glance, this result looks straightforward and one would construct
an infinite branch as follows: Let vy be the root. Since the tree is infinite
but finitely branching, there must be a neighbour of vy from which we reach
infinitely many vertices without going back to vg. Let v; be such a neighbour
of vg. Again, since we reach infinitely many vertices from v; (without going
back to v1) and the tree is finitely branching, there must be a neighbour of
v1, say v, from which we reach infinitely many vertices without going back
to ve. Proceeding in this way, we finally get the infinite branch (vg, v1,ve,...).

Let us now have a closer look at this proof: Firstly, in order to prove
that the set of neighbours of vg from which we reach infinitely many vertices
without going back to vy is not empty, we need an infinite version of the
so-called Pigeon-Hole Principle. The Pigeon-Hole Principle can be seen as the
fundamental principle of Combinatorics.

Pigeon-Hole Principle: If n+1 pigeons roost in n holes, then at least two
pigeons must share a hole. More prosaically: If m objects are coloured
with n colours and m > n, then at least two objects have the same
colour.

An infinite version of the Pigeon-Hole Principle reads as follows:

Infinite Pigeon-Hole Principle: If infinitely many objects are coloured
with finitely many colours, then infinitely many objects have the same
colour.

Using the Infinite Pigeon-Hole Principle we are now sure that the set of neigh-
bours of vy from which we reach infinitely many vertices without going back
to vy is not empty. However, the next problem we face is which element we
should choose from that non-empty set. If the vertices are ordered in some
way, then we can choose the first element with respect to that order, but
otherwise, we would need some kind of choice function which selects infinitely
often (and this is the crucial point!) one vertex from a given non-empty set of
vertices. Such a choice function is guaranteed by the Axiom of Choice, denoted
AC, which is discussed in Chapter 5.



Axiom of Choice: For every family % of non-empty sets, there is a
function f — called choice function — which selects one element from
each member of % (i.e., for each x € %, f(x) € x); or equivalently,
every Cartesian product of non-empty sets is non-empty.

The Axiom of Choice is one of the main topics of this book: In Chapter 3,
the axioms of Zermelo-Fraenkel Set Theory (i.e., the usual axioms of Set
Theory except AC) are introduced. In Chapter 4 we shall introduce the reader
to Zermelo-Fraenkel Set Theory and show how combinatorics can, to some
extent, replace the Axiom of Choice. Subsequently, the Axiom of Choice (and
some of its weaker forms) is introduced in Chapter 5. From then on, we always
work in Zermelo-Fraenkel Set Theory with the Axiom of Choice — even in the
case as in Chapters 7& 17 when we construct models of Set Theory in which
AC fails.

Now, let us turn back to Konig's Lemma. In order to prove Konig's Lemma
we do not need full AC, since it would be enough if every family of non-empty
finite sets had a choice function — the family would consist of all subsets of
neighbours of vertices. However, as we will see later, even this weaker form of
AC is a proper axiom and is independent of the other axioms of Set Theory
(cf. PROPOSITION 7.7). Thus, depending on the axioms of Set Theory we start
with, AC— as well as some weakened forms of it — may fail, and consequently,
Konig's Lemma may become unprovable. On the other hand, as we will see in
Chapter 5, Konig's Lemma may be used as a non-trivial choice principle.

Thus, this first example shows that — with respect to our definition of
Combinatorics given above — some “objects satisfying certain criteria,” may,
but need not, exist.

The next example can be seen as a problem in infinitary Extremal Combi-
natorics. The word “extremal” describes the nature of problems dealt with
in this field and refers to the second part of our definition of Combinatorics,
namely “how large or how small collections satisfying certain criteria might
be.”

If the objects considered are infinite, then the answer, how large or how
small certain sets are, depends again on the underlying axioms of Set Theory,
as the next example shows.

REAPING FAMILIES: A family % of infinite subsets of the natural num-
bers N is said to be reaping if for every colouring of IN with two colours
there exists a monochromatic set in the family Z%.

For example, the set of all infinite subsets of IN is such a family. The reap-
ing number t— a so-called cardinal characteristic of the continuum —is the
smallest cardinality (i.e., size) of a reaping family. In general, a cardinal char-
acteristic of the continuum is typically defined as the smallest cardinality of
a subset of a given set S which has certain combinatorial properties, where S
is of the same cardinality as the continuum R.



Consider the cardinal characteristic ¢ (i.e., the size of the smallest reaping
family). Since v is a well-defined cardinality we can ask: How large is t? Can
it be countable? Is it always equal to the cardinality of the continuum?

Let us just show that a reaping family can never be countable: Let o/ =
{A; : i € N} be any countable family of infinite subsets of IN. For each i € IN,
pick n; and m; from the set A; in such a way that, at the end, for all i we
have n; < m; < n;y+1. Now we colour all n;’s blue and all the other numbers
red. For this colouring, there is no monochromatic set in <7, and hence, &/
cannot be a reaping family. The Continuum Hypothesis, denoted CH, states
that every subset of the continuum R is either countable or of cardinality c,
where ¢ denotes the cardinality of R. Thus, if we assume CH, then any reaping
family is of cardinality ¢. The same holds if we assume Martin's Axiom which
will be introduced in Chapter 13.

On the other hand, with the forcing technique — invented by Paul Cohen
in the early 1960s— one can show that the axioms of Set Theory do not
decide whether or not the cardinals v and ¢ are equal. The forcing technique
is introduced in Part IT and a model in which t < ¢ is given in Chapter 18.

Thus, the second example shows that — depending on the additional ax-
ioms of Set Theory we start with — we can get different answers when we try
to “decide how large or how small certain collections might be.”

Many more cardinal characteristics like hom and par (see below) are intro-
duced in Chapter 8. Possible (i.e., consistent) relations between these cardi-
nals are investigated in Part IT and more systematically in Part IIl — where
the cardinal characteristics are also used to distinguish the combinatorial fea-
tures of certain forcing notions.

Another field of Combinatorics is the so-called Ramsey Theory, and since
many results in this work rely on Ramsey-type theorems, let us give a brief
description of Ramsey Theory.

Loosely speaking, Ramsey Theory (which can be seen as a part of extremal
Combinatorics) is the branch of Combinatorics which deals with structures
preserved under partitions, or colourings. Typically, one looks at the follow-
ing kind of question: If a particular object (e.g., algebraic, geometric or com-
binatorial) is arbitrarily coloured with finitely many colours, what kinds of
monochromatic structures can we find?

For example, VAN DER WAERDEN’S THEOREM, which will be proved in
Chapter 11, tells us that for any positive integers r and n, there is a positive
integer N such that for every r-colouring of the set {0,1,...,N} we find
always a monochromatic (non-constant) arithmetic progression of length n.

Even though VAN DER WAERDEN’S THEOREM is one of the earliest re-
sults in Ramsey Theory, the most famous result in Ramsey Theory is surely
RAMSEY’S THEOREM (which will be discussed in detail in the next chapter):



RAMSEY’s THEOREM: Let n be any positive integer. If we colour all
n-element subsets of IN with finitely many colours, then there exists
an infinite subset of IN all of whose n-element subsets have the same
colour.

There is also a finite version of RAMSEY’S THEOREM which gives an answer
to problems like the following:

How many people must be invited to a party in order to make sure that
three of them mutually shook hands on a previous occasion or three of them
mutually did not shake hands on a previous occasion?

It is quite easy to show that at least six people must be invited. On the other
hand, if we ask how many people must get invited such that there are five
people who all mutually shook hands or did not shake hands on a previous
occasion, then the precise number is not known — but it is conjectured that
it is sufficient to invite 43 people.

As we shall see later, RAMSEY’S THEOREM has many — sometimes unex-
pected — applications. For example, if we work in Set Theory without AC,
then RAMSEY’S THEOREM can help to construct a choice function, as we will
see in Chapter 4. Sometimes we get Ramsey-type (or anti-Ramsey-type) re-
sults even for partitions into infinitely many classes (i.e., using infinitely many
colours). For example, one can show that there is a colouring of the points
in the Euclidean plane with countably many colours, such that no two points
of any “copy of the rationals” have the same colour. This result can be seen
as an anti-Ramsey-type theorem (since we are far away from “monochromatic
structures”), and it shows that Ramsey-type theorems cannot be generalised
arbitrarily. However, concerning RAMSEY’S THEOREM, we can ask for a “nice”
family .# of infinite subsets of IN, such that for every colouring of the n-element
subsets of IN with finitely many colours, there exists a homogenous set in the
family .%, where an infinite set 2 C IN is called homogeneous if all n-element
subsets of z have the same colour. Now, “nice” could mean “as small as pos-
sible” but also “being an ultrafilter.” In the former case, this leads to the
homogeneous number hom, which is the smallest cardinality of a family #
which contains a homogeneous set for every 2-colouring of the 2-element sub-
sets of IN. One can show that hom is uncountable and — like for the reaping
number — that the axioms of Set Theory do not decide whether or not hom
is equal to ¢ (see Chapter 18). The latter case, where “nice” means “being an
ultrafilter,” leads to so-called Ramsey ultrafilters. It is not difficult to show
that Ramsey ultrafilters exist if one assumes CH or Martin’s Axiom (see Chap-
ter 10), but on the other hand, the axioms of Set Theory alone do not imply
the existence of Ramsey ultrafilters (see PROPOSITION 25.11). A somewhat
anti-Ramsey-type question would be to ask how many 2-colourings of the 2-
element subsets of IN we need to make sure that no single infinite subset of IN
is almost homogeneous for all these colourings, where a set H is called almost
homogeneous if there is a finite set K such that H \ K is homogeneous. This
question leads to the partition number par. Again, par is uncountable and the
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axioms of Set Theory do not decide whether or not par is equal to ¢ (see for
example Chapter 18).

RAMSEY’s THEOREM, as well as Ramsey Theory in general, play an impor-
tant role throughout this book. Especially in all chapters of Part I, except for
Chapter 3, we shall meet — sometimes unexpectedly — RAMSEY’S THEOREM
in one form or other.

NOTES

Gioseffo Zarlino. All citations of Zarlino (1517 -1590) are taken from Part III
of his book entitled Le Istitutioni Harmoniche (cf. [1]). This section of Zarlino’s In-
stitutioni is concerned primarily with the art of counterpoint, which is, according
to Zarlino, the concordance or agreement born of a body with diverse parts, its var-
1ous melodic lines accommodated to the total composition, arranged so that voices
are separated by commensurable, harmonious intervals. The word “counterpoint”
presumably originated at the beginning of the 14th century and was derived from
“punctus contra punctum,” 1.e., point against point or note against note. Zarlino
himself was an Italian music theorist and composer. While he composed a number
of masses, motets and madrigals, his principal claim to fame is as a music theorist:
For example, Zarlino was ahead of his time in proposing that the octave should be
divided into twelve equal semitones — for the lute, that is to say, he advocated a
practice in the 16" century which was universally adopted three centuries later.
He also advocated equal temperament for keyboard instruments and just intonation
for unaccompanied vocal music and strings — a system which has been successfully
practiced up to the present day. Furthermore, Zarlino arranged the modes in a differ-
ent order of succession, beginning with the Ionian mode instead of the Dorian mode.
This arrangement seems almost to have been dictated by a prophetic anticipation
of the change which was to lead to the abandonment of the modes in favour of a
newer tonality, for his series begins with a form which corresponds exactly with our
modern major mode and ends with the prototype of the descending minor scale of
modern music. (For the terminology of music theory we refer the interested reader
to Benson [2].)

Zarlino’s most notable student was the music theorist and composer Vincenzo
Galilei, the father of Galileo Galilei.

Konig’s Lemma and Ramsey’s Theorem. A proof of Kénig's Lemma can be
found in Konig’s book on Graph Theory [3, VI, §2, Satz 6], where he called the result
Unendlichkeitslemma. As a first application of the Unendlichkeitslemma he proved
the following theorem of de la Vallée Poussin: If E is a subset of the open unit
interval (0,1) which is closed in R and I is a set of open intervals covering E, then
there is a natural number n, such that if one partitions (0,1) into 2" intervals of
length 27" each of these intervals containing a point of FE is contained in an interval
of I. Using the Unendlichkeitslemma, Konig also showed that VAN DER WAERDEN’S
THEOREM is equivalent to the following statement: If the positive integers are finitely
coloured, then there are arbitrarily long monochromatic arithmetic progressions. In
a similar way we will use Kénig's Lemma to derive the FINITE RAMSEY THEOREM
from RAMSEY’S THEOREM (cf. COROLLARY 2.3).
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At first glance, Konig's Lemma and RAMSEY’s THEOREM seem to be quite un-
related statements. In fact, Konig's Lemma is a proper (but rather weak) choice
principle, whereas RAMSEY’S THEOREM is a very powerful combinatorial tool. How-
ever, as we shall see in Chapter 5, RAMSEY’S THEOREM can also be considered as
a proper choice principle which turns out to be even stronger than Kénig's Lemma
(see THEOREM 5.17).
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Overture: Ramsey’s Theorem

Musicians in the past, as well as the best of the
moderns, believed that a counterpoint or other mu-
sical composition should begin on a perfect conso-
nance, that is, a unison, fifth, octave, or compound
of one of these.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

The Nucleus of Ramsey Theory

Most of this text is concerned with sets of subsets of the natural numbers,
so, let us start there: The set {0,1,2,...} of natural numbers (or of non-
negative integers) is denoted by w. It is convenient to consider a natural
number n as an n-element subset of w, namely as the set of all numbers
smaller than n, so, n = {k € w : k < n}. In particular, 0 = ), where 0 is
the empty set. For any n € w and any set S, let [S]™ denote the set of all
n-element subsets of S (e.g., [S]° = {0}). Further, the set of all finite subsets
of a set S is denoted by [S]<“.

For a finite set S let |S| denote the number of elements in S, also called
the cardinality of S.

A set S is called countable if there is an enumeration of S, i.e., if S =0
or S = {z; : ¢ € w}. In particular, every finite set is countable. However, when
we say that a set is countable we usually mean that it is a countably infinite
set. For any set S, [S]“ denotes the set of all countably infinite subsets of S,
in particular, since every infinite subset of w is countable, [w]“ is the set of all
infinite subsets of w.

Let S be an arbitrary non-empty set. A binary relation “~
equivalence relation if it is

” on S is an

o reflexive (i.e., for all x € S: © ~ x),
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e symmetric (i.e., for all x,y € S: x ~y +> y ~ x), and
e trangitive (i.e., for all z,y,2 € S:x ~yANy~z — x~ 2).

The equivalence class of an element x € S, denoted [z]", is the set {y €
S:x~ y} We would like to recall the fact that, since ”~” is an equivalence

relation, for any z,y € S we have either [z]” = [y]” or [z] N [y]” = 0. A set
A C S is a set of representatives if for each equivalence class [z]” we have
|AN[z]"] = 1; in other words, A has exactly one element in common with each

equivalence class. It is worth mentioning that in general, the existence of a
set, of representatives relies on the Axiom of Choice (see Chapter 5).

For sets A and B, let 4B denote the set of all functions f : A — B.
For f € "B and S C Alet f[S] := {f(z) : € S} and let f|s € B (the
restriction of f to S) be such that for all x € S, f(z) = f|s(z).

Further, for sets A and B, let the set-theoretic difference of A and B be
the set A\ B:={a€ A:a¢ B}.

For some positive n € w, let us colour all n-element subsets of w with
three colours, say red, blue, and yellow. In other words, each n-element set
of natural numbers {ki,...,k,} is coloured either red, or blue, or yellow.
Now one can ask whether there is an infinite subset H of w such that all
its n-element subsets have the same colour (i.e., [H]" is monochromatic).
Such a set we would call homogeneous (for the given colouring). In the
terminology above, this question reads as follows: Given any colouring (i.e.,
function) 7 : [w]™ — 3, where 3 = {0, 1, 2}, does there exist a set H € [w]* such
that 7|;;» is constant? Alternatively, one can define an equivalence relation
> on [w]™ by stipulating @ ~ y iff 7(z) = w(y) and ask whether there
exists a set H € [w]¥ such that [H]™ is included in one equivalence class. The
answer to this question is given by RAMSEY’S THEOREM 2.1 below, but before
we state and prove this theorem, let us say a few words about its background.

Ramsey proved his theorem in order to investigate a problem in formal
logic, namely the problem of finding a regular procedure to determine the
truth or falsity of a given logical formula in the language of First-Order Logic,
which is also the language of Set Theory (cf. Chapter 3). However, RAMSEY’S
THEOREM is a purely combinatorial statement and was the nucleus — but
not the earliest result — of a whole combinatorial theory, the so-called Ramsey
Theory. We would also like to mention that Ramsey’s original theorem, which
will be discussed later, is somewhat stronger than the theorem stated below
but is, like Kénig's Lemma, not provable without assuming some form of the
Axiom of Choice (see PROPOSITION 7.8).

[13 )
~

THEOREM 2.1 (RAMSEY’S THEOREM). For any number n € w, for any pos-
itive number r € w, for any S € [w]|¥, and for any colouring 7 : [S]™ — 7,
there is always an H € [S]|¥ such that H is homogeneous for w, i.e., the set
[H]™ is monochromatic.

Before we prove RAMSEY’S THEOREM, let us consider a few examples: In
the first example we colour the set of prime numbers P with two colours.



The nucleus of Ramsey Theory 13

A Wieferich prime is a prime number p such that p? divides 2P~% — 1,
denoted p? | 2°~! — 1 —recall that by FERMAT’S LITTLE THEOREM we have
p | 2P=1 —1 for any prime p. Now, define the 2-colouring 71 of P by stipulating
0 if p is a Wieferich prime,
m(p) = { .
1 otherwise.

Let Hy={pe€ P:p*| 27! —1} and H; = P\ Hp. The only numbers which
are known to belong to Hy are 1093 and 3511. On the other hand, it is not
known whether H; is infinite. However, by the Infinite Pigeon-Hole Principle
we know that at least one of the two sets Hy and H; is infinite, which gives
us a homogeneous set for 7.

As a second example, define the 2-colouring 7o of the set of 2-element
subsets of {7 : ] € w} by stipulating

0 if n™ +m™+ 1 is prime,
w2 ({nm}) {1 otherwise.

An easy calculation modulo 3 shows that the set H = {42k + 14 : k € w} C
{71 : | € w} is homogeneous for m; in fact, for all {n,m} € [H]?> we have
3| (0™ +m"+1).

Before we give a third example, we prove the following special case of
RAMSEY’S THEOREM.

PROPOSITION 2.2. For any positive number r € w, for any S € [w]¥, and for
any colouring 7 : [S]?> — r, there is always an H € [S]|* such that [H|? is
monochromatic.

Proof. The proofis in fact just a consequence of the Infinite Pigeon-Hole Princi-
ple; firstly, the Infinite Pigeon-Hole Principle is used to construct homogeneous
sets for certain 2-colourings 7 and then it is used to show the existence of a
homogeneous set for .

Let Sy = S and let ap = min(Sy). Define the r-colouring 79 : So\ {ao} — r
by stipulating 70(b) := m({ao,b}). By the Infinite Pigeon-Hole Principle there
is an infinite set S; C Sp \ {ao} such that 79|s, is constant (i.e., 1p|s, is a
constant function) and let pg := 79(b), where b is any member of S;. Now,
let a1 = min(S7) and define the r-colouring 71 : S1 \ {1} — r by stipulating
71(b) := m({a1,b}). Again we find an infinite set Sy C Sy \ {a1} such that
T1|s, is constant and let py := 71(b), where b is any member of Sz. Proceeding
this way we finally get infinite sequences ag < a1 < ... < a, < ... and
00, P1, - - -- Notice that by construction, for all n € w and all kK > n we have
ﬂ'({an,ak}) = 7n(ag) = pn. Define the r-colouring 7 : {a, : n € w} — r by
stipulating 7(ay,) := p,. Again by the Infinite Pigeon-Hole Principle there is an
infinite set H C {ay, : n € w} such that 7| is constant, which implies that H
is homogeneous for r, i.e., [H]? is monochromatic. =
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As a third example, consider the 17-colouring 73 of the set of 9-element
subsets of IP defined by stipulating

ﬂg({pl,...,pg}):c <~ p1-p2-...-pg=c mod 17.

For 0 < k < 16let P, = {p € P : p = k mod 17}. Then, by Dirich-
let’s theorem on primes in arithmetic progression, Py is infinite whenever
ged(k,17) = 1, i.e, for all positive numbers k& < 16. Thus, by an easy calcu-
lation modulo 17 we get that for 1 < k < 16, Py is homogeneous for 3.

Now we give a complete proof of RAMSEY’S THEOREM 2.1:

Proof of Ramsey’s Theorem. The proof is by induction on n. For n = 2 we
get PROPOSITION 2.2. So, we assume that the statement is true for n > 2 and
prove it for n + 1. Let 7 : [w]"*! — r be any r-colouring of [w]"*!. For each
integer a € w let 7, be the r-colouring of [w\ {a}]" defined as follows:

Ta(z) = w(x U {a})

By induction hypothesis, for each S’ € [w]* and for each a € S’ there is an
HY ¢ [S7\ {a}]w such that HS' is homogeneous for 7,. Construct now an
infinite sequence ag < a1 < ... < a; < ... of natural numbers and an infinite
sequence Sg D S1 D ... D S; D ... of infinite subsets of w as follows: Let
So = S and ap = min(S), and in general let
S’L+1 = Hfj, and Qi1 = min{a € Sz'+1 ra > ai} .

It is clear that for each i € w, the set [{an, : m > z}}n is monochromatic for
Ta;; 16t 7(a;) be its colour (i.e., 7 is a colouring of {a; : i € w} with at most r
colours). By the Infinite Pigeon-Hole Principle there is an H C {a; : i € w} such
that 7 is constant on H, which implies that 7r|[H]n,+1 is constant, too. Indeed,
for any 9 < ... < z, in H we have ﬂ'({xo, . ,l‘n}) = T ({1131, . ,xn}) =
7(x0), which completes the proof.

Corollaries of Ramsey’s Theorem

In finite Combinatorics, the most important consequence of RAMSEY’S THE-
OREM 2.1 is its finite version:

COROLLARY 2.3 (FINITE RAMSEY THEOREM). For all m,n,r € w, where
r > 1 and n < m, there exists an N € w, where N > m, such that for every
colouring of [N]™ with r colours, there exists a set H € [N]™, all of whose
n-element subsets have the same colour.

Proof. Assume towards a contradiction that the FINITE RAMSEY THEOREM
fails. So, there are m,n,r € w, where r > 1 and n < m, such that forall N € w
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with N > m there is a colouring 7x : [N]” — r such that no H € [N]|™
is homogeneous, i.e., [H]™ is not monochromatic. We shall construct an r-
colouring 7 of [w]™ such that no infinite subset of w is homogeneous for ,
contradicting RAMSEY’S THEOREM. The r-colouring 7 will be induced by an
infinite branch through a finitely branching tree, where the infinite branch is
obtained by Konig's Lemma. Thus, we first need an infinite, finitely branching
tree. For this, consider the following graph G: The vertex set of G consists of
¢ and all colourings 7n : [N]" — r, where N > m, such that no H € [N]|™
is homogeneous for mx. There is an edge between () and each r-colouring
7m Of [m]™, and there is an edge between the colourings 7y and wny1 iff
TN = 41|y (Le., for all © € [N]?, nyy1(x) = my(x)). In particular, there
is no edge between two different r-colouring of [N]™. By our assumption, the
graph G is infinite. Further, by construction, it is cycle-free, connected, finitely
branching, and has a root, namely (). In other words, G is an infinite, finitely
branching tree and therefore, by Kénig's Lemma, contains an infinite branch
of r-colourings, say (0, T, Tma1, .- Tmti,---), where for all i,7 € w, the
colouring ,4i+; is an extension of the colouring m, ;.

At this point we would like to mention that since for any N € w the set
of all r-colouring of [N]™ can be ordered, for example lexicographically, we do
not need any non-trivial form of the Axiom of Choice to construct an infinite
branch.

Now, the infinite branch (0, 7,,, T41, - . .) induces an r-colouring 7 of [w]™
such that no m-element subset of w is homogeneous. In particular, there is no
infinite set H € [w]” such that 7|z}~ is constant, which is a contradiction to
RAMSEY’S THEOREM 2.1 and completes the proof. —

The following corollary is a geometrical consequence of the FINITE RAM-
SEY THEOREM 2.3:

COROLLARY 2.4. For every positive integer n there exists an N € w with the
following property: If P is a set of N points in the Euclidean plane without
three collinear points, then P contains n points which form the vertices of a
convex n-gon.

Proof. By the FINITE RAMSEY THEOREM 2.3, let N be such that for every
2-colouring of [N]? there is a set H € [N]" such that [H]? is monochromatic.
Now let N points in the plane be given, and number them from 1 to N in
an arbitrary but fixed way. Colour a triple (i, 4, k), where i < j < k, red, if
travelling from i to j to k is in clockwise direction; otherwise, colour it blue. By
the choice of N, there are n ordered points so that every triple has the same
colour (i.e., orientation) from which one verifies easily (e.g., by considering the
convex hull of the n points) that these points form the vertices of a convex
N-gon. —

The following theorem — discovered more than a decade before RAMSEY’S
THEOREM — is perhaps the earliest result in Ramsey Theory:
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COROLLARY 2.5 (SCHUR'S THEOREM). If the positive integers are finitely
coloured (i.e., coloured with finitely many colours), then there are three dis-
tinct positive integers x,y, z of the same colour, with x +y = z.

Proof. Let r be a positive integer and let 7 be any r-colouring of w \ {0}.
Let N € w be such that for every r-colouring of [N]? there is a homogeneous
3-element subset of N. Define the colouring 7* : [N]?> — r by stipulating
7*(4,5) = w(]i — j|), where |i — j| is the modulus or absolute value of the
difference ¢ — j. Since N contains a homogeneous 3-element subset (for 7*),
there is a triple 0 < ¢ < j < k < N such that 7#*(i,5) = 7*(j, k) = 7* (i, k),
which implies that the numbers x = j — i, y = k — j, and z = k — i, have the
same colour, and in addition we have x +y = z. —

The next result is a purely number-theoretical result and follows quite easily
from RAMSEY’S THEOREM. However, somewhat surprisingly, it is unprovable
in Number Theory, or more precisely, in Peano Arithmetic (which will be
discussed in Chapter 3). Before we can state the corollary, we have to introduce
the following notion: A non-empty set S C w is called large if S has more than
min(S) elements. Further, for n,m € w let [n,m] :={i € w:n <i <m}.

COROLLARY 2.6. For all n,k,r € w with r > 1, there is an m € w such that
for any r-colouring of [[n, m]] k, there exists a large homogeneous set.

Proof. Let n,k,r € w, where » > 1, be some arbitrary but fixed numbers.
Let 7 : [w\ n]® — r be any r-colouring of the k-element subsets of {i € w :
i > n}. By RAMSEY’S THEOREM 2.1 there exists an infinite homogeneous set
H € [w\n]“. Let a = min(H) and let S denote the least a + 1 elements of H.
Then S is large and [S]* is monochromatic.

The existence of a finite number m with the required properties now
follows — using Konig's Lemma — in the very same way as the FINITE RAMSEY
THEOREM followed from RAMSEY’S THEOREM (see the proof of the FINITE
RAMSEY THEOREM 2.3). =

Generalisations of Ramsey’s Theorem

Even though Ramsey’s theorems are very powerful combinatorial results, they
can still be generalised. The following result will be used later in Chap-
ter 7 in order to prove that the Prime Ideal Theorem —introduced in Chap-
ter 5 — holds in the ordered Mostowski permutation model (but it will not be
used anywhere else in this book).

In order to illustrate the next theorem, as well as to show that it is optimal
to some extent, we consider the following two examples: Firstly, define the 2-
colouring 71 of [w]? x [w]® x [w]! by stipulating

1 if 2ov24 13v1¥2¥5 4 1771 — 3 is prime,

0 otherwise.

7T1({$1,-’L'2}a {y1,y2,y3}, {zl}) — {
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Let HH={3-k:kecw}, Hy={2-k:kcw},and H3 ={6-k: k € w}. Then
an easy calculation modulo 7 shows that [H;]? x [Ha]? x [H3]! is an infinite
monochromatic set.

Secondly, define the 2-colouring 73 of [w]! x [w]* by stipulating

1 if z <y,
0 otherwise.

m({a} {y}) = {
It is easy to see that whenever H; and H, are infinite subsets of w, then [H; ]! x
[H]! is not monochromatic; on the other hand, we easily find arbitrarily large
finite sets My, My C w such that [M;]! x [Mz]' is monochromatic.

Thus, if [w]™* x ... x [w]™ is coloured with r colours, then, in general, we
cannot expect to find infinite subsets of w, say Hi, ..., Hj, such that [H;]™* X
.. .X[H;]™ is monochromatic; but we always find arbitrarily large finite subsets
of w:

THEOREM 2.7. Let r,l,nq,...,n; € w with r > 1 be given. For every m € w
with m > max{ni,...,n;} there is some N € w such that whenever [N]™ x
. x [N]™ is coloured with r colours, then there are My, ..., M; € [N|™ such

that [M7]™ x ... x [M;]™ is monochromatic.

Proof. The proof is by induction on [ and the induction step uses a so-called
product-argument. For [ = 1 the statement is equivalent to the FINITE RAM-
SEY THEOREM 2.3. So, assume that the statement is true for [ > 1 and let us
prove it for [ + 1. By induction hypothesis, for every r > 1 there is an N; (de-
pending on r) such that for every r-colouring of [N;]™ x ... x [N;]™ there are
My, ..., M; € [N]]™ such that [M1]™ x ... x [M;]™ is monochromatic. Now,
the crucial idea in order to apply the FINITE RAMSEY THEOREM is to consider
the coloured I/-tuples in ([Nl]m)l as new colours. More precisely, let u; be the
number of different I-tuples in ([Nl]m)l and let 7; := wu; - 7. Notice that each

colour in r; corresponds to a pair (¢, c), where t is an [-tuple in ([Nl]m)l and ¢
is one of r colours. Notice also that r; is very large compared to r. Now, by the
FINITE RAMSEY THEOREM 2.3, there is a number N;;; € w such that when-
ever [N;41]™+ is coloured with r; colours, then there exists an M1 € [Nj41]™
such that [M;y1]™+* is monochromatic. Let N = max{N;, Ni41} and let 7 be
any r-colouring of [V;]™ x ... x [N;]™ x [N]™+!. For every F € [N]™+! let
7 be the r-colouring of [N;]™ x ... x [N;]™ defined by stipulating

™ (X) =7 ((X,F)).

By the definition of N, for every F € [N]™+! there is a lexicographically
first I-tuple (MF, ..., MF) € ((M]™)' such that [MF]™ x ... x [MF]™ is
monochromatic for 7. By definition of r; we can define an 7;-colouring ;41
on [N]™+1 as follows: Every set F' € [N]™+! is coloured according to the I-
tuple ¢t = (M{, ..., M/") (which can be encoded as one of u; numbers) and the
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colour ¢ = 7'(X), where X is any element of the set [M{]™" x ... x [MF]™;

because [Mﬂ "X [MZF] " is monochromatic for 7', ¢ is well-defined and
one of r colours. In other words, for every F' € [N]|™"+, w41 (F) correspond to

a pair (t,c), where t € ([Nl]m)l and c is one of r colours. Finally, by definition
of N, there is a set M;y; € [N]™ such that [M;41]™+* is monochromatic for
71+1, which implies that for all F, Fy, F5 € [M;41]™+! we have:

o [M{] "o x (M " is monochromatic for 7%,

o (M. MY = (M M),
e and restricted to the set [M{]™"

7rlF 2 are identical.

x ... x [MF]™, the colourings 7" and

Hence, there are Mi,...,Miy1 € [N]|™ such that 7|ia mix. xa, e 18
constant, which completes the proof. —

A very strong generalisation of RAMSEY’S THEOREM in terms of partitions
is the PARTITION RAMSEY THEOREM 11.4. However, since the proof of this
generalisation is quite involved, we postpone the discussion of that result until
Chapter 11 and consider now some other possible generalisations of RAMSEY’S
THEOREM: Firstly one could finitely colour all finite subsets of w, secondly one
could colour [w]™ with infinitely many colours, and finally, one could finitely
colour all the infinite subsets of w. However, below we shall see that none
of these generalisations works, but first, let us consider Ramsey’s original
theorem, which is — at least in the absence of the Axiom of Choice — also a
generalisation of RAMSEY’S THEOREM.

Ramsey’s Original Theorem.

The theorem which Ramsey proved originally is somewhat stronger than what
we proved above. In our terminology, it states as follows:

RAMSEY’Ss ORIGINAL THEOREM. For any infinite set A, for any number n € w,
for any positive number r € w, and for any colouring 7 : [A]™ — r, there is
an infinite set H C A such that [H]™ is monochromatic.

Notice that the difference is just that the infinite set A is not necessarily a
subset of w, and therefore, it does not necessarily contain a countable infinite
subset. However, this difference is crucial, since one can show that, like Konig's
Lemma, this statement is not provable without assuming some form of the
Axiom of Choice (AC). On the other hand, if one has AC, then every infinite
set has a countably infinite subset, and so RAMSEY’S THEOREM implies the
original version. Ramsey was aware of this fact and stated explicitly that he is
assuming the axiom of selections (i.e., AC). Even though we do not need full
AC in order to prove RAMSEY’S ORIGINAL THEOREM, there is no way to avoid
some non-trivial kind of choice, since there are models of Set Theory in which
RAMSEY’S ORIGINAL THEOREM fails (cf. PROPOSITION 7.8). Consequently,
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RAMSEY’S ORIGINAL THEOREM can be used as a choice principle, which will
be discussed in Chapter 5.

Finite Colourings of [w]<¥

Assume we have coloured all the finite subsets of w with two colours, say red
and blue. Can we be sure that there is an infinite subset of w such that all its
finite subsets have the same colour? The answer to this question is negative
and it is not hard to find a counterexample (e.g., colour a set = € [w]<* blue,
if || is even; otherwise, colour it red).

Thus, let us ask for slightly less. Is is there at least an infinite subset of w
such that for each n € w, all its n-element subsets have the same colour? The
answer to this question is also negative: Colour a non-empty set z € [w]<¥
red, if 2 has more than min(z) elements (i.e., x is large); otherwise, colour it
blue. Now, let I be an infinite subset of w and let n = min(7). We leave it as
an exercise to the reader to verify that [I]"*! is dichromatic.

The picture changes if we are asking just for an almost homogeneous sets: An
infinite set H C w is called almost homogeneous for a colouring 7 : [w]™ — r
(where n € w and r is a positive integer), if there is a finite set K C w such
that H \ K is homogeneous for m. Now, for a positive integer r consider
any colouring 7 : [w]<“ — r. Then, for each n € w, [y~ is a colouring
T, ¢ [w]™ — 7. Is there an infinite set H C w which is almost homogeneous
for all m,’s simultaneously? The answer to this question is affirmative and is
given by the following result.

PROPOSITION 2.8. Let {ry : k € w} and {ny : k € w} be two (possibly finite)
sets of positive integers, and for each k € w let 7, : [w]™ — 71 be a colouring.
Then there exists an infinite set H C w which is almost homogeneous for each
e (k € w).

Proof. A first attempt to construct the required almost homogeneous set
would be to start with an Iy € [w]* which is homogeneous for 7, then take
an I € [[p]” which is homogeneous for 7, et cetera, and finally take the
intersection of all the I;’s. Even though this attempt fails — since it is very
likely that we end up with the empty set — it is the right direction. In fact, if
the intersection of the Ij’s would be non-empty, it would be homogeneous for
all 7x’s, which is more than what is required. In order to end up with an infi-
nite set we just have to modify the above approach — the trick, which is used
almost always when the word “almost” is involved, is called diagonalisation.
The proof is by induction on k: By RAMSEY’S THEOREM 2.1 there exists an
Hj € [w]¥ which is homogeneous for mp. Assume we have already constructed
Hy € [w]¥ (for some k > 0) such that Hy is homogeneous for 7. Let ap =
min(Hy) and let S, = Hy \ {ax}. Then, again by RAMSEY’S THEOREM 2.1,
there exists an Hyy1 € [Sk]¥ such that Hyyq is homogeneous for mj41. Let
H = {ar : k € w}. Then, by construction, for every k¥ € w we have that
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H\ {aog,...,ar—1} is homogeneous for mj, which implies that H is almost
homogeneous for all 7;’s simultaneously. —

Now we could ask what is the least number of 2-colourings of 2-element subsets
of w we need in order to make sure that no single infinite subset of w is almost
homogeneous for all colourings simultaneously” By PROPOSITION 2.8 we know
that countably many colourings are not sufficient, but as we will see later, the
axioms of Set Theory do not decide how large this number is (cf. Chapter 18).

The dual question would be as follows: How large must a family of infinite
subsets of w be, in order to make sure that for each 2-colouring of the 2-
element subsets of w we find a set in the family which is homogeneous for
this colouring? Again, the axioms of Set Theory do not decide how large this
number is (cf. Chapter 18).

Going to the Infinite

There are two parameters involved in a colouring 7 : [w]™ — 7, namely n and
r. Let first consider the case when n = 2 and r» = w. In this case, we obviously
cannot hope for any infinite homogeneous or almost homogeneous set. How-
ever, there are still infinite subsets of w which are homogeneous in a broader
sense which leads to the CANONICAL RAMSEY THEOREM. Even though the
CANONICAL RAMSEY THEOREM is a proper generalisation of RAMSEY’S THE-
OREM, we will not discuss it here (but see RELATED RESULT 0).

In the case when n = w and r = 2 we cannot hope for an infinite homo-
geneous set, as the following example illustrates (compare this result with
Chapter 5| RELATED RESULT 38):

In the presence of the Axiom of Choice there is a 2-colouring of [w]* such that
there is no infinite set, all whose infinite subsets have the same colour.

The idea is to construct (or more precisely, to prove the existence of) a colour-
ing of [w]¥ with say red and blue in such a way that whenever an infinite set
x € [w]¥ is coloured blue, then for each a € z, x \ {a} is coloured red, and
vice versa.
For this, define an equivalence relation on [w]* as follows: for z,y € [w]¥
let
x ~y < x/y is finite

where zAy = (z \ y) U (y \ z) is the symmetric difference of = and y. It is
easily checked that the relation “~” is indeed an equivalence relation on [w]*.
Further, let &/ C [w]“ be any set of representatives, i.e., &/ has exactly one
element in common with each equivalence class. Since the existence of the set
& relies on the Axiom of Choice, the given proof is not entirely constructive.

Colour now an infinite set x € [w]¥ blue, if |[xAr,| is even, where r, €
(& N [z]7); otherwise, colour it red. Since two sets z,y € [w]* with finite
symmetric difference are always equivalent, every infinite subset of w must
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contain blue as well as red coloured infinite subsets.

So, there is a colouring 7 : [w]* — {0,1} such that for no x € [w]*, 7|4
is constant. On the other hand, if the colouring is not too sophisticated we
may find a homogeneous set: For &/ C [w]* define 7y : [w]* — {0,1} by
stipulating 7o/ () = 1 iff © € o/. Now we say that the set &/ C [w]* has the
Ramsey property if there exists an x, € [w]* such that 7u|[,)~ is constant.
In other words, o/ C [w]“ has the Ramsey property if and only if there exists
an z, € [w]¥ such that either [z,]Y C & or x,]“ N« = (. The Ramsey
property is related to the cardinal b (cf. Chapter 8) and will be discussed in
Chapter 9.

A slightly weaker property than the Ramsey property is the so-called
doughnut property: If a and b are subsets of w such that b\ a is infinite,
then we call the set [a,b]Y = {z € [w]¥ : a C x C b} a doughnut. (Why
such sets are called “doughnuts” is left to the reader’s imagination.) Now, a set
o/ C |w]¥ is said to have the doughnut property if there exists an doughnut
[a,b]* (for some a and b) such that either [a,b]” C o or [a,b]* N/ = ). Ob-
viously, every set with the Ramsey property has also the doughnut property
(consider doughnuts of the form [(), 5]“). On the other hand, it is not difficult
to show that, in the presence of the Axiom of Choice, there are sets with the
doughnut property which fail to have the Ramsey property (just modify the
example given above).

NOTES

Ramsey’s Theorem. Frank Plumpton Ramsey (1903-1930), the elder brother of
Arthur Michael Ramsey (who was Archbishop of Canterbury from 1961 to 1974),
proved his famous theorem in L34] and the part of the volume in which his article
appeared was issued on the 16" of December in 1929, but the volume itself belongs
to the years 1929 and 1930 (which caused some confusion about the year Ramsey’s
article was actually published). However, Ramsey submitted his paper already in
November 1928. For Ramsey’s paper and its relation to First-Order Logic, as well
as for an introduction to Ramsey Theory in general, we refer the reader to the
classical textbook by Graham, Rothschild, and Spencer [16] (for Ramsey’s other
papers on Logic see [35]). In [34], RAMSEY’S THEOREM 2.1 appears as THEOREM A
and the FINITE RAMSEY THEOREM 2.3 is proved as a corollary and appears as
THEOREM B. Although RAMSEY’S THEOREM is accurately attributed to Ramsey,
its popularisation stems from the classical paper of Erdds and Szekerés [9], where
they proved (independently of Ramsey) COROLLARY 2.4 — which can be seen as
a variant of the FINITE RAMSEY THEOREM 2.3 in a geometrical context (see also
Morris and Soltan [27]). The elegant proof we gave for COROLLARY 2.4 is due to
Tarsy (cf. Lewin [25] or Graham, Rothschild, and Spencer [16, p. 26]).

Schur’s Theorem. Schur’s original paper [36] was motivated by FERMAT’S LAST
THEOREM, and he actually proved the following result: For all natural numbers m,
if p is prime and sufficiently large, then the equation ™ + y™ = 2™ has a non-zero
solution in the integers modulo p. A proof of this theorem can also be found in
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Graham, Rothschild, and Spencer [16, Section 3.1]. For some historical background
and for the early development of Ramsey Theory (before Ramsey) see Soifer [38].
The Paris-Harrington Result. As mentioned above, COROLLARY 2.6 is true but
unprovable in Peano Arithmetic (also called First-Order Arithmetic). This result was
the first natural example of such a statement and is due to Paris and Harrington [31]
(see also Graham, Rothschild, and Spencer [16, Section 6.3]). For other statements
of that type see Paris [30].

It is worth mentioning that Peano Arithmetic is, in a suitable sense, equivalent
to Zermelo-Fraenkel Set Theory with the Axiom of Infinity replaced by its negation,
which is a reasonable formalisation of standard combinatorial reasoning about finite
sets.

Rado’s generalisation of the Finite Ramsey Theorem. THEOREM 2.7, which
is the only proper generalisation of the FINITE RAMSEY THEOREM shown in this
book so far, is due to Rado [32] (see also page 113, Problems 4 & 5 of Jech [23]).

Ramsey sets and doughnuts. Even though the Ramsey property and the dough-
nut property look very similar, there are sets which have the Ramsey property, but
which fail to have the doughnut property. For the relation between the doughnut
property and other regularity properties see for example Halbeisen [18] or Brendle,
Halbeisen, and Léwe [4] (see also Chapter 9 | RELATED RESULT 60).

RELATED RESULTS

0. Canonical Ramsey Theorem. The following result, known as the CANONICAL
RAMSEY THEOREM, is due to Erdés and Rado (cf. [8, Theorem I]): Whenever
we have a colouring m of [w]", for some n € w, with an arbitrary (e.g., infinite)
set of colours, there exist an infinite set H C w and a set I C {1,2,...,n} such
that for any ordered n-element subsets {k1 < ... <kn},{li <...<ls} € [H]"
we have ﬁ({kl,...,kn}) = ﬂ'({ll,...,ln}) < k; =1; for all i € I. The 2"
possible choices for I correspond to the so-called canonical colourings of [w]™.
As an example let us consider the case when n = 2: Let m be an arbitrary
colouring of [w]? and let H € [w]” and I C {1,2} be as above. Then we are in
exactly one of the following four cases for all {k1 < k2}, {l1 < l2} € [H]? (cf. [8,
Theorem II]):

(1) If I = @, then W({k)l, kg}) = W({ll, lg})

(2) If I ={1,2}, then 7 ({ki,ko}) = 7({l1,l2}) iff {k1,ka} = {l1,l2}.
(3) If I = {1}, then 7 ({k1, ka}) = w({l1,l2}) iff k1 =11.

(4) If I = {2}, then 7 ({k1, ka}) = w({l1,12}) iff ko = lo.

Obviously, if 7 is a finite colouring of [w]™, then we are always in case (1), which
gives us just RAMSEY’S THEOREM 2.1.

1. Ramsey numbers. The least number of people that must be invited to a party,
in order to make sure that n of them mutually shook hands before or m of them
mutually did not shake hands before, is denoted by R(n,m), and the numbers
R(n,m) are called Ramsey numbers. Notice that by the FINITE RAMSEY
THEOREM, Ramsey numbers R(n, m) exist for all integers n,m € w. Very few
Ramsey numbers are actually known. It is easy to show that R(2,3) = 3 (in
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general, R(2,n) = n), and we leave it as an exercise to show that R(3,3) = 6. A
comprehensive list of what is known about small Ramsey numbers is maintained
by Radziszowski [33].

2. Monochromatic triangles in Kg-free graphs. Erd6s and Hajnal [10] asked for a
graph which contains no Ks (i.e., no complete graph on 6 vertices) but has the
property that whenever its edges are 2-coloured there must be a monochromatic
triangle. A minimal example for such a graph was provided by Graham [14]:
On the one hand he showed that if a 5-cycle is deleted from a Kjg, then the
resulting graph contains no Ks and has the property that whenever its edges
are 2-coloured there is a monochromatic triangle. On the other hand, if a graph
on 7 vertices contains no Kg, then there is a 2-colouring of the edges with no
monochromatic triangle.

3. Hindman’s Theorem. If F € [w]<“, then we write ©F for Y,cr a, where as
usual we define 30 := 0. HINDMAN’S THEOREM states that if w is finitely
coloured, then there is an z € [w]* such that {SF : F € [z]<* A F # 0} is
monochromatic (cf. Hindman [21, Theorem 3.1] or Hindman and Strauss [22,
Corollary 5.10] where references to alternative proofs are given on page 102).
Using HINDMAN’S THEOREM as a strong Pigeon-Hole Principle, Milliken proved
in [26] a strengthened version of RAMSEY’S THEOREM 2.1 which includes HiND-
MAN’S THEOREM as well as RAMSEY’s THEOREM 2.1. Since Milliken’s result was
proved independently by Taylor (cf. [39]), it is usually called MILLIKEN-TAYLOR
THEOREM. In order to state this result we have to introduce some notation.
Two finite sets K1, Ko C w are said to be unmeshed if max(K;) < min(K>)
or max(K2) < min(K;). If I and H are two sets of pairwise unmeshed fi-
nite subsets of w and every member of I is the union of (finitely many) mem-
bers of H, then we write I C H. Further, let (w)® denote the set of all in-
finite sets of pairwise unmeshed finite subsets of w, and for H € (w)® let
(H)" :== {I : |I| = n and I C H}. Now, the MILLIKEN-TAYLOR THEOREM
states as follows: If all the n-element sets of pairwise unmeshed finite subsets
of w are finitely coloured, then there exists an H € (w)“ such that (H)" is
monochromatic.

4. Colourings of the plane. ErdéSs [7] proved that there is a colouring of the
Euclidean plane with countably many colours, such that any two points at
a rational distance have different colours. This result was strengthened by
Komjath [24] in the following way: Let Q be the set of rational numbers and
let Q := {(q,0) : ¢ € Q} be a copy of the rationals in the Euclidean plane.
Then there exists a colouring of the Euclidean plane with countably many
colours, such that for any rigid motion o of the plane, every colour occurs

in o[Q] = {o(p) : p € Q} exactly once.

5. Finite colourings of Q. If we colour the rational numbers @ with finitely many
colours, is there always an infinite homogeneous set which is order-isomorphic
to Q7 In general, this is not the case: Let {g, : » € w} be an enumeration of
Q (see Chapter 4, in particular RELATED RESULT 14) and colour a pair {¢;, q; }
blue if ¢; < g; <> ¢ < j, otherwise, colour it red. Then it is easy to see that an
infinite homogeneous set which is order-isomorphic to  would yield an infinite
decreasing sequence of natural numbers, which is obviously not possible. On
the other hand, for every positive integer n € w there is a smallest number
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t, € w such that if [Q]" is finitely coloured then there is an infinite set X C Q
which is order-isomorphic to @ such that [X]" is coloured with at most ¢,
colours. For this see Devlin [6] or Vuksanovi¢ [41], where it is shown that such
numbers exist and that the sequence of numbers ¢,, coincides with the so-called
tangent numbers (cf. Sloane [37, A000182]). In particular, ¢{; = 1 and for n > 2,
n—1 (2n—2

bn =20 (Qi—l)tit”*i'

Symmetry and colourings. Banakh and Protasov investigated in [2] the follow-
ing problem: Is it true that for every m-colouring of the group Z" there exists
an infinite monochromatic subset of Z" which is symmetric with respect to
a central reflection. It turns out that the answer is always positive (for all n).
However, there exists a 4-colouring of Z> without infinite, symmetric, monochro-

matic set. For more general results we refer the reader to Banakh, Verbitski, and
Vorobets [3].

Wieferich primes: The so-called Wieferich primes were first introduced by
Wieferich in [42] in relation to FERMAT’S LAST THEOREM. As mentioned above,
the only known Wieferich primes (less than 1.25-10%%) are 1093 and 3511 (found
in 1913 and 1922 respectively). It is not known if there are infinitely many primes
of this type, even though it is conjectured that this is the case (see for example
Halbeisen and Hungerbiihler [19]). Moreover, it is not even known whether there
are infinitely many non-Wieferich primes — although it is very likely to be the
case.

Sums and products. As a consequence of RAMSEY’S THEOREM we get that
if w is finitely coloured, then there are infinite sequences of positive integers
(zo,21,...,Tk,...) and (Yo, Y1, .- ., Yk, ...) such that {z;+z; : 1,5 € wAi < j} as
well as {y;-y; : 1,7 € wAi < j} is monochromatic (but not necessarily of the same
colour). On the other hand, it is known (cf. Hindman and Strauss [22, Chap-
ter 17.2]) that one can colour the positive integers with finitely many colours
in such a way that there is no infinite sequence (xo,Z1,...,Zk,...) such that
{zit+x;:i,jewNni<jtU{x; -zj:4,j €wAi<j} is monochromatic.

The graph of pairwise sums and products” One can show that if w is 2-coloured,
then there are infinitely many pairs of distinct positive integers z and y such
that x + y has the same colour as x - y. For this consider the graph on w with n
joined to m if for some distinct x,y € w we have x +y = n and = -y = m. Now,
notice that it is enough to show that this so-called graph of pairwise sums and
products contains infinitely many triangles (cf. Halbeisen [17]).

Suppose now that w is finitely coloured. Are there two distinct positive integers
x and y such that « + y has the same colour as z - y ? This problem — which is
equivalent to asking whether the chromatic number of the graph of pairwise sums
and products is finite or infinite —is still open (cf. Hindman and Strauss [22,
Question 17.18]). A partial result is given in Halbeisen [17], where it is shown
that such numbers x and y exist if w is 3-coloured.

Problems in Ramsey Theory® For a variety of open problems from Ramsey
Theory we refer the reader to Graham [15] (it might be worth mentioning that
Graham is offering modest rewards for most of the presented problems).

Applications of Ramsey Theory to Banach Space Theory. There are many — and
sometimes quite unexpected — applications of Ramsey Theory to Banach Space
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Theory (see for example Odell [28], Gowers [13], or Argyros and Todorcevi¢ [1]).
Let us mention just the following two applications:

An unexpected application of Ramsey Theory to Banach Space Theory is due to
Brunel and Sucheston [5]: If z1,x2,... Is an infinite normalised basic sequence
in a Banach space X and €, \, 0 (a sequence of positive real numbers which
tends to 0), then one can find an infinite subsequence y1,y2,... of xT1,x2,...
which has the following property: For any positive n € w, any sequence of
scalars (ai1,...,an) € [—1,1]" and any natural numbers n < ig < ... < in—1
and n < jo < ... < jn—1 we have

n n
’HZakyik - HZakyjk ’ <E&n.
k=1 k=1
The limit || >"}'_, ax€r|| we obtain for each finite sequence (a1, ...,an) € [-1,1]"
leads to the sequence €1, €2, .. ., and the Banach space generated by €1, €2, ... is

called a spreading model of X. The notion of spreading models was generalised
(e.g., using the MILLIKEN-TAYLOR THEOREM) and investigated by Halbeisen
and Odell in [20].

Another example is due to Gowers [11, 12] (see also Todor¢evi¢ [40, Section 2.3]),
who discovered the long sought Block Ramsey Theorem —a genuinely new
Ramsey-type result —for Banach spaces, which he used to prove his famous
DicHoTOMY THEOREM (see also Gowers [13, Section 5] or Odell [29]): Every
Banach space X contains a subspace Y which either has an unconditional ba-
sis or is hereditarily indecomposable (i.e., Y contains no subspaces having a
non-trivial complemented subspace).
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The Axioms of Zermelo-Fraenkel Set Theory

FEvery mathematical science relies upon demon-
stration rather than argument and opinion. Cer-
tain principles, called premises, are granted, and
a demonstration is made which resolves everything
easily and clearly. To arrive at such a demonstra-
tion the means must be found for making it accessi-
ble to our judgment. Mathematicians, understand-
ing this, devised signs, not separate from matter
except in essence, yet distant from it. These were
points, lines, planes, solids, numbers, and count-
less other characters, which are depicted on paper
with certain colours, and they used these in place
of the things symbolised.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

Why Axioms ?

In the middle and late 19" century, members of the then small mathemat-
ical community began to look for a rigorous foundation of Mathematics. In
accordance with the Euclidean model for reason, the ideal foundation con-
sists of a few simple, clear principles, so-called axioms, on which the rest of
knowledge can be built via firm and reliable thoughts free of contradictions.
However, at the time it was not clear what assumptions should be made and
what operations should be allowed in mathematical reasoning.

At the beginning of the last book of Politeia, Plato develops his theory
of ideas. Translated into the mathematical setting, Plato’s theory of ideas
reads as follows: Even though there may be more than one human approach
to Mathematics, there is only one idea of Mathematics (i.e., a unique math-
ematical world), and from this idea alone we can attain real knowledge — all
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human approaches are just opinions. In particular, the mathematical world
already exists and is just waiting to be discovered. So, from a Platonic point
of view it would make sense to search for the unique set of true axioms for
Set Theory — also because the axioms of Set Theory are supposed to describe
the world of “real” Mathematics.

However, if we consider Set Theory as a mathematical discipline, then,
like in any other field of Mathematics, there is no true axiom system, and
moreover, we are even allowed to weaken the axioms or to extend them by
additional assumptions in order to get weaker or stronger theories. This is
done for example in Group Theory in order to study semigroups or monoids,
or to focus on abelian groups.

It is often the case that a mathematical theory is developed long before
its formal axiomatisation, and in rare instances, mathematical theories were
already partially developed before mathematicians were aware of them, which
happened with Group Theory: Around the year 1600 in England it was dis-
covered that by altering the fittings around each bell in a bell tower, it was
possible for each ringer to maintain precise control of when his (there were no
female ringers then) bell sounded. This enabled the ringers to ring the bells
in any particular order, and either maintain that order or permute the order
in a precise way. (For technical reasons, not every permutation is allowed. In
fact, just products of mutually disjoint elementary transpositions may be used,
that means that two bells can exchange their places only if they are adjacently
rung before-hand.) So, in the first half of the 17t" century the ringers tried to
continuously change the order of the bells for as long as possible, while not
repeating any particular order, and return to rounds at the end. This game
evolved into a challenge to ring the bells in every possible order, without any
repeats, and return to rounds at the end. Thus, bell-ringers began to investi-
gate permutations and Stedman’s work Campanologia (Cambridge, 1677) can
fairly be said to be the first work in which Group Theory was successfully
applied to a “musical” situation and consequently, Stedman can be regarded
as the first group theorist. This also shows that permutations — the proto-
type of finite groups — were first studied in the 17*" century in the context
of the change-ringing, and therefore had a practical application long before
they were used in Lagrange’s work of 1770-1771 on the theory of algebraic
equations.

Let us now turn back to Set Theory. The history of Set Theory is rather
different from the history of most other areas of Mathematics. Usually a long
process can be traced in which ideas evolve until an ultimate flash of inspira-
tion, often by a number of mathematicians almost simultaneously, produces
a discovery of major importance. Set Theory however is the creation of only
one person, namely of Georg Cantor (1845-1918), who first discovered that
infinite sets may have different sizes, i.e., cardinalities. In fact, the birth of
Set Theory dates to 1873 when Cantor proved that the set of real numbers is
uncountable. Until then, no one envisioned the possibility that infinities come
in different sizes, and moreover, mathematicians had no use for the actual in-
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finite — in contrast to the potential infinite, as it is introduced by Aristotle in
Physics Book III. The difference between actual and potential infinite is that
the latter just means “unlimited” or “arbitrarily large” (e.g., there are arbi-
trarily large — and therefore arbitrarily many — prime numbers), whereas the
former means that there are infinite objects which actually exist (e.g., there
exists a set containing all, i.e., infinitely many, prime numbers). Moreover,
Cantor also showed that for every infinite set, there is a set of larger cardinal-
ity, which implies that there is no largest set. Cantor never introduced formal
axioms for Set Theory, even though he was tacitly using most of the axioms
introduced later by Zermelo and Fraenkel. However, Cantor considered a set
as any collection of well-distinguished objects of our mind, which leads di-
rectly to RUSSELL’S PARADOX: Firstly, the collection of all sets is a set which
is a member of itself. Secondly, the set of negative natural numbers is empty,
and hence cannot be a member of itself (otherwise, it would not be empty).
Now, call a set x good if x is not a member of itself and let C' be the collection
of all sets which are good. Is C, as a set, good or not? If C is good, then C' is
not a member of itself, but since C contains all sets which are good, C is a
member of C, a contradiction. Otherwise, if C' is a member of itself, then C'
must be good, again a contradiction. In order to avoid this paradox we have
to exclude the collection C from being a set, but then, we have to give reasons
why certain collections are sets and others are not. The axiomatic way to do
this is described by Zermelo as follows: Starting with the historically grown
Set Theory, one has to search for the principles required for the foundations
of this mathematical discipline. In solving the problem we must, on the one
hand, restrict these principles sufficiently to exclude all contradictions and,
on the other hand, take them sufficiently wide to retain all the features of this
theory.

The principles, which are called axioms, will tell us how to get new sets
from already existing ones. In fact, most of the axioms of Set Theory are
constructive to some extent, i.e., they tell us how new sets are constructed
from already existing ones and what elements they contain.

However, before we state the axioms of Set Theory we would like to intro-
duce informally the formal language in which these axioms will be formulated.

First-Order Logic in a Nutshell

First-Order Logic is the system of Symbolic Logic concerned not only to rep-
resent the logical relations between sentences or propositions as wholes (like
Propositional Logic), but also to consider their internal structure in terms
of subject and predicate. First-Order Logic can be consider as a kind of lan-
guage which is distinguished from higher-order languages in that it does not
allow quantification over subsets of the domain of discourse or other objects
of higher type. Nevertheless, First-Order Logic is strong enough to formalise
all of Set Theory and thereby virtually all of Mathematics. In other words,
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First-Order Logic is an abstract language that in one particular case is the
language of Group Theory, and in another case is the language of Set Theory.

The goal of this brief introduction to First-Order Logic is to illustrate and
summarise some of the basic concepts of this language and to show how it is
applied to fields like Group Theory and Peano Arithmetic (two theories which
will accompany us for a while).

Syntax: Formulae, Formal Proofs, and Consistency

Like any other written language, First-Order Logic is based on an alphabet,
which consists of the following symbols:

(a) Variables such as vg,v1,2,y,... which are place holders for objects of
the domain under consideration (which can for example be the elements
of a group, natural numbers, or sets).

Bl

(b) Logical operators which are “=” (not), “A” (and), “V” (or), “—
plies), and “«” (if and only if, abbreviated iff).

(c) Logical quantifiers which are the existential quantifier “3” (there is or
there exists) and the universal quantifier “¥” (for all or for each), where
quantification is restricted to objects only and not to formulae or sets of
objects (but the objects themselves may be sets).

(im-

”

(d) Equality symbol “=" which stands for the particular binary equality

relation.

(e) Constant symbols like the number 0 in Peano Arithmetic, or the neutral
element e in Group Theory. Constant symbols stand for fixed individual
objects in the domain.

(f) Function symbols such as - (the operation in Group Theory), or +, - ;s
(the operations in Peano Arithmetic), Function symbols stand for fixed
functions taking objects as arguments and returning objects as values.
With each function symbol we associate a positive natural number, its
co-called “arity” (e.g., “o” is a 2-ary or binary function, and the successor
operation “s” is a 1-ary or unary function).

(g) Relation symbols or predicate constants (such as € in Set Theory)
stand for fixed relations between (or properties of) objects in the domain.
Again we associate an “arity” with each relation symbol (e.g., “€” is a
binary relation).

The symbols in (a)—(d) form the core of the alphabet and are called logical
symbols. The symbols in (e)—(g) depend on the specific topic we are investi-
gating and are called non-logical symbols. The set of non-logical symbols
which are used in order to formalise a certain mathematical theory is called
the language of this theory, denoted by .#, and formulae which are for-
mulated in a language .Z are usually called .Z-formulae. For example if we
investigate groups, then the only non-logical symbols we use are “e” and “°”,
thus, £ = {e, -} is the language of Group Theory.
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A first step towards a proper language is to build words (i.e., terms) with
these symbols.

Terms:

(T1) Each variable is a term.
(T2) Each constant symbol is a term.

(T3) Ifty,...,t, are terms and F is an n-ary function symbol, then Ft; - -,
is a term.

It is convenient to use auxiliary symbols like brackets in order to make terms,
relations, and other expressions easier to read. For example we usually write
F(ty1,...,t,) rather than Fty - - t,.

To some extent, terms correspond to words, since they denote objects of the
domain under consideration. Like real words, they are not statements and
cannot express or describe possible relations between objects. So, the next
step is to build sentences (i.e., formulae) with these terms.

Formulae:
(F1) If t; and ¢o are terms, then ¢; = t5 is a formula.

(F2) If ty,...,t, are terms and R is an n-ary relation symbol, then Rty -- -,
is a formula.

(F3) If ¢ is a formula, then —¢ is a formula.

(F4) If ¢ and ¢ are formulae, then (pAv), (pV1), (¢ = 1), and (¢ <> ) are
formulae. (To avoid the use of brackets one could write these formulae
for example in Polish notation, i.e., Ap1, Vi), et cetera.)

(F5) If p is a formula and x a variable, then Jzp and Vg are formulae.

Formulae of the form (F1) or (F2) are the most basic expressions we have,
and since every formula is a logical connection or a quantification of these
formulae, they are called atomic formulae.

For binary relations R it is convenient to write z Ry instead of R(z,y). For
example we write x € y instead of €(z,y), and we write x ¢ y rather than
—(z €y).

If a formula ¢ is of the form Jz1) or of the form Vav (for some formula 1))
and z occurs in v, then we say that x is in the range of a logical quantifier. A
variable z occurring at a particular place in a formula ¢ is either in the range
of a logical quantifier or it is not in the range of any logical quantifier. In the
former case this particular instance of the variable x is bound in ¢, and in
the latter case it is free in ¢. Notice that it is possible that a certain variable
occurs in a given formula bound as well as free (e.g., in Iz(x = 2) AVa(z = y),
the variable z is both bound and free, whereas z is just bound and y is just
free). However, one can always rename the bound variables occurring in a
given formula ¢ such that each variable in ¢ is either bound or free. For
formulae ¢, the set of variables occurring free in ¢ is denoted by free(¢). A
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formula ¢ is a sentence if it contains no free variables (i.e., free(¢) = 0). For
example Vz(x = x) is a sentence but (x = ) is not.

Sometimes it is useful to indicate explicitly which variables occur free in a
given formula ¢, and for this we usually write ¢(z1,...,x,) to indicate that
{z1,..., 2} C free(y).

If o(x) is a formula (i.e., z € free(y)), and ¢ a term, then o(x/t) is the
formula we get after replacing all free instances of x by ¢. A so-called substi-
tution p(z/t) is admissible iff no free occurrence of z in ¢ is in the range
of a quantifier that binds any variable contained in ¢ (i.e., for each variable v
appearing in t, no place where x occurs free in ¢ is in the range of “Jv” or
“Yo”).

So far we have letters, and we can build words and sentences. However,
these sentences are just strings of symbols without any inherent meaning.
Later we shall interpret formulae in the intuitively natural way by giving the
symbols the intended meaning (e.g., “A” meaning “and”, “¥z” meaning “for
all 7, et cetera). But before we shall do so, let us stay a little bit longer
on the syntactical side — nevertheless, one should consider the formulae also
from a semantical point of view.

Below we shall label certain formulae or types of formulae as axioms,
which are used in connection with inference rules in order to derive further
formulae. From a semantical point of view we can think of axioms as “true”
statements from which we deduce or prove further results. We distinguish
two types of axioms, namely logical axioms and non-logical axioms (which
will be discussed later). A logical axiom is a sentence or formula ¢ which
is universally valid (i.e., ¢ is true in any possible universe, no matter how
the variables, constants, et cetera, occurring in ¢ are interpreted). Usually
one takes as logical axioms some minimal set of formulae that is sufficient for
deriving all universally valid formulae (such a set is given below).

If a symbol is involved in an axiom which stands for an arbitrary relation,
function, or even for a first-order formula, then we usually consider the state-
ment as an axiom schema rather than a single axiom, since each instance of
the symbol represents a single axiom. The following list of axiom schemata is
a system of logical axioms.

Let ¢, ¢1, @2, and 1, be arbitrary first-order formulae:
Li: o= () — )

Ly : (v = (01 = 92)) = (¥ = 1) = (¥ = p2))

Ls : (pAY) = ¢

Lyt (pAY) =9

Ls : o= (v = (¥ Ay))

Le : ¢ = (0 V)

L7 : ¥ = (p V)

Ls = (o1 = ¢3) = ((p2 = @3) = ((¢1V 2) = ¢3))
Lo : (0 =) = ((p = =) = —p)
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Liot —¢ — (¢ = ¢)

Lii: oV

If ¢ is a term and the substitution ¢(x/t) is admissible, then:
Lio: Vap(xz) — ()

Lis: o(t) — Jzp(x)

If ¢ is a formula such that = ¢ free(v), then:

Lig: Vz (v — o(z)) = (v — Vap(z))

Lis: Vz(p(z) = ¢) = (Bzp(z) — )

What is not covered yet is the symbol “=" so, let us have a closer look at
the binary equality relation. The defining properties of equality can already
be found in Book VII, Chapter 1 of Aristotle’s Topics, where one of the rules
to decide whether two things are the same is as follows: ... you should look
at every possible predicate of each of the two terms and at the things of which
they are predicated and see whether there is any discrepancy anywhere. For
anything which is predicated of the one ought also to be predicated of the other,
and of anything of which the one is a predicate the other also ought to be a
predicate.

In our formal system, the binary equality relation is defined by the follow-
ing three axioms.

2

If t,ty,...,tn,t),...,t, are any terms, R an n-ary relation symbol (e.g., the
binary relation symbol “="), and F' an n-ary function symbol, then:
L162 t=t1

Lizt (1=t A At =1,) = (R(t1, ..., tn) = R(t], ..., t],))
List (1=t A At =t],) = (F(t1,....tn) = F(th,...,1,))

Finally, we define the logical operator “<” by stipulating

P = (=)A= ),

i.e., p <> 1 is just an abbreviation for (¢ — ¥) A (¥ — ¢).

This completes the list of our logical axioms. In addition to these axioms, we
are allowed to state arbitrarily many theory-specific assumptions, so-called
non-logical axioms. Such axioms are for example the three axioms of Group
Theory, denoted GT, or the axioms of Peano Arithmetic, denoted PA.

GT: The language of Group Theory is ZgT = {e, o }, where “e” is a constant
symbol and “°” is a binary function symbol.

GTo: VaVyVz(ze(yez) = (zoy)oz) (ie., “o” is associative)

GTy: Va(eex =) (ie., “e” is a left-neutral element)

GTy: Vady(yex =e) (i.e., every element has a left-inverse)
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PA: The language of Peano Arithmetic is %pa = {0, s,+, - }, where “0” is a
constant symbol, “s” is a unary function symbol, and “+” and “-” are binary
function symbols.

PA;: Vz(s(z) #0)

PAy: VaVy(s(z) = s(y) =z =y)
PAs: Vo(z +0=1x)

PAy: VaVy(z + s(y) = s(z +y))

PA5: Va(z-0=0)

PAG: VaVy(z - s(y) = (z-y) + )

If p is any Zpa-formula with = € free(y), then:
PA7: (p(0) AVz(p(z) = ¢(s(x)))) — Vap(z).

It is often convenient to add certain defined symbols to a given language
so that the expressions get shorter or at least are easier to read. For ex-
ample in Peano Arithmetic — which is an axiomatic system for the natural
numbers — we usually replace the expression s(0) with 1 and consequently
s(z) by « + 1. Probably, we would like to introduce an ordering “<” on the
natural numbers. We can do this by stipulating

1:=5(0), z<y < Iz((z+2)+1=y).

We usually use “:=” to define constants or functions, and “<=" to define
relations. Obviously, all that can be expressed in the language Zpa U {1, <}
can also be expressed in Zpa.

So far we have a set of logical and non-logical axioms in a certain language
and can define, if we wish, as many new constants, functions, and relations
as we like. However, we are still not able to deduce anything from the given
axioms, since we have neither inference rules nor the notion of formal proof.

Surprisingly, just two inference rules are sufficient, namely:

Modus Ponens: g e and Generalisation: —2—

G T
In the former case we say that 1 is obtained from ¢ — 1 and ¢ by Modus
Ponens, and in the latter case we say that Vaxy (where 2 can be any variable)
is obtained from ¢ by Generalisation.

Using these two inference rules, we are able to define the notion of formal
proof: Let T be a possibly empty set of non-logical axioms (usually sentences),
formulated in a certain language .Z. An £-formula ¢ is provable from T (or
provable in T), denoted T F 9, if there is a finite sequence 1, ..., p, of Z-
formulae such that ¢, is equal to 9 (i.e., the formulae ¢,, and ¢ are identical),
and for all 7 with 1 <7 < n we have:
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w; is a logical axiom, or

p; €T, or

there are j, k < ¢ such that ¢; is equal to the formula @5 — ¢;, or
there is a j < 4 such that ¢; is equal to the formula Vz ¢;.

If a formula v is not provable in T, i.e., if there is no formal proof for 1
which uses just formulae from T, then we write T ¥ 4.

Formal proofs, even of very simple statements, can get quite long and
tricky. So, before we give an example of a formal proof, let us state a theorem
which allows us to simplify formal proofs:

THEOREM 3.1 (DEDUCTION THEOREM). If {¢1,...,¢n} U{01,..., 0k} F
@, where Generalisation is not applied to the free variables of the formulae
©1,- .-, 9k (e.g., if these formulae are sentences), then

{wl,...,lﬂn}l_(ng/\.../\(pk)—>(p.

Now, as an example of a formal proof let us show the equality relation is
symmetric. We first work with T,—,, consisting only of the formula z = y,
and show that T,—, F y = z, in other words we show that {z =y} Fy==:

p1: (z=yAz=2z)=(z=z—y==1x) instance of Li7

p2: (x=yAz=zx)—>z==zx instance of Ly

P31 — (tpg — ((x:y/\x:x)%y:aj)) instance of Ly

P4 @2—)((x=y/\x=x)—>y=x) from @3 and 1
by Modus Ponens

ps: (x=yAz=zx)—y==x from 4 and @2
by Modus Ponens

pe: T =1 instance of Lig

. T=y (x=1y) € Tazy

ps: z=x > (r=y— (z=yAz=u1)) instance of L

po: z=y—(r=yAz=ux) from ¢s and e

by Modus Ponens

Y0 T=yAr==x from @9 and 7
by Modus Ponens

P11 y=zx from 5 and @g
by Modus Ponens

Thus, we have {z = y} F y = z, and by the DEDUCTION THEOREM 3.1 we
get that 2 =y — y = x, and finally, by Generalisation we get

FVaVy(z =y — y=2x).
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We leave it as an exercise to the reader to show that the equality relation
is also transitive, and since the equality relation is also reflexive (by Lig), it
is an equivalence relation.

Furthermore, we say that two formulae ¢ and v are equivalent, denoted
@ =, if F ¢ < . In other words, if ¢ = 1, then — from a logical point of
view — ¢ and v state exactly the same, and therefore we could call ¢ + ¥
a tautology, which means saying the same thing twice. However, in Logic, a
formula ¢ is a tautology if F . Thus, the formulae ¢ and 1 are equivalent
if and only if ¢ <> 9 is a tautology.

A few examples:

o VY =1YVy, oA =1YAp Thisshowsthat “VvV” and “A” are commutative
(up to equivalence). Moreover, “V” and “A” are (up to equivalence) also
associative — a fact which we tacitly used already.

e —p=¢p, (V) =-(-pA ) This shows for example how “V” can
be replaced with “=” and “A”.

e (p = ¥) = (—p V) This shows how the logical operator “—” can be
replaced with “=” and “V”.

e Vzp = -3Jz—p This shows how “V” can be replaced with “=” and “3”.

Thus, some of the logical operators are redundant and we could work for
example with just “=”, “A”, and “3”. However, it is more convenient to use all
of them.

Let T be a set of Z-formulae. We say that T is consistent, denoted Con(T),
if there is no Z-formula ¢ such that T F (¢ A —p), otherwise T is called
inconsistent, denoted — Con(T).

PROPOSITION 3.2. Let T be a set of £-formulae.
(a) If = Con(T), then for every £-formula ¢ we have T | .
(b) If Con(T) and T+ ¢ for some .£-formula ¢, then T ¥ —¢.

Proof. (a) Let ¢ be any .Z-formula and assume that T F (¢ A =) for some
Z-formula . Then T + ¢:

w1 A provable from T by assumption
p2: (P A-p) = instance of Lg

p3: P from ¢ and ¢1 by Modus Ponens
wa: (P A-p) = e instance of L4

ws: T from 4 and p1 by Modus Ponens
we: T = (p =) instance of Lo

=Y from ¢¢ and s by Modus Ponens
ps: P from 7 and p3 by Modus Ponens



Semantics: models, completeness, and independence 39

(b) Assume that TH ¢ and T+ —p. Then T+ (o A —¢p), i.e., = Con(T):

p1: P provable from T by assumption
w2 provable from T by assumption
3t o= (mp = (@ A=) instance of L

pa: o = (A ) from 3 and @1 by Modus Ponens
ws: ©A-p from @4 and @2 by Modus Ponens

_|

Notice that PROPOSITION 3.2.(a) implies that from an inconsistent set of ax-
ioms T one can prove everything and T would be completely useless. So, if we
design a set of axioms T, we have to make sure that T is consistent. However,
as we shall see later, in many cases this task is impossible.

Semantics: Models, Completeness, and Independence

Let T be any set of .Z-formulae (for some language .£). There are two different
ways to approach T, namely the syntactical and the semantical way. The above
presented syntactical approach considers the set T just as a set of well-formed
formulae —regardless of their intended sense or meaning — from which we
can prove some other formulae.
On the other hand, we can consider T also from a semantical point of view
by interpreting the symbols of the language .Z in a reasonable way, and then
seeking for a model in which all formulae of T are true. To be more precise,
we first have to define how models are built and what “true” means:

Let .Z be an arbitrary but fixed language. An .Z-structure 2 consists of
a (non-empty) set or collection A, called the domain of 2, together with a
mapping which assigns to each constant symbol ¢ € .% an element ¢* of A, to
each n-ary relation symbol R € .Z a set of n-tuples R* of elements of A, and
to each n-ary function symbol F' € £ a function F'® from n-tuples of A to
A. Further, the interpretation of variables is given by a so-called assignment:
An assignment in an Z-structure 2( is a mapping j which assigns to each
variable an element of the domain A. Finally, an Z-interpretation I is a pair
(2, 7) consisting of an .#-structure 2 and an assignment j in 2. For a variable
x, an element a € A, and an assignment j in 2 we define the assignment j&

by stipulating
2 (y) = a if y=ux,
Je) = jly) otherwise.

Further, for an interpretation I = (2, j) let I3 := (2, j2).
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We associate with every interpretation I = (2(,j) and every term ¢ an
element I(¢) from the domain A as follows:

e For a variable z let I(x) := j(z).
e For a constant symbol ¢ € & let I(c) := c*.
e For an n-ary function symbol F' € £ and terms t1,...,t, let

L(F(ty,... tn)) == F*(I(t1),....I(tn)) .

Now, we are able to define precisely the notion of a formula ¢ being true
under an interpretation I = (2, j), in which case we write I F ¢ and say that
¢ holds in I. The definition is by induction on the complexity of the formula
¢ (where it is enough to consider formulae containing — besides terms and
relations — just the logical operators “=” and “A”, and the logical quantifier
ME'”):

e If pis of the form ¢; = to, then
IEt, =ty < I(t1) is the same element as I(t2) .
o If pis of the form R(ty,...,t,), then

IF R(t1,...,tn) < (I(t1),...,I(t,)) belongs to R™.

If ¢ is of the form —), then

IEF Y <= it is not the case that I1F 1.

If ¢ is of the form 3z, then

I 3dap < thereis an element a € A such that I3 E .
o If o is of the form 1 A 15, then
TE ) Ay <= TE; and TE oy,

Notice that since the domain of I is non-empty we always have I F Jx(z = x).

Now, let T be an arbitrary set of .#Z-formulae. Then an .Z-structure 2 is a
model of T if for every assignment j in 2l and for each formula ¢ € T we
have (2, j) E ¢, i.e., ¢ holds in the #-interpretation I = (2, 7). We usually
denote models by bold letters like M, N, V| et cetera. Instead of saying “M
is a model of T” we just write M F T. If ¢ fails in M, then we write M ¥ ¢,
which is equivalent to M E — (this is because for any Z-formula ¢ we have
either ML E ¢ or M E —).

For example S; (i.e., the set of all permutations of seven different items) is
a model of GT, where the interpretation of the binary operation is composition
and the neutral element is interpreted as the identity permutation. In this case,
the elements of the domain of S7 can be real and can even be heard, namely
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when the seven items are seven bells and a peal of for example Stedman
Triples consisting of all 5040 permutations of the seven bells is rung — which
happens quite often, since Stedman Triples are very popular with change-
ringers. However, the objects of models of mathematical theories usually do
not belong to our physical world and are not more real than for example the
number zero or the empty set.

The following two theorems, which we state without proofs, are the main
connections between the syntactical and the semantical approach to first-order
theories. On the one hand, the SOUNDNESS THEOREM 3.3 just tells us that
our deduction system is sound, i.e., if a sentence ¢ is provable from T then
@ is true in each model of T. On the other hand, GODEL’S COMPLETENESS
THEOREM 3.4 tells us that our deduction system is even complete, i.e., every
sentence which is true in all models of T is provable from T. As a consequence
we get that T F ¢ if and only if ¢ is true in each model of T. In particular, if
T is empty, this implies that every tautology (i.e., universally valid formula)
is provable.

THEOREM 3.3 (SOUNDNESS THEOREM). Let T be a set of .Z-sentences and
let ¢ be any Z-sentence. If T + ¢, then in any model M such that M E T
we have M F .

THEOREM 3.4 (GODEL’S COMPLETENESS THEOREM). Let T be a set of .£-
sentences and let ¢ be any Z-sentence. Then T + ¢ or there is a model M
such that M E T U {—¢}. In other words, if for every model M E T we have
ME ¢, then T + . (Notice that this does not imply the existence of a model
of T.)

One of the main consequences of GODEL’S COMPLETENESS THEOREM 3.4
is that formal proofs — which are usually quite long and involved — can be
replaced with informal ones: Let T be a consistent set of Z-formulae and let
¢ be any Z-sentence. Then, by GODEL’S COMPLETENESS THEOREM 3.4, in
order to show that T I ¢ it is enough to show that M F ¢ whenever M F T.
In fact, we would take an arbitrary model M of T and show that M E ¢.

As an example let us show that GT F (yex = e) — (xoy = e): Firstly, let
G be a model of GT, with domain G, and let  and y be any elements of G. By
GT, we know that every element of G has a left-inverse. In particular, y has
a left-inverse, say ¢, and we have goy = e. By GT1 we have zoy = (goy)o(xoy),
and by GTo we get (joy)°(zoy) = §=((yox)°y). Now, if yex = e, then we have
oy = yoy and consequently we get xoy = e. Notice that we tacitly used that
the equality relation is symmetric and transitive.

We leave it as an exercise to the reader to find the corresponding formal
proof of this basic result in Group Theory. In a similar way one can show
that every left-neutral element is also a right-neutral element (called neutral
element) and that there is just one neutral element in a group.

The following result, which is a consequence of GODEL’S COMPLETENESS
THEOREM 3.4, shows that every consistent set of formulae has a model.
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PROPOSITION 3.5. Let T be any set of .Z-formulae. Then Con(T) if and only
if T has a model.

Proof. (=) If T has no model, then, by GODEL’S COMPLETENESS THEO-
REM 3.4, for every £-formula 1) we have T I ¢ (otherwise, there would be a
model of TU {—}, and in particular for T). So, for ¢ being ¢ A —p we get
T (p A=), hence T is inconsistent.

(<) If T is inconsistent, then, by PROPOSITION 3.2.(a), for every Z-formula v
we have T F 4, in particular, T = ¢ A—¢. Now, the SOUNDNESS THEOREM 3.3
implies that in all models M E T we have M E ¢ A —p; thus, there are no
models of T. —

A set of sentences T is usually called a theory. A consistent theory T (in a
certain language .Z) is said to be complete if for every .Z-sentence ¢, either
Tkoor TE=p. If Tis not complete, we say that T is incomplete.

The following result is an immediate consequence of PROPOSITION 3.5.
COROLLARY 3.6. Every consistent theory is contained in a complete theory.

Proof. Let T be a theory in the language 2. If T is consistent, then it has a
model, say M. Now let T be the set of all Z-sentences ¢ such that M F .
Obviously, T is a complete theory which contains T. —

Let T be a set of .Z-formulae and let ¢ be any .Z-formula not contained
in T. ¢ is said to be consistent relative to T (or that ¢ is consistent
with T) if Con(T) implies Con(TU{¢}) (later we usually write T + ¢ instead
of TU {p}). If both ¢ and —¢ are consistent with T, then ¢ is said to be
independent of T. In other words, if Con(T), then ¢ is independent of T if
neither T = ¢ nor T F —p. By GODEL’S COMPLETENESS THEOREM 3.4 we
get that if Con(T) and ¢ is independent of T, then there are models M; and
M of T such that My F ¢ and My E —¢. A typical example of a statement
which is independent of GT is VaVy(zoy = yox) (i.e., the binary operation is
commutative), and indeed, there are abelian as well as non-abelian groups.

In order to prove that a certain statement ¢ is independent of a given
(consistent) theory T, one could try to find two different models of T such
that ¢ holds in one model and fails in the other. However, this task is quite
difficult, in particular if one cannot prove that T has a model at all (as it
happens for Set Theory).

Limits of First-Order Logic

We begin this section with a useful result, called COMPACTNESS THEOREM.
On the one hand, it is just a consequence of the fact that formal proofs are
finite (i.e., finite sequences of formulae). On the other hand, the CoMPACT-
NESS THEOREM is the main tool to prove that a certain sentence (or a set of
sentences) is consistent with a given theory. In particular, the COMPACTNESS
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THEOREM is implicitly used in every set-theoretic consistency proof which is
obtained by forcing (for details see Chapter 16).

THEOREM 3.7 (COMPACTNESS THEOREM). Let T be an arbitrary set of .£-
formulae. Then T is consistent if and only if every finite subset ® of T is
consistent.

Proof. Obviously, if T is consistent, then every finite subset ® of T must be
consistent. On the other hand, if T is inconsistent, then there is a formula ¢
such that T - ¢ A —y. In other words, there is a proof of ¢ A = from T. Now,
since every proof is finite, there are only finitely many formulae of T involved
in this proof, and if ® is this finite set of formulae, then ® - ¢ A =, which
shows that @, a finite subset of T, is inconsistent. —

A simple application of the COMPACTNESS THEOREM 3.7 shows that if PA
is consistent, then there is more than one model of PA (i.e., beside the in-
tended model of natural numbers with domain IN, there are also so-called
non-standard models of PA with larger domains):

Firstly we extend the language %pa = {0, s,+, - } by adding a new constant
symbol n. Secondly we extend PA by adding the formulae

n#0, n#s(0), n#s(s(0)),...
Yo P1 Y2

and let ¥ be the set of these formulae. Now, if PA has a model N with domain
say IN, and & is any finite subset of W, then, by interpreting n in a suitable
way, N is also a model of PAU®, which implies that PAU® is consistent. Thus,
by the CoMPACTNESS THEOREM 3.7, PA U WV is also consistent and therefore
has a model, say N. Now, N E PA U U, but since n is different from every
standard natural number of the form s(s(...s(0)...)), the domain of N must
be essentially different from IN (since it contains a kind of infinite number,
whereas all standard natural numbers are finite).

This example shows that we cannot axiomatise Peano Arithmetic in First-
Order Logic in such a way that all the models we get have essentially the same
domain IN.

By PROPOSITION 3.5 we know that a set of first-order formulae T is consistent
if and only if it has a model, i.e., there is a model M such that M E T. So,
in order to prove for example that the axioms of Set Theory are consistent
we only have to find a single model in which all these axioms hold. However,
as a consequence of the following theorems — which we state again without
proof — this turns out to be impossible (at least if one restricts oneself to
methods formalisable in Set Theory).

THEOREM 3.8 (GODEL’S INCOMPLETENESS THEOREM). Let T be a consis-
tent set of first-order .£-formulae which is sufficiently strong to define the
concept of natural numbers and to prove certain basic arithmetical facts (e.g.,
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PA is such a theory, but also slightly weaker theories would suffice). Then there
is always an .Z-sentence ¢ which is independent of T, i.e., neither T F ¢ nor
T + = (or in other words, there are models M, and My of T such that
Ml = [%2) and MQ E _|(,0)

In particular we get that there are number-theoretic statements which can
neither be proved nor disproved in PA (i.e., the theory PA is incomplete).
Moreover, the following consequence of GODEL’S INCOMPLETENESS THEO-
REM 3.4 shows that not even the consistency of PA can be proved with number-
theoretical methods.

THEOREM 3.9 (GODEL’S SECOND INCOMPLETENESS THEOREM). Let T be
a set of first-order .£-formulae. Then the statement Con(T), which says that
T ¥ ¢ A —p for some L-formula ¢, can be formulated as a number-theoretic
sentence Con'. Now, if T is consistent and is sufficiently strong to define the
concept of natural numbers and to prove certain basic arithmetical facts, then
T ¥ Con', i.e., T cannot prove its own consistency. In particular, PA ¥ Con™ .

On the one hand, GODEL’S INCOMPLETENESS THEOREM tells us that in any
theory T which is sufficiently strong, there are always statements which are
independent of T (i.e., which can neither be proved nor disproved in T). On
the other hand, statements which are independent of a given theory (e.g.,
of Set Theory or of Peano Arithmetic) are often very interesting, since they
say something unexpected, but in a language we can understand. From this
point of view it is good to have GODEL’S INCOMPLETENESS THEOREM which
guarantees the existence of such statements in theories like Set Theory or
Peano Arithmetic.

In Part IT we shall present a technique with which we can prove the inde-
pendence of certain set-theoretical statements from the axioms of Set Theory,
which are introduced and discussed below.

The Axioms of Zermelo-Fraenkel Set Theory

In 1905, Zermelo began to axiomatise Set Theory and in 1908 he published
his first axiomatic system consisting of seven axioms. In 1922, Fraenkel and
Skolem independently improved and extended Zermelo’s original axiomatic
system, and the final version was presented again by Zermelo in 1930. In this
chapter we give the resulting axiomatic system called Zermelo-Fraenkel Set
Theory, denoted ZF, which contains all axioms of Set Theory except the Axiom
of Choice, which will be introduced and discussed in Chapter 5. Alongside the
axioms of Set Theory we develop the theory of ordinals and give various
notations which will be used throughout this book.

The language of Set Theory contains only one non-logical symbol, namely
the binary membership relation, denoted by €, and there exists just one
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type of objects, namely sets. In other words, every object in the domain is
a set and there are no other objects than sets. However, to make life easier,
instead of €(a,b) we write a € b (or on rare occasions also b 3 a) and say
that “a is an element of b”, or that “a belongs to b”. Later we will extend
the language of Set Theory by defining some constants (like “0” and “w”),
relations (like “C”), and operations (like the power set operation “2?”), but
in fact, all that can be formulated in Set Theory, can be written as a formula
containing only the non-logical relation “€” (but for obvious reasons, we will
usually not do so).

0. The Axziom of Empty Set

JaVz(z ¢ x)

This axiom not only postulates the existence of a set without any elements,
i.e., an empty set, it also shows that the set-theoretic universe is non-empty,
because it contains at least an empty set (of course, the logical axioms Lig
and L;3 already incorporate this fact).

1. The Axiom of Extensionality

VaVy(Vz(z €z <z €y) » x =y)

This axiom says that any sets z and y having the same elements are equal.
Notice that the converse — which is z = y implies that x and y have the same
elements —is just a consequence of the logical axiom L;7.

The Axiom of Extensionality also shows that the empty set, postulated by
the Axiom of Empty Set, is unique. For assume that there are two empty sets
xo and z1, then we have Vz(z ¢ xo Az ¢ x1), which implies that Vz(z € z¢ <
z € x1), and therefore, o = z1.

Let us introduce the following notation: If p(z) is any first-order formula
with free variable z (i.e.,  occurs at a particular place in the formula ¢ where
it is not in the range of any logical quantifier), then

Az p(z) < Fa(p(z) AVz(p(2) > 2 =)
With this definition we can reformulate the Axiom of Empty Set as follows:
Navz(z ¢ x)

and this unique empty set is denoted by 0.

We say that y is a subset of z, denoted y C z, if Vz(z € y — z € z).
Notice that the empty set is a subset of every set. If y is a proper subset of
x, i.e., y C x and y # x, then this is sometimes denoted by y & x.

One of the most important concepts in Set Theory is the notion of ordinal
number, which can be seen as a transfinite extension of the natural numbers.
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In order to define the concept of ordinal numbers, we have to give first some
definitions: Let z € z. Then z is called an €-minimal element of z, if
Vyly ¢ zVy ¢ x), or equivalently, Vy(y € z — y ¢ x). A set = is ordered
by € if for any sets y1,y2 € x we have y; € y2, or y1 = Y2, OF Y1 D Yo,
but we do not require the three cases to be mutually exclusive. Now, a set
z is called well-ordered by € if it is ordered by € and every non-empty
subset of x has an €-minimal element. Further, a set z is called transitive
if Vy(y € © — y C x). Notice that if x is transitive and z € y € z, then this
implies z € z. A set is called an ordinal number, or just an ordinal, if it
is transitive and well-ordered by €. Ordinal numbers are usually denoted by
Greek letters like «, 3, 7, A, et cetera, and the collection of all ordinal numbers
is denoted by 2. We will see later, when we know more properties of ordinals,
that € is not a set. However, we can consider “a € ” just as an abbreviation
for “a is an ordinal”, and thus, there is no harm in using the symbol 2 in this
way, even though 2 is not an object of the set-theoretic universe.

FacT 3.10. If o € Q, then either « =0 or ) € a.

Proof. Since o € Q, a is well-ordered by €. Thus, either o = (), or, since
a C «a, a contains an €-minimal element, say xg. Now, by transitivity of «,
for all 2 € ¢ we have z € «, and since zq is €-minimal we get xg = (. -

Notice that until now, we cannot prove the existence of any ordinal — or even
of any set — beside the empty set, postulated by the Axiom of Empty Set. This
will change with the following axiom.

2. The Axiom of Pairing

VszEl!u(u ={x, y})

where {z,y} denotes the set which contains just the elements z and y. In
order to write this axiom in a more formal way, let us introduce the following
notation: If p(z) is any first-order formula with free variable z, and « is any
set, then

Vz €z (p(z)) < Vz((z € ) = ¢(2)),

and similarly
Fzex(p(z) <= F((z€x)np(2)).

More formally the Axiom of Pairing reads as follows:
VaVyJu(z € uhy EuAVz Eulz =z V z =y))

If in the above formula we set z = y, then u = {x,z}, which is, by the
Axiom of Extensionality, the same as {x}. Thus, by the Axiom of Pairing, if
x is a set, then also {z} is a set. Starting with (), an iterated application of
the Axiom of Pairing yields for example the sets 0, {0}, {{0}}, {{{0}}}....,
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and {0,{0}},{{0},{0,{0}}},... Among these sets, 0, {0}, and {0,{0}} are
ordinals, but for example {{0}} is not an ordinal.

So far, we did not exclude the possibility that a set may be an element of
itself, and in fact, we need the Axiom of Foundation in order to do so. However,
we can already show that no ordinal is an element of itself:

Fact 3.11. If a € Q, then o ¢ a.

Proof. Assume towards a contradiction that o € a. Then {«a} is a non-empty
subset of a and therefore contains an €-minimal element. Now, since {a} just
contains the element «, the €-minimal element of {a} must be «, but on the
other hand, o € o implies that « is not €-minimal, a contradiction. —

For any sets x and y, the Axiom of Extensionality implies that {z,y} =
{y,z}. So, it does not matter in which order the elements of a 2-element set
are written down. However, with the Axiom of Pairing we can easily define
ordered pairs, denoted (x,y), as follows:

(@,y) = {{z} {=.y}}

Notice that (z,y) = («/,y') iff © = 2’ and y = 3/, and further notice that
this definition also makes sense in the case when x = y— at least as long
as we know that {{z}} is supposed to denote an ordered pair. By a similar
trick, one can also define ordered triples by stipulating for example (x,y, z) :=
(z, (y,z)), ordered quadruples, et cetera, but the notation becomes hard to
read and it requires additional methods to distinguish for example between
ordered pairs and ordered triples. However, when we have more axioms at
hand we can define arbitrary tuples more elegantly.

3. The Axiom of Union

VzElqu(z cuerJwex(ze w))

More informally, for all sets x there exists the union of z, denoted |Jz, con-
sisting of all sets which belong to a member of .

For sets « and y, let x Uy := |J{«, y} denote the union of x and y. Notice
that = |J{z}. For x Uy, where z and y are disjoint (i.e., do not have any
common elements) we sometimes write zUy, and for x = {y, : « € I} we
sometimes write | J,.; ., instead of |J .

Now, with the Axiom of Union and the Axiom of Pairing, and by stipulating
x+1:=zU{x}, we can for example build the following sets (which are in fact
ordinals): 0:=0,1:=0+1=0U{0} ={0},2:=1+1=1U{1} ={0,1},
3:=2+41=2uU{2} = {0,1,2}, and so on. In particular, if a set x of this
type is already defined, we get that x +1 = {0,1,2,...,2}. This construction
leads to the following definition:

A set z such that Vy(y €  — (y U {y}) € z) is called inductive. On the one
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hand, 0 is inductive. On the other hand, we cannot prove the existence of a
non-empty inductive set without the aid of the following axiom.

4. The Axiom of Infinity

FBeInvyel(lyu{y}) €l))

More informally, the Axiom of Infinity postulates the existence of a non-empty
inductive set containing (. All the sets 0,1,2,... constructed above — which
we recognise as natural numbers — must belong to every inductive set and in
fact, the “smallest” inductive set contains just these sets.

5. The Azxiom Schema of Separation

For each first-order formula ¢(z, p1, ..., p,) with free(p) C {z,p1,...,pn}, the
following formula is an axiom:

VaVpy .. . Vp, 3z (z €y < (z €z Ap(z,p1,...,pn)))

Informally, for each set x and every first-order formula ¢(z), {z € z : ¢(z)}
is a set.

One can think of the sets p1, ..., p, as parameters of ¢, which are usually
some fixed sets. For example for ¢(z,p) = z € p we get that for any sets
and p there exists a set y such that z € y > (z € £ A z € p). In other words,
for any sets x¢ and 1, the collection of all sets which belong to both, xy and
x1, is a set. This set is called the intersection of o and z; and is denoted
by xg N 1. In general, for non-empty sets x we define

(Nz={zeUz:Vyez(zcy)}

which is the intersection of all sets which belong to . (In order to see that
Nz is a set, let p(z,2) = Vy € 2 (2 € y) and apply the Axiom Schema
of Separation to |Jx.) Notice also that z Ny = ({z,y}. Furthermore, for
x = {y, : v € I'} we sometimes write (,.; . instead of []z. Another example
is when ¢(z,p) = z ¢ p. In this case, for p = y, we get that {z € x: 2 ¢ y} is
a set, denoted x \ y, which is called the set-theoretic difference of x and y.

Let us now turn back to ordinal numbers:

THEOREM 3.12. (a) If o, 8 € Q, then « € § or « = § or a > 8, where these
three cases are mutually exclusive.

(b) If a € B €9, then o € Q.
(c) If a € €, then also (U {a}) € Q.

(d) Q is transitive and is well-ordered by €, or more precisely, ) is transitive,
is ordered by €, and every non-empty class C' C ) has an €-minimal element.
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Proof. (a) Firstly, notice that by FACT 3.11 the three cases a € 3, a = £3,
a 3 B, are mutually exclusive.

Let o, 8 € Q2 be given. If a = 3, then we are done. So, let us assume that
a # 8. Without loss of generality we may assume that o\ 8 # 0.

We first show that aN g is the €-minimal element of o\ 8: Let v be an &-
minimal element of '\ 8. Since « is transitive and v € «, Yu(u € v = u € ),
and since v is an €-minimal element of o\ 8, Vu(u € v — u € ), which
implies ¥ C N S. On the other hand, if there is a w € (N )\ v, then, since
a is ordered by € and v # w (v ¢ 8 > w), we must have v € w, and since
B is transitive and w € 3, this implies that v € 3, which contradicts the fact
that v € (a\ 8). Hence, v = aN § is the €-minimal element of o\ §. Now, if
also B\ a # 0, then we would get that « N G is also the €-minimal element of
B\ «, which is obviously a contradiction.

Thus, a\ 8 # 0 implies that 8\ « = (), or in other words, 8 C «, which is
the same as saying § = o N B. Consequently we get that [ is the €-minimal
element of v\ 3, in particular, 5 € a.

(b) Let « € 8 € Q. Since S is transitive, « is ordered by €. So, it remains to
show that « is transitive and well-ordered by €.

well-ordered by € : Because ( is transitive, every subset of « is also a subset
of 8 and consequently contains an €-minimal element.

transitive: Let § € v € a. We have to show that § € «. Since [ is transitive,
0 € 3, and since S is ordered by €, we have either § € c or § = a or o € §. If
0 € a, we are done, and if § = « or « € 4, then the set {«,~,0} C 8 does not
have an €-minimal element, which contradicts the fact that 5 is well-ordered
by €.

(c) We have to show that o U {a} is transitive and well-ordered by €.
transitive: If 8 € (e U{a}), then either S € a or 8 = «, and in both cases we
have 8 C (a U {a}).

well-ordered by €: Since « is an ordinal, o U {«} is ordered by €. Let now
z C (aU{a}) be a non-empty set. If x = {a}, then « is obviously an e-
minimal element of x. Otherwise, z N a # (), and since a € Q, N a has an
€-minimal element, say . Since « is transitive we have x N~y = () (otherwise,
~ would not be €-minimal in z N «), which implies that + is €-minimal in x.

(d) Q is transitive and ordered by € : This is part (b) and part (a) respectively.
Q is well-ordered by € : Let C' C Q) be a non-empty class of ordinals. If C = {a}
for some « € ), then « is the €-minimal element of C. Otherwise, C' contains
an ordinal &g such that 6o N C # 0 and let 2 := 6o N C. Then z is a non-
empty set of ordinals. Now, let @ € x and let v be an €-minimal element
of z N (e U {a}). By definition, v € (o U {a}), and since (a U {a}) € Q,
v C (U {a}). Thus, every ordinal 7' € 7 belongs to a U {a}, but by the
definition of «, 4/ cannot belong to N (U {a}), which implies that v is also
€-minimal in z, and consequently in C. —
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By THEOREM 3.12.(d) we get that € is transitive and well-ordered by €.
Thus, if 2 would be a set, 2 would be an ordinal number and therefore would
belong to itself, but this is a contradiction to FACT 3.11.

In general, a collection of sets, satisfying for example a certain formula,
which is not necessarily a set is called a class. For example (2 is a class which
is not a set (it consists of all transitive sets which are well-ordered by €).
Even though proper classes (i.e., classes which are not sets) do not belong
to the set-theoretic universe, it is sometimes convenient to handle them like
sets, e.g., taking intersections or extracting certain subsets or subclasses from
them.

By THEOREM 3.12.(c) we know that if a € €2, then also (aU{a}) € Q. Now,
for ordinals @ € Q let a+1 := aU{a}. Part (a) of the following result — which
is just a consequence of THEOREM 3.12 — motivates this notation.

COROLLARY 3.13. (a) If o, 8 € Q and a € 8, then a+1 C . In other words,
o + 1 is the least ordinal which contains o.

(b) For every ordinal a € ) we have either o = |Ja or there exists € ()
such that oo = + 1.

Proof. (a) Assume a € 3, then {a} C 3, and since j is transitive, we also
have a C 8; thus, a + 1 = a U {a} C 5.

(b) Since « is tramsitive, | Ja C . Thus, if @ # (Ja, then o\ Ja # 0. Let
B be €-minimal in o\ |Ja. Then § € a and 4+ 1 € Q, and by part (a) we
have 8+ 1 C «. On the one hand, a € § 4 1 would imply that a € «, a
contradiction to FACT 3.11. On the other hand, 8 + 1 € o would imply that
B € |J a, which contradicts the choice of 5. Thus, we must have f+1 =a. -

This leads to the following definitions: An ordinal « is called a successor
ordinal if there exists an ordinal 8 such that o = 5+ 1; otherwise, it is called
a limit ordinal. In particular, § (or equivalently 0) is a limit ordinal.

We are now ready to define the set of natural numbers w, which will turn
out to be the least non-empty limit ordinal. By the Axiom of Infinity we know
that there exists an inductive set I. Below we show that there exists also a
smallest inductive set. For this, let I = I N 2; more precisely,

Io ={a€I:«isan ordinal}.

Then Iq is a set of ordinals and by THEOREM 3.12.(c), I is even an inductive
set. Now, if there exists no a € I such that « is non-empty and inductive,
let w := I, otherwise, define

w = a€ln:0 € aand « is inductive} .
M4 }

By definition, ) € w and for all 8§ € w we have S+1 € w, i.e., w is inductive and
contains (. In particular, | Jw = w, which shows that w is a limit ordinal. Again
by definition, w does not properly contain any inductive set which contains ().
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In particular, w does not contain any limit ordinal other than ( (since such
an ordinal would be an inductive set containing (}), and therefore, w is the
smallest non-empty limit ordinal.

The ordinals belonging to w are called natural numbers. One can also
define natural numbers inductively as we have done above: 0 := (), and for
any natural number n, n 4+ 1:=nU{n} = {0,1,2,...,n}. Notice that each
natural number n is the set {k € w: k < n}, where k <n <= k € n. Further
notice that since w is the smallest non-empty limit ordinal, all natural numbers
except 0 are successor ordinals. Now, a set A is called finite if there exists
a bijection between A and a natural number n € w, otherwise, A is called
infinite. Thus, all natural numbers are finite and w is the smallest infinite
(i.e., not finite) ordinal number.

The following theorem is a consequence of the fact that  is transitive and
well-ordered by € (which is just THEOREM 3.12.(d)).

THEOREM 3.14 (TRANSFINITE INDUCTION THEOREM). Let C' C § be a
class of ordinals and assume that:

(a) if « € C, then a+1 € C,
(b) if « is a limit ordinal and Vf € a(B € C), then « € C.

Then C' is the class of all ordinals. (Notice that by (b) we have 0 € C, in
particular, C # (.)

Proof. Assume towards a contradiction that C' # Q and let ag be the e-
minimal ordinal which does not belong to C' (such an ordinal exists by THE-
OREM 3.12.(d)). Now, ag can be neither a successor ordinal, since this would
contradict (a), nor a limit ordinal, since this would contradict (b). Thus, ag
does not exist which implies that Q\ C =0, i.e., C = Q. =

The following result is just a reformulation of the TRANSFINITE INDUCTION
THEOREM.

COROLLARY 3.15. For any first-order formula ¢(x) with free variable x we
have

Va € Q) (Vﬂ € a(gﬁ(ﬂ)) — @(a)) —Va e (ga(oz)) )

Proof. Let C C € be the class of all ordinals a € § such that ¢(a) holds and
apply the TRANSFINITE INDUCTION THEOREM 3.14. —

When some form of COROLLARY 3.15 is involved we usually do not mention the
corresponding formula ¢ and just say “by induction on...” or “by transfinite
induction”.

6. The Axiom of Power Set

VeIyVz(z € y > 2 C x)
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Informally, the Axiom of Power Set states that for each set = there is a set
P (x), called the power set of x, which consists of all subsets of x.

With the Axiom of Power Set (and other axioms like the Axiom of Union
or the Axiom Schema of Separation) we can now define notions like functions,
relations, and sequences: Let A and B be arbitrary sets. Then

AxB={(z,y):x€ ANy € B}
where (z,y) = {{z}, {z,y}}; thus, A x B C 2(2(AU B)). Further, let
AB—{fCAxB:VzeAdye B((z,y) € f)}.

An element f € AB, usually denoted by f : A — B, is called a function or
mapping from A to B, where A is called the domain of f, denoted dom(f).

For f : A — B we usually write f(z) = y instead of (x,y) € f. If Sis a
set, then the image of S under f is denoted by f[S] = {f(z) : # € S} and
fls = {(z,y} e f:xc¢€ S} is the restriction of f to S. Furthermore, for a
function f: A — B, f[A4] is called the range of f, denoted ran(f).

A function f : A — B is surjective, or onto, if Vy € Bdx € A(f(z) = y)
We sometimes emphasise the fact that f is surjective by writing f: A - B.

A function f : A — B is injective, also called one-to-one, if we have
Vi € AVzy € A(f(x1) = f(z2) = 21 = x2). To emphasise the fact that f is
injective we sometimes write f : A — B.

A function f : A — B is bijective if it is injective and surjective. If
f + A — B is bijective, then

vy € B3lw € A((z,y) € f)

and therefore,
57 = {a): (wy) € fy e PA

is a function which is even bijective. So, if there is a bijective function from
A to B, then there is also one from B to A and we sometimes just say that
there is a bijection between A and B. Notice that if f : A — B is injective,
then f is a bijection between A and f[A].

Let = be any non-empty set and assume that for each ¢ € x we have
assigned a set A;. For A = J,., Ai, where |, Ai := [J{Ai : i € 2}, the set

[TA4i={feA:viex(fi)e A)}

1€ET

is called the Cartesian product of the sets A; (i € ). Notice that if all sets
A; are equal to a given set A, then [],., A; = ¥A. If = n for some n € w, in
abuse of notation we also write A™ instead of ™A by identifying A with the

set,
A" =Ax ... x A.
N—————

n-times
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Similarly, for a € Q we sometimes identify a function f € %A with the se-
quence (f(0), f(1),..., f(B),...)a of length «, and vice versa. Sequences (of
length «) are usually denoted by using angled brackets (and by using « as a
subscript), e.g., (So,.--,88,--.)a O (Sg: < ).

For any set A and any n € w, a set R C A™ is called an n-ary relation on A.
If n =2, then R C A x A is also called a binary relation. A binary relation
R on A is a well-ordering of A, if there is an ordinal « € 2 and a bijection
f+A— asuch that

R(z,y) <= f(x) € f(y).

For any set A, let seq(A) be the set of all finite sequences which can be formed
with elements of A, or more formally:

seq(A) = U A"

new

Furthermore, let seq'*(A) be those sequences of seq(A) in which no element
appears twice. Again more formally, this reads as follows:

seq (4) = {g € seq(A) : o is injective}

The last notion we introduce in this section is the notion of cardinality:
Two sets A and B are said to have the same cardinality, denoted |A| = | B,
if there is a bijection between A and B. Notice that cardinality equality is
an equivalence relation. For example |w X w| = |w|, e.g., define the bijection
f 1w x w — w by stipulating f((n,m)) =m+ $(n+m)(n+m+1).

If |A] = |B’| for some B’ C B, then the cardinality of A is less than or
equal to the cardinality of B, denoted |A| < |B|. Notice that |A| < |B| iff
there is an injection from A into B. Finally, if |A| # |B| but |A| < |B|, then
cardinality of A is said to be strictly less than the cardinality of B, denoted
|A| < |B|. Notice that the relation “<” is reflexive and transitive. The notation
suggests that |A| < |B| and |B| < |A| implies |A| = |B|. This is indeed the
case and a consequence of the following result.

LEMMA 3.16. Let Ay, A1, A be sets such that Ag C Ay C A. If |A] = |Ao,
then |A| = |A1].

Proof. If A; = A or A; = Ay, then the statement is trivial. So, let us assume
that Ag & A; G Aandlet C = A\ Ay, i.e., A\C = A;. Further,let f: A — Ay
be a bijection and define g : Z(A) — F(Ap) by stipulating g(D) := f[D].
Let ¢(z,p1,p2,p3) be the following formula:

z€p1 A0,p2) € 2AVn € wIuv ((n,u) € 2 A (u,v) € ps A (n+1,v) € 2)

By the Axiom Schema of Separation, for z = p; = “P(A), p» = C, and p3 = g,
there exists a set y such that z € y < (2 € YP(A) A p(2,YP(A),C,g)).
By induction on n and by assembling the various partial functions produced
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by the induction into a single function, one gets that y contains just a single
function, say zp : w — Z(A). In fact, z0(0) = C and for all n € w we have
Zo(n+1) = flz0(n)]. Now, let

C_':U{zo(n):nEoJ}
and define the function f: A — A by stipulating

; {f(:c) zed,

@)= T otherwise.

By definition of f and since [ is a bijection which maps C' into Ao, f[C] =
C\ C. Moreover, the function f is injective. To see this, let x,y € A be distinct
and consider the following three cases:
(1) Ha,yc C, then f(x) = f(z) and f(y) = f(y), and since f is injective we
get f(z) # f(y).
(2) If 2,y € A\ C, then f(z) =z and f(y) = y, and hence, f(z) # f(y).
(3) Ifz € Candy € A\ C, then f(x) = f(z) € C and f(y) =y ¢ C, and
therefore, f(x) # f(y).
We already know that f[C] = C'\ C and by definition we have f[A\C] = A\C.
Hence, _ ~ ~
fIAA]=(A\C)U(C\C)=A\C =4
which shows that |[A| = |A44]. —

THEOREM 3.17 (CANTOR-BERNSTEIN THEOREM). Let A and B be any sets.
If |A| < |B| and |B| < |4|, then |A| = |B|.

Proof. Let f : A — B be a one-to-one mapping from A into B,and g : B — A
be a one-to-one mapping from B into A. Further, let Ay := (g- f)[A] and
Ay = g[B]. Then |Ag| = |4] and Ay C A; C A, hence, by LEMMA 3.16,
|A| = |A1|, and since |A1| = |B| we have |A| = |B]. =

As an application of the CANTOR-BERNSTEIN THEOREM 3.17 let us show that
the set of real numbers, denoted by R, has the same cardinality as & (w).

PROPOSITION 3.18. |R| = |Z(w)].

Proof. Cantor showed that every real number » > 1 can be written in a unique
way as a product of the form

1

where all ¢,’s are positive integers and for all n € w we have ¢, 1 > ¢2. Such
products are called Cantor products. So, for every real number r > 1 there
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exists a unique infinite sequence go(r), q1(r), ..., qn(r),... of positive integers
with gu41 > ¢2 (for all n € w) such that r =[], . (1+ 2).

an
Let us first show that |R| < |2 (w): For r € R let

f(T):{ZQj(T)(2j+1):n€w}.

Jj<n

Define the function h : R — R by stipulating h(z) := 1 4 e, where e is the
Euler number and e* = ) _ (2" /n!). Then h is a bijection between R and
the set of real numbers r > 1. We leave it as an exercise to the reader to verify
that the composition feh is an injective mapping from R into & (w).

To see that |2 (w)| < |R|, consider for example the function g(z) = Z 37",

nex
where g() := 0, which is obviously a injective mapping from £(w) into R
(or more precisely, into the interval [0, 2]).

So, by the CANTOR-BERNSTEIN THEOREM 3.17, |R| = |Z(w)|. .
7. The Axiom Schema of Replacement

For every first-order formula p(z,y,p) with free(¢) C {z,y,p}, where p can
be an ordered n-tuple of parameters, the following formula is an axiom:

VAVp(Vz € Adlyp(z,y,p) — IBVx € A3y € By(z,y,p))

In other words, for every set A and for each class function F (i.e., a certain
class of ordered pairs of sets) defined on A, F[A] = {F(z) : x € A} is a set.
Or even more informally, images of sets under functions are sets.
The Axiom Schema of Replacement is needed to build sets like { 2" (w) : n €
w}, where 2°(w) := w and 2" (w) := 2(P"(w)).

Another application of the Axiom Schema of Replacement is the following
result, which will be used for example to define ordinal addition (see THEO-
REM 3.20) or to build the cumulative hierarchy of sets (see THEOREM 3.22).

THEOREM 3.19 (TRANSFINITE RECURSION THEOREM). Let F be a class
function which is defined for all sets. Then there is a unique class function G
defined on 2 such that for each o € 2 we have

G(a) = F(G|a), where G|, ={(8,G(B)): B € a}.

Proof. If such a class function G exists, then, by the Axiom Schema of Re-
placement, for every ordinal «, ran(G|,) is a set, and consequently, G|, is a
function with dom(G|,) = «. This leads to the following definition: For 6 € Q,
a function g with dom(g) = ¢ is called a d-approximation if

VB € d(g(B) = Flgls)) -

In other words, ¢ is an d-approximation if and only if g has the following
properties:
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(a) T 5+ 1 €0, then g(8 +1) = F(gl5 U {{8.9(8))})-
(b) If 8 € 0 is a limit ordinal, then ¢g(8) = F(g|s).

In particular, by (b) we get g(0) = F(@). For example g1 = {(0,F(0))}
is a l-approximation; in fact, g; is the unique l-approximation. Similarly,
g2 = {(0, F(0)), (1, F({0, F(0))))} is the unique 2-approximation.

Firstly, notice that for all ordinals ¢ and ¢’, if ¢ is an d-approximation and
¢’ is an ¢’-approximation, then ¢|sns = ¢'|sns - Otherwise, there would be a
smallest ordinal 8y such that g(8o) # ¢'(Bo), but by (a) and (b), Sy would be
neither a successor ordinal nor a limit ordinal.

Secondly, notice that for each ordinal ¢ there exists a J-approximation.
Otherwise, by THEOREM 3.12.(d), there would be a smallest ordinal dg such
that there is no dp-approximation. In particular, for each § € §y there would
be a J-approximation, and by the Axiom Schema of Replacement, the collection
of all §-approximations (for § € dg) is a set, where the union of this set is a
¢’-approximation for some §’ € Q. Now, if dg is a limit ordinal, then §' = §
and we get a dg-approximation, and if dg is a successor ordinal, then §g = ¢’ +1
and we get a dp-approximation by (a). So, in both cases we get a contradiction
to our assumption that there is no dg-approximation.

Now, for each a € Q) define G(«) := g(«), where g is the d-approximation
for any § such that o € §. —

By transfinite recursion we are able to define addition, multiplication, and
exponentiation of arbitrary ordinal numbers:

Ordinal Addition: For arbitrary ordinals a € Q we define:

(a) a+0:=a.

(b) a+ (B+1):=(a+p)+1, for all 5 e Q.

(c) If B € Q2 is non-empty and a limit ordinal, then o+ 8 := [Jsc5(c + 9).

Notice that addition of ordinals is in general not commutative (e.g., 1 +w =
w#w+1).

Ordinal Multiplication: For arbitrary ordinals o € 2 we define:
(a) a-0:=0.

(b) a-(B+1):=(a-B)+a, forall g €Q.

(c) If B € Q2 is a limit ordinal, then a - 8 := {Jsc5(a - 9).

Notice that multiplication of ordinals is in general not commutative (e.g.,
2w=wH#wtw=w-2).
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Ordinal Exponentiation: For arbitrary ordinals « € €2 we define:

(a) a¥ :=1.

(b) Pt :=af - q, forall B € Q.

(c) If B € Q is non-empty and a limit ordinal, then o := J;c5(a®*).
Notice that for example 2* = w, which should not be confused with cardinal
exponentiation defined in Chapter 5.

THEOREM 3.20. Addition, multiplication, and exponentiation of ordinals are
proper binary operations on ().

Proof. We just prove it for addition (the proof for the other operations is
similar): For each o € Q define a class function F,, by stipulating F,, (z) := 0
if x is not a function; and if x is a function, then let

« if o =0,
Fu(z) = z(B)U{z(8)} ifdom(z)=pF+1and €,
“ Uses z(9) if dom(z) = B and 8 € 2\ {0} is a limit ordinal,
0 otherwise.

By the TRANSFINITE RECURSION THEOREM 3.19, for each a € Q there is
a unique class function G, defined on 2 such that for each 5 € Q we have
Go(B) = Fo(Galp), and in particular we get Go(8) = a + . —

Even though addition and multiplication of ordinals are not commutative,
they are still associative.

PROPOSITION 3.21. Addition and multiplication of ordinals defined as above
are associative operations.

Proof. We have to show that for all o, 3,7y € Q, (a+ ) +v=a+ (8+7)
and (- B) -y =a-(8-7). We give the proof just for addition and leave the
proof for multiplication as an exercise to the reader.

Let a and g be arbitrary ordinals. The proof is by induction on v € Q.
For v = 0 we obviously have (¢ + 8) +0=a+ 8 = a+ (8 + 0). Now, let us
assume that (o + 8) +v = a + (8 + ) for some ~. Then:

(a+B)+(v+1)=((a+8)+7) +1 (by definition of “+”)
=(a+(B+7)+1 (by our assumption)
=a+ ((B+7)+1) (by definition of “+”)
=a+ (B+(y+1)) (by definition of “+”)

Finally, let 7 be a limit ordinal. Notice first that a+(8+7) = Use(g14) @10 =

Usreary) a+B+7) = U, e, at(B+7). Thus, if (a+8)+9" = a+(8+7')
for all 4" € ~, then

(@+pB)+y=J@+B++ =] a+B+7)=a+(B+1).

Y EY y'ey -



58 3 The Axioms of Zermelo-Fraenkel Set Theory

8. The Axiom of Foundation

Ve(3z(z €z) >y ex(yna =0))

As a consequence of the Axiom of Foundation we get that there is no infinite de-

scending sequence zg 3 x1 D x2 O - - - since otherwise, the set {xg, z1,z2,...}
would contradict the Axiom of Foundation. In particular, there is no set x such
that © € z and there are also no cycles like g € 1 € --- € x, € x9. As

a matter of fact we would like to mention that if one assumes the Axiom of
Choice, then the non-existence of such infinite descending sequences can be
proved to be equivalent to the Axiom of Foundation.

The axiom system containing the axioms 0-8 is called Zermelo-Fraenkel
Set Theory and is denoted by ZF. In fact, ZF contains all axioms of Set
Theory except the Axiom of Choice.

Even though the Axiom of Foundation is irrelevant outside Set Theory, it
is extremely useful in the metamathematics of Set Theory, since it allows us
to arrange all sets in a cumulative hierarchy and let us define cardinalities as
sets.

Models of ZF
By induction on « € €2, define the following sets:
Vo =10

vV, = U,@eavﬂ if o is a limit ordinal

Va-‘,—l = QZ(VQ)
and let
V=_JVa.
acN

Notice that by construction, for each o € Q, V,, is a set. Again by induction
on « € € one can easily show that the sets V, have the following properties:

e Each V, is transitive.
o Ifaef, then V, & Vg.
e aCV,and a € Vyqq.

These facts are visualised by the following figure:
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Before we can prove that the class V, called the cumulative hierarchy,
contains all set, we have to introduce the notion of transitive closure: Let S
be an arbitrary set. By induction on n € w define

SOZS, Sn+1:USna

and finally
TC(S) = | Sn
necw
where J, ., Sn := U{Sn : n € w}. For example x; € Sy iff Iz € So(zo > z1),
and in general, 2,41 € Sp11 iff Jxg € Sy Fxy € Sp(xo D1 D -+ D XTpy1)-
Notice that by the Axiom of Foundation, every descending sequence of the form
o D x1 O --- must be finite.

By construction, TC(S) is transitive, i.e., x € TC(S) implies z C TC(S),
and we further have S C TC(S). Moreover, since every transitive set T must
satisfy T C T, it follows that the set TC(S) is the smallest transitive set
which contains S. Thus,

TC(S) = ﬂ {T:T > S and T is transitive}
and consequently the set TC(S) is called the transitive closure of S.

THEOREM 3.22. For every set x there is an ordinal « such that x € V,. In
particular, the class V is equal to the set-theoretic universe.

Proof. Assume towards a contradiction that there exists a set x which does
not belong to V. Let # := TC ({z}) and let w := {z € T : z ¢ V}, ie,
w=12\{ €z:3a€ Q2 € V,)}. Since z € w we have w # ), and
by the Axiom of Foundation there is a zp € w such that (zo Nw) = . Since
20 € w we have zg ¢ V, which implies that z¢ # (), but for all u € zo there is
a least ordinal «,, such that u € V,,,. By the Axiom Schema of Replacement,
{a 1 u € 2} is a set, and moreover, a = | J{aw, : u € 29} € Q. This implies
that zy C V, and consequently we get zp € V11, which contradicts the fact
that zg ¢ V and completes the proof. —
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It is natural to ask whether there exists some kind of upper bound or ceiling
for the set-theoretic universe V or if there exists arbitrarily large sets. In order
to address this questions we have to introduce the notion of cardinal numbers.

Cardinals in ZF

Let A be an arbitrary set. The cardinality of A, denoted |A|, could be defined
as the class of all sets B which have the same cardinality as A (i.e., for
which there exists a bijection between A and B), but this would have the
disadvantage that except for A = (), |A| would not belong to the set-theoretic
universe. However, with the Axiom of Foundation the cardinality of a set A
can be defined as a proper set:

|A| = {B € Vg, : there exists a bijection between B and A}

where 3 is the least ordinal number for which there is a B € Vg, such that
B has the same cardinality as A. Notice that for example |§] = {0}, where
{0} C V1 (in this case, By = 1). The set |4] is called a cardinal number,
or just a cardinal. Notice that A is not necessarily a member of |A|. Further
notice that |A| = |B| iff there is a bijection between A and B, and as above
we write |A| < |B| if |A| = |B’| for some B’ C B. Cardinal numbers are
usually denoted by Fraktur letters like m and n. A cardinal number is finite if
it is the cardinality of a natural number n € w, otherwise it is infinite. Finite
cardinals are usually denoted by letters like n, m, ... An infinite cardinal which
contains a well-orderable set is traditionally called an aleph and consequently
denoted by an “N”, e.g., 8y := |w|. The following fact summarises some simple
properties of alephs.

Fact 3.23. All sets which belong to an aleph can be well-ordered and the
cardinality of any ordinal is an aleph. Further, for any ordinals «, 8 € §) we
have |a| < |B] or |a| = |B| or |a| > |B|, and these three cases are mutually
exclusive.

A non-empty set A is called uncountable if there is no enumeration of the
elements of A, or equivalently, no mapping from w to A is surjective.

By the Axiom of Infinity we know that there is an infinite set and we have seen
that there is even a smallest infinite ordinal, namely w, which is of course a
countable set. Now, the question arises whether every infinite set is countable.
We answer this question in two steps: First we show that the set of real
numbers is uncountable, and then we show that in general, for every set A
there exists a set of strictly greater cardinality than A — which implies that
there is no largest cardinal.

PROPOSITION 3.24. The set of real numbers is uncountable.
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Proof. By PROPOSITION 3.18 we already know that there is a bijection be-
tween R and & (w). Further we have |Z(w)| = |“2|. Indeed, for every
z € P(w) let x; € “2 be such that

1 ifneux,
Xﬂc(n):{

0 otherwise.
So, it is enough to show that no mapping from w to “2 is surjective. Let
g:iw— “2
n— fn

be any mapping from w to “2. Define the function f € “2 by stipulating
fn)=1- fa(n).

Then for each n € w we have f(n) # f.(n), so, f is distinct from every
function f, (n € w), which shows that g is not surjective. =

For cardinals m = |A| let 2™ := |2(A)|. By modifying the proof above we
can show the following result:

THEOREM 3.25 (CANTOR’S THEOREM). For every cardinal m, 2™ > m.
Proof. Let A € m be arbitrary. It is enough to show that there is an injection

from A into &(A), but there is no surjection from A onto Z2(A).

Firstly, the function
fA— P(A)

is obviously injective, and therefore we get m < 2™.
Secondly, let g : A — Z(A) be an arbitrary function. Consider the set
)}
As a subset of A, the set A’ is an element of &2(A). If there would be an zy € A
such that g(xg) = A’, then zy € A" < ¢ ¢ g(xo), but since g(zg) = A4,

xzo ¢ g(xg) <> o ¢ A'. Thus, g € A" + z9 ¢ A’, which is obviously a
contradiction and shows that ¢ is not surjective. —

A={zecA:z¢gx

As an immediate consequence of CANTOR’S THEOREM 3.25 we get that there
are arbitrarily large cardinal numbers. Before we show that there are also
arbitrarily large ordinal numbers, let us summarise some basic facts about
well-orderings: Recall that a binary relation R C A x A is a well-ordering
of A, if there is an a € Q and a bijection f : A — « such that R(z,y) iff
f(x) € f(y).

The following proposition is crucial in order to define the order type of a
well-ordering.
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PROPOSITION 3.26. If o, 8 € Q2 and f : a — B is a bijection such that for all
Y1 € v2 € a we have f(v11) € f(72), then o =

Proof. If o # 3, then, by THEOREM 3.12.(a), we have either o € 8 or 8 € a.
Without loss of generality we assume that o € 8. Thus, there isan € g8\ a.
Since f is a bijection, there is a v € « such that f(y) =, and since 7 ¢ «,
f(y) # n—in fact, f(v) € n. Let 79 be the €-minimal ordinal in « such
that f(y0) # 70, in particular, f|,, is the identity. The situation we have is
illustrated by the following figure:

B
(6%
f(vo)
do
Yo Yo = f(do)
1 5= f(9)
0 0= f(0)

Since f(8) =6 for all § € y0, 70 € f(70). Let 6o = f~1(70). By the definition
of v we have yg € dp, which implies f(v9) € f(dp), or equivalently, f(v0) € Yo,
a contradiction. 4

As an immediate consequence we get that each well-ordering R of A corre-
sponds to exactly one ordinal, called the order type of R, denoted o.t.(R),
such that there exists a bijection f : A — o.t.(R) with the property that for
all a1,a2 € A we have a;jRas <= f(a1) € f(a2). Indeed, for every b € A
define Ay = {a € A:aRb} and let f: A — Q such that for each b € A there
exists a unique ordinal § such that f[A4;] = f; then o.t.(R) = f[A]. Moreover,
by THEOREM 3.12.(a), if Ry and Rs are well-orderings of any two subsets of A,
then we have 0.t.(Ry) € 0.t.(Rz) or 0.t.(R1) = 0.t.(R2) or 0.t.(Ry) 3 o.t.(R2),
where the three cases are mutually exclusive.

THEOREM 3.27 (HARTOGS' THEOREM). For every cardinal m there is a
smallest aleph, denoted N(m), such that X(m) £ m.

Proof. Let A € m be arbitrary and let Z C (A x A) be the set of all well-
orderings of subsets of A. For every R € %, o.t.(R) is an ordinal, and for every
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R € % and any 8 € 0.t.(R) there is an R’ € # such that o.t.(R") = 8, which
shows that
a={ot.(R): ReZ}

is an ordinal. By definition, for every 5 € « there is a well-ordering Rg of some
S C A such that o.t.(Rg) = 3, which implies that |3] < |A|. On the other
hand, |o| < |A| would imply that « € «, which is obviously a contradiction.
Let X(m) := ||, then X(m) £ m and for each X < X(m) we have X <m.

COROLLARY 3.28. For every ordinal number « and for every cardinal number
m, there exists an ordinal number (3 such that |3| > |a| and |3] £ m.

Proof. For the first inequality let @ € Q and let n = |a|. By HARTOGS’
THEOREM 3.27 there is an aleph, namely X(n), such that X(n) £ n. Now, since
n and X(n) both contain well-ordered sets we have n < R(n). Let w € X(n) be
a well-ordered set and let 3 be the order type of w. Then X(n) = |5] > |o| = n.

For the second inequality let 5 be the order type of a well-ordered set
which belongs to ®(m); then || £ m. -

On the Consistency of ZF

Zermelo writes in [118, p.262] that he was not able to show that the seven
axioms for Set Theory given in that article are consistent. Even though it is
essential to know whether a theory is consistent or not, by GODEL'S SEC-
OND INCOMPLETENESS THEOREM 3.9 we know that for a sufficiently strong
consistent theory, there is no way to prove its consistency within this theory.
To apply this result for Set Theory, we first have to show that ZF is “suffi-
ciently strong”. In other words, we have to show that ZF is strong enough to
define the concept of natural numbers and to prove certain basic arithmetical
facts. We do this by showing that w F PA: Firstly, PROPOSITION 3.21 shows
that addition and multiplication is associative. Secondly, by replacing 2 with
w in COROLLARY 3.15 we get the INDUCTION SCHEMA for natural numbers:

PROPOSITION 3.29 (INDUCTION SCHEMA). If ¢(0) and p(n) — ¢(n+1) for
all n € w, then we have (n) for all n € w.

Hence, every model of ZF contains a model of PA (i.e., if ZF is consistent, then
so is PA). However, by GODEL’S SECOND INCOMPLETENESS THEOREM 3.9, if
ZF is consistent (what we believe or at least assume), then ZF cannot prove its
own consistency (i.e., cannot provide a model for itself). In other words, there
is no mathematical proof for the consistency of ZF within ZF, which means
that there is no way to construct or to define a model of ZF without the aid
of some concepts that go beyond what is provided in ordinary Mathematics.
More formally, any proof for Con(ZF) has to be carried out in some theory
T which contains some information that is not in ZF, and whose consistency
cannot be proved within T.
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To sum up, either ZF is inconsistent — which is hopefully not the case — or
any proof of the consistency of ZF has to be carried out in a theory whose
consistency is not provable within that theory.

NOTES

Some of the papers mentioned below, or at least their translation into English, can
be found in the collection [109] edited by van Heijenoort (whose biography is written
by Feferman [35]).

Milestones in Logic. Before we discuss the development of Set Theory, let us
give a brief overview of the history of Logic (see Bochenski [11] for a comprehensive
problem history of formal logic, providing also large quotes from historical texts).

Organon. Aristotle’s logical treatises contain the earliest formal study of Logic
(i.e., of Propositional Logic, which is concerned about logical relations between
propositions as wholes) and consequently he is commonly considered the first lo-
gician. Aristotle’s logical works were grouped together by the ancient commentators
under the title Organon, consisting of Categories, On Interpretation, Prior Analyt-
ics, Posterior Analytics, Topics, and On Sophistical Refutations. Aristotle’s work
was so outstanding and ahead of his time that nothing significant had been added
to his views during the following two millennia.

The Laws of Thought. In 1854, Boole published in An Investigation of the Laws
of Thought [15] (see also [14]) a new approach to Logic by reducing it to a kind of
algebra and thereby incorporated Logic into Mathematics: Boole noticed that Aris-
totle’s Logic was essentially dealing with classes of objects and he further observed
that these classes can be denoted by symbols like z, y, z, subject to the ordinary
rules of algebra, with the following interpretations.

(a) xy denotes the class of members of x which are also members of y.

(b) If z and y have no members in common, then = 4+ y denotes the class of objects
which belong either to x or to y.

(¢) 1— x denotes all the objects not belonging to the class x.

(d) = = o means that the class  has no members.

However, Boole’s Logic was still Propositional Logic, but just 25 years later this
weakness was eliminated.

Begriffsschrift. In 1879, Frege published in his Begriffsschrift [42] the most im-
portant advance in Logic since Aristotle. In this work, Frege presented for the first
time what we would recognise today as a logical system with negation, implication,
universal quantification, logical axioms, et cetera. Even though Frege’s achievement
in Logic was a major step towards First-Order Logic, his work had led to some
contradictions — discovered by Russell —and further steps had to be taken.

Peano Arithmetic. Written in Latin, [89] was Peano’s first attempt at an ax-
iomatisation of Mathematics — and in particular of Arithmetic —in a symbolic lan-
guage. The initial arithmetic notions are number, one, successor, is equal to, and
nine axioms are stated concerning theses notions. (Today, “=" belongs to the un-
derlying language of Logic, and so, Peano’s axioms dealing with equality become
redundant; further, we start the natural numbers with zero, rather than one.) Con-
cerning the problem whether the natural numbers can be considered as symbols
without inherent meaning, we refer the reader to the discussion between Miiller [83]
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and Bernays [6]. For Peano’s work in Logic, and in particular for the development
of the axioms for natural numbers, we refer the reader to Jourdain [67, pp. 270-314]
(where one can also find some comments by Peano) and to Wang [111]. According
to Jourdain (cf. [67, p.273]), Peano [89] succeeded in writing out wholly in sym-
bols the propositions and proofs of a complete treatise on the arithmetic of positive
numbers. However, in the arithmetical demonstrations, Peano made extensive use
of Grassmann’s work [54], and in fundamental questions of arithmetic as well as in
the theory of logical functions, he used Dedekind’s work [24]. The main feature of
Wang’s paper [111] is the printing of a letter (mentioned by Noether on page 490 of
[25]) from Dedekind to a headmaster in Hamburg, dated 27 February, 1890. In that
letter, Dedekind points out the appearance of non-standard models of axioms for
natural numbers (see Kaye [71]) and explains how one could avoid such unintended
models by using his Kettentheorie (i.e., concept of chains) which he developed in
[24]. He also refers to Frege’s works [42, 43] and notes that Frege’s method of defining
a kind of “successor relation” agrees in essence with his concept of chains.

Principia Mathematica. One of these steps was taken by Russell and Whitehead
in their Principia Mathematica [113], which is a three-volume work on the founda-
tions of Mathematics, published between 1910 and 1913. It is an attempt to derive
all mathematical truths from a well-defined set of axioms and inference rules in
symbolic logic. The main inspiration and motivation for the Principia Mathematica
was Frege’s earlier work on Logic, especially the contradictions discovered by Russell
(as mentioned above). The questions remained whether a contradiction could also
be derived from the axioms given in the Principia Mathematica, and whether there
exists a mathematical statement which could neither be proven nor disproven in the
system (for Russell’s search for truth we refer the reader to Doxiadis and Papadim-
itriou [27]). It took another twenty odd years until these questions were answered by
Godel’s Incompleteness Theorem, but before, the logical axioms had to be settled.

Grundziige der theoretischen Logik. In 1928, Ackermann and Hilbert published
in their Grundzige der theoretischen Logik [66] to some extent the final version
of logical axioms (for the development of these axioms see Hilbert [61, 62, 64]).

Our approach to First-Order Logic is partially taken from the first few sections
of the hyper-textbook for students by Detlovs and Podnieks (these sections are an
extended translation of the corresponding chapters of Detlovs [26]). For other rules
of inference see for example Hermes [60] or Ebbinghaus, Flum, and Thomas [28, 29].

Uber die Volistindigkeit des Logikkalkiils. Godel proved the COMPLETENESS
THEOREM in his doctoral dissertation Uber die Vollstindigkeit des Logikkalkiils [46]
which was completed in 1929. In 1930, he published the same material as in the
doctoral dissertation in a rewritten and shortened form in [47]. The standard proof
for GODEL’s COMPLETENESS THEOREM is Henkin’s proof, which can be found in [58]
(see also [59]) as well as in most other textbooks on Logic. A slightly different
approach can be found for example in Kleene [72, §72].

Uber formal unentscheidbare Sitze der Principia Mathematica. In 1930, Godel
announced in [48] his INCOMPLETENESS THEOREM (published later in [49]), which
is probably the most famous theorem in Logic. The theorem as it is stated above
is Satz VI of [49], and GODEL’S SECOND INCOMPLETENESS THEOREM 3.9, which
is in fact a consequence of the proof of that theorem, is Satz XI of [49]. GODEL’s
INCOMPLETENESS THEOREM 3.4 is discussed in great detail in Mostowski [82] (see
also Goldstern and Judah [53, Chapter 4]); and for a different proof of GODEL's
INCOMPLETENESS THEOREM, not just a different version of Goédel’s proof, see Put-
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nam [95]. For more historical background — as well as for Godel’s platonism — we
refer the reader to Goldstein [51].

Now, let us discuss the development of Set Theory: To some extent, Set Theory is
the theory of infinite sets; but, what is the infinite and does it exist?

The infinite. As mentioned before, there are two different kinds of infinite, namely
the actual infinite and the potential infinite. To illustrate the difference, let us con-
sider the collection of prime numbers. Euclid proved that for any prime number p
there is a prime number p’ which is larger than p (see [31, Book IX]). This shows that
there are arbitrarily many prime numbers, and therefore, the collection of primes
is “potentially” infinite. However, he did not claim that the collection of all prime
numbers as a whole “actually” exists. (The difference between actual and potential
infinite is discussed in greater detail for example in Bernays [7, Teil II]).

Two quite similar attempts to prove the objective existence of the (actual) in-
finite are due to Bolzano [12, 13, §13] and Dedekind [24, §5, No.66], and both are
similar to the approach suggested in Plato’s Parmenides [94, 132a-b] (for a philo-
sophical view to the notion of infinity we refer the reader to Mancosu [78]). How-
ever, Russell [99, Chapter XIII, p. 139 ff.] (see also [101, Chapter XLIII]) shows that
these attempts must fail. Moreover, he demonstrates that the infinite is neither
self-contradictory nor demonstrable logically and writes that we must conclude that
nothing can be known a priori as to whether the number of things in the world is
finite or infinite. The conclusion is, therefore, to adopt a Leibnizian phraseology,
that some of the possible worlds are finite, some infinite, and we have no means of
knowing to which of these two kinds our actual world belongs. The axiom of infinity
will be true in some possible worlds and false in others; whether it is true or false
in this world, we cannot tell (cf. [99, p. 141]).

If the infinite exists, the problem still remains how one would recognise infinite
sets, or in other words, how one would define the predicate “infinite”. Dedekind
provided a definition in [24, §5, No. 64], which is — as Schroder [103, p. 303 f.] pointed
out — equivalent to the definition given three years earlier by Peirce (cf. [91, p.202]
or [5, p.51]). However, the fact that an infinite set can be mapped injectively into
a proper subset of itself — which is the key idea of Dedekind’s definition of infinite
sets — was already discovered and clearly explained about 250 years earlier by Galilei
(see [45, First Day]). Another definition of the infinite — which will be compared
with Dedekind’s definition in Chapter 7 — can be found in von Neumann [86, p. 736].
More definitions of finiteness, as well as their dependencies, can be found for example
in Lévy [75] and in Spisiak and Vojtas [106].

Birth of Set Theory. As mentioned above, the birth of Set Theory dates to 1873
when Cantor proved that the set of real numbers is uncountable. One could even
argue that the exact birth date is 7 December 1873, the date of Cantor’s letter to
Dedekind informing him of his discovery.

Cantor’s first proof that there is no bijection between the set of real numbers and
the set of natural numbers used an argument with nested intervals (cf. [18, §2] or [23,
p. 117]). Later, he improved the result by showing that 2™ > m for every cardinal m
(cf. [20] or [23, III. 8]), which is nowadays called CANTOR’S THEOREM. The argument
used in the proof of PrROPOSITION 3.24 — which is in fact just a special case of
CANTOR’S THEOREM — is sometimes called Cantor’s diagonal argument. The word
“diagonal” comes from the diagonal process used in the proofs of PRoPOSITION 3.24
and CANTOR’S THEOREM. The diagonal process is a technique of constructing a
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new member of a set of lists which is distinct from all members of a given list. This
is done by arranging first the list as a matrix, whose diagonal gives information
about the 2™ term of the z'" row of the matrix. Then, by changing each term of
the diagonal, we get a new list which is distinct from every row of the matrix (see
also Kleene [72, §2]).

For a brief biography of Cantor and for the development of Set Theory see for
example Fraenkel [41], Schoenflies [102], and Kanamori [68].

Russell’s Paradox. The fact that a naive approach to the notion of “set” leads
to contradictions was discovered by Russell in June 1901 while he was working on
his Principles of Mathematics [101] (see also Grattan-Guinness [55]). When Russell
published his discovery, other mathematicians and set-theorists like Zermelo (see
[115, footnote p.118f] or Rang and Thomas [96]) had already been aware of this
antinomy, which — according to Hilbert — had a downright catastrophic effect when
it became known throughout the world of Mathematics (cf. [63, p.169] or [65, p. 190]).
However, Russell was the first to discuss the contradiction at length in his published
works, the first to attempt to formulate solutions and the first to appreciate fully its
importance. For example the entire Chapter X of [101] was dedicated to discussing
this paradox (in particular see [101, Chapter X, §102]). In order to prevent the emer-
gence of antinomies and paradoxes in Set Theory and in Logic in general, Russell
developed in [101, Appendix B] (see also [98]) his theory of logical types which rules
out self-reference. According to this theory, self-referential statements are neither
true nor false, but meaningless.

Russell’s Paradox as well as some other antinomies can also be found in Fraenkel,
Bar-Hillel, and Lévy [36, Chapter IJ.

Aziomatisation of Set Theory. In 1908, Zermelo published in [118] his first
axiomatic system consisting of seven axioms, which he called:

1. Axiom der Bestimmtheit
which corresponds to the Axiom of Extensionality

2. Axiom der Elementarmengen
which includes the Axiom of Empty Set as well as the Axiom of Pairing

3. Axiom der Aussonderung
which corresponds to the Axiom Schema of Separation

4. Axiom der Potenzmenge
which corresponds to the Axiom of Power Set

5. Axiom der Vereinigung
which corresponds to the Axiom of Union

6. Axiom der Auswahl
which corresponds to the Axiom of Choice

7. Axiom des Unendlichen
which corresponds to the Axiom of Infinity

In 1930, Zermelo presented in [116] his second axiomatic system, which he called ZF-
system, in which he incorporated ideas of Fraenkel [38], Skolem [104], and von Neu-
mann [85, 86, 88]. (see also Zermelo [114]). In fact, he added the Axiom Schema of
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Replacement and the Axiom of Foundation to his former system, cancelled the Axiom
of Infinity (since he thought that it does not belong to the general theory of sets), and
did not mention explicitly the Axiom of Choice (because of its different character and
since he considered it as a general logical principle). For Zermelo’s published work
in Set Theory, described and analysed in its historical context, see Zermelo [117],
Kanamori [70] and Ebbinghaus [30].

The need for the Axiom Schema of Replacement was first noticed by Fraenkel (see
[117, p.23]) who introduced a certain form of it in [38] (another form of it he gave
in [37, Definition 2, p. 158|). However, the present form was introduced by von Neu-
mann [87] (see the note below on the TRANSFINITE RECURSION THEOREM). As a
matter of fact we would like to mention that the Axiom Schema of Replacement was al-
ready used implicitly by Cantor in 1899 (cf. [23, p. 444, line 3]). Beside Fraenkel, also
Skolem realised that Zermelo’s first axiomatic system was not sufficient to provide a
complete foundation for the usual theory of sets and introduced — independently of
Fraenkel —in 1922 the Axiom Schema of Replacement (see [104] or [105, p.145f.]).
In [104], he also gave a proper definition of the notion “definite proposition” and,
based on a theorem of Léwenheim [77], he discovered the following fact [105, p. 139]
(stated in Chapter 15 as LOWENHEIM-SKOLEM THEOREM 15.1): If the axioms are
consistent, there exists a domain in which the axioms hold and whose elements can
all be enumerated by means of the positive finite integers . At a first glance this
looks strange, since we know for example that the set of real numbers is uncount-
able. However, this so-called SKOLEM PARADOX — which we will meet in a slightly
different form in Chapter 15 —is not a paradox in the sense of an antinomy, it is
just a somewhat unexpected feature of formal systems (see also Kleene [72, p. 426 f]
and von Plato [110]).

Concerning the terminology we would like to mention that the definition of
ordered pairs given above was introduced by Kuratowski [74, Définition V,p.171]
(compare with Hausdorff [57, p.32] and see also Kanamori [69, §5]), and that the
infinite set which corresponds to w = {0, {0}, {0, {0}}, {0, {0}, {0,{0}}}, ...} was
introduced by von Neumann [84]. For more historical background see Bachmann [4]
or Fraenkel [8, Part I], and for a brief discussion of the axiom systems of von Neu-
mann, Bernays, and Godel see Fraenkel [8, Part I, Section 7].

The Axziom of Foundation. As mentioned above, Zermelo introduced this axiom
in his second axiomatisation of Set Theory in 1930, but it goes back to von Neu-
mann (cf. [85, p.239] and [88, p.231]), and in fact, the idea can already be found in
Mirimanoff [80, 81]: For example in [80, p. 211] he calls a set = regular (French “ordi-
naire”) if every descending sequence z > z1 3 x2 S ... is finite. However, he did not
postulate the regularity of sets as an axiom, but if one would do so, one would get
the Axiom of Regularity saying that every set is regular. Now, as a consequence of the
Axiom of Foundation we got the fact that there are no infinite descending sequences
of the form x1 2 x2 ... 3 x; ..., which just tells us that every set is regular. Thus,
the Axiom of Foundation implies the Axiom of Regularity. The converse is not true,
unless we assume some non-trivial form of the Axiom of Choice (see Mendelson [79]).
As a matter of fact we would like to mention that Zermelo, when he formulated
the Axiom of Foundation in [116], gave both definitions and just mentioned (without
proof) that they are equivalent.

Ordinal numbers. The theory of ordinals was first developed in an axiomatic way
by von Neumann in [84] (see also [85, 86, 87]). For an alternative axiomatic approach
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to ordinals, independently of ordered sets and types, see Tarski [108] or Lindenbaum
and Tarski [76]. For some more definitions of ordinals see Bachmann [4, p. 24].

The Transfinite Recursion Theorem. The TRANSFINITE RECURSION THEO-
REM was first formulated and proved by von Neumann [87], who also pointed out
that, beside the axioms of Zermelo, also the Axiom Schema of Replacement has to be
used. Even though a certain form of the Axiom Schema of Replacement was already
given by Fraenkel (see above), von Neumann showed that Fraenkel’s notion of func-
tion is not sufficient to prove the TRANSFINITE RECURSION THEOREM. Moreover,
he showed (cf. [87, 1.3]) that Fraenkel’s version of the Axiom Schema of Replacement
given in [39, §1 1] follows from the other axioms given there (see also Fraenkel’s note

[40]).

The Cantor-Bernstein Theorem. This theorem, unfortunately also known as
SCHRODER-BERNSTEIN THEOREM, was first stated and proved by Cantor (cf. [19,
VIIL4] or [23, p.413], and [21, §2,Satz B] or [23, p.285]). In order to prove this
theorem, Cantor used the Trichotomy of Cardinals, which is—as we will see in
Chapter 5 — equivalent to the Axiom of Choice (see also [23, p.351, Anm.2]). An
alternative proof, avoiding any form of the Axiom of Choice, was found by Bern-
stein, who was initially a student of Cantor’s. Bernstein presented his proof around
Easter 1897 in one of Cantor’s seminars in Halle, and the result was published in 1898
in Borel [16, p.103-106] (see RELATED RESULT 12). About the same time, Schréder
gave a similar proof in [103] (submitted May 1896), but unfortunately, Schroder’s
proof was flawed by an irreparable error. While other mathematicians regarded his
proof as correct, Korselt wrote to Schréder about the error in 1902. In his reply,
Schréder admitted his mistake which he had already found some time ago but did
not have the opportunity to make public. A few weeks later, Korselt submitted the
paper [73] — which appeared almost a decade later — with a proof of the CANTOR-
BERNSTEIN THEOREM which is quite different from the one given by Bernstein. A
proof of the CANTOR-BERNSTEIN THEOREM, similar to Korselt’s proof, was found
in 1906 independently by Peano [90] and Zermelo (see [118, footnote p. 272f.]). How-
ever, they could not know that they had just rediscovered the proof that had already
been obtained twice by Dedekind in 1887 and 1897, since Dedekind’s proof — in our
terminology given above — was not published until 1932 (see [25, LXII & Erl. p. 448|
and [23, p. 449]).

Cantor products. Motivated by a result due to Euler on partition numbers (cf. [32,
Caput XVI]), Cantor showed in [17] (see also [23, pp. 43-50]) that every real number
7 > 1 can be written in a unique way as a product of the form [T, (1+ i), where
all g,’s are positive integers and g,11 > ¢2. He also showed that r = HnEw (1 + q%)
is rational if and only if there is an m € w such that for all n > m we have
gn+1 = g2, and further he gave the representation of the square roots of some small
natural numbers. For example, the ¢,’s in the representation of v/2 are go = 3 and
gni1 = 2q2 —1. More about Cantor products can be found for example in Perron [92,
§35].

Cardinal numbers. The concept of cardinal number is one of the most fundamen-
tal concepts in Set Theory. Cantor describes cardinal numbers as follows (cf. [21, §1]
or [23, p.2821.]): The general concept which with the aid of our active intelligence
results from a set M, when we abstract from the nature of its various elements and
from the order of their being given, we call the “power” or “cardinal number” of M.
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This double abstraction suggests his notation “M” for the cardinality of M. As men-
tioned above, one can define the cardinal number of a set M as an object M which
consists of all those sets (including M itself) which have the same cardinality as
M. This approach, which was for example taken by Frege (cf. [43, 44]), and Russell
(cf. [97, p- 378] or [98, Section IX, p. 256]), has the advantage that it can be carried
out in naive Set Theory (see also Kleene [72, p. 9]). However, it has the disadvantage
that for every non-empty set M, the object M is a proper class and therefore does
not belong to the set-theoretic universe.

Hartogs’ Theorem. The proof of HARTOGS’ THEOREM is taken from Hartogs [56].
In that paper, Hartogs’ main motivation was to find a proof for Zermelo’s Well-
Ordering Principle which does not make use of the Axiom of Choice. However, since
the Well-Ordering Principle and the Axiom of Choice are equivalent, he had to assume
something similar, which he had done assuming explicitly Trichotomy of Cardinals.
These principles will be discussed in greater detail in Chapter 5.

In 1935, Hartogs was forced to retire from his position in Munich, where he com-
mitted suicide in August 1943 because he could not bear any longer the continuous
humiliations by the Nazis.

RELATED RESULTS

12. Bernstein’s proof of the Cantor-Bernstein Theorem. Below we sketch out Bern-
stein’s proof of the CANTOR-BERNSTEIN THEOREM as it was published by Borel
in [16, p.104ff.]: Let A and B be two arbitrary sets and let f : A < B and
g : B — A two injections. Further, let Ag := A, Bo := g[B], and for n € w let
Any1:=(g9of)[An] and Bpn41 := (gof)[Bn]; finally let D := Ap.

We get the following picture:

new
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10.

11.

12.

13.

14.

15.

16.

17.

It is not hard to verify that the sets A, and B, have the following properties:
(a) Ao :DU(Ao\Bo)U(BQ\Al)U(Al\Bl)U(Bl\Ag)U...

(b) Bo :DU(BQ\Al)U(Al \Bl)U(Bl\Ag)U(AQ\Bg)U...

(c) For all n € w, |An \ Bn| = |An+1 \ Bnt1l-

Since the sets (An \ Brn), (Bn \ An+1), and D, are pairwise disjoint, by (c¢) and
by regrouping the representation of By in (b), we get |Ao| = | Bo|.
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4

Cardinal Relations in ZF only

To some it may appear novel that I include the
fourth among the consonances, because practicing
musicians have until now relegated it to the disso-
nances. Hence I must emphasise that the fourth is
actually not a dissonance but a consonance.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

In the previous chapter we introduced cardinal numbers as certain sets,
which contain only sets of the same cardinality. Cardinal numbers in Zermelo-
Fraenkel Set Theory are traditionally denoted by Fraktur letters like m and
n. However, the cardinality of a given set A is denoted by |A|. If |A| = m,
then we say that A is of cardinality m. Recall that for cardinals m = |A|,
2™ = |2 (A)|, in particular 2% = |2 (w)|.

Recall that a set A is finite if there exists a bijection between A and a
natural number n € w. Now, a cardinal number m is finite if m contains a
finite set — recall that |} = {0}. Finite cardinal numbers are usually denoted
like elements of w, i.e., by letters like n,m, k et cetera. In other words, for
n € w we usually do not distinguish between the ordinal number n and the
cardinal number n. Finally, a cardinal number is infinite if it is not finite.
Recall that an infinite cardinal which contains a well-orderable set is called
an aleph and that alephs are denoted by N’s, e.g., Rg := |w|. A cardinal m is
called transfinite or Dedekind-infinite if Xy < m. Notice that transfinite
cardinals are always infinite. If the cardinality of a set A is transfinite, then
A is called transfinite. Notice that for each transfinite set A there is an
injection from w into A. Sets or cardinals which are not transfinite are called
D-finite or Dedekind-finite. Notice that every finite set is D-finite, but as
we will see later, D-finite sets are not necessarily finite. For other notions of
finiteness see RELATED RESULT 13.
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Basic Cardinal Relations

Below we show some relations between cardinals which can be proved in ZF.
We start with some simple facts.

FACT 4.1. Xy = |P| = |Z| = |Z?| = |Q|, where P denotes the set of prime
numbers, 7. denotes the set of integers, and @ denotes the set of rational
numbers.

Proof. By definition we have Ny = |w|. Further, |P| < |w| < |Z| < |Q],

and since every reduced rational number % corresponds to an ordered pair

(p,q) of integers we also have |Q| < |Z?|. Thus, by the CANTOR-BERNSTEIN
THEOREM 3.17 it is enough to show that the set PP is transfinite and to find
an injection from Z?2 into w. That IP is transfinite follows from the fact that
P is an infinite, well-orderable set; and to construct an injection f : Z? — w
we define for example first g : P x Z — w by stipulating g(p, z) := max{1, p*}
and then let f((:z:, y>) =9g(2,2)-g3,—x) - g(5,y) - (7, —y). —
For an arbitrary set A let fin(A) denote the set of all finite subsets of A. Notice
that fin(A) = Z2(A) if and only if A is finite. Further, recall that seq(A)
denotes the set of all finite sequences which can be formed with elements of A
and that seq'"'(A) be those sequences of seq(A) in which no element appears
twice. Further, recall that [A]? is the set of all 2-element subsets of A.

FACT 4.2. Xy = |[w]?| = |fin(w)| = |seq " (w)| = |seq(w)| = |A|, where A
denotes the set of algebraic numbers, which is the set of all real numbers
which are roots of polynomials with integer coefficients.

Proof. Since every finite subset of w corresponds to a strictly increasing fi-
nite sequence of elements of w we obviously have Ny < |[w]?| < |fin(w)| <
|seq™ ! (w)| < |seq(w)|. By the CANTOR-BERNSTEIN THEOREM 3.17, in order
to prove that |seq(w)| = N it is enough to find an injection from seq(w) into
w. Let P = {p; : ¢ € w} be such that for all 4,j € w, i < j — p; < p;, and
define f : seq(w) — w by stipulating

f(<(107 ai,. .., an>) = pgo-i-l ,pllll-l-l . .pszrl_

Then, by unique factorisation of integers, f is injective. Now, let us consider
the set A: A polynomial p(z) = a,2™ + a,—12" "' +...a12 + ap with integer
coefficients has at most n different real roots say ro < r1 < ...r, where k < n,
and since there exists a bijection g between Z and w (by FACT 4.1), we can
define a mapping hy,(,) which assigns to each root r; of p(z) an element of
seq(w) by stipulating

hp(a) (i) = (g(ao), - ., glan), i) ,
and define H : A — w by stipulating
H(r) = min {hp(m)(ri) :p(r)=0Ar= Ti} .
This shows that |A| < 8y and completes the proof. —
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By PROPOSITION 3.18 we know that |R| = 2% and by CANTOR’S THE-
OREM 3.25 we get that Xy < 2% hence, the set of reals is uncountable
(cf. PROPOSITION 3.24). The following result gives a few examples of sets of
the same cardinality as R.

FacT 4.3. |[0,¢]| = |R| = |“2| = |“w| = |RxR| = |“R| = |C[0,1]| = |R\A],
where for ¢ > 0, [0,e] = {r € R: 0 < r < ¢}, and C[0,1] denotes the set of
continuous functions from [0,1] to R.

Proof. The function ¢ - (arctan(z) + 5)/ is a bijection between R and the
open interval (0,¢), thus, by the CANTOR-BERNSTEIN THEOREM 3.17 we get
[0,¢]| = |R|.

Since the function h : “2 — 2?(w) defined by stipulating h(f) := {n € w:
f(n) = 1} is bijective, and since |R| = | Z(w)|, we get |R| = [“2|.

Recall that there is a bijection g : w x w — w, eg., let g((n,m)) =
m+ 1(n+m)(n+m+1). In order to show that [“R| = |R| it is enough to
show that there is a bijection between “ #(w) and £ (w). Now, there is a one-
to-one correspondence between functions h € ¥ Z(w) and sets X € Z(w X w)
by (a,b) € X <= b€ h(a). Thus, the function

P(wxw) — P(w)
X — g[X]

induces an bijection between “ #(w) and £ (w), hence, [“R| and |R|, and
since |R| < |R x R| < [“R| and |R| = [“2] < |“w| < |“R|, we finally get
IR| =92 = [*w| = [R X R| = [“R].

To see that |R| = |C[0,1]], notice first that a continuous function from
[0,1] to R is defined by its values on QNI0, 1]. By FACT 4.1 there is a bijection
between Q N [0,1] and w, and consequently there is a one-to-one correspon-
dence between functions in C[0, 1] and some functions in “R which shows that
|C[0,1]] < |“R]. Since |“R| = |R| and since we obviously have |R| < |C0,1]],
by the CANTOR-BERNSTEIN THEOREM 3.17 we finally get |C[0,1]| = |R].

By FAcT 4.2, |A] = Y; and we leave it as an exercise to the reader to show
that R\ A| = |R| for all countable sets A C R. At this point we would like
to mention that the reals R \ A are called transcendental numbers; thus, all
but countably many reals are transcendental. —

Let us now turn our attention to arbitrary cardinalities and let us prove
that whenever we can embed w into #(A). Then we can also embed R into
P(A).

PROPOSITION 4.4. If Ry < 2™, then 280 < 2™,

Proof. Let A be an arbitrary set of cardinality m. Because 8y < 2™ there is an
injection fj : w < Z(A). Define an equivalence relation on A by stipulating

z~y < VYnew(z e fo(n) <y e foln)),
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andlet [z] :={ye€ A:y~a}. Forz € Alet g, :={n €w:ae fo(n)}
Then for every z € A we have g, C w and g, = gy iff [z]” = [y]". We can
consider the set g, as a function from w to {0,1} by g.(n) = 0if x € fo(n) and
gz(n) =1if x ¢ fo(n). Now we define an ordering “<” on the set {g, : © € A}
by stipulating

Je < gy <= dn € w(gm(n) < gy(n) ANVEk € n(gm(k) = gy(kz)))

Notice that for all x,y € A such that g, # g, we have either g, < g, or
gy < gz. Let P? := {g, : g.(n) = 0}. Then for each n € w, P C “2,
Obviously, the relation “<” defines an ordering on each P?. We consider the
following two cases:

If for each n € w, P? is well-ordered by “<”, then we can easily well-order
the infinite set | J, ., P, and construct a countably infinite set {g,, : i € w}
such that for all distinct 4,j € w, gz, # go,. If we define ¢; = {x € A: g, =
Jz; }, then the set @ := {g; : i € w} is a countable infinite set of pairwise
disjoint subsets of A.

If not every P? is well-ordered by “<”, there exists a least m € w such
that P is not well-ordered by “<” and we can define

So = U {S - PSI : S has no <-minimal element} .

By definition of Sy C P9, Sp has no <-minimal element, too. For k € w
we define Sk as follows: If Sy N Pr?1+k+1 = (), then Sky1 := Sk; otherwise,
Sk+1 = Sk QPSL+1¢+1- By construction, for every k € w, S # () and Sy, is not
well-ordered by “<”. This implies that for every k € w there exists an [ > k
such that S is a proper subset of Si. Now let Sk, Sk,, ... be such that for all
i < j we have Sy, \ Si, # 0 and let ¢; := {x € A : g, € (Sk, \ Sk,., }- Then
the set @ := {¢; : i € w} is again a countable infinite set of pairwise disjoint
subsets of A.

Thus, in both cases the cardinality of 2(Q) is 2%, and since the function

2(Q) — 2(4)
X — Ux
is injective we finally have 280 < 2™, -

It is now time to define addition and multiplication of cardinals. Let m
and n be cardinals and let A and B be disjoint sets of cardinality m and n
respectively. Then we define the sum and product of m and n as follows:

m+n=|AUB]
m-n=|AX B|
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Furthermore, let 2m := m 4+ m and m? := m - m. We leave it as an exercise to
the reader to show that for any cardinals m, n and p we have for example:

m4+n=n4+m, m-n=n-m

m<n—=p+m<p4+n, m<n—-p-m<p-n

For example to show that 2™T" = 2™.2" define f : 2(AUB) — P(A)x 2 (B)
by stipulating f(S) := (SN A,SNB).

The following fact is just an easy consequence of the definition of ordered
pairs.

FACT 4.5. For any cardinal m, m? < 22"

Proof. Let A be a set of cardinality m. Any (a,b) € A x A can be written in
the form {a, {a,b}}, which is obviously an element of &(Z(A)). -

Let m be a cardinal and let A be a set of cardinality m. Then we define
fin(m) := |fin(A4)| and [m]? := |[4]?|. Notice that for all cardinals m > 2 we
have m < [m]? < fin(m). We leave it as an exercise to the reader to show that
Ry <m? — Ry < m; however, Xy < [m]?2 — Xy < m is not provable in ZF (see
THEOREM 7.6.(b)).

As mentioned above, an infinite set can be D-finite and moreover, even the
power set of an infinite set can be D-finite. However, for every infinite cardinal
m, 2f7(™) is transfinite (notice that 2™ < ,2™).

FACT 4.6. If m is an infinite cardinal, then 2% < 2f2(™) "in particular 2fi»(™)

is transfinite.

Proof. Let A be an arbitrary infinite set of cardinality m. For every n € w let
X, = {2 C A:|z| =n}. Then for any n € w, X,, € Z(fin(A)). For any two
distinct integers n,m € w we get X,, # X,,. This shows that ¥y < zﬁn(‘“),
and hence, by PROPOSITION 4.4, 280 < pfin(m) 4

The following result is an immediate consequence of FACT 4.6 (see THEO-
REM 4.28 for a stronger result).

m m

FAcT 4.7. If m is an infinite cardinal, then 22 +227 =%

Proof. Notice that

m m m

2% 27 22 22" 41
2 +2 =2-2 = 2 ),

. mo, . m m
and since 2> is transfinite, 22 4+ 1 = 2> .
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For arbitrary sets A and B we write |A| <* |B] if either A = () or there
is a surjection from B onto A. Similarly we write m <* n if there are sets
A € m and B € n such that |A| <* |B|. Notice that cardinal relation “<” is
reflexive and transitive, and that m < n — m <* n. We leave it as an exercise
to the reader to show that for all cardinals m, [m]? <* m? (compare this result
with PROPOSITION 7.18). However, in ZF, |A| <* |B| and |B| <* | 4| does not
imply |A| = |B| (see Chapter 7 for counterexamples). On the other hand, we
have the following

FacT 4.8. If m <* n, then 2™ < 2". Moreover, if m <* X, then m < N.

Proof. Let the sets A and B be of cardinality m and n respectively. Since
m <* n there is a surjection g : B — A. Let f : Z(A) — £(B) by stipulating
f(X):={ye B:g(y) € X}. Then f is injective which shows that | 2(A)| <
|2(B)|.

Now, let S be a set of cardinality X and let Rg C .S x S be a well-ordering
of S. Further, let g : S — A (where |A] = m) be a surjection. Then f: A — S,
where f(a) is the Rg-minimal element of {s € S : g(s) = a} is obviously an
injection. —

Recall that by HARTOGS® THEOREM 3.27, for any cardinal m there is a
smallest R, denoted R(m), such that N(m) £ m.

FACT 4.9. If m is an infinite cardinal, then R(m) <* 2™

Proof. Let A be a set of cardinality m. Any binary relation R on A corresponds
to a subset Xp of A x A by stipulating (ag,a1) € Xp <= R(ap,a1). Thus,
we get that the cardinality of the set of binary relations on A is less than or
equal to 2™, Further, let S be a well-orderable set of cardinality RX(m), let
R be a well-ordering of S, and let @ = o0.t.(R) be the order type of R. Then
|a] = |S| = a(m). Define f: #(A x A) — « by stipulating

FX) = 0 if X is not a well-ordering of a subset of A,
"~ ] 0.t.(X) otherwise.

By the proof of HARTOGS’ THEOREM 3.27, for every 8 € « there is a well-
ordering R of a subset of A such that o.t.(R) = 3, hence, f is surjective. -

In the proof of CANTOR’S THEOREM 3.25 it is in fact shown that for all
cardinals m, 2™ £* m. On the other hand, we obviously have 2™ <* m? in the
case when m < 4; however, it is not known whether 2™ <* m? - m < 4 is
provable in ZF (see RELATED RESULT 21).

The situation is different when we replace “<*” by “<”. By CANTOR’S
THEOREM 3.25 we know that m < 2™, thus, 2™ £ m. Moreover, 2™ < m? —
m < 4 (see THEOREM 4.20), but we have to postpone the proof until we can
compute the cardinality of products of infinite ordinal numbers. However, let
us first investigate the cardinality of the continuum R.
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On the Cardinals 2%° and R,

By HARTOGS’ THEOREM 3.27 we know that for any cardinal m (e.g., m = Rg)
there is a smallest X, denoted R(m), such that R(m) £ m. Now let Ry := R(R).
Then N; contains an uncountable well-orderable set, say A, such that every
subset of A of cardinality strictly less than A is countable. Let « be the order
type of a well-ordering of A. Then, since |a| = N1, « is an uncountable ordinal.
Now, if a\ {8 € a : |38] = No} = 0, then « is the least uncountable ordinal
which is usually denoted wy. Otherwise, the non-empty set o\ {f € a: |8| =
No}, as a set of ordinals, has an €-minimal element, say . Then ~ is the least
uncountable ordinal, i.e., v = ws. In particular we get |wi| = Ny, and for all
B € wy we have |f] = Rq.

If 2% would be an aleph, then we would have X; < 2% (notice that
Ny < 280 and that Xy < X;). Now, the Continuum Hypothesis, denoted CH,
states that 280 = ;. In particular, if 2%° is an aleph then CH is equivalent to
saying that every subset of R is either countable or of cardinality 2™°.

In Chapter 16 we shall see that CH is independent of ZF, thus, neither ZF
CH nor ZF F =CH. Below we investigate the relationship between the cardinals
2% and ;. In order to construct a surjection from R onto w; — even though
there might be no injection from w; into R — we prove first the following
result:

LEMMA 4.10. For every ordinal o € w; there is a set of rationals Q, C
QN (0,1) and a bijection hy, : @ — Qq, such that for all 3,8 € a, B € ' <—
ha(B) < ha(B).

Proof. Let o be an arbitrary but fixed ordinal in w;. For a = 0 let Qg := 0
and we are done; and if 0 # « € w (i.e., if « is finite), then for n € a we define
ha(n) :=1—1/(n+ 2). If « is infinite we proceed as follows. Firstly let

w— a
n+— Bn

and

w— QN (0,1)

e
be two bijections (notice that the sets o and @ N (0,1) are both countably
infinite). Since {f, : n € w} = @, it is enough to define h,(8,) for all n € w
which is done by induction: hq(8o) := qo and if ho(Bk) is defined for all &k € n,
then

ha(ﬂn) = Gu(n)
where
wu(n) = min {m cw:Vk en(gm < ha(Br) & Bn € ﬂk)} .

Further, let @, := hy[a]. Then by induction one can show that h, and Q.
have the required properties (the details are left to the reader). —
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THEOREM 4.11. Wy <* 2No,

Proof. Tt is enough to construct a surjection from the open interval (0, 1) onto
w1. Firstly notice that every real r € (0,1) can be written uniquely as

r= Z Ty - 9~ (n+1)

where for all n € w, r, € {0,1}, and infinitely many r,’s are equal to 0. On
the other hand, for every function f € “2 such that {n € w: f(n) = 0} is
infinite there exists a unique real r = Y _ f(n)- 2=+ in (0,1). Secondly,
for r € (0,1) let Q, = {qn : T2, = 1} where the function which maps n to
gn is a bijection between w and QN (0,1). If @, is well-ordered by “<”, then
let n(r) be the order type of (Q,, <); otherwise, let n(r) = (). Since the set of
rational numbers is countable, 7 is a function from (0, 1) to w;. Moreover, the
function 7 is even surjective. Indeed, by LEMMA 4.10 we know that for any
« € w; there is a set of rational numbers @, € QN (0,1) such that the order
type of (Qq, <) is equal to . Thus, for

r= Z 27+ where N(Qo) ={k € w: qx € Qqa}
nEN(Qa)

we have r € (0,1) and 5(r) = «, and since a € wy was arbitrary this shows
that 7 is surjective. —

In contrast to THEOREM 4.11 the existence of an injection from w; into R
is not provable in ZF, i.e., Ny £ 2% is consistent with ZF. For example there
is no such injection in the case when the reals can be written as a countable
union of countable sets (for the consistency of this statement with ZF see
Chapter 17).

PROPOSITION 4.12. If the set of real numbers is a countable union of count-
able sets, then Ny £ 2%,

Proof. By FAcT 4.3, |R| = |R|. Thus, if R is a countable union of countable
sets, then we also have YR = UnEw F,, where each F,, is countable. The
proof is by contraposition: Under the assumption that there is an injection
j 1w = R we show that “R # | F,,. Consider the function

new
G:w— ZR)
nr— {reR:3feF,3kcw(f(k)=r)}.

For each n € w we have |G(n)| < Ry and we can define h : w — R by
stipulating

h(n) := j(oy,) where a, =min {8 € w1 :j(B) ¢ G(n)}.
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By definition A € YRR, but on the other hand, h does not belong to any set
F,, (for n € w); since otherwise we would have h(n) € G(n) which contradicts
the definition of h(n). Thus, h ¢ U, ., F» which shows that “R —and con-
sequently R — cannot be covered by countably many countable sets. —

As a consequence of PROPOSITION 4.12 one can show that if R is a count-
able union of countable sets, then R can be partitioned into strictly more
parts than real numbers exist, where a partition of R is a set Z C Z(R)
such that | JZ = R and for any distinct z,y € Z, z Ny = 0.

COROLLARY 4.13. If the set of real numbers is a countable union of countable
sets, then there exists a partition #Z of R such that |%| > |R|.

Proof. By FACT 4.3 and the CANTOR-BERNSTEIN THEOREM 3.17 there exists
a bijection between R\ (0,1) and R, and by THEOREM 4.11 there exists a
surjection from (0,1) onto w;. Thus, there is a surjection f : R — RUw;
and with f we can define an equivalence relation “~” on R by stipulating
r~y <= f(x) = f(y). Let Z = {[z]" : € R}. Then Z is a partition of R
and we have |%Z| = Ny +2%°. By PROPOSITION 4.12, R; % 2 and consequently
Ny 420 £ 2% and since 280 < N 4280 we have 280 < R; 4280 in particular,
R| < |Z)|. —

Ordinal Numbers revisited

In the previous chapter we have defined addition, multiplication, and exponen-
tiation of ordinal numbers. Using these arithmetical operations we can show
that every ordinal number can be uniquely represented in a standardised form,
but first let us introduce some terminology: For ordinals «, 5 € Q we will write
B < ainstead of 5 € a and consequently we define f < o < f€aVf=a.
Further notice that if 8 < «, then there is a unique ordinal, denoted o — S5,
such that 8+ (o — ) = .

LEMMA 4.14. For every ordinal o > 0 there exists a unique ordinal g such
that w® < o and w1 > a.

Proof. Firstly notice that by the rules of ordinal exponentiation, for v < v we
have w? < w? w <w?-w’ Y =w? . In particular, for any ordinal cg we have
w < w+tl Secondly notice that for all ordinals o we have w® > «, hence,
wtt > w* > a. Now, since o+ 1 is well-ordered by “<” and w®*t! > o > °,
there is a unique least ordinal 8 < av+ 1 such that w? > a. It remains to show
that S is a successor ordinal, i.e., 8 = ag + 1 for some «g. Indeed, if 8 would
be a limit ordinal, then w? = Uve,ﬁ w?, and by definition of 5 we would have
wY < « (for all ¥ € B). Since W™ > w7 and since f§ is a limit ordinal, this
would imply that w” € a whenever v € 8 and consequently w® < a, whereas
w? > o, a contradiction. —
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LEMMA 4.15. Let o« > w be an infinite ordinal. Then there exist a positive
integer ko and ordinals o/ and o where o/ < w® such that a = w®° -k +a’.
Moreover, the ordinals kg, o, and o/ are uniquely determined by a.

Proof. Let ap be as in LEMMA 4.14. Then w® < « and w**t! > a. By a
similar argument as in the proof of LEMMA 4.14, this implies that there are
positive integers k such that w®® -k > a. Let kg be the least integer such that
w® - (ko + 1) > a; then 1 < kg < w (notice that w* = w -1 < ). Finally,
let @ = (v —w - ko). Then w™ - ko + o' = « and since w™ - (kg + 1) =
WY kg +w > a, o/ < w*. We leave it as an exercise to the reader to show
that kg, ag, and o’ are uniquely determined by a. —

Now we are ready to prove the following result:

THEOREM 4.16 (CANTOR’S NORMAL FORM THEOREM). Every ordinal num-
ber o > 0 can be uniquely represented in the form

a=w* kot+w* -k +...+w* -k,

where n+ 1 and kg, k1, ..., k, are positive integers and the ordinal exponents
satisfy o > ag > a1 > g > ... > ap > 0.

Proof. By an iterative application of LEMMA 4.15 we get

oa=w ky+a
a':wal-krl—i—a”

" "
o' =w*? ky+«

where o/ < w0, " < w™, o <w*?, et cetera, and kg, k1, ks, . .. are positive

integers. Now, o/ < w®® implies that a1 < ag, and o’ < w®* implies that
ag < a1, and so on. Thus, we get a descending sequence o > oy > o >

as > ..., and since by the Axiom of Foundation every such sequence is finite,
there exists an n € w such that a, ;1 = 0, and since w® = 1 this implies that
a=w - kyg+...+w - k,. -

The form o = w® -kg+...+w -k, is called the Cantor normal form of
a, denoted cnf (). Notice that by CANTOR'S NORMAL FORM THEOREM 4.16,
every ordinal number can be written in a unique way in Cantor normal form.

For @ = w®* -ko+... 4w -k, let enfo(@) := w®® - ko. The next lemma will
be used to show that for every infinite ordinal «, there is a bijection between
a and cnfy(a).

LEMMA 4.17. If «g, a1, ko, k1 are ordinals, where o > o and 0 < kg, k1 < w,
then
Wk w0 kg = w* k.
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Proof. By distributivity we get w® -k1 +w® kg = w* - (k:1 FwoT™ -ko), and
since k1 +w = w we get k1 +w ™ kg = w2 . ky. Thus, w* -k +w® kg =
w - (kl + wdo ™ ko) = w* - k. —

LEMMA 4.18. For each ordinal o > 0 there exists a bijection between « and
enfo(a).

Proof. Let enf(a) = w® - kg +w - k1 +...+w* -k, and define the “reverse

Cantor normal form” of «, denoted cnf (@), by
(;f(a) = wan . k/:n +wan,—1 . k’n—l + . + wao . kO .

If @« < w, then g = 0, hence, « = w - ky = ko and therefore o = enfy ().

If @ > w, then by an iterative application of LEMMA 4.17 we get (?r;f(a) =
w* - ko = cnfg(a), and since there is obviously a bijection between « and

(?I;f(a), there exists a bijection between « and cnfy(c). —

Now we are ready to show that for each infinite ordinal «, the cardinality of
the set of all finite sequences which can be formed with elements of « is the
same as the cardinality of a. Moreover, we can show the following result:

THEOREM 4.19. For each infinite ordinal o« we have

laf = [fin(a)| = |seq" (a)| = |seq(a)] .

Moreover, there exists a class function F' such that for each infinite ordinal
a > w, {a} x seq(a) C dom(F) and F|(q}xseq(a) induces an injection from
seq(«) into a.

Proof. Firstly notice that for every ordinal «, |a] < [fin(a)] < [seq(a)] <
|seq(a)|. In fact, there is a class function assigning to each ordinal o some
appropriate functions to witness these inequalities. Thus, it is enough to prove
that for every infinite ordinal «, |seq()| < || uniformly; i.e., it is enough to
show the existence of a class function F' such that for every infinite ordinal
« and any distinct finite sequences s,t € seq(«) we have F((a, s>) € a and
F({a,s)) # F({a,t)). Let « be an arbitrary but fixed infinite ordinal. In
the following steps we will construct an injection F,, : seq(a) < « such that
the class function F' defined by F({a, s)) := F,(s) has the desired properties
(notice that this requires that the function F, is fully determined by «).
First we give a detailed construction of an injection g, : @ — w®, where
w* - ko = cnfp(a). By LEMMA 4.18 there is a bijection between o and w®° - k.
Further, there is a bijection between the ordinal w®° - ky and the set w®° x kq.
Indeed, if 8 € w® - kg, then there is a 8/ € w* and an 7 € kg such that
B =w - j+ 3 let the image of 8 be (f’,j). Similarly, there is a bijection
between the set kg x w® and the ordinal kg - w®°, and since there is obviously
a bijection between w®° x kg and kg X w®°, there is a bijection between « and
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ko - w0, Further, since 1 < kg < w, there is an injection from ko - w™° into
W - wY = Wl thus, there is an injection

g — witoo,
Notice that because a > w, ap > 1. Now we consider the following two cases:

If ap > w, then 1 + oy = ag, thus, g is an injection from « into w®°; in
this case let g, := g.

If ap < w, then 14+ay = ag+1 and there is a bijection between the ordinal
w7t and the set of functions from o+ 1 to w, denoted *°+1w. Similar to the
proof of FACT 4.2 let pg < p1 < ... < pq, be the least ap + 1 prime numbers

. . )+1 .
and define b : **'w — w by stipulating h(s) = [[;<,, piDT Then # is
injective and since ag > 1 (notice that o > w), there is an injection from «
into w®°; in this case let g, be that injection.

Similarly, for each n € w we can construct an injection f,, : "a — «. For
n = 0let foo(0) := 0; and for n > 0 let f,, be defined by the following
sequence of injections:

n
fa,n - My n (wao) (wao) weon WO >
by ga
wn~d0 w (@]
................ - wn-w50-d0 s wn.d0~w5° wY —
by ga,, where %AO %QLU)
wlo.dy = cnfo(ao)
Wl 1460
W —== W .
&

—

Now we can construct an injection from seq(«) into «: Firstly notice that
there is a natural bijection between seq(cr) and |J, ., ", thus, it is enough
to construct an injection Fy, from J,, ., " into a. If s € | J,,,, ", then s is
a finite set of ordered pairs (i.e., [s| € w) and f, |4 is an injection from Isl oy
into a, in particular, f, |5/(s) € a. Finally let us define F,, : |J,,c,,"a — a by

stipulating
F(S) = fa,Q({<0a |S|>a <1’fa7|s\(s)>}) :

Then, since « is infinite, |s| € a, and since f, 2 is an injection from %« into
a, F, is injective. —

new

As an application of THEOREM 4.19 let us prove that whenever we have
an injection from 4?(A) into A x A, then A has at most four elements.
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THEOREM 4.20. 2™ <m? - m < 4.

Proof. Tf m is finite, an easy calculation shows that 2™ < m? implies that
m € {2,3,4}. Thus, let m be infinite and assume towards a contradiction that
2™ < m?. Let A be a set of cardinality m and let fo : Z(A) — Ax A. With the
function fy we can construct an injective class function from €2 into A, which
is obviously a contradiction to the Axiom Schema of Replacement — which
implies that there is no injection from a proper class (like ) into a set.

Firstly we construct an injection F,, : w — A. Let ag, a1, a2, a3, aq be five
distinct elements of A and define Fj5 : 5 — A by stipulating F5(i) := a; (for
all i € 5); further let S5 := F5[5] (i.e., S5 = {F5(i) : ¢ € 5}). Assume that for
some n > 5 we have already constructed an injection F,, : n — A. For any
distinct sets x,y € Z(S,,), where S, := F,[n], let

T <y <= |x|<|y|\/3i€n(F(i)€(:c\y)/\Vjei(F(j)exHF(j)Ey)).

Since S, is finite, the relation “<” is a well-ordering, and since n > 5,
|2(S,)| = 2" > n? = |S, x S,|. Thus, there exists a <-minimal set x C S,
such that fo(x) ¢ Sp x Sp. Let fo(x) = (bo, b1) and let

_FOE%¢&,

n — .
b1 otherwise.

Define F,, 41 := F, U {{(n,a,)} and let S,41 := S, U {FnH(n)}. Then Fj, 41
is an injection from n + 1 into A, and S,+1 = Fn41[n + 1]. Proceeding this
way we finally get an injection F,, : w — A as well as a countably infinite set
S, = F,[w] C A.

Assume now that we have already constructed an injection Fj, : @« — A
for some infinite ordinal @ > w and let S, := F,[a]. By THEOREM 4.19 there
is a canonical bijection ¢ : @« — a x a. With g we can define a bijection
g :Sa — Sa X S, by stipulating

g(Fa(ﬂ)) = <Fa(50)7 Fa(ﬂl)> where ﬂ = gil(<50; ﬂl>) .
Further, define a mapping I" : S, — £(S,) by stipulating

sz{xg& if folw) = g(a),
0 otherwise.
and let

M={a€e€Sy:a¢I'(a)}.

Then M € f@(sa) and let fo(M) = <bo,b1> c Ax A If <bo,b1> € So X Sq,
then fo(M) = g(a) for some a € S,, and hence I'(a) = M; but a € I'(a) <>
a € M < a ¢ I'(a), which is obviously impossible. Thus, (bo,b1) ¢ S X Sa
and we let
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if
o = {bo 1 bo ¢ Sa,

b1 otherwise.

Further, define Fi,+1 := F, U{{c, as)} and let Sp4+1 := SqU{as}. Then F,iq
is an injection from o + 1 into A, and S,41 = Fut1[a + 1]. Finally, if A is a
limit ordinal and Fj is defined for each 3 € A we define F) := {Jyc) Fi-
Now, by the TRANSFINITE RECURSION THEOREM 3.19, {J,cq Fo is an
injective class function which maps 2 into A; a contradiction to HARTOGS’
THEOREM. —

The idea of the previous proof — getting a contradiction by constructing
an injective class function from € into a given set — is used again in the proofs
of THEOREM 4.21, PROPOSITION 4.22, and LEMMA 4.23.

More Cardinal Relations

fin(m) < 2™ whenever m is infinite
THEOREM 4.21. If m is an infinite cardinal, then fin(m) < 2™.

Proof. Let A be an arbitrary but fixed infinite set of cardinality m. Obviously,
the identity mapping is an injection from fin(A4) into ?(A), hence, fin(m) <
2™, Now, assume towards a contradiction that ’3”(14)‘ = ’ ﬁn(A)‘ and let

fo: P(A) — fin(A)

be a bijection. The mapping will be used in order to construct an injective
class function F : 2 < fin(A). First we define an injection F, : w < fin(A)
by stipulating
Fo(n) = fg ™ (4)

where f}(A) := fo(A) and for positive integers k, fitl(A) := fo(fE(A)).
Then, since A is infinite, F,, is indeed an injection.

Assume that we have already constructed an injection F, : a < fin(A) for
some infinite ordinal & > w and for ¢« € « let s, := F(¢). Notice that s, # s,/
whenever ¢ # /. Define an equivalence relation on A by

T~y = Yieares, < yE<s,).
For x € A and p € o define
DL#:H{SL:LEMASCGSL}
where we define for the moment (0 := A, and let

gz:{Meoz::cesﬂ/\(s#ﬂDI#%Dz,#)}.
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We leave it as an exercise to the reader to show that for any z,y € A, g, = gy
iff x ~ y. Hence, there is a bijection between {[z]": z € A} and {g, : = € A}.
Further, for each z € A, g, € fin(a). To see this, let po < p1 < pg < ... be
the ordinals in g, in increasing order. By definition we have:

(1) « ¢ s, whenever ¢ € g

(2) x € sy, and s,y = Dy pg41
(3) Dw,uo-ﬁ-l 2 Dw,uﬁ-l 2 Dw,uz-ﬁ-l 2

By (2), Dy, jo+1 is finite, and therefore the decreasing sequence (3) must be
finite too, which implies that also g, is finite.

Since {g, : * € A} C fin(a) we can apply THEOREM 4.19 to obtain an
injection h : {g, : ® € A} < . The set h[{g, : @ € A}], as a subset of o, is
well-ordered by “€”. Let  be the order type of h[{g, : # € A}]. Then v < o
and for each g, assign an ordinal number 7(g,) € v such that the mapping
7 :{g. : x € A} — = is bijective. For each ¢ € «, s, is the union of at most
finitely many equivalence classes. Thus, we can construct an injection from «
into fin(vy) by stipulating

u—){{evzﬂxesb(n(gm)zg}.

Because by THEOREM 4.19 we can construct a bijection between fin(vy) and
7, we can also construct an injection from « into 7, and because v < «, by
the CANTOR-BERNSTEIN THEOREM 3.17 we finally get a bijection H : v — «
between v and «. Define the function I : A — F(A) by stipulating

I'(x) = fo ' (sa(mig.))

and consider the set
M:{xeA:x¢F(x)}.

We claim that the set M does not belong to {fo='(s,) : ¢ € a}. Indeed, if
there would be a 8 € a such that fo~!(sg) = M, then there would also be an
equivalence class [z]”, which corresponds to g,, such that

B=H(n(g))-

For each y € [z]” we have I'(y) = M,and y € I'(y) <y € M < y ¢ I'(y),
which is obviously impossible.

Now, let s, := fo~'(M) and define F, i := F, U {s,}. Then F,,; is
an injection from « + 1 into fin(A4). Finally, if A is a limit ordinal and Fj is
defined for each 8 € A, then define F) := UﬁeA Fg. Thus, by the TRANSFINITE
RECURSION THEOREM 3.19, | J,,cq Fa is an injective class function which maps
Q into fin(A); a contradiction to HARTOGS’ THEOREM. —

Even though fin(m) < 2™ (for all infinite cardinals m), it might be possible
that for some natural number n, n - fin(m) = 2™. The next result shows that
in that case, n must be a power of 2.
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PROPOSITION 4.22. If 2™ = n-fin(m) for some natural number n, then n = 2~
for some k € w.

Proof. If the cardinal m is finite, then 2™ = fin(m) = 1 - fin(m) = 2° - fin(m).
So, let m be an infinite cardinal and let A be an arbitrary but fixed set of
cardinality m. Further, let n be a natural number which is not a power of 2.
Assume towards a contradiction that | 2(A)| = |n x fin(A4)]|. Let

fo:nxfin(4) —» £(A)

be a bijection which will be used to construct an injective class function
from Q into fin(A). Let (mo,zo) := fo~'(A). Assume that for some ¢ € w,
g, 1, - - -, ¢ are pairwise distinct finite subsets of A. Foreachi € nand j </
let

Xij = fo((i, ;) .

On A define an equivalence relation by stipulating
a~b <— V’L.GTLV].SK(GJGXZ'J (—)bEXiﬁj).

Further, let Eq := {[a]”: a € A} be the set of all equivalence classes and let
ko := |Eq|. Now define an ordering “<” on the set {X; ; : i € n A j < £}, for
example define

Xij=Xpy <= j<jv@y=jni<i).

The ordering “<” induces in a natural way an ordering on the set Eq, and
consequently of the set E = {JY : Y C Eq }. Since the equivalence classes
in Eq are pairwise disjoint, |E| = 2%, Notice that 2% >n - (£ + 1), and since
n is not a power of 2, there is a least set | JY; € F (least with respect to
the ordering on E induced by “<”) such that fo='(|JYo) = (met1,ze41) and
xo41 ¢ {z; 1 j < L}. For i € n define X; 11 := fo(<i,1‘e+1>) and proceed as

before. Finally we get an infinite sequence xg, x1, . . . of pairwise distinct finite
subsets of A which shows that fin(A) is transfinite, i.e., there exists a injection
F, : w = fin(4).

Assume that we have already constructed an injection F, : o < fin(A) for
some infinite ordinal @ > w. Using the fact that there is a bijection between
n -« and «, by the same arguments as in the proof of THEOREM 4.21 we can
construct an injection Fy11 : @ + 1 < fin(A) and finally obtain an injective
class function from Q into fin(A4); a contradiction to HARTOGS’> THEOREM.

_|

Even though PROPOSITION 4.22 looks a little bland, one cannot do better
in ZF, i.e., for all k € w, the statement “Em(zm =2k ﬁn(m))” is consistent
with ZF (cf. PROPOSITION 7.5).
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seq''(m) # 2™ # seq(m) whenever m > 2

First we prove that the inequality seq’*(m) # 2™ # seq(m) whenever m is
transfinite.

LEMMA 4.23. Let m be a transfinite cardinal number. Then 2™ £ seq(m) and
consequently also 2™ % seq'" (m).

Proof. Let A be a set of cardinality m and assume towards a contradiction
that there exists an injection fo : (A) — seq(A). Since A is transfinite there
is an injection F, : w < A and let S, := F,[w]. Assume that we have already
constructed an injection F, : a — A for some infinite ordinal o > w and let
So = Fyla]. By THEOREM 4.19 there is a bijection between « and seq(«),
and consequently we can define a bijection g : S, — seq(S,). Further, define
I':S, — Z(S,) by stipulating

Ia) = {:c C So if folz) = gla),

0 otherwise,

and let
M={aeSy:a¢I'(a)}.

Then M € (S,) and fo(M) = (bo,b1,...,b,) € seq(A) \ seq(Sy). Now,
let a, := b;, where i < n is the least number such that b; ¢ S, and define
Foi1 = FoU{{o,a4)} and Spy1 = Sa U {Fa+1(a)}. Then F,1; is an
injection from «a+ 1 into A, and Syy1 = Fut1][a + 1]. Finally, if X is a limit
ordinal and Fj is defined for each 8 € A we define F\ := [J4., Fs and finally
get that (J,c Fo is an injective class function; a contradiction to HARTOGS’
THEOREM. —

To prove that seq(m) # 2™ whenever m > 1 one could for example show
that seq(m) = 2™ implies that m is transfinite by using similar ideas as above,
but we get a slightly more elegant proof by showing that seq(m) = 2™ implies
that seq(m + Ng) = 2™ +%o,

THEOREM 4.24. For all cardinals m > 1, seq(m) # 2™,

Proof. We will show that whenever m > 1 is a cardinal such that 2™ = seq(m),
then 2™*X0 = seq(m + o) which is a contradiction to LEMMA 4.23. Let the
set A be such |A] = m and A Nw = (. Further, let fo: 2(A) — seq(A) be a
bijection. For a fixed element ag € A and n € w let

Sn = <a07'-'5a0>'
———
n-times

With the sequences s,, we can define an injection g : w <— Z(A) by stipulating
g(n) := fo~'(sn), which shows that Z?(A) is transfinite, i.e., Rg < 2™. Thus,
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by PROPOSITION 4.4 we have 280 < 2™ which implies that there exists an
injection h : Z(w) — Z(A). Finally let

F:Z(A)x w) —  seq(AUw)

(x,y) = folz) 0 fo(h(y))

where s ¢ denotes the concatenation of the sequences s and t. Then F is
injective and we consequently get 2™+R0 = 2™ . 280 = geq(m + V). —

In order to prove that seq'*(m) # 2™ whenever m > 2 we show that
seq**(m) = 2™ would imply that m is transfinite, which is a contradiction to
LEMMA 4.23. However, before we have to introduce some notation concerning
finite sequences of natural numbers.

For n € w let n* := |seq'"(n)| be the number of non-repetitive sequences
(i.e., sequences without repetitions) we can build with n distinct objects (e.g.,
with {0,...,n — 1} =n). It is not hard to verify that

.t
k=0

j=0 "

and that for all positive integers n we have n* = |en!|, where |z] denotes the
integer part of a real number x and eis the Euler number. Obviously, 0* =
and n* =n - (n —1)" + 1, which implies that

oo
n* = e/ te~tdt .
1

The number n* is also the number of paths (without loops) in the complete
graph on n + 2 vertices starting in one vertex and ending in another.

The first few numbers of the integer sequence n* are 0* =1, 1* = 2, 2* = 5,
3* = 16, 4* = 65, 5* = 326, and further we get e.g., 100* ~ 2.53687 - 10'°8
and 256* ~ 2.33179 - 1057,

For each positive integer ¢, an easy calculation modulo ¢ shows that for all
n € w we have n* = (n + ¢)* mod g¢. In particular, if ¢ | n*, then ¢ | (n + ¢)*.
Now we can ask whether there is a positive integer ¢ < ¢ such that q | (n +t)”
and ¢ | n*. The following lemma shows that this is not the case whenever g is
a power of 2.

LEMMA 4.25. If 2% | n* and 2% | (n +t)" for some t € w, then 2% | t.

Proof. For k < 3, an easy calculation modulo 2* shows that for each n, if
2F|n*, then 2% { (n + ¢)* whenever 0 < t < 2.

Assume towards a contradiction that there is a smallest & > 3 such that
2F+1 | n* and 251 | (n + t)* for some integer ¢ with 0 < ¢ < 2*+1. Notice that
since k > 3, n > 3. Then, because 2% | 28+ we have 2% | n* and 2% | (n +t)",



More cardinal relations: seq' " (m) # 2™ # seq(m) 97

and by the choice of k we get t = 2. Let us now compute (n + 2¥)" by writing

down Z"+2 ”t,z )b explicitly:

(n+25)"=1-2-3- ... 28 (28 +1)- ... (2" +n) + [1]
2:3 .02k 2k 1) 28 +n) + 2]

32k k428 +n) + 3]

2k (28 +1)- .. (28 +n) + [29]

(28 +1)- ... (28 +n) + [2F +1]

(2% +n) + [2F +n]

1 [2F +n+1]

Since k > 4 and n > 3, 28! divides rows [1] — [2*]. In order to calculate the
products in rows [2° 4+ 1] — [2* +n+ 1] (modulo 2¥1), we only have to consider
products which are not, obviously divisible by 2¥+1. So, since 251 | (n + 2F)",
for a suitable natural number r we have

n—1 n

(n—|—2k (ZZ

=0 i>j

)+n 4 2FFL Ly

We know that 2¥+1|n* where n > 3 and k > 4, and because n is even, n has
to be odd. If] isequal ton —1, n — 2, or n — 3, then ZDJ il is odd, and if

0<j<(n—4),then ZDJ. Z"—J', is even. So,
n—1 n
7=0 ’L>j
is odd, and since 28+1 | p*, 251 (n 4 2F)", -

Now we are ready to prove the following result:
THEOREM 4.26. For all cardinals m > 2, seq’*(m) # 2™.

Proof. By LEMMA 4.23 it is enough to prove that for m > 2, seq''(m) = 2™ —
Ny < m. Let A be an arbitrary set of cardinality m and assume that

fo: P(A) — seq' ' (A)

is a bijection between Z2(A) and seq'*(A). We shall use this bijection to show
that A is transfinite. In fact it is enough to show that every finite sequence
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Sn = {ag,...,an—1) € seq'""'(A) of length n can be extended canonically to a
sequence s,41 = s, (an) € seq™*(A) of length n + 1.

Let a¢p and a; be two distinct elements of A and assume that for some
n > 2 we already have constructed a sequence s, = {(ag,a1,...,an—1) of
distinct elements of A and let S, = {a; : © € n}. The sequence s,, induces
in a natural way an ordering on the set seq**(S,), e.g., order seq**(S,,) by
length and lexicographically. Let us define an equivalence relation on A by
stipulating

a~b <= Vseseq " (Sy)(a€ fo ' (s) <> be fo'(s)).

Let Eq(n) := {[a]": a € A} be the set of all equivalence classes. The ordering
on seq'*(Sy,) induces an ordering on Eq(n). Let

ko = [Eq(n)|.

Then 2% is equal to the cardinality of @(Eq(n)) Identify {UY Y C
Eq(n)} with the set of all functions g € ®4("2. Now, the ordering on Eq(n)
induces in a natural way an ordering on the set of functions P42, By con-
struction we have n* = |seq''(S,)| < 20, i.e., we have either n* < 2% or
n* = 2ko:

Case 1: If n* < 2Fo then there exists a least function gy € P42 (least
with respect to the ordering on F4(")2) such that go ¢ {zs : s € seq'(Sn)},
where x4 is the characteristic function of the set of equivalence classes in-
cluded in fo=1(s). In particular we get fo(go) ¢ seq*'(S,). Let a, € A be
the first element in the sequence fy(go) which does not belong to S,,. Now,

—~

Sn {an) € seq**(A) is a sequence of length n + 1 and we are done.

Case 2: Suppose that n* = 2%0. For arbitrary elements a € A\S,, let us resume
the construction with the sequence snA(a). By a parity argument one easily
verifies that (n 4 1)* is not an integer power of 2, and thus, we are in Case 1.
We proceed as long as we are in Case 1. If there is an element a € A\ S,, such
that we are always in Case 1, then we can construct an infinite non-repetitive
sequence of elements of A and we are done.

Assume now that no matter with which element a € A\ S,, we resume
our construction, we always get back to Case 2. We then have the following
situation: Starting with any element a € A\ S,, we get a non-repetitive se-
quence of elements of A of length n+ ¢+ 1 (for some positive integer ¢) where
(n+ £+ 1)" is an integer power of 2. Let s%,, = (ag, a1, ..., ants) be that se-
quence and let S = {ag,a1,...,a,1¢}. By construction we have a € S2, i.e.,
a belongs to the corresponding sequence s2 ,. However, S% is not necessarily
the union of elements of Eq(n), which leads to the following definition:

A subset of A is called good if it is not the union of elements of Eq(n).
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For every set X C A which is good we have fo(X) ¢ seq'* (S, ), which implies
that there is a first element in the sequence fo(X) which does not belong
to the set S,. Thus, it is enough to determine a good subset of A. For this,
consider the set

Tinin 1= {a €A\ S, : S’,’i is good and of least cardinality} .

Notice that for every a € A\ S,,, S? is finite and contains a, and since A\ S,,
is infinite, there is an S¢ (for some a € A\ S,,) which is good, thus, Tinin # 0.
If Thin is good, use fo(Tmin) to construct a non-repetitive sequence in A of
length (n+ 1), and we are done. Otherwise, let my := |S‘;ﬂ for some a in Tynin
(notice that by our assumptions, my is a positive integer). For each a € Tin
let us construct a non-repetitive sequence SEQ® of elements of S¢ of length
mqr in such a way that for all a,b € Tyin:

54 =8 — SEQ® =SEQ®

In order to do so, let a € Ti,i, be arbitrary. Because S’;‘; € Thin, 5‘7‘2 is good,
thus

fo(S3) ¢ seq (Sn)

hence, there is a first element a,, in the sequence f5(S¢) which does not belong
to S,. Repeat the construction starting with the sequence s,411 = snﬁ<an>
and consider the set S, If §%» = §¢, then the corresponding sequence s €
seq'1(99n) is of length mr and we define SEQ® := s%». On the other hand, if
San ¢ 82 then S% is not good (since S¢ is a good set of least cardinality),
i.e., S% is the union of elements of Eq(n). Let S’ = S%\ S% and let s’ €
seq'*(S’) be the corresponding sequence. Then S’ is good, which implies that
fo(S") ¢ seq**(S%), and let @’ be the first element in the sequence fo(S’)
which does not belong to S% . Now proceed building the sequence SEQ® by
starting with the sequence s" (a’). Notice that by construction the sequence
SEQ” depends only on the set S%, thus, for all a,b € Ty, SEQ* = SEQ®
whenever S = Sb.

So far, for each a € Ty, with ‘S’,‘ﬂ = m7p we can construct a non-repetitive
sequence SEQ® € seq'*(S%) of length my > n. On the other hand, we still
have to determine in a constructive way a good subset of A which contains
S, — even though S¢ is good for each a € Ty, it is not clear which set S2
we should choose. Now, for i < m7 define

Q;:={be A: bis the ith element in SEQ® for some a € Tnin} -

CLAIM. There is a smallest jo < mp such that Q);, is good.
Proof of Claim. For any a € Ty let

a=:={a € A: 5% =5,
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which are the elements of the finite set S which are to some extent indistin-
guishable, and further let ¢, denote the least cardinality of the sets a=, where
a € Tiin- Note that if for some i # jo, a € Q; N Q;, then S cannot be good
(otherwise, SEQ® would not be unique). Consequently, for each a € Ty, there
is exactly one i, such that a € Q;, and for all b,b’ € a= with b # b’ we have
ip # ip. Hence, if there are no good Q;’s, then t; cannot exceed kg = | Eq(n)|.
Let us now show that indeed, to must exceed kq: Recall that n* = 250 and that
(n + £+ 1)* is an integer power of 2, where £+ 1 = mr —n. As a consequence
of LEMMA 4.25, for any positive integer ¢ we get:

If n* =2 and (n +t)* = 2" then t > 2", in particular t > k. ()

For every a € Ty, with [a=| = to, and for any b € §%\ S,,, where S? is not
necessarily good, we have the following situation:

o |St=n+t where (n+t)" = 2% for some k > ko, and
e cither b € a= or S® is not good.

Hence, for some integer ¢ > 0 we have
mr=n+l+1=n+t+1t;5 =19,

where (n +t')" and (n +t' + to)* are both integer powers of 2. Say (n +t')* =
2% and (n+t' +to)" = 2% where k' > k > ko. Then, by (x), to > k > ko
which completes the proof of the claim. Actaim
Since fo(Qj,) ¢ seq''(Sy,) there exists a first element a, in the sequence
fo(Qj,) which does not belong to S,. Let s,41 = S, (an). Then s,11 is a
non-repetitive sequence in A of length n + 1, which is what we were aiming
for. —

To some extent, THEOREM 4.24 and THEOREM;4.26 are optimal, i.e., there
are no other relations between seq'*(m), seq(m), and 2™ which are provable
in ZF (see Chapter 7| RELATED RESULT 49). It might be tempting to prove
that for all cardinals m, seq(m) #£ fin(m), however, such a proof cannot be
carried out in ZF (cf. PROPOSITION 7.17).

m m m . . .
2?2 4+ 22 = 22 whenever m is infinite

The fact that 22" + 22" = 22" whenever m is infinite will turn out as a
consequence of the following result:

LEMMA 4.27 (LAUCHLI’S LEMMA). If m is an infinite cardinal, then
(Zﬁn(m))NU — ,fin(m)

Proof. Let A be an arbitrary but fixed set of cardinality m. Recall that for
n € w, [A]™ denotes the set of all n-element subsets of A. For natural numbers



More cardinal relations: 22" 4 227 = 22" 101

n,k € w, where k > n, we define two mappings g, and d, j from Z([A]")
into itself as follows: For X C [A]™ define

gnip(X)={ye[A]" :Vze A" (yC2—> e X (xC2)}

and let dy 1 (X) := gnx(X)\ X. To get familiar with the functions g, and
dn, i respectively, consider the following example: Let n = 2, k = 4, take
{ag,a1} € [A]?, and let X, = {x E [A]? : 2N {ao,a1} = 0}. Then go4(Xo) =
[A]? and Y := d24(Xo) = {y € [A]* : y N {ao, a1} # 0}. Further, g2 4(Y) =Y
and dp 4(Y) = da4(d2,4(X0)) = (Z) We leave it as an exercise to the reader to
show that the mapping gy, i has the following properties:

(1) For all X C [A4]", X C gn x(X).

(2) Gnk® Gnk = Gn,k» i-€., for all X C[A]", gp i (9n.e(X)) = gnk(X).
(3) For all X C [A]", gn.x(X) C gnr(X) whenever k&’ > k.

By induction on j we define dJJr1 =d, e dfz,k: where d) ;. denotes the iden-

tity. Then, we have dffkl = (gn ke dy, k) \ dn 4> and therefore by (1) we get

()d?nk_(gnk )\dﬁl

In order to show that dy; , = g,, , ° dy, , we first prove a combinatorial result
by applying the FINITE RAMSEY THEOREM 2.3.

For any fixed integers n, k € w where k > n, for U C A with |U| < n, and for
any X C [A]", let (U, X, W) and ¢(U, X) be the following statements:

VU, X, W)=W CA\UAVV e W] VU UV e X)

and
o(U,X)=Vm e wIW C A(|W|>mAp(U,X,W)).

Notice that if U € X C [A]", then we have (U, X, W) for every W C
A\ U, and consequently we have (U, X) for all U € X. To get familiar
with the statements v and ¢ respectively consider again the example given
above: Let b € A\ {ao, a1} and let U = {ag, b}. Then we have (U, d2,4(Xo)),
since for any m € w we have (U, d2,4(Xo), [A \ {ao,a1,b}]™). Further, for
U = {b} C U we have ¢(U’, Xy), since for any positive m € w we have
Q/J(Ula Xo, [A \ {ao, ar, b}]m)'

CLAM 1. If we have (U, dy (X)), then there is a set U’ with |U’| < |U]
such that we have o(U’, X). In particular we get that (0, d,, (X)) fails—a
fact which can be easily verified directly.

Proof of Claim 1. Let us assume that <p(U, dnyk(X)) holds for U C A with
|U| < n and some set X C [A]™. It is enough to show that for any integer
m > k there is a proper subset U’ of U and a W € [A]™ such that ¢(U’, X, W)
holds. Indeed, since there are just finitely many proper subsets of U, there
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must be a proper subset U’ of U such that for arbitrarily large integers m
there is a set W,,, € [A]™ such that ¥(U’, X, W,,) holds, we get that ¢(U’, X)
holds.

Recall that by the FINITE RAMSEY THEOREM 2.3, for all m,i,j € w, where
j > 1 and ¢ < m, there exists a smallest integer N,, ; ; > m such that for each
j-colouring of [N]? there is an m-element subset of N, all whose i-element
subsets have the same colour. Let m > k, let m’ := max{Np, ;2 :0 < i <n},
and let m” = Ny g_ror where r = |U|. By ga(U, dnyk(X)) there is a set S
with |S| = m” such that ¢ (U, d, £(X),S). To each subset U’ of U we assign
the set X (U’) by stipulating

XU)={ye§ v cyUuv' eX)}.

Now we show that |y X(U') = [S]F7": Let V € [S]*~". By definition of
(U, dni(X),S), S € A\ U, and since [U| = r we have |[U U V| = k. Since
k—r > mn —r there is a set Q € [V]|*", and since 1/1(U, dnyk(X),S) we get
UUQ € dyi(X). Hence, by definition of d, ; and g, i respectively, there is
aset t € Xsuchthat t CUUV.If welet U =UNx and V' =V Nz, then
U’ UV’ € X and consequently V € X(U’).

Because |S| = m/ = Ny _ror, there is a set T € [S]™ and a set U’ C U
such that [T])*~" C X(U’). Let s = |U’|, let

Z={V' el >:U'uV' e X},

and let Z/ = [T]"%\ Z. Since |T| = m’ > Ny, n—s2, there exists a set
W € [T]™ such that either [W]"=° C Z or [W]"* C Z'. The latter case can
be excluded. Indeed, since m > k > k —r, [W]*~" # (). Now, each element w
of [W]k=" is a subset of T and consequently an element of X (U’). Thus, there
is a V' C w such that U’ UV’ € X which implies that V' € Z, in particular,
[W]"=s N Z # 0. Hence, [W]"~* C Z and we finally have ¢(U’, X, W) where
W] =m.

It remains to show that U’ # U: Since we have ’L/J(U, dn k(X), S) and W C S,
we also have ’L/J(U, dn 1 (X), W) Now, if U’ = U, then we would also have
(U, X, W), but since dy, (X ) = gn,x(X) \ X, dnx(X)NX = 0 which implies
that the set [W]™~" is empty which is only the case when |W| < n—r; however,
Wl=m2>k>n>n—r. Actaim 1

Now we turn back to the sets dfhk(X) and show that dzzl(X) = (). In fact we
show a slightly stronger result:

Cramv 2. If d}, . (X) # 0 for some set X C [A]", then | < n.

Proof of Claim 2. Take any U € d., ,(X). Since [U| = n, for each set W C A\U
we have ¢ (U, d!, . (X),W), and since A is not finite we have ¢ (U, d., . (X)).

s Unk » Ynuk
By applying CLAIM 1 [ times we get a sequence U = U, U;_1,...,Uy such
that |Uj41] > |Uj] for all j € I, which implies that |U;| > j (for all j’s). In

particular |U| = |U;| > [, and since |U| = n this implies that [ <n.  Aciaim
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As a consequence of CLAIM 2 we get

(5) dﬁ,k =9nk° dﬁ,k-

Define now a mapping f, » from @([A]") to @([A]k) by stipulating
farX)={z€[Af: 3z e X (x C2)}.

Further, let
In,k(X) = {X g [A]n : gn,k(X) = X} .

Then, by (1) and (3) we get

(6) In i C I, whenever k' > k.

Consider now fn,k = fn,k|ln,,k- By definition of g, and d, , respectively
we have that f,  is injective. Indeed, if X, X’ € L, (ie, gnx(X) = X
and g, 1 (X') = X') and fn, x(X) = fur(X'), then X C g, 1(X') = X’ and
X' C gnk(X) = X, and therefore X = X'. So, for sets in dom(fnyk) we can
define the inverse of f, 5 by stipulating

Fok(Fap(X)) = X

Now we are ready to construct a one-to-one mapping F from 27 (fin(A))”
into 2 (fin(A)): Let X € 2(fin(A4))”, i.e., X = {X, : s € w} where for each
s €w, X, € P (fin(A)). Define the function F by stipulating

F(X) = U U ( U fn,k:(s,n,j) ° gn,k(s,n,n) ° dz;,k(s,n,n) (XS N [A]n))

scwnew 0<j<n

where k(s,n, j) := 2° - 3" - 57. By definition we get that F is a function from
@(ﬁn(A))w to 2 (fin(A)). So, it remains to show that F is injective. To keep
the notation short let

Xs,n = XS N [A]n7
XSqan- = gn,k(s,n,n) ° d?n,k(s,n,n) (Xs,n) ’
Yoni = Jansing) Kani) -

PO =U U (U Yens)-

scwnew 0<j<n

Then

Since Yy ,,; € P([A]F(>™)) and since the mapping (s,n,j) — k(s,n,j) is
injective we get _
Ying = F(X)N[AJFEm)

By (2) we have X 5, j € Iy k(s,n,n)- Moreover, since j < n we have k(s,n,j) <
k(s,n,n) and by (6) we get X, n j € I k(sm.j)- Thus, Ysn i = fni(smng)(Xsn,ji)
and therefore
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Xs,n,j = f;z,%c(s,n,j) (Ys,n,j) :
By (4) and (5) we get

Xon = Xsno\ (XS,nJ \ ( c(Xsnn—1\ Xsnn) )) )

and since
Xs = U Xs,n

new

we get that F is injective. This shows that (zﬁ“(‘"“))NO < 2fin(m) " and since
we obviously have 2fin(®) < (zﬁn(“‘))N(’, by the CANTOR-BERNSTEIN THEO-
REM 3.17 we finally get (zﬁ“("‘))NO = pfin(m), -

As a consequence of LAUCHLI’S LEMMA 4.27 we get the following equality:

THEOREM 4.28. If m is an infinite cardinal, then 280 22" = 22" in particular
we get 22 + 2% = 22",

Proof. Let A be a set of cardinality m. Further, let inf(A) := Z2(A) \ fin(4)
and let inf(m) := |inf(A)|. Then 2™ = fin(m) + inf(m) and consequently

Zz'" _ 2ﬁn(m)+inf(m) _ Zﬁn(m) . Zinf(m).
Since by LAUCHLI'S LEMMA 4.27, 2fin(m) — (zﬁ“(m))Q, and by FAcT 4.6,
2fin(m) > ,R0 e have
2ﬁn(m) . 2inf(m) — (Zﬁn(m))2 . 2inf(m) — 2ﬁn(m) . 21'" > ZNU . Zz'“,

and since 22" < 280 . 22" by the CANTOR-BERNSTEIN THEOREM 3.17 we

m

finally get 280 . 22" = 22", -

NOTES

D-finite and transfinite sets. In [8, §5], Dedekind defined infinite and finite sets
as follows: A set S is called infinite when it is similar to a proper subset of itself;
otherwise, S is said to be finite. It is not hard to verify that Dedekind’s definition
of finite and infinite sets correspond to our definition of D-finite and transfinite
sets respectively. In the footnote to his definition Dedekind writes: In this form
I communicated the definition of the infinite, which forms the core of my whole
investigation, in September, 1882, to G. Cantor, and several years earlier to Schwarz
and Weber. More historical background can be found in Fraenkel [12, Ch.1., §2, 5.].

Ro < 2™ — 280 < 2™, The proof of PROPOSITION 4.4 — which is Theorem 68 of
Lindenbaum and Tarski [24] —is taken from Halbeisen [14, VIII] (see also Halbeisen
and Shelah [17, Fact 8.1]); and for another proof see for example Sierpinski [34,
VIII§2, Ex. 9].
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Ry <* 280, The relation symbol “<*” was introduced by Tarski (cf. Lindenbaum
and Tarski [24, p. 301]). The proof of THEOREM 4.11 is essentially taken from Sier-
piniski [34, XV §2], and an alternative proof is given by Sierpiriski [29]. LEMMA 4.10
is due to Lebesgue [22, p. 213f], and Church [7, Corollary 2, p. 183] showed that the

set of all non-repetitive well-ordered sequences of natural numbers is of cardinality
g
270,

If the reals are a countable union of countable sets. PROPOSITION 4.12 is
taken from Specker [36, III. §3], where one can find also some other implications like
Ny < N?O, or that every subset of R is either finite or transfinite. COROLLARY 4.13
(i.e., the paradoxical decomposition of IR) can also be found in Halbeisen and She-
lah [18, Fact 8.6].

Cantor’s Normal Form Theorem. The proof of CANTOR'S NORMAL FORM
THEOREM 4.16 is taken from Cantor [4, §19, Satz B] (see also Cantor [6, p. 333 ff.]),
but can also be found for example in Fraenkel [12, Ch.III,§11,Thm. 11]. For a slightly
more general result see Bachmann [1, III. §12]. The proof of THEOREM 4.19 is taken
from Halbeisen [14, VII] (cf. Specker [35]).

Other cardinal relations. THEOREM 4.20 — as well as the idea of getting a con-
tradiction by constructing an injective class function from €2 into a given set —is
due to Specker [35, p. 334 ff] (cf. RELATED RESULT 21). THEOREM 4.21 and PrROPO-
SITION 4.22 are due to Halbeisen [14, IX] (see also Halbeisen and Shelah [17,
§2, Theorem 3 and p. 36]). LEMMA 4.23 and THEOREM 4.24 are due to Halbeisen [14,
IX] (see also Halbeisen and Shelah [17, §3, Theorem 5]). The proof of THEOREM 4.26
is due to Shelah (see Halbeisen and Shelah [17, §3 Theorem 4]). LEMMA 4.25 is due
to Halbeisen, who proved that number-theoretic result when THEOREM 4.26 was
still a conjecture. For a generalisation of THEOREM 4.26 see RELATED RESULT 20.
LAucHLI'S LEMMA 4.27 as well as THEOREM 4.28 is taken from Liuchli [21].

RELATED RESULTS

13. Other definitions of finiteness. Among the many definitions of finiteness we
would like to mention just one by von Neumann who defined in [25, p.736]
finite sets as follows: A set E is finite, if there is no non-empty set K C P(E)
such that for each © € K there is a y € K with |z| < |y|. With respect to this
definition of finiteness, a set I is infinite iff for each natural number n there
exists an n-element subset of I, or equivalently, a set E is finite iff there exists a
bijection between F and a natural number n. However, notice that von Neumann
does not use the notion of natural numbers in his definition. In [25, VIIL. 2.],
von Neumann investigated that notion of finiteness and showed for example that
power sets of finite sets are finite. For some other definitions of finiteness and
their dependencies we refer the reader to Kurepa [20], Lévy [23], Schrider [27],
Spisiak and Vojtas [37], Tarski [38], and Truss [41].

14. The countability of the rationals. We have seen that the set of rational numbers
is countable, but since we used the CANTOR-BERNSTEIN THEOREM 3.17 to con-
struct a bijection between Q and w, it is quite difficult to determine the image
of a given rational number. However, there exists also a “computable” bijection
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f : Q = w due to Faber [10]: The image of a rational number ¢, written in the
form
_ a1 az an
q7§+§+"'+m,
where the a;’s are computed by trigonometric series and for all 1 < ¢ < n we
have 0 < a; < (i + 1)!, is defined by

flgg=a1-U'+az-2'+as-3'+...+a, -nl.

15. Goodstein sequences. For positive integers m and n, where n > 1, define the
hereditary base n representation of m as follows. First write m as the sum
of powers of n, e.g., if m = 265 and n = 2 write 265 = 2% 4+ 23 + 1. Then
write each exponent as the sum of powers of n and repeat with exponents of
exponents and so on until the representation stabilises, e.g., 265 stabilises at
the representation 22" 1 92+1 4 1. Now define the number Gr(m) as follows.
If m = 0 let Go(0) := 0; otherwise, let G,(m) be the number produced by
replacing every occurrence of n in the hereditarily base n representation of m
by the number n 4+ 1 and then subtracting 1, e.g., G2(265) = 337 4 g3t

The Goodstein sequence mg, mi,... for m starting at 2 is defined as follows:
mo = m, m1 = Ga(mo), ma2 = Gz(m1), ms = Ga(mz), and so on; for example
we get:
2659 = 265
=22 po2t 4
265, = 33" 4 33+

265, = 44" 4 4% 1
=4 1434 4%.3442.344-3+3

2655 = 5% +55.34+5%.34+52.345-3+2
2654 = 65 +6°-34+6%-3+62-346-3+1
2655 =77 4+77-3473.3+72.347-3

g8+1

265¢ = 8 +8%.3+8.34+82.3+8-3-1
_ o88tl 8 3 2
=38 +8%-3+8%.34+8.3+8-2+7
2657 =

Computing a few of the numbers 2655, one notices that the sequence 2650,
2651, 2652, ... grows extremely fast and one would probably guess that it tends
to infinity. Amazingly, Goodstein [13] showed that for every integer m there
is a k € w such that my = 0. Indeed, if we replace in the hereditarily base n
representation of m,—2 each n by w, we get an ordinal number, say an—2(m);
in fact we get cnf (an—2(m)), e.g., as(265) = W w0 34w 3w 34
w -3+ 2. We leave it as an exercise to the reader to show that the sequence of
ordinal numbers ag(m), a1(m), az(m), ... is strictly decreasing. In other words,
ap(m) 3 ar(m) 3 az(m) > ..., thus, by the Axiom of Foundation, the sequence
of ordinals must be finite which implies that the Goodstein sequence mg, m1, ...
is eventually zero. However, Kirby and Paris [19] showed that Goodstein’s result
is not provable in Peano Arithmetic (cf. also Paris [26]).
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16.

17.

18.

19.

20.

Ordinal arithmetic. As we have seen, one can define various arithmetical
operations on ordinals like addition, multiplication and exponentiation, and
even subtraction. Moreover, one can also define division (cf. Fraenkel [12,
Ch.IIL., §11, 4.], Bachmann [1, III.§17], or Sierpiniski [31]): For any given or-
dinals « and § (§ # 0) there is a single pair of ordinals 3, p such that

a=0-f+p where p<§.

For the theory of ordinal arithmetic we refer the reader to Bachmann [1, IIL.]
(cf. also Sierpiniski [32, 33]).

Cancellation laws. Bernstein showed in his dissertation [2] (see [3, §2, Satz 3])
that for any finite cardinal a > 1 and arbitrary cardinals m and n we have

a-m=a-n—m=n.

In fact, Bernstein gave a quite involved proof for the case a = 2 ([3, §2, Satz 2])
and just outlined the proof for the general case. Later, Sierpinski [28] found a
simpler proof for the case a = 2 and generalised the result in [30] to (2 -m <
2-n) — (m < n). Slightly later, Tarski showed in [39] that for any finite cardinal
a > 1 and arbitrary cardinals m and n we have

am<a-n—-m<n.

On the cardinality of power sets of power sets® As a consequence of THEO-
REM 4.28 we get

. . . m m m o, .
However, it is open if also 2> x 2> = 2% is provable in ZF.

The hierarchy of N’s. By induction on 2 we define
No = [w],
Na+1 = N(Na)7

Ny = U N, for infinite limit ordinals \.

aEAX

For an ordinal «, let A be a set of cardinality N, and let o be the order type of
a well-ordering of A. Then, since |yo| = Na, 70 is an ordinal of cardinality Na,
and we define

wa:ﬂ{wewo+1:|7|:z~ta}.

On the cardinality of the set of non-repetitive sequences: Let m be an infinite
cardinal an let S be a set of cardinality m. We defined 2™ = |Z2(S)|, however, 2™
can also be considered as the cardinality of the set of functions from S to {0, 1}.
Similarly, for natural numbers a > 2 let a™ denote the cardinality of the set of
functions from S to {0,1,...a — 1}. By THEOREM 4.26 we have 2™ # seq™"(m)
and it is natural to ask whether the following statement is provable in ZF:

For all finite cardinals a and all infinite cardinals m, a™ # seq' ' (m). (O)

Obviously, if we would have a suitable generalisation of LEMMA 4.25 at hand,
then the proof of THEOREM 4.26 would work for all natural numbers a > 2.
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Halbeisen and Hungerbiihler investigated in [16] the function n* and generalised
LEMMA 4.25 to numbers different from 2, and this generalisation was later used
by Halbeisen [15] who showed that (0) holds for a large class of finite cardinals,
e.g., for a € {2,3,4,6,7,8,9,11,12,14,15,...}; it is conjectured that (O) holds
for all finite cardinals a > 2.

21. On the cardinality of the set of ordered pairs® By CANTOR’S THEOREM 3.25 we
always have 2™ £* m. Furthermore, one can show that if there is a finite-to-one
map from 2™ onto m, then m is finite (see Forster [11]). Now, having THEO-
REM 4.20 in mind, one could ask whether 2™ <* m? — m < 4. This question is
still open and is asked in Truss [40], where a dualisation of THEOREM 4.20 is
investigated.
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5

The Axiom of Choice

Two terms occasionally used by musicians are
“full” consonance and “pleasing” consonance.

An interval is said to be “fuller” than another when
it has greater power to satisfy the ear.
Consonances are the more “pleasing” as they de-
part from simplicity, which does not delight our
senses much.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

Zermelo’s Axiom of Choice and its Consistency with ZF

In 1904, Zermelo published his first proof that every set can be well-ordered.
The proof is based on the so-called Axiom of Choice, denoted AC, which, in
Zermelo’s words, states that the product of an infinite totality of sets, each
containing at least one element, itself differs from zero (i.e., the empty set).
The full theory ZF + AC, denoted ZFC, is called Set Theory.

In order to state the Axiom of Choice we first define the notion of a choice
function: If .Z is a family of non-empty sets (i.e., § ¢ F), then a choice
function for % is a function f : % — |J.% such that for each z € Z,
f(z) € z.

The Axiom of Choice — which completes the axiom system of Set Theory
and which is in our counting the ninth axiom of ZFC — states as follows:

9. The Axiom of Choice

vgg<®¢Qg¢‘%§|f(f€yu<?/\v:c€3‘\(f(z)Gx)))

Informally, every family of non-empty sets has a choice function, or equiva-
lently, every Cartesian product of non-empty sets is non-empty.
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Before we give some reformulations of the Axiom of Choice and show some of
its consequences, we should address the question whether AC is consistent rel-
ative to the other axioms of Set Theory (i.e., relative to ZF), which is indeed
the case.

Assume that ZF is consistent, then, by PROPOSITION 3.5, ZF has a model,
say V. To obtain the relative consistency of AC with ZF, we have to show
that also ZF + AC has a model. In 1935, Gddel informed von Neumann at the
Institute for Advanced Study in Princeton that he had found such a model.
In fact he showed that there exists a smallest transitive subclass of V' which
contains all ordinals (i.e., contains Q as a subclass) in which AC as well as
ZF holds. This unique submodel of V is called the constructible universe
and is denoted by L, where “L” stands for the following “law” by which the
constructible universe is built. Roughly speaking, the model L consists of
all “mathematically constructible” sets, or in other words, all sets which are
“constructible” or “describable”, but nothing else. To be more precise, let us
give the following definitions:

Let M be a set and ¢(zg, ..., 2,) be a first-order formula in the language
{€}. Then ™ denotes the formula we obtain by replacing all occurrences of
“Ja” and “Va” by “Jda € M” and “Va € M” respectively. A subset y C M is de-
finable over M if there is a first-order formula p(zo, .. .,z,) in the language
{€}, and parameters az,...,a, in M, such that {z s oM(z,a,. .. ,an)} =u.
Finally, for any set M:

def(M) = {y € M : y is definable over M }

Notice that for any set M, def(M) is a set being itself a subset of Z(M).
Now, by induction on « € {2, define the following sets (compare with the
cumulative hierarchy defined in Chapter 3):

Lo=10
Lo = UﬁeaLB if « is a limit ordinal
LaJrl = def(La)

L:ULa.

a€c)

and let

Like for the cumulative hierarchy one can show that for each o € Q, L, is a
transitive set, « C L, and a € Lo41, and that o € 8 implies L, & Lg.

Moreover, Gédel showed that L E ZF + AC, and that L is the smallest
transitive class containing €2 as a subclass such that L F ZFC. Thus, by starting
with any model V of ZF we find a subclass L of V such that L F ZFC. In
other words we get that if ZF is consistent then so is ZFC (roughly speaking,
if ZFC is inconsistent, then AC cannot be blamed for it).
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Equivalent Forms of the Axiom of Choice

There are dozens of hypotheses which are equivalent to the Axiom of Choice,
but among the best known and most popular ones are surely the Well-Ordering
Principle, the Kuratowski-Zorn Lemma, Kurepa's Principle, and Teichmiiller's
Principle — sometimes called Tukey's Lemma. Since the first three deal with
orderings, we have to introduce first the corresponding definitions before we
can state these — and some other — so-called choice principles.

A binary relation “<” on a set P is a partial ordering of P if it is
transitive (i.e., p < g and ¢ < r implies p < r), reflexive (i.e., p < p for every
p € P), and anti-symmetric (i.e., p < ¢ and g < p implies p = ¢). If “<” is a
partial ordering on P, then (P, <) is called a partially ordered set.

If (P, <) is a partially ordered set, then we define

p<q <= p<qADF#q,

and call (P, <) a partially ordered in the strict sense, (replacing reflexivity
by p £ p for every p € P).

Two distinct elements p, g € P, where (P, <) is a partially ordered set, are
said to be comparable if either p < ¢ or ¢ < p; otherwise, they are called
incomparable. Notice that for p,¢ € P we could have p £ ¢ as well as p # ¢.
However, if for any elements p and ¢ of a partially ordered set (P, <) we have
p < qorp=gqorp > q (where these three cases are mutually exclusive),
then P is said to be linearly ordered by the linear ordering “<”. Two
elements p; and py of P are called compatible if there exists a ¢ € P such
that p; < ¢ > pa; otherwise they are called incompatible, denoted p; L pa.

We would like to mention that in the context of forcing, elements of par-
tially ordered sets are called conditions. Furthermore, it is worth mentioning
that the definition of “compatible” given above incorporates a convention,
namely the so-called Jerusalem convention for forcing — with respect to the
American convention of forcing, p; and py are compatible if there exists a ¢
such that p; > ¢ < po.

Let (P, <) be a partially ordered set. Then p € P is called maximal (or
more precisely <-maximal) in P if there is no « € P such that p < z. Similarly,
q € P is called minimal (or more precisely <-minimal) in P if there is no
x € P such that x < ¢. Furthermore, for a non-empty subset C' C P, an
element p’ € P is said to be an upper bound of C if for all z € C, z < p'.

A non-empty set C' C P, where (P, <) is a partially ordered set, is a chain
in P if C is linearly ordered by “<” (i.e., for any distinct members p, q € C we
have either p < g or p > ¢). Conversely, if A C P is such that any two distinct
elements of A are incomparable (i.e., neither p < ¢ nor p > ¢), then in Order
Theory, A is called an anti-chain. However, in the context of forcing we say
that a subset A C P is an anti-chain in P if any two distinct elements of A
are incompatible. Furthermore, A C P is a maximal anti-chain in P if A is
an anti-chain in P and A is maximal with this property. Notice that if A C P
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is a maximal anti-chain, then for every p € P\ A there is a ¢ € A such p and
q are compatible.

Recall that a binary relation R on a set P is a well-ordering on P, if there is
an ordinal o € Q and a bijection f : P — « such that R(x,y) iff f(z) € f(y).
This leads to the following equivalent, definition of a well-ordering, where the
equivalence follows from the proof of THEOREM 5.1 (the details are left to the
reader): Let (P, <) be a linearly ordered set. Then “<” is a well-ordering on
P if every non-empty subset of P has a <-minimal element. Furthermore, a
set P is said to be well-orderable (or equivalently, P can be well-ordered)
if there exists a well-ordering on P.

In general, it is not possible to define a well-ordering by a first-order formula on
a given set (e.g., on R). However, the existence of well-ordering is guaranteed
by the following principle:

Well-Ordering Principle: Every set can be well-ordered.

To some extent, the Well-Ordering Principle (like the Axiom of Choice) postu-
lates the existence of certain sets whose existence in general (i.e., without any
further assumptions like V = L), cannot be proved within ZF.

In particular, the Well-Ordering Principle postulates the existence of well-
orderings of @ and of R. Obviously, both sets are linearly ordered by “<”.
However, since for any elements x and y with x < y there exists a z such that
r < z <y, the ordering ‘<” is far away from being a well-ordering — consider
for example the set of all positive elements. Even though (Q, <) and (R, <)
have similar properties (at least from an order-theoretical point of view), when
we try to well-order these sets they behave very differently. Firstly, by FACT 4.1
we know that @ is countable and the bijection f : Q — w allows us to define
a well-ordering “<” on Q by stipulating ¢ < p < f(q) < f(p). Now, let us
consider the set R. For example we could first well-order the rational numbers,
or even the algebraic numbers, and then try to extend this well-ordering to
all real numbers. However, this attempt — as well as all other attempts — to
construct explicitly a well-ordering of the reals will end in failure (the reader
is invited to verify this claim by writing down explicitly some orderings of R).

As mentioned above, Zermelo proved in 1904 that the Axiom of Choice
implies the Well-Ordering Principle. In the proof of this result presented here
we shall use the ideas of Zermelo’s original proof.

THEOREM 5.1. The Well-Ordering Principle is equivalent to the Axiom of
Choice.

Proof. (<) Let M be a set. If M = (), then M is already well-ordered. So,
assume that M # () and let 22*(M) := 22(M)\{0}. Further, let f : 22*(M) —
M be an arbitrary but fixed choice function for 22*(M) (which exists by AC).

A one-to-one function wy : « < M, where a € €, is an f-set if for all
v E a:
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wa () = F(M\ {wa(d) : 6 € 7})

For example w1(0) = f(M) is an f-set, in fact, wy is the unique f-set with
domain {0}. Further, by HARTOGS’ THEOREM 3.27, the collection of all f-sets
is a set, say S. Define the ordering “<” on S as follows: For two distinct f-sets
we and wg let wy < wg if @ # B and wg|, = we. Notice that w, < wg
implies a € .

CrLAIM. The set S of all f-sets is well-ordered by “<”.

Proof of Claim. Let w, and wg be any two f-sets and let

[={ye(@np):waly) #ws(r)}

If I # 0, then, for o = (I, we have wq (7o) # wg(70)- On the other hand,
for all § € o we have wq () = wg(d), thus, by the definition of f-sets, we get
wa(v0) = wp(0). Hence, I' = @), and consequently we are in exactly one of
the following three cases:

o wy <wg iff a € p.
o wy =wg iff a=p.
o wg <w, iff B €a.

Thus, the ordering “<” on S corresponds to the ordering of the ordinals by
“e”, and since the latter relation is a well-ordering on €2, the ordering “<” is
a well-ordering, too. Actaim
Now, let w := [JS and let M’ := {z € M : 3y € dom(w) (w(y) = z)}.
Then w € S and M’ = M; otherwise, w can be extended to the f-set w U
{(dom(w), fF(M\ M"))}.

Thus, the one-to-one function w : dom(w) — M is onto, or in other words,
M is well-orderable.

(=) Let & be any family of non-empty sets and let “<” be any well-ordering
on [J.Z. Define f : # — |JZ by stipulating f(z) being the <-minimal
element of x. —

It turns out that in many cases, the Well-Ordering Principle — mostly in com-
bination with transfinite induction —is easier to apply than the Axiom of
Choice. For example in order to prove that every vector space has an alge-
braic basis, we would first well-order the set of vectors and then build a basis
by transfinite induction (i.e., for every vector v, we check whether it is in the
linear span of the vectors {vg : § € a}, and if it is not, we mark it as a vector
of the basis). However, similarly to the well-ordering of R, in many cases it is
not possible to write down explicitly an algebraic basis of a vector space. For
example consider the real vector space of all countably infinite sequences of
real numbers, or any infinite dimensional Banach space.

The following three principles, which will be shown to be equivalent to the
Axiom of Choice, are quite popular in Algebra and Topology. Even though
these principles look rather different, all state that certain sets have maximal
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elements or subsets (with respect to some partial ordering), and so they are
usually called maximality principles. Let us first state the Kuratowski-Zorn
Lemma and Kurepa's Principle.

Kuratowski-Zorn Lemma: If (P, <) is a non-empty partially ordered set
such that every chain in P has an upper bound, then P has a maximal
element.

Kurepa's Principle: Each partially ordered set has a maximal subset of
pairwise incomparable elements.

In order to state Teichmiiller's Principle we have to introduce one more notion:
A family % of sets is said to have finite character if for each set z, x € #
iff fin(z) C .F (i.e., every finite subset of = belongs to .%).

Teichmiiller's Principle: Let % be a non-empty family of sets. If % has
finite character, then .% has a maximal element (maximal with respect
to inclusion “C”).

Below we shall see that the three maximality principles are all equivalent to the
Axiom of Choice. However, in order to prove directly that the Axiom of Choice
implies the Kuratowski-Zorn Lemma (i.e., without using the Well-Ordering Prin-
ciple), we have to show first the following interesting lemma — which is the
main reason why we do not want to derive the Kuratowski-Zorn Lemma from
the Well-Ordering Principle, even though this would be much easier.

LEmMMA 5.2. Let (P, <) be a non-empty partially ordered set. If there is a
function b : 2 (P) — P which assigns to every chain C' an upper bound b(C),
and if f: P — P is a function such that for all x € P we have x < f(x),
then there is a pg € P such that py = f(po).

Proof. Notice that because every well-ordered set is a chain, it is enough to
require the existence of an upper bound b(W) just for every set W C P which
is well-ordered by “<”. If W C P is a well-ordered subset of P and x € W,
then W, .= {y € W : y < z}. A well-ordered set W C P is called an f-
chain, if for all z € W we have « = f(b(W,)). Notice that since § C P is
well-ordered by “<”, the set {f(b(0))} is an f-chain.

We leave it as an exercise to the reader to verify that the set of f-chains
is well-ordered by proper inclusion “C”. Hence, the set

U= U{W CP:Wisan f—chain}

is itself an f-chain. Consider py := f(b(U)) and notice that U U {po} is an
f-chain. By the definition of U we get that pg € U, and consequently we
have f(b(Up,)) = po. Now, since f(b(Up,)) > b(Up,) > po, we must have
b(Up,) = po, and therefore f(po) = po. —
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Notice that the proof of LEMMA 5.2 does not rely on any choice principles.

Now we are ready to prove that the Kuratowski-Zorn Lemma and Teichmiiller's
Principle are both equivalent to the Axiom of Choice.

THEOREM 5.3. The following statements are equivalent:
(a) Axiom of Choice.

(b) Kuratowski-Zorn Lemma.
(c) Teichmiiller's Principle.

Proof. (a)=(b) Let (P,<) be a non-empty partially ordered set such that
every chain in P, (in particular every well-ordered chain), has an upper bound.
Then, for every non-empty well-ordered subset W C P, the set of upper
bounds By := {p eEP:VreW(x< p)} is non-empty. Thus, the family

F = {BW : W is a well-ordered, non-empty subset of P}

is a family of non-empty sets and therefore, by the Axiom of Choice, for each
W € .Z we can pick an element b(W) € By . Now, for every = € P let

M. — {=} if  is maximal in P,
*l{yeP:y>z} otherwise.

Then {M,, : x € P} is a family of non-empty sets and again by the Axiom of
Choice, there is a function f: P — P such that

x if x is maximal in P,
fz) =
y where y > x.

Since f(z) > z (for all z € P) and every non-empty well-ordered subset
W C P has an upper bound b(WW), we can apply LEMMA 5.2 and get an ele-
ment pg € P such that f(pg) = po, hence, P has a maximal element.

(b)=>(c) Let .# be a non-empty family of sets and assume that % has finite
character. Obviously, .% is partially ordered by inclusion “C”. For every chain
% in F let Uy = |J€. Then every finite subset of Uy belongs to %, thus,
Us belongs to % . On the other hand, Uy is obviously an upper bound of €.
Hence, every chain has an upper bound and we may apply the Kuratowski-
Zorn Lemma and get a maximal element of the family .#.

(c)=-(a) Given a family .# of non-empty sets. We have to find a choice func-
tion for .#. Consider the family

&= {f : f is a choice function for some subfamily %' C F } .

Notice that f is a choice function if and only if every finite subfunction of
f is a choice function. Hence, & has finite character. Thus, by Teichmiiller's
Principle, the family & has a maximal element, say fy. Since fy is maximal,
dom(fy) = .7, and therefore fj is a choice function for .%. =
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In order to prove that also Kurepa's Principle is equivalent to the Axiom of
Choice, we have to change the setting a little bit: In the proof of THEOREM 5.3,
as well as in Zermelo’s proof of THEOREM 5.1, the Axiom of Foundation was
not involved (in fact, the proofs can be carried out in Cantor’s Set Theory).
However, without the aid of the Axiom of Foundation it is not possible to prove
that Kurepa's Principle implies the Axiom of Choice, whereas the converse im-
plication is evident (compare the following theorem with Chapter 7| RELATED
RESULT 46).

THEOREM 5.4. The following statements are equivalent in ZF:

(a) Axiom of Choice.
(b) Every vector space has an algebraic basis.

(c) Multiple Choice: For every family # of non-empty sets, there exists a
function f: F — 2 (|J.7) such that for each X € .#, f(X) is a non-empty
finite subset of X.

(d) Kurepa's Principle.

Proof. (a)=(b) Let V be a vector space and let .# be the family of all sets
of linearly independent vectors of V. Obviously, .% has finite character. So, by
Teichmiiller's Principle, which is, as we have seen in THEOREM 5.3 equivalent
to the Axiom of Choice, . has a maximal element. In other words, there is a
maximal set of linearly independent vectors, which must be of course a basis
of V.

(b)=(c) Let # = {X, : ¢ € I} be a family of non-empty sets. We have to
construct a function f : F — Z(|J.#) such that for each X, € Z, f(X,)
is a non-empty finite subset of X,. Without loss of generality we may assume
that the members of .# are pairwise disjoint (if necessary, consider the family
{X, x {X.,} : v € I} instead of .Z). Adjoin all the elements of X := |J.# as
indeterminates to some arbitrary but fixed field F (e.g., F = Q) and consider
the field (X)) consisting of all rational functions of the “variables” in X with
coefficients in IF. For each « € I, we define the (-degree of a monomial —i.e.,
a term of the form am’fl---xfl where a € T and zq,...,2;7 € X —to be
the sum of the exponents of members of X, in that monomial. A rational
function ¢ € F(X) is called (-homogeneous of degree d if it is the quotient of
two polynomials such that all monomials in the denominator have the same
t-degree n, while all those in the numerator have (-degree n + d. The rational
functions that are (-homogeneous of degree 0 for all + € I form a subfield Fg
of F(X). Thus, F(X) is a vector space over Iy, and we let V' be the subspace
spanned by the set X.

By assumption, the Fg-vector space V' has an algebraic basis, say B. Below
we use this basis B to explicitly define the desired function f : % — 3”( U ﬂ) .
For each ¢ € I and each x € X, we can express z as a finite linear combination
of elements of B. Thus, every z € X, can be written in the form
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where B(z) € fin(B) and for all b € B(z), af € Fo \ {0}. If y is another
element of the same X, as x, then we have on the one hand

y=> aj-t,

b'EB(y)

and on the other hand, after multiplying the above representation of x by the

element £ € Iy, we get
y=>_ (4-ap)-b.
beB(x)

Comparing these two expressions for y and using the fact that B is a basis,
i.e., that the representation of y is unique, we must have

B(z) = B(y) and af =2 .af forall b B(a).
x

Hence, the finite subset B(x) of B as well as the elements %ﬂi of F(X) depend
only on ¢, not on the particular x € X,, and we therefore call them B, and
aj respectively. Notice that, since af € Iy, aj is t-homogeneous of degree —1
(and ¢/-homogeneous of degree 0 for ./ # ¢). So, when qj is written as a
quotient of polynomials in reduced form, some variables from X, must occur
in the denominator. Define f(X,) to be the set of all those members of X,
that occur in the denominator of a} (in reduced form) for some b € B,. Then
f(X,) is a non-empty finite subset of X,, as required.

(c)=(d) Let (P,<) be a partially ordered set. By Multiple Choice, there is
a function f such that for each non-empty set X C P, f(X) is a non-empty
finite subset of X. Let g : Z(P) — fin(P) be such that g(0) := 0 and for each
non-empty X C P, g(X) := {y € f(X) : yis <-minimal in f(X)}. Obvi-
ously, for every non-empty X C P, g(X) is a non-empty finite set of pairwise
incomparable elements. Using the function g we construct by transfinite in-
duction a maximal subset of pairwise incomparable elements: Let <% := g(P),
and for « € Q let o7, := g(X,), where

Xo :={z € P:x is incomparable with each a € | J{/s : B € a}}.

By construction, the 7,’s are pairwise disjoint and any union of <7,’s is a set
of pairwise incomparable elements. Again by construction there must be an
ap € Q such that X, = 0. Thus, J{%5 : B € ap} C P is a maximal set of
pairwise incomparable elements.

(d)=>(a) By the Axiom of Foundation, for every set x there exists an ordinal
a € Q such that  C V,. Thus, since the Axiom of Choice is equivalent to the
Well-Ordering Principle (see THEOREM 5.1), it is enough to show that Kurepa’s
Principle implies that for every a € 2, V, can be well-ordered. The crucial
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point in that proof is to show that power sets of well-orderable sets are well-
orderable.

The first step is quite straightforward: Let @ be a well-orderable set and
let “<g” be a well-ordering on (). We define a linear ordering “<” on Z(Q)
by stipulating # < y iff the <g-minimal element of the symmetric difference
x/Ay belongs to z. To see that “<” is a linear ordering, notice that “<” is just
the lexicographic ordering on Z7(Q) induced by “<g”. The following claim is
where Kurepa's Principle comes in.

CrAmM. Kurepa's Principle implies that every linearly orderable set is well-
orderable.

Proof of Claim. Let (P, <) be a linearly ordered set. Consider the set W of
all pairs (X, z) where X C P and 2 € X. On W we define a partial ordering
“<” by stipulating

(X,2)<(Yyy) <= X=Y ANz=<y.

By Kurepa's Principle, (W, <) has a maximal set of pairwise incomparable
elements, say «# C W. For every non-empty set X C P let f(X) be the unique
element of X such that (X, f(X)) € &. It is not hard to verify that f is a
choice function for £22(P)\ {0}, and consequently, P can be well-ordered. Hcinim

Now we are ready to show that Kurepa's Principle implies that every set V,
(a € Q) can be well-ordered. We consider the following two cases:

o successor ordinal: Let o = By + 1 and assume that Vg, is well-orderable.
Then V, = &(Vg,), and as the power set of a well-orderable set, V, is well-
orderable.

o limit ordinal: Assume that for each 8 € a, Vg is well-orderable, i.e., for each
B € a there exists a well-ordering “<3” on Vg. Let £ be the least ordinal such
that there is no injection from £ into V. The ordinal ¢ exists by HARTOGS’
THEOREM 3.27 and since every Vg can be well-ordered. Since £ is well-ordered
by €, 2() can be well-ordered; let us fix a well-ordering <¢ C (2 (£)x 2(€)).
For every 8 € a we choose a well-ordering “<g” on Vg as follows:

If 5 =0, then <p= 0.
Ifg= UéeB 0 is a limit ordinal, then, for =,y € Vj, let

r<py <= p@)eply)V (px)=py) ANz <p@)y),

where for any z, p(z) :=({y€Q:2 € V,}.

e If 3 =¢§+1is a successor ordinal, then, by the choice of £, there is an
injection f : V5 — &. Let & = ran(f); then & C £. Further, there exists a
bijection between &(V;) = Vs and & (z), and since Z(z) C Z(£) and
Z(€) is well-ordered by “<¢”, the restriction of “<¢” to &(z) induces a
well-ordering on Vg.

Thus, for every 5 € o we have a well-ordering “<3” on Vg. Now, for z,y € V,
define
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r<ay = plx)epy)V (p(z)=pYy) ANz <p@) y)-

Then, by construction, “<,” is a well-ordering on V. —

We conclude this section on equivalent forms of AC by giving three cardinal
relations which are equivalent to the Well-Ordering Principle.

THEOREM 5.5. Each of the following statements is equivalent to the Well-
Ordering Principle, and consequently to the Axiom of Choice:

(a) Every cardinal m is an aleph, i.e., contains a well-orderable set.

(b) Trichotomy of Cardinals: If n and m are any cardinals, then n < m or
n=m or n > m, where these three cases are mutually exclusive.

(c) If n and m are any cardinals, then n <* m or m <* n.
(d) If m is any infinite cardinal, then m? = m.

Proof. (a) If every set is well-orderable, then obviously every cardinal con-
tains an well-orderable set and is therefore an aleph. On the other hand, for an
arbitrary set z let m = |z| and let yo € m be well-orderable. By definition of
m there exists a bijection between yy and x, and therefore, = is well-orderable
as well.

(b) Firstly notice that any two alephs are comparable. Thus, by (a) we get
that the Well-Ordering Principle implies the Trichotomy of Cardinals and conse-
quently so does AC. On the other hand, by HARTOGS’ THEOREM 3.27 we know
that for every cardinal m there is a smallest aleph, denoted R(m), such that
N(m) £ m. Now, if any two cardinals are comparable we must have m < ®(m),
which implies that m is an aleph.

(c) Notice that if every set can be well-ordered, then for any cardinals n and
m we have n <* m iff n < m. For the other direction we first prove that for
any cardinal m there exists an aleph ®’(m) such that X'(m) £* m: Notice that
if there exists a surjection from a set A onto a set B, then there exist an
injection from B into &?(A). So, by definition of X(2™) we have R(2™) £* m.
Let now m be an arbitrary cardinal and let n = X(2™). If n <* m or n >* m,
then we must have n >* m (since n £* m), which implies that m is an aleph
and completes the proof.

(d) Assume that for any infinite cardinal n we have n> = n. Hence, we get
m+R(m) = (m+R(m))?2 =m?+ (m+m)-R(m)+R(m)? = m+R(m)+m-R(m),
and since m + X(m) < m - ®(m) we have

m+ R(m) =m-N(m).

Now, let © € m and let yo € N(m) be a set which is well-ordered by “<,,”.
Without loss of generality we may assume that x and yy are disjoint. Since
| Uyo| = |z X yol|, there exists a bijection f : 2 Uyy — = X yo. Using the
bijection f we define & := {a € x : 3b € yo ((a,b) € flyo])} € . Firstly
notice that & = x. Indeed, if there would be an ag € x \ Z, then for all b € yj
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we have f~1((ao,b)) ¢ vo, i-e., f~'({ao,b)) € z. Thus, since f is bijective,
f7 [{ao} x yo| € = is a set of cardinality R(m), contradicting the fact that
N(m) £ m. So, for every a € z, the set

g = {b € yo: W €yo(f(b) ={a,b))}

is a non-empty subset of yo, and — since y is well-ordered by “<,,” — has a
<yo-minimal element, say . Finally, define an ordering “<” on « by stipu-
lating a < o’ iff pg <y, ftor- It is easily checked that “<” is a well-ordering on
x, and therefore, m is an aleph.

The converse implication — namely that the Well-Ordering Principle implies
that m? = m for every infinite cardinal m —is postponed to the next section
(see THEOREM 5.7). —

Cardinal Arithmetic in the Presence of AC

In the presence of AC we are able to define cardinal numbers as ordinals: For
any set A we define

|A| = ﬂ {a € Q: there is a bijection between o and A} .

Recall that AC implies that every set A is well-orderable and that every well-
ordering of A corresponds to exactly one ordinal (which is the order type of
the well-ordering).

For example we have |n| = n for every n € w, and |w| = w. However, for
a € Q we have in general |a| # a, e.g., |w+ 1| = w.

Ordinal numbers k € Q such that || = x are called cardinal numbers,
or just cardinals, and are usually denoted by Greek letters like x, A, u, et
cetera.

A cardinal & is infinite if kK ¢ w, otherwise, it is finite. In other words, a
cardinal is finite if and only if it is a natural number.

Since cardinal numbers are just a special kind of ordinals, they are well-
ordered by “€”. However, for cardinal numbers x and A we usually write kK < A
instead of k € A, thus,

K<\ &< KEA.

Let x be a cardinal. The smallest cardinal number which is greater than
& is denoted by &7, thus,

m+:ﬂ{a€§2:m<|a|}.

Notice that by CANTOR’S THEOREM 3.25, for every cardinal x there is a
cardinal A > &, in particular, for every cardinal x, ({a € Q : k < |a|} is
non-empty and therefore 1 exists.
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A cardinal p is called a successor cardinal if there exists a cardinal &
such that u = x™; otherwise, it is called a limit cardinal. In particular, every
positive number n € w is a successor cardinal and w is the smallest non-zero
limit cardinal. By induction on o €  we define wq41 := w?, where wp 1= w,
and wy = Use, ws for limit ordinals a; notice that (Jsc, ws is a cardinal.
In particular, w, is the smallest uncountable limit cardinal and w; = wy is
the smallest uncountable cardinal. Further, the collection {w, : a € Q} is
the class of all infinite cardinals, i.e., for every infinite cardinal s there is an
o € Q such that kK = w,. Notice that the collection of cardinals is — like the
collection of ordinals — a proper class and not a set.

Cardinal addition, multiplication, and exponentiation is defined as follows:
Cardinal addition: For cardinals x and p let £+ p := |(k x {0}) U (1 x {1})].
Cardinal multiplication: For cardinals x and p let k- p 1= |k X .

Cardinal exponentiation: For cardinals x and p let s := |”n|.

Since for any set A, |[42| = |2(4)], the cardinality of the power set of a
cardinal x is usually denoted by 2". However, because 2% is the cardinality of
the so-called continuum R, it is usually denoted by ¢. Notice that by CANTOR’S
THEOREM 3.25 for all cardinals xk we have k < 2".

As a consequence of the definition we get the following

FAcT 5.6. Addition and multiplication of cardinals is associative and commu-
tative and we have the distributive law for multiplication over addition, and
for all cardinals k, A\, i, we have

M = AR, A = (fi’\)u, (k- A)F =gl A

Proof. It is obvious that addition and multiplication is associative and com-
mutative and that we have the distributive law for multiplication over addi-
tion. Now, let x, A, 4, be any cardinal numbers. Firstly, for every function
o (Ax{0}) U (px{1}) — & let the functions fy : (A x {0}) — & and
fu s (ux {1}) = & be such that for each z € (A x {0}) U (1 x {1}),

H(z) if z e A x {0},

fy = (@) {0}

fulz) ifxepx{1}.
It is easy to see that each function f: (A x {0}) U (1 x {1}) — & corresponds
to a unique pair (fx, f,), and vice versa, each pair (f, f,) defines uniquely a
function f : (A x {0}) U (u x {1}) — &. Thus, we have a bijection between
kM and kN - kM.
Secondly, for every function f : yu — Ak let f:px A= & be such that for all
a € pand all 8 € A we have

F((e.3) = f()(B).
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We leave it as an exercise to the reader to verify that the mapping
H()‘m) —y BXAp
fo— 7

is bijective, and therefore we have r#* = (k*)".

Thirdly, for every function f : 4 — k x A let the functions f, : p — k and
frt = A be such that for each a € p, f(a) = (fu(a), fr(a)). We leave it
again as an exercise to the reader to show that the mapping

Pk X A) — Hr X FA
o= {fa )
is a bijection. —
The next result completes the proof of THEOREM 5.5.(d):
THEOREM 5.7. For any ordinal numbers «, 3 € ) we have:
Wa +Wg = Wa W = Waug = Max{wy,ws}
2

In particular, for every infinite cardinal k we have kK* = K.

Proof. Tt is enough to show that for all @ € Q we have w,, - wq = wq. For
a = 0 we already know that |w X w| = w, thus, wp - wo = wp. Assume towards
a contradiction that there exists a fy € € such that wg, - wg, > wg,. Let

aozﬂ{a€ﬂ0+1:wa~wa>wa}.
On wq, X wq, we define an ordering “<” by stipulating

’le(SlE’)/QU(SQ, or
<’)/1,(51> < <’)/2,(52> <~ ’le(Sl:’yQU(SQ ANY1 € y2, or
71U(51=’72U52/\71=’72/\51€52.

This linear ordering can be visualised as follows:

Wap X Weag

v XV
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It is easily verified that “<” is a well-ordering on wq, X wq,. Now, let p be the
order type of the well-ordering “<” and let I" : wq, X wa, — p be the unique
order preserving bijection between wy, X we, and p, i.e., (y1,01) < {(y2,d2)
iff I'((y1,61)) € I'((72,62)). Because wq, - wa, > wae We have [p| > wq,.
Now, by the definition of the well-ordering “<”, there are 7p,dp € wa, such
that I"((70,80)) = wa, and for v = 9 U 8y we have [v X v| > wq,. Thus, for
wg = |v| we have wg < wy, (since v € wy,) and wg - wg > wq,. In particular,
wg - wg > wg, which is a contradiction to the choice of ay. =

As a consequence of THEOREM 5.7 we get the following

COROLLARY 5.8. If k is an infinite cardinal, then seq(rk) = k and k" = 2.

Proof. Firstly we have seq(k) = |U,ep £"| =1+ K+ K2 +...=1+K-w=k.
Secondly, by definition we have k* = |"k|. By identifying each function f €
by its graph, which is a subset of k x k, we get |"x| < |Z(k x k)|, and since
|k x k| = k we finally have k" < |Z2(k)| = 2". —

Let A\ be an infinite limit ordinal. A subset C of X is called cofinal in A if
UC = \. The cofinality of A, denoted cf(}\), is the cardinality of a smallest
cofinal set C C A. In other words,

cf(A) = min {|C| : C is cofinal in A } .

Notice that by definition, c¢f()) is always a cardinal number.

Let again A be an infinite limit ordinal and let C = {S¢ : £ € cf(A\)} C A be
cofinal in A. Now, for every v € cf(X) let o, := |J{Be : £ € v} (notice that all
the a,’s belong to A). Then (o, : v € cf())) is an increasing sequence (not
necessarily in the strict sense) of length cf(A) with [J{aw : v € cf(N)} = A.
Thus, instead of cofinal subsets of A we could equally well work with cofinal
sequences.

Since every infinite cardinal is an infinite limit ordinal, cf(k) is also defined
for cardinals . An infinite cardinal k is called regular if cf (k) = ; otherwise,
k is called singular. For example w is regular and w,, is singular (since {w,, :
n € w} is cofinal in w,). In general, for non-zero limit ordinals A\ we have
cf(wx) = cf(A). For example cf(w,) = cf (Wwtw) = cf(ww,, ) = w.

Fact 5.9. For all infinite limit ordinals A, the cardinal cf(\) is regular.

Proof. Let x = cf()) and let (ag : £ € k) be an increasing, cofinal sequence
of \. Further, let C C & be cofinal in x with |C| = cf(k). Now, (o, : v € C) is
still a cofinal sequence of A\, which implies that cf(A\) < cf(x). On the other
hand we have cf(k) < k = cf(\). Hence, cf(k) = k = cf(\), which shows that
cf()) is regular. -

The following result — which implicitly uses AC — shows that all infinite
successor cardinals are regular.
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PROPOSITION 5.10. If  is an infinite cardinal, then k™ is regular.

Proof. Assume towards a contradiction that there exists a subset C C kT such
that C is cofinal in £* and |C| < kT, ie., |C] < k. Since C C k™, for every
a € C we have |a| < k. Now, by AC, for each o € C we can choose a one-to-one
mapping f, : a@ — k and further let g be a one-to-one mapping from C into
k. Then,

{<g(a), fa)):aeCArve a}

is a subset of x x x and consequently || JC| < |k x k| = k. Thus, (JC # xT
which implies that C is not cofinal in xT. —

For example, wi, wi7, and w,y5 are regular, since w; = war, w17 = wer, and
Wo+5 = w:+4'

We now consider arbitrary sums and products of cardinal numbers. For
this, let I be a non-empty set and let {x, : ¢« € I} be a family of cardinals. We

define
=

el el

where {A, : ¢ € I} is a family of pairwise disjoint sets such that |A,| = &, for
eachc €1, eg., A, =k, x {t} will do.

Similarly we define
[~ - [T

vel el

where {A, : ¢ € I} is a family of sets such that |A,| = k, for each ¢+ € I, e.g.,
A, = k, will do.

THEOREM 5.11 (INEQUALITY OF KONIG-JOURDAIN-ZERMELO). Let I be a
non-empty set and let {x, : « € I} and {\, : ¢« € I} be families of cardinal
numbers such that k, < A\, for every « € I. Then

ZHL<H/\L.

el el

Proof. Let {A, : ¢ € I} be a family of pairwise disjoint sets such that |A4,| = &,
for each ¢ € I. Firstly, for each ¢ € I choose a injection f, : A, < A, and an
element y, € A\, \ f.,[A.] (notice that since |A,| < A,, the set X, \ f,[4,] is
non-empty).

As a first step we show that Y ., k. < [[,c; A For this, define f :
U.er A = Tl,er A by stipulating f(x) := (f.(z) : ¢ € I) where

. fi(x) ifzeA,
i) = { ) .
i otherwise.
Then f is obviously a one-to-one function from U,er A, into J],c; A, which

shows that ELE] K, < Hbel A
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To see that ), .,k < [[,c; A, take any function g : U,c; A — [, A
For every . € I, let P,(g[A,]) be the projection of g[A4,] on k,. Then, for each
v € I we can choose an element z, € A\, \ P, (g[AL]). Evidently, the sequence
(2, : v € I) does not belong to g[|J,.; A.] which shows that g is not surjective,
and consequently, g is not bijective. —

As an immediate consequence we get, the following
COROLLARY 5.12. For every infinite cardinal x we have

cf(k)

k<K and  cf(2") > k.

In particular we get that cf(c) > w.

Proof. Let (a, : v € cf(k)) be a cofinal sequence of . On the one hand we

have
n:’ U oel,‘ < Z|0¢U| < cf(k) -k = K,

vecf(k) vecf(k)

and hence, k = }_, ¢ ¢() lov|. On the other hand, for each v € cf(x) we have
|aw| < K, and therefore, by THEOREM 5.11, we have

Z || < H ko= k0

vecf(k) vecf(k)

Thus, we have k < x<F(%),
In order to see that cf(2") > k, notice that cf(2") < k would imply that
(27)f(2") < (2%)% = 2%'® = 2* which contradicts the fact that 2% < (2%)°f(>"),
_|

Some Weaker Forms of the Axiom of Choice

The Prime Ideal Theorem and Related Statements

The following maximality principle — which is frequently used in areas like
Algebra and Topology —is just slightly weaker than the Axiom of Choice.
However, in order to formulate this choice principle we have to introduce the
notion of Boolean algebra and ideal:

A Boolean algebra is an algebraic structure, say
(Ba+a ) _303 1)

where B is a non-empty set, “4” and “-” are two binary operations (called
Boolean sum and product), “—” is an unary operation (called complement),
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and 0,1 are two constants. For all u, v, w € B, the Boolean operations satisfy
the following axioms:

ut+v=v+u u-v=v-u (commutativity)
ut+ (v+w)=(ut+v)+w u-(v-w)=(u-v) w (associativity)
u-(v+w)=(u-v)+(w-w) wu+ @ -w)=(u+tv)- (u+w) (distributivity)
u-(utv)=u u+ (u-v)=u (absorption)
ut (—u)=1 u-(—u)=0 (complementation)

An algebra of sets is a collection . of subsets of a given set S such that
S € . and whenever X,Y € ., then S\ (X NY) € & (ie., . is closed
under unions, intersections and complements). An algebra of sets . C Z(S)
is a Boolean algebra, with Boolean sum and product being U and N respec-
tively, the complement —X of a set X € . being S\ X, and with () and
S being the constants 0 and 1 respectively. In particular, for any set S,
(3”(8’),U,ﬂ, —,(Z),S) is a Boolean algebra. The case when S = w plays an
important role throughout this book and some combinatorial properties of
the Boolean algebra (@(w), u,n, —, 0, w) will be investigated in Chapters 8—
10.

From the axioms above one can derive additional Boolean algebraic rules
that correspond to rules for the set operations U, N and —. Among others we
have

utu=vu=—-(—u)=u, u+0=u, w-0=0, uwu+l=1, uw-l=u,
as well as the two De Morgan laws
—(u+v)=-u-—v and —(u-v)=-u+-—v.

The De Morgan laws might be better recognised for example in set-theoretic
notation as
S\(XUY)=(S\X)N(S\Y)

where X, Y € &(S); or in Propositional Logic as

(P V) =—p A

where ¢ and v are any sentences formulated in a certain language.

This last formulation in the language of Propositional Logic shows the
relation between Boolean algebra and Logic and provides other examples of
Boolean algebras:

Let .Z be a first-order language and let S be the set of all .Z-sentences.
We define an equivalence relation “~” on S by stipulating

p~Y = Fpe.

The set B := S/~ of all equivalence classes [p] is a Boolean algebra under
the operations [¢] + [¢] := [¢ V¥, [¢] - [¥] := [p A 9], —[¢] := [~¢], where
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0 := [p A -] and 1 := [p V —¢p]. This algebra is called the Lindenbaum
algebra.

Let us define
u—v=u-(—v)

and
u<v <= u—v=0.

We leave it as an exercise to the reader to verify that “<” is a partial ordering
on B and that
UV <= UuU+v=v < u-v=u.

Notice also that [p] < [¢] is equivalent to F ¢ — ).

With respect to that ordering, 1 is the greatest element of B and O is
the least element. Also, for any u,v € B, u + v is the least upper bound of
{u,v}, and u - v is the greatest lower bound of {u,v}. Moreover, since —u is
the unique element v of B such that u+v =1 and u-v = 0 we get that all
Boolean-algebraic operations can be defined in terms of the partial ordering
“<” (e.g., —u is the least element v of B with the property that v +v = 1).

Now, let us define an additional operation “@” on B by stipulating

u®v=(u—v)+(v—u).

Notice that for every u € B we have u @ v = 0, thus, with respect to the
operation “®”, every element of B is its own (and unique) inverse. We leave
it as an exercise to the reader to show that B with the two binary operations
@ and - is a ring with zero 0 and unit 1.

Before we give the definition of ideals in Boolean algebras, let us briefly
recall the algebraic notion of ideals in commutative rings: Let R = (R, +, -, 0)
be an arbitrary commutative ring. An non-empty subset Z C R is an ideal in
R if and only if for all x,y € Z and all r € R we havex —y € Z and r-x € T.
The ideal {0} is called the trivial ideal. An ideal I C R of a ring is called
maximal if I # R and the only ideals J in R for which I C J are J = I and
J = R. If R is a commutative ring and I # R is an ideal in R, then I is called
a prime ideal if given any r, s € R with r-s € I we always haver € I or s € I.
It is not hard to verify that in a commutative ring with 1, every maximal
ideal is prime. Finally, if an ideal J C R is generated by a single element of
R, then J is so-called principal ideal.

With respect to the ring (B, ®, -, 0, 1), this leads to the following definition
of ideals in Boolean algebras.

Let (B, +,-,—,0, 1) be a Boolean algebra. An ideal [ in B is a non-empty
proper subset of B with the following properties:

e 0clbutlél.

o Ifuelandwvel, thenu+vel.
Forallw € Band all u € I, w-u € I (or equivalently, if w € B, u € I and
w < u, then w € TI).
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Considering the Boolean algebra (Bz(w), u,n, —, 0, w), one easily verifies that
the set of all finite subsets of w is an ideal over w, i.e., an ideal on &?(w). This
ideal is called the Fréchet ideal.

The dual notion of an ideal is a so-called filter. Thus, a filter F' in B is a
non-empty proper subset of B with the following properties:

e 0¢FbutlekF.
Ifue Fandve F,thenu-v € F.
For all w € B and all u € F, w+u € I (or equivalently, if w € B, u € F
and w > u, then w € F).

Moreover, if I is an ideal in B, then I* := {—u : u € I} is a filter, called dual
filter. Similarly, if F is a filter in B, then F* := {—u : u € F} is an ideal,
called dual ideal. The dual filter I§ = {z C w : w\ z is finite} of the Fréchet
ideal Iy on &?(w) is called the Fréchet filter.

Let I be an ideal in B, and let F' be a filter in B.

I is called F is called
trivial if 7 = {0}; e trivial if F = {1};
principal if there is an u € e principal if there is an u €
B such that I ={v:v <u}; B such that F'={v:v > u};
e prime if for all u € B, either e an ultrafilter if for all u €
uel or —uel; B, either u € F or —u € F.

Let us consider a few ideals and filters over w, i.e., ideals and filters in the
Boolean algebra (2 (w),U,N, —,0,w): The trivial ideal is {0}, and the trivial
filter is {w}. For any non-empty subset @ C w, Fj := {y € Pw):y 2 :I:}
is a principal filter, and the dual ideal I\, 1= (F})* = {z € P(w) :w\ z €
F,} ={z € P(w): 2Nz =0} is also principal. In particular, if z = {a} for
some a € w, then F, is a principal ultrafilter and ., is a principal prime
ideal. We leave it as an exercise to the reader to show that every principal
ultrafilter over w is of the form F(,; for some a € w, and that every principal
prime ideal is of the form I, {,}. Considering the Fréchet filter ' on & (w),
one easily verifies that F is a non-principal filter, but not an ultrafilter (notice
that neither z = {2n : n € w} nor w \ = belongs to F'). Similarly, the Fréchet
ideal is not prime but non-principal.

Let us now summarise a few basic properties of ultrafilters over sets (the
proofs are left to the reader):

Fact 5.13. Let U be an ultrafilter over a set S.

(a) If {xo,...,xn—1} C P(S) (for some n € w) such that xgU...Ux,_1 € U
and for any distinct i,j € n we have x; Nx; ¢ U, then there is a unique k € n
such that z € U.

(b) If x € U and |z| > 2, then there is a proper subset y & x such thaty € U.
(c) If U contains a finite set, then U is principal.
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On the one hand, prime ideals and ultrafilters in Boolean algebras are
always maximal. On the other hand, one cannot prove in ZF that for example
the Fréchet filter over w can be extended to an ultrafilter. In particular, there
are models of ZF in which every ultrafilter over w is principal (cf. RELATED
RESULT 38 and Chapter 17).

However, there is a choice principle which guarantees that every ideal in
a Boolean algebra can be extended to a prime ideal, and consequently, that
every filter can be extended to an ultrafilter.

Prime Ideal Theorem: If I is an ideal in a Boolean algebra, then I can
be extended to a prime ideal.

In fact, the Prime Ideal Theorem, denoted PIT, is a choice principle which is
just slightly weaker than the full Axiom of Choice. Below we shall present, some
equivalent formulations of the Prime Ideal Theorem, but first let us show that
the Prime ldeal Theorem follows from the Axiom of Choice (for the fact that
the converse implication does not hold see THEOREM 7.16).

ProposITION 5.14. AC = PIT.

Proof. By THEOREM 5.3 it is enough to show that the Prime ldeal Theorem
follows from Teichmiiller's Principle. Let (B,+, -, —,0,1) be a Boolean algebra
and let Iy & B be an ideal. Further, let % be the family of all sets X C B\ I
such that for every finite subset {ug,...,u,} C X U Iy we have

ug+ ... +u, 1.

Obviously, # has finite character, and therefore, by Teichmiiller's Principle,
% has a maximal element. In other words, there is a maximal subset I
of B which has the property that whenever we pick finitely many elements
{ug, ..., un} from I := IyUI; we have ug+...+u, # 1. Since [ is maximal
we get that [ is an ideal in B which extends [y. Moreover, the ideal I has the
property that for any element v € B\ I there is a u € I such that u +v =1,
ie., for any v € B, v ¢ I implies —v € I. Thus, I is a prime ideal in B which
extends I.

A seemingly weaker version of PIT is the following statement.

Ultrafilter Theorem: If F is a filter over a set .S, then F' can be extended
to an ultrafilter.

Notice that the Ultrafilter Theorem is the dual version of the Prime Ideal The-
orem in the case when the Boolean algebra is an algebra of sets.

For the next version of the Prime Ideal Theorem we have to introduce first
some terminology: Let S be a set and let B be a set of binary functions (i.e.,
with values 0 or 1) defined on finite subsets of S. We say that B is a binary
mess on S if B satisfies the following properties:
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e For each finite set P C S, there is a function g € B such that dom(g) = P,
i.e., g is defined on P.
e For each g € B and each finite set P C S, the restriction g|p belongs to 5.

Let f be a binary function on S and let B be a binary mess on S. Then f is
consistent with B if for every finite set P C S, f|p € B.

Consistency Principle: For every binary mess B on a set S, there exists
a binary function f on S which is consistent with B.

In order to state the last version of the Prime Ideal Theorem we have to
introduce first some terminology from Propositional Logic: The alpha-
bet of Propositional Logic consists of an arbitrarily large but fixed set
P := {px : A € A} of so-called propositional variables, as well as of the

logical operators “—", , and “V”. The formulae of Propositional Logic are
defined recursively as follows:

e A single propositional variable p € P by itself is a formula.
If ¢ and ¢ are formulae, then so are —=(y¢), (¢ A ), and (¢ V 4); in Polish
notation, the three composite formulae are -, Apy, and Ve, respec-
tively.

A realisation of Propositional Logic is a map of P, the set of propositional
variables, to the two element Boolean algebra ({O, 1},+,-,—,0, 1). Given
a realisation f of Propositional Logic. By induction on the complexity of
formulae we extend f to all formulae of Propositional Logic (compare with
the definition of Lindenbaum’s algebra): For any formulae ¢ and ¢, if f(y)
and f(¢) have already been defined, then

fhe) = fle) - f(0),  f(vew) = fo) + f(¥),

and
f(op)=—f(p).

Let ¢ be any formula of Propositional Logic. If the realisation f, extended in
the way just described, maps the formula ¢ to 1, then we say that f satisfies
v. Finally, a set ¥ of formulae of Propositional Logic is satisfiable if there is
a realisation which simultaneously satisfies all the formulae in 3.

Compactness Theorem for Propositional Logic: Let X be a set of formulae
of Propositional Logic. If every finite subset of ¥ is satisfiable, then also
¥ is satisfiable.

Notice that the reverse implication of the Compactness Theorem for Proposi-
tional Logic is trivially satisfied.

Now we show that the above principles are all equivalent to the Prime Ideal
Theorem.
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THEOREM 5.15. The following statements are equivalent:

(a) Prime ldeal Theorem.

(b) Ultrafilter Theorem.

(c) Consistency Principle.

(d) Compactness Theorem for Propositional Logic.

(e) Every Boolean algebra has a prime ideal.

Proof. (a)=(b) The Ultrafilter Theorem is an immediate consequence of the
dual form of the Prime ldeal Theorem.

(b)=>(c) Let B be a binary mess on a non-empty set S. Assuming the Ultrafil-
ter Theorem we show that there is a binary function f on S which is consistent
with B. Let fin(S) be the set of all finite subsets of S. For each P € fin(S5), let

Ap:{gESQ:g|p€B}.

Since B is a binary mess, the intersection of finitely many sets Ap is non-
empty. Thus, the family .% consisting of all supersets of intersections of finitely
many sets Ap is a filter over 2. By the Ultrafilter Theorem, .% can be extended
to an ultrafilter % C 3”(52). Since 7% is an ultrafilter, for each s € S, either
{g €52:¢g(s) = 0} or {g €52:9g(s) = 1} belongs to %, and we define the
function f € 2 by stipulating that for each s € S, the set A, = {g €52
g(s) = f(s)} belongs to % . Now, for any finite set P = {sg,...,s,} C 5,
Ni<n As; € % , which shows that f|p € B, i.e., f is consistent with B.

(c)=(d) Let X be a set of formulae of Propositional Logic and let S C P be
the set of propositional variables which appear in formulae of ¥. Assume that
every finite subset of X is satisfiable, i.e., for every finite subset 3y C 3 there
is a realisation gx, : Sy, — {0,1} which satisfies ¥y, where Sy, denotes the
set of propositional variables which appear in formulae of Xg. Let

By, := {920|P 1 X € fin(X) AP C SEo}'

Then By is obviously a binary mess and by Consistency Principle there exists
a binary function f on S which is consistent with By. Now, f is a realisation
of ¥ and therefore X is satisfiable.

(d)=(e) Let (B, +,-,—,0, 1) be a Boolean algebra and let P := {p, : u €
B} be a set of propositional variables. Further, let X be the following set of
formulae of Propositional Logic:

Po, 7P1;

pu V —p_,, (for each u € B);

“(Puy Ao ADu,) V Pust.. 4w, (for each finite set {uq,...,u,} C B).
“(Puy VooV Pu,) V Py, (for each finite set {uy,...,u,} C B).

Notice that every finite subset of B generates a finite subalgebra of B and
that every finite Boolean algebra has a prime ideal. Now, since every finite
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prime ideal in a finite subalgebra of B corresponds to a realisation of a finite
subset of X5, and vice versa, every finite subset of X is satisfiable. Thus, by
the Compactness Theorem for Propositional Logic, ¥ is satisfiable. Let f be a
realisation of X g and let I = {u €B: f(pu) = 1}. By definition of X and I
respectively we get:

f(po) =1 and f(p1) = 0; thus, 0 € [ but 1 ¢ I.
f(pu) =1 — f(—py); thus, for all uw € B, either u € I or —u € I.
If f(pu,) = f(Puy) = 1, then f(pu, A py,) = 1; thus, for all uy,us € I we
have uy +us € 1.

o if f(py,) =1, then f(pu, Vpu,) = 1; thus, for all u; € I and all us € B we
have uy - us € I.

Thus, the set I = {u €B: f(pu) = 1} is a prime ideal in B.

(e)=>(a) Let (B, +,-,—,0, 1) be a Boolean algebra and I C B an ideal in
B. Define the following equivalence relation on B:

u~v = (u—v)+(v—u)el

Let C be the set of all equivalence classes [u]” and define the operations “+”,
“.” and “=” on C as follows:

[ + [ =[uto] oo = w0, —[u]"=[-u]".

Now,
(Cv +, [0]~7 [1]~)

is a Boolean algebra, the so-called quotient of B modulo I. By the Prime Ideal
Theorem, C has a prime ideal J. We leave it as an exercise to the reader to
verify that the set

{ueB:[u €J}

is a prime ideal in B which extends 1. —

Ko6nig’s Lemma and other Choice Principles

Let us begin by defining some choice principles:

e (C(Rp,00): Every countable family of non-empty sets has a choice function
(this choice principle is usually called Countable Axiom of Choice).

e C(Ng,Rg): Every countable family of non-empty countable sets has a choice
function.

e C(Rg, < Ng): Every countable family of non-empty finite sets has a choice
function.

e C(Rg,n): Every countable family of n-element sets, where n € w, has a
choice function.

e C(00,< Wp): Every family of non-empty finite sets has a choice function
(this choice principle is usually called Axiom of Choice for Finite Sets).
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e C(C(oo,n): Every family of n-element sets, where n € w, has a choice func-
tion. This choice principle is usually denoted C,,.

Another — seemingly unrelated — choice principle is the Ramseyan Partition
Principle, denoted RPP.

e RPP: If X is an infinite set and [X]? is 2-coloured, then there is an infinite
subset Y of X such that [Y]? is monochromatic.

Below we show how these choice principles are related to each other, but
first let us show that C(Rg, < Rg) and Kénig's Lemma, denoted by KL, are
equivalent.

PROPOSITION 5.16. C(Rg, < Xg) <= KL.

Proof. (=) Let T' = (V, E) be an infinite, finitely branching tree with vertex
set V, edge set E, and root say vg. The edge set E can be considered as
a subset of V x V, i.e., as a set of ordered pairs of vertices indicating the
direction from the root to the top of the tree. Let Sy := {vp}, and for n € w
let

Spr1:={veV:3ueS,((u,v)€E)}

and let S := J,,,, Sn- Since T is infinite and finitely branching, S is infinite
and for every n € w, S, is a non-empty finite set. Further, for every v € §
let S(v) be the set of all vertices u € S such that there exists a non-empty
finite sequence s € seq(S) of length k£ + 1 (for some k € w) with s(0) = v and
s(k) = u, and for all i < k we have (s(i), s(i+1)) € E. In other words, S(v) is
the set of all vertices which can be reached from v. Notice that (S(v), E|g,))
is a subtree of T'. Since S is infinite and for all n € w, {J;c,, Si is finite, for
each n € w there exists a vertex v € S, such that S(v) is infinite.

We now proceed as follows: By C(Rp, < Xg), for each n € w we can choose
a well-ordering “<,,” on S, and then construct a branch vy, vi,...,v,,...
through T, where for all n € w, v,41 is the <,41-minimal element of the
non-empty set {v € Spi1: (v, v) € E A “S(v) is infinite”}.
(<) Let . = {F, : n € w} be a countable family of non-empty finite sets.
Further, let V = U,c,, (ITner Fn) and let E C V x V be the set, of all ordered
pairs (s, t) of the form s = (x¢,...,x,) and t = (xg, ..., T, Tp+1) respectively,
where for each i € n+2, z; € F; (i.e., the sequence t is obtained by adding an
element of F, 11 to s). Obviously, T' = (V, E) is an infinite, finitely branching
tree and therefore, by KL, has an infinite branch, say (a,, : n € w). Since, for
all n € w, a, belongs to F,, the function

¥ —UZz
F,— a,

is a choice function for .#, and since the countable family of finite sets % was
arbitrary, we get C(Rg, < N). —
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Obviously, C(Xg, < Rg) = C(Rg,n) for all positive integers n € w. However,
as a matter of fact we would like to mention that for each n > 2, C(Rg,n)
is a proper axiom, i.e., not provable within ZF (for n = 2 see for example
PROPOSITION 7.7).

The following result shows the strength of the choice principles RPP and
KL compared to C(Ng, 00) and C(Rg, n) respectively:

THEOREM 5.17. C(Ng, 00) = RPP = KL = C(X¢, n).

Proof. C(Rp,00) = RPP: Firstly we show that C(Rg, 00) implies that every
infinite set X is transfinite, i.e., there is an infinite sequence of elements of
X in which no element appears twice: Let X be an infinite set and for every
n € w let Fj, 41 be the set of all injections from n + 1 into X. Consider the
family # = {F,41 : n € w}. Since X is infinite, .7 is a countable family of
non-empty sets. Thus, by C(Rg, c0), there is a choice function, say f, on %.
For every n € w let g, := f(F,+1). With the countably many injections g,, we
can easily construct an injection from w into X. In particular, we get an infi-
nite sequence (a; : ¢ € w) of elements of X in which no element appears twice.
For S :={a; :i € w} C X, every 2-colouring of [X]? induces a 2-colouring of
[S]2. Now, by RAMSEY’S THEOREM 2.1, there exists an infinite subset Y of S
such that [Y]? is monochromatic (notice that no choice is needed to establish
RAMSEY’S THEOREM for countable sets).

RPP = KL: Let T = (V, E) be an infinite, finitely branching tree and let the
sets S, (for n € w) be as in the first part of the proof of PROPOSITION 5.16.
Define the colouring 7 : [V]> — {0,1} by stipulating 7({u,v}) = 0 <=
{u,v} C S, for some n € w. By RPP there exists an infinite subset X C V
such that [X]? is monochromatic. Now, since T is finitely branching, we get
that if X C V is infinite and [X]? is monochromatic, then [X]? is of colour 1,
i.e., no two distinct elements of X are in the same set .S,,. In order to construct
an infinite branch through 7', just proceed as in the first part of the proof of
PROPOSITION 5.16.

KL = C(Rg,n): Because C(Rg, < Rg) = C(Ng,n), this is an immediate con-
sequence of PROPOSITION 5.16. —

The last result of this chapter deals with the relationship of the choice prin-
ciples C,, (i.e., C(oc0,n)) for different natural numbers n. Before we can state
the theorem we have to introduce the following number-theoretical condition:
Let m, n be two positive integers. Then we say that m,n satisfy condition (S)
if the following condition holds:

There is no decomposition of n into a sum of primes, n = p1+...+ps,
such that p; > m for all 1 <i < s.

THEOREM 5.18. If the positive integers m,n satisfy condition (S) and if Cy
holds for every k < m, then also C,, holds.
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Proof. Firstly notice that C; is obviously true. Secondly notice that for n < m,
the implication of the theorem is trivially true. So, without loss of generality
we may assume that n > m.

The proof is now by induction on n: Let m < n be a fixed positive integer
such that m,n satisfy condition (S) and assume that the implication of the
theorem is true for every I < n. Since n,m satisfy (S), n is not a prime and
consequently n is divisible by some prime p < n. Necessarily, p < m, since
otherwise we could write n = p+...+p, contrary to (S). Let & = {Ax: A € A}
be a family of n-element sets. We have to describe a way to choose an element
from each set Ay (A € A). Take an arbitrary A € .% and consider [A]? (i.e., the
set of all p-element subsets of A). Since p < m, by the premise of the theorem
there is a choice function g for [A]P. In other words, for every X € [A]P,
9(X) € X, in particular, g(X) € A. For every a € A let

g(a) = [{X € [A]": g(X) = a}|

and let ¢ := min{q(a) : a € A}. Further, let B := {a € A : ¢q(a) = ¢}.
Obviously, the set B is non-empty and the set [A]” has (7) elements. In order

to prove that A\ B is non-empty, we have to show that (") is not divisible
by n. Indeed, because p divides n, there is a positive integer k£ which is not
divisible by p such that n = k - p**! (for some a € w). We have

Cv hpﬁlxn—n-~-(n—p+1):k4w“.(n—1),

p P p—1)- - 1 P p—1

1), we get that () is divisible by
p®, but not by p®*t!; in particular, (Z) is not divisible by n = k - p®*!. Thus,
the sets B and A\ B are both non-empty, and for [, := |B| and I := |A\ B]
we get that [; and [, are positive integers with [; + o = n. Moreover, m, [y or
m, lo satisfy condition (S), since otherwise we could write Iy = p; + ...+ p,
and lo = pr41 + ... + ps, where pi,...,ps are primes bigger than m, which
would imply that n = p; 4+ ... + ps, contrary to the assumption that m,n
satisfy (S). Thus, by the induction hypothesis, either C;, holds and we choose
an element in B, or, if C;, fails, C;, holds and we choose an element in A\ B.
Finally, since A € % was arbitrary, this completes the proof. —

and since p does obviously not divide (Z:

NOTES

The Aziom of Choice. Fraenkel writes in [26, p. 56 f.] that the Axiom of Choice is
probably the most interesting and, in spite of its late appearance, the most discussed
aziom of Mathematics, second only to Euclid’s aziom of parallels which was intro-
duced more than two thousand years ago. We would also like to mention a different
view to choice functions, namely the view of Peano. In 1890, Peano published a proof
in which he was constrained to choose a single element from each set in a certain infi-
nite sequence A1, Az, ... of infinite subsets of R. In that proof, he remarked carefully
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(cf. [73, p.210]): But as one cannot apply infinitely many times an arbitrary rule by
which one assigns to a class A an individual of this class, a determinate rule is stated
here, by which, under suitable hypotheses, one assigns to each class A an individ-
ual of this class. To obtain his rule, he employed least upper bounds. According to
Moore [66, p 76], Peano was the first mathematician who — while accepting infinite
collections — categorically rejected the use of infinitely many arbitrary choices.

The difficulty is well illustrated by a Russellian anecdote (cf. Sierpinski [82,
p-125]): A millionaire possesses an infinite number of pairs of shoes, and an in-
finite number of pairs of socks. One day, in a fit of eccentricity, he summons his
valet and asks him to select one shoe from each pair. When the valet, accustomed
to recetving precise instructions, asks for details as to how to perform the selection,
the millionaire suggests that the left shoe be chosen from each pair. Next day the
millionaire proposes to the valet that he select one sock from each pair. When asked
as to how this operation is to be carried out, the millionaire is at a loss for a reply,
since, unlike shoes, there is no intrinsic way of distinguishing one sock of a pair from
the other. In other words, the selection of the socks cannot be carried out without
the aid of some choice function.

As long as the implicit and unconscious use of the Axiom of Choice by Can-
tor and others involved only generalised arithmetical concepts and properties well-
known from finite numbers, nobody took offence. However, the situation changed
drastically after Zermelo [107] published his first proof that every set can be well-
ordered — which was one of the earliest assertions of Cantor. It is worth mentioning
that, according to Zermelo [107, p.514] & [108, footnote p.118], it was in fact the
idea of Erhard Schmidt to use the Axiom of Choice in order to build the f-sets.
Zermelo considered the Axiom of Choice as a logical principle, that cannot be reduced
to a still simpler one, but is used everywhere in mathematical deductions without
hesitation (see [107, p.516]). Even though in Zermelo’s view the Axiom of Choice
was “self-evident”, which is not the same as “obvious” (see Shapiro [81, §5] for a de-
tailed discussion of the meaning of “self-evidence”), not all mathematicians at that
time shared Zermelo’s opinion. Moreover, after the first proof of the Well-Ordering
Principle was published in 1904, the mathematical journals (especially volume 60 of
Mathematische Annalen) were flooded with critical notes rejecting the proof (see for
example Moore [66, Chapter 2]), mostly arguing that the Axiom of Choice was either
illegitimate or meaningless (cf. Fraenkel, Bar-Hillel, and Lévy [26, p. 82]). The reason
for this was not only due to the non-constructive character of the Axiom of Choice,
but also because it was not yet clear what a “set” should be. So, Zermelo decided to
publish a more detailed proof, and at the same time taking the opportunity to reply
to his critics. This resulted in [108], his second proof of the Well-Ordering Principle
which was published in 1908, the same year as he presented his first axiomatisation
of Set Theory in [108]. It seems that this was not a coincidence. Moore [66, p. 159]
writes that Zermelo’s axiomatisation was primarily motivated by a desire to secure
his demonstration of the Well-Ordering Principle and, in particular, to save his Axiom
of Choice. Moreover, Hallett [32, p. xvi] goes even further by trying to show that the
selection of the arioms themselves was guided by the demands of Zermelo’s recon-
structed [second] proof. Hallett’s statement is motivated by a remark on page 124
in Zermelo [108], where he emphasises that the proof is just based on certain fixed
principles to build initial sets and to derive new sets from given ones — exactly what
we would require for principles to form an axiomatic system of Set Theory.
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We would like to mention that because of its different character (cf. Bernays [3])
and since he considered the Axiom of Choice as a general logical principle, he did
not include the Axiom of Choice to his second axiomatic system of Set Theory.

For a comprehensive survey of Zermelo’s Axiom of Choice, its origins, develop-
ment, and influence, we refer the reader to Moore [66] (see also Kanamori [46],
Jech [41], and Fraenkel, Bar-Hillel, and Lévy [26, Chapter II, §4]); and for a biogra-
phy of Zermelo (including the history of AC and axiomatic Set Theory) we refer the
reader to Ebbinghaus [17].

Gddel’s constructible universe. According to Kanamori [45, p.28ff.], in Octo-
ber of 1935 Godel informed von Neumann at the Institute for Advanced Study in
Princeton that he had established the relative consistency of the Axiom of Choice.
This he did by devising his constructible (not constructive!) hierarchy L (for “law”)
and verifying the Axiom of Choice and the rest of the ZF axioms there. Gédel con-
jectured that the Continuum Hypothesis would also hold in L, but he soon fell ill
and only gave a proof of this and the Generalised Continuum Hypothesis (i.e., for all
a € Q, 2% = wq41) two years later. The crucial idea apparently came to him during
the night of June 14/15, 1937 (see also [31, pp. 1-8]).

Godel’s article [28] was the first announcement of these results, in which he
describes the model L as the class of all “mathematically constructible” sets, where
the term “constructible” is to be understood in the semi-intuitionistic sense which
excludes impredicative procedures. This means “constructible” sets are defined to be
those sets which can be obtained by Russell’s ramified hierarchy of types, if extended
to include transfinite orders. In the succeeding article [29], Godel provided more
details in the context of ZF, and in his monograph [30] — based on lectures given
at the Institute for Advanced Study during the winter of 1938/39 — Godel gave
another presentation of L. This time he generated L set by set with a transfinite
recursion in terms of eight elementary set generators, a sort of Gédel numbering
into the transfinite (cf. Kanamori [45, p. 30], and for Gédel’s work in Set Theory see
Kanamori [47]).

Equivalent Forms of the Axiom of Choice. The literature gives numerous
examples of theorems which are equivalent to the Axiom of Choice and a huge col-
lection of such equivalent forms of the Axiom of Choice was accumulated by Rubin
and Rubin [79, 80].

The most popular variants of the Axiom of Choice — and the most often used in
mathematical proofs —are probably the Well-Ordering Principle (discussed above),
the Kuratowski-Zorn Lemma, and Teichmiiller's Principle.

The Kuratowski-Zorn Lemma was proved independently by Kuratowski [53] and
more than a decade later by Zorn [106] (see Moore [66, p.223] and also Camp-
bell [13]). Usually, the Kuratowski-Zorn Lemma is deduced quite easily from the
Well-Ordering Principle. The direct deduction from the Axiom of Choice presented
above (THEOREM 5.3) is due to Kneser [51], who also proved LEMMA 5.2 which was
stated without proof by Bourbaki [12, p.37 (lemme fondamental)].

Teichmiiller's Principle was formulated independently by Tukey [103] and slightly
earlier by Teichmiiller in [97], where he provides also some equivalent forms of this
very useful principle. Teichmiiller himself was a member of the Nazi party and
joined the army in 1939. Fighting first in Norway and then at the Eastern Front, he
eventually died in 1943.
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Kurepa's Principle was introduced by Kurepa in [54], where he showed that
Kurepa's Principle together with the Linear-Ordering Principle — which states that ev-
ery set can be linearly ordered — implies the Axiom of Choice. The proof that —in
the presence of the Axiom of Foundation — Kurepa's Principle implies the Axiom of
Choice is due to Felgner [18] (see also Felgner and Jech [20] or Jech [40, Theo-
rem 9.1.(a)]).

The proof that “every vector space has an algebraic basis” implies Multiple Choice
is taken from Blass [9], and the proof that Multiple Choice implies Kurepa's Principle
is taken from Jech [40, Theorem 9.1.(a)] (compare with Chapter 7| RELATED RE-
SULT 44).

Among the dozens of cardinal relations which are equivalent to the Axiom of Choice
(see for example Lindenbaum and Tarski [60], Bachmann [1, §31], or Moore [66,
p.3301£]), we just mentioned three.

In 1895, Cantor [14, §2] asserted the Trichotomy of Cardinals without proof,
and in a letter of 28 July 1899 (cf. [16, pp.443-447]) he wrote to Dedekind that
the Trichotomy of Cardinals follows from the Well-Ordering Principle. However, their
equivalence remained unproven until Hartogs [34] established it in 1915 (cf. also
Moore [66, p.10]). As a matter of fact we would like to mention that — according to
Sierpinski [82, p.99f.] — Lesniewski showed that Trichotomy of Cardinals is equiva-
lent to the statement that for any two cardinals n and m, where at least one of these
cardinals is infinite, we always have n+m=norn+m=m.

THEOREM 5.5.(c) — which is to some extent a dualisation of the Trichotomy of
Cardinals — was stated without proof by Lindenbaum [60, p. 312 (A4s)] and the proof
given above is taken from Sierpisiski [83, p.426].

The fact that the cardinal equation m? = m implies the Axiom of Choice is due
to Tarski [87] (see also Bachmann [1, V,p. 140 f.]).

Cardinal arithmetic in the presence of AC. The definition of cardinals given
above can also be found for example in von Neumann [72, VIL.2. p.731].

The first proof of THEOREM 5.7 appeared in Hessenberg [38, p.593] (see also
Jourdain [44]).

Regularity of cardinals was investigated by Hausdorff, who also raised the ques-
tion of existence of regular limit cardinals (cf. [35, p. 131]).

The INEQUALITY OF KONIG-JOURDAIN-ZERMELO 5.11 — also known as KONIG’S
THEOREM — was proven by Konig [52] (but only for countable sums and prod-
ucts), and independently by Jourdain [43] and by Zermelo [110] (for historical facts
see Moore [66, p.154] and Fraenkel [25, p.98]). Obviously, the INEQUALITY OF
KONIG-JOURDAIN-ZERMELO implies the Axiom of Choice (since it guarantees that
every Cartesian product of non-empty sets is non-empty), and consequently we get
that the INEQUALITY OF KONIG-JOURDAIN-ZERMELO is equivalent to the Axiom of
Choice.

Algebras. Boolean algebra is named after George Boole who — according to Rus-
sell — discovered Pure Mathematics. Even though this might be an exaggeration, it
is true that Boole was one of the first to view Mathematics as the study of abstract
structures rather than as the science of magnitude, and he was the first who ap-
plied successfully mathematical techniques to Logic (cf. Boole [11, 10]) and his work
evolved into the modern theory of Boolean algebras and algebraic Logic. In 1849,
Boole was appointed at the newly founded Queen’s College in Cork, where he died
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in 1864 as a result of pneumonia caused by walking to a lecture in a December
downpour and lecturing all day in wet clothes (see also MacHale [61]).

Lindenbaum’s algebra is named in memory of the Polish mathematician Adolf
Lindenbaum, who was killed by the Gestapo at Nowa Wilejka in the summer of 1941.
Lindenbaum and Tarski (see for example Tarski [90, 89, 91]) developed the idea of
viewing the set of formulae as an algebra (with operations induced by the logical
connectives) independently around 1935; however, Lindenbaum’s results were not
published (see Rasiowa and Sikorski [78, footnote to page 245]).

For the history of abstract algebraic Logic and Boolean algebras we refer the
reader to Font, Jansana, and Pigozzi [22].

Prime Ideals. Ideals and prime ideals on algebras of sets where investigated for
example by Tarski in [93].

The notion of Lindenbaum’s algebra and the Compactness Theorem for Propo-
sitional Logic is taken from Bell and Slomson [2, Chapter 2]. The equivalent forms
of the Prime Ideal Theorem are taken from Jech [40, Chapter 2, §3], and the corre-
sponding references can be found in [40, Chapter 2,§7]. We would like to mention
that the Ultrafilter Theorem, which is just the dual form of the Prime Ideal Theorem,
is due to Tarski [88].

Ramsey’s Theorem as a choice principle. RAMSEY’S ORIGINAL THEOREM
(cf. Chapter 2) implies that every infinite set X has the following property: For every
2-colouring of [X]? there is an infinite subset Y of X such that [Y]? is monochro-
matic. As mentioned in Chapter 2, Ramsey [76] explicitly indicated that his proof of
this theorem used the Axiom of Choice. Later, Kleinberg [50] showed that every proof
of RAMSEY’S ORIGINAL THEOREM must use the Axiom of Choice, although rather
weak forms of the Axiom of Choice like C(Ro, 00) suffice (see THEOREM 5.17). For
the position of RAMSEY’s ORIGINAL THEOREM in the hierarchy of choice principles
we refer the reader to Blass [8] (see also RELATED RESULT 31).

For the fact that none of the implications in THEOREM 5.17 is reversible we refer
the reader to Howard and Rubin [39].

From countable choice to choice for finite sets. The Countable Axiom of
Choice asserts that every countable family of non-empty sets has a choice function,
whereas the Axiom of Choice for Finite Sets asserts that every family of non-empty
finite sets has a choice function. Replacing the finite sets in the latter choice principle
by n-element sets (for natural numbers n > 2), we obtained the choice principles C,,
which assert that every family of n-element sets has a choice function. Combining
these two choice principles we get in fact versions of Kénig's Lemma, namely choice
principles like C(Rg, < Rp) and C(Ro,n) (for positive integers n > 2).

The proof of THEOREM 5.18 is taken from Jech [40, p. 111] and is optimal in the
following sense: If the positive integers m,n do not satisfy condition (S), then there
is a model of Set Theory in which Cj holds for every k& < m but C, fails (see the
proof of Theorem 7.16 in Jech [40]).
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23.

24.

25.

26.
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RELATED RESULTS

Hausdorff’s Principle. Among the numerous maximality principles which are
equivalent to the Axiom of Choice, we like to mention the one known as Haus-
dorff's Principle (cf. Hausdorff [35, VI, §1, p. 140]):

Hausdorff’s Principle: Every partially ordered set has a maximal chain
(maximal with respect to inclusion “C”).

For the history of Hausdorff's Principle see Moore [66, Section 3.4, p. 167 ff.] and
a proof of the equivalence with the Axiom of Choice can be found for example
in Bernays [5, p. 142 ff].

Bases in vector spaces and the Aziom of Choice. Relations between the exis-
tence or non-existence of bases in vector spaces and some weaker forms of the
Axiom of Choice are investigated for example in Keremedis [48, 49], Lauchli [55],
and Halpern [33].

Cardinal relations which are equivalent to AC. Below we list a few of the dozens
of cardinal relations which are equivalent to the Axiom of Choice (mainly taken
from Tarski [87]):

(a) m-n =m+ n for all infinite cardinals m and n.

(b) If m* = n?, then m = n.

(c)fm<nandp<gq,then m+p<n-+q.

(d)fm<nand p<gq,thenm-p<n-q.

(e) f m+p <n+p, then m < n.

) fm-p<n-p, thenm < n.

(g) If 2m < m +n, then m < n.

For the proofs we refer the reader to Tarski [87] and Sierpisiski [83, p.421]
(compare (g) with Chapter 4 | RELATED RESULT 17). More such cardinal rela-
tions can be found for example in Howard and Rubin [39, p.82ff.], Rubin and
Rubin [80, p. 137 1], Moore [66, p.330f.], and Bachmann [1, §31]).

Successors of Cardinals. In [96] Tarski investigated the following three types of
successor of a cardinal number:
Si. For every cardinal m there is a cardinal n such that m < n and the
formula m < p < n does not hold for any cardinal p.

S,. For every cardinal m there is a cardinal n such that m < n and for
every cardinal p the formula m < p implies n < p.

Ss. For every cardinal m there is a cardinal n such that m < n and for
every cardinal p the formula p < n implies p < m.

Tarski [96] showed that S; can be proved without the help of the Axiom of
Choice, whereas S5 is equivalent to this axiom. The relation of Sz with the
Axiom of Choice was further investigated by Sobociriski [84] and Truss [100] (see
also Bachmann [1, §31, p. 141]).

A formulation by Sudan. Sudan [85] showed that the following statement is
equivalent to the Axiom of Choice: Let m, n, and p be arbitrary infinite cardinals.
If m and n are either equal or n is a Si-successor (i.e., a successor in the in the
sense of S1) of m, then also p-m and p-n are either equal or p-n is an Si-successor
of p-m. For the influence of Tarski [87] on Sudan see Moore [66, p.218].
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A formulation by Tarski. There are also some equivalents of the Axiom of Choice
which seemingly are far away of being choice principles. The following formula-
tion by Tarski [92] is surely of this type: For every set N there is a set M such
that X € M if and only if X C M and for all Y C X we have |Y| # |N|. Similar
statements can be found in Tarski [94, 95] (see also Bachmann [1, §31.3]).

Singular Cardinal Hypothesis. The SINGULAR CARDINAL HYPOTHESIS states
that for every singular cardinal x, 27" < k implies £*®) = k. Obviously, the
SINGULAR CARDINAL HYPOTHESIS follows from the Generalised Continuum Hy-
pothesis. On the other hand, the SINGULAR CARDINAL HYPOTHESIS is not prov-
able within ZFC and in fact, the failure of the SINGULAR CARDINAL HYPOTHE-
STS is equiconsistent with the existence of a certain large cardinal (cf. Jech [42,
p. 581. & Chapter 24]).

Model Theory and the Prime Ideal Theorem. Using Lindenbaum'’s algebra, Ra-
siowa and Sikorski [77] gave an alternative proof of GODEL'S COMPLETENESS
THEOREM 3.4, and Henkin [36] proved that the Prime Ideal Theorem is equiv-
alent to the CoMPACTNESs THEOREM 3.7. Notice that by THEOREM 5.15 we
just get that the Prime Ideal Theorem is equivalent to the Compactness The-
orem for Propositional Logic, which is a seemingly weaker statement than the
COMPACTNESS THEOREM 3.7.

Colouring infinite graphs and the Prime Ideal Theorem” For n a positive integer
consider the following statement:

P.. If G is a graph such that every finite subgraph of G is n-colourable,
then G itself is n-colourable.

The following implications are provable in Set Theory without the Axiom of
Choice (see Mycielski [69, 70]):

PIT = Poy1 = P, = C(oo,n), C(o0,2) = P2

On the other hand, Lévy [59] showed that for any n, ZF ¥ C(co,n) = Ps.
Surprisingly, Liuchli showed in [57] that Ps implies PIT, and consequently, for
all n > 3, the equivalence P, = PIT is provable in Set Theory without the Axiom
of Choice. However, the question whether there is a “direct” proof of P3 = P4
without involving PIT is still open.

Ramsey’s Theorem, Konig’s Lemma, and countable choice. Truss investigated
in [102] versions of Kénig's Lemma, where restrictions are placed on the degree of
branching of the finitely branching tree. In particular, he investigated C(Ro,n)
for different n € w. Later in [24], Forster and Truss considered the relation be-
tween versions of RAMSEY’s ORIGINAL THEOREM and these versions of Konig's
Lemma.

The choice principle C(Xg, n) was also investigated by Wisniewski [105], where
it is compared with C(co,n) and other weak forms of the Axiom of Choice.

Ramsey Choice” Related to C,, are the following two choice principles: C,; states
that every infinite family X of n-element sets has an infinite subfamily Y C X
with a choice function; and RC,, states that for every infinite set X there is
an infinite subset Y C X such that [Y]™ has a choice function. These two
choice principles are both strictly weaker than C, (cf. Truss [99]). Montenegro
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investigated in [65] the relation between RC,, and C;,; for some small values of n:
It is not hard to see that RC; = C5 and RC3 = C5 (cf. [65, Lemma]). However
it is quite tricky to prove that RC4 = C; (cf. [65, Theorem]|) and it is still open
whether RCs implies C; .

33. Well-ordered and well-orderable subsets of a set. For aset z, s(z) is the set of all
subsets of z which can be well-ordered, and w(z) is the set of all well-orderings
of subsets of z. Notice that s(z) C Z(z), whereas w(z) C F(x x ). Tarski [94]
showed — without the help of the Axiom of Choice —that |z| < |s(z)|, for any
set x, and his proof also yields |z| < |w(z)|. Later, Truss showed in [101] that for
any infinite set = and for any n € w we have |s(z)| £ |z"| as well as |z"] < |w(z)|.
Furthermore, he showed that if there is a choice function for the set of finite
subsets of z, then |2"| < |s(z)|. According to Howard and Rubin [39, p.371] it
is not known whether |z"| < |s(x)| (Form 283 of [39]) is provable in ZF. The
cardinality of the set w(x) was further investigated by Forster and Truss in [23].

34. Aziom of Choice for families of n-element sets. For different n € w, C,
has been extensively studied by Mostowski in [67], and most of the following
results — which are all provable without the help of the Axiom of Choice —can
be found in that paper (see also Truss [99], Gauntt [27], or Jech [40, Chap-
ter 7, 84]):

(a) If m, n satisfy condition (S), then n < 8m?.

(b) C2 = C,, is provable if and only if n € {1,2,4}.

(c) For a finite set Z = {m1,...,my} of positive integers let Cz denote the
statement Cpy A -+ A Cin,. We say that Z,n satisfy condition (S) if for
every decomposition of n into a sum of primes, n = p1 + ...+ ps, at least
one prime p; belongs to Z. Now, the following condition holds: If Z, n satisfy
condition (S), then Cz implies C,.

(d) Let S, be the group of all permutation of {1,...,n}. A subgroup G of S,
is said to be fixed point free if for every i € {1,...,n} thereis a 7w € S,
such that 7(¢) # i. Let Z be again a finite set of positive integers. We say
that Z,n satisfy condition (T) if for every fixed point free subgroup G of
Sy there is a subgroup H of G and a finite sequence Hi,..., Hj of proper
subgroups of H such that the sum of indices [H : H1]+ ...+ [H : Hi] is in
Z. Now, the following condition holds: If Z,n satisfy condition (T), then
Cz implies C,,. Moreover we have: If Z,n do not satisfy condition (T), then
there is a model of ZF in which Cz holds and C,, fails.

We would also like to mention that the Axiom of Choice for Finite Sets C(co, < Ng)
is unprovable in ZF, even if we assume that C,, is true for each n € w (cf. Jech [40,
Chapter 7, 8§4], or Lévy [58] and Pincus [75]).

35. Ordering principles. Among the numerous choice principles which deal with
ordering we mention just two:

Ordering Principle: Every set can be linearly ordered.

If “<” and “<” are partial orderings of a set P, then we say that “<” extends
“<” if for any p,q € P, p < q implies p < q.

Order-Extension Principle: Every partial ordering of a set P can be ex-
tended to a linear ordering of P.
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Obviously, the Order-Extension Principle implies the Ordering Principle, but the
other direction fails (see Mathias [62]). Thus, the Ordering Principle is slightly
weaker than the Order-Extension Principle. Furthermore, Szpilrajn (who changed
his name from Szpilrajn to Marczewski while hiding from the Nazi persecu-
tion) showed in [86] that the Order-Extension Principle follows from the Axiom
of Choice, where one can even replace the Axiom of Choice by the Prime Ideal
Theorem (see for example Jech [40, 2.3.2]). We leave it as an exercise to the
reader to show that the Ordering Principle implies C(co, < Rg). Thus, we get the
following sequence of implications:

PIT = Order-Extension Principle = Ordering Principle = C(co, < Ro)

On the other hand, none of these implications is reversible (see Lauchli [56] and
Pincus [74, §4B], Felgner and Truss [21, Lemma 2.1], Mathias [62], or Jech [40,
Chapter 7]; compare also with Chapter 7| RELATED RESULT 48).

More ordering principles. Mathias showed in [62] that the following assertion
does not imply the Order-Extension Principle:

If X is a set of well-orderable sets, then there is a function f such that
for each z € X, f(x) is a well-ordering of z.

On the other hand, Truss [98] showed that following assertion, apparently only
slightly stronger than the ordering principle above, implies the Axiom of Choice:

If X is a set and f a function on X such that for each z € X, f(z) is a
non-empty set of well-orderings of z, then {f(z) : # € X} has a choice
function.

Principle of Dependent Choices. Finally, let us mention a choice principle which
is closely related to the Countable Axiom of Choice. Its meaning is that one is
allowed to make a countable number of consecutive choices.

Principle of Dependent Choices: If R is a binary relation on a non-empty
set S, and if for every x € S there exists y € S with xRy, then there is
a sequence (T, : n € w) of elements of S such that for all n € w we have
TnRTpi1.

The Principle of Dependent Choices, usually denoted DC, was formulated by
Bernays in [4] and for example investigated by Mostowski [68] (see also Jech [40,
Chapter 8]). Even though DC is significantly weaker than AC, it is stronger than
C(Xp, 00) and (thus) implies for example that every Dedekind-finite set is finite
(i.e., every infinity set is transfinite). Thus, in the presence of DC, many — kind
of natural — propositions are still provable. On the other hand, having just DC
instead of full AC, most of the somewhat paradoxical constructions (e.g., making
two balls from one) cannot be carried out anymore (see Herrlich [37] for some
‘disasters’ that happen with and without AC). In my opinion, DC reflects best
our intuition, and consequently, ZF+DC would be a quite reasonable and smooth
axiomatic system for Set Theory; however, it is not suitable for really exciting
results.

An alternative to the Aziom of Choice. Let w — (w)“ be the statement that
whenever the set [w]“ is coloured with 2 colours, there exists an infinite subset
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of w, all whose infinite subsets have the same colour (compare with the Ramsey
property defined in Chapter 9). In Chapter 2 we have seen that w — (w)* fails
in the presence of the Axiom of Choice. On the other hand, Mathias proved that
under the assumption of the existence of an inaccessible cardinal (defined on
page 315), w — (w)* is consistent with ZF+DC (see Mathias [64, Theorem 5.1]).
The combinatorial statement w — (w)“ has many interesting consequences: For
example Mathias [63] gave an elementary proof of the fact that if w — (w)®
holds, then there are no so-called rare filters and every ultrafilter over w is
principal (see Mathias [64, p.91 ff.] for similar results).

39. The Aziom of Determinacy. Another alternative to the Axiom of Choice is the
Axiom of Determinacy, which asserts that all games of a certain type are deter-
mined. In order to be more precise we have to introduce first some terminology:
With each subset A of “w we associate the following game G 4, played by two
players I and II. First I chooses a natural number ao, then IT chooses a natural
number bg, then I chooses a1, then II chooses b1, and so on. The game ends
after w steps: if the resulting sequence {ao, bo, a1,b1,...) is in A, then I wins,
otherwise II wins. A strategy (for I or II) is a rule that tells the player what
move to make depending on the previous moves of both players; and a strategy
is a winning strategy if the player who follows it always wins (for a more formal
definition see Chapter 10). The game G, is determined if one of the players has
a winning strategy.

Axiom of Determinacy (AD): For every set A C “w the game G , is deter-
mined, i.e., either player I or player IT has winning strategy.

An easy diagonal argument shows that AC is incompatible with AD, i.e., assum-
ing the Axiom of Choice there exists a set A C “w such that the game G, is not
determined (cf. Jech [42, Lemma 33.1]). In contrast we have that AD implies
that every countable family of non-empty sets of reals has a choice function
(cf. Jech [42, Lemma 33.2]). Moreover, one can show that Con(ZF+AD) implies
Con(ZF 4+ AD + DCQ), thus, even in the presence of AD we still can have DC.
Furthermore, AD implies that sets of reals are well behaved, e.g., every set of
reals is Lebesgue measurable, has the property of Baire, and every uncountable
set of reals contains a perfect subset, i.e., a closed set without isolated points
(cf. Jech [42, Theorem 33.3]); however, it also implies that every ultrafilter over
w is principal (cf. Kanamori [45, Proposition 28.1]) and that X; and R, are both
measurable cardinals (cf. Jech [42, Theorem 33.12]). Because of its nice conse-
quences for sets of reals, AD is a reasonable alternative to AC, especially for the
investigation of the real line (for the beauty of ZF + AD see for example Her-
rlich [37, Section 7.2]). In 1962, when Mycielskiand Steinhaus [71] introduced the
Axiom of Determinacy, they did not claim this new axiom to be intuitively true,
but stated that the purpose of their paper is only to propose another theory which
seems very interesting although its consistency is problematic. Since AD implies
the existence of large cardinals, the consistency of ZF 4+ AD cannot be derived
from that of ZF. Moreover, using very sophisticated techniques — far beyond
the scope of this book — Woodin proved that ZF + AD is equiconsistent with
ZFC + “There are infinitely many Woodin cardinals” (cf. Kanamori [45, Theo-
rem 32.16] or Jech [42, Theorem 33.27]). Further results and the corresponding
references can be found for example in Kanamori [45, Chapter 6] and Jech [42,
Chapter 33].
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How to Make Two Balls from One

Rests, which are so convenient to the composer and
singer, arose for two reasons: necessity and the de-
sire for ornamentation. As for necessity, it would
be impossible to sing an entire composition without
pausing, for it would cause fatigue that might well
prevent a singer from finishing.

Rest were adopted also for the sake of ornament.
With them parts could enter one after another in
fugue or consequence, procedures that give a com-
position an artful and pleasing effect.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

For two reasons we shall give the reader a rest: one reason is that the
reader deserves a pause to reflect on the axioms of ZFC; the other reason is
that we would like to show Robinson’s beautiful construction — relying on
AC — of how to make two balls from one by dividing the ball into only five
parts.

Equidecomposability

Two geometrical figures A and A’ (i.e., two sets of points lying on the straight
line R, on the plane R2, or in the three-dimensional space R?) are said to
be congruent, denoted A = A’, if A can be obtained from A’ by translation
and/or rotation, but we shall exclude reflections. Two geometrical figures A
and A’ are said to be equidecomposable, denoted A ~ A’, if there is a
positive integer n and partitions A = A;U...UA, and A" = A{U...UA,
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such that for all 1 < ¢ < n: A; = Al. To indicate that A and A’ are equide-
composable using at most n pieces we shall write A ~,, A’.

Below we shall present two somewhat paradoxical decompositions of the 2-
dimensional unit sphere S5 as well as of the 3-dimensional solid unit ball
Bli

Firstly we show that the unit sphere Sy can be partitioned into four parts,
say So = AUBUCUPF, such that F is countable, A = B = (, and A =
BUC. This result is known as Hausdorff’s Paradox, even though it is just a
paradoxical partition of the sphere S, rather than a paradox.

Secondly we show how to make two balls from one, in fact we show that
Bi ~5 B1U B;. This result is due to Robinson and is optimal with respect to
the number of pieces needed, i.e., By %4 B1UB;. We would like to mention
that about two decades earlier, Banach and Tarski already showed that a unit
ball and two unit balls are equidecomposable; however, their construction
requires many more than five pieces.

Both decompositions, Hausdorff’s partition of the sphere as well as Robin-
son’s decomposition of the ball, rely on the Axiom of Choice. Moreover, it can
be shown that in the absence of the Axiom of Choice neither decomposition
is provable — but this is beyond the scope of this book (see RELATED RE-
SULT 41). However, before we start the constructions, let us briefly discuss the
measure-theoretical background of these somewhat paradoxical partitions, in
particular of the decomposition of the ball: Firstly, why does Robinson’s de-
composition of the ball seem paradoxical? Of course, it is because the volume
is not preserved; but what are volumes? One could consider the notion of
volume as a function p which assigns to each set X C R3? a non-negative
real number, called the volume of A. We require that the function p has the
following basic properties:

e (@) =0and u(By) >0 (eg., u(B1) = 1),
o u(XUY)=p(X)+ pY) whenever X and Y are disjoint, and
e u(X)=p(Y) whenever X and Y are congruent.

Now, by the fact that a unit ball and two unit balls are equidecomposable, and
implicitly by Hausdorff’s result (see below), we see that there is no such mea-
sure on R3, i.e., 1 is not defined for all subsets of R3. Roughly speaking, there
are some dust-like subsets of R? (like the sets we shall construct) to which we
cannot assign a volume. Having this in mind, Robinson’s decomposition loses
its paradoxical character — but certainly not its beauty.

Hausdorff’s Paradox
Before we show how to make two balls from one, we will present Hausdorft’s

partition of the sphere. The itinerary is as follows: Firstly we define an infinite
subgroup H of SO(3), where SO(3) is the so-called special orthogonal group
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consisting of all rotations in R? leaving fixed the origin. Even though the group
H is infinite, it is generated by just two elements. Since H is a subgroup of
SO(3), there is a natural action of H on the unit sphere So which induces an
equivalence relation on Sy by z ~y <= 3Jg € H(g(z) = y) (e, ~y
iff y belongs to the orbit of z). Then we choose from each equivalence class
a representative — this is where the Axiom of Choice comes in — and use the
set of representatives to define Hausdorff’s partition of the sphere.

We begin the construction by defining the group H. For this, consider the
following two elements of SO(3), which will be the generators of H:

-1 0 0 L 2 V6 VB
=10 -1 0 V=7 V6 1 3
0 0 1 -6 3 1

The linear mapping ¢ is the rotation through 7 about the axis (0,0,1), and
1 is the rotation through 27/3 about the axis (0,1,1). Thus, ¢? = 93 =
where ¢ denotes the identity. We leave it as an exercise to the reader to show
by induction on n that for all integers n > 1 and for all e, = +1 (where
1 <k < n) we have:

1 aj a2\/6 as\/g
(- ) = SYEEY bive by b3
RV A

where all numbers aq, aq, ..., b5 are integers with

e a1 =2 mod 4,
e ay,as,by,..., b5 are odd, and
o by =bi, by =0l b3 =0, mod 4.

Hence, we conclude that for all n > 1: (o= - - - 1) & {1, ¢}. Consequently,
for all n > 1, for all e, = £1 (where 1 < k < n), and for g9 € {0,1} and
Ent+1 € {0, £1}, we get:

Pt (501/16"' o 507/161) cp%0 £y (*)

In other words, the only relations between ¢ and 9 are ¢? = 93 = 1. Let H be
the group of linear transformations — in fact rotations — of R? generated by
the two rotations ¢ and . Then H is a subgroup of SO(3) and every element
of H is a rotation which corresponds, by (*), to a unique reduced “word” of
the form

,l/)€n+lsazl/}€n e 501/}61 s080

where n > 0, e, = +1 (for all 1 <k <n), g € {0,1}, and ,41 € {0, £1}.
We now consider the so-called Cayley graph of H: The Cayley graph of

H is a graph with vertex set H, where for p1, po € H there is a directed edge

from p; to po if either po = ppy or po = Y¥p;. In the former case, the edge is

labelled ¢, in the latter case it is labelled 1, e.g., 1y —2 @ or P2p —25 .



156 6 How to Make Two Balls from One

To each vertex of the Cayley graph of H (i.e., to each element of H) we
assign a label, which is either 0, 00, or 0. The labelling is done according to
the following rules:

The identity ¢ gets the label 0.

If p € H is labelled O or O and o = ¢p, then o is labelled 0.

If p € H is labelled O and o = ¢p, then o is labelled either O or O.

If p € H is labelled O (or O, or 0) and o = vp, then o is labelled O (or
O, or O, respectively).

These rules are illustrated by the following figures and diagrams:

® (4
v 0 0
0 0
@ /
0<>0/0 D\w D%D Dzm
0 O O 0
v O - -
P P*

The lightface label [0 indicates that if p is a reduced word in H, labelled O,
of the form °p’ for e = £1, then ¢ p is always labelled O (not O).

The following figure shows part of the labelled Cayley graph of H:
O O

/e N

The group H acts on the 2-dimensional unit sphere S5 and we define the
equivalence relation “~” on Sy via x ~ y iff there is a p € H such that
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p(x) = y. The equivalence classes of “~” are usually called H-orbits, and

the H-orbit containing x € Sy is written [z]”. Let F C Sy be the set of all
fixed points (i.e., the set of all y € Sy such that there is a p € H \ {1} with
p(y) = y). Since H is countable and every rotation p € H has two fixed points,
F' is countable. We notice first that any point equivalent to a fixed point is
a fixed point (i.e., for every x € Sy \ F' we have [z]” C Sy \ F). Indeed, if
p(y) =y for some p € H and y € Sy, then opo~'(o(y)) = o(y); that is, if y
is fixed for p, then o(y) is fixed for o po~!. Thus, a class of equivalent points
consists either entirely of fixed points, or entirely of non-fixed points.

By the Axiom of Choice there is a choice function f for # = {[z]": z €
Se\ F}andlet M = {f([z]) :x €S2\ F}.

Now we define labels for all non-fixed points (i.e., points in Sy \ F) as
follows: Firstly, every element in M is labelled O. Secondly, if = € So\ F, then
there is a unique rotation p € H such that p(y) = x, where {y} = M N [z]".
We define the label of the point = by the label of p in the labelled Cayley
graph of H. This induces a partition of S5 \ F' into the following three parts:

A={z € S\ F:xis labelled O}
B={xz €8\ F:xislabelled O}
C={x €S\ F:uxis labelled 0}

Thus, So = AUBUCUF and by the labelling of the vertices of the Cayley
graph of H we get:

B=yl4], C=v'[4], BUC =gl

Hence, we get that A = B, A = C, and that A =2 BUC. We leave it as an
exercise to the reader to show that this implies (S3 \ F') ~24 (S2\ F') U (S2\ F).

For each point = € S let I, be the line joining the origin (i.e., the centre
of the sphere) with x, and for S C Sy define S := J{l. : = € S}. Then
the sets A, B, and C, cannot be Lebesgue measurable (otherwise we would
have 0 < u(B) = u(C) = p(B U C), a contradiction). In fact, Hausdorff’s
decomposition shows that there is no non-vanishing measure on Se which is
defined for all subsets of S5 such that congruent sets have the same measure.

Robinson’s Decomposition

Robinson’s decomposition of the ball is similar to Hausdorff’s partition of the
sphere: Firstly we define an infinite subgroup G of SO(3), where G is generated
by four generators. The action of G on the unit ball By (with centre the origin)
induces an equivalence relation on By, and we choose from each equivalence
class a representative. With the set of representatives and a sophisticated
labelling we finally define a partition of B; into five parts Ay, ..., As, such
that we can make a solid unit ball with either the two sets A; and As, or with
the three sets Ay, A4 and As.
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Let the rotations ¢ and v be as above. Let x := ¥ ¢. Then, one
easily verifies by induction on m that for all positive m € w we have
X" = Pley?)" o and xT = ¢? ()™ MY% Now, by (%), we get
that for every & > 1 and any non-zero integers pi, pa, ..., Dk:

XProxPo. Xt £

For 1 < m < 4 define
em = X" X"
We leave it again as an exercise to the reader to verify that for every k£ > 1, any

non-zero integers p1, pa, . . ., Pk, and any i1, ..., i € {1,2,3,4} where 4; # 941
foralll <1< k:

PP Pt FE L (1)

Let G be the subgroup of SO(3) generated by the four rotations ¢1, ..., @4.

We consider now the labelled Cayley graph of G, where we allow again
some freedom in the labelling process (indicated by lightface labels). The
rules for labelling the vertices of the Cayley graph of G are illustrated by the
following figure:

0/0 0/0 0/0 0/0 0/0 0/0
®3 ©3
N2 / NQ /
0<~—0—2>0/0 0~ 0 —2>0/0
®1 Y1
3 4" N st
®3 ©3
0/0/0 0 Oo/O0/0  0/0/0 O 0/0/0
0/0 0/0 0/0 0/0 0/0 0/0
®1 1
NLL / N4 /
0~——0—2>0/0 D~——0—2>0/0
®3 ©3
Nop2 N2t
®1 1

0/0/0 O o/o0/0  0/0/0 O 0/0/0
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The following figure shows part of the labelled Cayley graph of G in which
just ¢ and @9 are involved:

O
O o1 ad
902717\ —1 1 T§0271
Y2 $1
O o1 O O ad 22 O
o o
O ad
O O
wal 27" T<P171
p1 Y1
O0=—0——=0 O0=—0—7—=0
P1 L
ad 1 O
1 #2 2 —1
P2 T -1 —1 -1 T(pl
1 1 1 2
a ~— 0 Ld a Ld [l Ld a Ld a — 0
P1 \L(‘OQ ‘Pli ©2
P2 ©1
g V2 O
O O
O

The group G acts on the solid unit ball B; and we define the equivalence
relation “~” on Bj like above via x ~ y iff there is a p € G such that
p(xz) = y. The G-orbit containing x € B; is again written [z]". Let P be an
arbitrary point on the unit sphere (i.e., on the surface of B;), which does not
belong to any rotation axis, and finally let £ C B; be the set of all points
which belong to a rotation axis and which are distinct from the origin. It is
easy to see that for every x € By \ E we have [z]” C B; \ E. By the Axiom
of Choice there is a choice function f for .# = {[z]": x € By \ E} and let
M = {f([z]) : € By \ E} \ {0}, where 0 denotes the origin.

We first define labels for all points in By \ (E U [P]") as follows:

Every element in M is labelled O.

The origin is labelled .

If v € By \ E and p(y) = x, where {y} = M N [z]", then the label of the
point z is defined as the label of p in the labelled Cayley graph of G.

Consider now the set E and fix any class [z]” C E. Choose a rotation 6 # ¢
having a fixed point in [2]” and which is as short as possible, or more precisely,
which is expressible as a product of the smallest possible number of factors of
the form ¢X! with m € {1,2,3,4}. Fix an arbitrary point ¢ € [2]” such that
0(xp) = x0.
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Firstly we show that if p(xo) = o, then p = 0™ for some integer n. If
p = t, then p = 6° and we are done. Thus, we may assume that p # ¢.
Notice first that the initial and final factors of § — where 6 and all other
products of rotations are read from the right to the left — cannot be inverse,
since otherwise, for some o = ¢¢, where m € {1,2,3,4} and ¢ € {—1,1}, the
rotation 0@ o' would be shorter than  and would have a fixed point in the
same equivalence class [2]". Thus, the rotations 6 and §~! neither begin nor
end with the same factor. Now, if p has the same fixed point xgy as €, then
p0 = O0p. If pO does not simplify when p and 6 are written in terms of the
ol where m € {1,2,3,4}, then, by (¥), p must also not simplify. Hence,
p must begin with the block 6. Inductively one finds that p is obtained by
writing the block 6 n-times, that is, p = 0™, where n is a positive integer. In
case pf does simplify, then pf#~! does not (since § and §~! end with different
factors). Thus, we may apply the same argument as before to the equation
p0~1 =071p, and find that p = 0~™, where n is again a positive integer.

Secondly, notice that each point y € [z]” may be written in the form o, (zo),
where 0, € G is a rotation which starts neither with the block 6 (when written
in terms of the <pki1), nor with the inverse of the last factor of § — where 6 is
still read from the right to the left. The former property is obvious; and to
achieve the latter property consider o,6™, where n is sufficiently large, and then
simplify and remove any remaining blocks 6. Notice that this representation
is unique: For suppose that o(z¢) = p(xo), where o and p are again written
in terms of the 1. Then p~lo(xg) = z0, hence, p~lo = ™. If n > 0, this
yields 0 = p0™, which is impossible since p0™ does not simplify and o does
not begin with the block 6. If n < 0, we may interchange the roles of o andp
and again reach a contradiction. Hence we have n = 0, which is o = p.

Thirdly, assume that 6 is of the form

0=l ol

where the i;’s (1 <1 < k) belong to {1,2,3,4} and each exponent j; is +1.
So, starting with the point xg, we obtain successively the k distinct points

To, T1 = @ﬁ (w0), 22 = @fi@fi (x0), sk = 903’,: @3::11 T <Pﬁ (z0) = w0
which form a closed cycle. As shown above, each point y € [z]” can be written
uniquely in the form o, (x¢), where o, starts neither with the block 6 nor with
the rotation <p;kj k.

Consider the following figure:
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ro = 9(.’[0)

Tr—1 T

As a consequence of the preceding arguments we get that, starting with xg,
there are no other closed cycles in [z]™: Indeed, let y € [2]” and p # ¢ be such
that p(y) = y. Now, y = o, (z0) where o, is as above. Now, po,(zo) = 0,(z0)
and therefore o, 'poy,(x9) = 2. Consequently we have o, 'po, = 6" which
implies y € {zo,..., Tk }-

Now we are ready to assign a label to each point in E: Firstly, for every
[2]", where z € E, we choose a rotation 6, # ¢ having a fixed point in [z]”
and which is as short as possible, and then choose a point 2§ € [2]” such that
0(z§) = x§. Assume that 6, is of the form 6, = @f: AR cpﬁ where the i;’s
(for 1 <1 < k) belong to {1,2,3,4} and each exponent j; is £1. Then from
the point x§ we obtain successively the points xf, ..., z;_;, i = x§. We know
that every point y € [2]” can be written uniquely in the form o, (x§), where o,
starts neither with the block 6, nor with the rotation gai;j’“, and that, starting
with z§, there are no other closed cycles in [z]". Thus, in order to label the
points in [z] it is enough to assign a label to the k points of the cycle in a
way which respects the labelling rules given above; the remaining points may
be labelled like the non-fixed points, i.e., like the points in B; \ (E U [P]N).
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For this, consider the following schemata which illustrate the labelling rules:

Y1 ©2 2} P4
—_— —_— —_— —_—
Os——0 ¢ 0 O 0 OD——0
O 0 0 0 O 0 D%D
Dilﬂ 0 o o o 07O
D=——0 O 0 O 0 0D=——0
- - - -
! g2 @3 P!
1000 0100 1101 1110
1000 0100 1101 1110
0111 1011 0010 0001
0111 1011 0010 0001
=R = Ry = Rs = Ry

For 1 < m < 4, the matrix R,,, which corresponds to ¢,,, is such that a;; = 0
iff whenever o has label @, ¢, 0 cannot get label @. It is easy to see that
for 1 < m < 4, the matrix RI corresponds to ¢,, ~*. Consequently, the rota-
tion #, corresponds to a certain product of the matrices Ry, ..., R4 and their
transposes. In particular, 6, corresponds to a 4 X 4 matrix (. By consider-
ing the trace of @, tr(Q), and by applying the fact that for any matrices A
and B we have tr(AT) = tr(A) and tr(AB) = tr(BA), one can easily verify
that tr(Q) # 0. This implies that there exists a sequence of labels say (o),
@), ..., @) with Iy = I (here we use that tr(Q) # 0) such that labelling x?

with (1) (for 0 < i < k) respects the labelling rules.
So, we can assign a label to each of the k& points «§,...,z}_; of the cycle

in a way which respects the labelling rules, and consequently, we can assign a
label to every point in E. Thus, the only points which are not labelled yet are
the points in [P]™: For the point P, and only for this single point, we modify
the labelling as illustrated by the following figure (the further labelling of the
points in [P]” is done according to the labelling rules):

g g g




Robinson’s decomposition 163

Finally, we have labelled all points of By \ {P} with four labels, which
induces a partition of Bj into the following five parts:

Al = {:c € By : x is labelled D}
Ay ={z € By : x is labelled O}
Az ={z € By : x is labelled O}
Ay ={z € By : z is labelled O}
As ={P}

Obviously, By = A1UA,UA3U A4U As. We leave it as an exercise to the
reader to check that by the labelling rules (and the labelling of P) we have:

L4 @1[A1]=A1UA2UA5

[ ] <p2[A2]:A1UA2UA5

[ ] (pg[Ag] = A3UA4.

o p4[A4] = (A3U Ay) \ {0}, where 0 denotes the origin.

Hence, we get that Ay = AjUA;UAs = Ay, Az & A3UA,, and Ay =
(A3U Ay) \ {0}, and obviously we have { P} = {0}.

Now, with the two sets A; and Az, as well as with the three sets Ay, A4 and
As, we can make a solid unit ball: Firstly, notice that By = ¢1[A1]U@3[As].
Secondly, let o be a translation which moves P to the origin 0. Then B; =
2] A2) U @4[A4] U o[ A5]. Hence, we finally get

Bl ~5 BlL:JBl .

This result is optimal with respect to the number of pieces needed, in other
words we have
By #4 B1UB; .

To see this, assume towards a contradiction that there are distance-preserving
(not necessarily orientation-preserving) transformations 1, 12, 13,4 and a
partition By = Py U P, U P3U Py such that By = ¢1[P1] U 92[P] and By =
3| Ps] U 4[Py). Firstly notice that not all transformations )1, ¥9, 13, 104 could
leave the origin fixed, for then one copy of B; would be without a centre. Now
suppose for example that 14(0) # 0. Then Sy \ ¥4[B1] (where S denotes the
surface of By) contains more than a hemisphere (i.e., more than half of S3). In
other words, 14[B1]NS2, and in particular ¢4 [P4]N.S2, is contained in less than
a hemisphere. Since 3] Ps] must cover Sy \ ¥4[Py], it must cover more than
a hemisphere, which is only possible if ¥3(0) = 0 (otherwise, 13[Ps] U ¥4[Py4]
would not cover S»). Thus, Pj itself must cover more than a hemisphere, and
consequently, (P; U P») NSz is contained in less than a hemisphere. Hence,
(¢1[P1]Utp2[P,]) NSz is properly contained in Sz, and therefore 1y [Py] U [P]
cannot cover Ss.
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NOTES

In 1924, Banach and Tarski proved in [2] that if A and A’ are bounded subsets of
Euclidean space of three or more dimensions and both sets have interior points, then
A and A’ are equidecomposable. In particular, for A = B; and A’ = B1UB1, B; ~
B1U B; (cf. [2, p. 262 (Lemme 22)]). However, no estimate was given for the number
of pieces required to make two balls from one. Some years later, von Neumann [8,
p. 77] stated without proof that nine pieces are sufficient, and about two decades
later, Sierpiriski improved von Neumann’s result by showing that eight pieces are
sufficient (cf. [13]). Finally, Robinson was able to show that in fact just five pieces are
sufficient and that 5 is the smallest possible number of pieces, i.e., B1 %4 B1U Bj.

The proof of B1 ~5 B1UB; given above is taken essentially from [10]. How-
ever, we have made a few modifications: For example we have taken Sierpinski’s
construction given in [12] to obtain the four independent rotations ¢1, 2, ©3, Pa.
Furthermore we have replaced the parts in Robinson’s proof which deal with prod-
ucts of relations with products of matrices, and introduced the trick with the trace
in order to find fixed points in products of relations. Finally, we tried to visualise a
few key steps in the proof by some figures.

The results of Banach and Tarski [2] —and indirectly also the other paradoxical
decompositions of geometrical figures — were motivated by Hausdorff’s decompo-
sition of the sphere, given in [3] (see also [5, pp.5-10] or [4, p.469ff.]). The aim
of Hausdorff’s decomposition was to show that it is impossible to define a non-
vanishing measure p on Se which is defined for all subsets of Ss, is finitely additive
(ie., p(AUB) = u(A)+ p(B) whenever A and B are disjoint), and has the property
that congruent sets have the same measure.

Like Hartogs, also Hausdorff had to retire 1935 from his chair in Bonn and by
October 1941 he was forced to wear the “yellow star”. Around the end of the year
he was informed that he would be sent to Cologne — which he knew was just a
preliminary to deportation to Poland — but managed to avoid being sent. Shortly
later, in January 1942, he was informed again that he was to be interned now in
Endenich, and together with his wife and his wife’s sister, he committed suicide on
26 January.

RELATED RESULTS

40. Further paradozical decompositions. In [8, p.85f] von Neumann introduced
the following notion of decomposability: Let A and B be two subsets of a
metric space (X,d). A is said to be metrically smaller than B if there is a
bijection f : A — B such that for any distinct points z,y € A we have
d(z,y) < d(f(z),f(y)). Furthermore, A is smaller by finite decomposition
than B if there is a positive integer n and partitions A = A;U...UA, and
B = B1U...UB, such that for all 1 < i < n we have that A4; is metrically
smaller than B;. Now, von Neumann [8, p.115f.] showed that every interval of
the real line is smaller by finite decomposition than every other interval of the
real line. About two decades later, Sierpinski [14] proved a 2-dimensional ana-
logue by showing that every disc is smaller by finite decomposition than every
other disc.

For the consequences of the paradoxical decompositions for Measure Theory
and its connections with Group Theory, Geometry, and Logic, we refer the
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41.

42.

reader to Wagon [18], and for some historical background see Wapner [19].
For other paradoxical decompositions see Laczkovich [7] or Sierpinski [15], and
for a seemingly stronger notion of equidecomposability we refer the reader to
Wilson [20].

Limits of decomposability. In 1923, Banach showed that there exists a finitely
additive measure m on R?, extending the Lebesgue measure p, such that m is
defined for all subsets of R? and has the property that m(A) = m(A’) whenever
A= A’ (see Banach [1, Théoréme I]). This implies that whenever A and A’ are
Lebesgue measurable subsets of R? and A ~ A’, then u(A) = u(A’) (see Banach
and Tarski [2, Théoréme 16]). In particular, the unit disc and two unit discs are
not equidecomposable.

Neither Hausdorff’s partition of the sphere nor Robinson’s decomposition of
the ball can be carried out without the aid of some form of the Axiom of
Choice. The reason for this is that in the presence of inaccessible cardinals
(cf. Chapter 15 | RELATED RESULT 85), there exists a model of ZF in which ev-
ery set of reals is Lebesgue measurable (see Solovay [17], and Shelah [11] or
Raisonnier [9]).

Squaring the circle. As mentioned above, there is no 2-dimensional analogue
of Robinson’s decomposition of the ball, i.e., there is no way of making two
unit discs from one unit disc. However, Laczkovich [6] showed that a disc is
equidecomposable — by translations only — with a square of the same area. The
construction makes use of the Axiom of Choice and the figures are partitioned
into about 10°° pieces.
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7

Models of Set Theory with Atoms

A musician regards consonances more highly than
dissonances, so he composes principally with them.
Nevertheless, it seems that he also values those
sounds which are dissonant.

Now intervals that are dissonant produce a sound
that is disagreeable to the ear and render a compo-
sition harsh and without any sweetness. Therefore
a musician must know them not only to avoid them
where consonances are required, but to use them
within the parts of a composition.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

In this chapter, we shall construct various models of Set Theory in
which the Axiom of Choice fails. In particular, we shall construct a model
in which C(R¢,2) fails, and another one in which a cardinal m exists such
that m? < [m]2. These somewhat strange models are constructed in a similar
way to models of ZF (see the cumulative hierarchy introduced in Chapter 3).
However, instead of starting with the empty set (in order to build the cumu-
lative hierarchy) we start with a set of atoms and define a certain group ¢
of permutations of these atoms. Roughly speaking, a set = is in the model
if = is “stable” under certain subgroups ## C ¥ (i.e., for all permutations
m € J, mx = x). In this way we can make sure that some particular sets
(e.g., choice functions for a given family in the model) do not belong to the
model. Unfortunately, since we have to introduce atoms to construct these
models, we do not get models of ZF; however, using the JECH-SOCHOR EM-
BEDDING THEOREM 17.2, we can embed arbitrarily large fragments of these
models into models of ZF, which is sufficient for our purposes.
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Permutation Models

In this section we shall give the definition of so-called permutation models,
but first have to say a few words about Set Theory with atoms, denoted ZFA:
Set theory with atoms is characterised by the fact that it admits so-called
atoms or urelements.

Atoms are objects which do not have any elements but are distinct from
the empty set. The collection of atoms— assumed to be a set —is usually
denoted by A, and we add the constant symbol A to the language of Set
Theory. Thus, the language of Set Theory with atoms consists of the relation
symbol “€” and the constant symbol “A”, i.e., £7zea = {€,A}.

In ZFA we have two types of objects, namely sets and atoms, and since
atoms behave slightly different than sets (e.g., they do not contain elements
but are different from @), we have to add a new axiom for atoms (i.e., an
axiom for the symbol A) and have to modify the Axiom of Empty Set as well
as the Axiom of Extensionality.

Axiom of Empty Set (for ZFA):

Ju(z ¢ AAVz(z ¢ )

Axiom of Extensionality (for ZFA):
VaVy((x ¢ ANy ¢ A) »Vz(z € z2€y) »x =y)

Roughly speaking, any two objects, which are not atoms but have the same
elements, are equal. Notice that the Axiom of Extensionality implies that the
empty set is unique, i.e., ) is the only object that has no elements but does
not belong to A.

Axiom of Atoms:
Vo(z € A+ (x # 0 A -32(z € 2)))

In other words, an object is an atom if and only if it contains no elements but
is different from the set (). For an alternative definition of atoms see RELATED
RESULT 43.

It is time to mention that if Vz—¢(z), then we stipulate {z : ¢(z)} := 0 (not
some atom, which would also be possible). For example, if  and y do not have
any elements in common, i.e., Vz=(z € x Az € y), then z Ny = @). Notice that
with this convention we do not have to modify the Axiom of Extensionality for
ZFA.

The development of the theory ZFA is very much the same as that of
ZF (except for the definition of ordinals, where we have to require that an
ordinal does not have atoms among its elements). Let S be a set. Then by
transfinite recursion on o € Q we can define 22%(S) as follows: 2%(9) := S,
PorU(8) = 2%S) U 2(2*(S)) and P%(S) = Ugeq P(S) when a is



Permutation models 169

a limit ordinal. Furthermore, let 2°°(S) := J,cq Z%(S). If M is a model
of ZFA and A is the set of atoms of M, then M = Z°°(A). The class
V := 2°°(), which is a subclass of M, is a model of ZF and is called the
kernel. Notice that all ordinals belong to the kernel.

Now, the underlying idea of permutation models, which are models of ZFA,
is the fact that the axioms of ZFA do not distinguish between the atoms, and
so a permutation of the set of atoms induces an automorphism of the universe.

Let A be a set of atoms and let M = F°°(A) be a model of ZFA. Fur-
thermore, in M, let ¢ be a group of permutations (or automorphisms) of A,
where a permutation of A is a one-to-one mapping from A onto A. We say

that a set .% of subgroups of ¢ is a normal filter on ¢ if for all subgroups
H, K of 4 we have:

(A) e F

(B) if He % and H C K, then K € .
C)ift He F and K € #,then HNK € #
(D) if r €9 and H € Z, then THr ' € F
(E) foreachac A, {r €9 :ma = a} € F

For every set x € M there is a least ordinal a such that x € #%(A). So, by
induction on the ordinals, for every m € ¢ and for every set x € M we can
define 7z by stipulating

0 if x =0,
T =< 7T ifx € A,

{my:y €z} otherwise.

Notice that for all z,y € M and every 7 € 4 wehaverz =y <= z=71"ly
and x € y <= 7r € 7y, which leads to the following definition: A bijective
class function F' : M — M is called an €-automorphism of M if for all
x,y € M we have x € y < F(z) € F(y). In particular, 7 : M — M is
an €-automorphism of M.

For z € M, the symmetry group of z, denoted symy (), is the group
of all permutations in ¢4 which map z to x, in other words

symy(z) ={r € ¥ :mx = x}.

A set z is said to be symmetric (with respect to a normal filter .%) if the
symmetry group of z belongs to .Z, i.e., symy(z) € .#. By (E) we have that
every atom a € A is symmetric. A set x is called hereditarily symmetric if
x as well as each element of its transitive closure is symmetric. Notice that for
all x € M and every w € ¢, x is hereditarily symmetric iff 7x is hereditarily
symmetric.

Let YV C M be the class of all hereditarily symmetric sets. Then V is a
transitive model of ZFA and we call ¥V a permutation model. Because A,
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as well as every a € A, is symmetric, we get that the set of atoms A belongs
to V.

Because () is hereditarily symmetric and for all ordinals « the set 22(0)
is hereditarily symmetric too, the kernel vV = Z>() is a subclass of V.
Notice that every m € ¢ which is not the identity mapping is a non-trivial
e-automorphism of V. On the other hand, all e-automorphisms of models of
ZF are trivial. In particular, by induction on « one easily verifies the following

Fact 7.1. For any set x € V and any ™ € 4 we have mx = .

Since the atoms a € A do not contain any elements, but are distinct from
the empty set, the permutation models are not models of ZF. However, by the
JECH-SOCHOR EMBEDDING THEOREM 17.2 one can embed arbitrarily large
fragments of a permutation model into a well-founded model of ZF.

Most of the well-known permutation models are of the following simple
type: Let ¢4 be a group of permutations of A. A family I of subsets of A, for
example I = fin(A), is a normal ideal if for all subsets F, F' of A we have:

(a) el

(b) if Feland FCE, then Fel
(¢)if E€Tand Fel, then EUF €
(d) fre€e¥b and E€ I, thentE €l
(e) foreach a € A, {a} €1

For each set S C A, let

~— '~ ~—

fixg(S)={re€¥:ma = aforallacsS}

and let .Z be the filter on ¢ generated by the subgroups {fixg(E) : E € I}.
Then . is a normal filter. Furthermore, x is symmetric if and only if there
exists a set of atoms E, € I such that

fixg (Ey) C symg(x)

where E, is called a support of x. Notice that if E, is a support of x and
E, C F, €I, then F, is a support of x as well.

Below, we give some relationships which are consistent with ZF between
the cardinals defined in Chapter 4. We will do this by investigating the rela-
tions between certain sets in some permutation models. The general construc-
tion will be as follows: Let V be a permutation model with a set of atoms A
and let m be a set in V. Let €(m) := {z € V: VF |z| = |m|}. Then €¢(m) is
in general a class in V. The cardinality of m in the model V (denoted by m)
is defined by m := €(m) N P*(A) NV, where « is the smallest ordinal such
that €(m) N Z*(A) NV # 0.

If m is a set in a permutation model ¥V and we have for example V F
|seq(m)| < |fin(m)|, and therefore V F seq(m) < fin(m), then, by the JECH-
SocHOR EMBEDDING THEOREM 17.2, there exist a well-founded model V
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of ZF and a set 7 such that V E |seq(n)| < |fin(rh)| and consequently
V E seq(i) < fin(f), where i and @ are the cardinalities of the sets
and 7 respectively. In fact, the JECH-SOCHOR EMBEDDING THEOREM 17.2
enables us to translate every relation between sets in a permutation model to
a well-founded model. Hence, in order to prove that a relation between some
cardinals is consistent with ZF, it is enough to find a permutation model in
which the desired relation holds between the corresponding sets. Below we
shall make use of this method without explicitly mentioning it.

The Basic Fraenkel Model

In this section we shall present a simple example of a permutation model in
which the Axiom of Choice fails.

Let A be a countable infinite set (the atoms), let ¢4 be the group of all
permutations of A, and let I, be the set of all finite subsets of A. Obviously,
Ig, is a normal ideal and the filter derived from Ig, as described above is a
normal filter.

Let Vg, (F for Fraenkel) be the corresponding permutation model, the
so-called basic Fraenkel model. Note that a set = belongs to Vg, if and
only if  is symmetric and each y € x belongs to Vg, too.

Before we start with some results involving subsets of A, let us recall that a
set S is transfinite if Ry < |S|; otherwise S is called D-finite.

LEMMA 7.2. Let E € Ig,; then each S C A with support E is either finite or
co-finite, i.e., A\ S is finite. Furthermore, if S is finite, then S C F, and if S
is co-finite, then (A\ S) C E.

Proof. Let S C A with support E. Because E is a support of S, for all
7w € fix(F) and every a € A we have ma € S iff a € S. If S contains an
element ag of A\ E, then it contains them all, since permutations in fix(E)
can send ag to any other element of A\ E. Thus, either S C E or (A\S) C E.

As a consequence we get the following result (cf. Chapter 4| RELATED RE-
SULT 18): Let m denote the cardinality of the set of atoms of the basic Fraenkel
model. Then

Vi, E (227)70 = 2finm),

Indeed, every subset of A in Vg, is either finite or co-finite, and therefore,
2™ = 2.fin(m). Hence, (zl"')NO = (zﬁ“(“‘>)2'N“ and by LAUCHLI’S LEMMA 4.27
this is equal to 2fin(m).

PROPOSITION 7.3. Let A be the set of atoms of the basic Fraenkel model and
let m denote its cardinality. Then Vg, F No £ m; in particular, in V, there
are infinite D-finite sets. In particular, it is not provable in ZF that every
D-finite set is finite.
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Proof. If there is a one-to-one mapping f : w — A, then the set S = {f(2n) :
n e w} would be an infinite, co-infinite set of atoms, which is a contradiction
to LEMMA 7.2. —

We have seen in Chapter 4 that for every infinite cardinal m, 2% < 2fin(m),
In contrast to this fact, the following result shows that in the model Vg, the
power set of an infinite set can be D-finite, which shows that even for infinite
cardinals m, the statement Ry < 2™ is in general not provable in ZF.

PROPOSITION 7.4. Let A be the set of atoms of the basic Fraenkel model and
let m denote its cardinality. Then Vg, F Ng £ 2™. In particular, it is not
provable in ZF that the power set of an infinite set is transfinite.

Proof. Assume towards a contradiction that there exists a one-to-one function
f:w — P(A) which belongs to Vg,. Then, because f is symmetric, there
is a finite set E; C A (a support of f) such that fixy (Ey) C symy/(f). Now,
let n € w be such that fixy(Ef) ¢ symy (f(n)) (such an n exists because,
by LEMMA 7.2, E; supports only finitely many subsets of A). Further, let
7 € fixg (Ey) be such that 7 f(n) # f(n). By FACT 7.1 we get that 7n = n, and
therefore, f(mn) = f(n). So, E¢ cannot be a support of f which contradicts
the choice of E; and shows that a one-to-one function from w into Z?(A)
cannot belong to the model Vg,. =

By PROPOSITION 4.22 we know that if 2™ = n - fin(m) for some n € w, then
n = 2% for some k € w. The next result shows that also a kind of converse is
true:

PROPOSITION 7.5. For every number n of the form n = 2*, where k € w,
there is a set Ay in Vg, such that Vi, F | 2(Ag)| = |n x fin(4z)|.

Proof. Tf n = 29, then the statement is true for every finite set A (in every
model of Set Theory).

Let k € w\ {0} and let n = 2*. Further, let A be the set of atoms of Vg,
and let Ay, = k x A. By LEMMA 7.2 we know that every subset of A (in Vg,)
is either finite or co-finite and therefore |#?(A4)| = 2-|fin(A)|. Thus, in Vg, we
have | 2(Ax)| = |2 (k x A)| = | 2(A)F| = | (2 x fin(4))"| = |2* x fin(A)| =
|2% x fin(A)|, and therefore Vi, F |22(Ax)| = |n x fin(Ay)|. .

The Second Fraenkel Model

The set of atoms of the second Fraenkel model consists of countably many
mutually disjoint 2-element sets:

A= U P, , where P, = {ay,b,} (forn € w)

new
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Let 4 be the group of those permutations of A which preserve the pairs P,
ie., 7({an,bn}) = {an, by} (for each 7 € & and every n € w). Further, let Ig,
be the set of all finite subsets of A. Then I, is a normal ideal and the filter
generated by Iy is a normal filter.

Let Vg, be the corresponding permutation model, called the second
Fraenkel model. The following theorem summarises the main features of
this model.

THEOREM 7.6. (a) For each n € w the set P, belongs to Vp,.

(b) The sequence (P, : n € w) belongs to Vg,. In particular, the set of pairs
{P, : n € w} is countable in Vp,.

(c) There is no choice function on {P,, : n € w}. In particular, C(Xo, 2) fails
in Vp, which shows that ZF ¥ C(Xg, 2).

Proof. (a) For each m € ¢ and for every n € w we have 7P, = P,, which
implies that every P, is symmetric.

(b) For each m € 4 we have m((P, : n € w)) = (7P, :n € w) = (P, : n € w),
and therefore by (a), (P, : n € w) is hereditarily symmetric.

(c) Assume that there is a choice function f on {P, : n € w} which belongs to
Vr,. The choice function f would be a function from w into (J{P, : n € w}
such that f(n) € P, (for every n € w). Let {ao, bo, ..., ax,br} be a support
of f and let 7 € fixy ({ao,bo, .. .,ak,bk}) be such that magr1 = bra1. Then
m(k+1)=k+1, but ﬂ(f(k+ 1)) # f(k+ 1), which implies that 7 f # f and
contradicts the fact that {ao, b, ..., ax, by} is a support of f. —

We leave it as an exercise to the reader to show that Cy, which is a more
general choice principle than C(Ry, 2), already fails in Vg, .

The following result shows that in Vp,, Kénig's Lemma fails even for binary
trees.

PROPOSITION 7.7. In Vp, there exists an infinite binary tree which does not
have an infinite branch.

Proof. We construct the binary tree T = (V, E) with vertex set V and edge
set E as follows: For n € wlet V,, = {s € "A : Vi € n(s(i) € P;)} and let
V = U, e, Va- Further, let (s,t) € E iff for somen € w, s € V,,, t € V.41, and
t|, = s. It is easily verified that T is an infinite tree and since every vertex
s € V has exactly two successors, namely s a, and sf\bn, where s € V,, and
s x denotes the concatenation of the sequence s and the element x, T is even
a binary tree. On the other hand, an infinite branch through 7" would yield a
choice function on {P, : n € w}, a contradiction to THEOREM 7.6.(c). —

In a similar way one can show that Ramsey’s original theorem fails in Vp,:

PROPOSITION 7.8. In Vp, there exist an infinite set S and a 2-colouring of
[S])? such that no infinite subset of S is homogeneous.
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Proof. Let S be the set of atoms of Vg, and colour a 2-element set of atoms
{a, b} red, if {a,b} = P, for some n € w; otherwise, colour it blue. We leave it
as an exercise to the reader to show that no infinite homogeneous set belongs
to vF2 . —

The last result of this section is a kind of infinite version of PROPOSITION 7.5.

PROPOSITION 7.9. In Vp,, let m denote the cardinality of the set of atoms.
Then Vg, F 2™ = 2% . fin(m).

Proof. By the CANTOR-BERNSTEIN THEOREM 3.17 it is enough to find two
one-to-one mappings f : Z(A) — “2 x fin(A4) and g : “2 x fin(4) — Z(A).
For every n € w let U, = U,¢,, Pi-

For S C Alet m =J{n+1: |P,NS|=1}. Then Fg = SNU,, is finite and
for every n > m we have either P, C S or P,NS = (. Now define yg : w — 2
by stipulating xs(n) = 0 iff Pyymy1 NS =0, and define f(S) := (xs, Fs). It
is easily verified that the function f is one-to-one.

Let (x, F) € “2 x fin(A) and define again m = |J{n+1:|P, N F| = 1}.
Then Fy = FNU,, and Fy = F \ Fy are finite. Further, let

SX,F:FoUU{PQnZPngFl}UU{P2n+m+1ZX(n)=1}gA

and define g((x, F)) := Sy, F. It is again easy to check that the function g is
one-to-one. —

The Ordered Mostowski Model

The set of atoms A of the ordered Mostowski model consists of an infinite
countable set together with an ordering “<™” such that A is densely ordered
and does not have a smallest or greatest element, i.e., A is order-isomorphic to
the rational numbers. Let ¢4 be the group of all order-preserving permutations
of A and let I, be the ideal of the finite subsets of A. Then again, Ig, is a
normal ideal and the filter generated by Ig, is a normal filter.

Let Vi (M for Mostowski) be the corresponding permutation model,
called the ordered Mostowski model.

First let us show that the binary relation “<™” belongs to the model V.
In other words, for any two distinct atoms a; and as we can decide in V),
whether we have a; < as or as <™ a;.

LEMMA 7.10. The set R = {(a1,az2) : a1 <™ a2} C A x A belongs to V.

Proof. If ay <™ ag, then may; <™ may (for any 7 € ¢), and therefore, (a1, a2) €
R, iff (may,maz) € R<, which implies that symy(R<) = 9. —

Because by definition all sets in the ordered Mostowski model must be sym-
metric, each set in Vs has a finite support. Moreover, each set in V), has a
unique least support:
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LEMMA 7.11. (a) If Ey and Es are supports of x, then also E = F1 N Es is
a support of x.

(b) Every set x € V) has a least support.

(c) The class of all pairs (x, E), where x € Vs and E is the least support of
x, Is symmetric.

Proof. (a) Let E; and E> be two finite supports of the set z € V), and
let E = Ey N Esy. Notice that for every 7 € fixg(E) there are finitely many
P1y- -y Pn € fixg(E1) and o1, ..., 0, € fixg(F2) such that m = p1o1 - pron.
To see this, it might be better to draw a picture than to prove it formally
(e.g., let E1 = {ag,a1,a2} and Ey = {bg,b1,ba} be such that ag = by <™
a; <M by <M ag <M by, and let 7w € fixy ({ao}) be such that by <™ e for
some ag <M ¢ < by). Since p;xz = x = o;x (for all 1 <4 < n) we have

T = P101 " PpnOnd = P101 " Op—-1PpL = ... = P1T =T

for all 7 € fixg(E), which shows that 7 € symg(x). Hence, fixy(F) C
symg (2) which implies that E is a support of x.

(b) Let Ey be a support of z. The least support of x is the intersection of all
supports of  which are subsets of Ey. Since there are only finitely many of
such supports, by (a), the intersection is a support of x.

(c) Let z € Vy and let E be the least support of z. If # € ¥, then
fixg (TE) = 7 - fixg (E) - 771 and symy (7z) = 7 - symg/(z) - 7!, and thus, if
FE is a support of z, then wFE is a support of mzx. —

For every finite set £ C A, one can give a complete description of the subsets
of A with support E, which leads to the following

LEMMA 7.12. If E C A is a finite set of cardinality n, then there are 22"+!
sets S C A in V) such that E is a support of S.

Proof. Let E = {a1,...,a,} be such that a; < ... <M a,,. Assume that F is
a support of the set S C A. If there is an sy € S such that a; < so <M a;41
(for some 1 < i < n), then {s € A : a; <M s <M a;41} C S. To see this,
notice that for every s with a; < s <M a;4; there is a 7 € fixg(FE) such that
wso = s. Similarly, if there is an s € S such that s <™ a; (or a,, <M s), then
{s€eA:s<Ma} CS(or{se€A:a, <Ms} CS). Now, there are n + 1
such intervals and every interval is entirely contained in .S or disjoint from S.
Further, for each 1 < i < n, either a; € S or a; ¢ S. Hence, there are 227 +!
different subsets of A which have E as a support. —

Since the set of atoms in the ordered Mostowski model is infinite, the following
result implies that the Axiom of Choice fails in V), (compare this result with
PROPOSITION 7.4).

LEMMA 7.13. Let A be the set of atoms of the ordered Mostowski model and
let m denote its cardinality. Then Vy; E Ry £ 2™.
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Proof. We have to show that there is no one-to-one mapping f : w — Z(A).
Now, if a finite set £ C A is a support of f, then E supports each of the
infinitely many distinct sets f(n) (n € w), because all permutations fix each
n € w. On the other hand, by LEMMA 7.12, a finite set £ C A can support
just finitely many sets. -

By THEOREM 4.21, for every infinite cardinal m we have fin(m) < 2™. In
contrast to this result we show now that Vs F 2™ <* fin(m), where m denotes
the cardinality of the set of atoms of V ;. As a consequence we get by FACT 4.8
that 22" < 2fi"(™) which implies by the CANTOR-BERNSTEIN THEOREM 3.17
that Vs E 22" = 2fin(m),

PROPOSITION 7.14. Let A be the set of atoms of the ordered Mostowski
model. Then in V) there is a surjection from fin(A) onto Z(A). Thus, it is
consistent with ZF that there are infinite cardinals m such that 2™ <* fin(m),
even though fin(m) < 2™ is provable in ZF for every infinite cardinal m.

Proof. The key idea in order to construct a surjective function g : fin(A) —
P (A) is to define an ordering of the subsets of A sharing a given finite support.
For E={a; <™...<Ma,} efin(A)let [y ={a€A:a<Ma1}, I, ={ac€
A:ia, <Ma}l,and I; ={a € A:a; <™a <Ma;41} for 1 <i<n-—1.For
every function x € ?"*12 we assign a set S, € Z(A) by

Se= |JLu{a:x@i-1)=1}.

x(20)=1

Then for every x € %12, E is a support of S, and for every Sy C A such
that F is a support of Sy there is a yo € 2"T!2 such that Sy = S,, (this
follows from LEMMA 7.12).

We now consider for a moment the set 2°t22: Let “<;” be the lexicographic
ordering on 222 j.e., £ <; & if there is a j € 2n + 2 such that £(j) < €'(4),
but for all i < j we have £(i) = &'(). For & € 2"*22 let £ € 2"*+22 be such that
for all i € 2n + 2, £(i) := 1 — £(i). We define the function p : 2722 — 20422

by stipulating
o 5 1f§ <i ga
we) = {f otherwise,

in other words, pu(¢) is & or £, whichever begins with 0.
Let us turn back to the set 2**12. For x € 2"*12let x := yU{(2n+1,0)}.
Notice that xt € 27122, We define the ordering “<,,” on 2"*12 by stipulating

X0 =n X1 = H(X(J)r) <i H(Xf)'

Now, we are ready to define a surjection from fin(A) onto #(A). For this,
consider the following function:

g:fin(4) — Z(A)

E — SXTE‘
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where for |E| = n, x} denotes the n'" function of 2"*12 with respect to the
ordering “<,,”.

By construction, for every set Sy € P (A) there is a finite set E such that
FE is a support of Sy and Sy = SX‘*E‘. Indeed, let Ey be the least support of
So. Then there is an n € w such that Sp = Sy.. By the properties of the
ordering “<|g,", n > |Ep| and we leave it as an exercise to show that Ey can
be extended to a finite set E such that |E| = n and Sxry, = So. Hence, the

mapping g is surjective as required. —

PROPOSITION 7.15. Let m denote the cardinality of the set of atoms of the
ordered Mostowski model. Then

Vi E n-fin(m) < 2™ < Rg - fin(m)
for every n € w.

Proof (Sketch). 2™ < ¥ - fin(m): For S C A let E be the least support of S,
let n = |E|, and let k € w be such that S = S, , where xj denotes the k'l
function of 2"*12 with respect to the ordering “<,,” defined above. Then the
mapping S +— (k, Sy, ) is an injective function from &(A) into w x fin(A).

2™ = Ng - fin(m): This is an immediate consequence of LEMMA 7.13.

n-fin(m) < 2™: For j € n and F € fin(A) large enough we can define S; g
as the j set which has F as its least support. For E € fin(A) which are not
large enough to allow such an encoding, we have to work with a large enough
auxiliary set Fy and then do some encoding for example on FE U Ej.

n - fin(m) # 2™: Assume towards a contradiction that there is an injective
function f : Z(A) — n x fin(A4). Let k € w be such that 22k > n . 2%
and let Ey C A be a finite set of size k. By LEMMA 7.12 there are 22F+1
subsets of A, say Si,59,..., which have Fy as their support. Since there are
only 2% subsets of Ej, by the choice of k there is a first S; (1 < i < 22k+1)
such that f(S;) ¢ n x fin(Ep). Now, f(S;) = (m, Fy) for some m € k and
Fy € fin(A). Since Fy ¢ Ey we have |Ey U Fy| > |Ep| and can proceed
with Fy = Eg U Fp. Finally, with the sets Ey, E1,... we get Ry < 2™, which
contradicts LEMMA 7.13. —

The Prime Ideal Theorem Revisited

In this section we show that the Prime ldeal Theorem holds in the ordered
Mostowski model. In other words, the Axiom of Choice is not provable in ZFA
from the Prime Ideal Theorem.

THEOREM 7.16. The Prime ldeal Theorem holds in the ordered Mostowski
model.
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Proof. By THEOREM 5.15 it is enough to show that in Vj;, for every binary
mess B there is a function f which is consistent with B.

Let B € Vs be a binary mess on a set S, and let Eg be the least support
of B. On S define an equivalence relation by stipulating x ~ y iff there is a
7 € fixg (ER) such that y = wx. For every z € S let

a]"={mz : 7 € fixg(Ep)} (the orbit of z)

and let S = {[z]” : @ € S}. Notice that & ~ y iff [z]” = [y]".

The goal — which will become clear later —is to lift some functions ¢ of
the binary mess on S to functions i defined on finite subsets of S in order to
get a binary mess B on S so that every function g on S which is consistent
with B induces a function f € Vj; which is consistent with B. Let B consist of
all binary functions h defined on finite subsets Q of S that satisfy the following
condition: For every finite set P C |J{[z] : [2] € Q} there is a t € B such
that ¢ is defined on P and

t(z) = h([z]") for every z € P.

If this is the case, we say that the set P admits the function h. In other words,
P admits A if and only if there is a binary function ¢ € B which is defined
on P such that whenever z,y € P and x ~ y, then t(z) = t(y) = h([z]"). In
order to show that 5 is a binary mess, we have to verify that for every finite
set Q C S there is a binary function h € B which is defined on Q.

Once we know that B is a binary mess, we can take any ¢ on S consistent
with B and define

f(z) = g([z])

for every x € S. The function f is obviously symmetric, hence f € V), and
we are done. So, all that we have to do is to prove the following claim:

For every finite set Q C S there is a binary function he B defined on
Q, such that for every finite set P C (J {[z] : [2]” € Q}, P admits h.

For simplicity we distinguish two cases:

Eg is empty: Let Q be a finite subset of S = { rx € S} and let Q = {:L' €
S : [z]” € Q}. We are looking for a binary function h on Q such that every
finite subset of @ admits h. Notice that we have r = 27 binary functions h on
Q to choose from, where ¢ = |Q| In M, fix some Py C @ which has exactly
one element in each equivalence class [z]” € Q and notice that by definition
of S, Q = U{TFPO tTE %} Let us say that P C @ is a k-set if there are
k permutations 7y, ..., T, € 4 such that P = 11 Py U ... U, Py. Since every
finite subset of @ is included in a k-set for some k, it is sufficient to show that
for every k and for every k-set P there is a binary function h on Q such that
P admits h.
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Let k be arbitrary but fixed. We say that two k-sets P; and P, are iso-
morphic if P, = w(Py) for some © € 4. Notice that being isomorphic is an
equivalence relation. If P; and P, are isomorphic and P; admits i (where h
is some binary function on Q), then also P, admits h. To see this, first notice
that since Eg = (), a binary function ¢ belongs to B iff wt belongs to B (for
any m € ¢4). If P; admits h, then there is a ¢ € B such that t is defined on
Py and for all x € P; we have ¢(x) = h([z]"). Let P» = w(P1) and consider
the binary function ¢ € B: Since t(z) € {0,1}, 7(t(z)) = h([z]"). Further,
for each y € P, there is an x € P; such that y = mx, which implies that the
binary function 7t is defined on P,. Hence, for any y € Py and z =71y € P,
we have (7t)(y) = (wt)(7rz) = t(z) = h([z]") = h([y]"), which shows that P
admits h. Thus, if a k-set P admits the binary function h, then all k-sets
belonging to the same isomorphism class as P also admit h.

Now we show that there are only finitely many isomorphism classes of k-
sets: Let Ey be the least support of Py and let n = |Ep|. Let {E1, ..., Ex} and
{E1, ..., EL} be two sets of n-element subsets of A (where A is the set of atoms
of Vir). We say that these two so-called (k, n)-sets are isomorphic if there is
a m € ¢ which transforms the set {Ey,..., Ey} into the set {E],..., E},}.
Notice that there are only finitely many isomorphism classes of (k, n)-sets. To
see this, let us just consider the case when n = k = 2: Let F; = {a,b} and
Es = {c,d}, and without loss of generality let us assume that a < b, ¢ < d,
and that ¢ = min{a, b, ¢, d}. Then the seven different types we can have are
represented by a < b<c<d,a<b=c<d,a<c<b<d, a<c<b=d,
a=c<b<d,a=c<b=d,anda<ec<d<hb.

For each £ = wEy let Pg := wP,. Notice that for every £ = wE; there
is a function h defined on Q such that Pr admits h. (Let t € B be any
function defined on Pg.) Further, for each (k,n)-set E = {Ey,...,Ey} =
{mEo,...,meEo} let Pp := mPyU...UmpPy. If E and E’ are isomorphic,
then so are the two k-sets Pz and Pg,. On the other hand, for every k-set
P there are k permutations my,..., 7, € 4 such that P =m PyU... U Py,
which implies that P = Pz where E = {m Ey,...,mEo}, and consequently
we get that Pg and Pg, are isomorphic iff £ and E’ are isomorphic. Hence,
since there are only finitely many isomorphism classes of (k, n)-sets, there are
only finitely many isomorphism classes of k-sets.

Thus it suffices to find a binary function A such that for any set of rep-
resentatives {F1, ..., Ep}, where p is the number of isomorphism classes of
(k,n)-sets, we have that each k-set Pz (1 <i < p) admits h.

Now we apply the FINITE RAMSEY THEOREM 2.3 which tells us that for
all m,n,r € w there exists an N € w such that for every colouring of [N]"
with r colours, there exists a set H € [N]™, all whose n-element subsets have
the same colour: Let m = k-n and r = 29, and let F' € [A]"Y be a set of
N atoms. Further, let P = |J{Pg : E € [F]"} and take any ¢ € B which
is defined on P. Then each t|p, corresponds to one of the r possible binary
functions hi,...,h, defined on Q, which induces a colouring on [F]" with r
colours. By the FINITE RAMSEY THEOREM 2.3 we find a set H € [F]™ such
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that for every £ € [H]", t|p, is the same function and therefore induces a
unique function on @, say h. Finally, by the choice of m, the set H contains
members from each isomorphism class, which implies that each k-set P C Q

admits h.

Eg is non-empty: Assume Eg = {a1,...,a;} where a1 < ... < q;. Instead of
¢ we have to work with fixy (Eg). Let I = [{a€ A:a<ai1}|, [; ={a € A:
aj—1 <a<aj}| (forl<j<l),and I; = |[{a € A:a; < a}|. Let Py and Ej be
as above and for 1 < j <[ let n; := |Ey N I;|. Instead of (k,n)-sets consider
sets of the form {&1,...,&,}, wherefor 1 <i<n, & = (E;1,...,E;;) and for
each 1 <j <, E,; CI; and |E; ;| = n;. Now we can proceed as above until
we reach the point where the FINITE RAMSEY THEOREM comes in. Here, the
combinatorics gets slightly more involved and instead of the FINITE RAMSEY
THEOREM we need Rado’s generalisation, which is THEOREM 2.7 given in
Chapter 2: It says that for all v, 1, m,n1,...,n; € w there is some N € w such
that whenever [N]™ x ... x [N]™ is coloured with r colours, then there are
M,...,M; € [N]™ such that [M;]™ x ... x [M;]™ is monochromatic. Let
m =max{k-n; : 1 <i <1} and r = 29, and let F,...,F; € [A]" be N-
element sets of atoms such that for every 1 < j <[, F; C I;. Then we find
l sets M; € [F;]™ such that [M;]™* x ... x [M;]™ is monochromatic, which
implies again that each k-set P C Q admits the same function h. —

Custom-Built Permutation Models

Below we shall construct two permutation models. The first one is designed
in order to show that the existence of infinite cardinals m for which seq(m) <
fin(m) is consistent with ZF. By modifying the first custom-built permutation
model, this somewhat counter intuitive result can even be pushed a little bit
further by showing that also the existence of infinite cardinals m for which
m? < [m]? is consistent with ZF.

The first custom-built permutation model

The set of atoms of the first custom-built permutation model is built by
induction, where every atom encodes a finite sequence of atoms on a lower
level and every finite sequence of atoms appears in finitely many atoms.

By induction on n € w we construct sets A,, functions Seq,, from A, to
seq(A,-1), and groups G,, which are subgroups of the group of permutations
of A, as follows:

(o) Ao := {ao}, where ag is an atom, Seqy(ag) = ( ), and Go = {+} is the
group of all permutations of Ajg.

For n € w let k, = |G|, and let .#, be the set of sequences of A,, of length
less than or equal to n+ 1 which do not belong to the range of Seq,,. Then
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(B) Ang1:=A4,0{(n+1,(,i): (€ I Ni<kn+kn}
(7) Seq, ., is a function from A, to seq(A,) defined as follows:

Seq,,(x) ifxz e A,,

Seqn-{-l(z) = . .
¢ ifx=(Mm+1,,10) € At \ Ay
(0) Gp41 is the subgroup of the group of permutations of 4,41 containing
all permutations A such that for some g, € G,, and j, < k, + k,, we have

gn(x ifzeA,,
h) = n(w)
(n+1vgh(C)5i+njh) lf:L':(TL+1,C,Z) GA'thl\Ana

where g;,(¢)(m) := gx({(m)) and +, is addition modulo (k,, + k).

Let A := | J{A, : n € w}. For each triple (n, ¢, i) € A we assign an atom Qn,c,i)
and define the set of atoms by stipulating A := Ay U {a(nyw) i (n,(,4) € A}.
However, for the sake of simplicity we shall work with A as the set of atoms
rather than with A. Let Seq := (J{Seq,, : n € w}; then Seq is a function from
A onto seq(A). Furthermore, let Aut(A) be the group of all permutations of A.
Then & := {H € Aut(A) : Vn € w(H|4, € Gn)} is a group of permutations
of A. Finally, let .Z be the filter on & generated by { fixg(E) : E € fin(A)}
(which happens to be normal) and let Vy (s for sequences) be the class of
all hereditarily symmetric objects. Now we are ready to prove the following
result.

PROPOSITION 7.17. Let m denote the cardinality of the set of atoms A of V.
Then V; E seq(m) < fin(m).

Proof. Firstly we prove that V; E seq(m) < fin(m) by constructing a one-to-
one function f in V, which maps seq(A) into fin(A4). For any sequence ¢ €
seq(A) there is a least n¢ € w such that ¢ € .7, . Define f : seq(A) — fin(A)
by stipulating

f(c) = {a S A: ﬂl(a = Oé(n<+17<7i))} .

Obviously, f is injective and it remains to show that f belongs to V. Take
an arbitrary permutation 7 € ¢ and let ¢ € seq(A) be an arbitrary sequence.
Notice first that by the definition of ¢, n¢ = nz¢. Thus, for each i < Ky, +ky,
thereis a j < kp. +ky, such that 7(n¢+1,¢, i) = (nz¢ +1,7¢, j), which shows
that 7r<§, f(()> = <7r(,f(7r§)>, and since ¢ was arbitrary we get 7wf = f.

In order to prove that Vg E seq(m) # fin(m) assume towards a contradic-
tion that there is a one-to-one function g € V, from fin(A) into seq(A).

Notice first that for every E € fin(A) there are C, F € fin(A) such that
E C C, and for all z € A\ C we have |{rz : 7 € fixg(C)}| > 2, and
}{WF e ﬁXg(C’)}} = 2. Indeed, choose n > 1 such that £ C A, and let
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C:= A, and F := {(n+1,{,i) € Any1 : i is even}. Then F has exactly
two images under the permutations of fixg (C'), and for all z € A\ C we have
{ma : 7 € fixg (C)}] = (kn + kn) > 2.

Let E be a support of g and let C and F' be as above. If the sequence g(F)
belongs to seq(C'), then for some 7 € fixg (C), 7F # F, hence, g(ﬁF) # g(F).
But this contradicts that C'is a support of g and that 7 € fixg (C'). Otherwise,
if the sequence g(F') does not belong to seq(C), there is an m € w such that
zo := g(F)(m) ¢ C. Hence, by the choice of C and F we have |{rzo : 7 €
fixg(C)}| > 2, and [{nF : 7 € fixg(C)}| = 2. Since every 7 € fixg(C)) maps
g to itself, in particular (F, g(F)) to (nF,wg(F)), and since

)

{7F : 7 € fixg(O)}| < [{mao : 7 € fixy (C) }

the image under g of a 2-element set has strictly more than two elements,
which is obviously a contradiction. —

The second custom-built permutation model

The set of atoms of the second custom-built permutation model is also built
by induction, and every atom encodes an ordered pair of atoms on a lower
level. The model we finally get will be a model in which there exists a car-
dinal m such that m? < [m]?, which is to some extent just a finite version of
PROPOSITION 7.17. The atoms are constructed as follows:

(o) Ap is an arbitrary countable infinite set of atoms.
B) % is the group of all permutations of Ay.
) Appri=A,0{(n+1,p,e):pe Ay x Ay Ae€{0,1}}.
0) %,41 is the subgroup of the permutation group of A,.; containing all
permutations h for which there are g, € 4, and ¢, € {0,1} such that

gh(z) ifxe Ana
h(z) =
(n+1agh(p)35h +2 E) iffE:(’l’L-i-l,p,E),

where for p = (p1,p2) € An, gn(p) := {(gn(p1), gn(p2)) and +, denotes
addition modulo 2.
Let A :=J{A4, : n € w} and let Aut(A) be the group of all permutations of
A. Then
@ :={H e Aut(A) :Vn e w(H|a, €%}
is a group of permutations of A. Let .# be the filter on ¢4 generated by
{fixg(F) : E € fin(A)} (which happens to be normal) and let V, (p for

pairs) be the class of all hereditarily symmetric objects. Now we are ready to
prove the following

PROPOSITION 7.18. Let m denote the cardinality of the set of atoms A of V.
Then V, F m? < [m]%.
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Proof. First we show that V,, £ m? < [m]2. For this it is sufficient to find a
one-to-one function f € V, from A? into [A]?>. We define such a function as
follows. For =,y € A let

f((z,y) = {(n+m+1,(z,9),0), (n+m+1,(z,y),1)},

where n and m are the smallest numbers such that x € A, and y € A,,,
respectively. For any 7 € 4 and z,y € A we have 7f({(z,y)) = f({(mz, 7y))
and therefore, the function f is as desired and belongs to V,,.

Now assume towards a contradiction that there exists a one-to-one function
g €V, from [A]? into A? and let E, be a finite support of g. Without loss of
generality we may assume that if (n +1,{x, y},s) € E,, then also 2,y € E,
(this will be needed later). Let k := |E,| and for z,y € A let g({z,y}) =
(%01 tieyy)- Let 7=k +4 and let N € w be such that for every colouring
7 : [N]> = r? we find a 3-element set H € [N]* such that 7|2 is constant.
Such a number N exists by the FINITE RAMSEY THEOREM 2.3. Choose N
distinct elements zo,...,zny—1 € Ao \ Eg, let X = {zo,...,xn-1} and let
{en : h < k} be an enumeration of E,; (recall that k = |E,|). We define a
colouring 7 : [X]?> — r x r as follows. For {z;,z;} € [X]?, where i < j, let
T({zi,z;}) = (o({i, z;}), 1 ({xs, 2;})) where for [ € {0,1} we define

h if tl{il)i,il)j} = ¢cp,
k if ¢

{wi mj} = Ty,

n({xi,z;}) = qk+1 if t{{zi,zj} =z;j,
k+2 iftl, €A\ ({zi, 2} UE),
k+3 if tl{mi@j} € A\ (AgUE,).

By the definition of N we find 3 elements z,,,z,,,z,, € X with g < 11 <
12 such that for both [ € {0,1}, 7, is constant on [{z,,,,,, ., }]?. So, for
{a,, 2,} € {20y, 2,2, }]* with ¢ < j and for some [ € {0,1}, we are in at
least one of the following cases:
-

=cC
{Itivaj} ha

(1) tf{zti,%} = cp, and

! 1-1
=¢, and t =z
]‘} h {CEL,L,I j} L

() {Iti7mL i
1-1
(3) {{IW%} = ¢, and o} = T
@) e, 0 ) :taﬂj} and t, o y€{m, v}
(5) thy, 2y =@, and ¢! =,
oty it
(6) a2,y € Ao\ (Bg Ui, )
(7) tharrany € AN (Ey U Ao)
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If we are in case (1) or (2), then g({z,y, 2., }) = 9({z,,,2.,}), and there-
fore ¢ is not a one-to-one function. If we are in case (3), then g is also not
a one-to-one function because g({z,,,x,,}) = g({.,,x.,}), and the same is
true for g if we are in case (4), e.g., g({x.y, %, }) = (X0, 20y) = 9({T0g, Tin })-

If we are in case (5), then let 7 € fix(E,) be such that nz,, = =,
and 7wz,, = z,,. Assume that g({z,,,x,,}) = (x,,z,) (the case when
9g({z., z,}) = {(x,,,2,,) is similar). Then we have n{z,,,z,,} = {x.,,, 2., },
but mg({z., 2., }) = (T0y, Tuy) # (Tug, Ty ), and therefore E, is not a support
of g which contradicts the choice of E;, — which, by our assumption, has the
property that whenever (n + 1, (z,y),¢) € E, also z,y € E,.

If we are in case (6), then let [ € {0,1} be such that ¢} wiguy} € Ap\ (E4U
{z,y,2,,}) and let a := tf{lto,%}.
[ =0, thus, a = t?xwzbl}. Take an arbitrary o’ € Ao \ (B, U {a,z,,,2,,}) and
let 7 € fix(Ey U {z,,,z, }) be such that ma = a’ and ma’ = a. Then we get
{0y, @0, } = {205, 2., } but

g(ﬂ{xbm Ly }) = g({xmv :CLI}) = <a, 1'> 7é <a/7 JS/> = 7T<a’a 1'> = 7Tg({l'bov :CLI}) .
Hence, E, is not a support of g which contradicts the choice of E,.
If we are in case (7), then let [ € {0,1} be such that ¢! oy EAN(EGU

Ap), thus t%{ﬂho@q} = (n+ 1,p,e) for some (n + 1,p,e) € A. Further, let

7 € fix(Ey U {z,,,z,, }) be such that m1(n+1,p,e) = (n+1,p,1—¢). Then we
have m{x,,, 2., } = {z.,, 2., } but mg({z,,, 2., }) # 9({21,, 2., }), and therefore
E, is not a support of g which contradicts the choice of E,.

Without loss of generality we may assume

So, in all the cases, either g is not one-to-one or £, is not a support of g,
which contradicts our assumption and completes the proof. —

NOTES

Permutation models. The method of permutation models was introduced by
Fraenkel [2, 4, 3, 5, 6], and, in a precise version with supports, by Lindenbaum and
Mostowski [18] and by Mostowski [20, 21, 22]. The present version with filters is due
to Specker [23]. In particular, the second Fraenkel model can be found for example
in Fraenkel [2], where he proved that the Axiom of Choice for countable families of
pairs is unprovable in ZFA (for a proof in a more general setting see Mendelson [19]),
and the ordered Mostowski model is introduced in [21, §4, p. 236] in order to show
that the Axiom of Choice is independent from the Ordering Principle. (Some more
background can be found for example in Lévy [17].)

The Prime Ideal Theorem. The independence of the Axiom of Choice from the
Prime Ideal Theorem in ZFA was proved first by Halpern [10] (but the proof presented
above is taken from Jech [13, Chapter 7,§1]). A few years later, the same result in
ZF was proved by Halpern and Lévy [12], using the HALPERN-LAUCHLI THEOREM.

The custom-built models. The first custom-built permutation model as well as
PROPOSITION 7.17 is due to Shelah and can be found in [8, Theorem 2]. The second
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custom-built permutation model, which is just a modification of the first one, is
due to Halbeisen, but the crucial part of PROPOSITION 7.18 is again due to Shelah
(cf. Halbeisen and Shelah [9, Propostition 7.3.1]).

43.

44.

45.

46.

RELATED RESULTS

Alternative definition of atoms. Atoms could also be defined by stipulating
a € A < a = {a}. This approach has the advantage that we do not need to
modify the Axiom oF EXTENSIONALITY; however, it has the disadvantage that
models of ZFA would not be well-founded — except in the case when A = (.

The Aziom of Choice in Algebra. L#uchli shows in [14] that many classical
results in Algebra cannot be proved without the aid of the Axiom of Choice.
For example he shows that it is consistent with ZFA that there exists vector
spaces without algebraic bases, or in which there exist two algebraic bases with
different cardinalities.

More cardinal relations. Let m denote the cardinality of the set of atoms of
the basic Fraenkel model VFp,. Then the following statements hold in Vg,
(cf. Halbeisen and Shelah [9, Proposition 7.1.3]):

(a) fin(m) L seq""(m) and fin(m) L seq(m).

(b) seq' ' (m) L 2™ and seq(m) L 2™.

(c) seq"" (m) < seq(m).

Unlike in the basic Fraenkel model, the cardinalities fin(m), 2™, seq"*(m), and
seq(m) are all comparable in the ordered Mostowski model. Let m denote the

cardinality of the set of atoms of V. Then the following sequence of inequalities
holds in Var:

m < [m])® <m® < fin(m) < 2™ < seq'™ (m) < fin®(m) < seq'” (fin(m)) <

L,m

< fin(2™) < fin®(m) < fin*(m) < ... < fin™(m) < seq(m) < 2™ =,
(See for example Halbeisen and Shelah [9, p.249] or Halbeisen [7], or just use
the ideas of the proof of PROPOSITION 7.15.) Furthermore we have that

m N(J m
VuE (22 ) =27

which follows for example from the fact that YV, = 22" = fin(m) 3nd LAvcHLS
LeEMMA 4.27.

Finally, let m denote the cardinality of the set of atoms of the second Fraenkel
model. Then, by PROPOSITION 7.9 and LAucHLI’S LEMMA 4.27 we have

m No m
Vr, F (22 ) =2°
Multiple Choice and Kurepa’s Principle in Fraenkel’s models. In Chapter 5 we
have seen that Multiple Choice and Kurepa's Principle are both equivalent in ZF
to the Axiom of Choice. On the other hand, one can show that Multiple Choice
holds in the model Vg, and that Kurepa's Principle holds in the model V, (see
Lévy [16] and Halpern [11] respectively, or Jech [13, Theorem 9.2]). This shows
that these two choice principles — which imply AC in ZF — are weaker than AC
in ZFA.



186 7 Models of Set Theory with Atoms

47. Countable unions of countable sets. In order to show that a union of countably
many countable sets is not necessarily countable, one can work for example
in the permutation model given by Fraenkel [6]: The set of atoms consists of
countably many mutually disjoint countable sets. So, A =, .., C where each
C,, is countable. For each n € w, the group G, consists of all permutations of
Cn and 4 =[], G»- The normal filter % on ¥ is generated by products of
the form [], .., Hyn, where H, is either equal to G, or the trivial group, and the
former is the case for all but finitely many n’s.

48. Ordering principles in Mostowski’s model. Mostowski showed in [21] that in
ZFA, the Axiom of Choice is not provable from the Ordering Principle (see also
Jech [13, Theorem 4.7]). In fact he showed that the Ordering Principle holds in
the ordered Mostowski model Vs, whereas the Axiom of Choice obviously fails
in that model. Notice also that even the Prime Ideal Theorem, which implies the
Ordering Principle, holds in V.

In [1], Felgner and Truss gave a direct proof — not referring to the Prime Ideal
Theorem — of the fact that the Order-Extension Principle holds in Vs, and then,
by modifying Vs, they were able to show that in ZFA, the Prime Ideal Theorem
is not provable from the Order-Extension Principle.

Liuchli showed in [15] (see also Jech [13, p.53]) that the following form of the
Axiom of Choice holds in V;: For every family of non-empty well-orderable sets
there is a choice function. Notice that this implies that in Vs, the union of a
countable set of countable sets is always countable.

49. Another custom-built permutation model. Let m denote the cardinality of the

set of atoms of the first custom-built permutation model V. Then one can
show that V, F seq'"(m) < seq(m) < 2™ (see Halbeisen and Shelah [9, Propo-
sition 7.4.1], or use PROPOSITION 7.17 and show that m is D-finite.)
So, for an infinite cardinals m we can have seq'™' (m) < seq(m) < 2™ (which holds
in V;) as well as 2™ < seq™"(m) < seq(m) (which holds in Vi), and therefore
both statements are consistent with ZF. It is now natural to ask whether it is
also possible to put 2™ between the cardinals seq"™" (m) and seq(m) (recall that
by THEOREM 4.24, for all infinite cardinals m we have seq" " (m) # 2™ # seq(m)).
Indeed, the existence of an infinite cardinal m for which

seq' ' (m) < 2™ < seq(m)

is also consistent with ZF and the permutation model in which this holds — given
in Halbeisen and Shelah [9, Section 7.4] —is due to Shelah.
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8

Twelve Cardinals and their Relations

The consonances are those intervals which are
formed from the natural steps.

An interval may be diminished when one of its
steps is replaced by a smaller one.

Or it may be augmented when one of its steps is
replaced by a larger one.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

In this chapter we investigate twelve cardinal characteristics and their
relations to one another. A cardinal characteristic of the continuum is an
uncountable cardinal number which is less than or equal to ¢ that describes
a combinatorial or analytical property of the continuum. Like the power of
the continuum itself, the size of a cardinal characteristic is often independent
from ZFC. However, some restrictions on possible sizes follow from ZFC, and
we shall give a complete list of what is known to be provable in ZFC about
their relation. Later in Part I, but mainly in Part ITI, we shall see how one
can diminish or augment some of these twelve cardinals without changing
certain other cardinals. In fact, these cardinal characteristics are also used to
investigate combinatorial properties of the various forcing notions introduced
in Part IIL.

We shall encounter some of these cardinal characteristics (e.g., p) more
often than others (e.g., i). However, we shall encounter each of these twelve
cardinals again, and like the twelve notes of the chromatic scale, these twelve
cardinals will build the framework of our investigation of the combinatorial
properties of forcing notions that is carried out in Part III.

On the one hand, it would be good to have the definition of a cardinal
characteristic at hand when it is needed; but on the other hand, it is also
convenient to have all the definitions together (especially when a cardinal
characteristic is used several times), rather than scattered over the entire
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book. Defining all twelve cardinals at once also gives us the opportunity to
show what is known to be provable in ZFC about the relationship between
these twelve cardinals. Thus, one might first skip this chapter and go back to
it later and take bits and pieces when necessary.

The Cardinals w; and ¢

We have already met both cardinals, ¢ and wy: ¢ is the cardinality of the contin-
uum R, and w; is the smallest uncountable cardinal. According to FACT 4.3,
¢ = 2% is also the cardinality of the sets [0,1], “2, “w, and [0,1] \ @; and
by LEMMA 4.10, w; can also be considered as the set of order types of well-
orderings of Q.

The Continuum Hypothesis, denoted CH, states that ¢ is the least uncount-
able cardinal, i.e., ¢ = wy (cf. Chapter 4), which is equivalent to saying that
every subset of R is either countable or of the same cardinality as R. Fur-
thermore, the Generalised Continuum Hypothesis, denoted GCH, states that for
every ordinal a € €, 2¥> = wq,11. GOdel showed that L F GCH, where L is the
constructible universe (see the corresponding note in Chapter 5), thus, GCH
is consistent with ZFC.

Each of the following ten combinatorial cardinal characteristics of the con-
tinuum is uncountable and less than or equal to ¢. Thus, if we assume CH, then
these cardinals are all equal to ¢. However, as we shall see in Part I, CH is not
provable in ZFC. In other words, if ZFC is consistent then there are models of
ZFC in which CH fails, i.e., models in which w; < ¢. In those models, possible
(i.e., consistent) relations between the following cardinal characteristics will
be provided in Part IT and Part III.

The Cardinal p

For two sets z,y C w we say that z is almost contained in y, denoted
x C* y, if 2\ y is finite, i.e., all but finitely many elements of = belong to
y. For example a finite subset of w is almost contained in @), and w is almost
contained in every co-finite subset of w (i.e., in every y C w such that w\ y is
finite). A pseudo-intersection of a family .# C [w]* of infinite subsets of w
is an infinite subset of w that is almost contained in every member of .%. For
example w is a pseudo-intersection of the family of co-finite sets. Furthermore,
a family .% C [w]¥ has the strong finite intersection property (sfip) if
every finite subfamily has infinite intersection. Notice that every family with
a pseudo-intersection necessarily has the sfip, but not vice versa. For example
any filter .# C [w]“ has the sfip, but no ultrafilter on [w]* has a pseudo-
intersection.
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DEFINITION OF p. The pseudo-intersection number p is the smallest car-
dinality of any family .# C [w]* which has the sfip but which does not have
a pseudo-intersection; more formally

p =min {|.#]:.Z C [w]” has the sfip but no pseudo-intersection} .

Since ultrafilters on [w]* are families which have the sfip but do not have
a pseudo-intersection, and since every ultrafilter on [w]“ is of cardinality c,
the cardinal p is well-defined and p < ¢. It is natural to ask whether p can
be smaller than ¢; however, the following result shows that p cannot be too
small.

THEOREM 8.1. w; <p.

Proof. Let & = {X,, € [w]* : n € w} be a countable family which has the sfip.
We construct a pseudo-intersection of & as follows: Let ag := () Xo and for
positive integers n let

an:m(ﬂ{Xi:ien}\{ai:ien}).

Further, let Y = {a, : n € w}; then for every n € w, Y \ {a; : 4 € n} C X,
which shows that Y C* X,,, hence, Y is a pseudo-intersection of &. -

The Cardinals b and 0

For two functions f,g € “w we say that ¢ dominates f, denoted f <* g, if
for all but finitely many integers k € w, f(k) < g(k), i.e., if there is an ng € w
such that for all k& > ng, f(k) < g(k). Notice that ordering “<*” is transitive,
however, “<*” it is not a linear ordering (we leave it as an exercise to the
reader to find functions f, g € “w such that neither f <* g nor g <* f).

A family 2 C “w is dominating if for each f € “w there is a function
g € 2 such that f <* g.

DEFINITION OF 0. The dominating number 0 is the smallest cardinality
of any dominating family; more formally

?=min{|Z|: 2 C “w is dominating} .

A family 4 C “w is unbounded if there is no single function f € “w
which dominates all functions of 4, i.e., for every f € “w thereis a g € #
such that g £* f. Since “<*” is not a linear ordering, an unbounded family is
not necessarily dominating — but vice versa (see FACT 8.2).

DEFINITION OF b. The bounding number b is the smallest cardinality of
any unbounded family; more formally

b = min {|4| : Z C “w is unbounded } .
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Obviously, the family “w itself is dominating and therefore unbounded,
which shows that 0 and b are well-defined and b, 0 < ¢. Moreover, we have the
following

FacTt 8.2. b <0.

Proof. Tt is enough to show that every dominating family is unbounded. So,
let 2 C “w be a dominating family and let f € “w be an arbitrary function.
Since Z is dominating, there is a ¢ € Z such that f <* g, i.e., there is an
ng € w such that for all k > ng, f(k) < g(k). Hence we get g £* f, and since
f was arbitrary this implies that 2 is unbounded. —

It is natural to ask whether b can be smaller than 9, or at least smaller
than ¢; however, the following result shows that b cannot be too small.

THEOREM 8.3. w; < b.

Proof. Let & = {gn, € “w : n € w} be a countable family. We construct a
function f € “w which dominates all functions of &: For each k € w let

fk)y = J{gi(k):i € k}.

Then for every k € w and each ¢ € k we have f(k) > g;(k) which shows that
for all n € w, g, <* f, hence, f dominates all functions of & -

One could also define dominating and unbounded families with respect to
the ordering “<” defined by stipulating f < g <= Vk € w(f(k:) < g(k:))
Then the corresponding dominating number would be the same as 0, as any
dominating family can be made dominating in the new sense by adding all
finite modifications of its members; but the corresponding bounding number
would drop to w, as the family of all constant functions is unbounded (we
leave the details to the reader).

The Cardinals s and ©

A set x C w splits an infinite set y € [w]* if both y Nz and y \ = are infinite
(ie, l[yNnz| = |y \ | = w). Notice that any x C w which splits a set y € [w]¥
must be infinite. A splitting family is a family . C [w]“ such that each
y € [w]¥ is split by at least one z € .7.

DEFINITION OF s. The splitting number s is the smallest cardinality of any
splitting family; more formally

s =min {|.7] : ¥ C [w]” is splitting} .
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By THEOREM 8.1 and later results we get w; < s— we leave it as an
exercise to the reader to find a direct proof of the uncountability of s.

In the proof of the following result we will see how to construct a splitting
family from a dominating family.

THEOREM 8.4. s < 0.

Proof. For each strictly increasing function f € “w with f(0) > 0 let

or = J{ /20, /211 0) in € w},

where for a,b € w, [a,b) :={k €w:a <k < b} and f*+(0) = f(f"(0)) with
f°(0) := 0. Let 2 C “w be a dominating family. Without loss of generality
we may assume that every f € 2 is strictly increasing and f(0) > 0, and let

y@:{of:fEQ}.

We show that %5 is a splitting family. So, fix an arbitrary x € [w]“ and let
fr € “w be the (unique) strictly increasing bijection between w and z. More
formally, define f; : w — x by stipulating

fo(k) = (x\ {fuli):ic k}).

Notice that for all k € w, fz(k) > k. Since 2 is dominating there is an f € 2
such that f; <* f, which implies that there is an ng € w such that for all
k > ng we have fy(k) < f(k). For each k € w we have k < f*(0) as well as
k < fr(k). Moreover, for k > ny we have

FH0) < 2 (F1(0) < F(£5(0)) = f*71(0)

and therefore fy(f*(0)) € [f*(0), f**1(0)). Thus, for all k¥ > ng we have
fz(f*(0)) € oy iff k is even, which shows that both N oy Nz and z \ of
are infinite. Hence, oy splits x, and since x was arbitrary, .75 is a splitting
family. -

A reaping family — also known as refining or unsplittable family — is
a family # C [w]¥ such that there is no single set € [w]* which splits all
elements of Z, i.e., for every x € [w]* there is a y € £ such that y Nz or
y \ z is finite. In other words, a family % is reaping if for every z € [w]* there
is ay € #Z such that y C* (w\ ) or y C* x. The origin of “reaping” in this
context is that A reaps B iff A splits B, by analogy with a scythe cutting
the stalks of grain when one reaps the grain. So, a reaping family would be a
splitting family. However, the more logical approach, where “reaps” means “is
unsplit by”, seems to have no connection with the everyday meaning of the
word “reap”.
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DEFINITION OF t. The reaping number v is the smallest cardinality of any
reaping family; more formally

v =min {|Z|: Z C [w]* is reaping} .
Since the family [w]“ is obviously reaping, t is well-defined and v < ¢.
Furthermore, by THEOREM 8.3, the following result implies that every reaping
family is uncountable:

THEOREM 8.5. b <.

Proof. Let & = {z¢ € [w]¥ : £ € K < b} be an arbitrary family of infinite
subsets of w of cardinality strictly less than b. We show that & is not a reaping
family. For each z¢ € & let g¢ € “w be the unique strictly increasing bijection
between w and z¢ \ {0}. Further, let ge (k) := g£(0), where g¢ ™' (0) = g (9£(0))
and gg(O) := 0. Consider & = {ge : € € k}. Since k < b, the family £ is
bounded, i.e., there exists an f € “w such that for all £ € k, g <* f. Let
& = Upeo [F2%(0), f2571(0)). Then for each ¢ € x there is an n¢ € w such
that for all k > ne, f7(0) < ge(f*(0)) < f(f*(0)). This implies that neither
xze C* z nor ¢ C* (w\ ), and hence, & is not a reaping family. —

The Cardinals a and i

Two sets z,y € [w]* are almost disjoint if z Ny is finite. A family & C [w]¥
of pairwise almost disjoint sets is called an almost disjoint family; and a
maximal almost disjoint (mad) family is an infinite almost disjoint family
o/ C [w]¥ which is maximal with respect to inclusion, i.e., & is not properly
contained in any almost disjoint family &7’ C [w]*.

DEFINITION OF a. The almost disjoint number a is the smallest cardinality
of any maximal almost disjoint family; more formally

a=min {|</|: & C [w]” is mad} .

Before we show that b < a (which implies that a is uncountable), let us
show first that there is a mad family of cardinality c.

PROPOSITION 8.6. There exists a maximal almost disjoint family of cardinal-
ity «c.

Proof. Notice that by Teichmiiller's Principle, every almost disjoint family can
be extended to a mad family. So, it is enough to construct an almost disjoint
family @4 of cardinality c. Let {s; : i € w} be an enumeration of | J, .., "w,
i.e., for each t : n — w there is a unique 7 € w such that ¢t = s;. For f € “w let

zp={icw:Incw(fl,=s)}.
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Then, for any distinct functions f,g € “w, ¢ Nz, is finite. Indeed, if f # g,
then there is an ng € w such that f(ng) # ¢g(no) which implies that for all
k> ng, flk # glk, and hence, |zyNx4| < ng+1. Now, let o := {z; : f € Yw}.
Then o C [w]¥ is a set of pairwise almost disjoint infinite subsets of w,
therefore, o7 is an almost disjoint family of cardinality |“w| = c. —

The following result implies that a is uncountable and in the proof we will
show how one can construct an unbounded family from a mad family.

THEOREM 8.7. b < a.

Proof. Let o = {z¢ : £ € Kk} be a mad family. It is enough to construct
an unbounded family of cardinality |/|. Let z = w \ U, z¢; then z is finite
(otherwise, &7U{z} would be an almost disjoint family which properly contains
). Let zfy := 29UzU{0} and for positive integers n € w let z/, := (z,U{n})\
Uken 7k Then, since &7 is an almost disjoint family, {z], : n € w} is a family
of pairwise disjoint infinite subsets of w and by construction, (J,,c,, =7,
Moreover, (@ \{z¢ : £ € w})U{x}, : n € w} is still mad. For n € wlet g, € “w
be the unique strictly increasing bijection from z/, to w, and let b : w — w X W
defined by stipulating

= W.

h(m) = (n,k) where m € z/, and k = g,(m).

By definition, for each n € w, hlz]] = {(n, k) : k€ w}, and for all £ € k&,
hlzw+e] N ), is finite. Further, for each ¢ € k define f; € “w by stipulating

fe(k) = (hlwwse] N i)

and let B = {fe € “w : £ € k}. Then by definition |#| = |&/|; moreover, A
is unbounded. Indeed, if there would be a function f € “w which dominates
all functions of %, then the infinite set {h~*((n, f(n))) : n € w} would have
finite intersection which each element of ./ contrary to maximality of «/. -

A family .# C [w]¥ is called independent if the intersection of any finitely
many members of .# and the complements of any finitely many other members
of .# is infinite. More formally, .# C [w]“ is independent if for any n,m € w
and disjoint sets {z; : i € n},{y; : j e m} C .7,

ﬂ x; N ﬂ (w\y;) Iis infinite,
SO JjEM

where we stipulate [0 := w. Equivalently, .# C [w]* is independent if for any
I,J € fin(#) with INJ = () we have

(YI\J 7 isinfinite,

We leave it as an exercise to the reader to show that if .# is infinite, then
# is independent iff for any disjoint sets I,.J € fin(.#), NI\ U J # 0.
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A maximal independent family is an independent family .# C [w]*

which is maximal with respect to inclusion, i.e., . is not properly contained
w

in any independent family ./ C [w]“.

DEFINITION OF i. The independence number i is the smallest cardinality
of any maximal independent family; more formally

i=min {|.#]: .# C [w]” is independent } .

We shall see that max{tr,9} <i (which implies that i is uncountable), but
first let us show that there is a maximal independent family of cardinality c.

PRroOPOSITION 8.8. There is a maximal independent family of cardinality c.

Proof. Tt is enough to construct an independent family of cardinality ¢ on
some countably infinite set. So, let us construct an independent family of
cardinality ¢ on the countably infinite set

C={(s,A):sefin(w)NAC P(s)}.
Further, for each x C [w]* define
P, :={(s,A)eC:anseA}.

Notice that for any distinct x,y € [w]“ there is a finite set s € fin(w) such
that £ N's # y N s, and consequently we get P, # P, which implies that
the set Sy = {P, : € [w]*} C [C]* is of cardinality c. Moreover, .%, is
an independent family on C. Indeed, for any finitely many distinct infinite
subsets of w, say zg,...,%m, ., Tm+n Where m,n € w, there is a finite set
s C w such that for all ¢,5 with 0 <i < j < m +n we have x; N's # x; N s.
Let A= {snz; : 0<i<m} C H(s), and for every k € w\ s let s, := sU{k}
and Ay := AU {tU{k}:t € A}. Then

{(sk, Ar) 1k ew\ s} C ﬂ P, \ U Prpiis

0<i<m 1<j<n

which shows that (\{Py, : 0 <4 <m}\ U{Px,.,, : 1 <j < n} is infinite, and
therefore, .#) is an independent family on C' of cardinality c. —

The following result implies that i is uncountable.
THEOREM 8.9. max{t,0} <i.

Proof. v < i: The idea is to show that every maximal independent family
yields a reaping family of the same cardinality. For this, let .# C [w]¥ be a
maximal independent family of cardinality i and let

#={N\UJ:1,Jetm(s) 10T =0}
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Then Z is a family of cardinality i. Furthermore, since .# is a maximal inde-
pendent family, for every = € [w]¥ we find ay € Z (i.e., y=(I\JJ) such
that either z Ny or (w\ x) Ny is finite, and because (w\ z) Ny =y \ =, this
shows that = does not split all elements of #Z. Thus, Z is a reaping family of
cardinality i, and therefore v <.
0 < i: The idea is to show that an independent family of cardinality strictly
less than 9 cannot be maximal. For this, suppose & = {X¢ : { € k <2} C [w]
is an infinite independent family of cardinality x < 0. We shall construct a
set Z € [w]* such that .# U {Z} is still independent, which implies that the
independent family .# is not maximal. For this it is enough to show that for
any finite, disjoint subfamilies of .#, say I and J, the infinite set (7 \ U J
meets both Z and w \ Z in an infinite set.

Let £, :={X,, : n € w} C # be a countably infinite subfamily of .# and
for each n € w let X := X,, and X! := w \ X,,. Further, for each g € “2 let

Cn7g - ﬂ X]g(k)
ken

and for &' := .7\ .7, define
F = {ﬂ[' \ U J': I' and J' are finite, disjoint subfamilies of .# } )

CLAIM. The family € = {C, 4 : n € w} has a pseudo-intersection that has
infinite intersection with every set in % .

Proof of Claim. Since . is an infinite independent family of cardinality x < 0,
F C |w]“ is a family of cardinality x such that each set in .% has infinite
intersection with every member of %. For any h € “w define

th = U (Cn,g N h(n)) .
necw
Since (Cp,q : n € w) is decreasing (i.e., Cp g O Cp g Whenever n < m), th
is almost contained in each member of ¥ — however, th is not necessarily
infinite. It remains to choose the function h € “w so that th is infinite (i.e.,
th is a pseudo-intersection of ¥’) and has infinite intersection with every set in

# . Notice first that for every A € .# and for every n € w, ANC,, 4 is infinite;
thus, for every A € .7 we can define a function f4(n) € “w by stipulating

fa(n) = the n'" element (in increasing order) of AN C,, ,.

Since |#| < 0, the family {fa : A € #} is not dominating. In particular,
there is a function hy € “w with the property that for each A € .F the set

Da={new:ho(n)> fa(n)}

is infinite. Now, for each A € # and every n € D4 we have ho(n) > fa(n)+1
which implies that |ANhg(n)| > |AN fa(n)+1] = n, and since D4 is infinite,
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also AN tho is infinite. Finally, by construction tho is a pseudo-intersection
of ¢ that has infinite intersection with every set in .%. Actaim
By the CLAIM, for every g € “2 there is a set, say Y, € [w]“, which has the
following two properties:

(1) Foralln € w, Yy € N;cp, Xlg(k)'

(2) Yyn (NI'\UJ’) is infinite whenever I’ and J' are finite, disjoint sub-
families of .#”.

It follows from (1) that for any distinct ¢g,¢’ € “w, Y, and Y, are almost
disjoint. Let now

Qo = {ge‘*’w:Elno € wVk > ng (Q(k) :0)}

and
Q1= {ge‘*’wzﬂnl cewvVk >n (g(k:) = 1)}

Then Qo U Q; is a countably infinite subset of “w. Let {g, : n € w} be an
enumeration of Qo U Q1 and for each n € wlet Y, =Y, \U{Yy, : k € n}.
Then {Y, :n € w} is a countable family of pairwise disjoint infinite subsets

of w. Finally let
Z= )y, and z'=[]V].
9€Qo 9eQ1
Then Z and Z' are disjoint. Now we show that Z has infinite intersection with
every (1I\JJ, where I and J are arbitrary finite subfamilies of .#; and since
the same also holds for Z’ C w\ Z, # U{Z} is an independent family, i.e.,
the independent family .# of cardinality < 0 is not maximal.

Given any finite, disjoint subfamilies I,J C ., and let Iy = I N %,
Jo=JNSA,, I'=1I\1Iy, J =J\ Jy, where .7, = {X,, : n € w}. Further, let
m € w be such that Io U Jy C {X,, : n € m} C .4, and fix g € Qo such that
for all n € m,

(Xn € IoUJo) Ag(n) =0) + X,, € I.

We get the following inclusions:
NNU7 2 (N N7)n x> () oy,
nem

The intersection on the very right is infinite (by property (2) of Y,) and is
contained in Z (because g € Qo). Hence, we have found an infinite set which
is almost contained in Z N ((NI\ |JJ), and therefore Z is infinite. -

The Cardinals par and hom

By RAMSEY’S THEOREM 2.1, for every colouring 7 : [w]? — 2 there is an
z € [w]* which is homogeneous for 7, i.e., 7|[,)2 is constant. This leads to the
following cardinal characteristic:
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DEFINITION OF hom. The homogeneity number hom is the smallest car-
dinality of any family .# C [w]“ with the property that for every colouring
7 : [w]? — 2 there is an € .# which is homogeneous for 7.

The following result implies that hom is uncountable. In fact we will show
that each family which contains a homogeneous set for every 2-colouring of
[w]? is reaping and that each such family yields a dominating family of the
same cardinality.

THEOREM 8.10. max{t,0} < hom.

Proof. Let Z C [w]* be a family such that for every colouring 7 : [w]? — 2
there is an z € % which is homogeneous for 7. We shall show that .Z is
reaping and that &' = {f; € Yw : © € Z} is dominating, where f; is the
strictly increasing bijection between w and z.

0 < pom: Firstly we show that # is a dominating family. For any strictly
increasing function f € “w with f(0) = 0 define 7y : [w]? — 2 by stipulating

Tr({n,m}) =0 < 3k € w(f(2k) <n,m < f(2k+2)).
Then, for every « € % which is homogeneous for 7y we have f <* f; which
implies that .#’ is dominating.
t < hom: Now we show that Z is a reaping family. Take any y € [w]* and
define m, : [w]? — 2 by stipulating
my({n,m}) =0 < {n,m} Cyv{nm}ny=20.

Now, for every z € .# which is homogeneous for m, we have either x C y or
x Ny =0, and since y was arbitrary, .Z is reaping. —

Recall that a set H € [w]® is called almost homogeneous for a colouring
7@ [w]?> — 2 if there is a finite set K C H such that H \ K is homogeneous
for 7. This leads to the following cardinal characteristic:

DEFINITION OF pat. The partition number par is the smallest cardinality
of any family & of 2-colourings of [w]? such that no single H € [w]* is almost
homogeneous for all T € £,

By PROPOSITION 2.8 we get that par is uncountable, and the following
result gives an upper bound for pac.

THEOREM 8.11. par = min{s, b}.

Proof. First we show that par < min{s, b} and then we show that par >
min{s,b}. par < s: Let . C [w]¥ be a splitting family and for each z € .%¥
define the colouring 7, : [w]?> — 2 by stipulating

T ({n,m}) =0 <= {n,m} CaVv{nminz=>0
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and let & = {m, : © € }. Then, since .¥ is splitting, no infinite set is almost
homogeneous for all 7 € Z.

par < b: Let Z C “w be an unbounded family. Without loss of generality we
may assume that each g € £ is strictly increasing. For each g € % define the
colouring 7, : [w]? — 2 by stipulating

Tg({n,m}) =0 < g(n) <m where n <m.

Assume towards a contradiction that some infinite set H € [w]“ is almost
homogeneous for all colourings in & = {n, : g € #B}. We shall show that
H yields a function which dominates the unbounded family %, which is
obviously a contradiction. Consider the function A € “w which maps each
natural number n to the second member of H above n; more formally,
h(n) := min{m € H : 3k € H(n < k < m)}. For each n € w we have
n < k < h(n) with both k& and h(n) in H. By almost homogeneity of H,
for each g € Z there is a finite set K C w such that H \ K is homogeneous
for my, i.e., for all {n,m} € [H \ K]* with n < m we have either g(n) < m
or g(n) > m. Since H is infinite, the latter case is impossible. On the other
hand, the former case implies that for all n € H \ K, g(n) < h(n), hence, h
dominates g and consequently h dominates each function of A.

par > min{s, b}: Suppose & = {7T§ e r < min{ﬁ,b}} is a family of
2-colouring of [w]?. We shall construct a set H € [w]“ which is almost homo-
geneous for all colourings 7 € . For each £ € k and all n € w define the
function f¢, € “2 by stipulating

me({n,m}) for m # n,
0 otherwise.

fen(m) = {

Since [{fen: € € kAN €W} =Kk -w =k <5, there is an infinite set A C w
on which all functions f¢ , are almost constant; more formally, for each £ € k
and each n € w there are g¢(n) € w and je¢(n) € {0,1} such that for all
m > ge(n), fen(m) = je(n). Moreover, since k < s there is an infinite set
B C A on which each function je € “2 is almost constant, say je(n) = i
for all n € B with n > b¢. Further, since £ < b there is a strictly increasing
function h € “w which dominates each ge, i.e., for each £ € & there is an
integer c¢ such that for all n > c¢¢, ge(n) < h(n). Let H = {xy, : k € w} C B
be such that for all k € w, h(zx) < 2x+1- Then H is almost homogeneous for
each m¢ € . Indeed, if n,m € H are such that max{b¢,c¢} < n < m, then
ge(n) < h(n) < m and therefore m¢({n,m}) = fen(m) = je(n) = ic, ie.,
H \ max{b¢, c¢} is homogeneous for . =

The Cardinal §

A family 57 = { : £ € K} C P([w]”) of mad families of cardinality ¢ is
called shattering if for each x € [w]¥ there is a £ € x such that  has infinite
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intersection with at least two distinct members of o7, i.e., at lest two sets of
o, split x. We leave it as an exercise to the reader to show that there are
shattering families of cardinality ¢ (for each = € [w]* take two disjoint sets
¥,y C x such that w \ (y Uy’) is infinite and extend {y,y’} to a mad family
of cardinality c).

DEFINITION OF §. The shattering number b is the smallest cardinality of
a shattering family; more formally

b = min {|#| : A is shattering} .

If one tries to visualise a shattering family, one would probably draw a
kind of matrix with ¢ columns, where the rows correspond to the elements of
the family (i.e., to the mad families). Having this picture in mind, the size of
the shattering family would then be the height of the matrix, and this where
the letter “h” comes from.

In order to prove that h < par we shall show how to construct a shattering
family from any family & of 2-colourings of [w]? such that no single set is
almost homogeneous for all 7 € &; the following lemma is the key idea in
that construction:

LEMMA 8.12. For every colouring 7 : [w]®> — 2 there is a mad family </, of
cardinality ¢ such that each A € <7, is homogeneous for 7.

Proof. Let &/ C [w]“ be an arbitrary almost disjoint family of cardinality
¢ and let m be a 2-colouring of [w]?. By RAMSEY’S THEOREM 2.1, for each
A € & we find an infinite set A’ C A such that A’ is homogeneous for 7.
Let o/ = {A': A € &/}; then &’ is an almost disjoint family of cardinality
¢ where each member of &7’ is homogeneous for 7. Let {z¢ : £ € k < ¢} be
an enumeration of [w]* \ &/’. By transfinite induction define o = &’ and for
each € € k let

e U{xe} if z¢ is homogeneous for = and
A1 = for each A € @, x¢ N A is finite,

e otherwise.

By construction, o7, = U§EN /¢ is an almost disjoint family of cardinality «,
all whose members are homogeneous for w. Moreover, o/, is a mad family.
Indeed, if there would be an x € [w]¥ such that for all A € o, x N A is
finite, then, by RAMSEY’S THEOREM 2.1, there would be an z¢, € [z]“ (for
some &y € x) which is homogeneous for 7. In particular, z¢, would belong to
eo+1. Hence, x N ¢, is infinite, where z¢, € &/, which is a contradiction to
the choice of x. —

THEOREM 8.13. b < par.
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Proof. Let & be a family of 2-colourings of [w]? such that no single set is
almost homogeneous for all 7 € &2 and let #p = {oy : 7 € P}, where oy,
is like in LEMMA 8.12. We claim that 7% is shattering. Indeed, let H C w
be an arbitrary infinite subset of w. By the property of &2, thereis a m € &
such that H is not almost homogeneous for 7. Consider 7, € J#%: Since
o is mad, there is an A € 7, such that H N A is infinite, and since A is
homogeneous for 7w, H \ A is infinite too; and again, since 7, is mad, there
isan A’ € o (distinct from A) such that (H \ A) N A’ is infinite. This shows
that H has infinite intersection with two distinct members of o7;. Hence, ¢
is shattering. —

In order to prove that p < h we have to introduce some notions: If &7 and
&/’ are mad families (of cardinality c), then o/’ refines <, denoted &’ >,
if for each A’ € &7’ there is an A € o such that A’ C* A A shattering family
{o : £ € k} is called refining if o > .o/ whenever £ > ¢.

The next result is the key lemma in the proof that every shattering family
of size h induces a refining shattering family of the same cardinality.

LEMMA 8.14. For every family & = {a : £ € k < i} of cardinality x < h of
mad families of cardinality ¢ there exists a mad family /' which refines each
e € &. Furthermore, </’ is of cardinality c.

Proof. Let & = {a/ : £ € k < h} be a family of less than b mad families of
cardinality ¢. For every x € [w]¥ we find an 2z’ € [z]* with the property that
for each o7 € S there is an A € Ag such that 2’ C* A. Indeed, if there is
no such 2’ (for some given x € [w]*), then a bijection between z and w would
yield a shattering family of cardinality x < b, contrary to the definition of §.
Now, if &’ C {2’ : © € [w]*} is a mad family, then o7’ is of cardinality ¢ (since
2 is of cardinality c¢) and refines each o7 € & (since &7’ C {2’ : x € [W]¥}).
It remains to show that mad families &’ C {2’ : © € [w]*} exist. Indeed, if
o C{z' 1z € [w]“} is an almost disjoint family which is not maximal, then
there exists an = € [w]“ such that for all A € &/, x N A is finite. Notice that
&/ U {x'} is still an almost disjoint family, hence, by Teichmiiller's Principle,
every almost disjoint family o/ C {2’ : z € [w]*} can be extended to a mad
family &’ C {a’ : x € [w]*}. —

PROPOSITION 8.15. If 5 = {7 : { € b} is a shattering family of cardinality
b, then there exists a refining shattering family ' = {ﬁfg’ : £ € b} such that
for each £ € b we have </ ;.

Proof. The proof is by transfinite induction: Let 7] := <% and assume we
have already defined JZ%E’ for all £ € n where n € h. Apply LEMMA 8.14 to the
family {<7/ : £ € n} U {7} to obtain &7, and let 7" = {<7/ : £ € b}. —

Now, the proof of p < b is straightforward.

THEOREM 8.16. p < h.
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Proof. By PROPOSITION 8.15 there exists a refining shattering family 57 =
{e : € € b} of cardinality h. With 52 we shall build a family .# C [w]“ of
cardinality h which has the sfip but which does not have a pseudo-intersection:
Chose any xo € % and assume we have already chosen z¢ € o7 for all £ € n
where 1 € bh. Since S is refining we can chose a z,, € 4, such that z, is a
pseudo-intersection of {z¢ : £ € n}. Finally let .% = {x¢ : £ € h}. Then ¥ is
a family of cardinality < h which has the sfip, but since 7 is shattering, no
infinite set is almost contained in every member of .%, i.e., % does not have
a pseudo-intersection. —

Summary

The diagram below shows the relations between the twelve cardinals. A line
connecting two cardinals indicates that the cardinal lower on the diagram is
less than or equal to the cardinal higher on the diagram (provably in ZFC).

[

w1
Later we shall see that each of following relations is consistent with ZFC:

e a< ¢ (PROPOSITION 18.5)
e i< ¢ (PROPOSITION 18.11)
e w; <p=c (PROPOSITION 19.1)
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a <0 =rt (COROLLARY 21.11)
5 =D0b <0 (PROPOSITION 21.13)
0 < v (PROPOSITION 22.4)

0 > ¢t (PROPOSITION 23.7)

p < b (PROPOSITION 24.12)

NOTES

Most of the classical cardinal characteristics and their relations presented here can
be found for example in van Douwen [42] and Vaughan [43], where one finds also
a few historical notes (for ? see also Kanamori [27, p.179f.]). PROPOSITION 8.8 is
due to Fichtenholz and Kantorovitch [22], but the proof we gave is Hausdorfl’s, who
generalised in [26] the result to arbitrary infinite cardinals (see also Exercise (A6)
on p.288 of Kunen [29]). THEOREM 8.9 is due to Shelah [33], however, the proof
is taken from Blass [5] (see also [4, Theorem 21]), where the claim in the proof is
due to Ketonen [28, Proposition 1.3]. THEOREM 8.10 and THEOREM 8.11 are due to
Blass and the proofs are taken from Blass [5] (see also [4, Section 6]). The shattering
cardinal h was introduced and investigated by Balcar, Pelant, and Simon in [2]
(cf. RELATED RESULT 51).

RELATED RESULTS

50. The Continuum Hypothesis. There are numerous statements from areas like
Algebra, Combinatorics, or Topology, which are equivalent to CH. For example
Erdss and Kakutani showed that CH is equivalent to the statement that R is
the union of countably many sets of rationally independent numbers (cf. [20,
Theorem 2]). Many more equivalents to CH can be found in Sierpinski [39]. For
the historical background of CH we refer the reader to Felgner [21].

51. On the shattering number f. Balcar, Pelant, and Simon showed that h < cf(c)
(see [2, Theorem 4.2]), gave a direct prove for h < b (see [2, Theorem 4.5])
and for h < s (follows from [2, Lemma 2.11.(c)]), and showed that b is regular
(see [2, Lemma 2.11.(b)]. Furthermore, Lemma 2.11.(c) of Balcar, Pelant, and
Simon [2] states that there are shattering families of size h which have a very
strong combinatorial property:

BAsE MATRIX LEMMA. There exists a shattering family 7 = {a; C [w]” :
€ € b} which has the property that for each X € [w]* there is a £ € b and an
A € o such that A C* X.

Proof. Let # = {@; C [w]* : £ € h} be an arbitrary but fixed refining shatter-
ing family of cardinality . We first prove the following

CrAM. For every infinite set X € [w]* there exists an ordinal £ € § such that
HCed:|ICNX|=w}|=c

Proof of Claim. Let X € [w]* be an arbitrary infinite subset of w. Firstly we
show that there exists a strictly increasing sequence (£, : n € w) in b, such that
for each n € w and f € "2 we find a set C'y € %, with the following properties:
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52.

53.

54.

e |CiNX|=w,

e if f, f' € "2 are distinct, then Cf # C/, and

e forall fe"2andmen,CrC" Cy,,.

The sequence (£, : n € w) is constructed by induction on n: First we choose an
arbitrary & € h. Now, suppose we have already found &,, € h for some n € w.
Since .7 is a shattering family, for every h € "2 there exists a (5, > &, such that
the infinite set C; N X has infinite intersection with at least two members of
e, Let €ny1 = U {Cn : b € "2}. Then, since .Z is refining, we find a family
{Cy: fem™t'2} C o, with the desired properties.

Let £ := Unecw &ns then the ordinal € is smaller than h: Otherwise, since .7 is
refining, the family {<%, : n € w} would be a shattering family of cardinality
w, contradicting the fact that h > w;.

By construction, for each f € “2 we find a Cy € % such that Cy N X is infinite
(notice that for each n € w, [Cy),, N X| = w), and since .F is refining we have
Cy # Cy whenever f, f’ € “2 are distinct. Thus, |{Cf cag: fe “’2}| =cand
for each f € “2 we have |C; N X| = w. Aclaim

Now we construct the shattering family # = {@% C [w]” : £ € b} as follows:
For each £ € b, let Z¢ be the family of all X € [w]“ such that

HC e [CNX|=w}|=c.

If Z¢ =0, then let oz = o%. Otherwise, define (e.g., by transfinite induction)
an injection g¢ : Z¢ < % such that for each X € Z¢, | X N ge(X)| = w.
Now, for each C' € o, let €c C [C]* be an almost disjoint family such that
U%c = C, and whenever C = g¢(X) for some X € 2 (ie, [X NC| = w),
then there exists an A € ¢ with A C* X. Let o := {A € 6¢ : C € o} and
let 57 := {o% : £ € h}. Then, by construction, for every X € [w]* we find an
ordinal £ € h and an infinite set A € &% such that A C* X. -

The tower number t7 A family . = {T : @ € k} C [w]¥ is called a tower if
7 is well-ordered by *D (i.e., Tz C* To <> a < ) and does not have a pseudo-
intersection. The tower number t is the smallest cardinality (or height) of a
tower. Obviously we have p < t and the proof of THEOREM 8.16 shows that
t < h. However, it is open whether p < t is consistent with ZFC (for partial
results see for example van Douwen [42], Blass [5], or Shelah [35]).

A linearly ordered subset of [w]“ of size ¢. Let {g» € Q : n € w} be an
enumeration of the rational numbers @ and for every real number » € R let
Cr:={n € w: gy <r}. Then, for any real numbers ro < 71 we have Cy, & Cr,
and |Cr, \Cr,| = w. Thus, with respect to the ordering “¢”, {Cy : r € R} C [w]*
is a linearly ordered set of size ¢. In general one can show that whenever M is
infinite, the partially ordered set (39 (M), g) contains a linearly ordered subset
of size strictly greater than |M]|.

The o-reaping number v,* A family Z C [w]® is called o-reaping if no count-
ably many sets suffice to split all members of Z. The o-reaping number t, is
the smallest cardinality of any o-reaping family (for a definition of t, in terms
of bounded sequences see Vojtas [44]). Obviously we have v < t,, but it is not
known whether v = t, is provable in ZFC, i.e., it is not known whether t < t, is
consistent with ZFC (see also Vojtas [44] and Brendle [8]).



206

55.

56.

57.

58.

59.

8 Twelve Cardinals and their Relations

On i and hom? We have seen that max{r,0} < hom (see THEOREM 8.10) and
that max{r,0} < i (see THEOREM 8.9). Moreover, Blass [4, Section 6] showed
that hom = max{t,,0} (see also Blass [5]). Thus, in every model in which ¢t =
t, we have hom < i. Furthermore, one can show that hom < i is consistent
with ZFC: In Balcar, Hernandez-Hernandez, and Hru§ak [1] it is shown that
max{t, cof ()} < i, where cof (/) is the cofinality of the ideal of meagre sets.
On the other hand, it is possible to construct models in which 0 = v, = w;
and cof () = wz = ¢ (see for example Shelah and Zapletal [36] or Brendle and
Khomskii [15]). Thus, in such models we have wi = hom < i = w2. However, it
is open whether i < hom (which would imply t < t,) is consistent with ZFC.

The ultrafilter number u. A family .# C [w]” is a base for an ultrafilter
U Cw*if % ={y€w”:3xe F(xCy)} The ultrafilter number u is
the smallest cardinality of any ultrafilter base. We leave it as an exercise to the
reader to show that vt < u.

Consistency results. The following statements are consistent with ZFC:

v < u (cf. Goldstern and Shelah [23])

u < 0 (cf. Blass and Shelah [6] or see Chapter 23 | RELATED RESULT 130)

u < a (cf. Shelah [34], see also Brendle [13])

h < par (cf. Shelah [32, Theorem 5.2] or Dow [19, Proposition 2.7])

hom < ¢ (see Chapter 23 | RELATED RESULT 138)

0 < a (cf. Shelah [34], see also Brendle [10])

w1 =b < a=s5=0=uws (cf. Shelah [32, Sections 1 & 2])

k=b=a<s =\ for any regular uncountable cardinals k < A (cf. Brendle
and Fischer [14])

b=x <kT =a=cfor k> ws (cf Brendle [7])

w1 =86 <b=0=rt=a=uws (cf. Shelah [32, Section 4])

cf(a) = w (cf. Brendle [11])

e ) = wy + there are no towers of height w> (cf. Dordal [17]).

Some more results can be found for example in Blass [5], Brendle [9, 12],
van Douwen [42], Dow [19], and Dordal [18].

Combinatorial properties of mazimal almost disjoint families. An uncountable
set of reals is a o-set if every relative Borel subset is a relative G5 set. Brendle
and Piper showed in [16] that CH implies the existence of a mad family which
is also a o-set (in that paper, they also discuss related results assuming Martin’s
Axiom).

Applications to Banach space theory. Let £,(k) denote the Banach space of
bounded functions f : kK — R with finite £,-norm, where for 1 < p < oo,

I£1 = # > If (@I,

Il = sup {|f(a)] : o € K}
As mentioned above, Hausdorff generalised PROPOSITION 8.8 to arbitrary in-
finite cardinals k, i.e., if x is an infinite cardinal then there are independent
families on k of cardinality 2”. Now, using independent families on k of cardi-
nality 2" it is quite straightforward to show that ¢ (%) contains an isomorphic

and for p = oo,
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10.

11.

12.

copy of ¢1(2") (the details are left to the reader), and Halbeisen [24] showed
that the dual of £ (k) contains an isomorphic copy of ¢2(2") (for an analytic
proof in the case k = w see Rosenthal [31, Proposition 3.4]).

We have seen that there are almost disjoint families on w of cardinality ¢ = 2
Unlike for independent families, this result cannot be generalised to arbitrary
cardinals k, i.e., it is consistent with ZFC that for some infinite x, there no almost
disjoint family on s of cardinality 2" (see Baumgartner[3, Theorem 5.6 (b)]).
However, one can prove that for all infinite cardinals x there is an almost disjoint
family on « of cardinality > « (cf. Tarski [41], Sierpiniski [37, 38| or [40, p. 448£.],
or Baumgartner [3, Theorem 2.8]). Using an almost disjoint family of cardinality
> k it is not hard to show that every infinite dimensional Banach space of
cardinality x has more than x pairwise almost disjoint normalised Hamel bases
(cf. Halbeisen [25]), and Pelczyriski and Sudakov [30] showed that co(k), which
is a subspace of £ (), is not complemented in £ (k).

g
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9

The Shattering Number revisited

As variety brings pleasure and delight, so excessive
repetition generates boredom and annoyance.
Besides, the composer would be thought by connois-
seurs of the art to have a meagre store of ideas.
But it is not only permitted but admirable to du-
plicate a passage or melody as many times as
one wishes if the counterpoint is always different
and wvaried. For such repetitions strike us as be-
ing somehow ingenious, and we should try to write
them wherever they seem suitable.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

In this chapter we shall have a closer look at the shattering number h. In
the preceding chapter, h was introduced as the minimum height of a shattering
matrix. However, like other cardinal characteristics, b has different facets. In
this chapter we shall see that b is closely related to the Ramsey property, a
combinatorial property of subsets of w (discussed at the end of Chapter 2)
which can be regarded as a generalisation of RAMSEY’S THEOREM.

The Ramsey Property

By RAMSEY’S THEOREM 2.1, for every 2-colouring of [w]? there is a homoge-
neous set; on the other hand we have seen that there are 2-colourings of [w]*
without a homogeneous set (see the example given in Chapter 2). Obviously,
every colouring 7 : [w]* — {0,1} induces a set C; C [w]¥ by stipulating
Cr={z €W :m(z) =1}.

By identifying 2-colourings of [w]“ with subsets of [w]*, the existence of a
2-colouring of [w]* without a homogeneous set is equivalent to the existence
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of a set C' C [w]*¥ such that for all z € [w]* there are yo,y1 € [z]* such that
yo ¢ A and y; € A.

Now, a set C C [w]“ has the Ramsey property, if there exists a set
x € [w]¥ such that either [z]“ C C or [z]*NC = (). Notice that the finite as well
as the co-finite subsets of [w]* have the Ramsey property, but notice also that
not all subsets of [w]¥ have the Ramsey property (cf. Chapter 5| RELATED
RESULT 38).

Below, we investigate a property of subsets of [w]* which is slightly stronger
than the Ramsey property, but first we have to introduce the following nota-
tion.

For a finite set s € fin(w) and an infinite set x € [w]* such that max(s) <
min(z) (i.e., Js <N x), let

[s,2]Y ={z€w“:sCzCsUx}.

Now, a set C' C [w]¥ is called completely Ramsey if for every set [s, z]*
there is a y € [z]¥ such that either [s,y]* C C or [s,y]“ N C = (. If we are
always in the latter case (i.e., for each [s, 2] there is a y € [z]“ such that
[s,y]* NC = ), then C is called completely Ramsey-null. In particular,
for s = ) and x = w we conclude that any completely Ramsey set has the
Ramsey property. On the other hand, not every set which has the Ramsey
property is completely Ramsey (we leave it as an exercise to the reader to find
a counterexample).

The proof of the following result uses a so-called fusion argument, a tech-
nique which we will meet again in Part III (LEMMA 9.1 itself is used in the
proof of THEOREM 9.2).

LEMMA 9.1. If C C [w]¥ is completely Ramsey-null, then for each x € [w]*
there is a y € [z]* such that C contains no infinite set z C* y.

Proof. Let C be completely Ramsey-null and « € [w]* be arbitrary. By defini-
tion of completely Ramsey-null there is a yo € [#]* such that [0, yo]* NC =0
and let ap = min(yg). Assume we have already constructed a sequence
T DyYg 2 ... yp of infinite subsets of w as well as a sequence ag < ... < ay,
of natural numbers such that for all s € Z(a,—1 + 1),

[s,yx]* NC =10.

For h = 2% F! let {s; : i € h} be an enumeration of Z(a,, + 1) where
so = (0. Further let 2o = y, \ (an + 1) and for each i € h choose an infinite
set zi41 C 2z such that [sit1,2:41]Y NC = 0 (notice that we can do this
because C' is completely Ramsey-null). Finally let y,+1 = z,_1; then for all
s € P(an + 1) we have

[Sv yn+1]w NC=90.

Let now a,+1 = min(y,+1) and start the process again with the sequences
TOY 2 ... D Ypy1 and ag < ... < apy1- At the end we get an infinite
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sequence ag < a1 < ... < an < ...and by construction the set y = {a; : i € w}
has the property that for each s € fin(w) with max(s) € y,

[s,9\ (max(s)Jrl)}w nc =20,

which implies that for each infinite set z C* y we have [0, 2]“ N C =0, i.e., C
contains no infinite set z C* y. —

The Ideal of Ramsey-Null Sets

Below, we consider the set of completely Ramsey-null sets. So, let
Ro = {C C [w]” : C is completely Ramsey-null }

be the collection of all subsets of [w]* which are completely Ramsey-null. Since
Ry is closed under subsets (i.e., C € Ry and C’ C C implies C' € Ry) and
finite unions (i.e., Cy,...,C, € Ry implies CoU...UC,, € Ry), Ro is an ideal
on Z([w]?).

Obviously, [w]“ € Ro but for every x € [w]* we have {z} € Ry. Thus, the
set [w] can be covered by ¢ completely Ramsey-null sets which implies that
the union of ¢ sets from R can be a set which does not belong to Rg. These
observations lead to the following two cardinal numbers.

DEFINITION. The additivity of Ry, denoted add(Ry), is the smallest num-
ber of sets in Ry with union not in Rg; more formally

add(Ro) =min {|€|: € CRo AU ¢ Ro} .

DEFINITION. The covering number of R, denoted cov(Ryg), is the smallest
number of sets in Ry with union [w]¥; more formally

cov(Ro) =min {|€|: ¢ C Ro AUE = [w]*}.

We leave it as an exercise to the reader to show (using a fusion argu-
ment) that any countable union of completely Ramsey-null sets is completely
Ramsey-null. Hence, w; < add(Ry), and consequently we get wy < add(Rg) <
cov(Ro) < c. Moreover, we even have the following result.

THEOREM 9.2. add(Ro) = cov(Ro) = b.

Proof. Because add(Rg) < cov(Ry) it is enough to show that cov(Ro) < b
and that h < add(Ry).

cov(Ro) < b: Let {2 : £ € b} be a shattering family of cardinality §. For each
Eeblet De={ye€ w“:3Ir ey x)} and let C¢ = [w]* \ De. Firstly
notice that for each £ € b, C¢ € Ry. Indeed, take any [s, y|, then, since o7 is
mad, there is an = € 7 such that y Nz is infinite; thus, [s,y N z]* C Deg, or
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equivalently [s,y N z]*NC¢ = 0. Secondly notice that [, C¢ = [w]*. Indeed,
take any y € [w]®, then, since {2 : £ € b} is shattering, there is a £ € h and
two distinct elements x, 2’ € o7 such that y Nz as well as y N2’ is infinite;
hence, y ¢ De, or equivalently y € Ce.

h < add(Ro): Let {C¢ C [w] : € € K < h} C Ry be a family of completely
Ramsey-null sets of cardinality x < . We will show that Ugen C¢ € Ro. For
each € € k let

De={yew’ :Vzew“(zC"y—0,2]“NnC=0)}.

Now we choose for each £ € x an almost disjoint family o7 C Dy of cardinality
¢ which is maximal with respect to inclusion. Notice that by LEMMA 9.1, for
each x € [w]* there is a y € &% such that z Ny is infinite, i.e., o C D is a
mad family (on [w]*) of cardinality c. Indeed, if there would be an x € [w]“ o7
which has finite intersection with each member of <7, then, by LEMMA 9.1,
there is a y € [z]¥ such that y € D¢ \ &% which would imply that <% is not
maximal. Because x < h we can apply LEMMA 8.14 and get a mad family &’
which refines each 7. Take any set [s, z]*. Since &/’ is mad, thereisay’ € &7’
such that 2Ny’ is infinite; let z = xNy’. Because &’ refines all <7%’s, for each
& € K there is a y € & such that z C* y, and since @ C D¢, by definition of
D¢ we get [0, sU z]“ N Ce = 0, in particular, [s, z]“ N Ce = 0. Thus, for every
set [s,z]“ there exists a z € [z]* such that for all £ € &, [s,2]* N Ce =0, i.e.,
[5,2]“ N Uge, Ce = 0, hence U, Ce € Ro. -

The Ellentuck Topology

Below, we give a topological characterisation of completely Ramsey sets, but
before we have to introduce the basic notions of General Topology:

A topological space is a pair (X, 0) consisting of a set X and a family
O of subsets of X satisfying the following conditions.

(O1) P e 0 and X € 0.
(02) If O1 € & and Oy Gﬁ, then O1 N Oy € 0.
(03) Tf Z C 0, then J.Z € 0.

The set X is called a space, the elements of X are called points of the space,
and the subsets of X belonging to & are called open and the complements of
open sets are called closed. The family & of open subsets of X is also called
a topology on X.

Let us consider for example the real line R. For 71,72 € R define (r1,72) :=
{reR:r; <r <rq}. Now, aset O C R is called open if for every r € O
there exists a real ¢ > 0 such that (r —e,r +¢) C O (i.e., every r € O is
contained in an open interval contained in O). We leave it as an exercise to
the reader to show that the family of open sets satisfies conditions (01)—(03).

From (02) is follows that the intersection of any finite family of open sets
is an open set, and from (03) it follows that the union of any family of open
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sets is open. Notice that arbitrary intersections of closed sets as well as finite
unions of closed sets are closed sets. For an arbitrary set A C X let

A =|J{oeo:0c A}
be the interior of A; and let
A:ﬂ{C:Cis closedandAQC}

be the closure of A. Notice that A° is the largest open set contained in A
and that A is the smallest closed set containing A.

A family £ C 0 is called a base for a topological space (X, 0) if every
non-empty open subset of X can be represented as the union of a subfamily
of A. The sets in a basis Z are also called basic open sets. If a family % of
subsets of X is such that X € % and every non-empty finite intersection of
sets in Z belongs to A, then (X, 0), where

o={{J7:7ca},

is a topological space with base % (notice that |J@ = (). In this case we say
that the topology on X is generated by the basic open sets O € A.

For example the topology on R introduced above is generated by the count-
ably many basic open intervals (¢1,¢2), where g1, ¢2 € Q.

Let (X, ©) be a topological space and let A C X be a subset of X.

A is called dense if for every open set O € &, ANO # (.
A is called nowhere dense if X \ A contains an open dense set.
A is called meagre if A is the union of countably many nowhere dense
sets.

e A has the Baire property if there is an open set O € & such that OAA
is meagre, where OAA = (O\ A) U (A\ O) (i.e., z ¢ OAA iff either
r€ANOorxz¢ AUO).

Obviously, meagre sets and open sets have the Baire property and countable
unions of meagre sets are meagre. Moreover, the following result shows that
the Baire property is closed under complementation and countable unions and
intersections.

Fact 9.3. (a) Every closed set has the Baire property.
(b) The complement of a set with the Baire property has the Baire property.

(c) Unions and intersections of countably many sets with the Baire property
have the Baire property.

Proof. (a) Let A C X be a closed subset of X. We shall show that A\ A°
is nowhere dense. Firstly, A\ A° = AN (X \ A°), thus, A\ A° is closed and
X\ (A\ A°) is open. Secondly, no open set O € & is contained in A\ A°, and
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therefore O N (X \ (A \ 4°)) is a non-empty open set. Thus, X \ (A\ A°) is
open dense, or equivalently, A\ A° is nowhere dense. In particular, A°AA is
meagre which shows that A has the Baire property.

(b) Assume that A C X has the Baire property and let O € & be such that
OAA is meagre. Let O := X \ (X \ O)° be the closure of O. By (a), O\ O is
nowhere dense. Thus, AAO is meagre and therefore (X \ A)A(X \ O) is also
meagre, which shows that X \ A has the Baire property.

(c) By (b) it is enough to prove (c) for unions. So, let {A,, € X : n € w} be
a family of sets which have the Baire property. For each n € w let O,, € & be
an open set such that O,, A A,, is meagre. Then

M = UOnA UAng U (On A Ay)

new new new

is a subset of a countable union of meagre sets. Hence, M is meagre which
shows that | J .. A, has the Baire property. =

new

Consider now the set [w]. The aim is to define a topology on [w] such that
a set A C [w]“ has the Baire property (with respect to that topology) if and
only if A is completely Ramsey. For this let

B ={[s,z]* C [w]":s € fin(w) Az € [w]* A max(s) < min(z)},

where we defined [s,2]* := {z € [w]* : s € 2z C sUx}. Obviously, [w]* =
[0, w]* € £ and we leave it as an exercise to the reader to show that every non-
empty finite intersection of sets in % belongs to Z — notice that [s, z]“N[t, y]
is either empty or it is [sUt,zNy]*. Thus, ¢ = {UF : F C B} is a
topology on [w]¥, called the Ellentuck topology.

In Chapter 21 we shall introduce a topology on “w which corresponds to
the topology on [w]¥ generated by the basic open sets [s,w \ max(s) + 1]*.

Notice that with respect to the Ellentuck topology, each singleton set
{z} C [w]“ is nowhere dense and all countable sets are meagre. Furthermore,
by definition, subsets of meagre sets as well as countable unions of meagre sets
are meagre. Thus, the collection of all meagre subsets of [w]* is an ideal on
2 ([w]*). The following theorem shows that the ideal of meagre sets coincide
with the ideal of completely Ramsey-null sets, and that a set is completely
Ramsey iff it has the Baire property; for the latter result we have to prove
first the following lemma, whose proof uses twice a fusion argument.

LEMMA 9.4. Every open set is completely Ramsey.

Proof. Firstly we introduce some terminology: Let O C [w]* be an arbitrary
but fixed open set. A basic open set [s,xz] is called good (with respect to
0), if there is a set y € [z]“ such that [s,y]¥ C O; otherwise it is called
bad. Further, [s,z]“ is called ugly if [s U {a},x\ at]“ is bad for all a € =,
where a® := a + 1. Notice that if [s,z]* is ugly, then [s,z]* is bad, too.
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Finally, [s,z]* is called completely ugly if [s U {aq,...,an},z\ aF]* is bad
for all {ag,...,an} C 2 with ag < ... < an. If [s,2]* is completely ugly, then
[s,2]Y N O = 0 (notice that [s,z]* N O is open, and therefore is either empty
or contains a basic open set [t,y]* C [s, z]¥).

Now, in order to show that the open set O is completely Ramsey it is
enough to prove that every basic open set [s, z]“ is either good or there exists
a z € [z]* such that [s, z]“ is completely ugly. This is done in two steps: Firstly
we show that if [s,2]* is bad, then there exists a y € [x]* such that [s,y]* is
ugly, and secondly we show that if s, y]“ is ugly, then there exists a z € [y]*
such that [s, z]¥ is completely ugly.

CrAM 1. If the basic open set [s,z]* is bad, then there exists a set y € [x]
such that [s,y]“ is ugly.

Proof of Claim 1. Let xy := x and ag := min(zg), and for ¢ € w let ;41 C
(z; \ af) such that [sU {a;},zi11]* C O if possible, and x;41 = ; \ a;
otherwise. Further, let a;41 := min(x;41). Strictly speaking we assume that
[w]“ is well-ordered and that x;1 is the first element of [w]“ with the required
properties. Now, let y = {a; : [s U {a;},zi41]® € O}. Because [s,z]* is bad,
y € [w]“, which implies that [s, y]“ is ugly. Actaim 1

CLAIM 2. If the basic open set [s,y|” is ugly, then there exists a set z € [y]“
such that [s, z]“ is completely ugly.

Proof of Claim 2. This follows by an iterative application of CLAIM 1. Let
yo = y and let ap := min(yp). For every i € w we can choose a set
Yir1 S (yi \ a:r), where a; := min(y;), such that for each ¢ C {aog,...,a;}
we have either [s Ut,y;11]¥ is ugly or [sUt,y;41]* € O. Let z := {a; : i € w}
and assume towards a contradiction that there exists a finite set ¢ C =z
such that [s U,z \ max(¢)T]¥ is good. Notice that since [s, y]* was assumed
to be ugly, ¢ # 0. Now, let tg be a smallest finite subset of z such that
[s Uto, z \ max(to)*]¥ is good and let t5 = ¢ \ {max(ty)}. By definition of
to, [sUty, 2z \ max(tp)]¥ cannot be good (i.e., it is bad), and therefore, by
construction of z, it must be ugly. On the other hand, if [s Uty , 2 \ max(to)]“
is ugly, then [s U tg, z \ max(to)T]“ is bad, which is a contradiction to our as-
sumption that [s U tg, 2 \ max(t)™]* is good. Thus, for all finite subsets ¢ C z,
[sUt, 2z \ max(t)T]¥ is ugly, and therefore [s, 2]“ is completely ugly. ciaim 2

Let [s, z]“ be an arbitrary basic open set. If [s, 2] is good, then there exists a
y € [x]“ such that [s,y]¥ C O. Otherwise, [s, 2] is bad and we find a z € [z]*
such that [s, 2] is completely ugly, i.e., [s, 2]* N O = (). Hence, the arbitrary
open set O is completely Ramsey. —

We shall use the very same fusion arguments again in Chapter 24 in order to
prove that Mathias forcing has pure decision (see proof of THEOREM 24.3).

THEOREM 9.5 (ELLENTUCK). For every A C [w]¥ we have:

(a) A is nowhere dense if and only if A is completely Ramsey-null.
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(b) A is meagre if and only if A is nowhere dense.

(c) A has the Baire property if and only if A is completely Ramsey.

Proof. (a) A set A C [w]“ is nowhere dense iff for each basic open set [s, x]*
there exists a basic open set [t, y] C [s, 2] such that [¢t,y]*NA = (. Hence, we
obviously have that every completely Ramsey-null set is nowhere dense. For
the other direction assume that A C [w]* is not completely Ramsey-null, i.e.,
there is a basic open set [s, 2] such that for all basic open sets [s, y]* C [s, z]¥
we have [s,y]“ N A # 0. By a fusion argument we can construct a set zg € [x]“
such that for all [¢,y]¥ C [s, 20]“ we have [t,y]* N A # 0, i.e., A is not nowhere
dense.

(b) On the one hand, nowhere dense sets are meagre. On the other hand, by
THEOREM 9.2 we have add(Ro) = b and since b is uncountable we get that
countable unions of completely Ramsey-null sets (i.e., of nowhere dense sets)
are completely Ramsey-null. Thus, meagre sets are completely Ramsey-null
and therefore nowhere dense.

(¢c) On the one hand, if A C [w]* is completely Ramsey, then O = J {[s, y]* :
[s,y]* C A} is an open subset of A and for each basic open set [s, 2] there is
ay € [x]“ such that either [s,y]* C A (i.e., [s,y]“ C (ANO) and in particular
[s,9]“ N (OAA) = D), or [s,y]* NA =0 (ie., [s,y]* N(AUO) = 0 and in
particular [s,y]* N (OAA) = 0). In both cases we have [s,y]“ N (OAA) =0
which implies that OA A is meagre and shows that A has the Baire property.

On the other hand, if A C [w]“ has the Baire property then there is an
open set O C [w]®¥ such that OA A is meagre, thus by (b), OAA is completely
Ramsey-null. Now, OAA € R, iff for each basic open set [s,y]* there is a
z € [y]“ such that [s,2]“ N (OAA) = 0. Because O is completely Ramsey (by
LEMMA 9.4), for every basic open set [s,z]“ there is a set y € [z]* such that
either [s,y]* C O or [s,y]* NO = ), and in both cases there is a z € [y]* such
that [s, 2]* N (OAA) = (. Thus, we have either [s,2]* C A or [s,2]* N A =0,
which shows that A is completely Ramsey. —

As a consequence we get the following

COROLLARY 9.6. The union of less than b completely Ramsey sets is com-
pletely Ramsey.

Proof. Let £ < b and let {Ce C [w]* : £ € Kk} be a family of completely
Ramsey sets. For each £ €  let O¢ C [w]“ be an open set such that O¢ A C¢
is meagre. Then

D=|JO: |JCec | (0cC)
{ER £€ER EER

is a subset of a union of xk meagre sets, and since k < h, D is meagre and
therefore (J;c,, C¢ is completely Ramsey. =
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A generalised Suslin Operation

First we introduce an operation on certain families of sets and then we show
that the collection of completely Ramsey sets is closed under that operation.

Recall that for arbitrary cardinals x, seq(k) denotes the set of all finite
sequences which can be formed with elements of k. As usual we identify the
set seq(r) with the set J, ., "s. Let {Qs : s € seq(k)} be a family of sets
indexed by elements of seq(x) and define

AdQsseseq)} = | ) Qs -

fEYK nEw

The operation A, is called the Suslin operation.

Now we will show that the collection of completely Ramsey sets (i.e., the col-
lection of sets having the Baire property) is closed under the generalised Suslin
operation A, whenever w < k < b, i.e., for every family {QS 18 € seq(n)} of
completely Ramsey sets, AK{QS RS seq(n)} is completely Ramsey.

A set A C [w]“ is meagre in the basic open set [s, x]“ if the intersection
AN[s, z]* is meagre. Thus, by (a) & (b) of THEOREM 9.5, A is meagre in [s, z]*
if for every [t,y]“ C [s, x| there is a y' € [y]* such that AN[t,y']Y = 0. Now,
for an arbitrary but fixed set A C [w]“ let

M = U {[s,x]“ : A is meagre in [s,2]*}.

The main part of the following lemma is that AU ([w]“ \ M) has the Baire
property.

LEMMA 9.7. For A and M as above we have:

(a) A is meagre in each basic open set [s,z]* C M.
(b) M N A is meagre.
(¢c) AU ([w]* \ M) has the Baire property.

Proof. (a) Let [s,z]“ C M be an arbitrary basic open subset of M and let
N = {[t,y]” C [s,2]” : A is meagre in [t,y]*} .

Then, by definition of M and since the basic open sets of the Ellentuck topol-
ogy are closed under finite intersections, | J N = [s, z]“. So, for each basic open
set [u, z]¥ C [s,z]¥ there is a [t,y]¥ C [u, z]* which belongs to N and we find
ay’ € [y]“ such that [t,y']“ N A = 0. Since [u, z]* C [s,z]* was arbitrary and
[t,9']¥ C [u,2]*, this shows that A is meagre in [s, z]“.

(b) We have to show that [w]“\ (M NA) contains an open dense set, i.e., for ev-
ery basic open set [s, z]* there is a [t, y]* C [s,z]* such that [¢t,y]|*NMNA = 0.
Let [s, 2] be an arbitrary basic open set. If [s, 2] N M = (), then we are done.
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Otherwise, since M is open, [s,z]* N M D [t,y]* for some basic open set
[t,y]¥; and since [t,y]¥ C M, by (a), A is meagre in [t,y]*. Hence, there is a
[t, 9] C [t,y]“ such that [t,y']“NA = @ which shows that [¢,y']“N(MNA) = .
(c) Notice that AU ([w]*\ M) = ([w]* \ M) U (M N A). Now, by (b), M N A
is meagre, and because M is open, [w]* \ M is closed. Thus, AU ([w]“ \ M)
is the union of a meagre set and a closed set and therefore has the Baire
property. —

The following result is used in the proof of THEOREM 9.9.

PROPOSITION 9.8. For every A C [w]¥ there is a set C O A which has the
Baire property and whenever Z C C'\ A has Baire property, then Z is meagre.

Proof. Let C = AU([w]*\ M) where M = |J{[s, 2] : A is meagre in [s,z]*}.
By LEMMA 9.7.(c) we know that C has the Baire property. Now let Z C C'\ A
be such that Z has the Baire property. If Z is not meagre, then there exists a
basic open set [t, y]* such that [t,y]“ \ Z is meagre. In particular, A is meagre
in [¢t,y]* and therefore [t,y]* C M. On the other hand, since [t,y]* N Z # 0
and Z N M = (0 we get that [t,y]* ¢ M, a contradiction. -

Now we are ready to prove that the collection of completely Ramsey sets
(i.e., the Baire property) is closed under the generalised Suslin operation .4,
whenever k < §.

THEOREM 9.9. Let k < b be an infinite cardinal and for each s € seq(k) let
Qs C [w]v. If all sets Qs are completely Ramsey, then

AK{QS 1 s € seq(m)}
is completely Ramsey too.

Proof. Let {Q, : s € seq(x)} be a family of completely Ramsey sets. We have
to show that the set A = A, {Q : s € seq(r)} is completely Ramsey. Without
loss of generality we may assume that Qs 2O @; whenever s C t. For every

s € seq(k) let
AS = U ﬂ Qf‘n

fEY new

s=fljs) n=|sl
We leave it as an exercise to the reader to verify that A = Ay and that for
every s € seq(k) we have A, C Qg and Ay = | A~ - Further, notice
that

ack

A=A {A:s€seq(r)}.

By PROPOSITION 9.8, for each s € seq(k) we find a set Cy O Ay which is
completely Ramsey and whenever Z C Cs \ A; is completely Ramsey, then Z
is completely Ramsey-null. Because Qs O As and Qs is completely Ramsey,
we may assume that Cs C @, and thus,
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A=AA{Cs:s€eseq(r)}.

Let C := Cy and notice that A = |J,c,. Aa) € Uaer Clay, in particular,
C € Ugser Clay- Now we show that

cvacJowe U Nomc U (e\UCw):

a€ER fEYK nEw s€seq(k) aER

Let z € [w] be such that

z ¢ U (CS\ U CSA<0¢)) : (€)

seseq(k) aER

If for all @ € K, © ¢ C(yy, then x ¢ C. On the other hand, if there exists
an ag € k such that x € C,,), then by (¢) we find an a; such that = €
Clag,a1)» and again by (¢) we find an ag such that 2 € Ciqa a,,a.), €t cetera,
and finally we find an f € “s such that for all n € w, z € Cy,, which
implies that € A. Further, Cs \ ., Cy(ay € Cs \Uacex Ay =0Cs \ As,

and since |J Cs“(a> is the union of less than h completely Ramsey sets,

aER
Cs \ Uaer C’SA@) is completely Ramsey, and as a subset of Cs \ Ag it is
completely Ramsey-null. Thus, C'\ A, as a subset of a union of less than b
completely Ramsey-null sets, is completely Ramsey-null, and because C' is

completely Ramsey, A is completely Ramsey too. —

NOTES

LeEMMA 9.1 and THEOREM 9.2 are due to Plewik [18]. The Ellentuck topology on
[w]“ was introduced by Ellentuck in [6] (for a comprehensive exposition of General
Topology we refer the reader to Engelking [7]). The main result of that paper is The-
orem 9, which is now known as ELLENTUCK’S THEOREM 9.5 (see also Matet [16]).
However, the aim of Ellentuck’s paper was to give a simpler proof for the fact that
every analytic set is completely Ramsey — a fact which also follows from THEO-
REM 9.9 (cf. Galvin and Prikry [8] and Silver [19]). The proof of THEOREM 9.9 is
similar to the proof of Jech [12, Theorem 11.18] and is essentially taken from Hal-
beisen [9, Section 3] (see also Matet [15, Proposition 9.8]).

RELATED RESULTS

60. The ideal of completely doughnut null sets” In Chapter 2, the doughnut property
was introduced. Now, similarly as we defined the ideal Ro of completely Ramsey-
null sets one can define the ideal vy of completely doughnut null sets. By THE-
OREM 9.2 we know that add(Ro) = cov(Ro), however, it is not known whether
we also have add(vo) = cov(vo) (see Halbeisen [10, Question 4]). A partial an-
swer to this problem can be found in Kalemba, Plewik, and Wojciechowska [13],
where it is shown that t = min{cf(c),t} implies add(vo) = cov(vo).
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61. Ro and other o-ideals on [w]*. In [5], Corazza compares the ideal of com-
pletely Ramsey-null sets with other o-ideals like the ideal of Lebesgue measure
zero, meagre, and Marczewski measure zero sets of reals (see also Louveau [14],
Aniszczyk, Frankiewicz, Plewik [1], and Brown [3]).

62. FEllentuck type theorems. In [4], Carlson and Simpson survey the interplay be-
tween topology and Ramsey Theory. In particular, an abstract version of ELLEN-
TUCK’S THEOREM 9.5 is introduced and discussed. For a further development
of this theory see for example Mijares [17].

Let Sw \ w denote the set of all non-principal ultrafilters over w. For A C w define
A" ={% € Bw\w:Aec U},

and let * = {A* : A Cw}. Notice that w* = fw\w and that A* = @ iff A is finite.
Furthermore, for all A*, B* € #* we have

A"NB*"=(ANB)" and A"UB"=(AUB)".

In particular, $* has the property that intersections of sets in %™ belong to £~
thus, #* is a base for a topology on Sw \ w. The set fw \ w with the topology
generated by the basic open sets A* € £ is a topological space which has many
interesting properties; the following results can be found for example in Todorce-
vi¢ [20, Section 14].

e [w\ w is Hausdorff ([20, Lemma 1]).
e [w\w is compact ([20, Lemma 2]).
e Sw\ w contains no non-trivial converging sequences ([20, Theorem 2]).

For an introduction to Sw \ w see van Mill [21], and for combinatorial properties of
Bw \ w we refer the reader to Hindman and Strauss [11].

63. The minimum height of a tree m-base of Bw\w. A family & C B of basic open
sets is a w-base for fw\w if every non-empty element of #* contains a member
of #.1f a m-base & C £” is a tree when considered as a partially ordered set
under reverse inclusion (i.e., for every A* € &, AL :={B" € & : A* C B*}is
well-ordered by “27), then Z is called a tree w-base of fw\w.If # C #* isa
tree m-base of Sw \ w, then the height of an element A* € &, denoted h(A™*), is
the order type of AL (well-ordered by “2”), and the height of &7 is defined by
h(2) :=J{h(A*) : A* € 2}. Now, the BASE MATRIX LEMMA 2.11 of Balcar,
Pelant, and Simon [2] (see Chapter 8 | RELATED RESULT 51) shows that b is the
minimum height of a tree w-base of fw \ w, i.e.,

h=min{h(P): P C B" is a tree m-base of fw \w}.
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Happy Families and their Relatives

A cadence is a certain simultaneous progression of
all the voices in a composition accompanying a re-
pose in the harmony or the completion of a mean-
ingful segment of the text.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

In this chapter we shall investigate combinatorial properties of certain
families of infinite subsets of w. In order to do so, we shall use many of
the combinatorial tools developed in the preceding chapters. The families
we investigate — particularly P-families and Ramsey families — will play a
key role in understanding the combinatorial properties of Silver and Mathias
forcing notions (see Chapter 22 and Chapter 24 respectively).

Happy Families

The P-families and Ramsey families mentioned above are relatives to the so-
called happy families. The name “happy families” comes from a children’s
card game, where the idea of the game is to collect the members of fictional
families. The connection to families in Set Theory is that a family & C [w]
is happy if for every countable decreasing sequence yo 2 y; 2 - - - of elements
of & there is a member of & which selects certain elements from the sets y;
(cf. PROPOSITION 10.6.(b)). This explains why happy families are also called
selective co-ideals — which is more sober but less amusing.

Firstly recall that a family % C [w]* is a filter if it is closed under supersets
and finite intersections, and that the Fréchet filter is the filter consisting of
all co-finite subsets of w (i.e., all z € [w]* such that w \ z is finite). To keep
the notation short, for z C w define z¢ := w \ z. For a filter # C [w]¥, FT
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denotes the collection of all sets  C w such that w \ « does not belong to .7,
ie.,

ﬁ+:{xgw:xc¢ﬁ}.
An equivalent definition of .# T is given by the following

FACT 10.1. For any filter & C [w]¥, v € F 7 if and only if Nz is non-empty
whenever z € ..

Proof. On the one hand, if, for some z € %, x Nz = @, then ¢ D 2, which
implies that ¢ € % and therefore x ¢ .. On the other hand, if, for some
z C w, ¢ € Z, then we obviously have z N z¢ = @, thus, x does not meet
every member of .%. —

If % is an ultrafilter and x Uy € %, then at least one of x and y belongs
to % . In general, this is not the case for filters .%, but it holds for .# .

LEMMA 10.2. Let .7 C [w]“ be a filter. If .#* contains x Uy, then it contains
at least one of x and y.

Proof. If neither = nor y belongs to ., then z¢,y¢ € %. Hence, (x Uy)¢ =
x¢Nyc € Z, and therefore xUy ¢ FT. =

Now, a filter # C [w]“ is called a free filter if it contains the Fréchet
filter. In particular, every ultrafilter on [w]“ is free. Notice that for a free filter
F,F " ={x Cw:VzeF(lzNz| =w)}, and that a filter % C [w]“ is an
ultrafilter iff % = % . Finally, a family & of subsets of w is called a free
family if there is a free filter % C [w]* such that & = .Z . In particular, [w]*
and all ultrafilters on [w]“ are free families. Notice that a free family does not
contain any finite sets and is closed under supersets. Moreover, a free family
& is closed under finite intersections iff & is an ultrafilter on [w]“.

Recall that fin(w) denotes the set of all finite subsets of w. To keep the
notation short, for s € fin(w) let 5:=Js, and for n € wlet n™ :=n+1 (in
other words, n™ is the successor cardinal of n). In particular, for non-empty
sets s € fin(w) we have § = max(s) and 51 = max(s) + 1.

A set z C w is said to diagonalise the set {z, : s € fin(w)} C [w]* if the
following conditions are satisfied:

o 1 C xy;
e forall s €fin(w),if 5 €z then z\ s C x,.

For o7 C [w]¥ we write fil(«/) for the filter generated by the members of <7,
i.e., fil(«7) consists of all subsets of w which are supersets of intersections of
finitely many members of .

Now, a set & C [w]“ is a happy family if & is a free family and whenever
fil ({25 : s € fin(w)}) C &, there is an € & which diagonalises the set
{zs:s € fin(w)}.

Below, we give two examples of happy families; in the first the family is as
large as possible, and in the second the family is of medium size —in the next
section we shall see examples of happy families which are as small as possible.
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FAct 10.3. The family [w]“ is happy.

Proof. Let {z, : s € fin(w)} C [w]“ be a subfamily of [w]* and assume that
fil ({xs : s € fin(w)}) C [w]*, i.e., the intersection of finitely many elements of
{zs : s € fin(w)} is infinite. Let ng := (ay and for k € w choose nj11 > ny,
such that

Nkt1 Gﬂ{:cs:§+ Snk+1}.

By our assumption, those choices are possible. Let x = {nj : k € w}; then
x C zp, and whenever § = ny, (i.e., 57 < ny + 1), we get

z\§+§ﬂ{xs:§+§nk+1}.

In particular, x \ 57 C x, as required. —

In order to construct non-trivial examples of happy families, we have to
introduce first the following notion: For a mad family &/ C [w]“, let %y be
the collection of all subsets of w which are almost contained in supersets of
complements of finite unions of members of .

The goal is to show that % is a happy family whenever & C [w]* is a
mad family, but for this we have to prove first that .%,, is a free filter.

PROPOSITION 10.4. If o/ C [w]¥ is a mad family, then %, is a free filter but
not an ultrafilter.

Proof. Let o C [w]¥ be a mad family and let
Fog = {yG (W] : Fzg ... 2p EQ%((:COU...U:E")C - y)}

Firstly, %, is a free filter: By definition, %, is closed under supersets and
contains all co-finite sets, and since &/ is mad, no co-finite set is the union
of finitely many members of <7, hence, %, does not contain any finite set.

Further, for any y,y € %y there are xo,...,z, and xf,...,2,, in & such
that c .
(U xl) C*y and ( U ZC;) c*y,
€N JEM

which shows that

(U:ciu Ux})cg*yﬁyleﬁ'}y.

iEN JEM

Secondly, %y is not an ultrafilter: We have to find a set z € [w]¥ such that
neither z nor z¢ belongs to % . Let {z; : i € w} be distinct elements of .
Notice that it is enough to construct a set z € [w]* such that both z and
2% have infinite intersection with each z;. To construct such a set z, take a
strictly increasing sequence ng < ... < ng < ... of natural numbers such that
for each k € w, if k = 2/(2m + 1), then both ny, and noyy 1 are in z,, and put
z={ng : k € w}. —
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Now we are ready to give non-trivial examples of happy families. Even though
the proof of the following proposition becomes considerably easier by the
characterisation of happy families given by PROPOSITION 10.6.(b), we think
it makes sense to have some non-trivial examples of happy families — and to
work with the original definition — before giving an equivalent definition of
happy families.

PROPOSITION 10.5. Let @/ C [w]* be a mad family. Then 7., is a happy
family.

Proof. Given any family {y; : t € fin(w)} with fil ({z, : s € fin(w)}) € Z].
For s € fin(w), let ;= N {y: : £ < 5}. Then for any n € w, x(,} =
whenever n = 5. We shall construct an z € ﬂ:{r which diagonalises {yt :
t e ﬁn(w)} by showing that for all n € w, x \ n* C xy,;. For this, let
2% — constructed as in the proof of FACT 10.3 — diagonalise {:L'S 1s€ ﬁn(w)}.
We may not assume that 2° belongs to .%,/, i.e., there might be a z € . such
that 2° N z is finite. However, since & is mad, there is a 1y € & such that
2%NyY is infinite. For each s € fin(w) define ! := x,\y°. Notice that all 2! are
infinite and that fil ({z} : s € fin(w)}) € Z}, as y* € . Let 2! diagonalise
{zl : s € fin(w)} and let y' € & be such that 2! Ny! is infinite. Since
a' C oy C w\y® we get y' # y°. Further, notice that x' also diagonalises
{zs : s € fin(w)}. Now, for each s € fin(w) define z2 := =z, \ (y° Uy")
and proceed as before. After countably many steps we have constructed two
sequences of infinite sets, (z' : i € w) and (y' : i € w), such that each y’
belongs to .27, y* # y’ whenever i # j, ' Ny’ is infinite (for all i € w), and
z' diagonalises {z, : s € fin(w)}. Construct a strictly increasing sequence
ng < ... <mng < ...of natural numbers such that ng € zy and for each k € w,
if K = 2¢(2m + 1), then

ng € yi Nzt N Tlnp_1} -

Such a sequence of natural numbers exists because all sufficiently large
numbers in z’ belong to w,, ,3 and since y* Nz is infinite. Finally, let
z = {nj : k € w}. Then z diagonalises {z, : s € fin(w)} and it remains to
show that = € 9;, i.e., x has infinite intersection with each member of %, .
By construction, for each i € w, z Ny is infinite, and since <7 is mad, x\ y* is
infinite as well. Thus, = has infinite intersection with the complement of any
finite union of elements in </, hence, r € 7). —

After having seen that there are non-trivial happy families, let us give
now another characterisation of happy families which will be used later in
this chapter.

PROPOSITION 10.6. For a free family &, the following statements are equiv-
alent:

(a) & is happy.
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(b) If yo Dy1 D --- Dy; 2 --- is a countable decreasing sequence of elements
of &, then there is a function f € “w such that flw] € &, f(0) € yo, and for
all n € w we have f(n+1) € ysam)-

Proof. (a)=(b) Assume that & is happy and let {y; : i € w} C & be such
that for all i € w, y;+1 C y;. For each s € fin(w) define

zszﬂ{yi:igg}.

Notice that fil ({z, : s € fin(w)}) € &. Since & is assumed to be happy there
is an = which diagonalises the family {:z:s 1S € ﬁn(w)}. Let f = fy —recall
that fr € “w is the (unique) strictly increasing bijection between w and x
(defined in Chapter 8). For an arbitrary n € w let s :== z N (f(n) + 1). Then
st=f(n)+landsex. As f(n+1)cx\5" and 2\ 57 C x, C yy(,), we
have f(n+1) € ys(»), and since n was arbitrary, f has the required properties.

(b)=-(a) Assume now that & has property (b) and let {z, : s € fin(w)} C &
be such that fil ({z, : s € fin(w)}) C &. We have to find an € & which
diagonalises {x; : s € fin(w) }. For each i € w define

yi:m{xs:ggi}.

Obviously, for each ¢ € w we have y; € & and y;+1 C y;. By (b) there is a
function f € “w such that f[w] € & and for all n € w we have f(n+41) € ys(n)-
Let x := f[w] and let s € fin(w) be such that § € x. Then there exists an n € w
such that f(n) = 5, and for every k € z\ 57 we have k = f(m) for some
m > n, hence, k € ys,). Now, 57 = f(n) + 1, and since yy(,,) C x5 we get
k € zs. Hence, for all s € fin(w) with 5§ € z we have z \ s C z,, which shows
that = diagonalises {z : s € fin(w)}. =

We leave it as an exercise to the reader to find an easier proof of PROPOSI-
TION 10.5 by using the characterisation of happy families given by PROPOSI-
TION 10.6.(b).

Ramsey Ultrafilters

So far we have seen two examples of happy families. In the first example
(FACT 10.3), the happy family was as large as possible, and in the second
example (PROPOSITION 10.5), the happy families were of medium size. Below,
we consider happy families which are as small as possible, i.e., happy families
which are ultrafilters.

A free ultrafilter 7 C [w]“ is a Ramsey ultrafilter if for every colouring
7 : [w]? — 2 there exists an « € % which is homogeneous for 7, i.e., 7|2 is
constant.



230 10 Happy Families and their Relatives

The following result gives two alternative characterisations of Ramsey ul-
trafilter. The first characterisation of Ramsey ultrafilters is related to P-points
and Q-points (introduced below), and the second characterisation show that
a Ramsey ultrafilter is an ultrafilter that is also a happy family.

PROPOSITION 10.7. For every free ultrafilter % , the following conditions are
equivalent:

(a) % is a Ramsey ultrafilter.

(b) Let {u; Cw :i € w} be a partial partition of w, i.e., | J{u;:7 € w} Cw
and for any distinct i,j € w we have u; Nuj = (. Then either u; € % for a
(unique) i € w, or there exists an x € % such that for each i € w, |[zNu;| < 1.

(c) % is happy.

Proof. (a)=(b) Let {u; : i € w} be a partition of w. With respect to {u; :
i € w} define the colouring 7 : [w]? — 2 as follows:

0 if there is an ¢ € w such that {n,m} C u;,
w({n,m}) = :
1 otherwise.

By (a) thereis an € % such that 7|},}> is constant. Now, if 7|2 is constantly
zero, then there exists an i € w such that  C wu;, hence, u; € . On the other
hand, if 7[(,)2 is constantly one, then for any distinct n,m € x and any i € w
we get that {n, m} Nu; has at most one element, hence, for each i € w, x Nwu;
has at most one element.

(b)=(c) By PROPOSITION 10.6 it is enough to show that for every countable
decreasing sequence yg 2 Y1 2 ... 2 Yn 2 ... of elements of % there is a
function f € “w such that flw] € %, f(0) € yo, and for all k¥ € w we have
flk+1) € yry fy = Nyew Yn € %, then the function fy € “w has the
required properties. So, let us assume that [, ., yn ¢ % and without loss of
generality let us further assume that for all n € w, y,, \ yn+1 # 0. Consider
the partition {y§ UM, co ¥n} U{¥n \ Ynt1 : n € w} and notice that none of
the pieces are in % . By (b), there exists a set x = {a, : n € w} € % such
that for all n € w, £ N (yn \ Ynt1) = {an}, in particular, z N, ., yn = 0.
Let ¢ € “w be a strictly increasing function such that ¢g(0) > 0, glw] C =,
and for all n € w, x\ g(n) C yn. For k € w let g"T1(0) := g(g"(0)), where
¢°(0) := 0. Further, for k € w let x; := z N [g?*(0), g**T1(0)) —recall that
[a,b) = {i € w : a < i < b}. Now, by (b) and since % is an ultrafilter,
there exists a set 2 = {cx : k € w} C x such that z € % and for all k € w,
zNxg = {ck }. Notice that by construction, for each k € w we have ¢12 > g(ci)
and ¢p12 € Yy, Finally, since % is an ultrafilter and {c; : k € w} € %, either
{car, : k € w} or {cop+1 : k € w} belongs to %. In the former case define
f € “w by stipulating f(k) := co, otherwise define f(k) := cary1. Then f
has the required properties.

(c)=>(a) Let % be an ultrafilter that is also a happy family, and further let
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7 : [w]? — 2 be an arbitrary but fixed colouring. We have to find a y € % such
that 7|2 is constant. The proof is similar to the proof of PROPOSITION 2.2.
First we construct a family {z, : s € fin(w)} € %. Let 2y = w, and let zg} €
% be such that 20y C w\ {0} and for all k, k' € oy we have ({0,k}) =
7r({0, k’}) Notice that since % is an ultrafilter, z(o exists. In general, if x
is defined and n > 5, then let z,,(,) € % be such that z,(,; € zs \n* and
for all k, k" € wy,(n) we have 7T({TL, k}) = 7T({TL, k’}) Since 7% is happy, there
is a y € % which diagonalises the family {:cs 18 € ﬁn(w)}. By construction,
for each n € y and for all k, k' € y \ n* we have w({n,k}) = 7({n,k'}) and
we can define the colouring 7 : x — 2 by stipulating

(n) = 0 if there is a k € 2 \ n™ such that 7 ({n,k}) =0,
|1 otherwise.

Since % is an ultrafilter, there exists a x € % such that z C y and 7], is
constant, hence, 7|(,}> is constant. —

At a first glance, condition (a) is just related to PROPOSITION 2.2 and not to
RAMSEY’s THEOREM. However, the following fact shows that this is not the
case. Moreover, even PROPOSITION 2.8 is related to Ramsey ultrafilters (the
proofs are left to the reader).

FacT 10.8. For every free ultrafilter % , the following conditions are equiva-
lent:

(a) % is a Ramsey ultrafilter, i.e., for every colouring m : [w]?> — 2 there
exists an « € % which is homogeneous for .

(b) For any n € w, for any positive integer r € w, and for every colouring
7 [w]™ — r, there exists an © € % which is homogeneous for .

(c) Let {ry : k € w} and {ny, : k € w} be two (possibly finite) sets of positive
integers, and for each k € w let my, : [w]™ — ry be a colouring. Then there
exists an x € 7/ which is almost homogeneous for each .

It is time now to address the problem of the existence of Ramsey ultrafil-
ters. On the one hand, it can be shown that there are models of ZFC in which
no Ramsey ultrafilters exist (see PROPOSITION 25.11). Thus, the existence of
Ramsey ultrafilters is not provable in ZFC. On the other hand, if we assume for
example CH (or just p = ¢), then we can easily construct a Ramsey ultrafilter.

PROPOSITION 10.9. If p = ¢, then there exists a Ramsey ultrafilter.

Proof. Let {7, : @ € ¢} be an enumeration of the set of all 2-colourings of
[w]?, i.e., for every colouring 7 : [w]?> — 2 there exists an o € ¢ such that
T = 7. By transfinite induction we first construct a sequence (x, : @ € ¢) C
[w]“ such that {x, : @ € ¢} has the finite intersection property and for all

@ € ¢, Taljg, )2 18 constant. Let o := w and assume that for some a € ¢ we
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have already constructed z3 (8 € «) such that {zg : § € a} has the finite
intersection property and for all v+1 € a we have 7rv|[gc7 1)2 is constant. If a is
a successor ordinal, say o = Sy +1, then let z, € [25,]“ be such that 7,2
is constant (notice that by RAMSEY’S THEOREM 2.1, 41 exists). If a is a
limit ordinal, then let x, be a pseudo-intersection of {x3 : 8 € a} (notice that
since |a| < p, xo41 exists). In either case, the family {x3 : 8 € o} has the
required properties. In particular, the family & = {z, : @ € ¢} has the finite
intersection property and for each colouring 7 : [w]? — 2 there is an x € &
such that 7|f)2 is constant. Finally, extend the family & to an ultrafilter % .
Then % is a Ramsey ultrafilter. -

P-points and Q-points

Below, we consider ultrafilters which are weaker than Ramsey ultrafilters, but
which share with them some combinatorial properties.

A free ultrafilter % is a P-point if for each partition {u, C w: n € w}
of w, either u,, €  for a (unique) n € w, or there exists an x € % such that
for each n € w, x N u,, is finite.

Furthermore, a free ultrafilter % is a Q-point if for each partition of w
into finite pieces {I, C w : n € w}, (i.e., for each n € w, I,, is finite), there
exists an x € % such that for each n € w, x N I,, has at most one element.

Comparing these definitions of P-points and @-points with PROPOSI-
TION 10.7.(b), it is evident that a Ramsey ultrafilter is both, a P-point as
well as a Q-point; but also the converse is true:

FacT 10.10. % is a Ramsey ultrafilter if and only if % is a P-point and a
Q-point.

Proof. (=) This follows immediately from PROPOSITION 10.7.(b) and the def-
initions of P-points and Q-points.

(<) Let % be a P-point and a @Q-point and let {u,, C w : n € w} be a partition
of w. We have to show that either u,, € % for a (unique) n € w, or there exists
an x € % such that for each n € w, xNwu, has at most one element. If there is
a u, € %, then we are done. So, assume that for all n € w, u,, ¢ % . Since %
is a P-point, there exists a yo € % such that for each n € w, yo Nu,, is finite.
For n € w let I, := yo Nu,. Further, let {a; : i € w} = w\U,c,,{I2n : n € W}
and for n € w let Ioyy1 := {an}. Then {I,, : n € w} is a partition of w into
finite pieces. Since % is a @-point, there exists a y; € % such that for each
n € w, y1 N I, has at most one element. Now, let x = yg N y;. Then z € %
and for each n € w, z N u, has at most one element. —

Below, we give a few other characterisations of P-points and @-points.
The proofs are straightforward and are left to the reader.

FacT 10.11. For every free ultrafilter 7% , the following conditions are equiv-
alent:
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(a) % is a P-point.

(b) For every family {x, : n € w}y C % there is an « € % such that for all
n€w,x C*x, (e, x\ x, is finite).

(c) For every family {z, : n € w} C % there is a function f € “w and a set
x € % such that for all n € w, x \ f(n) C x,.

FAcT 10.12. For every free ultrafilter 7%/, the following conditions are equiv-
alent:

(a) % is a Q-point.

(b) For every family {x,, : n € w} C % there is an x € % such that for all
n€w, zN(w\ z,) Is finite.

There are also characterisations of P-points which are not so obvious:

PRrROPOSITION 10.13. For a free ultrafilter %, the following conditions are
equivalent:

(a) % is a P-point.

(b) For every family {x, : n € w} C % there is an x € % such that for
infinitely many n € w, z \ n C x,,.

Proof. Since (b)=-(a) is obvious, we just prove (a)=-(b): Since % is a P-
point, by FACT 10.11.(c) there exists a function f € “w and a set y € % such
that for all n € w, y \ f(n) € x,. Hence, there exists also a function g € “w
such that g(0) = 0 and for all k£ € w we have y\ g(k+1) C x4(). Since % is an
ultrafilter, either yo = Uyc,, [9(2k+1), 9(2k+2)) or y1 = Uy, [9(2k), 9(2k+
1)) belongs to % . Let © = yNy., where ¢ € {0,1} is such that y. € . Then
for every k € w we have x \ g(2k +¢) =2\ g(2k+ e+ 1) C Topte. —

P-points and @Q-points, and consequently Ramsey ultrafilters, can also be
characterised in terms of functions, but before we have to introduce the notion
of finite-to-one functions: A function f € “w is finite-to-one if for every
k € w, the set {n € w: f(n) =k} is finite.

PROPOSITION 10.14. Let % be a free ultrafilter.

(a) % is a P-point if and only if for every function f € “w there exists an
x € % such that f|, is constant or finite-to-one.

(b) % is a Q-point if and only if for every finite-to-one function f € “w there
exists an x € % such that f|, is one-to-one.

(c) % is a Ramsey ultrafilter if and only if for every function f € “w there
exists an x € % such that f|, is constant or one-to-one.

Proof. Let f € “w be an arbitrary but fixed function. For k£ € w define
up == {n € w: f(n) = k}. Then {uy : k € w} is a partition of w. The proof
now follows from FACT 10.10 and the following observations (the details are
left to the reader):
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For any z € [w]“, f|, is constant iff there is a k € w such that z C uy.
For any x € [w]¥, f|, is finite-to-one iff for all k¥ € w we have = N uy is
finite.

The function f is finite-to-one iff each uy is finite.

For any = € [w]¥, f|, is one-to-one iff for all k € w, x N uy has at most
one element. —

The next result shows that ultrafilters, and especially Q-points, must con-
tain quite “sparse” sets.

PROPOSITION 10.15. For free families % C |[w]* we have:

(a) If % is a free ultrafilter, then the family {fy € “w : x € % } is unbounded.
(b) If % is a Q-point, then the family {f; € “w:x € %} is dominating.

Proof. (a) Let f € “w be arbitrary. Define g(0) = max {f(0),1} and for
k € w define g(k + 1) := g(k) + f(g(k)). Further, let 29 = [0, ¢(0)), and in
general, for n € w let ,, = [g(2n), g(2n+1)) and y, = [g(2n+1), g(2n+2)).
Finally, let z = {J,,c, #n and y = U, c,, Yn- We leave it as an exercise to the
reader to verify that f; £* f and fy £* f. Hence, f dominates neither f; nor
fy- Now, since 7 is an ultrafilter, either x or y belongs to % . Hence, f does

not dominate the family & = {f; € “w : x € %}, and since f was arbitrary,
A is unbounded.

(b) Let g € “w be arbitrary. Without loss of generality we may assume that g
is strictly increasing. For n € w let I,, = [g(2n), g(2n+2)). Then {I,, : n € w}
is a partition of w into finite pieces. Since % is a @-point, there exists an
x € 7% such that for each n € w, zN I, has at most one element which implies
that g <* fp. Hence, f; dominates g, and since g was arbitrary, the family
{fz €“w:x € %} is dominating. -

As we have seen above (PROPOSITION 10.9), p = ¢ implies the existence of
a Ramsey ultrafilter. On the other hand, one can show that 0 = ¢ is not suf-
ficient to prove the existence of Ramsey ultrafilters (see PROPOSITION 25.11).
However, as a consequence of the next result, we get that 0 = ¢ is sufficient
to prove the existence of P-points — which shows that P-points are easier to
get than Ramsey ultrafilters (cf. RELATED RESULTS 66 & 67).

THEOREM 10.16. 0 = ¢ if and only if every free filter over a countable set
which is generated by less than ¢ sets can be extended to a P-point. In par-
ticular, 0 = ¢ implies the existence of P-points.

Proof. (<) Suppose that & C “w is a family of cardinality less than c¢. For
f € & and n € w define

zp={(nk) ewxw: f(n) <k} and z, = {(m,k) ewxw:n<m},

and let
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C={zs:fef}U{zn:ncwU{zCwxw: (wxw)\z is finite} .

Notice that || < ¢ and that each set in % is an infinite subsets of the
countable set w X w. Moreover, for any finitely many members yq,...,yn, € €
we have yo N --- Ny, is infinite. Now, the family € generates a free filter over
w X w, which, by assumption, can be extended to a P-point % C [w X w]“.
Consider the partition {u, : n € w} of w X w, where for n € w, u, = {n} x w.
Notice that no u, (for n € w) belongs to % . Since % is a P-point, there exists
a y € % such that for all n € w, y N u, is finite. Let us define the function
g € “w by stipulating g(n) = U {k € w: (n, k) € yNu,}. Since y € Z, for all
f € & we have y Nz is infinite. Hence, for every f € & there are infinitely
many n € w such that g(n) > f(n). In other words, g is not dominated by
any function f € &, which shows that no family of cardinality less than ¢ is
dominating.

(=) The proof is by induction using the following

CLAIM. Suppose that the free filter # C [w]“ is generated by less than 0 sets
and let {z,, : n € w} C F. Then there exists x € [w]¥ such that for all n € w,
x C* x,, and for all y € &, x Ny is infinite.

Proof of Claim. Without loss of generality we may assume that for all n € w,
ZTpn+1 € xp,. For y € F define g, € “w by stipulating g,(n) = ((y N zy).
Notice that the set y Nz, is non-empty, and that if y C ¢/, then for all n € w,
gy (n) < gy(n). Now, since .# is generated by less than d sets, and since every
free ultrafilter generated by less than d sets has a basis of less than d sets,
there exists a function f € “w such that for all y € .# we have f £* g,.

Finally let

new
We leave it to the reader to verify that x has the required properties. —ciaim

By the claim and the assumption that 0 = ¢ we inductively construct a P-
point as follows: Let {X, C [w]¥ : |Xa| < w A« € ¢} be an enumeration of all
countable subsets of [w]“. Let %, be any free filter which is generated by less
than 0 sets and assume that we have already constructed .%,, for some « € ¢. If
Xo U.Z, has the finite intersection property, then we use the claim to obtain
a set xq41 such that {x,41} U %, has the finite intersection property and
Za+1 1S a pseudo-intersection of X, ; and let %, 1 be the filter generated by
Fo and xq41. If X UZ, does not have the finite intersection property, then
let Zo11 = Z,. Further, if a € ¢ is a limit ordinal and for all 5 € a we have
already constructed Fg, then let 7, = Jyc, Fp- Finally, let 7 =, Fa-
Then .# is a P-point: Firstly, by construction, .# is a filter, and since the free
filter % is contained in #, % is even a free filter. Secondly, for any = € [w]*
there exists a 5 € ¢ such that Xg = {x}. Thus, either © € %341 or there is
a y € #a such that = Ny is finite, which implies that ¢ € #3. Hence, &
is a free ultrafilter. Finally, for every set {z, : n € w} C . there exists a
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v € ¢ such that X, = {z,, : n € w}. Since X, U.%, has the finite intersection
property, there is an 41 € #,41 such that for all n € w, 441 T 2. —

Ramsey families and P-families

Below, we give characterisations of Ramsey ultrafilters and P-points in terms
of games, which lead to so-called Ramsey families and P-families respectively.

The two games we shall consider are infinite and played between two play-
ers. Now, a run of an infinite two-player game consists of an infinite sequence
(0, Y0,21,Y1,--.) which is constructed alternately by the two players. More
precisely, the first player starts the game with xg and the second player re-
sponds with yg, then the first player plays x; and the second player responds
with 41, and so on. Of course, in order to get a proper game we have to in-
troduce also some rules defining legal moves and telling which player wins a
particular run of the game.

Before we introduce some further game-theoretical notions, let us illustrate
the notion of rules by the following infinite two-player game, played between
DEATH and the MAIDEN.

Let & be an arbitrary free family. Associated with & we define two quite
similar games, denoted G, and Gz, between two players, say DEATH and the
MAIDEN.

In the game G, the MAIDEN always plays members of & and then DEATH
responds with an element of MAIDEN’s move. Thus, a run of G, can be illus-
trated as follows:

MAIDEN To 2 T 2 T2 )

N N N
g, : \ / \ / \ )
DEATH ap < ai < as <

More formally, the rules for G, are as follows: For each i € w, z; € & and
a; € x;. Furthermore, we require that for each i € w, ;41 C z; and a; < a;41.
Finally, DEATH wins the game G, if and only if {a; : i € w} belongs to the
family &.

In the game G%, DEATH has slightly more freedom, since he can play now
finite sequences instead of just singletons. A run of G; can be illustrated as
follows:

MAIDEN Zo 2 T ) T2 )
8 XN
DEATH S0 S1 S9

Again, the sets x; played by the MAIDEN must belong to the free family &
and each finite set s; played by DEATH must be a subset of the corresponding
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x;. Furthermore, for each i € w we require that ;11 C (xl \U i<i Sj). Notice
that the finite sets s; may be empty. Finally, DEATH wins the game G} if and
only if [J{s; : i € w} belongs to the family &.

Now we define the notion of a strategy for the MAIDEN. Roughly speaking,
a strategy for the MAIDEN is a “rule” that tells her how to play, for each
n € w, her n*" move x,,, given DEATH’ previous moves mo, ..., m,. In fact, a
strategy for the MAIDEN in the game G, is a certain mapping from seq(& Uw)
to &. Intuitively, with respect to G,, a strategy o for the MAIDEN works
as follows: The MAIDEN starts playing zg € &, where zy = o((}) and then
DEATH responds by playing an element ag € xp. Then the MAIDEN plays
x1 = o(xo, ag), which — by the rules of the game —is a set in & and a subset
of x5, and DEATH responds with an element ay € x; where a; > ag. In
general, for positive integers n, x,, = o(xo,ag,...,Tn—1,an_1), where x,, € &,
Tn € Tp_1, ag,...,a,_1 are the moves of DEATH, and zg,...,x,_1 are the
previous moves of the MAIDEN.

A strategy o for the MAIDEN is a winning strategy if, whenever the
MAIDEN follows the strategy o, she wins the game — no matter how sophisti-
cated DEATH plays. For example, ¢ is a winning strategy for the MAIDEN in
the game G, if whenever {a, : n € w} C w is such that ay € o(0)) and for all
n € w, ap < apt1 and anq1 € o(xo,ag, ..., Tnt1), then {a, :n € w} ¢ &.

Now, a free family & is called a Ramsey family if the MAIDEN has no
winning strategy in the game G, . In other words, no matter how sophisticated
her strategy is, if & is a Ramsey family, then DEATH can win the game.
Ramsey families will play an important role in the investigation of Mathias
forcing notions (see Chapter 24).

Furthermore, a free family & is called a P-family if the MAIDEN has no
winning strategy in the game Gf. P-families will play an important role in
the investigation of restricted Silver forcing. In fact, in Chapter 22 it will be
shown that Silver forcing restricted to a P-family (called Silver-like forcing)
has the same combinatorial properties as unrestricted Silver forcing and as
Grigorieff forcing, which is Silver forcing restricted to a P-point.

Obviously, the family [w]* is a Ramsey family and every Ramsey family is
also a P-family. Now, the reader might guess that [w]* is not the only example
and that there must be some relation between Ramsey families and Ramsey
ultrafilters, as well as between P-families and P-points; this is indeed the case:

THEOREM 10.17. For free ultrafilters % C [w]* we have:

(a) % is a Ramsey ultrafilter if and only if % is a Ramsey family.
(b) % is a P-point if and only if % is a P-family.

Proof. (a) We have to show that % C [w]* is a Ramsey ultrafilter iff whenever
the MAIDEN plays the game G,, by following a strategy, DEATH can win.
(<) Under the assumption that the free ultrafilter % is not Ramsey we
construct a winning strategy for the MAIDEN in the game G,. If % is not a
Ramsey ultrafilter, then, by PROPOSITION 10.6, there exists a set {x,, : n €
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w} C % such that for each function f € “w with f(0) € z and f(n+1) € x4,
we have flw] ¢ % . Let (D) := =g, and for n € w let o(xg,ag,- -, Tn,an) =
Zq,. By the rules of G, , anq1 € 4, . Define f € “w by stipulating f(n) = a,.
Then f(0) € 29 and for all n € w we have f(n + 1) € wy,), and therefore
{f(n):new} ¢ %. Thus, {a, : n € w} ¢ %, which shows that DEATH loses
the game (i.e., o is a winning strategy for the MAIDEN), and consequently, %
is not a Ramsey family.

(=) Under the assumption that the free ultrafilter % is Ramsey we show
that no strategy for the MAIDEN is a winning strategy. Let o be any strategy
for the MAIDEN, let g := o(0), and for s = {co,...,¢,} € fin(w) let

i o(xg,Coy .-y Tnycn) if Yk < n(cx € xp),
° w otherwise.

Notice that in the first case, o(zg,co, ..., Tn,Cn) = Tnt1. If % is a Ramsey
ultrafilter, then % is happy. Thus, there exists an z € % such that z C zy
and z \ 57 C x; whenever 5 € x. In particular, if x = {a, : n € w} with
ap, < any1 (for all n € w), then ag € g and for all n € w, x \ {ag,...,an} =
{any1,ant2,. ..} € Tiag,....a,) = Tny1. Hence, for all n € w we have a, € z,.
In particular, whenever the MAIDEN follows the strategy o, DEATH wins the
game by playing the sequence (a,, : n € w). So, ¢ is not a winning strategy for
the MAIDEN, and since o was arbitrary, the MAIDEN does not have a winning
strategy.

(b) The proof is similar to that of (a), i.e., we show that the MAIDEN has a
winning strategy in the game Gj, iff the free ultrafilter % is not a P-point.

(<) Suppose that % is not a P-point. Then, by FACT 10.11.(b), there exists
aset {y, : n € w} C % such that whenever y € [w]“ has the property that for
alln € w, y\yn is finite, then y ¢ % . Let o(0) := yo (i-e., To = yo), and for any
k € wand {so,...,sr} Cfin(w) let o(zo,s0,. .., Tk, k) = Nicp ¥i \Uicy si- If
the MAIDEN follows that strategy o and the sequence (sy : k € w) represents
the moves of DEATH, then for all n € w we have (e, k) \ @ is finite.
Hence, Uc,, sk &€ %, which shows that DEATH loses the game, or in other
words, o is a winning strategy for the M AIDEN.

(=) Under the assumption that % is a P-point we show that no strategy
for the MAIDEN is a winning strategy. Let o be any strategy for the MAIDEN.
We have to show that DEATH can win. Define X, as the family of sets played
by the MAIDEN in her first n + 1 moves, assuming that she is following the
strategy o and DEATH plays in his first n moves only sets sy C n (for k < n).
More formally, g = o (@), and for positive integers k < n, z € X,, iff there
are sg,...,sx—1 C m such that for all i < k, s; C x; N n*, where z;11 =
o(zg, So, - - ., i, 8;). Clearly, for every n € w, X,, is finite, and since % is an
ultrafilter, y,, := [ X, belongs to % . Moreover, since % is a P-point, by
FACT 10.11.(c) there is a set y € % and a strictly increasing function f € “w
such that for all n € w, y\ f(n) C y,. Let ko := f(0), and in general, for
n € w let kyy1 := f(ky). Since % is an ultrafilter, either
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Yo = U [kan, kans1) or y1 =w\ yo

new

belongs to 7. Without loss of generality we may assume that y; € %, in
particular, y; Ny € % . Consider the run

<x075051‘15 51, .- >

of the game Gj,, where the MAIDEN plays according to the strategy o and
DEATH plays

[k2j+1, k2j+2) Ny ifn= ij (fOI‘ some ] S w),
Sp = .
) otherwise.

It is clear that the MAIDEN loses the game (i.e., | J, ., $n € %). It remains to
check that the moves of DEATH are legal (i.e., satisfy the rules of the game
G, ). Firstly notice that for all positive integers j, sp,;, , C koj. Thus, if
n = koj, then for all k < n we have s, C n. Now, if n = ko, for some j € w,
then s, = sk,;, = [kng, k2j+2) Ny. Further, we have

Y\ kajrr =y \ f(k2y) S Yroy = ({20, s 2oy }

and in particular, for n = ky; we get s, = si,; C xp,; = x,. Hence, for all
neEw, S, C xy. —

Roughly speaking, Ramsey families are a kind of generalised Ramsey ul-
trafilters and P-families are a kind of generalised P-points.

Let us turn back to happy families and let us compare them with Ram-
sey families. At a first glance, happy families and Ramsey families look very
similar. However, it turns out that the conditions for a Ramsey family are
slightly stronger than for a happy family. This is because in the definition
of happy families we require that they contain sets which diagonalise certain
subfamilies having the finite intersection property. On the other hand, a strat-
egy of the MAIDEN in the game G, can be quite arbitrary: Even though the
sets played by her in a run of G, form a decreasing sequence, the family of
possible moves of the MAIDEN does not necessarily have the finite intersection
property. Of course, by restricting the set of strategies the M AIDEN can choose
from, we could make sure that all happy families are Ramsey. In fact we just
have to require that all the moves of the MAIDEN — no matter what DEATH
is playing — belong to some family which has the finite intersection property.
However, the definition of Ramsey families given above has the advantage
that the MAIDEN is able — by a winning strategy — to defeat DEATH in the
game G, even in some cases when & is happy (see PROPOSITION 10.19).

Below, we show first that every Ramsey family is happy, and then we show
that there are happy families which are not even P-families. Thus, Ramsey
families are smaller “clans” (i.e., families who originate from the same family
and have the same name) than happy families.
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FacT 10.18. Every Ramsey family is happy.

Proof. Let & be a free family which is not happy. Thus, there is exists a
set € = {ys : s € fin(w)} C & such that fil(¢) C & but no y € & diago-
nalises 7. Let () := z¢ and for n € w and s = {ag,...,a,} € fin(w) let
0(20,00,- .., %n,an) = \gcsYs- It is not hard to verify that in the game G,
o is a winning strategy for the MAIDEN. —

By PROPOSITION 10.5 we know that every mad family induces a happy
family. This type of happy families provides examples of happy families which
are not Ramsey families, in fact, which are not even P-families.

PropPoOSITION 10.19. Not every happy family is Ramsey; moreover, not every
happy family is a P-family.

Proof. Tt is enough to construct a happy family which is not a P-family: Let
{tr : k € w} be an enumeration of (J,,,, "w such that for all 7,5 € w, t; C t;
implies ¢ < j, in particular, ¢ = 0. For functions f € “w define the set
xs € [w]¥ by stipulating

x5 ::{kEw:Eln,i,jew(f|n:ti/\f|n+1:tj/\i§k<j/\tigtk)}.

Obviously, for any distinct functions f, g € “w, 7Nz, is finite (compare with
the sets constructed in the proof of PROPOSITION 8.6). Now, let <% = {x; :
f € “w}. Then o C [w]“ is a set of pairwise almost disjoint sets which can
be extended to a mad family, say /. Recall that by PROPOSITION 10.5, ﬁ;
is a happy family.

We show that %) is not a P-family: Let ko := 0 and let zg := w be
the first move of the MAIDEN, and let so be DEATH’ response. In general,
if s, is the n™ move of DEATH, then the MAIDEN chooses k, ;1 such that
knt1 > max(sy), |th,.,| =n+1, and ¢, Cty and then she plays

n419
Tpy1 = {Z Ew:ilg,,, C si}.

Obviously, for every n € w we have x,11 & x,. Moreover, all moves of the
MAIDEN are legal:

CrAM. For every n € w, x, € y;

Proof of Claim. Firstly, for every n € w, x, has infinite intersection with
infinitely many members of 2%. Indeed, x, Nz is infinite whenever f|, = ts, .
Secondly, for every z € %, there are finitely many v, ..., yr € </ such that
(yoU...Uyg)¢ C* z. Now, for x,, let zy € o4 \ {yo, ..., yx} such that xy Nz,
is infinite. Then, since z; N (yo U ... Uyy) is finite, xy C* z. Hence, z,, N z is
infinite which shows that z,, €€ 9; Actaim
By the MAIDEN’s strategy, | J,,c,, tk,, = f for some particular function f € “w.
Moreover, J,,c,, 5n € 2y € o, and since subsets of members of % do not
belong to ﬁ;, Uncw $n ¢ ﬂ:{r Hence, DEATH loses the game, no matter what
he is playing, which shows that the MAIDEN has a winning strategy in the
game g;,;. In other words, the happy family .%.} is not a P-family. -
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NOTES

Happy families and Ramsey ultrafilters. Happy families were introduced by
Mathias [8] in order to investigate the Ramsey property as well as Ramsey ultra-
filters. Furthermore, happy families are closely related to Mathias forcing — also
introduced in [8] — which will be discussed in Chapter 24. FacT 10.3 and PropPo-
SITION 10.5 are taken from Mathias [8, p.61ff.]. PROPOSITION 10.6 is due to Math-
ias [8, Proposition 0.8] and the characterisation of Ramsey ultrafilters (i.e., PROPO-
SITION 10.7 and FacT 10.8) is taken from Bartoszynski and Judah [1, Theorem 4.5.2]
and Booth [3, Theorem 4.9] (according to Booth [3, p.19], most of [3, Theorem 4.9]
is due to Kunen).

On P-points. A point z of a topological space X is called a P-point if every in-
tersection of countably many open sets containing x, contains an open set containing
z. Now, the ultrafilters we called P-points are in fact the P-points of the topological
space fw \ w (defined on page 222). The existence of P-points of the space fw \ w
cannot be shown in ZFC (see RELATED RESULT 68). However, by THEOREM 10.16,
which is due to Ketonen [6] (see also Bartoszyiiski and Judah [1, Theorem 4.4.5]), it
follows that P-points exist if we assume CH — which was first proved by Rudin [10].

Ramsey families and P-families. Ramsey families and P-families were first
introduced and studied by Laflamme in [7], where the filters associated to a Ramsey
family are called +-Ramsey filters, and the filters associated to a P-family are called
P-++-filters. However, THEOREM 10.17 is due to Galvin and Shelah (see Bartoszynski
and Judah [1, Theorems 4.5.3 & 4.4.4]), and ProposITION 10.19 is a generalisation
of Halbeisen [4, Proposition 6.2].

RELATED RESULTS

64. On the ezistence of Ramsey ultrafilters. Mathias showed that under CH, every
happy family contains a Ramsey ultrafilter (see Mathias [8, Proposition 0.11]).
In particular, this shows that Ramsey ultrafilters exist if we assume CH (accord-
ing to Booth [3, p. 23], this was first shown by Galvin). However, by PROPOSI-
TION 10.9 we know that p = ¢ is sufficient for the existence of Ramsey ultrafilters.
With Martin’s Axiom in place of p = ¢, this result is due to Booth [3, Theo-
rem 4.14]. Furthermore, Keisler showed that if we assume CH, then there are 2°
mutually non-isomorphic Ramsey ultrafilters (see Blass [2, p.148]). Finally, by
combining the proofs of Keisler and Booth, Blass [2, Theorem 2| showed that
t = ¢ (for t see Chapter 8 | RELATED RESULT 52) is enough to get 2° mutually
non-isomorphic Ramsey ultrafilters (see PROPOSITION 13.9 for a slightly more
general result). On the other hand, we shall see in Chapter 25 that the existence
of Ramsey ultrafilters is independent of ZFC (see also Chapter 21 | RELATED RE-
SULT 114).

65. There may exist a unique Ramsey ultrafilter. We have seen above that we can
have infinitely many Ramsey ultrafilters or none. So, it is natural to ask whether
it is also consistent with ZFC that there exists, up to permutations of w, a unique
Ramsey ultrafilter. Now, Shelah [12, VI §5] proved that this is indeed the case.



242 10 Happy Families and their Relatives

Moreover, it is even consistent with ZFC that there are, up to permutations of
w, exactly two Ramsey ultrafilters (see Shelah [12, p. 335]).

66. There may be P-points which are not Ramsey. Booth [3, Theorem 4.12] showed
that if we assume CH (or Martin's Axiom), there are P-points which are not
Ramsey (i.e., which are not Q-points). For examples of P-points which are not
Q-points see PROPOSITION 25.11.

67. On the existence of Q-points. Mathias [Proposition 10][9] showed that d =
w1 implies the existence of Q-points. Recall that by ProprosiTION 10.9, p = ¢
implies the existence of Ramsey ultrafilters; in particular the existence of P-
points and Q-points. Thus, the existence of Q-points is consistent with 0 > w;.
However, if there are just P-points but no Q-points, then we must have 0 > w;.

68. On the existence of P-points. P-points were studied by Rudin [10], who proved,
assuming CH, that they exist and that any of them can be mapped to any other
by a homeomorphism of Sw\w onto itself. In particular, CH implies the existence
of P-points. Of course, this follows from the fact that CH implies the existence
of Ramsey ultrafilters, and Ramsey ultrafilters are P-points. However, as we
have seen above, the converse is not true (and there are models of ZFC in which
there are P-points but no Ramsey ultrafilters). Now, it is natural to ask whether
there are models of ZFC in which there are no P-points. Let us consider how
models of ZFC are constructed in which there are no Ramsey ultrafilters. In
order to construct a model of ZFC in which there are no Ramsey ultrafilters,
one usually makes sure that the model does not contain any Q-points (see for
example the proof of PROPOSITION 25.11). To some extent, P-points are weaker
than @Q-points and therefore it is more difficult to construct a model in which
there are no P-points. However, Shelah constructed such a model in [11] (see
also Shelah [12, VI §4], Wimmers [14], or Bartoszynski and Judah [1, 4.4.7]).
Moreover, like for Ramsey ultrafilters, it is consistent with ZFC that, up to up
permutations of w, there exists a single P-point (see Shelah [12, XVIII §4]).

69. Simple P.-points. For any regular uncountable cardinal k, a free ultrafilter
U C [w]” is called a simple P.-point if 7 is generated by an almost decreasing
(i.e., modulo finite) k-sequence of infinite subsets of w. Clearly, every simple P,-
point is a P-point. It is conjectured that the existence of both, a simple P,,, -point
and a P,,-point, is consistent with ZFC. (For weak P-points and other points
in fw \ w see for example van Mill [13, Section 4].)

70. Rapid and unbounded filters. A free filter % C [w]® is called a rapid filter if
for each f € “w there exists an z € .Z such that for all n € w, |z N f(n)| < n.
By definition, if .7 is rapid filter, then {f; : z € #} is a dominating family. It
is not hard to verify that all Q-points are rapid (see FAcT 25.10), but the con-
verse does not hold (see for example Bartoszyriski and Judah [1, Lemma 4.6.3]
and in particular the remark after the proof of that lemma). However, like for
P-points or Q-points, the existence of rapid filter is independent of ZFC (see
PRrROPOSITION 25.11). A weaker notion than that of rapid filters is the notion
of unbounded filters, where a free filter .# C [w]“ is called unbounded if
the family {fz : z € #} is unbounded. Since every free ultrafilter induces an
unbounded family (cf. PRoPOSITION 10.15.(a)), unbounded filters always exist.
Furthermore, one can show that every unbounded filter induces a set which does
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71.

72.

not have the Ramsey property (for a slightly more general result see Judah [5,
Fact 8]).

Another characterisation of Ramsey ultrafilters. Let % C [w]® be an ultrafilter.
The game G, is defined as follows.

—
~

MAIDEN (a0, Zo) (a1,21) as, T2

G \/\ /

DEATH Yo U1 Y2

The sets y; and x; played by DEATH and the MAIDEN respectively must belong to
the ultrafilter %, and for each i € w, a;+1 must be a member of y;. Furthermore,
for each i € w we require that ;41 C y; C z; and that a; < min(z;). Finally,
the MAIDEN wins the game G/, if and only if {a; : ¢ € w} does not belong to
the ultrafilter % .

In 2002, Claude Laflamme showed me that % is a Ramsey ultrafilter if and only
if the MAIDEN has no winning strategy in the game G/, .

On strongly mazimal almost disjoint families® A mad family & is called
strongly maximal almost disjoint if given countably many members of %,
then there is a member of & that meets each of them in an infinite set.

For a free family &, consider the following game: The moves of the MAIDEN are
members of & and DEATH responses like in the game .. Furthermore, DEATH
wins if and only if the set of integers played by DEATH belongs to 7, but has
infinite intersection with each set played by the M AIDEN.

If o is a mad family, then obviously, in the game described above, the MAIDEN
has a winning strategy if and only if & is not strongly maximal almost disjoint,
which motivates the following question: Is it the case that for a mad family <7,
Z is Ramsey if and only if & is strongly maximal almost disjoint?
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Coda: A Dual Form of Ramsey’s Theorem

Musicians wanted compositions to end on a perfect
consonance, because they correctly say that the per-
fection of anything depends upon and is judged by
its end. Since they found that among consonances
no greater perfection could be found than in the
octave, they made it o fized rule that each com-
position should terminate on the octave or unison
and no other interval.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

In this chapter we shall present some results in dual Ramsey Theory, i.e.,
Ramsey type results dealing with partitions of w. The word “dual” is motivated
by the following fact: Each infinite subset of w corresponds to the image
of an injective function from w into w, whereas each infinite partition of w
corresponds to the set of pre-images of elements of w of a surjective function
from w onto w. Similarly, n-element subsets of w correspond to images of
injective functions from n into w, whereas n-block partitions of w correspond
to pre-images of surjective functions from w onto n. Thus, to some extent,
subsets of w and partitions of w are dual to each other.

The Hales-Jewett Theorem

Since we introduced RAMSEY’S THEOREM in Chapter 2, we have used different
forms of this powerful combinatorial tool in various applications. However,
RAMSEY’s THEOREM is neither the only nor the earliest Ramsey-type result.
In fact, the following theorem is one of the earliest results in Ramsey Theory.



246 11 A Dual Form of Ramsey’s Theorem

THEOREM 11.1 (VAN DER WAERDEN). For any positive integers r and n,
there is a positive integer N such that for every r-colouring of the set
{0,1,..., N} we find always a monochromatic (non-constant) arithmetic pro-
gression of length n.

Instead of a proof, let us consider VAN DER WAERDEN’S THEOREM from a
more combinatorial point of view: Firstly, for some positive integer [, identify
the integers a € [0,n!) with the I-tuples (ag ... a;_1) formed from the base-n
representation of a, i.e.,a =3, a;n' and for all i € [, 0 < a; < n. Concerning
arithmetic progressions, notice that for example the [-tuples

<0,0 e Q51 0 Qiy1 .. Qi1 0 iyl - al,1>
<a0 S 7 | 1 @iyl .. Qj—1 1 Qi1 - al_1>
<0,0 R 0 7 | 2 Qiy1 .. Qi1 2 Qi1 .- al,1>
<0,0 vee Qi1 N — 2 iyl .. Qj—1 T — 2 i1 .- al,1>
<a0 e Qi1 M — 1 @iyl .. Qj—1 T — 1 Qi1 - al_1>

correspond to an arithmetic progression of length n with common difference
n' +nJ. Let us call for the moment arithmetic progressions of length n of
that type special arithmetic progressions. Notice that not every arithmetic
progression of length n is special. However, if we could show that for all
positive integers n and 7 there exists a positive integer ! such that for every
r-colouring of [0,n') we find a monochromatic special arithmetic progression,
then this would obviously prove VAN DER WAERDEN’S THEOREM.

Now, identify the set of I-tuples (ag ... a;—1) with the set of functions f
from [ to n, denoted 'n, by stipulating f(k) = a (for all k € [). Consequently,
we can identify every r-colouring of [0,n!) with an 7-colouring of 'n. Notice
that for a non-empty set s C I and a function g : [ \ s — r, the set {f cln:
flons =g flsis constant } corresponds to a special arithmetic progression. In
the example of a special arithmetic progression given above we have s = {i, j}
and g(m) = an, (for all m € [\ s). Hence, in terms of functions from [ to n, VAN
DER WAERDEN’S THEOREM is just a corollary of the following Ramsey-type
theorem.

THEOREM 11.2 (HALES-JEWETT THEOREM). For all positive integers n,r €
w there exists a positive integer | € w such that for any r-colouring of 'n
there is always a non-empty set s C | and a function g : [\ s — n such that
{fem: flns =gAflsis constant} is monochromatic.

For given positive integers n,r € w, the Hales-Jewett function H.J(n,r)
denotes the smallest such integer /. In particular, for all positive integers r,
HJ(1,r)=1.

Hales and Jewett proved their theorem almost 40 years after van der Waer-
den proved his. In the original proof, they used — like van der Waerden — a
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double induction which led to an extremely fast growing upper bound for the
Hales-Jewett function HJ(n,r). The proof of the HALES-JEWETT THEOREM
given here — which is due to Shelah and modified by Matet involving the F1-
NITE RAMSEY THEOREM — uses just simple induction on n and provides a
much better bound for the associated function HJ(n,r).

Before we can give a proof of the HALES-JEWETT THEOREM, including
the bounds for HJ(n,r), we have to introduce a kind of Ramsey number
(cf. Chapter 2| RELATED RESULT 1): By the FINITE RAMSEY THEOREM 2.3
we know that for any positive integers r, p, and ¢, where ¢ < p, there exists
a positive integer m such that for every r-colouring = : [m]? — r we find a
p-element set ¢ € [m]” such that 7| is constant; let Ri(p) denote the least
such m.

THEOREM 11.3. For positive integers n and r let | = HJ(n,r), a = (n+1)! —
n', k =r® and m = R} (21). Then HJ(n+ 1,r) < m.

Proof. Let F be the set of all non-decreasing functions f € 2'm (i.e., f(0) <
f(1) < ... < f(20—1)) such that 20 — 1 < |f[2[]| (i.e., f(i) = f(i + 1) for at
most one i < 21 —2). Let Fo = {f € F: |f[2]]| = 2} and let F; = F \ Fo).
Notice that for each f € JF; there exists a unique i < 2l — 2 such that
f(i) = f(i+1). So, for every i <2l —2let F; = {f € F1: f(i) = f(i +1)}.
Then .71 = U0§i§21—2 Fz

For f € Fandie [1,20—1]let I] = [f(i—1), f(i)), and let I = [0, £(0))
and I, = [f(20 —1),m). Notice, if f(0) =0 then IJ =0, if f(2l —1) =m —1
then IJ, = {m}, and if f € F;, for some i < 2] — 2, then IifJrl = (). Define
g:'n+1)x F— ™ In 41 such that for each j < 21, g(h, f)l;+ is constant,

J

where

n—1 if j=0 mod 4,
g(h, f)|;+ is constantly ¢ n if =2 mod 4,
J
h((j —1)/2) otherwise.

For h € (n+1) and f € F, g(h, f) is visualised by the following figure:

i FO) 1 FO) 1 F@) 1 FG) f@I-2) 1§, f@I-1) 1

n—1 h(0) n h(1) h(l—1) norn—1

m —1

Notice that for f € Fy; and h € H we have the following situation.

I, f(20) = f(2i+1) I EA

g(h,t) :

normn—1 n—lorn

For i € [, let H; C !(n+ 1) be the set of all functions h: [ — (n + 1) such

that h(i) = n and for all j < n, h(j) < n. Let H = (J,, H;. Notice that H
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is the set of all functions h € !(n + 1) such that h(i) = n for some i € [. For
each i € [ define a function g; : H; x [m]?=! — ™~1(n 4 1) by stipulating

gz(ha 5) = g(ha fs,i) 5

where f,; € Fy; is such that f;[2]] =

Fix a colouring 7 : (™~ Y(n 4+ 1) — r. Notice that we can apply 7 to
g(h, f) (where h € {(n+1) and f € F) as well as to g;(h,s) (where h € H;
and s € [m]?~1). Recall that we want to show H.J(n + 1,7) < m — 1, where
m = RZ'7!(21). By definition of m, for every colouring 7 : [m]?~! — k we
find a 2I-element set ¢ € [m]? such that 7|yj2-1 is constant. In order to apply
the properties of m, we have to find a suitable k-colouring of [m]?~1. Firstly,
recall that k = r?, where a = (n+1)! —n!. Now, |'(n + 1)\ H| = n!, and since
I'(n+1)| = (n + 1) we get |H| = (n + 1)! — n!. Thus, a = |H|, and therefore
k = |"r|. Now, define the colouring 7 : [m]?*~! — *r by stipulating

S.

7(s)(h) = 7(gi(h,s)) whenever h € H; for some i € [.

By definition of m, there exists a 2/-element set ¢ € [m]? such that 7|21 is

constant. In particular, for any sg,s; € [t]*'~! and any h € H; we have

W(gi(ha 30)) = 7T(gi(ha 31)) . (*)

Let f; € Fo be such that f;[2]] = t and define the colouring ' : 'n — r by
stipulating 7’(h) := ﬁ(g(h, ft)). Since | = HJ(n,r), there exists a non-empty
set ug C [ and a function h : [ \ ug — n such that

H=1{he"n:h|p,, =hAhl, is constant}

is monochromatic. Notice that H C 'n C {(n +1) a~nd that 7T|{g(h,ft):hel§r} is
constant. Let hg € '(n+ 1) be such that ho|p,, = h and hgl,, is constantly
n. Tf we can show that {g(h, f;) : h € HV h = ho} is monochromatic, then we
are done. In fact, it is enough to show that ﬂ(g(ho, ft)) = ﬂ(g(ilo, ft)), where
ho € H is such that for all i € [, ho(i) := min {ho(i),n — 1}. This is done by
induction on the size of ug, but first we have to do some preliminary work:
For i € [ and h € H; define b/ € {(n + 1) by stipulating

h,(j):{n—l if j =i,

h(j)  otherwise.

Notice that either h’ € H; for some i’ > i, or ' € 'n. We show now that for
every h € H;, ﬂ(g(h,ft)) = ﬂ(g(h’, ft)). We consider the cases ¢ odd and i
even separately.

For 7 odd and h € H; we have the following situation:
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, fe(24) fe(2i+1)
g( 7ft) : " h(i) =n n—1
. fe(24) fe(2i+1)
g’b(hat\{ft(Ql)}) : n n n—1
' fe(24) fe(2i+1)
gi (R, t\ {fe(2i +1)}) : N n_1 n—1
y fe(24) fe(2i+1)
g( ’ft) : n R(i)=n—1 n—1

Similarly, for ¢ even and h € H; we get:

. fe(21) fi(2i+1)
9(h. 1) - no1 . h=n "
' fe(24) fe(2i41)
g (hot\ {£u(2i + 1)}) - — . "
. fe(21) fi(2i+1)
gl(hat\{ft(Ql)}) : n—1 n—1 n
y fe(24) fe(2i+ 1)
JUSDE no1 W@=n-1 o w

By (%) we have 7(g;(h,t\ {f:(20)})) = 7 (gi(h, t \ {f:(2i +1)})), and since we
obviously have

if 4 is odd,
g0, fe) = gi(h, t \ {fe(2i + 1)})
and
g(h, fe) = gi(h, t \ {fe(20 + 1)})
if 4 is even,
g0, fr) = gi(h.t\ {fe(20)})
we get

w(g(h, fo)) = (g(W', fr)) -

Now we are ready to show that 7(g(ho, f:)) = 7(g(ho, f)): For j < |uo| let
hjt1 = h’,. Then, by the preceding fact we have

7(g(ho, fr)) = w(g(ha, o)) = .. =x(g(hjup, f1))

and since hy,| = ho, we finally get w(g(ho, ft)) = w(g(izo, ft)), which completes
the proof of THEOREM 11.3 as well as of the HALES-JEWETT THEOREM. -
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The HALES-JEWETT THEOREM will be used to start the induction in the
proof of CARLSON’S LEMMA (see Claim 2), where CARLSON’S LEMMA is the
crucial part in the proof of a generalisation of RAMSEY’S THEOREM in terms
of partitions — the main result of this chapter which will be called PARTITION
RAMSEY THEOREM.

The PARTITION RAMSEY THEOREM is a very strong combinatorial result
which implies the HALES-JEWETT THEOREM as well as some other Ramsey-
type results like the WEAK HALPERN-LAUCHLI THEOREM 11.6. However, be-
fore we can formulate and prove the PARTITION RAMSEY THEOREM, we have
to introduce first the corresponding terminology.

Families of Partitions

Even though partitions have already been used in Chapter 10, let us introduce
the notion of partition in a more formal way.

A set P C 2(95) is a partition of the set S, if ) ¢ P, |JP = S, and for all
distinct p1,p2 € P we have p1 Np2 = (. A member of a partition P is called a
block of P and Dom(P) := |J P is called the domain of P. A partition P is
called infinite, if |P| is infinite (where |P| denotes the cardinality of the set
P); otherwise, the partition P is called finite.

If P and @ are two partitions with the same domain, then P is coarser
than @, or equivalently () is finer than P, if each block of P is the union
of blocks of ). Notice that the relation “coarser” is a partial ordering on the
set of partitions with a given domain, and that there are unique finest and
coarsest partitions. For example with respect to partitions of w, the finest
partition is {{n} : n € w} and the coarsest partition is {w}.

Below, we are mainly interested in infinite partitions of w, denote by capital
letters like XY, Z,..., as well as in (finite) partitions of natural numbers,
usually denoted by capital letters like S, T, U, .... So, let (w)* denote the set
of all infinite partitions of w and let (IN) denote the set of all (finite) partitions
S with Dom(S) € w. Notice that S € (IN) iff S is a partition of some natural
number n € w.

The following notation allows us to compare partitions with different do-
mains: For partitions P and @ (e.g.,, P € (N) and @ € (w)*) we write
P C Q if for all blocks p € P the set p N Dom(Q) is the union of some
sets ¢; N Dom(P), where each ¢; is a block of Q. Notice that in general,
P C @Q C P does not imply P = @, except when Dom(P) = Dom(Q). Fur-
thermore, let P 1 Q (P U Q) denote the finest (coarsest) partition R such
that Dom(R) = Dom(P)UDom(Q) and R is coarser (finer) than P and Q. In
particular, if Dom(P) C Dom(Q) then PMQEQC PUQ.

Let S € (IN) and X € (w)¥. If for each s € S there exists an z € X
such that x N Dom(S) = s, we write S < X. Similarly, for S,T € (IN), where
Dom(S) € Dom(T), we write S < T if for each s € S there exists at € T
such that tNDom(S) = s. Roughly speaking, P < @ is the same as saying “Q
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restricted to Dom(P) is equal to P”. Notice that for S C X, where S € (IN)
and X € (w)¥, we have S g (ST X) C X.

At a first glance, the set of partitions of w, with the partitions {w} and
{{n} S w} and the operations “LI” and “M”, looks similar to the Boolean
algebra (3”(&1), u,N, —, 0, w). However, partitions of w behave differently than
subsets of w. The main difference between partitions and subsets is that par-
titions do not have proper complements. For example if x,y, z € [w]¥ are such
that rtUy =2Uz=wand x Ny = 2Nz = (), then y = 2. This is not the
case for partitions: It is not hard to find partitions X,Y,Z € (w)* such that
XuY=Xuz=YUuZ={{n}:necwpand XNY = XNZ=YNZ = {w},
e.g.let X = {{3i,3i+1}:i e wjU{{3i+2}:i e w},V = {{3i+1,3i4+2} : i €
wiU{{3i} :i e w},and Z = {{3,3i+2} : i € w}U{{3i+1} : i € w}. We leave
it as an exercise to the reader to construct infinite partitions X,Y, 7 € (w)*
with the same property but such that all blocks of X, Y, and Z, are infinite.

Now, let us define a topology on (w)* which is similar to the Ellentuck
topology on [w]¥ (defined on page 216): For S € (N) and X € (w)¥ with
SCX,let

(5, X)={Y e w*:S<YLCX}.

A set (S, X)“, where S and X are as above, is usually called a dual Ellentuck
neighbourhood. We leave it as an exercise to the reader to show that the
intersection of finitely many dual Ellentuck neighbourhoods is either empty
or a dual Ellentuck neighbourhood. The topology on (w)“ generated by the
dual Ellentuck neighbourhoods is called dual Ellentuck topology.

The usual trick to get subsets of w from partitions is as follows: For a
partition P of a subset of w, e.g., P € (w)*¥ or P € (IN), let

Min(P) = { min(p) : p € P}.

Obviously, if X € (w)¥ then Min(X) € [w]* and if S € (IN) then Min(S) €
fin(w). Further we have that for any X,Y € (w)¥, X C Y implies Min(X) C
Min(Y).

A non-empty family ¢ C (w)* is called free, if for every X € % there is
aY € ¥ such that Y C X, but forall S € (N), (SN X)ZY.

A family ¢ C (w)¥ is closed under refinement if X C Y and X € ¥
implies Y € €, and it is closed under finite coarsening if S € (IN) and
X € % implies (ST X) € €. Notice that a family ¢ C (w)“ is closed under
refinement and finite coarsening iff for all S € (N) and Y € (w)¥, X C (ST1Y)
and X € ¥ implies Y € 7.

A family ¥ C (w)¥ is called complete, if ¥ is free and closed under
refinement and finite coarsening.

In order to define the game which plays a key role in the proof of the
PARTITION RAMSEY THEOREM, we have to introduce the following nota-
tion. For S € (IN), let S* denote the partition S U {{Dom(S)}}. Notice
that |S*| = |S| + 1. Further, notice that whenever (S*, X)“ is a dual El-
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lentuck neighbourhood, then every Y € (S* X)“ has a block y such that
y N Dom(S) = 0 and y N Dom(S*) = { Dom(S)}.

With respect to a complete famlly % C (w)¥ we define the infinite two-
player game G, as follows.

MAIDEN (S0, Xo) (S1,X1) (S2, X2)

Ge \ / \ o

DEATH

We require that the first move (Sp, Xg) of the MAIDEN is such that Xy € €
and that (Sg, Xo)“ is a dual Ellentuck neighbourhood. Further, we require
that for each n € w, the n*" move of DEATH Y, is such that Y,, € (Sr, Xn)“
and Y,, € ¥, and that the MAIDEN plays (Sy,+1, Xn+1) such that

4 S;; < Sn—i—la |Sn+1| - |S | + 17 S;;+1 C Yn: and
o Xnp1 € (5541, Yn)NYE.

Finally, the MAIDEN wins the game G, if and only if (., (Sn, Xn)*NE = 0,
i.e., the (unique) infinite partition X € (w)* such that S, < X (for all n € w)
does not belong to the family %.

Now, a complete family € C (w)“ is called a Ramsey partition-family
if the MAIDEN has no winning strategy in the game G, (compare with the
game introduced in Chapter 10 | RELATED RESULT 71).

Obviously, the set (w)* is an example for a Ramsey partition-family and
it is not hard to construct Ramsey partition-families which are proper subsets
of (w)¥, e.g., for any partition X € (w)*, (X)* is a Ramsey partition-family.
For a non-trivial example of a Ramsey partition-family take a Ramsey ultra-
filter # C [w]* and let ¢ = {X € (w)* : Min(X) € .Z#}. Then, by Chap-
ter 10 | RELATED RESULT 71, we get that € is a Ramsey partition-family (for
other non-trivial examples of Ramsey partition-families see Chapter 26).

It turns out that Ramsey partition-families have very strong combinatorial
properties, and to some extent, they are proper generalisations of Ramsey fam-
ilies (see also Chapter 26). The combinatorial strength of Ramsey partition-
families is used for example in the proof of CARLSON’S LEMMA, which is — as
mentioned above — the crucial part in the proof of the PARTITION RAMSEY
THEOREM.

Carlson’s Lemma and the Partition Ramsey Theorem

Before we formulate and prove the PARTITION RAMSEY THEOREM, let us first
consider a few possible generalisations of RAMSEY’S THEOREM in terms of par-
titions: RAMSEY’S THEOREM states that whenever we colour [w]™ (i.e., the
n-element subsets of w) with finitely many colours, then we find an = € [w]*
(i.e., an infinite subsets of w) such that [z]™ is monochromatic (i.e., all whose
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n-element subsets have the same colour). If we try to formulate RAMSEY’S
THEOREM in terms of partitions, we first have to decide which partitions corre-
spond to the “n-element subsets of w” and “infinite subsets of w” respectively.
It seems natural that infinite subsets of w correspond to infinite partitions
of w, i.e,, x € [w]¥ is replaced by X € (w)¥. Similarly, we could say that
n-element subsets of w correspond to n-block partitions of w, and therefore
we would replace [w]" by (w)" := {X € (w)* : |X| = n}. This leads to the
following first attempt of a generalisation of RAMSEY’S THEOREM in terms
of partitions:

Generalisation 1. For every colouring of (w)™ with finitely many colours,
there exists an infinite partition X € (w)* such that (X)" is monochromatic,
where (X)" :={Y € (w)": Y C X A|Y|=n}.

Unfortunately, this generalisation of RAMSEY’S THEOREM fails. In fact,
by transfinite induction we can construct a counterexample even for the case
when n = 2: Firstly notice that for each X € (w)¥, [(X)?] = |(w)“| = ¢. Let
{X, : @ € ¢} be an enumeration of (w)“. For each a € ¢ choose two distinct
partitions

Y2, vhe (o) \{¥8,v} : B ea}).

Finally, define 7 : (w)? — {0, 1} by stipulating 7(Y") = 0 iff there is an a € ¢
such that Y = Y. By construction, for every X € (w)* we find Y and Y!
in (X)? such that 7(Y°) = 0 and 7(Y'!) = 1. Thus, for every X € (w)*, (X)"
is dichromatic.

One might ask why is it not possible to construct a similar counterexample
for RAMSEY’S THEOREM? The reason is simple: For any partition X € (w)*,
(X)? is of cardinality ¢, whereas for any = € [w]* and n € w, the set [x]" is
countable.

Now, one might ask why are n-element subsets of w so different from n-
block partitions? A reason is that n-element subsets of w are proper finitary
objects, whereas an n-block partition Y € (w)™ necessarily contains infinite
sets. Furthermore, every n-element subset of w is a subset of some k € w,
which is not the case for partitions Y € (w)™. However, it is true for partitions
S € (IN). So, let us replace now [w]™ and [z]" by (w)™) and (X)) respectively,
where

(W)™ = {Se():|S|=n},

and for X € (w)¥,
(X)) = {se (W)™ sc X}.
Generalisation 2. For every colouring of (w)(™ with finitely many colours,
there exists an infinite partition X € (w)* such that (X)(™ is monochromatic.

Unfortunately, this generalisation fails as well. Again, we can construct a
counterexample even for the case when n = 2: For this, consider the colouring
7 (w)@ — {0,1} defined by stipulating
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7({s0,51}) =0 <= 0 € s9 Amax(sp) < max(sy).

We leave it as an exercise to the reader to show that for every X € (w)¥,
(X)™ is dichromatic.

After these two failures, let us now formulate RAMSEY’S THEOREM di-
rectly in terms of partitions of subsets of w: A partition P of a subset of w
is segmented if for any distinct po,p; € P, either max(py) < min(p;) or
max(p1) < min(po). Let (w)¥ denote the set of all segmented partitions of
w. Notice that if P € (w)*, then all blocks P are finite. For the moment let
w = w \ {0}. For an infinite set of positive integers x = {k; : i € w} € [w]¥,
where k; < k; 41 for all i € w, we define P, € (w)* by stipulating

Py = {[ki, kit1) 1i € w},

where ko := 0. Notice that (w)* = {P, : € [0]“}. Similarly, for an n-element
set s = {ki1,...,kn} € [W]", where k; < k;11 for 1 <i <n, we define

Qs = {[ki,ki+1) 11 € n},

where again kg = 0. Notice that for all s € fin(w), Q; is a segmented partition
with Dom(Q,) = max(s). Now, let (w)™ = {Q, : s € [¥]"} and for P € (w)*
let
(P) " ={Qe W™ @ cP}.
Recall that for s € fin(w), QF = Qs U {Dom(Qs)} = Qs U { max(s)}, and
notice that for all @ € [W]*, (P)™" = {Q% : s € [z]"}.
Now we are ready to formulate RAMSEY’S THEOREM in terms of segmented

partitions — we leave it as an exercise to the reader to show that RAMSEY’S
THEOREM is indeed equivalent to the following statement.

Ramsey’s Theorem. For every colouring of <w>(”) with finitely many
colours, there exists an infinite segmented partition P € (w)* such that (P)(™"
is monochromatic.

So, we finally found a formulation of RAMSEY’S THEOREM in terms of
segmented partitions. The next step is to find a general formulation which
works for all, and not just for segmented partitions. For this, we only have
to replace the angle brackets by round brackets and define the meaning of
(X)) For n € w and X € (w)* let

(X)W ={Sewm™:5Cx}.
Similarly, for a dual Ellentuck neighbourhood (S, X)“, where |S| < n, let
(S, X)W ={U € (w)™ : S UAU*C X}.

Now we are ready to state the sought partition form of RAMSEY’S THEOREM:
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THEOREM 11.4 (PARTITION RAMSEY THEOREM). For any Ramsey partition-
family € C (w)“ and for any colouring of (w)™ with r colours, where r and
n are positive integers, there is an X € € such that (X)(™" is monochromatic.

The PARTITION RAMSEY THEOREM will follow from CARLSON’S LEMMA.
With respect to Ramsey partition-families, CARLSON’S LEMMA states as fol-
lows:

LEMMA 11.5 (CARLSON’S LEMMA). Let € C (w)¥ be an arbitrary but fixed
Ramsey partition-family. For any colouring  : (w)(”) — r, where r and n are
positive integers, and for any dual Ellentuck neighbourhood (So, Xo)“, where
|So| =n and X € €, there is a X € (Sp, Xo)* which belongs to ¢ such that
(So, X)) is monochromatic.

Proof. Before we begin with the proof, let us first introduce the following
notion: For a dual Ellentuck neighbourhood (S, X)“ and for a positive integer
m € w, aset D C (w)™ is called €-dense in (S, X)) if for all Y &
(S, X)“NE, (S,Y)™ N D # (. Notice that for every colouring 7 : (w)(™ — r,
there exists a colour ¢ € r and a partition X{ € (So, Xo)¥ N € such that
the set D, := {S € (w)™ : 7(S) = ¢} is €-dense in (So, X{)™". Indeed,
if Dy is €-dense in (Sp, Xo)(™" then we are done. Otherwise, there exists
an X1 € (Sp, Xo)“ N € such that (So,Xl)(”)* N Dy = 0. Now, either Dy
is @-dense in (Sp, X1)™", or there exists an X5 € (Sp, X1)* N€ such that
(So, X2)™" N Dy = 0. Proceeding this way, we finally find a ¢ € 7 such that
for all Y € (Sp, X.)* NE, (S0, Y)™ ND.#0;let X} = X..

After this preliminary remark, we can now begin with the proof: With-
out loss of generality we may assume that the dual Ellentuck neighbourhood
(So, Xo)“ is such that Dy is €-dense in (Sp, Xo)™ .

The proof is now given in several steps. Firstly we show that there exists
an S € (IN) with Sp < S T Xy, such that for all T € (N) with S < T C X,
there is a 77 C T such that Dom(7") = Dom(T), |T'| = n, So < 1", and
T’ € Dy. To state this in a more formal way, we introduce the following two
notations: For S, T € (IN), where S < T and |S| < m, let

(8,T)" ={U € (N) : Dom(U) = Dom(T) AS < UC T A|U| =m},
and for a dual Ellentuck neighbourhood (U, Z)“, let

(U, 2)=)" = | Jw. 2)®".
kew

In other words, (U, Z)(<*)" = {S € (N) : U < $* C Z} and (S, T)™ is the set
of all m-block partitions of Dom(T") which contain .S as a “sub-partition” and
are coarser than 7.

CLAIM 1. There is a Zy € (So, Xo)* N¢ and an S € (So, Zo)(<*)" such that
for all S € (S, Zy)(<*)", (Sy,S)" N Dy # 0.
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Proof of Claim 1. If the claim fails, then for every Y € (Sp, Xo)¥ N% and each
T € (S, Y)(<9) there is an S € (T,Y)(<*)" such that (Sp,S)" N Dy = 0; in
particular, there is an " € (T,Y)(TD" such that (Sp, S")"N Dy = (). We define
a strategy for the MAIDEN in the game G.. The MAIDEN starts the game
with (So, Xo) and replies the i*" move Y; of DEATH with (S;41, Xi11), where
X,;+1 = Y; and S;4; is constructed as follows: Take any T;41 € (S}, Y;) (i1
and let Si—i—l S (Ti-i-la Y;)<n+i+1)* be such that (So, Si+1)n N DO = @ As € is
a Ramsey-partition family, fix a play where the MAIDEN follows this strategy
but DEATH wins. Let Z € (w)“ be the unique infinite partition such that for
all i € w we have S; < Z. Since € is a Ramsey partition-family, the partition
Z belongs to €. By construction, Sy < Z and (Sp, Z)™ N Dy = §. Thus, Dy
is not €-dense in (Sp, Xo)™", a contradiction. Actaim 1

The next step is where the HALES-JEWETT THEOREM comes in:

CrLAM 2. Let Zy € (So, X0)” N € be as in Claim 1. Then there is a U e
(So, Zo)(nJrl)* such that (So, U)n Q Do.

Proof of Claim 2. Let S € (So, Z5)(<“)" be as in CLAIM 1, i.e., for all W €
(S, Zo)(<“)" there is a W' € (So, W)™ such that W’ € Dqg. Let m = |9,
ro = }(SO,S’)"}, and let {Uy : k € 1o} be an enumeration of (Sp, S)™. By the
HALES-JEWETT THEOREM 11.2, or more precisely by a partition form of it,
there is a positive integer [ = HJ(m ro) such that for any T € (S, Zy)(m+0"
and any ro-colouring of (S, T)™ there is a Wy € (S, T)™ ! such that (S, Wo)™
is monochromatic (the details are left to the reader). Fix an arbitrary T €
(S, Zy)m D", Then, by the choice of S, for all W € (S,T)™ there is a U €
(So, W)™ such that U € Dy. Moreover, there is a k € ro such that U = U,
and since |Uy| = |U| = n we have U = U, MW . Hence, for every W € (S, 7)™
there is a k € ro such that Uy MW € Dy. Now, for each W e (5,T)™ let

T(W) =min{k € ro : U, MW € Dy} .

Then 7 is an ro-colouring of (S,T)™. Since T € (S, Zo)™*1" there is a Wy €

(S,T)™*! such that (S,Wy)™. is monochromatic, say of colour ko. Thus,

for all W € (S Wo)™, Uk, MW € Dyg. Finally, let U = U, N W. Then

U € (So, Wo)" 1, hence U € (So, Zo)"+1)", and (Sp,U)" C Dy as required.
_|Claim2

As an obvious generalisation of CLAIM 2 we get

CLAIM 2% For each X € (Sy, Xo)® N'E there is a U € (Sp, X)) such that

(S0, U)™ € Do.

The next step is crucial in the construction of X:

Cra 3. Let Zy € (So,X0)¥ N%€ be as in Claim 1. Then there are S €
(So, Zo)" ) and X € (S, Zy)¥ N'€ such that the set

{T € (8, %)™V (8o, T)" € Do}

is €-dense in (S, X))+,
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Proof of Claim 3. Assume towards a contradiction that the claim fails. Then,
for any S € (So, Zo)™™*tY" and each Y € (S, X()* N€ there exists a Z €
(S,Y)¥ N€, such that for all T € (S, Z)"+D" we have (So,T)" ¢ Dy. We
define a strategy for the MAIDEN in the game G.. The MAIDEN starts the
game with (Sp, Zp) and replies the i*f move Y; of DEATH with (S;11, Zit1),
where Z; 11 € (S5,Y;)* NE and S;y1 € (SF, Ziy1) D" are such that for
all S € (Sp, Si+1)"*! and all T € (S, Zi11)" Y we have (Sp, T)" & Dy : For
i=0,let S; € (So,Yy)™ V)" be arbitrary and let Z; € (SF,Yp)* N'% be such
that for all T € (S, Z;)™+1)" we have (So, T)" ¢ Dy. For i > 0, we construct
Si+1 and Z; 41 as follows. Firstly, let {T; 1, : k € h;} be an enumeration of
(S0, S;)" 1. Secondly, let Z; o = Y; and for k € h; let Z; 1 € (Si, Zig)* NE
be such that for all T € (T, Zi x+1)<“)" we have (Sp, T)" & Dy. Finally, let
Ziv1 = Zip, and let S;y1 € (S}, Ziw1)™ T+, Fix a play where the MAIDEN
follows this strategy but DEATH wins. Since % is a Ramsey partition-family,
the unique infinite partition Z € (w)* such that for all i € w we have S; < Z
belongs to €. Now, by construction, for any U € (So, Z)™*tD" we find a
positive integer ¢+ € w as well as a k € h; such that U € (Ti,k,ZiH)(”“)*.
Thus, for all U € (Sp, Z)" 1" we have (So, U)" ¢ Dy, but since (Sy, Z)* C
(So, Zo)¥, this contradicts CLAIM 2*. Actnim s

The following claim is just a generalisation of CLAIM 3:

Cram 3* Let (To,Yo)Y C (So,X0)“ be a dual Ellentuck neighbourhood,
where Yy € € and |Ty| = m. If E C (w)™) is €-dense in (Tp,Yy)™",
then there exist S € (Tp, Yo)™*)" and X € (S,Yy)* N€ such that the set
{T € (S, Yo)™*+V": (T, T)™ C E} is €-dense in (S, X)m+1".

Proof of Claim 3*. In the proofs of the preceding claims, just replace Sy by
To, XO by }/0, and DO by E. Actaim 8*

Now we construct the first piece of the sought partition X:

CLAIM 4. Thereis a Uy € (SO,XO)(")* such that w(Up) =0, i.e., Uy € Dy, and
in addition there is an X € (U§, Xo)* N€ such that the set

{T € (Up, X)) (S, T)" C Do}

is €-dense in (Up, X)),
Proof of Claim 4. We define a strategy for the MAIDEN in the game G.,. The
MAIDEN starts the game with (Sp, Xo) and replies the il move Y; of DEATH

with (S;41, Xit1), where S;41 and X, are constructed as follows: For i = 0,
let S; € (So, Yp)™t1)" and X; € (S, Yo)” N€ be such that the set

By = {T € (S, X)) (S5, T)" C Dy}

is ¥-dense in (57, Xl)("H)*. Notice that by CrAiM 3%, S and X7 exist. Simi-
larly, for i > 0 let S;yq € (S;, Y;)™ )" and X;,1 € (S;,Yi)* NE be such that
the set

Ei1 = {T c (Si+1’Xi+1)(n+i+1)* . (Si,T)n-i-i c El}
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is €-dense in (S;y1, X;11)™ T By induction on i one verifies that for all
1 € w we have

Ei1C{T e (Sit1, Xip1)HHDT L (S, T)" C Do},

where Ey := Dy (the details are left to the reader). Finally, fix a play where
the MAIDEN follows this strategy but DEATH wins, and let X € (w)“ be
the unique infinite partition such that for all i € w we have S; < X. Since
% is a Ramsey partition-family, X belongs to %. Now, since Dy is ¥-dense
in (Sp, Xo)¥ and X € (Sp, Xo)¥ N €, there is a Uy € (Sp, X)™" such that
Uy € Dy. Choose iy € w large enough such that there is an S € (Sp, S;, )"+t
for which we have Uj < S. Since (Sp,5)™ C (So,S;,)" we get that {T S
(S, X, )12 (S, )” C Dy} is €-dense in (S, X;,)"*+V". In particular, the
set {T € (S, X)) : (So, T)» C Do} is €-dense in (S, X))+, and since

m(Up) = 0 and U§ = S’ Uy has the required properties. AC1nim 4

We leave it as an exercise to the reader to prove the following generalisation
of CLAIM 4:

Cramv 4% If U; € (So, X)) is such that (Sp,U;)® C Dy and Y €
(U, Xo)*N% is such that {T € (U;,Y)"++D": (S5, T)" C Dy} is €-dense in
(U;, Y)"+D" then there are Uiy € (U7, Y)Y and X € (U, ,,Y)* NE
such that

{T € (Uis1, X)" T2 (85, T)" C Do}

is €-dense in (Uj41, X)) and (So, Uis1)™ C Dy.
Now we are ready to construct an infinite partition X € (S, Xo)¥ N'€ such
that for every U € (Sp, X)™" we have n(U) = 0, i.e., (So, X)™" C Dy:
Indeed, by defining a suitable strategy for the MAIDEN in the game G (ap-
plying CLAIM 4*), we can construct partitions U; € (Sp, Xo)(<“)" such that
for all ¢ € w we have

|Uz| =n+1, U

2

< Uity1, (So,Us))" C Dy, (0)

and the unique partition X € (w)“ such that U; < X (for all i € w) belongs
to the Ramsey partition-family €. By (0), for all U € (So, X)) we have
(So,U)™ C Dy, i.e., (Sg, X)™" is monochromatic, which completes the proof
of CARLSON’S LEMMA. =

Having CARLSON’S LEMMA at hand, we are now able to prove the main result
of this chapter:

Proof of the Partition Ramsey Theorem. The proof is by induction on n.
For n = 1, the PARTITION RAMSEY THEOREM follows immediately by the
Pigeon-Hole Principle. So, let n,r € w be given, where r is positive and n > 1,
and assume that the PARTITION RAMSEY THEOREM is already proved for all
positive integers n’ < n.
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Fix an arbitrary colouring 7 : (w)™ — r. Take an arbitrary partition
Xo € € and let Sy € (IN) be such that |Sp| =n — 1 and S§ < Xo.

We define a strategy for the MAIDEN in the game G, and as byproduct
we get a partial mapping 7 from (w)"~! to r. The MAIDEN starts the game
with (Sp, Xo) and replies the i*" move Y; of DEATH with (S;41, Xi11), where
Si+1 and X;41 are constructed as follows: Let {T; € (IN) : k € h;} be an
enumeration of all T' C S; with Dom(7") = Dom(S;) and |T'| = n—1. Let Z :=
Y;, and for each k € h;, let Zy11 € (SF, Zk)¥ N€ be such that 7T|(T,j,Zk+1)(n)*
is constant and define

7(Ty) = ©(U) for some U € (T}, Zp1)™ .

Now, the partition Z;41 € ¥ we construct by applying first CARLSON’S
LEMMA 11.5 with respect to the dual Ellentuck neighbourhood (T3}, Z;)“ and
then by refining the resulting partition such that it belongs to the dual Ellen-
tuck neighbourhood (S}, Z;)“. Let X;11 := Zp, and let S;41 € (IN) be such
that S}, < Xsy1 and |S;11| = (n — 1) + (i + 1). Finally, fix a play where the
MATIDEN follows this strategy but DEATH wins, and let Z € (w)* be the unique
infinite partition such that for all i € w we have S; < Z. Since ¥ is a Ramsey
partition-family, the partition Z belongs to %. For each T' € (Z)™~1" there
exist unique numbers i,k € w such that k € h; and T = Ty. Thus, 7 is an
r-colouring of (Z)(»~1)", By the induction hypothesis we find an X € (2)“N%
such that 7| x)w-1=+ is constant, say 7(1) = j for all T € (X)(»=1", Now,
take any S € (X)(™" and let S* < S be such that |S| = n — 1. Notice that the
domain of S is equal to Dom(.S;) for some i € w. Consider the partition X; ;1.
By the construction of X;;1 we know that (T*,XZ-H)(")* is monochromatic
whenever T' T S; with [T| = n — 1 and Dom(7") = Dom(S;), and by the
construction of the partition X, 7T|(T*1Xi+l)(n,)* is constantly j. In particular,
7(U) = j whenever U € (5%, X;11)™", and since S € (S*, X;41)™", we get
7w(S) = j, which completes the proof. —

A Weak Form of the Halpern-Lauchli Theorem

One can show that for example the HALES-JEWETT THEOREM, a weakened
form of the HALPERN-LAUCHLI THEOREM, RAMSEY’S THEOREM, as well as
the FINITE RAMSEY THEOREM and a partition form of it, are all derivable
from the PARTITION RAMSEY THEOREM. Below, we just give the proof of
the WEAK HALPERN-LAUCHLI THEOREM (for the other results see RELATED
RESULT 75).

To state this weakened form of the HALPERN-LAUCHLI THEOREM, we have
to give first some notations: A set T C seq(2), where seq(2) = |U,,c,, "2, is a
tree if for every s € T and k € dom(s) we have s|; € T. In particular, seq(2)
is a tree. For a tree T' C seq(2) and [ € w let

T()={seT:dom(s) =1}.
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For a finite product of trees .7 = Ty x ... x Ty_1 C (seq(2))d (i.e., for all
k € d, where d € w, T}, C seq(2) is a tree), and for | € w, let

T ={se T :seTo(l)x...xTy—1(1)}.

A tree T C seq(2) is perfect if for each s € T there is an n > dom(s) and
two distinct functions to,t; € "2 N T such that to|aom(s) = t1ldom(s) = s- In
other words, for each s € T there are to,t; € T and k € dom(tp) N dom(¢y)
such that t0|d0m(s) = t1|dom(s) = s and to(k) =1- tl(k)

Now we are ready to state and proof the following result.

THEOREM 11.6 (WEAK HALPERN-LAUCHLI THEOREM). For every positive
d € w and for every colouring of |J,c,('2)? with finitely many colours, there
exists a product of perfect trees 7 = Ty x...xTy_1 and an infinite set H C w
such that | J,c; 7 (1) is monochromatic.

Proof. Let d be a fixed positive integer and let n := 2¢. Because |92| = 2,
there exists a one-to-one correspondence ¢ between n and ?2. For any [ € w, an
element (s, ..., sq4—1) € (‘2)? is a sequence of length d of functions s; : I — 2.
For any | € w, define the function ¢ : (!2)¢ — (92)! by stipulating

£(<80, ey Sd_1>) = <t0, . ,tl_1> where tj(’t') = Sl(j) 5

in other words, for any function s : d — 2, £(s)(5)(i) = s(i )(]) Notice that for
each | € w, the function 5 is a one-to-one function from (‘2)? onto (42)'. Let
= {ug : k € n} € (w)" be such that min(ug) < min(uy) < ... min(u,_1).
Forj € uy, let tJS(z) :=¢(k) (7). Now, define the function 7 : (w)"” — (seq(2))d
by stipulating
77(5) = 5_1 ((tOS’ s ’tIS)om(S)fl>) '

Notice that for S € (w)” with Dom(S) = I, n(S) € (‘2)¢. Finally, for any
colouring 7 : [J;e,("2)* — r, where r is a positive integer, we define the
colouring 7 : (w)™ — 7 by stipulating 7(S) := 7(n(5)). Let X € (w)* be as
in the conclusion of the PARTITION RAMSEY THEOREM 11.4 (with respect to
the colouring 7). Let S§ < X be such that |So| = n and let H := Min(X) \
Min(Sp). Further, let

Y:{Se(w) 5SSV Sy < SEX}

and define J
T ={s€ (seq(2))" :35 € .Z(s=n(9))}.

We leave it as an exercise to the reader to check that 7 and H are as desired
and that they have the desired properties. —

For the full version of the HALPERN-LAUCHLI THEOREM see RELATED
RESULT 77. However, in many applications the WEAK HALPERN-LAUCHLI
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THEOREM is strong enough. For example the WEAK HALPERN-LAUCHLI THE-
OREM is sufficient to prove that a finite product of Sacks forcing does not add
splitting reals (see Chapter 22 | RELATED RESULT 121).

NOTES

Van der Waerden’s Theorem. The theorem of van der Waerden can be consid-
ered as the beginning of Ramsey Theory and it was first proved by van der Waerden
in [34]. For a short but not easy proof of vAN DER WAERDEN’S THEOREM see Gra-
ham and Rothschild [8], and for a combinatorial proof of a slightly more general
result see Pin [22, Chapter 3].For a description of how van der Waerden found his
proof we refer the reader to [35].

The Hales-Jewett Theorem. In Graham, Rothschild, and Spencer [9, p. 35 ff.] we
can read the following remark: VAN DER WAERDEN’S THEOREM should be regarded,
not as a result dealing with integers, but rather as a theorem about finite sequences
formed from finite sets. The HALES-JEWETT THEOREM strips VAN DER WAER-
DEN’s THEOREM of its unessential elements and reveals the heart of Ramsey theory.
As mentioned above, the original proof of Hales and Jewett [13] (cf. Promel and
Voigt [28, p.1171.]) uses a double induction which leads to an extremely fast grow-
ing upper bound for the Hales-Jewett function HJ(n,r). In 1987, Shelah [30] found
a fundamentally new proof of the HALES-JEWETT THEOREM which just uses simple
induction on n and provides a much better bound for HJ(n,r). The proof of the
HALES-JEWETT THEOREM (i.e., of THEOREM 11.3) presented here is Shelah’s proof
modified by Matet [23], who replaced what is sometimes called “Shelah’s pigeonhole
lemma” by the FINITE RAMSEY THEOREM. For the HALES-JEWETT THEOREM, and
in particular for Shelah’s proof, see also Graham, Rothschild, and Spencer [9, Chap-
ter 2], Nilli [25], Promel and Voigt [28, p. 119 ff.], and Jukna [19, Chapter 29].

Carlson’s Lemma and the Partition Ramsey Theorem. According to Carl-
son and Simpson [4, p.268], Carlson proved Lemma 2.4 of [4] in 1982. In fact, he
proved a stronger result involving so-called “special partitions”, which are essentially
segmented partitions where finitely many blocks may be infinite; and in the proof of
LEMMA 11.5 we essentially followed Carlson’s proof of that stronger result, which is
Theorem 6.3 of [4]. CARLSON’S LEMMA, or more precisely Lemma 2.4 of [4], plays a
key role in the proof of the DuaL RAMSEY THEOREM, which is the main result of
Carlson and Simpson [4]. The DuAL RAMSEY THEOREM corresponds to our Gen-
eralisation 1 — where the set (w)" is coloured with finitely many colours — except
that the set of admissible colours of (w)™ is restricted to Borel colourings. Thus, the
DuAaL RAMSEY THEOREM is in a certain sense the dual of RAMSEY’S THEOREM.
However, it was natural to seek a partition form (i.e., dual form) of RAMSEY’S THEO-
REM which works for arbitrary colourings. Such a result we found in the PARTITION
RAMSEY THEOREM (see also RELATED RESULT 75). The proof of the PARTITION
RAMSEY THEOREM 11.4 is taken from Halbeisen [10, Chapter IV.2] (for the relation
between the PARTITION RAMSEY THEOREM and other Ramsey-type results we refer
the reader to Halbeisen [10, Chapter IV.4])..

The Halpern-Lduchli Theorem. What we stated as WEAK HALPERN-LAUCHLI
THEOREM 11.6 is just a consequence of the HALPERN-LAUCHLI THEOREM (see RE-
LATED RESULT 77), which was first proved by Halpern and Liuchli in [15] and later
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by Halpern in [14] (see also Argyros, Felouzis and Kanellopoulos [1], Todorcevi¢ [32,
Chapter 3|, or Todorcevi¢ and Farah [33]). According to Pincus and Halpern [26,
p. 549] (cf. [16, p. 97]) the original purpose of the HALPERN-LAUCHLI THEOREM was
to show that in ZF, the Prime Ideal Theorem does not imply the Axiom of Choice,
which was proved by Halpern and Lévy in [16] (cf. THEOREM 7.16, where it is shown
that in ZFA, PIT does not imply AC). As mentioned above, in many applications,
a weak form or a particular case of the HALPERN-LAUCHLI THEOREM is sufficient
(e.g., Halpern and Lévy [16, p. 97]). The version of the HALPERN-LAUCHLI THEOREM
given above — as well as the idea of proof —is taken from Carlson and Simpson [4,
p. 272]. For some applications and other weak forms of the HALPERN-LAUCHLI THE-
OREM see RELATED RESULT 77.

RELATED RESULTS

73. Van der Waerden numbers. For positive integers r and l1,l2,...,[,, the van
der Waerden number w(l1,l2,...,l;7) is the least positive integer N such that
for every r-colouring of set {1,2,..., N}, there is a monochromatic arithmetic

progression of length I; of colour ¢ for some . In [3], Brown, Landman, and
Robertson gave asymptotic lower bounds for w(l,m;2) for fixed m, as well as
for w(4,4,...,4;7).

74. Non-repetitive sequences and van der Waerden’s Theorem™ A finite set of one

or more consecutive terms in a sequence is called a segment of the sequence. A
sequence on a finite set of symbols is called non-repetitive if no two adjacent
segments are identical, where adjacent means abutting but not overlapping.
It is known that there are infinite non-repetitive sequences on three symbols
(see Pleasants [27]), and on the other hand, it is obvious that a non-repetitive
sequence on two symbols is at most of length 3. Erdds has raised in [6] the
question of the maximum length of a sequence on k symbols, such that no two
adjacent segments are permutations of each other. Such a sequence is called
strongly non-repetitive. Kerdnen [20] has shown that four symbols are enough
to construct an infinite strongly non-repetitive sequence.
Now, replacing the finite set of symbols of an infinite strongly non-repetitive
sequence by different prime numbers, one gets an infinite sequence on a finite
set of integers such that no two adjacent segments have the same product. It
is natural to ask whether one can replace in the statement above “product”
by “sum”, which leads to the following question: Is it possible to construct an
infinite sequence on a finite set of integers such that no two adjacent segments
have the same sum? By an application of VAN DER WAERDEN’S THEOREM, it
is not hard to show that the answer to this question is negative. Moreover, in
any infinite sequence on a finite set of integers we always find arbitrary large
finite sets of adjacent segments such that all these segments have the same
sum (see Hungerbiihler and Halbeisen [11]). However, it is still open whether
there exists an infinite sequence on a finite set of integers such that no two
adjacent segments of the same length have the same sum. It seems that VAN
DER WAERDEN’S THEOREM alone is not strong enough to solve this problem.

75. Corollaries of the Partition Ramsey Theorem. Below, we present a few corollar-
ies of the PARTITION RAMSEY THEOREM. We would like to mention that these
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76.

7.

corollaries — like for example the WEAK HALPERN-LAUCHLI THEOREM — also
follow from the so-called DUAL RAMSEY THEOREM, which is due to Carlson
and Simpson [4].

Firstly we derive RAMSEY’S THEOREM from the PARTITION RAMSEY THEO-
REM: To every r-colouring 7 : [w]™ — 7 of the n-element subsets of w we can
assign an r-colouring 7 : (w)™ — r by stipulating 7(5) := (Min(5*) \ {0}).
Now, if (X)™" is monochromatic for 7 for some X € (w)“, then Min(X) \ {0}
is monochromatic for 7, and since Min(X) € [w]¥, this shows that RAMSEY’S
THEOREM 2.1 is just a special case of the PARTITION RAMSEY THEOREM. Sim-
ilarly, the FINITE RAMSEY THEOREM 2.3 as well as the HALES-JEWETT THE-
OREM 11.2 follows from the following finite version of the PARTITION RAMSEY
THEOREM which is originally due to Graham and Rothschild [7, Corollary 10].

GRAHAM-ROTHSCHILD RESuLT: For all m,n,r € w, where r > 1 and n < m,
there exists an N € w, where N > m, such that for every r-colouring of (N)"
there exists a partition H € (N)™, all of whose n-block coarsenings have the
same colour.

The relation between these results is illustrated by the following figure.

PARTITION RAMSEY THEOREM ——> RAaMSEY’S THEOREM

|

GRAHAM-ROTHSCHILD RESULT —> FINITE RAMSEY THEOREM

HALES-JEWETT THEOREM

As a matter of fact we would like to remind the reader that we used the F1-
NITE RAMSEY THEOREM to prove the HALES-JEWETT THEOREM, that we used
the HALES-JEWETT THEOREM to start the induction in the proof of CARL-
soN’s LEMMA 11.5, and that CARLSON’s LEMMA was crucial in the proof of the
PARTITION RAMSEY THEOREM.

A generalisation of the Partition Ramsey Theorem. By combining CARLSON’S
LeMMA with the GRAHAM-ROTHSCHILD RESULT, Halbeisen and Matet [12]
proved a result which is even stronger than the PARTITION RAMSEY THEO-
REM.

The Halpern-Lauchli Theorem. Before we can state the full HALPERN-LAUCHLI
THEOREM of Halpern and Liuchli [15], we have to introduce some terminology.
A set T C ““w, where ~“w = J,,.,"w, is a finitely branching tree if T is a tree
(i.e., for every s € T and k € dom(s), s|x € T') such that for all s € T, the set
{teT:sCtA|t| =]s|+ 1} is finite. An element s € T of a tree T C ““w is
aleaf if {t € T :s Gt} =0}. If Aand B are subsets of a tree T C <“w, then
we say that A supports (dominates) B if for all ¢t € B there exists an s € A
such that s Ct (t C s). A subset D of a tree T C <“w is said to be (h, k)-dense
if there is an s € T with |s| = h such that {t € T : s Ct Alt| = h+ k} is
dominated by D. Let [],.,7: = To X ... x Ta—1 be a product of trees T; C ““w.
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A product J],., Ai C [];cq Ti, where each A; is (h, k)-dense in T;, is called a
(h, k)-matrix. Now we can state Theorem 1 of Halpern and Lauchli [15].

HarpERN-LAUCHLI THEOREM: Let [[,.,T: be a finite product of finitely
branching trees T; C <¥w without leaves, and let Q C []..,T:. Then either
(a) for each k, Q contains a (0, k)-matrix, or

(b) there exists h such that for each k, ([],c,7:) \ @ contains an (h, k)-matrix.

There exist many reformulations, weakenings, and generalised forms of the
HALPERN-LAUCHLI THEOREM. For example Hans Liuchli proved in a student
seminar at the ETH Ziirich a weak form of the HALPERN-LAUCHLI THEOREM
in which the trees T C <“w were replaced by U, {[2, %) : k € 2"},
and in which the set [0,1)? was coloured with two colours. The HALPERN-
LAucHLI THEOREM is a very strong combinatorial statement and even weak
forms of it have interesting applications (see for example Chapter 22 | RELATED
REsurT 121, Blass [2, Polarized Theorem|, or Milliken [24]). However, there are
also some generalisations of the HALPERN-LAUcCHLI THEOREM: For example
Laver [21] generalised the perfect tree version of the HALPERN-LAUCHLI THE-
OREM to infinite products (see also Ramovi¢ [29]), and Shelah [31] replaced the
trees T C <“w of height w by trees of uncountable height (see also DZzamonja,
Larson, and Mitchell [5]).

i€d

78. Partition reqularity. A finite or infinite matrix A with rational entries in which
there are only a finite number of non-zero entries in each row is called parti-
tion regular if, whenever the natural numbers are finitely coloured, there is a
monochromatic vector z (i.e., all entries of z have the same colour) with Az = 0.
Many of the classical theorems of Ramsey Theory may naturally be interpreted
as assertions that particular matrices are partition regular. For example, Schur’s
Theorem (i.e., COROLLARY 2.5) is the assertion that the 1x 3-matrix (1,1, —1) is
partition regular; or VAN DER. WAERDEN’S THEOREM is (with the strengthening
that we may also choose the common difference of the arithmetic progression to
have the same colour) exactly the statement that a certain (m — 1) x (m + 1)-
matrix is partition regular (see Hindman, Leader, and Strauss [18]). While in
the finite case partition regularity is well understood, very little is known in
the infinite case. For a survey of results on partition regularity of matrices see
Hindman [17].
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Part II

From Martin’s Axiom to Cohen’s Forcing






...changes of genus are brought about not by the
introduction of major or minor thirds, divided or
undivided, but by a melodic progression through in-
tervals proper to certain gemera. It remains to be
noted that the change from one genus to another
is also accompanied by a change in melodic style.
...a difference of genus may be assumed when a
notable divergence in melodic style is heard, with
rhythm and words suitably accommodated to it.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558
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The Idea of Forcing

Forcing is a technique — invented by Cohen in the early 1960s — for proving
the independence, or at least the consistency, of certain statements relative to
ZFC. In fact, starting from a model of ZFC, Cohen constructed in 1962 models
of ZF in which the Axiom of Choice fails as well as models of ZFC in which the
Continuum Hypothesis fails. On the other hand, starting from a model of ZF,
Godel constructed a model of ZFC in which the Continuum Hypothesis holds
(cf. Chapter 5). By combining these results we get that the Axiom of Choice is
independent of ZF and that the Continuum Hypothesis is independent of ZFC.

Before we discuss Cohen’s forcing technique, let us briefly recall what it
means for a sentence ¢ to be independent of ZFC: From a syntactical point
of view it means that neither ¢ nor its negation is provable from ZFC. From
a semantical point of view it means that there are models of ZFC in which ¢
holds and some in which ¢ fails. Equivalently we can say that ¢ is independent
of ZFC iff ¢ as well as its negation is consistent with ZFC (i.e., ZFC + ¢ as
well as ZFC + —¢ has a model).

Now, in order to proof that a given sentence ¢ is consistent with ZFC, we
have to show that ZFC + ¢ is consistent — tacitly assuming the consistency
of ZFC. This can be done in different ways: For example one could apply the
COMPACTNESS THEOREM 3.7 and show that whenever ZFC* C ZFC is a finite
set of axioms, then ZFC* 4+ ¢ has a model (i.e., ZFC* + ¢ is consistent); or,
starting from a model of ZFC, one could construct directly a model of ZFC+ .

These two approaches correspond to two different ways to look at forcing;:
In the latter point of view we consider forcing as a technique for extending
models of ZFC in such a way that ¢ holds in the extended model. Except for
Chapter 16, we will mainly take this approach which will be demonstrated in
Chapter 14. Before we discuss the former approach, let us give two examples
how a model of a given theory can be extended.

An example from Group Theory: Consider the group G = (QT, ) (i.e.,
G E GT, the domain of G is the set of all positive rational numbers with
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multiplication as operation), and let ¢ be the statement 3z (z - z = 2). Obvi-
ously we have G ¥ ¢.

Now, extend the domain of G by elements of the form ¢X, where ¢ € Q,
and for all p,q € QT define:

prqi=p-q
pxqX :=(p-q)X
pXxq:=(p-9X

pX*xqgX :=2-p-q

(X)) = (507X

Let Q[ X] = QTU{pX :p € QT} and G[X]| = (QT[X], x). We leave it as an
exercise to the reader to show that G[X] F GT. Now, G[X] F 1X %« 1X = 2,
and therefore, G[X] F ¢. Thus, the extended model G[X] is a model of GT
and the statement ¢, which failed in G, holds in G[X]. So, by extending an
existing model we were able to “force” that a given statement became true.

An example from Peano Arithmetic: Assume that PA is consistent and let
N = (N,0,s,+, - ) — where for n € IN, s(n) := n + 1 —be a model of PA.
Let ¢ be the statement 3z (z + « = 1), where 1 := s(0). Obviously we have
N ¥ 4. Now, let us try the same trick as above: So, extend the domain of N
by elements of the form n + X, where n € IN, and extend the operation “+”
by stipulating X + X := 1. Now, the corresponding model N[X] is surely a
model of ¥, but do we also have N[X] F PA?

By setting ¢(z) = (z = 0)V3Iy ( = s(y)) in PA7, we get that each number
is either equal to 0 or a successor. Now, since X # 0, it must be a successor.
Thus, there is a y such that X = y 4+ 1, and since X # 1, by PA; we get
y # 0. Similarly we can show that there is a z such that y = z + 1, and
consequently X = (z+1)+ 1. Now, 1 = X + X = X + ((+1) + 1) and by
PA; we get X+ ((z+1)+1) = (X + (241)) + 1, which implies (by PA;) that
X + (2+1) = 0. Applying again PA, we finally get (X + z) + 1 = 0, which
contradicts PA;. Thus, N[X] is not a model of PA.

This example shows that just extending an existing model of a theory T
in order to “force” that a given statement becomes true may result in a model
which is no longer a model of T.

Let us now discuss the other approach to forcing (demonstrated in Chap-
ter 16), where one shows that whenever ZFC* is a finite set of axioms of ZFC,
then ZFC* + ¢ is consistent (as always, we tacitly assume the consistency of
ZFC): Let ZFC* be an arbitrary finite set of axioms of ZFC and let V be a
model of ZFC (e.g., V = L). The so-called REFLECTION PRINCIPLE (discussed
in Chapter 15) tells us that for every finite fragment ZFC* of ZFC (i.e., for
every finite set of axioms of ZFC) there is a set model M such that M F ZFC*
where the domain of M is a set M in the model V. The goal is now to show
that for any finite set ® of axioms of ZFC, there is a finite fragment ZFC*
of ZFC such that it is possible to extend any set model M of ZFC* to a set
model M[X] of ® + ¢ (i.e.,, we “force” that ¢ as well as the formulae in @
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become true in M[X]). Then, since ® was arbitrary, by the COMPACTNESS
THEOREM 3.7 we get the consistency of ZFC + .

The advantage of this approach is that the entire forcing construction can
be carried out in the model V: Because M, the domain of M, is a set in the
model V (but not in the model M), we can extend the model M within V
to the desired model M[X], such that the domain of M[X] is still a set in V.
So, all takes place within the model V.

To illustrate this approach let us consider again the group-theoretic example
from above: Let us work with the group G = (R*, -), where R* is the set of
positive real numbers. Now, the group G = (QT, -) is just a subgroup of G
and in G we can extend G to the group G[v2] with domain Q™ U {p-v2:
p € Q" }, which is still a subgroup of G.

A difference to the other approach is that we look now at the model G from
the larger model G (i.e., from “outside”), and extend G within this model.
Another difference is that in the former example, the symbol X — at least for
people living in G —is just a symbol with some specified properties, whereas
in the latter example, v/2 — at least for people living in G —is a proper real
number. Of course, for people living in G, v/2 is also just a symbol and is not
more real than any other symbol. On the other hand, in the latter example
the people living in G know already that /2 exists, whereas in the former
example there are no such people, since our universe is just G.

Before the notion of forcing is introduced in Chapter 14, we present in the
next chapter the so-called Martin's Axiom. We do so because on the one hand,
Martin's Axiom is a statement closely related to forcing, involving also partially
ordered sets and certain generic filters, but on the other hand, unlike forcing,
it does not involve any model-theoretic or even metamathematical arguments.
Furthermore, Martin's Axiom is a proper set-theoretical axiom which is widely
used in other branches of Mathematics, especially in Topology.
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Martin’s Axiom

In this chapter, we shall introduce a set-theoretic axiom, known as Martin’s
Axiom, which is independent of ZFC. In the presence of the Continuum Hy-
pothesis, Martin's Axiom becomes trivial, but if the Continuum Hypothesis fails,
then Martin's Axiom becomes an interesting combinatorial statement as well
as an important tool in Combinatorics. Furthermore, Martin's Axiom provides
a good introduction to the forcing technique which will be introduced in the
next chapter.

Filters on Partially Ordered Sets

Below, we introduce (and recall respectively) some properties of partially or-
dered sets, which will play an important role in the development and investi-
gation of forcing constructions.

Let P = (P, <) be a partially ordered set. The elements of P are usually
called conditions, since in the context of forcing, elements of partially or-
dered sets are conditions for sentences to be true in generic extensions. Two
conditions p; and ps of P are called compatible, denoted p; | po, if there ex-
ists a ¢ € P such that p; < ¢ > po; otherwise they are called incompatible,
denoted p; L ps.

A typical example of a partially ordered set is the set of finite partial
functions with inclusion as partial ordering: Let I and J be arbitrary sets.
Then Fn(I, J) is the set of all functions p such that

e dom(p) € fin(]), i.e., dom(p) is a finite subset of I, and
e ran(p) C J.

For p,q € Fu(I, J) define:
p<q <= dom(p) C dom(q) A qlaomp) =P

If we consider functions as sets of ordered pairs, as we usually do, then p < ¢ is
just p C q. We leave it as an exercise to the reader to verify that (Fn(I, J), g)
is indeed a partially ordered set.
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Let P = (P, <) be a partially ordered set, and for the moment let C' C P.
Then C is called directed if for any pi,ps € C there is a ¢ € C such that
p1 < q > p2, Cis called open if p € C and ¢ > p implies ¢ € C, and C is
called downwards closed if p € C and g < p implies ¢ € C. Furthermore,
C is called dense if for every condition p € P there is a ¢ € C such that
q > p. For example with respect to (Fn([, J), Q), for every = € I the set
{p € Fn(I,J) : € dom(p)} is open and dense. Finally, a non-empty set
F C P is a filter (on P) if it is directed and downwards closed. Notice that
this definition of “filter” reverses the ordering from the definition given in
Chapter 5. Let 2 C Z(P) be a set of open dense subsets of P. A filter G C P
is a Z-generic filter on P if GN D # () for every open dense set D € 2.
As an example consider again (Fn(I,J), C): If . is a filter on Fn(I, J), then
UZ : X — Jis a function, where X is some (possibly infinite) subset of I.

PROPOSITION 13.1. If (P, <) is a partially ordered set and 2 is a countable
set of open dense subsets of P, then there exists a Z-generic filter on P.
Moreover, for every p € P there exists a P-generic filter G on P which
contains p.

Proof. For 9 = {D,, : n € w} and p_1 := p, choose for each n € w a p, € D,
such that p, > p,_1, which is possible since D,, is dense. Then the set

G={¢qeP:Incw(g<p,)}
is a Z-generic filter on P and p € G. —

A set A C P is an anti-chain in P if any two distinct elements of A
are incompatible. As mentioned in Chapter 5, this definition of “anti-chain” is
different from the one used in Order Theory. A partially ordered set P = (P, <)
satisfies the countable chain condition, denoted ccc, if every anti-chain in
P is at most countable (i.e., finite or countably infinite).

As a consequence of the following lemma we get that Fn(I, J) satisfies ccc
whenever J is countable.

LEMMA 13.2 (A-SYSTEM LEMMA). Let & be an uncountable family of finite
sets. Then there exist an uncountable family ¥ C & and a finite set A such
that for any distinct elements x,y € €: z Ny = A.

Proof. We shall consider two cases.

Case 1: There exists an uncountable & C & such that for every a € |J &,
{z € & : a € x} is countable. Firstly notice that for such a set &', |J&" is
uncountable, and that for any countable set C C |J&”, also the set {x € & :
x N C = P} must be uncountable. By transfinite induction we construct an
uncountable family {z, : @ € w1} C &’ of pairwise disjoint sets as follows: Let
xo be any member of &”. If we have already constructed a set C, = {z¢ : € €
a € w1} C &' of pairwise disjoint sets, let z,, € & be such that z,NJ C, = 0.
Then € = {4 : o € w1} and A = ) are as required.
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Case 2: For every uncountable & C & there exists an a € |J &' such that
{x € &' : a € x} is uncountable. In this case, consider the function v : & = w,

where for all z € &, v(x) := |z|. Since & is uncountable, there is an n € w
and an uncountable set &’ C & such that v|g = n, i.e., for all x € & we have
v(z) =n.

The proof is now by induction on n: If n = 1, then for any two distinct
elements z,y € & we have x Ny = (), thus, A = () and in this case € = &".

Now, let us assume that v|gr = n + 1 for some n > 1 and that the
lemma holds for n. Since we are in Case 2, there is an a € |J&” such that
{zx € & : a € z} is uncountable. Thus, we can apply the induction hypothesis
to the family &, := {z\ {a} : 2 € &' A a € 2} and obtain an uncountable
family 4, C & and a finite set A, such that for any distinct elements x,y € €,
we have 2Ny = A,. Then ¢ := {zU{a}: z € €, } and A := A, U {a} are as
required. —

COROLLARY 13.3. If I is arbitrary and J is countable, then Fu(I, J) satisfies
the countable chain condition.

Proof. Let % C Fn(I,J) be an uncountable family of partial functions. We
have to show that .# is not an anti-chain, i.e., we have to find at least two
distinct conditions in .# which are compatible. Let & := { dom(p) : p € . }.
Then & is obviously a family of finite sets. Further, since J is assumed to be
countable, for every finite set K € fin(I) the set {p € & : dom(p) = K} is
countable, and therefore, since .% is uncountable, & is uncountable as well.

Applying the A-SYSTEM LEMMA 13.2 to the family & yields an uncount-
able family ¥ C .# and a finite set A C I, such that for all distinct p,q € €,
dom(p) Ndom(q) = A.

Since J is countable and A is finite, uncountably many conditions of &
must agree on A, i.e., for some py € Fu(l,J) with dom(pg) = A, the set
¢ = {q €F :qla = po} is uncountable. So, ¢’ is an uncountable subset
of .Z consisting of pairwise compatible conditions, hence, .# is not an anti-
chain. —

The following hypothesis can be regarded as a generalisation of PROPOSI-
TION 13.1 — for the reason why P must satisfy ccc see PROPOSITION 13.4.

MA(k): If P = (P, <) is a partially ordered set which satisfies ccc, and
2 is a set of at most x open dense subsets of P, then there exists a
9-generic filter on P.

On the one hand, MA(w) is just PROPOSITION 13.1, and therefore, MA(w)
is provable in ZFC. On the other hand, MA(c) is just false as we will see
in PROPOSITION 13.5. However, the following statement can neither be proved
nor disproved in ZFC and can therefore be considered as a proper axiom of
Set Theory (especially when CH fails):
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Martin's Axiom (MA): If P = (P, <) is a partially ordered set which
satisfies ccc, and & is a set of less than ¢ open dense subsets of P, then
there exists a Z-generic filter on P. In other words, MA(k) holds for
each cardinal k < c.

If we assume CH, then s < ¢ is the same as saying x < w, thus, by PROPOSI-
TION 13.1, CH implies MA. On the other hand, MA can replace the Continuum
Hypothesis in many proofs that use CH; which is important since MA is con-
sistent with ZFC + —=CH (see Chapter 19).

It might be tempting to generalise Martin's Axiom by weakening its
premise: Firstly, one might try to omit ccc, and secondly, one might try to
allow larger families of open dense subsets of P. However, both attempts to
generalise MA fail.

PROPOSITION 13.4. There exist a (non ccc) partially ordered set P = (P, <)
and a set 2 of cardinality wy of open dense subsets of P such that no filter
on P is 9-generic.

Proof. Consider the partially ordered set (Fn(w, w1), Q). For each a € wy, the
set,
Do = {p € Fn(w,w1) : @ € ran(p) }

is an open dense subset of Fn(w,w;): Obviously, D, is open. To see that D,
is also dense, take any p € Fn(w,w;). If @ € ran(p), then p € D, and we are
done. Otherwise, let n € w be such that n ¢ dom(p) (notice that such an n
exists since dom(p) is finite). Now, let ¢ := p U {(n,«)}; then ¢ € D, and
q > p. Similarly, for each n € w, the set E,, = {p € Fn(w,w1) : n € dom(p)}
is open dense.

Let 2 = {Dq : a € w1} U{E, : n € w}; then |Z| = w;. Assume that
G C Fn(w,wy) is a Z-generic filter on Fn(w,w;). Since for each n € w, GN
E, #0, fc =G is a function from w to w;. Further, since for each o € wy,
G N D, # 0, the function fg : w — wy is even surjective, which contradicts
the definition of wy. -

PROPOSITION 13.5. MA(c) is false.

Proof. Consider the partially ordered set (Fn(w,2),C). Then Fn(w,2) is
countable and consequently satisfies ccc. For each g € “2, the set

Dy={peFn(w,2):Inecw(pn)=1-g(n))}

is an open dense subset of Fn(w,2): Obviously, Dy is open, and for p ¢ Dy let
q:=pU{(n,1—g(n))} where n ¢ dom(p). Then ¢ € D, and ¢ > p. Similarly,
for each n € w, the set D,, = {p € Fn(w,2) : n € dom(p)} is open dense.

Let 9 = {D, : g € “2}U{D,, : n € w}. Then |2| = |“2| = c. Assume
that G C Fn(w,2) is a Z-generic filter on Fn(w,2). Since for each n € w,
GND, # 0, fc =G is a function from w to 2. Further, since for each
g€“2, GNDy # 0, fa # g. Thus, fc would be a function from w to 2 which
differs from every function g € “2, which is impossible. —
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Weaker Forms of MA

Below, we introduce a few forms of Martin's Axiom which are in fact proper
weakenings of MA (cf. RELATED RESULT 81).

Let P = (P, <) be a partially ordered set. P is said to be countable if
the set P is countable; and P is said to be o-centred if P is the union of at
most countably many centred sets, where a set Q C P is called centred, if

any finite set q1,...,q, € @ has an upper bound in Q.
Let P be any property of partially ordered sets, e.g., P = o-centred,

P = ccc, or P = countable. Then MA(P) is the following statement.

MA(P): If P = (P, <) is a partially ordered set having the property P,
and Z is a set of less than ¢ open dense subsets of P, then there exists
a P-generic filter on P.

Since every countable partially ordered set is o-centred, and every o-centred
partially ordered set satisfies ccc, we obviously get:

MA = MA(o-centred) = MA(countable)

Below, we present some consequences of Martin's Axiom for countable and
o-centred partially ordered sets.

Some consequences of MA(o-centred)
THEOREM 13.6. MA(o-centred) implies p = c.

Proof. Let k < ¢ be an infinite cardinal and let . # = {z, : @ € k} C [w]|* be a
family with the strong finite intersection property (i.e., intersections of finitely
many members of % are infinite) of cardinality k. Under the assumption of
MA (o-centred) we construct an infinite pseudo-intersection of .%.

Let P be the set of all ordered pairs (s, E) such that s € [w]<* and
E € fin(k); and for (s, E), (t, F) € P define

(s, By <(t,F) <= sCt NECF A (t\s)C({za € F :acE}.

For s € [w]<“ let P, := {(s,E) € P : E € fin(x)}. Then any finite set
(s, F1),...,(s, Ey) € Ps has an upper bound, namely <s, U, EZ->, and since
[w]<* is countable and P = [J{Ps : s € [w]<“}, the partially ordered set
(P, <) is o-centred. For each o € k and n € w, the set

Don={(s,E) e P:acEN|s|>n}

is an open dense subset of P. Let 2 = {Dy, : @ € K An € w}. Then |Z| = &,
in particular, |2| < ¢. So, by MA(o-centred) there exists a Z-generic filter
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G on P. Let z¢ == J{s € [w]<¥ : 3E € fin(k)((s,E) € G)}. Then, by
construction, x¢ is infinite. Moreover, for every « € k there is a condition
(s, E) € G such that o € E, which implies that z¢ \ s C z,. Hence, for each

«a € kK we have xg C* 24, and therefore, x¢ is an infinite pseudo-intersection
of 7. -

The key idea in the proof that MA(c-centred) == 2" = ¢ for all infinite
cardinals k < ¢ is to encode subsets of an almost disjoint family of cardinality
k < ¢ by subsets of w. For the premise of the following lemma — in which the
“codes” are constructed — recall that there is always an almost disjoint family
of cardinality ¢, and therefore of any cardinality x < ¢ (cf. PROPOSITION 8.6).

LEMMA 13.7. Let k < ¢ be an infinite cardinal and let & = {z, : o € K} C
[w]“ be an almost disjoint family of cardinality «. Furthermore, let 8 C of
be any subfamily of </ and let € = o/ \ B. If we assume MA(c-centred),
then there exists a set ¢ C w such that for all x € & :

cNzl=w < z€ A

Proof. Similar as in the proof of THEOREM 13.6, let P be the set of all ordered
pairs (s, E) such that s € [w]<¥ and E € fin(¥); and for (s, E),(t,F) € P
define

(,E) <(t,F) <= sCtAECF A (t\s)n| JE=0.

Similar as above, one shows that the partially ordered set (P, <) is o-centred.
Now, for each z, € €, the set

D, ={(s,E)e P:x,€E}
is an open dense subset of P; and for each 23 € & and each k € w, the set
Doy ={(s,E) € P:|sNxg| >k}

is also an open dense subset of P. Notice that we do not require that € or & is
non-empty. Finally, let 2 = {D,_:2, € €}U{Dy, 1 : x5 € BNk € w}. Then
|2| = k, and since k < ¢ we get |2| < ¢. So, by MA(o-centred) there exists a
Z-generic filter G on P. Let ¢ = |J{s € [w]<* : 3E € fin(¥)((s,E) € G)}.
Then for any zg € B, |cNzg| = w; and, like in the proof of THEOREM 13.6, for
any &, € ¢, |cNzy| < w. Thus, the set ¢ C w has the required properties. —

Now we are ready to prove the following consequences of MA(o-centred):

THEOREM 13.8. If we assume MA(o-centred), then for all infinite cardinals
Kk < ¢ we have 2" = ¢, and as a consequence we get that ¢ is regular.
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Proof. Let k < ¢ be an infinite cardinal. We have to show that 2" = c. For this,
fix an almost disjoint family & = {x, : @ € K} C [w]“ of cardinality x, and for
each u € Z(k) let B, .= {xq € & : @ € u}. Then, by LEMMA 13.7, there is a
set ¢, C w such that for each z € & we have |c,Nz| = w <= x € AB,. Notice
that for any distinct u,v € (k) we have ¢, # ¢,. Indeed, if u,v € F(k) are
distinct, then without loss of generality we may assume that there exists an
a € k such that « € u\ v. So, ¢, Nz, is infinite, whereas ¢, Nz, is finite, and
hence, ¢, # ¢,. Thus, the mapping

P (k) = P(w)
u ey

is one-to-one, which implies that 2% < ¢. Now, since w < k, and consequently
¢ < 2%, we finally get 2 = .

To see that ¢ is regular assume towards a contradiction that k = cf(c) < c.
Then, by COROLLARY 5.12, ¢ < ¢, but since ¢ = 2" we get that ¢ = (z"’”)N =
2% = ¢, a contradiction. —

MA(countable) implies the existence of Ramsey ultrafilters

As a consequence of MA(countable) we get that there are 2° mutually
non-isomorphic Ramsey ultrafilters. By Chapter 10 | RELATED RESULT 64, it
would be enough to show that MA(countable) implies p = ¢; however, this is
not the case (cf. RELATED RESULTS 79-81 and COROLLARY 21.11).

PROPOSITION 13.9. MA(countable) implies that there exist 2° mutually non-
isomorphic Ramsey ultrafilters.

Proof. Since there are just ¢ permutation of w, in order to get 2° mutually
non-isomorphic Ramsey ultrafilters it is enough to find 2° distinct Ramsey
ultrafilters. The 2° mutually distinct Ramsey ultrafilters are constructed by
transfinite induction: For every v : ¢ — 2 and every a € ¢ we construct a set
Fle = 128.(8) : B € a} C [w]* with the finite intersection property such that
the filter generated by . %), is a Ramsey ultrafilter. In addition we make
sure that for any two distinct ,+" € €2, the filters generated by (J,c. %5,
and J,c. %4, are distinct. In order to get Ramsey ultrafilters at the end,
by PROPOSITION 10.7.(b) it is enough to make sure that for every partition
{Yn : n € w} of w, either there is an ng € w such that Y, € U,cc %), OF
there exists an = € J,c. #, such that for all n € w, [xNY,| < 1.

Let {Z, : a € ¢} be the set of all infinite partitions of w. Thus, for each
a€c, P ={Y,*:n € w}is aset of pairwise disjoint subsets of w such that
U Pa = w. Further, let xo := {2n: n € w}, 29,1 :={2n+1:n € w}, and
for 6 € {0,1} let F(05y) := {205} U {z Cw: |w\ z| < w}. Obviously, both
sets F(0,0)y and F((o,1)} have the finite intersection property. Let o € ¢ and
assume that for each n € *2 and each § € a we already have constructed a
set .Z 5 € [w]¥ with the finite intersection property, and such that for any
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Bo € B1 € a we have ﬁmﬁo - y’?\ﬂl' In order to construct %, we have to
consider two cases:

« limit ordinal: If « is a limit ordinal, then let

Ty =\ Pl -
BEx

Since the sets .7 5 are increasing and each of these sets has the finite inter-
section property, .%, has the finite intersection property as well.

a successor ordinal: If o is a successor ordinal, say a = [y + 1, then we pro-
ceed as follows: Consider the partition &5, = {Y,, : n € w} and notice that
either there is an ng € w such that .7, , U{Yy,} has the finite intersection
property, or for every n € w, Y, belongs to the dual ideal of 35,7‘50, ie., is
a subset of the complement of a finite intersection of members of .7, B0 We
consider the two cases separately:

Case 1: Let ng € w be such that %, , U {Y,,} has the finite intersection
property. Let P, = Fn(Y,,,,2) and for p,g € Py let p < ¢ < p C q. Then
(P, <) is countable and for every finite set E € fin(Sy), every n € w and each
6 € {0,1}, the set

Dgns = {P € P ’P_l(é) n m xm(b)‘ z n}
LER

is an open dense subset of P;. Now let Z = {Dgns : E € fin(8y) An €
wAd € {0,1}}. Then |2| < max{|al,w} < ¢ and by MA(countable) there
exists a Z-generic filter G on P;. For ¢ € {0, 1}, let

TBy,6 1= U {p~'(6):peG}.

For § € {0,1} we get that g, s € [Vn|* and that F, := F 5 U {ag, n(s0) }
has the finite intersection property. Finally, let n,7" € *2 be such that n(8y) =
1—n'(Bo). Since zg,,0Nxs,1 = we obviously have .%, # .%,,. Moreover, by
construction we get that %, U %, lacks the finite intersection property, and
therefore no ultrafilter can extend both %, and %, .

Case 2: If for each n € w, Y,, belongs to the dual ideal of ﬁmﬂo, then each
finite intersection of members of .7, 5, meets infinitely many sets of Zg,. Let

P, C Fn(w,2) be such that p € P, iff for every Y € #g, we have
max {[p~(0) N Y], [p7 (1) NY[} <1,

and for p,q € Py let p < ¢ <= p C q. Like before, (P, <) is countable and
for every finite set F € fin(fy), every n € w and each § € {0,1}, the set

Dgns = {p cehP: |p71(5) N ﬂ xw(b)‘ 2 ”}

e E
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is an open dense subset of P,. Let 2 = {Dpg s : E € fin(f) An € wA
6 € {0,1}} and let G be a Z-generic filter on P,. Finally, for € {0,1} let
2g0,6 = U{p7'(0) : p € G}. Then F,) := F, . U {xg, (s, } has the finite
intersection property, and in addition there exists a set z € %, such that for
all n € w, |z NY,| < 1. Further, for n,n" € *2 with n(6y) = 1 — 1'(fo), no
ultrafilter can extend both %, and %, .

Finally, for each v € 2, let .7, be the filter generated by the set .. %,
By construction, for any two distinct v, € €2, %, and %,/ are two distinct
Ramsey ultrafilters, and consequently there exist 2¢ mutually non-isomorphic
Ramsey ultrafilters. -

NOTES

Martin’s Aziom. MA was first discovered by Martin and Solovay [8]. The paper
contains various equivalent formulations of MA and numerous applications (including
THEOREM 13.8). They also stress the usefulness of MA as a viable alternative to CH
and point out that many of the traditional problems solved using CH can be solved
using MA. Roughly speaking, this is because under MA, sets of cardinality less than
¢ usually behave like countable sets (but of course, there are exceptions).

For equivalents of MA, consequences, weaker forms, history, et ceterawe refer the
reader to Kunen [7, Chapter II, §2-§5], Fremlin [4], Weiss [12], Rudin [10], Blass [2,
Section 7], and Jech [6, Chapter 16].

MA (countable) and Ramsey ultrafilters. PROPOSITION 13.9 is due to Canjar [3]
(who actually proved even more), but the proof given above was communicated
to me by Michael Hrugdk (compare PROPOSITION 13.9 with Chapter 10 | RELATED
RESULT 64).

The A-System Lemma. This useful combinatorial result was first proved by
Shanin [11] (see Kunen [7, Chapter II, §1] for a slightly more general result).

RELATED RESULTS

79. MA(o-centred) <= p = c¢. As we have seen above in THEOREM 13.6,
MA(o-centred) implies p = ¢. On the other hand, also the converse is true,
ie., p = ¢ implies MA(o-centred). This somewhat surprising result was first
proved by Bell [1] (see also Fremlin [4, 14C] or the proof of THEOREM 19.4).

80. MA(countable) <= cov(M) = ¢. Fremlin and Shelah showed in [5] that
MA ((countable) is equivalent to cov(M) = ¢, where cov(M) denotes the cover-
ing number of the meagre ideal (defined in Chapter 21). See also Martin and
Solovay [8, §4], Blass [2, Theorem 7.13], and Miller [9] for some further results
concerning cov(M).

81. MA(o-linked). A partially ordered set (P, <) is said to be o-linked if we can
write P = J P,,, where each set P, consists of pairwise compatible elements.

On the one hand, it is easily verified that

new

MA = MA(o-linked) = MA(o-centred) => MA(countable) ,
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but on the other hand, to show that none of the converse implications hold
requires quite sophisticated techniques. For the corresponding references we refer
the reader to Fremlin [4, Appendix B1].
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The Notion of Forcing

In this chapter we present a general technique, called forcing, for extending
models of ZFC. The main ingredients to construct such an extension are a
model V of ZFC (e.g., V = L), a partially ordered set P = (P, <) contained
in V, as well as a special subset G of P which will not belong to V. The
extended model V[G] will then consist of all sets which can be “described”
or “named” in V, where the “naming” depends on the set G. The main task
will be to prove that V[G] is a model of ZFC as well as to decide (within V)
whether a given statement is true or false in a certain extension VI[G].

To get an idea how this is done, think for a moment that there are people
living in V. For these people, V is the unique set-theoretic universe which
contains all sets. Now, the key point is that for any statement, these people
are able to compute whether the statement is true or false in a particular
extension V[G], even though they have almost no information about the set
G (in fact, they would actually deny the existence of such a set).

The Language of Forcing

The notion of forcing notion. Infact, a forcing notion is just a partially
ordered set P = (P, <) with a smallest element, i.e.,

JpePVgeP(p<q).

Notice that this condition implies that P is non-empty. Further notice that
we do not require that P is anti-symmetric (i.e., p < g and ¢ < p does not
necessarily imply p = ¢), even though most of the forcing notions considered in
this book are actually anti-symmetric. In fact, for every forcing notion PP there
exists an equivalent forcing notion P which is anti-symmetric (see FACT 14.5
below).

In order to make sure that forcing with a forcing notion P yields a non-
trivial extension, we require that a forcing notion P = (P, <) has the property
that there are incompatible elements above each p € P, i.e.,
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VpePI ePIp e Pp<qAp<qgAqalq).

Notice that this property implies that there is no maximal element in P, i.e.,
Vp € P 3q € P(p < q). Later on, when we shall be somewhat familiar with
forcing, the second condition will be tacitly cancelled in order to allow also
trivial forcing notions like for example P = ({0}, C).

Usually, forcing notions are named after the person who investigated first
the corresponding partially ordered set in the context of forcing (e.g., the forc-
ing notion defined below is called Cohen forcing). As in the previous chapter,
the elements of P are called “conditions”. Furthermore, if p and ¢ and two
conditions and p < ¢, then we say that p is weaker than ¢, or equivalently,
that ¢ is stronger than p.

Below, we give two quite different examples of forcing notions. The first
one is the forcing notion which is used to prove that —CH is consistent with
ZFC, and the second one is a forcing notion which will accompany us — in
different forms — throughout this book.

1. Recall that Fun(Z,J) is the set of all finite partial functions from I to J
(defined in the previous chapter). Now, for cardinal numbers > 0 define
the partially ordered set

C, = (FD(I{XW,Q), Q),

ie., for p,q € Fn(k xw,2), p is stronger than ¢ iff the function p extends q.
Obviously, the smallest (i.e., weakest) element of Fn(x X w,2) is @ (i.e., the
empty function), thus, C, has a smallest element. Furthermore, for each
condition (i.e., function) p € Fu(k x w, 2) there is an ordered pair (o, n) €
k X w which does not belong to dom(p). Now, let g1 := p U {<<a,n>, 1>}
and g2 := p U {({a,n),0)}. Obviously, ¢1,q2 € Fn(k x w,2), ¢1 L go,
and q; O p C ¢o. This shows that there are incompatible elements above
each p € Fu(k X w,2). Hence, C,, is a forcing notion. The forcing notion
C4, denoted C, is called Cohen forcing, and C, is in fact just a kind of
product of k copies of Cohen forcing (cf. Chapter 21).

2. A natural example of a partially ordered set is the set of infinite subsets of
w together with the superset relation. However, let us consider a slightly
different partially ordered set: Define an equivalence relation on [w]“ by
stipulating

x ~y < xAy is finite
and let [w]*/fin := {[z]7 : 2 € [w]“}. On [w]“/fin we define a partial
ordering “<” by stipulating

[ <[] = y<z,
ie., [z]” < [y]”iff y\ « is finite, and let

U= ([«]/fin<).
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Then U is a partially ordered. Moreover, U is a forcing notion: Obviously,
the weakest element of U is [w]™ (the set of all co-finite subsets of w), thus,
U has a smallest element. Furthermore, for each = € [w] one easily finds
disjoint sets y; and ys in [z]“. This shows that there are incompatible
elements above any condition [z]". This forcing notion — which does not
have an established name — we shall call ultrafilter forcing (the name
is motivated by PROPOSITION 14.18).

Making names for sets. Let V be a model of ZFC and let P = (P, <) be
a forcing notion which belongs to V, i.e., the set P as well as the relation “<”
(which is a subset of P x P) belongs to the model V. The goal is to extend the
so-called ground model V, by adding a certain subset G C P to V, and then
construct a model V[G] of ZFC which contains V. In order to get a proper
extension of V, the set G — even though it is a subset of P — must not belong
to V. However, this seemingly paradoxical property of G does not affect the
construction of the model VI[G].

Roughly speaking, V[G] consists of all sets which can be constructed from
G by applying set-theoretic processes definable in V. In fact each set in the
extension will have a name in 'V, which tells how it has been constructed from
G. We use symbols like z, y, f, X, et cetera for ordinary names, but also z,
y, ¢, G, et cetera for some special names (e.g., names for sets in V).
" Informally, a name, or more precisely a P-name, is a possibly empty set
of ordered pairs of the form (z, p), where z is a P-name and p € P. The class
of all P-names is denoted by V.

Formally, V¥ is defined by transfinite induction (similar to the cumulative
hierarchy of sets defined in Chapter 3):

Vo =10
Vo =UgeaVs  ifa is a limit ordinal
Vi = 2(V, xP)
and let

V=[] V.
aeQ)

Notice that V¥ is a proper subclass of V. The formal definition of VT allows
to define a rank-function on the class of names: For P-names z € V¥ let

:U{rk(y)+1:3peP(<y,p>655)}-

Consider for example the three U-conditions u; = [w]”, us = [{2n: n € w}]~
and ug = [{3n :n € w}]", as well as the three U—names {((7] ug), (0, us)},
y = { Z,us), @,u1>}, and z = { Y, u1) ), (z,u), (0, us), ( us), (Y, us } Then

rk(z) = 1, rk(N) = 2, and rk(z) = 3.
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Making sets from names. Names are objects in V intended to designate
sets in the extension V[G] (where G is a certain subset of P). In other words,
names are special sets in V which stand for sets in the extension. So, the next
step in the construction of V[G] is to transform the names to the sets they
stand for: Let G be a subset of P (later, G will always be a generic filter).
Then by transfinite recursion on P-names  we define

2[G] = {y[G] : 3¢ € G ({y.q) € 2)}

and in general let

VIG] = {z[G]:z € VP} .
Notice that if G = (), then V[G] = 0. For example let us consider again the
three U-names z, y, z, and the three U-conditions w1, us, us, from above and
let Gl = {ul}, GLNQ = {ul,uQ}, and G3 = {U3} Then .@[Gl] = 0, @'[Gl,g] = 1,
z[Gs] = 1, y[G1] = 1, y[Gi2] = 2, y[Gs] = 0, 2[Gi1] = {1}, z[G12] = 3,
2|G3] = 2 (recall that 0 =0, 1 = {0}, 2 = {0,1}, et cetera).
A saucerful of names. Since V|G| is supposed to be an eztension of V, we
have to show that V is in general a subclass of V[G]. Furthermore, G should
belong to V[G], no matter whether G belongs to 'V or not.
Firstly, let us show that V is a subclass of V|G| whenever G C P is non-empty.
Below, we always assume that G contains 0 where 0 denotes the smallest
element of P. For every set x € V there is a canonical name g € V[G] such
that z[G] = a: By transfinite recursion define

z={(y,0):yex}.

For example § = 0, 1 = {(0,0)}, 2 = {(0,0),(1,0)}, et cetera. Notice that
since 0 € G, for all 2 € V we have #[G] = {y[G] : y € x}. It remains to show
that for each € V we have z[G] = «.

Fact 14.1. If G C P with 0 € G, then for every x € V we have z|G| = x.

Proof. The proof is by transfinite induction on rk(z). If rk(z) = 0, then z =
(=0, and
PG = {ylG] :ye0)} =0,

Now let 1k(7) = a and assume that y[G] = y for all P-names y with rk(y) € a.
Then

Gl ={ylGl:yex}={y:yeca} =2
which completes the proof. —

In order to make sure that G belongs to V[G], we need a P-name G for G
such that G[G] = G. For example define

G={{pp):peP}.

As an immediate consequence of Fact 14.1 we get the following
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FacT 14.2. For every G C P which contains 0 we have G[G] = G.

Proof. We just have to evaluate the P-name G:

GG = {plG]: I G((p.g) € G)} = {plG]:pe G} ={p:peG} =G
_|

Hence, for any subset G C P we have G = G[G]. Thus, the name G, usually
denoted G, is the canonical name for G. Furthermore, we see that G € V[G],
no matter whether G — belonging to some set-theoretic universe — belongs
to V.

We can also define names for unordered and ordered pairs of sets: For
P-names z and y define

up(z,y) = {(z,0), (y,0)}

and
OP(%ZJ) = {<{<st 0>}, 0>7 <{<st 0>7 <y7 0>}7 0>} :

We leave it as an exercise to the reader to verify that for every G C P with
0 € G we have up(z,)[G] = {2[G], y[G]} and op(z,y)[G] = (2[G], y[G]).

The forcing language. We are now ready to introduce a kind of logical lan-
guage, the so-called forcing language. A sentences ¢ of the forcing language
is like a first-order sentence, except that the parameters appearing in ¢ are
some names in V¥, i.e., specific sets in V. Sentences of the forcing language
use the names in V' to assert something about V[G] (for certain G C P).
The people living in the ground model V may not know whether a given
sentence v is true in V[G]. The truth or falsity of ¢ in V[G] will in general
depend on the set G C P. For example consider the U-name z = {((Z),p())}
with po = [{2n : n € w}], and the sentence ¢» = Jy(y € z) of the forcing
language which asserts that x is non-empty. Now, 1 is true in V[G] if and
only if V[G] F Jy(y € z[G]), which is the case if and only if py € G. Hence,
depending on G C [w]¥, ¥ becomes true or false in V[G].

However, even though people living in V do not know whether V[G] F 1,
they know that V[G] E ¢ iff py € G. Thus, in order to decide whether
V[G] E 4 they just need to know whether G contains the condition py.

This leads to one of the key features of forcing: By knowing whether a
certain condition p belongs to G C P, people living in V can figure out
whether a given sentence of the forcing language is true or false in V[G].
Moreover, it will turn out that people living in V are able to verify that in
certain models V[G] all axioms of ZFC remain true. In the following section
we shall see how this is done.
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Generic Extensions

Let again P = (P, <) be an arbitrary forcing notion which belongs to a model
V of ZFC. Below, we define first the notion of a generic filter (which is a
special subset G C P) and the corresponding generic model V[G]; then we
introduce the forcing relation and show how people in V can decide whether
a given sentence is true or false in a particular generic model. Finally we
construct a generic model in which the Continuum Hypothesis fails and discuss
the existence of generic filters.

Generic filters and generic models. Let us briefly recall some definitions
from the previous chapter: A set D C P is open dense if p € D and ¢ > p
implies ¢ € D (open), and if for every p € P there is a ¢ € D such that ¢ > p
(dense). A set A C P is an anti-chain in P if any two distinct elements of
A are incompatible, and it is maximal if it is not properly contained in any
anti-chain in P. A non-empty set G C P is a filter (on P)if p € Gand ¢ <p
implies ¢ € G (downwards closed), and if for any p1,ps € G thereis a g € G
such that p; < ¢ > po (directed).

Now, a filter G C P is said to be P-generic over V if GN D # ) for
every open dense set D C P which belongs to V (compare with the notion
of a Z-generic filter, which was introduced in the previous chapter). In other
words, a filter G on P is P-generic over V if it meets every open dense subset
of P which belongs to V. The restriction that the open dense subsets have
to belong to V — which at a first glance seems to be superficial —is in fact
crucial.

Equivalent forcing notions. It may happen that two different forcing no-
tions P = (P, <p) and Q = (Q, <g) yield the same generic models, in which
case we say that P and Q are equivalent, denoted P ~ Q.z More precisely,
P =~ Q if for every G C P which is P-generic over V, there exists an H C @
which is Q-generic over V such that V[G] = V[H], and vice versa, for every
Q-generic H there is a P-generic G such that V[H] = V[G]. Notice that “~”
is indeed an equivalence relation on the class of forcing notions.

In order to prove that two forcing notions P = (P, <p) and Q = (Q, <g)
are equivalent, it is sufficient to show the existence of a so-called dense em-
bedding from P to @ (or vice versa), where a function h : P — Q is called a
dense embedding if it satisfies the following conditions:

e Vpo.p1 € P (po <p p1 ¢ h(po) <o h(p1))
o VgeQ3pe P(q<qhip))

Notice that the function h is not necessarily surjective, in particular, b is in
general not an isomorphism. However, it is not hard to verify that the forcing
notions P and Q are equivalent whenever there exists a dense embedding
h: P — Q. The proof of the following fact is left to the reader.
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Fact 14.3. Let P = (P,<) and Q = (Q, <) be any forcing notions. If there
exists a dense embedding h : P — @, then P and Q are equivalent. In fact, if
G C P is P-generic over V, then the set

H={qeQ:IpecC(¢<hp)}

is Q-generic over V and V|G| = V[H]. Conversely, if a set H C Q is Q-generic
over V, then the set
G={peP:h(p)cH}

is P-generic over V and V[H]| = V[G].

The preceding fact implies that it is enough to consider forcing notions of
the form (k, <, (), where k is a cardinal number, “<” is a partial ordering on
k, and () is the smallest element (with respect to <) in k. More precisely, we
get the following

Fact 14.4. Every forcing notion P = (P, <,0), where 0 is a smallest element
in P, is equivalent to some forcing notion (k, <,0), where x = |P|. In particu-
lar, we may always identify the smallest element of a forcing notion with the
empty set.

Proof. Let h: P — & be a bijection, where h(0) = (), and let
h(p) < h(q) <= p<gq.
Then h is obviously a dense embedding. —

As another consequence of FACT 14.3 we get that every forcing notion is equiv-
alent to some anti-symmetric forcing notion.

FacT 14.5. Let P = (P, <) be any forcing notion and let P := (P,<"), where
p~aq = p<qhqg<p P={[p:peP} and [p] <’[¢] <= p<q
Then P is anti-symmetric and equivalent to IP.

Proof. Firstly notice that P is a forcing notion. Now define h : P — P by
stipulating h(p) := [p]”. Then h is obviously a dense embedding and therefore
[P ~ P. Finally, if we have [p]” <7[¢]” and [q]” <7[p], then [p]” = [¢]", which

shows that P is anti-symmetric. —

Alternative definitions of generic filters. It is sometimes useful to have
a few alternative definitions of P-generic filters at hand which are sometimes
easier to apply.

FacT 14.6. Let P = (P, <) be a forcing notion which belongs to a model V of
ZFC. Then, for a filter G on P, the following statements are equivalent:

(a) G is P-generic over V.

(b) G meets every maximal anti-chain in P which belongs to V.

(c) G meets every dense subset of P which belongs to V.
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Proof. (a)=(b) Let A C P be a maximal anti-chain in P which belongs to
V.Then Dy :={p€ P:3q€ A(p=>q)} is open dense in P: D is obviously
open, and since A is a maximal anti-chain in P, for every pg € P there is a
condition gg € A such that pg and gg are compatible, i.e., there is a p € D4
such that go < p > pg, which implies that D 4 is dense. Now, if G is P-generic
over V, then G meets D4, and since G is downwards closed, it meets the
maximal anti-chain A.

(b)=>(c) Let D C P be a dense subset of P which belongs to V. Then by
Kurepa's Principle (introduced in Chapter 5) there is a maximal anti-chain A
in D. Since D is dense in P, A is also a maximal anti-chain in P (otherwise,
there would be a condition p € P which is incompatible with all conditions
of D, contradicting the fact that D is dense in P). Now, if G meets every
maximal anti-chain in P (which belongs to V), then G meets A, and since A
is a subset of D, it meets the dense set D.

(c)=>(a) If G meets every dense subset of P which belongs to V, then it
obviously meets also every open dense subset of P which belongs to V. —

Let p € P; then a set D C P is dense above p if for any p’ > p there is
a g € D such that ¢ > p’. Notice that if D C P is dense above p (for some
p € P) and ¢ > p, then D is also dense above gq.

The proof of the following characterisation of P-generic filters is left to the
reader.

FacT 14.7. Let P = (P, <) be a forcing notion which belongs to a model V
of ZFC, and let G C P be a filter on P which contains the condition p. Then
G is P-generic over V if and only if G meets every set D C P which is dense
above p.

If the filter G C P is P-generic over V, then the class V]G] is called a generic
extension of V, or just a generic model.

ZFC in Generic Models

In order to prove that a generic model V[G] is indeed a model of ZFC, we
first have to develop a technique which allows us to verify within V that all
axioms of ZFC remain true in V[G].

The forcing relationship. In this section, we shall define a relationship, de-
noted I—p, between conditions p € P and sentences ¢ of the forcing language.
Even though the relationship “ I=p” involves formulae and is therefore not ex-
pressible in the language of First-Order Logic, we write pl—p ¢ (“p forces 1¥”)
to mean that if G is P-generic over V and contains p, then 1) is true in V[G],
where we tacitly assume that for every p € P there is a P-generic filter over V
which contains p. Surprisingly, the definition of the relationship “ I—p” takes
place in the model V without actually knowing any P-generic filter.
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DEFINITION 14.8. Let pg € P be a condition, let (21, ..., z,) be a first-order
formula with all free variables shown, and let z1, . .., z, € V' be any P-names.
The relationship po I=p ¢¥(21,...,2,) is essentially defined by induction on
the complexity of ¢. However, for atomic formulae ¢ we have to use a double
induction on the ranks of the names that are substituted for the variables in

P
(a) po p x1 = 2 if and only if
() for all (y1,s1) € 21, the set
{a>po:q>s1 = Iya,s2) €x2(¢ =52 N gy = y2) }
is dense above pg, and
(B) for all (ys, s2) € 72, the set
{a=po:a>s2—=3yr,s1) €a1(g>s1 Aglpyr = y2) }

is dense above py.

(b) po p 21 € x2 if and only if the set

{a>po:3y,s) ex2(¢g=sNqpy=11)}
is dense above pyg.
(¢) polp —p(21,...,2y,) if and only if for all ¢ > pg we have
qlrep(z, ... 2n),
i.e., for no ¢ > po we have ql—p @(21,...,Zn).
(d) pol=p @1(21,. .-, 20) Apa(21,. .., 2,) if and only if
pol=p@i(z1,...,2,) and  polp p2(21,...,2n).
(e) polp 3zp(z,21,...,2,) if and only if the set
{a>po:3z€ Vi (qlpp(z,21,...,20))}
is dense above pg.

As an immediate consequence of DEFINITION 14.8 we get the following
FAcT 14.9. For any sentence 1 of the forcing language we have:

(a) If pl=p ) and g > p, then ql—p 1.
(b) The set Ay :={p€ P: (plp1)V (plkp—p)} is open dense in P.
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Proof. Part (a) is obvious. For (b) notice that for every p € P, either there is
a g > p such that g -p 4, or for all ¢ > p we have ¢ lp . In the former case,
q € Ay, and in the latter case we get p l=p =) and consequently p € Ay. -

Until now, we did not prove that the forcing relationship is doing what we
want, e.g., p =p v should imply p -p —1p. However, this follows implicitly from
the proof of the FORCING THEOREM 14.10, which is the core result of forcing.

The Forcing Theorem. In order to prove that ZFC holds in every generic
extension of any model V of ZFC, we need a tool which allows us to decide
within V whether a given first-order formula is true or false in a certain generic
model. The following theorem is the required tool.

THEOREM 14.10 (FORCING THEOREM). Let 9(x1,...,z,) be a first-order
formula with all free variables shown, i.e., free(v)) C {z1,...,z,}. Let V be
a model of ZFC, let P = (P, <) be a forcing notion which belongs to V, let
z1,...,2n € VE be any P-names, and let G C P be P-generic over V.

(1)If pe G and plp (21, ...,2n), then V]G] E ¥ (21[G], ..., 2,[G]).

(2) If VG| F ¢ (21[G), ..., 2a[G)]), then 3p € G(plpv(z1,...,20)).

Proof. The proof is by induction on the complexity of ¥ (z1, ..., ;En)) So, we
first prove (1) and (2) for atomic formulae .

PY(T1,22) = (T1 = 22): When ¢(z1,22) is 21 = 22, the proof is by
transfinite induction on rk(z1,22) := max{rk(z1),rk(z2)}, using clause (a) of
DEFINITION 14.8: If rk(z1,22) = 0, then 21 = 22 = 0. Now, 0[G] = 0, which
implies (1), and for all p € P we have pl—p @ = (), which implies (2). For
rk(z1,22) > 0 we shall check (1) and (2) separately.

(1) : Assume that p € G and p I-p 21 = 22, and that (1) holds for all names
y1,y2 with rk(y1,y2) < rk(z1,22). We show z1[G] = z2[G] by proving that
21[G] € 22[G] using (a) of DEFINITION 14.8.(a); the proof of 25[G] C 1[G
using () is the same. Every element of z1[G] is of the form y;[G], where
(y1,51) € 21 for some s; € G. We must show that y1[G] € z2[G]. Since G is
directed, there is an r € G with s; < r > p. By FacT 14.9.(a), rI=p 21 = 22,
and by DEFINITION 14.8.(a).(a) and FACT 14.7, there is a ¢ € G such that
g > r (in particular ¢ > s1) and

Hy2,52) € 22(q = s2 Aqlpy1 = ya2) - ©)

Fix (y2, $2) € z2 as in (3), then rk(y1,y2) < rk(z1,22) and by our assumption
we get y1 [G] = y2[G]. Further, since ¢ > s and G is downwards closed we have
sy € G which implies y2[G] € 22[G], and consequently we get y;[G] € 22[G].

(2): To check (2), assume z1[G] = 22[G], and that (2) holds for all names
y1,y2 with rk(y1,y2) < rk(z1,22). Let Dy, o, C P be the set of all conditions
r € P such that either 7 —p 21 = z2, or we are at least in one of the following
two cases:
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(o) there exists a name (y1,51) € z1 such that 7 > s; and

V(y2, s2) € 22Vq € P((g=s2Aglp y1=y2) > qL r),
(8’) there exists a name <y2, $2) € xo such that r > s; and

Y(y1,s1) exVg e P((g = s1 Aglbpyr =y2) =g L 7).

First we show that no condition r € G can satisfy (/) or (’): Indeed, if r € G
and (y1,81) € 21 as in (o), then s; € G and therefore y1[G] € 21[G] = 22[G]
(by our assumption). Now, fix (y2,82) € zo with sg € G and 1[G] = y2[G].
Since rk(y1,y2) < rk(z1,z2) there is a condition ¢o € G such that go -py; =
ya2, and since G is directed there is a ¢ € G such that ¢y < ¢ > so. By
FACT 14.9.(a) we have ¢l—py; = y2, and hence by (a/) we get ¢ L r, which
contradicts the fact that G is directed.

If there is no r € G such that r—p 21 = 2, then D, ., NG = (. We would
be done if we could show that D, ,, is dense in P since this would contradict
the fact that G meets every dense set in V: Fix an arbitrary condition p € P.
Either plp 21 = z2, or otherwise, («) or () of DEFINITION 14.8.(a) fails.
If (o) fails, then there are (y1,$1) € 21 and r > p such that » > s; and for all
q > r we have: B

V(y2,s2) € z2(—(qI-p y1 = y2) A q > s2) (V)

If (ys2,82) € x2, ¢ > s2, and gl-p2x; = 2o, then ¢ L 7, since a common
extension ¢’ of ¢ and 7 would contradict (V). Thus, r > p and 7 satisfies (o),
in particular r € Dy, ,,. Likewise, if (3) fails then there is a condition r > p
which satisfies (5').

Y(z1,22) = (21 € z2): When ¢(z1,22) is 21 € 22 we check again (1)
and (2) separately.

(1) : Assume that there is a condition p € G such that pl—p 1 € z2. Then,
by DEFINITION 14.8.(b), the set

D, = {q € P:3(y,s) € gcg(q >sAqlpy= gcl)}
is dense above p. Fix a condition ¢ € G N D, and a P-name (y, s) € z2 such
that ¢ > s and gl—py = z1. Since s € G and (y, 5) € x5 we get y[G] € z2[G],
and since ¢ € G and gqlpy = z1, by (1) applied to y = z; we also get
y[G] = 21[G]. Thus, we have y[G] € 22[G] as well as y[G] = 21[G], which
obviously implies that z[G] € z2[G]. )

(2): Assume now z1[G] € z2[G]. By definition of z2[G] there is a name
(y,8) € z2 such that s € G and y[G] = 21[G]. By (1) for y[G] = 21[G], there
is an r € G such that ) )

rip y=2a1.

Finally, let p € G be such that s < p > r. Then
Vg>p(g>shqlbpycm),

and consequently p —p 21 € z2.
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This concludes the proof of (1) and (2) for atomic formulae. The proofs
for non atomic formulae are much easier than the preceding proofs, but even
though it is enough to prove (1) and (2) for formulae ¢ of the form —p, 1 Apa,
and Jzp(x), there are still six cases to be checked.

PY(T1y. . yZn) = p: Let Y¥(z1,...,2,) be a negated formula, i.e., of
the form —¢ for some formula .

(1): We assume (2) for ¢ and conclude (1) for —p. Assume p € G and
plp —p. We have to show that V[G] E —¢: If V[G] E ¢, then by (2) for ¢
there is a ¢ € G such that ¢ l—p ¢. Since G is directed, there is an r € G such
that ¢ < r > p and by FACT 14.9.(a) we would have 7 I=p ¢, contradicting the
definition of p —p —p.

(2) : We assume (1) for ¢ and conclude (2) for ~¢p. Assume that V[G] F —p.
We have to show that there is a condition p € G such that p l—p —¢. Consider
the set Ay :={r € P: (rlpg) V (rl—p—¢)}. By FACT 14.9.(b), A, is open
dense in P and therefore A, NG # (. Fix a condition p € A, NG. If p—p =,
then we are done; and if plp ¢, then by (1) for ¢ we have V[G] E ¢, a
contradiction.

PY(T1yeeeyTn) = @1 A w2 Let (z1,...,2,) be of the form o1 Ao for
some formulae ¢, and ;.

(1) : We assume (1) for ¢1 and 2 and conclude (1) for ¢; A 2. Assume
p € G and pl—p p1 A ps. Then pl—p @1 and p—p 2, hence, by (1) for ¢ and
2 we have V[G] E ¢1 and V[G] E 2 which implies VG| E ¢1 A @a.

(2) : We assume (2) for ¢ and @2 and conclude (2) for ¢; A 2. Assume
VI[G] E v1 Apa. By (2) for 1 and @9 there are p1,ps € G such that py p ¢
and ps I=p @9. Let 7 € G be such that p; < r > py. Then r I=p 1 and 7 =p 2,
hence, rI=p 1 A 2.

PY(Z1y...yZn) = Jzp(x): Let ¢(x1,...,2,) be an existential formula
of the form Jzp(z) for some formula (.

(1) : We assume (1) for ¢(z) and conclude (1) for 3zp(x). Assume p € G
and p —p Jzp(z). Then the set

{7‘ eP: Egc(r ~p cp(gc))}

is dense above p. So, we find a ¢ € G and a P-name zo € V' such that
qFp o(zo)- By (1) for ¢(z0) we get V[G] E ¢(20[G]), and therefore V[G] &
Jxp(z).

(2): We assume (2) for ¢(2[G]) and conclude (2) for Jzep(z). Assume
V[G] E Fzp(zr). Then there exists an zy € V[G] such that V[G] E ¢(x0)
and let 2o be such that V[G] F 2¢[G] = zo. By (2) for ¢(z0[G]) there is a
p € G such that plp @(z). Then for all » > p we have r I-p p(z0), which
implies that pl—p Jzp(x). =

One might be tempted to prove the following result (which is to some
extent the converse of the FORCING THEOREM 14.10): If for all P-generic filters
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G C P containing a certain P-condition p we have V|G| E ¢ (for a given
sentence 1), then pl—p 1. For the proof we notice first that pf-pt would
imply that there exists a condition ¢ > p such that ¢ lp —. Now, if we
could show that there exists a P-generic filter G containing ¢ we would have
V|G| E =, which contradicts our assumption. However, as we shall see below,
the existence of a P-generic filter G (no matter if it contains ¢ or not) cannot
be proved within ZFC.

However, assume for the moment — as we shall later always do — that for
any condition ¢ there exists a generic filter containing ¢. As an application of
the FORCING THEOREM 14.10 we prove the following lemma, which is one of
the standard results about forcing.

LEMMA 14.11. Let P = (P, <) be a forcing notion, let G be P-generic over
V, and let p € G.

(a) If pl=pz € y, then there exist a P-name r with rk(z) < rk(y) and a
P-condition q > p in G such that ql—p z = x.

(b) If pl=p f € 4B A zo € A, then there is a P-name (y,r) € B withr € G
and a condition ¢ > p in G such that ql—p f(z0) = y.

Proof. (a) Sincep € G, V[G] F 2[G] € y[G], and since y[G] = {z[G] : z € y},
there is a name (zg,r) € y with » € G such that 2¢[G] = z][G]. In particular,
rk(zo) < rk(y). Now, since V[G] E z0[G] = 2[G], there is a condition p’ € G
such that p’—p z = z¢. Further, since G is directed, there is a ¢ € G such
that p < ¢ > p’. Thus, ql—p z = 29.

(b) Since p € G, there is a set z € V[G] such that
VIG] E z € B[G] A (20[G], 2) € f[G].

Let z be a P-name in V for z (i.e., z[G] = z). By the proof of (a) there is a
P-name (y,r) € B with r € G and a p’ € G such that p'Fpy =2z Ay € B.
Since G is directed, there is a ¢ € G such that p < ¢ > p’. Thus, we have
q=p op(z0,y) € f, or in other words, q ¢ f(z0) = y. =

The Generic Model Theorem. With the FORCING THEOREM 14.10 we
would now be able to prove that generic extensions of models of ZFC are also
models of ZFC (however, we omit most of the quite tedious proof).

THEOREM 14.12 (GENERIC MODEL THEOREM). Let V be a transitive stan-
dard model of ZFC (i.e., a transitive model with the standard membership
relation), let P = (P,<) be a forcing notion which belongs to V, and let
G C P be P-generic over V. Then V|G| E ZFC. Moreover, the class V is
a subclass of V[G], G € V[G], and every transitive standard model of ZFC
containing V as a subclass and G as an element also contains V|G| (i.e., V[G]
is the smallest standard model of ZFC containing V as a subclass and G as a
set). Furthermore, QVI¢l = QV | i.e., every ordinal in V[G] belongs to V, and
vice versa.
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Instead of the full GENERIC MODEL THEOREM, let us just prove the following
four partial results.

FacT 14.13. If V £ ZFC and G is P-generic over V, then V[G] satisfies the
Axiom of Pairing.

Proof. Let G be an arbitrary P-generic filter and let z and y be P-names for
some sets r and y in V[G] (i.e., #[G] = x and y[G] = y respectively). Because
G is downwards closed we have 0 € G and therefore we get

up(z, y)[G] = {z[G),y[G]} = {z,y}.
Thus, if z and y belong to V[G], then also {x,y} belongs to V[G]. —
PRrOPOSITION 14.14. If V E ZFC and G is P-generic over V, then V[G] E AC.

Proof. Let x € V[G] be an arbitrary set. Since the Well-Ordering Principle
implies AC, it is enough to prove that in V[G] there exists an injective function
from z into € (notice that the empty function is injective). Let z be a P-name
in V for x and let

g={y:peP{ypca)}.

Obviously, 7 is a set of P-names which belongs to V. By the Axiom of Choice,
which holds in V, we can write § = {y, : @ € K}, where k = |g| is a cardinal
in V. Now let i
R = {op(q,ya) ca€r}x{0}

which is a P-name in V for a set of ordered pairs in V[G]. Since 0 € G, R[G]
induces a surjection from {a € £ : Ip € G((ya,p) € 2)} C & onto the set
z = 2[G] = {yalG] : Ip € G((ya, p) € 2)}, and consequently the set 2 € V[G]
can be well-ordered. Hence, since z was arbitrary, V[G] E AC. —

Fact 14.15. If V E ZFC and G is P-generic over V, then G € V[G] and V
is a subclass of V[G].

Proof. Let G be an arbitrary P-generic filter. By definition of G, G[G] = G,
and hence, by definition of V[G], G € V[G]. Further, G is downwards closed
and therefore contains 0 (the smallest element of P). Hence, for each z € V
we have z[G] = x and consequently = € V[G]. =

PROPOSITION 14.16. Let V E ZFC, let IP be a forcing notion in V, and let G
be P-generic over V; then QVI¢l = QV.

Proof. Since V C V[G], we obviously have QV C QVI®], On the other hand,
assume towards a contradiction that there exists an ordinal in V[G] which
does not belong to V. Since the class QVI¢l is well-ordered in V[G] by €,
there is a smallest ordinal in V[G], say ~, which does not belong to V. Let
7 be a P-name for v, i.e., ¥ = 7[G]. Then {z : Ip({z,p) € 7)} is a set in V,
hence, the collection of all ordinals o € « is in fact a set in V. This implies
that v belongs to V and contradicts our assumption. —
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Until now we did not show that generic filters exist, but let us postpone this
topic until the end of this chapter and let us show first how a statement (e.g.,
“there are Ramsey ultrafilters”) can be forced to become true in a certain
generic model.

Forcing notions which do not add reals. In this section, we shall see
that the forcing notion U adds a Ramsey ultrafilter to the ground model V.
In fact we shall see that whenever G is U-generic over V, then G induces a
filter over w such that for any colouring 7 : [w]?> — 2 in V there is an x € G
such that ()2 is constant. However, in order to make this approach work we
have to show that forcing with U does not add any new reals (i.e., subsets of
w or functions [w]? — 2) to V; if U would add new reals to V, there might be
a colouring p : [w]? — 2 in V[G] such that no set z € G is homogeneous for p,
and consequently, {z € [w]* : 3y € G(y C z)} would just be a filter in V[G].

So, let us first prove that whenever G is U-generic over V, then [w]*NV =
[w]“ N'V[G], i.e., every subset of w which is in V[G] is also in V, and vice
versa.

A forcing notion P = (P, <) is said to be o-closed if whenever (p,, : n € w)
is an increasing sequence of elements of P (i.e., m < k — p,,, < pi), then there
exists a condition ¢ € P such that for all n € w, ¢ > p,.

By the proof of the fact that p is uncountable (cf. THEOREM 8.1) we get
that the forcing notion U is o-closed.

The next result shows that forcing with a o-closed forcing notion does not
add new reals to the ground model.

LEMMA 14.17. Let P = (P, <) be a o-closed forcing notion, G a P-generic
filter over V, X a set in V, and f : w — X a function in V|G|, i.e.,, V[G] E
f €“X; then f belongs to V.

Proof. Let f € “X be a function in V[G] and let f be a P-name for f. Assume
towards a contradiction that f[G] ¢ V. By the FORCING THEOREM 14.10.(2)
there is a condition ¢ € P (in fact, ¢ € G) such that

q—p fE“XAf¢UX.

Notice the difference between “X (which is a P-name for the set “X €
V[G]) and “X (which is the canonical P-name for the set “X € V). By
LEMMA 14.11.(b), let pg > ¢ be such that pg -p f(0) = zo (for some z¢ € X),
and for n € w let p, 1 > p, be such that p, 1 Fp f(n+1) = 2,1 (for some
Zni1 € X). Notice that by LEMMA 14.11.(b), po and p,,+1 exist and that the
construction can be carried out in V. Finally, let p € P be such that for all
n € w, p > py. Then, by FACT 14.9.(a), for all n € w there is an z,, € X such
that pl—p f(n) = z,. Thus,

php f€¥X,

which is a contradiction to our assumption. —
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Since U is o-closed and every real € [w]¥ corresponds to a function f, € “2
(stipulating f,(n) =1 <= n € z), by LEMMA 14.17, ultrafilter forcing U
does not add any new reals to the ground model V. In other words, if G is
U-generic over V, then [w]* NV = [w]¥ N V[G]. With this observation we are
ready to prove the following result.

PROPOSITION 14.18. If G is U-generic over V. Then |JG is a Ramsey ul-
trafilter in V[G] which is different from all ultrafilters in V, i.e., ultrafilter
forcing U adds a new Ramsey ultrafilter to V. In particular, V[G] contains a
Ramsey ultrafilter.

Proof. Firstly we show that |JG = {z € [w]* : [z]” € G} is an ultrafilter over
w which is different from all ultrafilters in V: Since G is downwards closed,
directed, and meets every maximal anti-chain in [w]*/fin which belongs to
V (in particular all anti-chains of the form {[z]7,[w \ 2]7} for co-infinite sets
z € [w]¥), and since forcing with U does not add reals, | JG is an ultrafilter
over w. Let now % € V be an arbitrary ultrafilter over w. Then

Dy ={[z] ew]” :x ¢ %}

is an open dense subset of [w]¥/ fin. Thus, GND4, # () which implies | JG # %,
and since % was arbitrary, the ultrafilter | J G is different from all ultrafilters
in V.

Secondly we show that |G is a Ramsey ultrafilter: Let 7 : [w]?> — 2 be an
arbitrary colouring in V[G]. Since forcing with U does not add reals, 7 € V.
Now the set

Dy := {[z]” € [w]* : 7|2 is constant}

is an open dense subset of [w]“/fin. Thus, G N D, # @ which implies that
there exists an [x]” € G such that 7|[,)> is constant, and since 7 was arbitrary,
UG is a Ramsey ultrafilter. —

The preceding theorem is a typical example how to force the existence of a
certain set whose existence cannot be proved in ZFC: By the same forcing
construction as above we shall see in Chapter 24 that there may be a Ramsey
ultrafilter even in the case when p < c.

Forcing notions which do not collapse cardinals. Now we consider the
forcing notion C,, (for an arbitrary cardinal k) and show that the forcing
notion C, adds k reals to the ground model V. As a consequence we get that
whenever G is C,-generic over V, then V[G] E ¢ > x (where ¢ denotes the
cardinality of the continuum). In particular, for £ > w; we get V[G] F -CH.
However, in order to make this approach work we have to show that s is the
same cardinal in V[G] as it is in V. Let us explain this problem in greater
detail: Let P be a forcing notion and let G be P-generic over V. Further, let k
be an arbitrary infinite cardinal in V. By definition, x is an ordinal such that
there is no bijection between x and any of its elements (recall that the elements
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of ordinal are ordinals). Since V and V[G] contain the same ordinals, « is an
ordinal number in V[G]. However, since V[G] is an extension of V, there might
be an injective function in V[G] which maps & to one of its elements. In other
words, the ordinal number x, which is a cardinal in V, might become an
ordinary ordinal in V[G], i.e., we might have V F || = x but V[G] F |k| € k.
If this is the case, then we say that P collapses k; otherwise, we say that P
preserves r. If P preserves all cardinal numbers, i.e., |x|VI¢] = x whenever
||V = K, then we simply say that P preserves cardinalities. Notice that all
finite cardinals are preserved by any forcing notion, and consequently also w
must be preserved, i.e., we always have |w|V = |w|VI¢] = w. On the other hand,
any uncountable cardinal number can be collapsed; moreover, any uncountable
cardinal can be forced to become a countable ordinal.

Now, let us prove that the forcing notion C, preserves cardinals, but first
we prove a slightly more general result.

Recall that a forcing notion P = (P, <) is said to satisfy the count-
able chain condition, denoted ccc, if every anti-chain in P is at most
countable —in which case we usually just say “IP satisfies ccc”. For example,
by COROLLARY13.3 we know that the forcing notion C,; satisfies ccc.

In order to show that a forcing notion which satisfies ccc does not collapse
any cardinal, we shall show the slightly more general result that a forcing
notion which preserves cofinalities also preserves cardinalities: A forcing notion
P preserves cofinalities if whenever G is P-generic over V and « is a cardinal
in V, then cf(x)V = cf () VI

LEMMA 14.19. If P preserves cofinalities, then P preserves cardinalities.

Proof. Assume P preserves cofinalities and let G be P-generic over V.

Firstly, let x be a regular cardinal in V, i.e., V E c¢f(x) = . Then, since
PP preserves cofinalities, the ordinal cf(x)V is equal to the ordinal cf(x)VI¢].
Thus, V[G] E & = cf(x) which shows that the ordinal x, which is a regular
cardinal in 'V, is still a regular cardinal in V[G].

Secondly, if A > w is a limit cardinal in V, then the set of cardinals
C = {k < X : K regular} is cofinal in A (recall that by PROPOSITION 5.10
successor cardinals are regular), and since the cardinals in C remain (regular)
cardinals in V]G], CV = CVI¢ and consequently \ is a cardinal (in fact a
limit cardinal) in V[G] as well. —

LEMMA 14.20. If P = (P, <) is a forcing notion which satisfies ccc, then P
preserves cofinalities as well as cardinals.

Proof. Let P = (P, <) be a forcing notion which satisfies ccc and which belongs
to some model V of ZFC, and let G be P-generic over V. By LEMMA 14.19 it is
enough to prove that P preserves cofinalities. Let x be an infinite cardinal in
V and let S be a P-name for a strictly increasing sequence of length A = cf(k)
in V[G] which is cofinal in &, i.e., we have S[G] : A — k with | {S[G](«) :
o € A} = k. Thus, there is a P-condition p € G such that
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preSe’ A (S aer} =5,
Work for a moment in the ground model V: For each o € )\ let
Do={q2p:3y(areS(a)=y)}.
Then, by FACT 14.9.(b), D, is open dense above p. For each « € \ define
Yo={y€r:3q€ Dua(qlpS(a)= 7)} .

Then, for every a € A, the set Y, C x is in V, and since P satisfies ccc,
|Ya| < w. Indeed, if ¢; -p S(a) = 11 and g2 I-p S(@) = 72, where 71 # 72,
then ¢ L go. ' '

Let us turn back to the model V[G]: For every a € A let A, be a maximal
anti-chain in D,. By FACT 14.6.(b) and FACT 14.7, G meets every set A,,
which implies that for every a € A, S[G](a) € Y,. Let YV := J{Ya : @ € A};
then Y C k is a set in 'V such that |JY = k. Since the cardinal X is infinite
we get |Y| < A-w = A\, which implies that cf(x)V < A. Thus, since A\ =
cf(r) VIS < cf(k)VY, we have cf(k)Y = cf(r) VI, =

Independence of CH: The Gentle Way

Since C,; satisfies ccc, in order to prove the following result we just have to
show that forcing with C,, adds  different real numbers to the ground model
V, i.e., the continuum in V|[G] is at least of cardinality .

THEOREM 14.21. If V E ZFC and G is C,-generic over V, then V[G] E ¢ > &.
In particular, if k > w1, then V|G| E —-CH.

Proof. Let G be Cg-generic over V. Since C,; satisfies ccc, by LEMMA 14.20
it is enough to prove that with G one can construct x different real numbers.
To keep the notation short let Cy := Fn(k x w, 2).
Firstly we show that | JG is a function from x x w to 2: For a € k and
n € w let
Dan={pe€Cy:{an)ecdom(p)}.

Then for any a@ € k and n € w, Dy, is an open dense subset of C,, and
therefore G N Dy, # 0. Thus, for every « € k and for every n € w there is
a p € G such that p is defined on (a,n), and since G is directed, |JG is a
function with dom (JG) = X w.

Secondly we show how to construct s different real numbers from G: For
each a € £ define o € “2 by stipulating 74 (n) := [JG (o, n)) (for all n € w).
Now, for «a, 5 € k let

Das={p € Cr:3n € w({{a,n), (8,n)} C dom(p) Ap((a,n)) # p((B,n))} .
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Then for any distinct ordinals «, 5 € k, Dy g is an open dense subset of Cj
and therefore G N D, g # 0. Thus, for any distinct «, 8 €  there is an n € w
and a p € G such that p({a,n)) # p((8,n)), and therefore ro(n) # rz(n).
We can even show that G adds x new reals to the ground model V: To
see this, let f : w — 2 be an arbitrary function in V, and for any « € « let

Dyfo = {p eCy:dn€ w((a,n} € dom(p) A p({a, m)) # f(n))} .

Since D¢ is obviously open dense in Cy, ro # f, and since the function
f € V was arbitrary, for each o € k we have r, ¢ V. =

Now we show that for each ordinal «, the statement 29> = w1 is consistent
with ZFC. In particular, for o = 0 we get the relative consistency of the
Continuum Hypothesis; but first we have to introduce some notations.

Let x be an infinite cardinal. We say that a forcing notion P = (P, <) is
k-closed if whenever v < x and {p¢ : £ € v} is an increasing sequence of
elements of P (i.e., § < & — D¢, < De, ), then there exists a condition ¢ € P
such that for all £ € v, ¢ > pe. In particular, wi-closed is the same as o-closed.

The following fact is just a generalisation of LEMMA 14.17 and we leave
the proof as an exercise to the reader.

Fact 14.22. Let P = (P, <) be a k-closed forcing notion, A an ordinal in k,
G a P-generic filter over V, X aset in V, and f : A\ = X a function in V[G];
then f belongs to V.

For ordinals « let K, be the set of all functions p from a subset of wy41
to P (wa) such that |dom(p)| < wa1 (i-e., | dom(p)| < wy), and let Ko :=
(K4, C). Since w, 11 is an infinite successor cardinal, it is regular, and therefore
Kq is wa1-closed. Thus, by FACT 14.22, for each ordinal §, every function
from w, to S in a K,-generic extension belongs to the ground model. As a
consequence we get, that the forcing notion K, preserves all cardinals <wg,41
and does not add new subsets of w,.

With the forcing notion K, we can now easily construct a generic model in
which 2% = wq41.

THEOREM 14.23. If V E ZFC and G, is K,-generic over V, then V[G,] E
2% = wq41. In particular we get V[Go] F CH

Proof. We shall show that |JG, is a surjective function from w,41 onto
P(wq). Work in V. For € € wqq1 and @ € P (w,) let

Dep={p€Kq:€&€dom(p) Aw €ran(p)}.

Then for every € wa+1 and every x € P (wq ), D, is an open dense subset of
K, and therefore G, N D¢, # 0. Thus, for all { € w41 and & € P (w,) there
is a p € G, such that £ € dom(p) and z € ran(p), and since G, is directed,
this implies that the set | J G4 (in V[G)]) is indeed a surjective function from
Wa+1 onto P (w,). Hence, V[G,] F |3”(wa)| < Wat1, and since 29 > w411
we finally get V[Go] F 2% = way1. —
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By the two preceding theorems it follows that there are models of ZFC in
which the Continuum Hypothesis holds as well as some in which it fails, and
as a consequence we get that CH is independent of ZFC. However, the con-
struction of the corresponding generic models relied on the existence of the
corresponding generic filters, and it is now time to discuss this issue.

On the Existence of Generic Filters

Let V be again a model of ZFC and let P = (P, <) be a forcing notion which
belongs to V. We know from Chapter 5 that if ZF is consistent, then so is ZFC
and that there is a smallest standard model of ZFC containing the ordinals,
namely Godel’s constructible universe L. So, we can assume V = L (in fact
we have no other choice because L is the only model of ZFC we know of). Now
assume that the set G C P is P-generic over V, where P belongs to V and V
is a model of ZFC (e.g., V = L). We first show that G does not belong to the
model V.

Fact 14.24. If V is a model of ZFC, P = (P, <) a forcing notion in V, and
G C P is P-generic over V, then the set G does not belong to V.

Proof. Let Dg = P\ G and let p € P be an arbitrary P-condition. Since P is a
forcing notion, there are incompatible elements above p, i.e., 3¢1,q2 € P (p <
aAp < qgpAqa L qg). Now, since G is directed, at most one of these two
elements belongs to G, or in other words, at least one of these two elements
belongs to Dg. Therefore, D¢ is dense in P and since G is downwards closed,
D¢ is also open. Hence, D¢ is an open dense subset of P. If G belongs to V,
then Dg belongs to V as well, but obviously G N Dg = () which implies that
G is not P-generic over V. —

This leads to the following question: If P-generic filters do not belong to the
ground model V, why do we know that P-generic filters exist? Informally,
people living in V may ask: Is there life beyond V 7

Unfortunately, one cannot prove within ZFC that P-generic filters exist,
but at least, this one can prove: Consider the constructible universe L. All
sets in L are constructible, and vice versa, all constructible sets are in L. If
we add the statement all sets are constructible, denoted V = L, as a kind
of axiom to ZFC, then there exists just a single transitive standard model of
ZFC 4+ V =L containing all the ordinals, namely L (at the same time we get
that V = L is consistent with ZFC). Thus, as a consequence of V = L we get
that there are no P-generic filters whatsoever.

Let us now explain how to get around this difficulty: Firstly construct a small
(i.e., countable) model M of a large enough fragment of ZFC inside V, and
then extend M within V to a suitable generic model M[G]. For example to
show that —CH is consistent with ZFC, by the COMPACTNESS THEOREM 3.7
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it is enough to show that whenever ® is a finite set of axioms of ZFC, then
® + —CH has a model. Let ® C ZFC be an arbitrary but fixed finite set of
axioms. Now, take a countable set M € V such that M can be extended in V
to a set model M[G] (still in V) such that M[G] E ® but also M[G] F —CH.
Because ® was arbitrary, this shows that —~CH is consistent with ZFC.

In the next chapter we show how to construct countable models for arbi-
trary finite fragments of ZFC and in Chapter 16 we finally show how to get
proper independence proofs. However, in later chapters we shall skip this quite
tedious construction and just work with the — in fact equivalent — approach
presented here.

NOTES

The creation of forcing. The notion of forcing and of generic sets were introduced
by Paul Cohen [1] in 1963 to prove that —=AC is consistent with ZF and that -CH
is consistent with ZFC, and since Godel’s constructible universe L is a model of
ZF + AC + CH, this implies that AC and CH are even independent of ZF and ZFC
respectively. Cohen’s original approach and notation were modified for example by
Scott, who defined essentially the forcing relationship given in DEFINITION 14.8 and
introduced the corresponding forcing symbol “ =" (this definition of forcing and
the corresponding symbol were first published in Feferman [6, p. 328 f.]). Notice the
similarity between “ =" and “”, and compare the FORCING THEOREM 14.10 with
GODEL’S COMPLETENESS THEOREM 3.4. For a description of how Cohen had come
to forcing we refer the reader to Cohen [5], and a history of the origins and the early
development of forcing can be found in Moore [9] and Kanamori [7] (but see also
Cohen [1, 2, 3, 4]).

The approach taken here. The way we introduced forcing was motivated by
Kunen [8, Chapter VII, §§2-5], from where for example DEFINITION 14.8 as well
as the proof of the Forcing THEOREM 14.10 were taken, and where one can
also find a complete proof of the GENERIC MODEL THEOREM 14.12 (cf. [8, Chap-
ter VII, Theorem 4.2]). However, Kunen considers generic extensions of countable
transitive models of finite fragments of ZFC (whereas we considered generic exten-
sions of models of full ZFC). This way he gets model-theoretic theorems whereas we
just get results in the metatheory.
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Models of finite fragments of Set Theory

In this chapter we summarise the model-theoretic facts which will be used in
the next chapter in which the independence of the Continuum Hypothesis will
be proved. Most of the following statements are classical results and are stated
without proper proofs (for which we refer the reader to standard textbooks
in axiomatic Set Theory like Jech [4] or Kunen [5]).

Basic Model-Theoretical Facts

Let .Z be an arbitrary but fixed language. Two Z-structures M and N with
domain A and B respectively are called isomorphic if there is a bijection
f:+A— B between A and B such that:

o f(cM) =cN (for each constant symbol ¢ € )

e RM (al, cee an) <= RN (f(al), cee f(an)) (for each n-ary relation sym-
bol R € &)

o f(FM(ay,...,an)) = FN(f(a1),..., f(an)) (for each n-ary function sym-
bol F € ¥)

If the Z-structures M and N are isomorphic and f : A — B is the corre-
sponding bijection, then for all ay,...,a, € A and each formula p(z1,...,z,)
we have:

ME (p(al,...,an) ~— N£F go(f(al),...,f(an))

This shows that isomorphic Z-structures are essentially the same, except that
their elements have different “names”, and therefore, isomorphic structures are
usually identified. For example the dihedral group of order six and S5 (i.e.,
the symmetric group of order six) are isomorphic; whereas Cs (i.e., the cyclic
group of order six) is not isomorphic to S3 (e.g., consider p(z1,22) = x1002 =
i) 0:61).
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If M and N are .Z-structures and B C A, then N is said to be an elemen-
tary substructure of M, denoted N < M, if for every formula p(z1,...,2,)
and every by,...,b, € B:

NE @by, ...,by) < ME @(bi,...,by)

For example the linearly ordered set (Q, <) is an elementary substructure
of (R,<). On the other hand, (Z, <) is not an elementary substructure of
(Q,<), eg., VaVy(z < y — Jz(z < z < y)) is false in (Z,<) but true in
(Q.<).

The key point in construction of elementary substructures of a given struc-
ture M with domain A is the following fact: A structure N with domain
B C A is an elementary substructure of M if and only if for every formula
o(u,1,...,2,) and all by, ..., b, € B:

JaceA: MEy(a,by,...,b,) < FbeB: ME p(b,b1,...,by,)

Notice that the implication from the right to the left is obviously true (since
B C A). Equivalently we get that N < M if for every formula ¢(u, x1,...,2,)
and all by,...,b, € B:

YVae A: MFE p(a,by,...,b,) < VYbe B: MFE ¢(b,by,...,b,)

Notice that in this case, the implication from the left to the right is obviously
true.

The following theorem is somewhat similar to COROLLARY 15.5 below, even
though it goes beyond ZFC (see RELATED RESULT 86). However, it is not
used later, but it is a nice consequence of the characterisation of elementary
submodels given above.

THEOREM 15.1 (LOWENHEIM-SKOLEM THEOREM). Every infinite model for
a countable language has a countable elementary submodel. In particular,
every model of ZFC has a countable elementary submodel.

The Reflection Principle

Instead of aiming for a set model of all of ZFC, we can restrict our attention
to finite fragments of ZFC (i.e., to finite sets of axioms of ZFC), denoted by
ZFC*.

We will see that for every finite fragment ZFC* of ZFC, there is a set which
is a model of ZFC*, but before we can state this result we have to give some
further notions from model theory.

Let V E ZFC, let M € V be any set, and let M = (M, €) be an &-
structure with domain M. An &-structure M = (M, €), where M € V is
a set, is called a set model. Notice that this definition of model is slightly
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different to the one given in Chapter 3, where we defined models with re-
spect to a set of formulae. For any formula ¢ we define ™, the rela-
tivisation of ¢ to M, by induction on the complexity of the formula ¢:
o (z=yMisz=y.

e (zeyMiszcy.

(41 /\1/12) is M A YT
()M is ~(¥™M).

Bry)M is Jz (x € M AYM).

In other words, ™ is the formula obtained from ¢ by replacing the quan-
tifiers “Ja” by “Jx € M. If p(x1,...,x,) is a formula and zq,...,z, € M,
then oM (zy,...,2,) is the same as ¢(x1,. .., x,) except that the bound vari-
ables of ¢ range over M. (For x1,...,2, not all in M, the interpretation of
oM (z1,...,2,) is irrelevant.) Notice that in the definition of ™, the inter-
pretation of the non-logical symbol “€” remains unchanged. Further, notice
that also the sets themselves remain unchanged (which will not be the case
for example when we apply MosTOWSKI’S COLLAPSING THEOREM 15.4).

For a formula ¢ and a set model M, M E ¢ means o™ (where the free
variables take arbitrary values in M). Similarly, for a set of formulae &, M = @
means M E ¢ for each formula ¢ € ®. If M = (M, €) and for all formulae
¢ € ® we have

MEyp < VEp,

then we say that M reflects ®.
The following theorem shows that if ZFC is consistent, then any finite
fragment of ZFC has a set model.

THEOREM 15.2 (REFLECTION PRINCIPLE). Assume that ZFC has a model,
say V, let My € V be an arbitrary set, and let ZFC* C ZFC be an arbitrarily
large finite fragment of ZFC. Then we have:

(a) There is a set M 2 My in 'V such that M reflects ZFC*. In other words,
there is a set M O My such that for M = (M, €) we have

M E ZFC*.

(b) There is even a transitive set M DO My that reflects ZFC* (recall that a
set x is transitive if z € y € x implies z € x).

(c) Moreover, there is a limit ordinal A such that V) 2 My and the set V)
reflects ZFC*,

(d) Thereisan M 2 My such that M reflects ZFC* and |M| < max {|Mo|,w}.
In particular, for My = {0}, there is a countable set M that reflects ZFC*.

The crucial point in the proof of the REFLECTION PRINCIPLE 15.2 is to show
that for any existential formula Jxp(z,y) and any set My there exists a set
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M O My with the property that whenever V contains a so-called witness for
Jxp(x,y), i.e., aset a € V such that for all b € M, V E ¢(a,b), then there is
already a witness for Jzp(z,y) in M:

LEMMA 15.3. Let V be a model of ZFC and let ¢(x,y1,...,yn) be a formula
with {z,y1,...,yn} C free(y). For each non-empty set My there is a set
M D My (where M € V) such that for all ¢q,...c, € M we have:

VExo(z,er,...,cn) = Ja€ Mo(a,c,...,cn)

Moreover, we can construct M’ 2O My such that |M’'| < max{|My|,w}, in
particular, if M is countable, then M' is countable as well.

Proof. Let V E ZFC and let M, be any non-empty set, e.g., My = {0}. Firstly,
define in V the class function H : V" — V as follows:

IfVE3Izp(x u,. .., u,) for some uy,...,u, €V, then let
H(ul,...,un):ﬂ{Va:aeQ A Exevago(:c,ul,...,un)},

otherwise, H(uq,...,u,) = {0}.
Now, we construct the set M O My by induction: For i € w let

Mi—i—l ZMiUU{H(Cl,...,Cn)ZCl,...,CnEMZ‘}

and let
M = UM
€W
If ¢1,...,¢c, € M, then there is an ¢ € w such that ¢y,...,¢, € M;, and

consequently, if V F Jzo(x,cq,...,¢,), then there is an a € M such that
VEp(a,c1,...,cn).

By AC, fix a well-ordering < of M, and define the partial function
hci,...,cn) + M™ — M as follows: If H(cy,...,c,) = {0}, then let
h(ci,...,cn) := 0; otherwise, let a € M be the <-minimal element of
H(ey, ... en) € M and let h(cy,...,c,) := a. We construct the set M’ D M,
again by induction: For i € w let

M =M U{h(c1,....cn):c1,...,cn € M}
and let
M =M.
S
For all i € w we have |M/ | < |seq(M])| = max{|M]|,w}, and therefore,
| M| < max{|Mol,w}. .
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Proof of Theorem 15.2 (Sketch). Let ZFC* be an arbitrary finite fragment of
ZFC. Let 1, ...,¢; be the finite list of all subformulae of formulae contained
in ZFC*. We may assume that the formulae ¢1,...,¢; are written in the
set-theoretic language {€} and that no universal quantifier occurs in these
formulae (i.e., replace “Vz” by “—Jz—").

Applying the proof of LEMMA 15.3 to all these formulae simultaneously,
yields a set M such that for each i with 1 <4 <[ we have:

VEIzxp, -3z e My,

A formula ¢(z1,...,z,) is said to be absolute for M = (M, €) and V, if
for all ay,...,a, € M we have V E p(ay,...,a,) <= MF ¢(ay,...,a,)™.
The proof is now by induction on the complexity of the formulae ¢, ..., ¢;:
Let 4,4, k be such that 1 <i,j,k <. If ¢; is atomic, i.e., ; is equivalent to
x =y or x €y, then ; is obviously absolute for M and V. If ¢; is of the
form —p;, v; V@i, ©; A i, or ¢; — @, where ¢; and ¢; are absolute for M
and V, then ¢; is absolute for M and V too. Finally, if ¢; = 3z ¢;, then by
construction of M, ¢; is absolute for M and V.

Hence, M D My, and the model M = (M, €) has the desired properties.

_|

The REFLECTION PRINCIPLE 15.2 can be considered as a kind of ZFC-version
of the LOWENHEIM-SKOLEM THEOREM 15.1, and even though it is weaker
than that theorem, it has many interesting consequences and important ap-
plications, especially in consistency proofs.

Some remarks:

(1) If we compare (b) with (d) we see that we may require that the set M is
transitive or that |M| < max {|Mo|,w}, but in general not both.

For example let ZFC* be rich enough to define w; as the smallest un-
countable ordinal and assume that M = (M, €) reflects ZFC*. If M is
countable, then M cannot be transitive; and if M is transitive, then M
must be uncountable.

(2) As a consequence of the REFLECTION PRINCIPLE 15.2 and of GODEL’S
SECOND INCOMPLETENESS THEOREM 3.9, it follows that ZFC is not
finitely axiomatisable (i.e., there is no way to replace the two axiom
schemata by just finitely many single axioms).

On the other hand, by the REFLECTION PRINCIPLE 15.2 we get that for
each finite fragment ZFC* of ZFC, there is a proof in ZFC that ZFC* has a
set model, whereas by GODEL’S SECOND INCOMPLETENESS THEOREM 3.9
the existence of a model of ZFC is not provable within ZFC.

(3) Let ZFC* be a finite fragment of ZFC and assume that ZFC* I ¢ (for some
sentence ¢). Further, assume that M reflects ZFC* and let M = (M, €).
Then, in the model-theoretic sense, M F ZFC*, and consequently, M F .

As we will see later, this is the first step in order to show that a given
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sentence ¢ is consistent with ZFC: By the COMPACTNESS THEOREM 3.7
it is enough to show that whenever ® C ZFC is a finite fragment of ZFC,
then ®+¢ has a model. Let ® be an arbitrary but fixed finite set of axioms
of ZFC. Now, let M € V be a set model of ¥, where ¥ is a certain finite
fragment of ZFC which makes sure that the model M can be extended to a
set model M[X] such that M[X] E ®+ . Thus, since ¢ was arbitrary, this
shows that ¢ is consistent with ZFC. (This method is used and explained
again in Chapter 16.)

Countable Transitive Models of Finite Fragments of ZFC

As mentioned above, a set model M = (M, €) of a finite fragment of ZFC can
be taken to be countable or transitive, but in general not both. However, as a
consequence of MOSTOWSKI’S COLLAPSING THEOREM 15.4 we can get also a
transitive set model which is isomorphic to M. This is done by reinterpreting
the elements of M and as a result we get a model which is countable and tran-
sitive, but which is not a submodel of M. Before we can state MOSTOWSKI’S
CoLLAPSING THEOREM 15.4, we have to introduce some notions.

Let M be an arbitrary set. For a binary relation E C M x M on M and
each x € M let

extg(x) ={z € M :zEz}

be the extension of x.

A binary relation E on M is said to be well-founded if every non-empty
subset of M has an F-minimal element (i.e., for each non-empty A C M there
is an zg € A such that extg(zo) N A = 0).

A well-founded binary relation £ on M is extensional if for all z,y € M
we have

extg(x) =extp(y) 2z =y.

In other words, F is extensional iff (M, F) satisfies the Axiom of Extensionality
(with respect to the binary relation F).

The following result shows that for every structure (M, FE) which satisfies
the Axiom of Extensionality, there exists a transitive set N such that (M, E)
and (N, €) are isomorphic.

THEOREM 15.4 (M0OSTOWSKI’S COLLAPSING THEOREM). If E is a well-
founded and extensional binary relation on a set M, then there exists a unique
transitive set N and an isomorphism 7 between (M, E) and (N, €), i.e., 7 :
M — N is a bijection and for all xz,y € M, yEx < w(y) € w(x).

Proof (Sketch). Let ©9 € M be an E-minimal element of M. Since F is
extensional, xg is unique. Define m(xy) := 0 and let Ay = {zo}. If, for some
a € Q, A, is already defined and M \ A, # 0, then let X, be the set of all
E-minimal elements of M \ A,, let Ay+1 := Ay U X, and for each z € X,
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define 7(z) := {n(y) : y Ex}. Now, M = (J,, Aa (for some X € ) and we
define N := w[M]. We leave it as an exercise to the reader to show that 7 and
(N, €) have the required properties and that (N, €) is unique. —

It is worth mentioning that not just the set N, but also the isomorphism
7 is unique. We also would like to mention that MoOSTOWSKI’S COLLAPSING
THEOREM 15.4 is a ZFC result and that 7 is just a mapping between two sets.

As an immediate consequence of MOSTOWSKI’S COLLAPSING THEOREM 15.4
we get

COROLLARY 15.5. Let 'V be a model of ZFC and let M = (M, €) be a count-
able set model in V. If ZFC* is a finite fragment of ZFC containing the Axiom
of Extensionality and M E ZFC*, then there is a countable transitive set N in
V such that N = (N, €) is a set model in V which is isomorphic to M (in
particular, N F ZFC*).

Proof. Let M = (M, €) be a countable set model of ZFC*. Because M is
a set, the relation “€” is obviously a well-founded and extensional binary
relation on M. Thus, by MOSTOWSKI’S COLLAPSING THEOREM 15.4, there is
a transitive set NV such that M = (M, €) and N = (N, €) are isomorphic, and
since m : M — N is a bijection, N is countable. —

Let ZFC* be any finite fragment of ZFC and let V be a model of ZFC. Then,
by the REFLECTION PRINCIPLE 15.2.(d), there is a countable set M in V that
reflects ZFC* and for M = (M, €) we have M F ZFC*. Thus, by COROL-
LARY 15.5, there is a countable transitive set N that reflects ZFC*. In other

words, for any finite fragment ZFC* ¢ ZFC there is a countable transitive
model N in V such that N F ZFC*.

Let us briefly discuss the preceding constructions: We start with a model V
of ZFC and an arbitrary large but finite set of axioms ZFC* ¢ ZFC. By the
REFLECTION PRINCIPLE 15.2.(d) there is a countable set M in V such that
M = (M, €) is a model of ZFC*. By applying MOSTOWSKI’S COLLAPSING
THEOREM 15.4 to (M, €) we obtain a countable transitive model N = (N, €)
in 'V such that the models N = (NN, €) and M are isomorphic, and conse-
quently, N is a model of ZFC*.

It is worth mentioning that the model M = (M, €) is a genuine submodel
of V and therefore contains the real sets of V. For example if

M E “\ is the least uncountable ordinal”

then A\ = wi, i.e., w1 € M. However, since the set M is countable in V, there
are countable ordinals in V which do not belong to the set M, and therefore
not to the model M (which implies that M is not transitive). In other words,

VEA=wiAwi e MAANM|=w.

On the one hand, the model N = (NN, €) is in general not a submodel of V
and just contains a kind of copies of countably many set of V. For example if



314 15 Models of finite fragments of Set Theory
N F “)\ is the least uncountable ordinal”

then A, which corresponds to wy in N, is just a countable ordinal in V. How-
ever, since NN is transitive, every ordinal in V which belongs to A also belongs
to the set IV, and therefore to the model N. In other words,

VEAMNcw ANENAAINN =)

The relationships between the three models V, M, and N, are illustrated by
the following figure:

Q
\ /
\ /
\ o
\ INS
£
~
M
w1
N

As we shall see in the next chapter, countable transitive models of finite
fragments of ZFC play a key role in consistency and independence proofs.

NOTES

For concepts of model theory and model-theoretical terminology we refer the
reader to Hodges [3] or to Chang and Keisler [1]. However, the preceding results
(including proofs) can also be found in Jech [4, Chapter 12].

The LOWENHEIM-SKOLEM THEOREM 15.1 was already discussed in the notes of
Chapter 3; the REFLECTION PRINCIPLE 15.2 was introduced by Montague [7] (see
also Lévy [6]); and the transitive collapse was defined by Mostowski [8].

RELATED RESULTS

82. A model of ZF —Inf and the consistency of PA. V., E ZF —Inf, where Inf denotes
the Axiom of Infinity, and moreover, we even have Con(PA) <= Con(ZF — Inf)
(see Jech [4, Exercise 12.9] and Kunen [5, Chapter IV, Exercise 30]).

83. Models of Z. Let Z be ZF without the Axiom Schema of Replacement. For every
limit ordinal A > w we have V) F Z (see Jech [4, Exercise 12.7] or Kunen [5,
Chapter IV, Exercise 6]).
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For every infinite regular cardinal « let Hy := {z : | TC(z)| < x}. The elements of H,
are said to be hereditarily of cardinality < . In particular, H,, — which coincides
with V,, —is the set of hereditarily finite sets and H.,, is the set of hereditarily
countable sets.

84. Models of ZFC—P. If AC holds in V| then for all cardinals k > w we have H,. F
Z — P, where P denotes the Axiom of Power Set. Moreover, for regular cardinals
k > w we even have H, F ZFC — P (see Kunen [5, Chapter IV, Exercise 7] and
Kunen [5, Chapter IV, Theorem 6.5]).

An uncountable regular cardinal  is said to be inaccessible if for all A < &, 2* < k.
The inaccessible cardinals owe their name to the fact that they cannot be obtained
(or accessed) from smaller cardinals by the usual set-theoretical operations. To some
extent, an inaccessible cardinal is to smaller cardinals what w is to finite cardinals
and what is reflected by the fact that H,, F ZFC — Inf (cf. Jech [4, Exercise 12.9]).
Notice that by CANTOR’S THEOREM 3.25, every inaccessible cardinal is a regular
limit cardinal. One cannot prove in ZFC that inaccessible cardinals exist; moreover,
one cannot even prove that uncountable regular limit cardinals exist (see Kunen [5,
Chapter VI, Corollary 4.13] but also Hausdorff’s remark [2, p. 131]).

85. Models of ZFC. If k is inaccessible, then H. F ZFC (cf. Kunen [5, Chap-
ter IV, Theorem 6.6]). Let us show that if ZFC is consistent, then ZFC ¥ Inacc,
where Inacc denotes the axiom “3Jk (x is inaccessible)”. Since H, E ZFC (if s
is inaccessible), it is provable from ZFC + Inacc that ZFC has a model which
is equivalent to saying that ZFC is consistent. Now, if ZFC F Inacc, then we
consequently get that ZFC proves its own consistency, which is impossible by
GODEL'S SECOND INCOMPLETENESS THEOREM 3.9 (unless ZFC is inconsistent).

86. The Lowenheim-Skolem Theorem. Even though the LOWENHEIM-SKOLEM THE-
OREM 15.1 for ZFC — which says that every model of ZFC has a countable ele-
mentary submodel — is somewhat similar to COROLLARY 15.5, it can neither be
formulated in First-Order Logic nor can it be proved in ZFC: Firstly, notice that
ZFC consists of infinitely many axioms. Thus, we cannot write these axioms as a
single formula as we have done above in order to prove the REFLECTION PRIN-
CIPLE 15.2. Furthermore, even in the case when we would work in higher order
Logic, if every model V of ZFC would have a countable elementary submodel
V', then the set of ordinals in V' (i.e., @V N'V’) would be countable in V (but
not in V', of course). Now, in V we can build the sequence ap := UQV nv’,
a1 == JQV' NV”, and so on. This would result in an infinite, strictly decreasing
sequence ap S a1 O ... of ordinals in V, which is a contradiction to the Axiom
of Foundation.
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16

Proving Unprovability

Consistency and Independence Proofs: The Proper Way

We have seen in Chapter 14 how we could extend models of ZFC to models
in which for example CH fails — supposed we have suitable generic filters at
hand. On the other hand, we have also seen in Chapter 14 that there is no
way to prove that generic filters exist.

However, in order to show that for example CH is independent of ZFC we
have to show that ZFC + CH as well as ZFC + —=CH has a model. In other
words we are not interested in the generic filters themselves, but rather in the
sentences which are true in the corresponding generic models; on the other
hand, if there are no generic filters, then there are also no generic models.

The trick to avoid generic filters (over models of ZFC) is to carry out the
whole forcing construction within a given model V of ZFC — or alternatively
in ZFC: In V we first construct a countable model N of a suitable finite
fragment of ZFC. Then we define a kind of “mini-forcing” P which belongs to
the model N and show that there is a set G in V which is P-generic over N.
From the point of view of N, N[G] is a proper generic extension of N, and
since G is a set in 'V, also N[G] belongs to V. This shows that certain generic
extensions exist, in particular generic extensions of countable models of finite
fragments of ZFC.

What we gain with this approach is that the whole construction takes
place in the model V, but the price we pay is that neither N nor N[G] is a
model of ZFC; but now it is time to describe the proper way for obtaining
consistency and independence results in greater detail:

0. The goal: Suppose we would like to show that a given sentence ¢ is consis-
tent with ZFC, i.e., we have to show that Con(ZFC) implies Con(ZFC+ ).
By GODEL’S COMPLETENESS THEOREM 3.4 this is equivalent to showing
that ZFC + ¢ has a model whenever there is a model V of ZFC.



318 16 Proving Unprovability

1. Getting started: By the COMPACTNESS THEOREM 3.7, ZFC+¢ is consistent
if and only if for every finite set of axioms ® of ZFC, ® + ¢ is consistent,
i.e., ® + » has a model. Below, we show how to construct a model of
®gy + ¢, where @ is an arbitrary but fixed finite set of axioms of ZFC.

2. A suitable forcing notion P: In the model V define a forcing notion P =
(P, <) which has the property that there is a condition py € P such that
po =p . For example if ¢ is =CH, then by the methods presented in
Chapter 14, C,,, would have the required properties.

3. Choosing a suitable finite set of axioms: Let ZFC* & ZFC be a finite
fragment of ZFC such that:

(a) Each axiom of ®( belongs to ZFC*.

(b) ZFC* is strong enough to define the forcing notion P, the existence of
the condition pg, as well as some properties of P like satisfying ccc,
being o-closed, et cetera.

(c) ZFC* is strong enough to prove that every sentence in @ is forced to
be true in any P-generic extension of V.

(d) ZFC* is strong enough to prove that various concepts like “finite”,
“partial ordering and dense sets”, et cetera, are absolute for all count-
able transitive models.

The properties (b)—(d) of ZFC* are necessary to prove THEOREM 16.1;

however, we will omit most of the quite tedious and technical proof of

that theorem.

4. The corresponding countable transitive model N: Let My = {po, P, R<},
where R< = {(p,q) € PxP : p < q}. By the REFLECTION PRINCIPLE 15.2
there is a countable set M D My in V such that M reflects ZFC*, i.e., for
M = (M, €) we have M E ZFC*. By COROLLARY 15.5 and MOSTOWSKI’S
CoLLAPSING THEOREM 15.4, there is a countable transitive model N =
(N,€) in V such that N £ ZFC*, and in addition there is a bijection
m : M — N such that for all z,y € M, y € z + n(y) € w(z). Define
PN := 7[P] and <N:= n[R<]. Notice that for all p,g € PN, NEp <N g
iff m=(p) <7 }(q).

5. Relativisation of P-generic filters to N: For a set G C PN let
N[G] = {z[G] : z is a P-name in N} .
A set G C PN is PN-generic over N if it meets every open dense subset
D C PN which is in N.

6. Relativisation of the Generic Model Theorem: There is even a relativisation
of the GENERIC MODEL THEOREM 14.12 which states as follows.

THEOREM 16.1. Let V be a model of ZFC, let P = (P, <) be a forcing
notion in 'V and let pg be an arbitrary condition in P. Furthermore, let
@y and ZFC* be as above and let N = (N, €) be a countable transitive
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model in 'V such that N E ZFC*. Then there is a set G C PN in 'V which
contains py and which is PN-generic over N. Moreover, N[G] = (N[G], €)
is a countable transitive model in V and N[G] E ®y.

Proof (Sketch). Firstly, let us show that there exists a set G C PN in
V which is PN-generic over N and contains py: Because the model N
is countable in V, from the point of view of V, the model N contains
just countably many sets which are open dense subsets of PN. Let {D,, :
n € w} be this countable set. Since Dy is dense, we can take a condition
qo € Dg such that go > po; and in general, for n € w take ¢,+1 € Dyt
such that ¢,4+1 > ¢,. Finally let

G={pePN:3Incwlp<q)}.

Then G C PN is a set in V which contains py and meets every open dense
subset of PN which belongs to N, and hence, G is PN-generic over N.
Notice that even though each ¢, belongs to the model N, the sequence
{¢n : n € w}—and consequently the set G — does not belong to N.
Notice also that since N is countable in V, there are only countably many
names in N and consequently N[G] is countable in V.

Secondly, let us show that N[G] E ®y: By the choice of ZFC* (in step 3)
we can show in N, by using the technique introduced in Chapter 14, that
whenever G is PN-generic over N and contains pg, then N[G] F ®;.

7. The final step: In step 2 we assumed that V[G] E ¢ whenever G is P-
generic over V and contains py. Thus, by THEOREM 16.1, we get that

N[G] F ¢

whenever G is PN-generic over N and py € G. On the other hand, by the
choice of the set of axioms ZFC* and since N F ZFC* we get N[G] F @,
hence,

N[G] E D+ ¢

which shows that ®y 4 ¢ is consistent.

8. Conclusion: Since the finite set of axioms ®¢ we have chosen in step 1 was
arbitrary, ® + ¢ is consistent for every finite set of axioms ® of ZFC, and
consequently we get that ¢ is consistent with ZFC. This is what we were
aiming for and what is summarised by the following result.

PROPOSITION 16.2. Let ¢ be an arbitrary sentence in the language of Set
Theory. If there is a forcing notion P = (P, <) and a condition p € P such
that pl=p ¢, then ¢ is consistent with ZFC.
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The model-theoretic part of the above construction is illustrated by the fol-
lowing figure:

The most inelegant part in the proof of the consistency of ¢ is surely step 3,
where we have to find a finite set of axioms ZFC* ¢ ZFC which is strong
enough to prove that whenever N F ZFC* and G is P-generic over N, then
N[G] E ®p. On the other hand, for a consistency proof it is not necessary to
display explicitly the axioms in ZFC*; it is sufficient to know that such a finite
set of axioms exists.

The crucial point in the proof of the consistency of ¢ is step 2, where we
have to find (or define) a forcing notion P such that there is a P-condition
po which forces . In fact it will turn out that py is always equal to 0, in
which case we say that P forces ¢, i.e., ¢ is true in all P-generic extensions of
V. For example Ky and C,, (both defined in Chapter 14) force CH and —-CH
respectively.

Now, let us turn our attention to independence results: Firstly recall that a
sentence ¢ is independent of ZFC if ¢ as well as - is consistent with ZFC. So,
in order to show that a sentence ¢ is independent of ZFC we would have to go
twice through the procedure described above. However, since the only crucial
point in the proof is step 2, all what we have to do is to find two suitable
forcing notions:

In order to show that a given set-theoretic sentence ¢ is independent
of ZFC, we have to show that there are two forcing notions such that
one forces ¢ and the other one forces —¢.

As a first example let us consider the case when ¢ is CH.
THEOREM 16.3. CH is independent of ZFC.

Proof. On the one hand, by THEOREM 14.21 we get that whenever G is C-
generic over V and k > wj, then V[G] E —CH, and therefore we get that
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Con(ZFC) = Con(ZFC + —CH). On the other hand, by THEOREM 14.23 we
get that whenever G is Ko-generic over V, then V[G] £ CH, which shows that
Con(ZFC) = Con(ZFC + CH). -

The Cardinality of the Continuum

Until now we just have seen that for each infinite cardinal x there is a model
in which ¢ > k, but we did not give any estimate how large ¢ actually is in
such a model. Of course, since ¢ = ¢, ¢ = x implies that x must also satisfy
k“ = k. Surprisingly, this is the only demand for k to make it possible to force
that ¢ = k.

THEOREM 16.4. For every cardinal k which satisfies k“ = k we have:
Con(ZFC) = Con(ZFC + ¢ = k)

Proof. Let V E ZFC and let x be a cardinal in V which satisfies k¥ = k.
Consider the forcing notion C, = (Fn(n X w,2), g). For convenience, we
write C,; instead of Fn(k X w, 2). If G is C,;-generic over V, then V[G] F ¢ > k
(cf. THEOREM 14.21). Thus, it remains to show that V[G] E ¢ < &.

Firstly we investigate C,-names for subsets of w: Let z be an arbitrary
C,-name for a subset of w. For each n € w let

Apez ={p€Cr:(phkc.,nez)V(plec, né¢z)}.

By FACT 14.9.(b), for each n € w the set A, ¢, is open dense in Cy. For each
n € w choose a maximal anti-chain A,, in A, ¢, and define

z={(n,p):peAyApc,nez}.

A name for a subset of w of the form like z is called a nice name (i.e.,
nice names are a special kind of names for subsets of w). Now we show that
0 l—¢, © = z by showing that for each n € w the set

D,={q€C:qlc,nez e nez}

is dense in Cy. Fix n € w and let p be an arbitrary C,-condition. Since A, ¢, is
dense in C}; there is a pg D p such that py € A, ¢, and since A, is a maximal
anti-chain in Ape., there is a g9 € A, such that py and gy are compatible.
Thus, there is a ¢ € C; such that pg C ¢ O qg. By construction we get

g, ne€xner,

and since p C ¢ and p was arbitrary this shows that D,, is dense in Cyx. In
particular we get that for every C,-name g for a subset of w there exists a
nice name g such that Ol—¢,_ x = 2.
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Secondly we compute the cardinality of the set of nice names: Since k is
infinite, |[x x w x 2]<¥| = & (cf. COROLLARY 5.8), and consequently |Cy| = &
(we leave the details as an exercise to the reader). Recall that C, satisfies
cce, i.e., every anti-chain in C) is at most countable. Now, every nice name
is the countable union of at most countable sets of ordered pairs, where each
ordered pair is of the form (n,p) for some n € w and p € C,;. Thus, there are
at most

(w-K)?)" =k =k =k

nice names for subsets of w. Now, because each set  C w which is in V[G] has
a Ci-name in V, and because every C,-name for a subset of w corresponds to
a nice name, there are at most « subsets of w in V[G]. Hence, V|G| E ¢ < &
and we finally get V[G] E ¢ = k. —

NOTES

Approaches to forcing. There are different ways of presenting the forcing tech-
nique, and even though they all yield precisely the same consistency proofs, they
can be quite different in their metamathematical conception. The approach to forc-
ing presented in this chapter is essentially taken from Kunen [4, Chapter VII].
Another approach —taken for example by Jech in [3, Chapter 14] and in [2,
Part I, Section 1] —uses Boolean-valued models. For a discussion of different ap-
proaches, as well as for some historical background, we refer the reader to Kunen [4,
Chapter VII, §9].

RELATED RESULTS

87. The k-chain condition. Let k be a regular cardinal. We say that a forcing notion
P = (P, <) satisfies the k-chain condition, denoted x-cc, if every anti-chain in
P has cardinality <k (i.e., strictly less than x). In particular, wi-cc is equivalent
to ccc.
One can show that if a forcing notion P satisfies the k-cc, then forcing with P
preserves all cardinals >k (see for example Kunen [4, Chapter VII, Lemma 6.9]
or Jech [2, Part I, Section 2]).

88. On the consistency of 2% > wq4+1. With essentially the same construction as
in the proof of THEOREM 16.4, but replacing the ccc forcing notion by a similar
one satisfying the wq+1-chain condition, one can show that 2“ = k is consistent
with ZFC whenever cf(k) > wq. Notice that by COROLLARY 5.12, the condition
cf(k) > wq is necessary. A more general result is obtained using Easton forcing
(see Easton [1] or Chapter 18 | RELATED RESULT 100).
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Models in which AC fails

In Chapter 7 we have constructed models of Set Theory in which the Axiom of
Choice failed. However, these models were models of Set Theory with atoms,
denoted ZFA, where atoms are objects which do not have any elements but
are distinct from the empty set. In this chapter we shall demonstrate how one
can construct models of Zermelo-Fraenkel Set Theory (i.e., models of ZF) in
which AC fails. Moreover, we shall also see how we can embed arbitrary large
fragments of permutation models (i.e., models of ZFA) into models of ZF.

Symmetric Submodels of Generic Extensions

Let V be a model of ZFC and let P = (P, <) be a forcing notion which is
defined in V with smallest element 0. A mapping « : P — P is called an
automorphism of P if « is a one-to-one mapping from P onto P such that
for all p,q € P:

apsaq < p=gq.

In particular we get «0 = 0. If « is an automorphism of P, then we define, by
induction on rk(z), an automorphism of the class of P-names V¥ by stipulating

az = {{ay,ap): (y,p) € z}.

Notice that in particular we have a) = 0. Moreover, if z = {(y,0) : y € 2} is
the canonical P-name for a set € V and « is an arbitrary automorphism of
P, then ax = x. Furthermore, with respect to the forcing relationship “ p”
we have

plEr (2, ..., 20) &= aplbpelazy,...,azn)

where ¢(x1,...,2,) is a first-order formula with all free variables shown and
z1,...,2n € VF are arbitrary P-names.
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Let now ¢ be an arbitrary but fixed group of automorphisms of P. In other
words, let & be an arbitrary subgroup of the automorphism group of P.
For each P-name g we define the symmetry group symg(z) C ¢ of z by
stipulating
symg (z) = {a €Y ax = Qc} )

In particular, if z is the canonical P-name for a set z € V, then symy (z) = ¢.
Further, if 5 € symy(z) and « is an arbitrary automorphisms of P, then
(aBa™!)(ax) = az, and therefore
symy(az) = asymg(z)a™ ",
which shows that 8 € symgy () iff afa™! € symy(az).
A set # of subgroups of ¢ is a normal filter on ¢ if for all subgroups
H, K of 4 we have:

o YecF

o fHe % and HC K, then K € &

o fHe.%and K€ %, then HNK € F
o ifae¥ and H € .Z, then aHa ' € F

Let .Z be an arbitrary but fixed normal filter on ¢. Then z € V* is said
to be symmetric if symy(z) € %. In particular, canonical P-names z for
sets © € V are symmetric (since symg(r) = ¢ and 4 € %), and if g is
symmetric and o € ¢, then also az is symmetric (since symy(z) € F iff
symy (az) € F).

The class HS of hereditarily symmetric names is defined by induction
on rk(x):

z € HS <= gz is symmetric and {y:3p e P((y,p) €z)} C HS.

Since for all x € V and each automorphism « of P we have az = z, all
canonical names for sets in 'V are in HS. Furthermore, if a P-name z is
hereditarily symmetric and o € ¢, then also az is hereditarily symmetric.
Thus, for all « € ¢ we have az € HS iff ¢ € HS.

Now, for any G C P which is P-generic over V define
Vz{;[G]:;EHS}.

In other words, V is the subclass of V[G] which contains all elements of V[G]
that have a hereditarily symmetric P-name. Since P-names for P-generic filters
are in general not symmetric, the set G, which belongs to V[G], is in general
not a member of V. However, V is a transitive model of ZF which is called
symmetric submodel of VI[G].

PROPOSITION 17.1. Every symmetric submodel V of VI[G] is a transitive
model of ZF which contains V, i.e., VCV C V[G] and V E ZF.
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Proof (Sketch). Like for the GENERIC MODEL THEOREM 14.12, we shall prove
just a few facts; the remaining parts of the proof are left as an exercise to the
reader.

The heredity of the class HS implies that the class V is transitive, and by
the definition of V we get V C V|[G]. Further, since € HS for every x € V,
we get V C V.

As a consequence of the transitivity of V we get that V satisfies the Axiom
of Extensionality as well as the Axiom of Foundation.

To see that the Axiom of Empty Set and the Axiom of Infinity are valid
in \7, just notice that the canonical P-names for () and w respectively are
hereditarily symmetric.

For the Axiom of Pairing, let 2o and z; be arbitrary sets in V and let
20,21 € HS be P-names for xo and z; respectively. Let y := {(z0,0), (z1,0)}.
Then y[G] = {x0, 21}, and since y € HS we get {zg, 21} € V.

For the Axiom Schema of Separation, let ¢(z,1,...,yn) be a first-order
formula with free(p) C {z,y1,...,yn}. Let u,aq,...,a, be sets in V and let
U,a1, - .., a, be the corresponding hereditarily symmetric P-names for these
sets. We have to find a hereditarily symmetric P-name for the set

w:{véu:w(v,al,...,an)}.
For this, let % := {(v,p) : Ig€ P (¢ <pA(v,q) €u)} and let
w={(v,p) €u:plFrp(v,a1,....an)}.

Obviously we have w[G] = w and it remains to show that w € HS. Since
u € HS, also ¢ € HS, and it is enough to show that symy(w) € %#. Let
I := symg, (@) Nsymy (a1)N- - - symg(ay). Then I, as the intersection of finitely
many groups in %, belongs to .#. For any a € I we have a@ = @ and for
every 1 < i <n we have awg; = a; Further we have

aw = {{av,ap) : (v,p) € w}
= {{av,ap) : (v,p) euAppp(v,a1,...,an)}
= {{av,ap) : (av,ap) e u AN aplpp(av,aar,...,aa,)}
= {{av,ap) € u: aplbpp(av,ai,...,an)}
={(wp)cu:prpo@,a1,....an)} =w
Thus, I C symy(w) € .% and we finally have w € HS. =

As we shall see in the following examples, \:/' does in general not satisfy the
Axiom of Choice. Thus, in general we have V ¥ ZFC, even though V as well
as V[G] are models of ZFC.
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Examples of Symmetric Models

A model in which the reals cannot be well-ordered

In this section we shall construct a symmetric model V in which there exists
an infinite set A of real numbers (i.e., A C [w]“) such that A is Dedekind-finite
in \7, i.e., there is no injection in V which maps w into A.

Consider the forcing notion C,, = (Fn(w x w,2),C) consisting of finite
partial functions from w X w to {0,1}. To keep the notation short let C,, :=
Fn(w X w,2). Recall that the smallest element of C,, is § and for p,q € C,,, p
is stronger than ¢ iff the function p extends gq.

Before we construct the symmetric model V, let us define a C,-name A
for a set of reals. For each n € w define the C,-name q,, by stipulating

an = {<l€,p> tkewApeCy, /\p(<nﬂk>) = 1}

and let
A= {(an,0)inew}.

First we show that A[G] is an infinite set in V[G] whenever G is C,-generic
over some model V of ZFC. For this, let G C C,, be an arbitrary C,-generic
filter over V. Then we obviously have A[G] = {a,[G] : n € w}. Since for any
integers n,l € w the set

{peCy:3kcwk=1n(kp) €an)}

is open dense in C,, we get V[G] F a,[G] € [w]¥. Furthermore, for any distinct
integers n, m € w, also

{p e Cs,: 3k ew((n, k) € dom(p) A (m, k) € dom(p) Ap((n, k)) # p((m,k)))}
is open dense in C,, and therefore
V|G| E “A[G] is infinite”. (00)

Now we construct a symmetric submodel V of V[G] in which A[G] is
Dedekind-finite. If 7 is a permutation of w (i.e., 7 is a one-to-one mapping
from w onto w), then 7 induces an automorphism «, of C,, by stipulating

Qr P = {<<7TTL,]€>,Z> : <<nﬂ k>7l> € p} )
ie, azp((mn,k)) = p((n,k)).
Let ¢ be the group of all automorphisms of C,, that are induced by per-

mutations of w, i.e.,

¢ = {«a, : w is a permutation of w}.
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For every finite set E € fin(w) let

fixy(E) = {ar €94 :7n =n for eachn € E}.

Let .# be the filter on & generated by the subgroups { fixy (E) : E € fin(w)},
ie, a subgroup H C ¥ belongs to .# iff there is an E € fin(w) such
that fixg(E) C H. Then .# is a normal filter (notice for example that
ar fixg(F)a;! = fixg(r E) or see Chapter 7).

Finally, let HS be the class of all hereditarily symmetric C,-names and
let V be the corresponding symmetric submodel of V[G].

In order to see that the set A[G] belongs to V we have to verify that A €
HS. Firstly notice that each automorphism «, corresponds to a permutation
of the set {a, : n € w}. In fact, for each n € w we have

Qe Ay = {(a,rl_f,awp) :(k,p) € an}

= {(k,axp) s axp((mn, k) =1}

= {<k;Q> : Q(<7Tnﬂk ) = 1} = Qnn -
In particular, aa, = an iff mn = n. Thus, for each n € w, fixy ({n}) =
symg (an), and since {k : 3p € C,((k,p) € an)} C HS, each g, belongs to
HS. Furthermore, for each o, € 4 we have

ar A = {{aran,az0): (a,,0) € A}
= {<an,@> : <@nv > A} A,

which shows that symg(A) = 4. Thus, A € HS which implies that A[G]
belongs to V. In fact, by (c0), A[G] is an infinite set of reals which belongs
to the model V, i.e.,

V E “A[G] C [w]* and A[G] is infinite”.
On the other hand we shall see that
V E “A[G] is D-finite”.

Assume towards a contradiction that the function f : w < A[G] is an injection
which belongs to the model V. Then there is a hereditarily symmetric C,-
name f € HS for f and a condition p € C,, such that

phc, frw—A.

Let the finite set Ey € fin(w) be such that fixg (Ep) C symg(f). Since f is an
injective function with dom(f) = w, there is an ng € w\ Ep, a k € w, and a
condition py > p such that
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Let now 7 be a permutation of w such that a, € fixg (Eyp), mng # no, but a po
and pg are compatible (i.e., thereis an r € C,, such that a;pg < r > po). Then
the corresponding automorphism a, € ¢4 belongs to symy(f), in particular

ar f = [. Recall that azk = k (for all k¥ € w). If r € C, is such that
azpo <1 > po, then we have

r "_Cw f(k) = dng

because r > pg, as well as

r ”_Cw f(k) = Qnng »

because r > arpo. Hence, 7 ¢, @n, = @rn,, but this contradicts the fact
that ng # mno — any[G] # @rny|G]. Obviously, this shows that there is no
hereditarily symmetric name for an injection f : w < A[G], in other words,
V E “A[G] is D-finite”.

Conclusion: Starting from a model V of ZFC we constructed a symmetric
model V of ZF in which there exists an infinite but D-finite set of reals. Thus,
there is a model of ZF in which the reals cannot be well-ordered. In particular,
the Well-Ordering Principle is not provable in ZF.

A model in which every ultrafilter over w is principal

The following construction of a symmetric model V in which every ultrafilter
over w is principal is essentially the same as in the example above, except that
the set {gn[G] NS w} will not belong to the model V. Thus, let V be a

model of ZFC and consider again the forcing notion C,, = (Fn(w x w, 2), C).

For each n € w let a,, = {(k,p) : k € wAp € Cy Ap((n,k)) = 1}, and let
G C C,, be C,-generic over V; then V[G] E g,[G] € [w]*.

For every X C w X w we define an automorphism ax of C, by stipulating

axp: dom(p) — {0,1}

o [eem) Emm g x,
(. >’—>{1p(<n,m>) if (n,m) € X.

Let ¢ be the group of all automorphisms ax, where X C w X w, and let #
be the normal filter on & generated by {ﬁXg(E xw): E € ﬁn(w)}, where

fixg(E xw) = {ax: XN(Exw)=0}.

Finally, let HS be the class of all hereditarily symmetric names and let V be
the corresponding symmetric model.

Below, we show that whenever % € V is an ultrafilter over w, then % is
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principal, i.e., % contains a finite set. Let % € HS be a name for %7 and let
p € G be such that

pl=c, “% is an ultrafilter over w”.

Let Ey € fin(w) be such that fixg(Ey x w) C symy (%) and fix an natural
number | ¢ Ey. Then there is a ¢ > p such that ¢ € Ay,e9 NG, ie., ¢ € G and
q decides whether or not a; € % . Let us assume that ql—c_ a; ¢ % (the case
when ¢l¢,_ a; € % is similar). Let mg be such that for all integers m > mq
we have (I,m) ¢ dom(q) and let

Xo={(,m):m>mp} Cwxw.

Let % := % |G], a; :== ai|G], and for b; := ax, a; let b; := b;[G]. Then, for each
m > mog, m € a; <> m ¢ b, which implies that (w\a;)N(w\b;) is finite. Notice
that since ql¢c, a1 ¢ %, ax,qlc, ax, @ ¢ ax, % . By definition of X, we
further have ax, € fixg (Eo x w) C symy, (%) and therefore ax, % = % , and
since ax, ¢ = q and ax,a; = b we have ql—c_ b ¢ % . Thus, since q € G, we
get that neither a; nor b; belongs to % . Because % is an ultrafilter, w \ a; as
well as w \ b; belongs to %, and therefore (w \ a;) N (w \ b;) € % . Hence, %
contains a finite set, or in other words, % is principal.

Conclusion: Starting from a model V of ZFC we constructed a symmetric
model V of ZF in which every ultrafilter over w is principal. Thus, there is a
model of ZF in which for example the Fréchet ideal cannot be extended to a
prime ideal. In particular we get that the Prime ldeal Theorem is not provable
in ZF.

A model with a paradoxical decomposition of the real line

Below, we shall construct a model of ZF in which the real line R can be
partitioned into a family %, such that |Z| > |R|. (Recall that £ is a partition
of Rif Z C Z2(R) such that | JZ = R and for any distinct z,y € Z, xNy = 0.)

By COROLLARY 4.13 it is enough to construct a model in which the set of
reals &?(w) is a countable union of countable sets.

In order to construct a symmetric model in which &(w) is a countable
union of countable sets we start with a model V of ZFC such that for each
n € w, VFE 2“ = w,y1. Such a model is for example Godel’s constructible
universe L. Alternatively, such a model is also obtained by an iterated appli-
cation of THEOREM 14.23, or more precisely, by iterating the forcing notions
of THEOREM 14.23 using the iteration technique given in Chapter 18 (see also
RELATED RESULT 100 of that chapter).

Now, let
P = {p € Fn(w X w,wy,) : V(n,m) € dom(p) (p((n,m)) € wy)}.

Then P := (P, C) is a forcing notion.



332 17 Models in which AC fails

Let G C P be P-generic over V. We construct a symmetric submodel A%
of V]G] such that in 'V, the set of reals is a countable union of countable sets.
For this, let ¢4 be the group of all permutations 7 of w X w such that

m{n,i) = (m,j) > n=m.

Now, for each 7 € 4 and every n € w let 7, be the permutation of w such
that for every ¢ € w,
m{n,i) = (n, mpi) .

Every m € ¢ induces an automorphism «, of P by stipulating
Onr P = {<<n7ﬂ-ni>ﬂ a> : <<n,i>, a> € p} .

For every n € w, let H,, be the group of all 7 € ¢4 such that for all k € n,
the corresponding permutation 7 is the identity, and let % be the filter on
@ generated by the subgroups {H, : n € w}. We leave it as an exercise to
the reader to verify that .% is a normal filter. Finally, let V be the symmetric
submodel of V[G] which is determined by .%#.

Now, we show that there are countably many countable sets of reals R,, in
V such that V P(w) = U, e, Bn- Firstly we construct canonical names for
reals in V: Let 2 € HS be a name for a real (i.e., for a subset of w), or more
precisely, let  C {(k,p) : k € HS Ap € P} be such that for each (k,p) € z,
plpk € w (notice that we also have pl—p k € ). Since € HS there is an
ng € w such that H,, C symg(z), which implies that for all o, € H,, we
have

z={(k,p): (k,p) €2} = {{axk,azp) : (k,p) €z} = arz.
With respect to z, the canonical name z € HS is defined as follows:
z={(m,q): 3k,p) €xIr > p(q="rlnoxw AT Fpm =k)}

Cram. V(G| E z[G] = z[G].
Proof of Claim. First we show that z[G] C z[G]: Let (m,q) be an arbitrary
but fixed element of z such that ¢ € G. In particular, m[G] € z[G]. We show
that m[G] € z[G]. By definition of z, there is a (k,p) € z and a condition
ro > p such that ¢ = ro|pyxw and rol=pm = k Ak € z. Now, for every
condition 7’ > ¢ we can find an automorphism «, € H,, and a condition r
such that " < r > a,rg, which implies that r =pm = a, k A az k € x (recall
that a2 = z and that for all 7 € 4, ay,m = m). Since a, € H,, we get
O Tlngxw = Tlnoxw = ¢ and therefore the set {r > ¢ : rl=pm € z} is dense
above ¢. Thus, m[G] € z[G], and since (m,q) € x was arbitrary (with the
property that g € G), we get V[G] F z[G] C z[G].

Now we show that  C z: If V[G] F m € z[G], then there exist an r € G
and a name (k,p) € z such that » > p and r=pm = k € z, which implies
that (m,r|n,xw) € ¢ and shows that V[G] E z[G] C z[G]. AClaim
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Thus, each real # € V (i.e., each subset of w in V) has a canonical name
z which is a subset of {(m,q) : m € wAq € P,,}, where ng € w and
P, == {p € P :V¥(n,m) € dom(p) (n € no)}. If z is a canonical name for
areal z € V with Q, C P,, where Q, = {q € P :3dm((m,q) € :c)}, then
symg () 2 H, and since m € HS for any m € w, ¢ € HS. Moreover, for
every a € ¢, if x is a canonical name for a real then also ax is a canonical
name for a real. To see this, let z € HS be a name for some real z € V, let =
be the canonical name for & which corresponds to z, and let o € 4. Then az
is a hereditarily symmetric name for a real in V with corresponding canonical
name Q.

Now, for each n € w let

R, = {(z,0) : z is a canonical name for a real x with Q, C P, }.

Notice that R, is in V and that for each n € w and all @ € ¢4 we have
aR, = Ry, which shows that symg (Iin) = ¢, and since symy (z) D H, for
all z € Ry, we even have R, € HS, ie., R,[G] € V. Moreover, also the
function which maps each n € w to R,[G] belongs to V (notice that the
name {(op(n, R,),0) : n € w} is hereditarily symmetric). Further, the set
U{RA[G] : n € w} contains all reals in V. So, in order to prove that the set of
reals in V can be written as a countable union of countable sets, it is enough
to prove that each R, [G] is countable in V, which is done in two steps:
Firstly recall that V F 2¥" = w,, 11 for each n € w. Now, by counting (in the
ground model V) the canonical names which belong to R, we get that for
each n € w, |Iin| = (Wns1)V

Secondly, for each n € w define

fn={{op(k, @), p) : p € Pay1 A (n, k) € dom(p) Ap((n,k)) = a}.

Then, for every n € w, f, is a name for a function from w to wy, symg(@) D
Hy 1, and f, € HS, hence f,,[G] € V. Moreover, fnlG] s w — wY is surjective
which implies that wY is countable in V. Now, since |Rn| = (wn41)V (for each
n € w), each R, [G] is countable in V — whereas | J {R.[G]:necw} = <@(w)‘7
is uncountable in V.

Conclusion: Starting from a model V of ZFC + Vn € w(2¥" = wy,41) we
constructed a symmetric model V of ZF in which the set of reals is a countable
union of countable sets. In particular, this shows that without some form of
AC we cannot prove that countable unions of countable sets are countable.
Furthermore, we get that in the absence of AC it might be possible that the
real line R can be partitioned into a family %, such that |%Z| > |R|. Moreover,
by FACT 4.3 we know that HO, 1]2| = |]R| is provable in ZF only, and therefore
we get that in the absence of AC, it might be possible to decompose a square
into more parts than there are points on the square.
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Simulating Permutation Models by Symmetric Models

The following theorem provides a method which enables us to embed an ar-
bitrarily large fragment of a given permutation model (i.e., a model of ZFA)
into a well-founded model of ZF. In particular, if ¢ is a statement which holds
in a given permutation model and whose validity depends only on a certain
fragment of that model, then there is a well-founded model of ZF in which ¢
holds as well. For example assume that there are two sets R and S in some
permutation model V of ZFA such that V & |R| < |S| A |S| <*|R|, i.e., there
is an injection from R into S, a surjection from R onto .S, but no bijection
between the two sets (cf. THEOREM 4.21 and PROPOSITION 7.14). Notice that
the surjection from R onto S induces a partition % of R of cardinality |5/, i.e.,
|%| > |R|. Now, the validity of the sentence IR3S(|R| < |S| A |S| <*|R]),
which holds in V, depends only on a certain fragment of that model, and thus,
by the following theorem, there is a well-founded model of ZF in which we
find sets R and S such that |R| < |S| A |S] <*|R].

THEOREM 17.2 (JECH-SOCHOR EMBEDDING THEOREM). Let V E ZFA be a
permutation model in which AC holds in the kernel of V. Furthermore, let A
be the set of all atoms of V, let ~v be an arbitrary but fixed ordinal number,
and let V, := P7(A) N'V. Then there exist a symmetric model V (i.e., a
model of ZF) and an embedding x — & of 'V into V whose restriction to vV,

is an €-isomorphism between the sets V., and 27(A)V, where f : S — T is
an €-isomorphism between S and T if f is a bijection and for all x,y € S,
x €y < f(x) € f(y). In other words, one can simulate arbitrarily large
fragments of permutation models by symmetric models, which is visualised
by the following figure:

\ / \ \ / /
\ /V' \\ \\ // //
\ /
\ / /</4 \ \ / / /{,4
R4 84
A A
A A
)

Proof. Let M be a model of ZFA + AC and let V := () C M be the
kernel of M; then V £ ZFC. Let Ay be the set of all atoms of M. We consider
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a group % of permutations of Ay and a normal filter .%; on %, and let Y C M
be the permutation model (i.e., a model of ZFA) given by ¢, and .%,. Further,
let v be an arbitrary but fixed ordinal number and let V, := Z7(A) N V.

In order to construct a symmetric submodel of a generic extension, we
have to work in a ground model of ZFC. So, we shall work in the model V
and first construct a generic extension V[G] of V: Let A be a set in V such
that M F |A| = |Ap| and fix in M a bijection ¢ : Ay — A. Let & be a regular
cardinal (in V) such that x > ‘QZV(A)‘ The set P of forcing conditions
consists of functions p : dom(p) — {0, 1} such that dom(p) C (A x k) X k and
| dom(p)| < k. As usual let p < ¢ <= p C ¢. Then, by the choice of k, P =
(P, <) is a k-closed forcing notion. Below, for p € P and <<d, &), 77> € dom(p)
we shall write p(a,¢,n) instead of p(((a,&),n)). For each a € Ay and each
£ eklet

Lag = {<77,P> 527(“%5,77) = 1} )
and for each a € Ay define

a={(xae,0) : € € K}

and let A = {a:a € Ap}. Having now defined g for each a € Ay, by transfinite
recursion we define x for each z € M by stipulating

r={(y,0): MEyeca}.
CrAM 1. If G is P-generic over V, then for all x,y € M.:

MEyer < VIGFylG] €
MEy=2 < V[G]hy[G]:

z[G)

2[G]

Proof of Claim 1. Notice first that z.¢[G] # za¢/[G] whenever (a, &) # (d’, &),
that 24¢[G] # z[G] whenever z € V, and that for all © € M and a € Ay,
z[G] ¢ a|G]. Consequently we have a[G] # a'[G] whenever a # a' are atoms
and that the atoms do not contain any elements of the form z[G]. Further, for
all a € Ay, all £ € k, and every z € M, we have z[G] # z,.¢[G]. To see this,
notice that on the one hand, for all € V we have z[G] = z[G] and therefore
2[G] # 4.¢[G); on the other hand, if x € M\ V then TC(x) (i.e., the transitive
closure of z) contains an atom ag € Ao, and hence, zq,c[G] € TC (z[G]) (for
every ¢ € k), whereas for example z4,0[G] & TC (z4¢[G]).

Now we can prove the claim simultaneously for “€” and “=" by induction
on rank, where, for a set z, rkaq(z) is the least o € Q such that z € P*(Ay).
Notice that rkaq (@) = 1, whereas rkaq(a) = 0 for all atoms a € Ay. Assume
that the claim is valid for y € z and y = z whenever rkaq(z) < rkaq(z); we
shall show that the claim is also valid for y € x and y = z.

(€): f M E y € z, then V[G] F y[G] € z[G] follows by definition of
z.Conversely, if V[G] F y[G] € z[G], then z can neither be the name for
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an atom nor for the empty set, since otherwise we would have plpy € z (for
some p € P), which is obviously impossible. Hence, V[G] E y[G] = z[G] for
some z € z (i.e., z € ), and we have M E y = z by the induction hypothesis,
thus M Ey € z.

(=): Obviously, if M F y = z, then V[G] E y[G] = z[G]. Conversely, if
M E y # z, then either both x and y are atoms or the empty set and then
VIG] E y|G] # z|G]; or for example x contains some z which is not in y,
and then, by the € part already proved, V[G] F 2[G] € z[G] \ y[G], hence,
V[G] F y[G] 7é x[G] ' Actaim 1

Notice that the proof of CLAIM 1 does not depend on the particular P-generic
filter G.

The next step is to construct a symmetric submodel V of V[G] which
reflects to some extent the model V: We define a group ¢ of automorphisms
of P and a normal filter .% on ¢ as follows. For every permutation o of Ag,
let & be the set of all permutations m of A x x such that for all « € Ay and
all ¢ € k:

m(1a,&) = (wo(a), &) for some &' € k.

One can visualise the set A x x as a set A of pairwise disjoint blocks, each block
consisting of k elements. Every permutation o of Ag induces a permutation
o’ of the blocks and every m € & permutes the elements of A x x in such a
way that 7 acts on the blocks exactly as ¢’ does.

Let ~
9=J{s:0ec%}
and for every subgroup H of % let H = |J{5 : 0 € H}. Since every permuta-
tion m of A X K corresponds to an automorphism of P by stipulating
mp (7(@, €),n) = p(a&,n),

we consider ¢ as well as its subgroups as groups of automorphisms of . For
every finite E € fin(A x &) let

fixg(F)={nr €9 :max=ux for eachx € E} .
We let . be the filter on & generated by
{H:Heﬁo}u{ﬁxg—:Eeﬁn(Axm)}.

We leave it as an exercise to the reader to check that .% is a normal filter.
Now, let HS be the class of all hereditarily symmetric names (with respect

to & and .7), let G be P-generic over V, and let V = {2[G] : z € HS} be the

corresponding symmetric submodel of V[G]. As an immediate consequence of

the definition of .% we have:

o 7,[G]l € Vioralla € Ay and £ € &, because symg (zq¢) = fixg ({{(ta,&)}).
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e a[G] € V for all a € Ay, because symg(a) = symg, (a), i.e., for every
o € symg(a), 7 C symgy, (a).

e A[G] € V, because symy(A) = 9.

Below, we shall write & for 2[G]. So, in particular we have a € Vand A€V,

i.e., the “atoms” (more precisely, the surrogates of atoms introduced by the
forcing) as well as the set of all “atoms” belongs to the model V.

The next task is to show that 2 € V iff & € V, which is done in the following
two steps.
CrAamM 2. Forallx e M:x €V < z € HS.
Proof of Claim 2. Tt suffices to show that

symy, (z) € Fy <> symy(z) € F .
If o € % and 7 € 7, then a;z is the canonical name for ox, and therefore
symg(z) = symg, (x). Thus, if symg, (z) € Fo, then symg(z) € F. On the
other hand, if symy () € .#, then symg, (x) 2 H N fixg(E) for some H €
and a finite set E € fin(A x k). Let E|Ag = {a € Ag : 3((ta, &) € E)}. Then

symg, () 2 H N fixg, (E|Ag), and since % is a normal filter on %, we have
fixg, (E|Ao) € Fo and hence symg, (x) € Fo. claim 2

CramM 3. Forallt e M: 2 €YV < 2€ V.

Proof of Claim 8. By CLAIM 2, it suffices to show that if & € V, then z € V.
Assume towards a contradiction that there exists an # € M such that & € V
and z ¢ V, but for all y € x, y € V. Thus x C V, and since & € \7, there
exist a name z € HS and a condition py € G such that pgl—p z = z. In other
words, ¢ HS but there exists a name z € HS such that & = z[G], and
consequently Z € V. Since we have symg(z) € .Z, there is a group Hy € %
and a finite set Ey € fin(A x k) such that symg(z) 2 Ho Nfixg(Ep). Assume
there are permutations o € % and 7 € & such that

(a) m € HoNfixg(Fy),
(b) ox # x, and
(c) mpo and pg are compatible.
Then we have mz = z by (a), po F=p 7z # z by (b) and CLAIM 1, and since
wpo p Tz = mx, by (c) there is a qo € P such that mpg < qo > po and
wlp (z=2) Az #7m2) A (T2 =2),

a contradiction. To see that permutations o and 7 with the above properties
exist, notice first that since x is not symmetric (i.e., x ¢ V), there exists a
o € HyNfixg, (Eo|Ao) such that oz # z. Since |dom(p)| < &, thereis a d € K
such that

{{a,§) ra€ Ag A €& € r}n(dom(p)UEy) =10

and we define m € & as follows.
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o If a € Ey|Ap, then for all £ € k:

m(wa,§) = (a,§) .
e Ifa¢ Eyldp and € € 6, then

m(a, &) = (oa),d + &)
m(ta,d + &) = (1(oa),§) .

o Ifad Eyldp and 6 € £+ 1 € &, then
m(ta, 6 + &) = (L(oa),d + &) .

By definition it follows that = € Hg N fixz(Ep) and that mpy and po are
compatible. ctaim 3

The final step in the proof of THEOREM 17.2 is to show that the embedding
x +— & is a bijection between V), and W’Y(/l)v.

Cram 4. {#:z eV} = 27(A)Y

Proof of Claim 4. By CLAIM 3, the left-hand side is included in the right-hand
side; thus, it suffices to show that 227(4)Y C {#:2 €V,}, which will be done
by transfinite recursion: Let € V, and let y € V be such that V E y € 2.
We have to show that y = 2 for some z € V. Let y be a P-name for y. Since

P is r-closed and £ > |z| (since & > | 27(4)]), there is a p € G which decides
u € y for all u € z; more formally, p € G N MNuex Aucy. Hence, y = 2, where

uer

z= {u cx:plkpuc y}, and since 2 € V, by CLAIM 3 we get 2 € V. Hciaim 4

Finally, by CLAIM 4 we get that the embedding = — 2 of V into V is such
that {& : z € V,} = 27(A)Y, and for all 2,y € V, we have V E y € x iff
V E § € &, which shows that V, and 327(121)‘7 are indeed €-isomorphic, i.e.,
the embedding = +— & restricted to V, is an €-isomorphism between V, and
2V (A)V. .

COROLLARY 17.3. Let v be an ordinal and let ¢ be a sentence of the form
IX (X, v), where the only quantifiers we allow in v are the restricted quan-
tifiers Ju € 2Y(X) and Yu € LY (X). If V E ZFA is a permutation model in
which AC holds in the kernel and V F ¢, then there exists a symmetric model
V E ZF such that V F ¢.

Proof. Let X € V be such that ¥V E ¢(X,v) and let v € Q be such that
PY(X) C P7(A), where A is the set of atoms of V. By the JECH-SOCHOR
EMBEDDING THEOREM 17.2 there exists a symmetric model V of ZF such
that V, and @7(4) are €-isomorphic. Now, by the choice of « and since
V E ¥(X,v) we have (V,,€) F (X, v), and therefore (V,,€) E ¢. Hence,
(227(A), € ) F ¢ which shows that V F ¢. .
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Applications: Most of the results of Chapter 7— obtained by permutation
models —can now be transferred to proper models of ZF. For example
the existence of a set X, such that |X?| < |[X]?| is consistent with ZF
(cf. PROPOSITION 7.18), or in other words, ZF ¥ VX (| X?| £ |[X]?|). Similarly
we can show that ZF ¥ VX(‘ seq(X)’ £ ’ ﬁn(X)’) (cf. PROPOSITION 7.17).

NOTES

Symmetric submodels of generic extensions. The idea of using symmetry
arguments to construct models in which the Axiom of Choice fails goes back to
Fraenkel [6]. Cohen incorporated the symmetry arguments into his method and
constructed for example the model given above in which the reals are not well-
orderable. The formulation of Cohen’s method in terms of symmetric submodels of
generic extensions is due to Scott and Jech (cf. Jech [11, Chapter 15]).

Three examples of symmetric models. The first model (i.e., the one in which
the reals are not well-orderable) is due to Cohen (cf.[3, Chapter IV,§9]) and is
sometimes called the basic Cohen model (cf. Jech [9, Chapter 5, §3]); the second
model we presented (i.e., the one in which every ultrafilter over w is principal) is
due to Feferman [4]; and the third model (i.e., the one in which the set of reals is
a countable union of countable sets) is due to Feferman and Lévy [5]. However, the
constructions can also be found in Jech [11, Chapter 15], and in greater detail in
Jech [10, Chapter 3, Section 21] and [9, Chapter 10, §1] respectively.

Simulating permutation models by symmetric models. The JECH-SOCHOR
EMBEDDING THEOREM 17.2 is due to Jech and Sochor [12, 13], where numerous
applications of the theorem are given in the second paper [13] (see also Jech [9,
Theorem 6.1] and [11, Chapter 15]). The limits of the JECH-SOCHOR EMBEDDING
THEOREM 17.2 are discussed in RELATED REsuLT 93.

RELATED RESULTS

89. Choice principles in the basic Cohen model. We have seen that in the basic
Cohen model — the model in which the reals cannot be well-ordered — there is
an infinite set of reals which does not contain a countable infinite subset and
thus, the Axiom of Choice fails in that model. On the other hand, the following
choice principles are still valid in the basic Cohen model:

e If X is infinite, then 2 (X) is transfinite, i.e., Ro < |Z(X)]| (see Jech [9,
p.81, Problem 20]).

o For every family .# of sets, each containing at least two elements, there is
a function F' such that for each set S € #, § # F(S) & S (see Jech [9,
p. 82, Problem 21]).

e Every family of non-empty well-orderable sets has a choice function (see
Jech [9, p.82, Problem 22| and compare with Chapter 7| RELATED RE-
SULT 48).

90. A model in which every ultrafilter is principal. Blass constructed in [1] a
model —similar to Feferman’s model given above —in which every ultrafilter
(and not just ultrafilters over w) is principal.
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91. wi can be singular. It is provable in ZF that there exists a surjection from the
reals onto wy (cf. THEOREM 4.11). Hence, in the model in which the set of reals
is a countable union of countable sets, wy is a limit of a countable sequence of
countable ordinals, and therefore w; is singular in that model (compare with
PRrROPOSITION 5.10 where it is shown that in the presence of AC, successor car-
dinals are always regular).

92. w1 can be even measurable. An uncountable aleph k is called a measurable
cardinal if there exists a non-principal ultrafilter % over k which is k-complete,
ie,if o € k and {z¢: £ € a} C %, then

m{xngea}e%.

In the presence of AC, measurable cardinals are extremely large, even much
larger than inaccessible cardinals, on which Hausdorff [7, p. 131] wrote that al-
ready the smallest of those cardinals —if they exist —is of an ezorbitant mag-
nitude. However, under the assumption that there is a measurable cardinal in
the ground model, Jech constructed in [8] a symmetric model of ZF in which w,
is measurable (see also Jech [9, Chapter 12, §1]).

93. Nontransferable statements. Not every statement which hold in a permutation
model (i.e., in a model of ZFA) can be transferred into ZF. There are even
statements which imply AC in ZF but are weaker than AC in ZFA. For example
Multiple Choice and Kurepa's Principle are such statements (see THEOREM 5.4
and Jech [9, Theorem 9.2]).

94. Bases in vector spaces and the Axiom of Choice® In Chapter 5 we have seen
that the Axiom of Choice follows in ZF from the assertion that every vector space
has a basis (cf. THEOREM 5.4). However, it is still open whether the Axiom of
Choice is deducible in ZFA from the assertion that every vector space has a basis,
or at least from the assertion that in every vector space every independent set
is included in a basis.

95. Inaccessible cardinals in ZF. In [2], Blass, Dimitriou, and Lowe introduce and
investigate definitions for inaccessible cardinals (see page 315) in the absence of
AC. They produce four possible definitions that are equivalent in ZFC but not in
ZF, and provide a complete implication diagram (in ZF) for these four different
concepts.
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Combining Forcing Notions

In this chapter we shall investigate how one can combine various forcing no-
tions. For this we first consider just two (not necessarily distinct) forcing
notions, say P = (P, <p) and Q = (Q, <g).

The simplest way to combine P and Q is to form the disjoint union of P
and Q (where conditions of P are incomparable with those of Q). Obviously,
a generic filter of the disjoint union is either P-generic or Q-generic, and
therefore, this construction is useless for independence proofs.

Another way to combine P and @ is to build the product P x Q = (P x
@, <pxq). Since the forcing notion P x Q belongs to V, forcing with P x Q
is in fact just a one-step extension of V. Products of forcing notions will
be investigated in the first part of this chapter, where the focus will be on
products of Cohen forcing notions.

A more sophisticated way to combine P and Q is to iterate P and Q, i.e.,
we first force with P and then —in the P-generic extension — by Q. In this
case, the forcing notion Q does not necessarily belong to V. To see this, let G
be P-generic over V and let Q = (Fn(G, 2), C ) Obviously, the forcing notion
Q does not belong to V. However, since Q belongs to V[G], there is a P-name
Q in V such Q[G] = Q. Two-step iterations of this type are denoted by P x Q.
In the second~part of this chapter we shall see how to transform a two—ste~p
iteration into a one-step forcing extension. Furthermore, we shall see different
ways to define general iterations of forcing notions.

From now on, a forcing notion is just a partially ordered set P = (P, <)
with a smallest element; in particular, we no longer require that there are
incompatible conditions above each p € P.



344 18 Combining Forcing Notions

Products

General Products of Forcing Notions

Before we investigate products of Cohen forcing notions — which will be the
most frequently used product of forcing notions — we consider first the general
case.
For two forcing notions Py = (P, <¢,0¢) and Py = (P, <1,01), the prod-
uct forcing notion
PO XPlz(PO XPl,S,O)

is defined by stipulating 0 := (0g, 0;) and
(Po,;p1) < {(q0,q1) <= po<qoAp1<q-

We leave it as an exercise to the reader to show that Py x Py = (Py x P, <,0)
is indeed a forcing notion.

In general, if « is a non-zero cardinal number and (P, : « € k) is a sequence
of forcing notions, where for all « € &, Py, = (Py, <4, 0, ), then we define the
product forcing notion

H]PQ:(HPQ,S,O)

QER aER
by stipulating 0 := (0, : « € k) and
Pa:a€k) <(ga:a€R) <= Ya €L (Pa<afa)-

Let us now have a closer look at the product [],., P for some x > 2.
If G is [],¢,. Pa-generic over V, then G C [],, Pa- Thus, each p € G is of
the form p = (p(a) : @ € k). For each o € r let G(a) := {p(a) : p € G};
in particular, G C [],¢,. G(a). Obviously, for each o € k, G(a) is P,-generic
over V. Moreover, we have G = [],.,. G(a), which implies that V[G] =
V[Il,e. Gla)] = V[(G(a) : a € k)] (the details are left as an exercise to
the reader). In fact, we can prove even more:

LEMMA 18.1. Let  be a cardinal, let [] ., Po be a product of forcing notions
Py = (Pa;<a,04), and let G be [],, Pa-generic over V. Then, for each
v € K, G(v) is Py-generic over V[(G(a) : a € K\ {7})].

Proof. The cases when k = 0 or k = 1 are trivial. For the other cases, notice
first that it is enough to prove the result just in the case when xk = 2, for we
can always consider the product P x Q where P := P, and Q := Hae»c\{v} P,.
So, let G(0) be P-generic over V, where P = (P,<,0p). We have to show
that G(1) is Q-generic over V[G(0)], where Q = (Q,<,0q). Let D C Q
be an open dense set which belongs to the model V[G(0)] — notice that D
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does not necessarily belong to V. In V there exist a P-name D for D and a
P-condition py € G(0) such that

V E po =p “D is an open dense subset of Q7.

In other words, for every r € @ there exists a P-name ¢ for a condition in @
such that po =pg > 7 A g € D. Now, let

D'lz{(p,q>€PxQ:p2p0/\pll—pqeg}ngQ.

We leave it as an exercise to the reader to show that D] is dense above
(po,0g). Since py € G(0) and G(1) is Q-generic over V, by FACT 14.7 there
are conditions p’ € P and ¢’ € @ such that (p,¢’) € D} N (G(0) x G(1)). In
particular we have p’ € G(0) and p’ =p ¢’ € D, which implies that VI[G0)] E
q' € D[G(0)]. Finally, since ¢' € G(1) and D[G(0)] = D, we get ¢’ € DNG(1),
i.e., DN G(1) is non-empty. —

We now introduce the notion of support of a condition — a notion which
we shall meet again in the definition of iterated forcing.

Let p = <p(a) fa € Ii> be a [],c, Pa-condition, i.e., for each a € x we
have p(a) € Py, where Po = (P,, <4,04). Then the set {a € r : p(a) # 04}
is called the support of p and is denoted by supp(p). Notice that for any
[I.c. Pa-conditions p and ¢, p < ¢ implies supp(p) C supp(q). A finite
support product of forcing notions is a product of forcing notions consisting
of those conditions that have finite support.

Products of Cohen Forcing

In this section we show that a finite support product of countably many Cohen
forcing notions is essentially the same as Cohen forcing.

For this, let us first consider Cohen forcing C = (Fn(w,2), C), as it was
defined in Chapter 14. If G is C-generic over some ground model V, then
¢ = |JG is a function in V[G] from w to {0,1} (i.e., ¢ € “2) which has the
property that the set {p € Fn(w,2) : p C c} is C-generic over V. A real
¢ € “2 (in some model V') with this property is called a Cohen real over
V. Obviously, every C-generic filter over V corresponds to a Cohen real, and
vice versa, every Cohen real over V corresponds to a C-generic filter over V.

Sometimes it is convenient to consider a Cohen real, defined as an element
of “2, as a function from w to w. Of course, there exist natural mappings
between the sets “2 and “w. However, there is a more elegant way to get
Cohen reals ¢ € “w: Consider again Cohen forcing C = (Fn(w,2), C), and
for the moment let C := (UJ,,.,"2, €), C(w) := (Fn(w,w), €), and C(w) :=
( Unewnw’ = ) ! _ _

We shall show that the forcing notions C, C(w), and C(w), are all equivalent
to Cohen forcing C, i.e., no matter whether we force (over some ground model
V) with C or with one of C, C(w), or C(w), we always get the same generic
extension.

new
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PROPOSITION 18.2. C ~ C ~ C(w) ~ C(w).

Proof. In order to prove that two forcing notions P = (P, <) and Q = (@, <)
are equivalent, it is enough to show that there exists a dense embedding
h: P — Q (see FACT 14.3).
C ~ C and C(w) ~ C(w): The identities ¢; : |J,c,"2 — Fn(w,2) and
tw : Upeo,"w — Fn(w,w) are obviously dense embeddings.
C(w) ~ C: We shall define a dense embedding & : [J,c,"w — Upe,"2-
For this, take an arbitrary function p : ng — w. If ny = 0, then A(p) := 0.
Otherwise, by induction on ny we first define integers by such that for all
k € ng we have

b — p(0) if k=0,

T Vbt +pk)+ 1 if k> 0.

Let x, := {byx : k € no} and define the function h(p) : bp,—1 +1 — 2 by
stipulating

1 ifjeuay,

0 ifjé¢x,.

Notice that we always have h(p)(bn,—1) = 1. On the other hand, if the function
q : ko +1 — 2 is such that g(kg) = 1, then there exists a p : | — w, where
I = |{m € ko+1:q(m) = 1}|, such that h(p) = ¢. In fact, h(p) is the
sequence of p(0) zeros, a single 1, p(1) zeros, a single 1, et cetera. We leave it
as an exercise to the reader to verify that & is indeed a dense embedding. -

h(p)(4) = {

Since the forcing notions C, C, C(w), C(w), are all equivalent, we shall not
distinguish between these four forcing notions, and in order to simplify the
terminology, each of these four forcing notions is called Cohen forcing and
is denoted by C.

Let us now consider products of Cohen forcing: For any ordinal A €
let Cy\ = (Fn(w X A, 2), Q) and let C* denote the finite support product of
A copies of Cohen forcing C = (Fn(w,Q), Q). We shall show that for any
ordinal \, Cy ~ C*, and in addition, if X is a non-zero countable ordinal, then
both forcing notions are equivalent to Cohen forcing C.

PROPOSITION 18.3. For every ordinal A we have C\ ~ C|| ~ CM ~ C*, and
for every non-zero countable ordinal -y we have C =~ C, ~ C7.

Proof. Tt is sufficient to show that for every non-zero countable ordinal v we
have C ~ C,, and that for every ordinal A we have C) ~ C|, C* ~ CIl, and
(C,\ ~ (C/\.

C~Cy: Let{:wxvy— wbe abijection and let & : Fn(w x v, 2) — Fn(w, 2)
be such that for each p € Fn(w x v,2), dom(h(p)) = {[dom(p)] and for all
j € &[dom(p)] we have h(p)(j) = p(§7'(j)). Then h is obviously a dense
embedding; in fact, h is even an isomorphism.
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C* ~ Cy: Since C* is a finite support product, for every C*-condition p =

(p(B) : B € \), the set supp(p) = {8 € X : p(8) # 0} is finite. Now, for every
C*-condition p let h(p) € Fn(w x A,2) be such that

dom(h(p)) = {(B,n) € supp(p) x w : n € dom(p(B))}

and h(p) ((ﬂ, n}) = p(B)(n). Then h is obviously a dense embedding; in fact,
it is even an isomorphism.

Finally, let ¢ : A — || be a bijection. Then ¢ induces a bijection between w x A
and w x |A|, as well as a bijection between the set of C*-conditions and the
set of C1*|-conditions, which shows that C, ~ C|| and that C* ~ C.

As an immediate consequence of PROPOSITION 18.3 we get that for every non-
zero countable ordinal A, each C*-generic filter can be encoded by a single
Cohen real. Roughly speaking, adding one Cohen real is the same as adding
countably many Cohen reals. Since this is one of the main features of Cohen
forcing, we state it in a more formal way.

FACT 18.4. If G is C*-generic over V and G’ is Cy-generic over V, where \

is a non-zero countable ordinal, then there are Cohen reals ¢ and ¢ over V
such that V[G] = V]c] and V[G'] = V]].

A Model in which a < ¢

As a first application of a product of Cohen forcing we shall construct a model
of ZFC in which c¢ is large and a is small. Recall that a is the least cardinality
of an infinite, maximal almost disjoint family (called mad family), where a
family % C [w]“ is almost disjoint if any two distinct elements of % have
finite intersection (see Chapter 8).

PROPOSITION 18.5. wi = a < ¢ is consistent with ZFC.

Proof. Let V be a model of ZFC + CH, let k > wy be a cardinal, and let G be
C-generic over V (by PROPOSITION 18.3 we could equally well work with the
finite support product C*). By THEOREM 14.21 we know that V[G] F ¢ > &.
Thus, it remains to show that V[G] contains a mad family of size w;. Firstly,
we shall construct a family o4 C [w]¥ of size wy in V such that whenever
g is C-generic over V, then V[g] F “« is mad”. Then we shall show that
/) — which is obviously an almost disjoint family in V[G] —is still maximal
in VIG].

Construction of </ in V: Consider Cohen forcing C = (Fn(w,2), C).
Within V| let {(pg,gcg tw <€ e wl} be an enumeration of all pairs (p,z)
such that p € Fn(w,2) and g is a nice name for a subset of w, i.e., for all
(n,q1),(n,q2) € z, either g1 = g2 or ¢1 L ¢o (see the proof of THEOREM 16.4).
Notice that since V. E CH, there are just w; nice names in V for subsets
of w. The set o = {A¢ € [W]¥ : £ € wi} is constructed as follows: Let
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{A,, € [W]¥ : n € w} be any family of pairwise disjoint infinite subsets of w.
Let w < ¢ € wy and assume that we have already defined A, for all n € &.
Then, choose A¢ € [w]“ such that the following conditions are satisfied:

(1) For all n € &, A, N A¢ is finite.

(2) If
pelc |zl =w A Vn € &(pelc |ze N4y <w), ()

then the set {r > pe : rl—c |A¢ N z¢| = w} is dense above p.

To see that A¢ may be chosen that way, notice that whenever (}) fails, then we
just have to take care of (1) and we simply apply the fact that £ is countable
and therefore the almost disjoint family {A,, : n € {} cannot be maximal. On
the other hand, if (¥) holds, then whenever g is C-generic over V and p¢ € g
we have

Vg F zelg] € W] AV € E(|ze[g] N Ay| < w).

In other words, z¢[g] witnesses that the almost disjoint family {A, : n € £} is
not maximal in V([g].

Now, we construct Ag, satisfying (1), such that V[g] E |z¢[g] N Ae] = w:
For this, let {B; : i € w} be an enumeration of the set {4, : n € £} and let
{(ni, gi): 1€ w} be an enumeration of w x {q iq > pg}. By (%), foreach i € w
we obviously have

gic|ze \ (BoU...UB;)| = w.

Thus, we find a C-condition r; > ¢; as well as an integer m; > n; such that
m; ¢ (BO U...uU BZ-) and r;l-cm; € z¢, and define A¢ = {m,; : i € w}.
What have we achieved? By (%), for every g > pe¢, every n € w, and every
finite set {no,...,nk} C &, there is a condition ¢’ > ¢ and an integer m > n
such ¢'l=cm € ze Am ¢ U,y An:- Thus, 2¢[g] is not a witness for the
statement “{A, : n € £+ 1} is not a mad family in V{g]”, which implies that
oy = {A¢ € [w]¥ : £ € w1} is in fact a mad family in Vg]. In other words, <%
is a mad family in 'V which remains mad after adding a single Cohen real. In
the next step we show that the same is true even if we add many Cohen reals.

o is mad in V[G]: Consider now the forcing notion C,. Let G be Cy-
generic over V and assume towards a contradiction that

VIG] F 3z € [w]“VAe € o (Jz N Ae| <w).

Then there would be a C,-name z for a subset of w and a C-condition p such
that for all £ € wy,

phc, |zl =w A lzNAg <w.

By the facts proved earlier and since C, satisfies ccc and every C,-condition
is finite, there is a countable set Iy C x such that, with respect to C;, =
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(Fn(w x Ip,2), C), there is a nice Cz,-name z for a subset of w as well as a
C,-condition pg such that for all £ € wy,

pol=cy, [0l =w A |zoN Al <w.

By ProprosITION 18.3, C =~ Cy,, and hence we can replace C;, by C. Thus,
there exists a pair (pe,, Z¢,), consisting of a C-condition pe, and a nice name
x¢, for a subset of w, such that for all £ € wy,

P e lze| = w A zg N Ae| <w.
In particular, for A¢, we would have
Peo e ey N Ago| <w,
which contradicts the construction of Ag,. =

For a proof using iterated forcing (introduced below) see RELATED RESULT 99.

Iterations

Below, we shall develop some methods to add generic filters step by step.
The simplest case, which we consider first, is when only two generic filters are
added. This so-called two-step iteration is quite easy to understand, but be-
cause it involves most of the tools which are used to handle longer iterations,
it is worthwhile to consider this case in greater detail. Nevertheless, the situa-
tion becomes more difficult when the length of the iteration is infinite — which
will be discussed in a slightly less detailed way.

Two-Step Iterations

Let us start with an example: Let V be a model of ZFC. Assume we want to
construct an infinite set H C w in some generic extension of V which is almost
homogeneous for each colouring 7 : [w|™ — r which belongs to V (where
n € w and r is a positive integer). Recall that an infinite set H C w is almost
homogeneous for a colouring 7 : [w]™ — r, if there is a finite set K € fin(w)
such that [H \ K|™ is monochromatic. There are many different ways to obtain
such a real H. For example, if there is a Ramsey ultrafilter % in V, then it
would be enough to force the existence of a set H € [w]* which is almost
contained in each z € . Why? Since % is a Ramsey ultrafilter, for every
colouring 7 : [w]™ — 7 there is an « € % which is homogeneous for 7. Now,
if H is almost contained in x, then H is almost homogeneous for 7. However,
if there is no Ramsey ultrafilter in V (see for example PROPOSITION 25.11),
we first have to force the existence of a Ramsey ultrafilter. In order to force
a Ramsey ultrafilter we use the forcing notion U = ([w]“/ fin, < ) which was
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introduced in Chapter 14. Let Gy be U-generic over V and let Z = |J Go.
Then, by PROPOSITION 14.18, % is a Ramsey ultrafilter in V[Gy]. Now, we
force the existence of a set H € [w]* which is almost contained in each z € %:
In VI[Gy], consider the forcing notion Qg = (Q#, <), where Q4 is the set

of all ordered pairs (s, E') such that s € fin(w) and E € fin(%), and for all
(s, B, (t, F) € Qe we define

(s, B) <(t,F) <= sCtANECF A (t\s)C[E.
If G is Qg -generic over V[Gy], then the set
Hy = U {s efin(w): 3E € fin(%)((s, E) € G1) },

which belongs to the model V[Gy][G1], is almost homogeneous for all colour-
ings 7 : [w]™ — r which belong to V.

Notice that the forcing notion Q4 belongs to V[Gy], so, there is a U-name
Q« in V for Qg . Forcing first with U over V, followed by forcing with Qg
over V[Gy], is a two-step “process” which we shall denote by UxQq, . The goal
is now to find a forcing notion P in V such that P is equivalent to U * Qq,
in other words, the goal is to write the two-step “process” U x Qg as a siﬁgle
forcing extension over the ground model V. -

More generally, we have the following situation: We start in some ground
model V of ZFC, where in V we have a forcing notion P = (P, <p,0p). If
G is P-generic over V, then V[G] is again a model of ZFC. Assume that
Q = (®,<g,0q) is a forcing notion in V[G] (which is not necessarily in V)
and that H is Q-generic over V[G]. Then V[G][H] is a model of ZFC, too.

Since Q belongs to V[G], there is a P-name Q in V for Q. So, by combining
the conditions in P with P-names for Q-conditions, it should be possible to
write the so-called two-step iteration P x QQ as a single forcing notion R which
belongs to the ground model V. Furthermore, it would be interesting to know
whether some combinatorial properties of P and Q are preserved in the two-
step iteration. For example, if P and Q both satisfy ccc, does this imply that
R also satisfies ccc? Before we can answer this question (in the affirmative),
we first have to show that P Q is indeed equivalent to a single forcing notion
which belongs to V — which is consequently denoted by P % Q.

Let V be a model of ZFC and let P = (P, <p,0) be a forcing notion in
V with smallest element 0. Notice that by FACT 14.4 we may always assume
that the smallest element of a forcing notion is (), i.e., 0 = (). A P-name in V
for a forcing notion Q = (Q, %, 0) in the P-generic extension of V is a triple
of P-names (Q, <, ) which has the following properties:

(a) 0 I-p “x is a partial ordering of @” (recall that a partial ordering is a bi-
nary relation which is transitive, reflexive, and anti-symmetric).

(b) If pl=p g € Q for some P-name g, then there is a P-condition p’ such that
p <p p’, and there are P-names 1 and ro such that

PEpri €QAT2 €QAgSTINGS T2 ATI LTS,
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(C) 0 ”—[pv(Z) S Q
(d) Ifpl-pg € @, then pip () < q.
Now, we first define a forcing notion R in V, which depends on P & Q,

and then we show that forcing with R yields the same generic extension as
the two-step iteration P x Q.

Let R = (R, <g, Or) where

R={(p,q):pe PAplpqgeQ} and O = (0,0),
and for all (p;, gl), (p2, g2> € R, let

(p1,q1) <r (P2:¢2) <= p1<pp2Ap2lPq1 S ¢2.

Before we show that forcing with R is equivalent to P+ Q, we have to show
that R = (R, <g, Og) is a forcing notion with smallest element Og.

For this, we first show that the binary relation <g is a partial ordering,
i.e.,, we show that <g is (1) reflexive, (2) transitive, and (3) has the property
that

((p1,q1) <r (P2, q2) A (P2, q2) <r (p1,q1)) = (P = p2)
and that pi=p g1 = g2: For (1)=(3), let (p,q), (p1,q1), (P2, 92), (p3,q3), be
arbitrary R-conditions.
(1) (p.q) <r (p,q) = p<ppApPFPrgsyq.

Since <p is a partial ordering, p <p p, and by (a) we have plp ¢ < q.
(2) (p1,q1) <r (P2,q2) A (P2,92) <r (P3,q3) <=

pr<pp2Ap2<pps N p2lpq1 S g2 Ap3l—pg2 < gs

which implies p1 SePs ince p2 <eps we get p3 —p g1 S92Nq25¢3

By (a) we get p3 I=p ¢1 < g3, and hence, (p1,q1) <r (p3,¢3)-
(3) (p1,q1) <r (P2, q2) A (P2,92) <r (P1,q1) <=
Pr<pp2Ap2<pp1 AN p2lpqi S @2 Ap1lPge S 1

hich implies p1= .
w plies p1=p2 since p1=p2 we get p1 5 Q1S NESN

By (a), < is forced to be anti-symmetric, thus, p1 =p ¢1 = ga.
Now, we show that Og (i.e., (0, 0)) belongs to R and that Og is the smallest

element (with respect to the partial ordering <g):
e (0,0) € R <= 0I=p € Q, which is just (c).

e Let (p,g) be an arbitrary R-condition. Since (p,q) € R we havepl—pq € Q,
and further we have (0,0) <g (p,q) <= pl=p < g, which is in fact
just (d).
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Finally, we show that R = (R, <g) is indeed a forcing notion: For this we
have to show that there are incompatible conditions above each (p, ¢) € R. Let
p1,p2 € P be such that p <p p1, p <p pa, and p; Lp pa. Then (p,q) <r (p1,9),
(p,q) <r (p2,9), and (p1,q) Lr (p2,q), as required.

It remains to show that forcing with R is equivalent to the two-step itera-
tion P x Q. We shall give a detailed proof of one direction and leave the other
direction as an exercise to the reader.

PROPOSITION 18.6. Let V be a model of ZFC and let G be R-generic over
V. Then there are sets Gy and Gy in V|G|, such that G is P-generic over V
and G is Q[Go]-generic over V|[Go].

Proof. In the model V[G] we define

Goz{peP:Egeg((p,g) €aG)}

and
G1 = {q[Go] € Q[Go] : Fp € Go((p,q) € G)}.

We first show that Gy and G; are filters, i.e., Gy and G are both down-
wards closed and directed.

Gy is downwards closed and directed: If p € Gg, then thereis a ¢ € @ such
that (p,q) € G, and for any p’ < p we have (p/,0) < (p,q). Since G is down-
wards closed, this implies (p/, 0) € G, and therefore p’ € Go. Furthermore, if po
and p; belong to Gg, then we find (po, go) and (p1,¢1) in G, and since G is di-
rected, there is an R-condition (p,q) € G such that (p, q0) < (»,¢) > (p1,q1)-
Thus, p € Gy and py < p > p1. ) )

G1 is downwards closed and directed: If qo[Go] € Gi, then there is a
Po € Go such that <p0,Q0> € G. Assume tha~t in V[Go], (J1[Go] < QO[GO]-
We have to show that q~1 [Go] € G. Firstly, there is a p' € Gy such that
p'I=p ¢1 < go. Secondly, since G is directed, there is a (p1,g2) € G such that
®,0 < <p1,q2> {po; qo), in particular we get p1l=pgo < ¢2. Now, since
p1 > p/, we also have p; I-p q1 < qo. Thus, p1-pq < q2, “which implies
(p1,492) > (p1,q1), and since ‘G is downwards closed, (pl,ql) € G. Hence,
q1[Go] € G1. Furthermore, if ¢o[Go] and ¢1[Go] belong to G4, then we find
(po,q0> and (p1,q1) in G, and since G is directed, there is an R-condition
(p,q) € G— and therefore ¢[Gy] € G1 — such that <po, q0) < (p,q) > (p1,q1)-
Thus, plp g0 < q > qu, and since p € Gy we get qO[GO] < ¢[Go] > q1[Go]-

Now we show that Gy and GG are generic, i.e., Gy and G; meet every open
dense set in V and V[Gy] respectively.
Gy is generic: Let Dy C P be an open dense subset of P and let

Dy ={(p.q) €eR:pe Do}.

Then Dj is an open dense subset of R, and since G is R-generic over V, there
is an R-condition (p, ) € G — and therefore p € Go — such that p belongs to
Dy. Hence, Gy N Dg # (), which shows that Gy is P-generic over V.
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G1 is generic: Let D; be an arbitrary open dense subset of Q[Go]. Then
there is a P-name D; for D; and a P-condition py € Gy such that

po =p “D; is open dense in Q”.
With respect to D; define
Dy={{p.q) € R:plpqe D}

Then D} C R is open dense above (po, (), and since (pg,0) € G (because
po € Gyp), we get that GN D} # 0, say (p1,q1) € GN D). Now, (p1,q1) € G
implies that p; € G and that ¢1[Go] € G1. Furthermore, by definition of D/
we get p1 -p g, € D1, and therefore q1[Go] € D;. Hence, q,[Go] € G1 N Dy,
which shows that G is @[GO]—generi(;over VI[Gy]. ) —

In the next section we shall investigate general iterations, but before let
us show that two-step iterations of ccc forcing notions satisfy ccc.

LEMMA 18.7. If P satisfies ccc and
Op =p “@ satisfies ccc”
then also P % @ satisfies ccc.

Proof. Let P = (P,<) and let Q = (Q, ). Assume towards a contradiction
that in the ground model V there are uncountably many pairwise incompatible
PP Q-conditions {(pg,g@ tE€w ). Let ¢ = {(§,p§> : £ €wip}; then zis a
P-name for a subset of wy, i.e., Oplpz C w;. Let G be P-generic over V.
Then z[G] = {€ € w; : pe € G}. We shall show that there is an ordinal 8 € w;
such that Op -p z C 3, but first we prove the following

CraM 1. In V[G], the set {q¢[G] : £ € 2[G]} is an anti-chain in Q[G].
Proof of Claim 1. Assume towards a contradiction that there are distinct
§,n € z[G], such that ¢¢[G] and g,[G] are compatible elements of Q[G]. This

would imply that there is a P-condition p € G, as well as a P-name q for a
Q[Gl-condition, such that

PHErPg e QNG g gy <.

In fact, by extending p if necessary, we get a P * Q-condition (p,q) which is
stronger than both (pg,g¢) and (py,gy), contradicting our assumption that
{(pg, ge) 1§ € wl} is a set of pairwise incompatible P * Q-conditions. Hciaim1

Since Op I=p “Q satisfies ccc”, and therefore preserves wq (by LEMMA 14.20),

we get that V[G] F |2[G]| < w1 whenever G is P-generic over V, hence,
Op I—p |QS| < w1.

CLAIM 2. There is an ordinal 3 € wy such that Op p z C ﬁ
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Proof of Claim 2. In 'V, let
E= {OzEwl:HTEPVﬂEOA(T"—ngQA/\gg_'ﬂ)}.

Further, for every a € E choose a P-condition r, such that for all g € «,
rolFpz C oAz &€ B. The set {r, : @ € E}, which belongs to V, is an anti-
chain in P, and since P satisfies ccc, |E| < w;. Thus, there exists a § € w;
such that £ C 3, which implies that Op I-p 2 C 3. Actaim 2

By definition of g, for all { € wy we have pe -p§ € 2. In particular we get
pg =p B € z, which is a contradiction to Op I=p z C . —

As a matter of fact we would like to mention that LEMMA 18.7 does not
have an analogue for products; in other words, the product of two ccc forcing
notions does not necessarily satisfy ccc (see RELATED RESULT 98).

General Iterations

In the previous section we have constructed a two-step iteration UxQg, in such
a way that whenever G is U * Q4 -generic over V, then there is an infinite set
Hy € [w]” N'V[G] which is almost homogeneous for all colourings 7 : [w]™ — r
which belong to the ground model V. Obviously, such a set Hy cannot belong
to V. Now, we can ask what happens if we iterate the forcing notion Ux Qg ?
As we have seen, at each stage we obtain a new set H € [w]¥ which is almost
homogeneous for all “old” colourings 7 : [w]™ — r. So, for example an w;-
stage iteration of U x Qg , starting in a model V of ZFC in which ¢ = wa,
would generate a family {H, : @ € w;} of size wY, where each H, is almost
homogeneous with respect to all “old” colourings 7 : [w]™ — r. Recall that
for any integers n,r > 2 there exists a bijection between the set of colourings
7t [w]™ — r and the set of real numbers, thus, every “old” colouring can be
encoded by an “old” real (and vice versa). Now, if every colouring 7 : [w]™ — 7
(i.e., real number) appears at some stage « € wj in the iteration, and if the
cardinal numbers wy, wy, ¢V are the same as wi, wa, ¢ in the final generic
extension, then we would get a model in which w; = hom < we = ¢. But do
we really get such a model?

To understand the previous example as well as iterations in general, we
have to answer questions like:

1. Is every iteration of forcing notions equivalent to a single forcing notion?
2. How is the iteration defined at limit stages?

3. Does the iteration add reals at limit stages of uncountable cofinality?

4. Does the iteration preserve cardinals?

Below, we shall give a complete answer to Questions 1-3 and we shall
give an answer to Question 4 with respect to forcing notions satisfying ccc;
regarding the forcing notion U x Q, we refer the reader to Chapter 20 and
Chapter 23 | RELATED RESULT 138.
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Let us now consider a-stage iterations of forcing notions for arbitrary
ordinals « (recall that by FACT 14.4 we may always assume that the smallest
element of a forcing notion is ).

For o = 1 we get ordinary forcing, and for o = 2 we get two-step iterations
which we already discussed in the previous section.

For o = 3 we start with an arbitrary forcing notion Py = (P, <) which
belongs to some ground model V. Let Q; be a Py-name for a forcing notion
(Q1, <) in the P;-generic extension of V and let Py := P; * Q;. Further, let
Q2 be a Py-name for a forcing notion (Q2, <) in the Pg—geneﬁc extension of
V and let P3 := Py Q2. Then every P3-condition is of the form ({qo, q1), g2>,
where g9 € P1, qo Fp, ¢ € Ql, and (qo, g1> p, g2 € QQ.

To form an a-stage iteration for 3 < a € w, we just repeat this pro-
cedure. Thus, for positive integers n, every P,-condition is of the form
{({---{g0,q1),492) - * - Gn-2), Gn—-1), for which we shall write the typographically
less cumbersome (and easier to read) n-tuple (qo, q1, . . ., ¢n_1). With this con-
vention, for positive integers n, P,-conditions are sequences of length n.

For n = 0 let Py := ({0}, €). When we define Po-names, we find that
G = {0} is the unique Py-generic filter over V. In particular we get that a
0-stage extension of V is just V.

The sequence of forcing notions Py, Py, ..., P, where Py, = (P, <,0), has
the property that if p = (go,q1,...,qn-1) € Pn, then for all k € n, p| € P
and pl;, Fp, qk € Qk, where]@;€ is a Pj,-name for a forcing notion (Qk, <)
in the Pg-generic extension of V. In particular, P; = Qg is a Pp-name for a
forcing notion (Qo, <) in the Py-generic extension of V, which is just V itself.
In other words, P is a Pg-name for forcing notion (P;, <) which belongs to
V. Thus, every P,-condition is of the form {(qo, q1, ..., ¢n-1), Where g is a Py-
name for a Qy-condition. This completes the definition of a-stage iterations
for a € w.

Similarly, we define (« + 1)-stage iterations for arbitrary ordinals «: If the
a-stage iteration P, = <@5 1B € 04> is already defined and Qa is a P,-name
for a forcing notion in the P,-generic extension, then P, ;1 := P, * Qq.

Let us now consider the case when « is a limit ordinal. At first glance,
the set of P,-conditions consists of all a-sequences (gg : 8 € «), but having
a closer look we see that there is some freedom in defining the set of Pg,-
conditions. For example we can require that gg = @) for all but finitely many
B € «, which is called finite support iteration, or that qp = 0 for all but
countably many 3 € «, which is called countable support iteration.

For P,-conditions p = (gs : B € a) we define

supp(p) = {B € a:qp # 0},

and like for products we call supp(p) the support of p. For example, a count-
able support iteration P, consists of all P,-conditions p that have countable
support, i.e., | supp(p)| < w.

Because of the following result (which will be stated without proof), finite
support iterations are often used in iterations of forcing notions satisfying ccc.
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PROPOSITION 18.8. Any finite support iteration of ccc forcing notions satis-
fies ccc. In other words, if P, is a finite support iteration of (Qs : 5 € «),
where for each 3 € o we have

0p =5 “ Qg satisfies ccc”,
then also P, satisfies ccc.

Before we give an example of a finite support iteration, let us first settle
some notation: Let P, = <@'y 1y € a> be any a-stage iteration and let G be
P,-generic over some model V. Then, for § € a, let

G(B) ={as: 3py:v € ) € G (g5 = pslG])}

and

Gls = {{a;: 7€ B): 3py : 7 € a) € G ¥y € § (a5 = ps[G]) }.

In other words, G|s denotes the Pg-generic filter generated by G. In abuse of
notation, for P, = <@'y 1y € a> we usually write P, = <Q'y 1y € a>, where
for all v € o, Q== Q, [GM. In other words, we usually consider an a-stage
iteration P, starting in some model V, as an a-sequence of forcing notions
Q. (not just P.,-names for forcing notions), where for each v € «, Q, belongs
to the P-generic extension V[G|,]. Consequently, for 8 € a we also write
V[(G(7) : v € B)] instead of V[G|s], having in mind that we add one generic
filter after the other, rather than adding just the single generic filter G|s.

We conclude this section by showing that in finite support or countable
support iterations or products of certain forcing notions (e.g., ccc forcing
notions), no new reals are added at limit stages of uncountable cofinality — a
result which will be used quite often in the forthcoming chapters.

LEMMA 18.9. Let A be an infinite limit ordinal of uncountable cofinality (i.e.,
cf(A) >w), let Py = <@a o€ )\> be any finite support or countable support
iteration or product of arbitrary forcing notions Q,, and let G be IP)-generic
over some model V of ZFC. If V[G] E cf(\) > w, then no new reals are added
at stage A\; more formally,

“wNVI[G] = U YwNVIG|a].
a€A
Proof. Let f be aPy-name for a function in “wNV[G]. For every 3 € A define
a Pg-name gg for a partial function from w to w by stipulating

gs = {(op(n,m),p) € f : supp(p) C BAp € G},

where op(n,m) is the canonical Py-name for the ordered pair (n,m) (which
was defined in Chapter 14). Now, we show that there exist an o € A such
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that V[G|.] E fIGla] = 9alGlal, 1-€., the function f[G] appears already in the
model V[G|,]: Let us work in the model V[G]. For every n € w we can choose
a pn € G which decides the value of f(n), i.e., (op(n,m),p,) € f for some
m € w. Using the fact that V[G] F cf(\) > w and that the supports of the p,’s
are at most countable (i.e., finite or countably infinite), we get that in V[G],
Unco supp(pn) & A. Thus, there is an a € X such that J,, ., supp(pn) C «a,
and by construction we have g,[G|.] € “wNV[G|,] and V[G] F f[G] = ga[G].

_|

A Model in which i < ¢

In this section we shall construct — by a finite support iteration of ccc forcing
notions — a model in which i < ¢, where i is the least cardinality of a maximal
independent family; but first, let us recall a few notions: A set . C [w]“ is
an independent family, denoted i.f., if for any A, B € fin(.#) with AN B =10
we have (A \ U B is infinite, where we stipulate (0 := w (see Chapter 8).
Furthermore, for independent families .#, let bc (.#) be the set of all finite
boolean combinations of distinct elements of ., in other words,

be(#) = {(NA\UB: {4, B} Cfin(#) A AN B =0}

Notice that be () C [w]* and that for .# = () we have be (F) = {w}.

The following lemma — which is in fact a ZFC result — will be crucial in the
construction of the forcing notion which will be used in the iteration below.

LEMMA 18.10. Let V be an arbitrary model of ZFC and let .# C [w]“ be an
arbitrary i.f. in V. Then there exists an ideal I C & (w) in V such that

(a) INbe (&) =0, and

(b) for every y € [w]* N'V there exists an « € be () such that xtNy or x\y
belongs to I.

Proof. Let {y, € [w]“ : a € ¢} be an arbitrary enumeration of [w]¥. With
respect to this enumeration we construct the ideal I by induction on ¢. Firstly,
let Iy := fin(w). Then Iy is an ideal and Iy Nbe(#) = 0. Assume that we
have already defined the ideal I, for some « € c. If there are z € be (#) and
u € I, such that

T CyaUu,

then I,+1 := I,; otherwise, I,y is the ideal generated by I, U {y.}, i.e.,
u € oy iff there is an A € fin (Ia U {ya}) such that v C |J A. Further, for

limit ordinals X € ¢ let I := |J ¢y Lo, and let

1=U1a.

aec
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It remains to show that the ideal I has the required properties (we leave it as
an exercise to the reader to show that I is indeed an ideal):

(a) Assume towards a contradiction that there is an z € be (&) N I. Since
IpNbe(#) = 0, there exists a least ordinal a € ¢ such that x € I,4;. In
particular, z ¢ I, which implies that 1,41 # I,. Hence, I,11 must be the
ideal generated by I, U {y,}. Thus, by construction, there is no u € I, such
that # C y, U u. In other words, for each u € I, we have ¢ y, Uu, which
contradicts the fact that x € 4.

(b) Take any y € [w]* and let @ € ¢ be such that y = y,,. If there are z € be (#)
and u € I, such that z C y, Uu, then =\ y, C u, and consequently z \ y € I;
otherwise, y, € In4+1, which implies that x Ny, € I,+1, and consequently
zNy el —

Now we are ready to construct a model in which i < .
PROPOSITION 18.11. i < ¢ is consistent with ZFC.

Proof. The proof will be given in two steps: In the first step, with respect to
some 1.f. # we shall construct a forcing notion Q; (where .# and I are as in
LEMMA 18.10), and will show that Q; adds a generic real g € [w]* (over some
model V) which has the following properties:

e JU{g}isanif in V[g].
e If y € [wW“ NV is such that .# U {y} is independent and y ¢ .#, then
# U{g,y} is not independent.

In the second step, by a finite support iteration of length w; of forcing notions
Qy, we shall construct a generic model in which the set of generic reals, added
by the forcing notions Qy, is a maximal i.f. of size w;.

1%t Step: Let V be an arbitrary model of ZFC and let .# C [w]“ be an
arbitrary countable i.f. in V. Furthermore, let I C (w) be the ideal con-
structed in LEMMA 18.10 with respect to .#, i.e., I N .# = (), and for every
y € [w]¥ NV there exists an x € be(#) such that z Ny or z \ y belongs
to I. With respect to the ideal I we define the forcing notion Q; = (@1, <)
as follows: A Q;-condition is an ordered pair (s, E) where s € fin(w) and
E € fin(I), and for Q;-conditions (s, E) and (¢, F') we define

(,B) < (t,F) < sCt NECF A (t\s)N | Ju=0.
uelk

Notice that for any E,F € fin(I) and any s € fin(w), (s, E) and (s, F) are
compatible, and since the set fin(w) is countable, Q; satisfies ccc.

Let G be Q;-generic over V and let

g= U{S € fin(w) : IE € fin(I)((s, E) € G)}
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We leave it as an exercise to the reader to show that ¢ € [w]* and that
V[g] = VI|G]. Thus, we can equally well work with g instead of G, in other
words, g is a Q;-generic real over V.

Now, we show that .# U {g¢} is an i.f. in V]g] which is even maximal with
respect to the reals y which belong to V — notice that this property of g does
not depend on the particular ideal I which is involved in the construction of
the forcing notion Q.

CraM. If g is Q-generic over V, then .# U {g} is an independent family in
Vg], but for all y € [w]* NV withy ¢ .#, .# U{g,y} is not independent.

Proof of Claim. Firstly we show that .# U {g} is an i.f. in V|[g|, i.e., we have
to show that for every x € be (£), both sets gNz and (w\ ¢g) Nz are infinite:
For every x € be (.#) and every n € w define

Apz={(s,E) €Qq:|sNna|>n},

Bn.={(s,E)€Qr:|UENz|>n}.

We leave it as an exercise to the reader to show that for all x € be (#) and
n € w, Ap  and By, , are open dense subsets of Q, which implies that .#U{g}
is an i.f. in V[g].

Now, we show that for all y € [wW]* NV with y ¢ ., & U {g,y} is not
independent: Let y € [w]* NV be an arbitrary real. If for all v € I and
z € be (&) we have z ¢ y Uu, then let

Cy={(s,E)eQr:ycE},

otherwise, there is a ug € I and an = € be (#) such that z C y U ug and we
define
Cy = {(S,E) €EQr:ug € E}

By the properties of the ideal I we get that C), is an open dense subset of Q;
for all y € [w]“. This implies that for each y € [w]* we find an z € be (#)
such that g Ny is finite (in the case when y € I), or g N (z \ y) is finite (in
the case when x C y U u for some u € I). However, in both cases we get that
# U{g,y} is not independent whenever y € [w]“ \ .. Actaim

2" Step: Now, we are ready to define the finite support iteration which
will yield a generic model in which there exists a maximal independent family
# of cardinality wy: Let V be an arbitrary model of ZFC in which ¢ > ws.
We construct the i.f. .# by induction on o € wy. Let .% = 0 and assume that
we have already constructed the i.f. ., for some a € w;. Furthermore, let
I, C #(w) be the ideal constructed in the proof of LEMMA 18.10 with respect
to the i.f. 7, and let g, be a Qr_-generic real over V[(g,, 1y € a)]. Now, let
Fot1 := o U{ga}; and for limit ordinals \ € wy let &y := UﬂeA 3. Notice
that for each o € wy, Jo = {gy : 7 € a} is a countable L.f. in V [{g, : v € o)].

Let P, = <QIQ Ta € w1> be the finite support iteration of the forcing
notions Qyr,, let G = (g : @ € wy), and let & = {go : @ € w1}. Then G is P, -
generic over V and . is an i.f. in V[G] of cardinality w;. It remains to show
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that .# is maximal and that V[G] E ¢ > wy: Since Py, is a finite support itera-
tion of ccc forcing notions (recall that Q; satisfies ccc), by PROPOSITION 18.8
we get that also P, satisfies ccc, and therefore, by LEMMA 14.20, all cardinals
are preserved. In particular, since V F ¢ > wq, we get that V[G] E ¢ > w;.
Furthermore, by LEMMA 18.9 we know that the iteration does not add new
reals at stage wy. Thus, for every real y € [w]“ N V[G] there exists an « € wy
such that y € V[(gy : 7 € a)]. Now, by the CLAIM we know that for each
y € W] NV[{gy: 7 € a)] which does not belong to .7, Fo U {ga,y} is not
independent. Consequently, for each y € [w]* NV [G] we get that .# U{y} is not
independent whenever y ¢ .#. This shows that .# is a maximal independent
family in V]G], and since |.#| = wy and wy < ¢, we get that w; =1 < ¢ is
consistent with ZFC. —

Considering the diagram at the end of Chapter 8, we see that the independence
number i appears on the top of the diagram. However, as we have seen above,
i can be quite small compared to ¢. In the next chapter we consider a cardinal
characteristic on the bottom of the diagram, namely p, and show that p can
be equal to ¢, even in the case when ¢ > w;.

NOTES

Products and iterations. For a more detailed introduction to products and iter-
ations of forcing notions we refer the reader to Kunen [5, Chapter VIII], Baumgart-
ner [1], and Goldstern [3] — where one can also find many more applications of these
forcing tools. In particular, PROPOSITION 18.5 is taken from Kunen [5, p. 256, The-
orem 2.3] and the idea for the proof of ProPosITION 18.11 is taken from Kunen [5,
p. 289, A12] (where the actual construction is due to Jérg Brendle).

RELATED RESULTS

96. Iterating Cohen forcing. A special feature of Cohen forcing C = (Fn(w, 2), g)
is that the set Fn(w, 2) is the same in every transitive model of ZFC. In particu-
lar, for any cardinal k we get that (finite/countable support) iterations of length
k of Cohen forcing C are equivalent to (finite/countable support) products of s
copies of C (cf. LEMMA 21.9).

97. Products as two-step iterations. Let Py and P1 be some forcing notions in some
model V of ZFC, let G be Py x Pi-generic over V, and let G(0) and G(1) be
as above. Then G(0) is Po-generic over V[G(1)] and G(1) is P;-generic over
V[G(0)] (see for example Kunen [5, Chapter VIII, Theorem 1.4] and compare
with LEMMA 18.1).

98. Products and the countable chain condition. It is consistent with ZFC that there
are forcing notions P and @Q, both satisfying ccc, such that product P x Q does
not satisfy ccc (compare with LEMMA 18.7). Examples of such forcing notions
can be found in Kunen [5, Chapter VIII, p. 291f].
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99.

100.

101.

The consistency of ¢ > a revisited. Let V be a model in which ¢ > w; and let
o/ C [w]” be a countable almost disjoint family. With respect to </ we define
the following forcing notion Q. : The conditions of Q. are of the form (s, X),
where s is a finite sequence of w and X € [/]<* and we define (s, X) < (s/, X’)
if s C s, X C X', and (s \s)NUX = 0. For Z = {B € [w]” : VA €
A (|BNA| < w)} we get that the generic real A € [w]“, generated by the finite
sets s, is almost disjoint from every member of </ and has infinite intersection
with each member of & (cf. Kunen [5, Chapter II, Lemma 2.17]). Thus, &7 U{A}
is a mad family for the old reals (i.e., every real z € [w]® in the ground model
V has infinite intersection with either A or an element of /). Furthermore,
it is not hard to show that the forcing notion Qs satisfies ccc (cf. Kunen [5,
Chapter II, Lemma 2.14]). Now, let &% be an arbitrary countable almost disjoint
family in V and for non-zero ordinals o € w; define .27, by transfinite induction
as follows: If « is a limit ordinal, then 7, := U,BEa g, and if a = 8 + 1, then
let o := /3 U{Ap}, where Ag € [w]” is Qu,-generic over V[(A, : v € B)].
Finally, by the facts mentioned above we get that the finite support iteration
(Qu, : @ € wr), starting in V, yields a model in which we have still ¢ > w; and
in which there exists a mad family of size w;, namely o4 U {As : @ € w1}.

Easton forcing. With so-called Easton forcing, which is a product forcing
notion, one can modify the powers of infinitely many regular cardinals at
once. In fact, one can show that cardinal exponentiation on the regular car-
dinals can be anything not “obviously false”. For example one can force that
Vn € w (2™ = wy,+n), but one cannot force that 2* = wy, 4w (since cf(2*) > w).
For Easton forcing see Easton [2] or Kunen [5, Chapter VIII, §4].

Preservation of k-chain condition. In Chapter 16 | RELATED RESULT 87 we
generalised the notion of ccc by saying that a forcing notion P = (P, <) satisfies
the k-chain condition if every anti-chain in P has cardinality <. Now, if x is
a regular uncountable cardinal and P, = (Qs : 8 € a) is a finite support itera-
tion, where for each § € o we have 0g =3 “ Qg satisfies the k-chain condition”,
then P, satisfies the x-chain condition too rsee for example Kunen [5, Chap-
ter VIII, Lemma 5.12] or Jech [4, Part II, Theorem 2.7]).
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Models in which p = ¢

In this chapter we shall consider models of ZFC in which p = ¢. Since wy; < p
(by THEOREM 8.1) and p < ¢, we have p = ¢ in all models in which ¢ = wy,
but of course, these are not the models we are interested in.

By THEOREM 13.6 we know that MA(o-centred) implies p = ¢, moreover,
by Chapter 13| RELATED RESULT 79 we even have MA(o-centred) <= p =
¢. On the other hand, in a model in which w; < p = ¢ we do not necessarily
have MA (because MA(o-centred) is weaker than MA) and in fact it is slightly
easier to force just w; < p = ¢ than to force MA + —CH. Thus, we shall
first construct a model of w; < p = ¢, which— by Chapter 13 | RELATED
RESULT 79 — proves the consistency of MA(c-centred) + -CH with ZFC, and
then we shall sketch the construction of a generic model in which we have
MA + —=CH. Finally, we shall consider the case when a single Cohen real c is
added to a model V F ZFC in which MA + =CH holds. Even though full MA
fails in Vc] (see RELATED RESULT 104), we shall see that p = ¢ still holds in
V|[c] — a result which will be used in Chapter 27.

A Model in which p = ¢ = w»

In this section, we shall construct a generic model in which p = ¢ = wy — for
the general case see RELATED RESULT 102.

PROPOSITION 19.1. p = ¢ = wsy is consistent with ZFC.

Proof. We start with a model V F ZFC+ CH in which we have V F 291 = ws.
In order to obtain such a model, use the techniques developed in Chapter 14
or see Chapter 18 | RELATED RESULT 100.

In V we shall define a finite support iteration Py, = (Q¢ : £ € wy) of
cce forcing notions Qg, such that in the P,,-generic model V[G] we have
V E p = . Since for each £ € wy the forcing notion Q¢ will satisfy ccc, by
PROPOSITION 18.8 we get that also each IP¢ will satisfy ccc, and therefore, by
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LEMMA 18.9 and the proof of THEOREM 16.4, for any £ € wy we shall have
VI[G|¢] E ¢ = wi A 29" = wy. Furthermore, since for each £ € wy the forcing
notion Q¢ will be of cardinality at most w;, also P¢ will be of cardinality at
most wi.

Like in the proof of THEOREM 16.4, one can show that for any v € wa,
there are w; nice P,-names for subsets of w, and because V[G|,] E 2! = wa,
for each v € wo there exists a bijection 4, : wy — Z([w]*) in V[G|,]. In
particular, for all v, € wy we have A,(n) C [w]*, and since ¢ = w; we get
|A,(n)| < wy. Strictly speaking, we should work with some P,-name for 4,,
not with the actual function, but for the sake of simplicity we shall omit this
technical difficulty and leave it as an exercise to the reader.

Now we are ready to construct the ccc forcing notions Q¢: To start with,
fix a bijection ¢ : ws — wg X wy in V (which will serve as a bookkeeping
function) such that for every £ € wy we have

(9(6) = (v,m) —v<¢.

Let £ € wo be an arbitrary but fixed ordinal number and let (v,n) := g(&).
Since v <&, VI[G|,] C V[G|¢], and the set A, (n) C [w], originally defined in
VI[G|,], also belongs to V[G|¢].

In order to define Q¢ = (Q¢, <) we work in V[G|,] and consider the fol-
lowing two cases: If the family A, (n) C [w]* has the strong finite intersection
property sfip (i.e., intersections of finitely many members of A, (n) are infi-
nite), then we define

Qe ={(s,E): s €fin(w) AE € fin (A,(n))},
and for (s, E), (¢, F) € Q¢ we stipulate
(s, By <(t,F) <= sCt NECF A(t\s)C[)E.

In the case when A,(n) does not have the sfip, let Q¢ be the trivial forcing
notion ({0},C).

The forcing notion Q¢ (in the case when Qg is non-trivial) was already
introduced in the proof of THEOREM 13.6, where it was shown that Q¢ satisfies
cce and that the generic filter induces a pseudo-intersection of A, (n). Hence,
we either have V[G|¢11] = V[G|¢] (in the case when Qg is trivial), or the
family A, (n) has a pseudo-intersection in V[G|¢11]. In particular, the family
A, (n), which is a family of cardinality at most ws, is not a witness for p = wy.

Let G be P,,-generic over V and let % C [w]¥ be an arbitrary fam-
ily in V]G] of cardinality wq which has the sfip. Since for each £ € wa, Q¢
satisfies ccc, by PROPOSITION 18.8, also IP,,, satisfies ccc, and therefore, by
LEMMA 18.9, V[G] F ¢ = wo.

Since |#| = wy, similar to CLAIM 2 in the proof of PROPOSITION 24.12,
there exists a v € wy such that the family .# belongs to V[G|,]. In particular,
there is an 1 € wo such that V[G|,] F.Z# = A,(n). Hence, for £ = g~ ({v,n)),
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there is a pseudo-intersection for .%# in V[G|¢11], and since .# was arbitrary,
we get V[G] E p > wa. Now, since V[G| E ¢ = ws, we finally get V[G] E p =
C = Ws. —

On the Consistency of MA + —CH

In this section we shall sketch the proof that MA + ¢ = ws is consistent with
ZFC (for the general case see RELATED RESULT 103). The crucial point in the
proof is the fact that every ccc forcing notion is equivalent to a forcing notion
of cardinality strictly less than c¢; but let us recall first Martin’s Axiom:

Martin's Axiom (MA): If P = (P, <) is a partially ordered set which
satisfies ccc, and & is a set of less than ¢ open dense subsets of P, then
there exists a Z-generic filter on P.

At first glance, we can build a model in which we have MA+4—-CH by starting in
some model of ZFC+ —CH, and then add a Z-generic filters for every partially
ordered set P = (P, <) satisfying ccc. However, the collection of all partially
ordered sets satisfying ccc is a proper class. So, we first have to show that
it is enough to consider just the set of ccc partially ordered sets P = (P, <)
satisfying |P| < ¢

LEMMA 19.2. The following statements are equivalent:
(a) MA.
(b) If P = (P,<) is a partially ordered set that satisfies ccc and |P| < «,

and if 9 is a set of less than ¢ open dense subsets of P, then there exists a
9-generic filter on P.

Proof. Obviously it is enough to prove that (b) implies (a): Let P be a ccc
partially ordered set, and let 2 be a family of fewer than ¢ open dense subsets
of P, ie., |2] = k for some £ < ¢. For each D € 9, let Ap C D be a
maximal incompatible subset of D. Then, since P satisfies ccc, each Ap is
countable. Now, we can construct a set Q C P of cardinality at most
such that () contains each Ap, and whenever p,q € ) are compatible in
P, then they are also compatible in @ (i.e., there is an r € @ such that
p < r > q) —for the latter notice that HK]Q‘ = k. By construction of ) we
get that for each D € 2, Ap is a maximal anti-chain in Q. Finally, for each
D e Zlet Ep = {q €Q:3IpeAp(q¢> p)} Then each Ep is open dense in
Q.

Now, (@, <) is a partially ordered set which satisfies ccc and |Q| < k < c.
Thus, by (b), there is a filter G on @ that meets every open dense set Ep, and
consequently, G = {pe€ P:3q € G(p < q)} is a P-generic filter on P. -
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PROPOSITION 19.3. MA 4+ ¢ = wq is consistent with ZFC.

Proof (Sketch). The proof is essentially the same as the proof of PROPOSI-
TION 19.1. We start again in a model V of ZFC in which ¢ = w; and 2% = ws,
and extend V by a finite support iteration Py, = (Q¢ : £ € wy), where for
each £ € wa, Q¢ = (Q¢, <) satisfies ccc and Q¢ C wy. Since in the final model
V[G] we have ¢ = wy, by LEMMA 19.2 we can arrange the iteration so that
every ccc forcing notion in V[G] of size < ws is isomorphic to some forcing
notion Q¢ (for some ¢ € wy). A minor problem is that by adding new generic
sets, we also might add new dense subsets to old partially ordered sets. This
problem is solved by making sure that every ccc forcing notion Q¢ appears
arbitrarily late in the iteration, which is done by a bookkeeping function sim-
ilar to that used in the proof of PROPOSITION 19.1. —

p = ¢ is Preserved under Adding a Cohen Real

The following result, which will be used in the proof of PROPOSITION 27.9,
shows that p = ¢ is preserved under adding a Cohen real (cf. RELATED RE-
SULT 104).

THEOREM 19.4. If V E p = c and c is a Cohen real over V, then V[c| E p = c.

Proof. Throughout this proof, we shall consider the Cohen forcing notion
C= (Unew”Q, Q). Let V be a model of ZFC and let ¢ € “2 be a Cohen real
over V.

If V E CH, then also V]c] £ CH which implies V[c] E p = ¢. So, let us
assume that V F ¢ > w; and therefore, since Cohen forcing preserves cardinals,
Vi E ¢ > w;.

We have to show that every family { X, € [w] : & € k < ¢} in V([¢] which
has the sfip has also a pseudo-intersection. To start with, fix a cardinal x with
w1 <k <¢ andlet {X,:a € k} C[w]” be an arbitrary but fixed family in
V|[¢] which has the sfip. Furthermore, let

{,Z(a:aefi}

be a set of C-names such that {X,[c] : @ € K} = {X, : @ € k}. Now, since
{X4 : @ € K} has the sfip in V¢, there exists a C-condition ¢ such that for
all F € fin(k) we have

qll—@‘ﬂ{ga:OzEE}’ =w,

where we define () := w. For the sake of simplicity, let us assume that ¢ = 0.
The goal is now to construct a set Y € V|[c] which is a pseudo-intersection
of {Xalc] : o € k}. For this, we define (in V) the following o-centred forcing
notion P = (P, <):
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The set of P-conditions P consists of pairs (h, A), where A € fin(x) and
h:U{kQ:kzem}—ﬁin(u)) for some m € w.

For (h,A),(l,B) € P, let (h, Ay < (I, B) if and only if
e hCl, ACB,and
e for each p € dom() \ dom(h) we have plci(p) C N {Xa:a € A}.

We leave it as an exercise to the reader to show that |P| = x and that P
is o-centred — for the latter, notice that for any (h, A), (h, B) € P we have
(h, A) < (h, AU B) > (h, B). Now, for every a € k and n € w we define the
set Do, n C P by stipulating (h, A) € D,, ,, if and only if

e acA,
e dom(h) = {*2:k € m} for some m >n,
o for each p € ™2, | U, h(pli)| = n.

We leave it as an exercise to the reader to show that every set D, , is an open
dense subset of P and that ]{Da,n T EKANE w}] = k. The open dense
sets D,,, make sure that the set Y, constructed below, will be a pseudo-
intersection of {Xa[c] a € n}, in particular, Y will be infinite. At the
moment, just notice the following fact: If (h, A) € D, , and (h, A) < (I, B),
where dom(l) = {*2: k € m}, then for each p € ™2 we have | ,¢,, {(pls)| > n,
and for each p € dom(l) \ dom(h) we have pl—cl(p) C X,.

The crucial point is now to show that there exists a filter G C P in V
which meets every set D, .

CLAIM. Let 9 = {Dyn :n € w A« € k}. Then there exists in V a Z-generic
filter G on P, i.e., there exists a directed and downwards closed set G C P
which meets every open dense subset of P which belongs to 2.

Proof of Claim. The following proof is essentially the proof of the fact that
p = ¢ is equivalent to MA(o-centred) (see Chapter 13 | RELATED RESULT 79).

Firstly notice that for each m € w there are just countably many functions
h:U{*2:k €m} — fin(w). For each m € w fix an enumeration {h,, ; : i € w}
of all these countably many functions and let n : w X w — w be a bijection.
For each n € w we define the set P, C P by stipulating

Py = {{hm, A) € P :n({(m,i)) =n}.

Notice that (J
P-conditions.

Secondly, for each P-condition p = (h, A) € P and for every open dense
set D € 7 let

new Pn = P and that each P, consists of pairwise compatible

[,D]:{nEw:EIqGPn(qED/\qu)}.
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Notice that [p, D] € [w]¥. Furthermore, for all k,r € w, any P-conditions
(h, Ag),...,{h, Ag) € P, and any open dense sets Dy,...,Dy € 2, we get
that ;< [(k, As), D;] is infinite. This implies that for each r € w, the family
Fr ={[p,D] : p € P, AD € 2} has the sfip. Now, since V F p = ¢ and
|Z| =P x 2] <k xk=r <c, we have V E |Z,| < p. Hence, in V there
exists a pseudo-intersection I,. of .%,.. In other words, for every r € w there is
an I, € [w]* such that for all p € P, and D € 2, I, \ [p, D] is finite.

In the following step we encode the elements of the sets I, by finite se-
quences: Let seq(w) be the set of all finite sequences which can be formed with
elements of w. For s € seq(w) and i € w, s ¢ denotes the concatenation of the
sequences s and (7).

Now, define the function v : seq(w) — w by stipulating

e v(0)=0,and
o for all s € seq(w): {I/(Sfjb) 14 € w} enumerates I,(s) in ascending order.

In particular, {v((i)) : i € w} = Iy, where for all i,i’ € w, i < i’ implies
v((@)) <v({i)-

Furthermore, for every D € & and every s € seq(w) we choose a P-condition
Pp € Py, such that for all i € w,

v(si) € [ph, D] = (vp <pp) A (P € D). (*)

Notice that for any D € 2 and s € seq(w), L(s) \ [P}, D] is finite. Thus, for
each D € 2 and each s € seq(w) there is a least integer gp(s) € w such that
for every i > gp(s) we have v(s i) € [p), D]. So, for every D € 2, we obtain
a function gp : seq(w) — w. Then, the family & = {gp : D € 2} is a family
of size k of functions from the countable set seq(w) to w.

Now we show that & is bounded: For this, recall first that for the bounding
number b we have p < b < ¢ (see Chapter 8). Since in V we have p = ¢, in
particular V E b = ¢, and since |&| = k < ¢, V E |£| < b. Thus, & is bounded
in V, i.e., in V there exists a function g : seq(w) — w such that for each
De 9,

gp(s) < g(s) for all but finitely many s € seq(w) .

By induction on n € w, define the function f € “w such that for all n € w,
f(n) :=g(f|n)- Then, by definition of f and the property of g, for each D € 2,

gp(fln) < f(n) for all but finitely many n € w.

In other words, for every D € & there exists an integer mp € w such that for
all n > mp, f(n) > gp(fln)-

We are now ready to define the Z-generic set G C P, but before we do so,
let us summarise a few facts which we have achieved so far: Let D € & and
n > mp be arbitrary, and let s := f|,, and i := f(n).
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(0) f(n) =g(fln) = g(s), i-e., i = g(s), and f(n+1) = g(fln+1) = g(s 0).

(1) Since n > mp, we get g(fln) > gp(f|n), i-€., g(s) > gp(s), and therefore
7> gD(s).

(2) Since i > gp(s), we get v(s 1) € [p}, D], ie.,

V(flnt1) € [pg",D] :
(3) Thus, by () and (2) we get p%, < pgi and pSDAi €D, ie.,
pg" < pﬁ”“ and pﬁ”“ eD.
Now, let G C P be defined by
G:{qEP:EDGQEnEoJ(anD/\quQ”)}.

It remains to check that G has the required properties, i.e., G is a filter which
meets every D € 2.
G is a filter: By definition, G is downwards closed. To see that G is directed,

take any ¢,q¢ € G and, for some D,D’ € 2 and n,n’ € w, let pg”,prl,"/ eG

be such that ¢ < pﬁ” and ¢ < pr',"'. Without loss of generality we may

assume that n > n’. Then pr‘/” > prl,"'. Now, pr‘” and pr‘/” both belong to

P, (4|, and are therefore compatible. Thus, there exists an r € P,y such

that pﬂ" <r> pﬁ/”, and consequently we have q < r > ¢’ where r € G.
G is P-generic: By (3), for each D € 2 and every n > mp we have

pr'"+1 € DN G, and hence, GN D # 0. Actaim
With the Z-generic filter G C P constructed above we define the function

H=|J{n:3[(h,4) €d]}.

"2 — w has the following property: If
"2\ dom(h) we

By construction, the function H : (J, .,
a € k and (h, A) € G with a € A, then for every p € |J
have

new

p”_CH(p) g‘Xa-

In particular, if ¢ is a Cohen real over V, then for Y :=J, . H(c|), which

is a set in V|[c], we have

necw

Vi EVa e k(Y C* Xqld]).

We leave it as an exercise to the reader to show that V[c] F |Y| = w (for this,
recall the definition of the open dense sets D, ,,). Thus, in V{¢], the arbitrarily
chosen family {)~( old ta €k < c} has a pseudo-intersection, which shows
that V]c] Ep =c. —
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NOTES

The consistency of MA+—-CH. A complete proof for the consistency of MA+-CH
with ZFC can be found for example in Kunen [5, Chapter VIII, §6] (see also Martin
and Solovay [6]).

On p = ¢ after adding one Cohen real. THEOREM 19.4 is due to Roitman [7],
but the proof given here follows the proof of Bartoszynski and Judah [1, Theo-

rem 3.3.8], where the proof of the CLAIM, originally proved by Bell [2], is taken from
Fremlin (3, 14C].

102.

103.

104.

RELATED RESULTS

On the consistency of p = k. Let V be a model of ZFC+ GCH and assume that
in V, k is an uncountable regular cardinal such that |[x]<"| = k. Then, by a
slight modification of the proof of PROPOSITION 19.1, we get a generic extension
of V in which p = k.

On the consistency of MA + ¢ = k. As in RELATED RESULT 103, let V be
again a model of ZFC+ GCH and assume that in V, k is an uncountable regular
cardinal such that ’[/{]<“’ = k. Then there exists a ccc forcing notion P in V,
such that in the P-generic extension V[G] we have MA + ¢ = k (for a proof see
Kunen [5, Chapter VIII, Theorem 6.3]).

Martin’s Aziom and Cohen reals. By Chapter 13 | RELATED RESULT 79, which
asserts p = ¢ <= MA(o-centred), we get that V E MA(c-centred) if and only
if VEp = ¢. Hence, THEOREM 19.4 implies that MA(o-centred) is preserved
under Cohen forcing, i.e., if V E MA(o-centred) and c is a Cohen real over V,
then V([c] £ MA(o-centred). However, this is not the case for full MA. In fact
one can show that if V F =CH and c is a Cohen real over V, then V[c] F -MA.
The proof uses the fact that if V F MA(w1), then there is no Suslin tree in V
(see for example Jech [4, Theorem 16.16]). On the other hand, one can show
that whenever c is a Cohen real over V, then V|[c| contains a Suslin tree (see
Shelah [8, §1], Todorc¢evié¢ [9], or Bartoszyniski and Judah [1, Section 3.3.A]).
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Part III

Combinatorics of Forcing Extensions






...the parts sing one after another in so-called
fugue (fuga) or consequence (consequenza), which
some also call reditta. All mean the same thing:
a certain repetition of some notes or of an entire
melody contained in one part by another part, after
an interval of time. The second part sings the same
note values or different ones, and the same inter-
vals of whole tones, semitones, or similar ones.
There are two type of fugues or consequences
namely strict and free.

In free writing, the imitating voice duplicates the
other in fugue or consequence only up to a point;
beyoind that point it is free to proceed indepen-
dently.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558






20

Properties of Forcing Extensions

In this chapter we shall introduce some combinatorial properties of forcing
notions which will accompany us throughout the remainder of this book. Fur-
thermore, these properties will be the main tool in order to investigate various
combinatorial properties of generic models of ZFC.

However, before we start with some definitions, let us modify our notation
concerning names in the forcing language: Let P be a forcing notion and let
G be P-generic over some ground model V.

e Instead of canonical P-names for sets in V like ), 27, w, et cetera, we just
write 0, 27, w, et cetera.
e If fis a P-name for a function in V[G] with domain A € V and a € A,
then we write
f(a) instead of f(a).

For example, if P = C and c¢ is the canonical name for a Cohen real ¢ € “w,
then, for k € w, ¢(k) = {(m,p) : p € U,c.,"w Ak € dom(p) A p(k) = m}
denotes the canonical C-name for the integer ¢(k) — properly denoted by ¢(k).

Dominating, Splitting, Bounded, and Unbounded Reals

First we recall some notions defined in Chapter 8: For two functions f, g € “w
we say that g is dominated by f, denoted g <* f, if there is an n € w such
that for all &k > n we have g(k) < f(k). For two sets z,y € [w]* we say that x
splits y if y Nz as well as y \ z is infinite.

Now let 'V be any model of ZFC and let V[G] be a generic extension (i.e.,
G is P-generic over V with respect to some forcing notion P). Let f € “w be a
function in the model V[G]. Then f is called a dominating real (over V) if
each function g € “wNV is dominated by f, and f is called an unbounded
real (over V) if it is not dominated by any function g € “wNV. Furthermore,
aset z € [w]¥ in V[G] is called a splitting real (over V) if it splits each set
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y € [w]* in the ground model V. Notice that we identify functions f € “w
with real numbers.

Fact 20.1. If V[G] contains a dominating real, then it also contains a split-
ting real.

Proof. We can just follow the proof of THEOREM 8.4: Whenever a function
f € “w belongs V[G], then also the set

o= { [£27(0), £*"*1(0)) :n € w}

belongs to V[G], where [a,b) = {k € w : a < k < b} and f*(0) = f(f"(0))
with f°(0) := 0. Now let f € “w be a dominating real. Without loss of
generality we may assume that f is strictly increasing and that f(0) > 0.
Fix any = € [w]* NV and let g, : w — = be the (unique) strictly increasing
bijection between w and z. Since f is dominating we have g, <* f, which
implies that there is an ng € w such that for all & > ng we have g, (k) < f(k).
For each k € w we have k < f*(0) as well as k < g,.(k). Moreover, for k > ny
we have

FH0) < g2 (£5(0)) < £(f(0)) = f*+(0)

and therefore g, (f*(0)) € [f*(0), f*71(0)). Thus, for all k& > ng we have
9 (f¥(0)) € oy iff k is even, which shows that both z N oy Nz and z \ oy are
infinite. Hence, since z € [w]|* was arbitrary, oy is a splitting real. —

It is worth mentioning that the converse of FACT 20.1 does not hold, i.e.,
we cannot construct a dominating real from a splitting real (cf. LEMMA 21.2
and LEMMA 21.3).

A forcing notion P is said to add dominating (unbounded, splitting) reals if
every P-generic extension of V contains a dominating (unbounded, splitting)
real. More formally, let V F ZFC and let P € V be a forcing notion. Then we
say that

P adds dominating reals iff 0l—p3f € “wVg € “w(g < f),

P adds unbounded reals iff 0lp3f € “wVg € “w(f £* g),

and
P adds splitting reals iff 0l—p3dz CwVy € [w]‘*’(|y Nz|=ly\z|l= w) .

Notice that in this context, i.e., in statements being forced, “w and [w]“ stand
for the canonical names for sets in the ground model, whereas for example “w
is a P-name for the set “w in the P-generic extension.

A forcing notion P is called “w-bounding if there are no unbounded
reals in P-generic extensions. In other words, if P is “w-bounding and G is
P-generic over V, then every function f € “w in V[G] is dominated by some
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function from the ground model V. Obviously, a forcing notion which adds
a dominating real also adds unbounded reals and therefore cannot be “w-
bounding, and by FAcCT 20.1, such a forcing notion also adds splitting reals.
On the other hand, none of these implications is reversible. An example of a
forcing notion which is “w-bounding but adds splitting reals is Silver forcing
(investigated in Chapter 22), and Cohen forcing, discussed in the next chapter,
is an example of a forcing notion which adds unbounded and splitting reals
but does not add dominating reals. Furthermore, Miller forcing (discussed
in Chapter 23) adds unbounded reals but does not add splitting reals, and
Mathias forcing (discussed in Chapter 24) adds dominating reals but does not
add Cohen reals.

The Laver Property and Not Adding Cohen Reals

In the following chapters we shall investigate different forcing notions like
Cohen forcing, Silver forcing, Mathias forcing, et cetera. In fact, we shall
investigate what kind of new reals (e.g., dominating reals or Cohen reals) are
added by (an iteration of) a given forcing notion. In particular, we have to
decide whether an iteration of a given forcing notion adds Cohen reals. Our
main tool to solve this problem will be the following combinatorial property.

LAVER PROPERTY: Let F be the set of all functions S : w — fin(w) such
that for every n € w, |S(n)| < 2". A forcing notion P has the Laver
property if and only if for every function f € “w NV in the ground
model and every P-name g for a function in “w such that 0-pVn €
w(g(n) < f(n)), we have 0535 € FNV Vn € w(g(n) € S(n)).

Roughly speaking, if a forcing notion has the Laver property, then for every
function g € “w in the generic extension which is bounded by a function from
the ground model, and for every n € w, the value g(n) belongs to some finite
set of size 2™ and the sequence of these finite sets is in the ground model.

Now we show that a forcing notion which has the Laver property does not
add Cohen reals.

PROPOSITION 20.2. If the forcing notion P has the Laver property, then P
does not add Cohen reals.

Proof. Suppose that P has the Laver property. Let {I,, : n € w} be a partition
of w (in the ground model V) such that for all n € w, |I,,| = 2n and max(I,,) <
min(Z,41). Let b be a P-name for an arbitrary element of “2, i.e., 0 l=p h € “2.
We show that h is not the name for a Cohen real, i.e., h is not the name for a
real which corresponds to a C-generic filter over V, where C = (U,,,,"2, €).

For every n € w, let H(n) := h|;,. Then H(n) : I, — 2, and since
|I,| = 2n, H(n) amounts to an element of 272. Thus, we can encode H(n)
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by a P-name for an integer in 22"; let n(H (n)) be that code and let g(n) :=
n(Ij(n)) Thus, 0 I-p Vn € w(g(n) < 22”), and since IP has the Laver property,
0l-p 35S € FNV Vn € w(g(n) € S(n)). In the ground model V, let po be a P-

condition such that for some S € FN'V we have pg I=p Vn € w(g(n) € S(n)).
Further, let

D= {s € [J"2: 3k (I C dom(s) An(sly,) ¢ S(k))} .

new

Then D is an open dense subset of |J,,"2. Indeed, for any m € w and
any t € ™2 there exists k > m such that Iy N dom(¢) = (), and we find an
5 € Upeo,"2 such that t C s, I € dom(s), and 71(s|;,) ¢ S(k) — here we use
that for any positive integer k, |S(k)| < 2% < 22F = }Ik2|.

Now, for every n € w define A,, = {z € “2:n(z[;,) € S(n)} C“2 and let
A = N,ew An- Since po -pVn € w(g(n) € S(n)), we have po -p h € A, and
consequently we get that po—p Vk € w(h|r ¢ D). Hence, h is not a P-name
for a Cohen real over V, which completes the proof. —

So, we know that if a forcing IP has the Laver property, then forcing with
P does not add Cohen reals; but what can we say about products or iterations
of P? On the one hand, it is possible that P x P adds Cohen reals, even though
P has the Laver property (see for example Chapter 24). On the other hand,
in the next section we shall see that the Laver property is preserved under
countable support iteration of proper forcing notions. More precisely, if P is a
forcing notion which is proper (see below) and has the Laver property, then
any countable support iteration of P has the Laver property, and therefore
does not add Cohen reals.

Proper Forcing Notions and Preservation Theorems

The Notion of Properness

By PROPOSITION 18.8 we know that finite support iterations of ccc forcing
notions satisfy ccc. In other words, ccc is preserved under finite support iter-
ation of ccc forcing notions. Below, we shall present a generalisation of that
result, but before we have to introduce some preliminary definitions: For every
infinite regular cardinal x let

Hy ={z € Vy:|TC(z)| < x}.

For example the sets in H,, are the hereditarily finite sets and the sets in
H(ws) are the hereditarily countable sets. Notice that each H, is transitive
and that z € H,, iff | TC(x)| < x, i.e., H, contains all sets which are hered-
itarily of cardinality <yx. It is worth mentioning that for every regular un-
countable cardinal x, H, is a model of ZFC minus the Axiom of Power Set
(cf. Chapter 15 | RELATED RESULT 84).
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For the following discussion, let x be a “large enough”regular cardinal,
where “large enough”means that for all forcing notions P = (P, <) we shall
consider in the forthcoming chapters we have &(P) € H,, i.e., the power set
of P is hereditarily of size <y. If we assume that GCH holds in the ground
model, then y = w3 would be sufficient, but to be on the safe side we let

x =37,

where the so-called beth function J, is defined by induction on a € Q, stipu-
lating Jo := w, Jat1 := 2=, and for limit ordinals o, J, := |J {JB 1B € a}.

Let N = (N,€) be an elementary submodel of (H,,€), i.e., (N,€) <
(Hy, €). Furthermore, let P = (P, <) be a forcing notion such that (P, <) € N.
Since N is an elementary submodel of (H,, €), for all p,¢ € PN N we have
N Ep L gimplies V E p L g, i.e., if p and ¢ are incompatible in N, then
they are also incompatible in the ground model V. We say that G C P is
N-generic for P if G has the following property.

Whenever D € N and N F “D C P is an open dense subset of P”,
then GNN N D # 0.

Notice that G is N-generic iff G N N is N-generic. By FACT 14.6, we can
replace “open dense” for example by “maximal anti-chain”. Furthermore, we
say that a condition ¢ € P, which is not necessarily in IV, is N-generic if

V E gl—p “G is N-generic”,

where G is the canonical P-name for the P-generic filter over the ground model
V. Notice that if ¢ is N-generic and ¢’ > ¢, then ¢’ is N-generic too.

Now, a forcing notion P = (P, <) is called proper, if for all countable
elementary submodels N = (N,€) < (H,, €) which contain P, and for all
conditions p € P N N, there exists a condition ¢ > p (in V) which is N-
generic.

As a first example let us show that any forcing notion P = (P, <) which
satisfies ccc is proper: Firstly, for any countable set A € N we have A C N.
For this, notice that since (N, €) < (Hy, €), A must be the range of a function
f :w — UN which belongs to N, and since for all n € w, n € N, we also
have f(n) € N for all n € w, which shows that A C N. Now, let A € N be a
maximal anti-chain in P. Then, since PP satisfies ccc, A is countable and we
have A C N. Further, Ol-p AN G # 0, and therefore, 0-p AN N NG =
ANG#0.

As a second example let us show that any forcing notion P(P, <) which is
o-closed is proper: Since the model N is countable, there are just countably
many open dense subsets of P which belong to N, say {D,, : n € w}. Let
p € PN N and let (¢, : n € w) be such that go > p and for each n € w,
Gn+1 > Gn and g, € D,,. Now, since P is o-closed, we find a condition ¢ such
that for all n € w, ¢ > g,. Obviously, ¢ > p and ¢ is N-generic.
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Let us finish this section by introducing a property of forcing notions
which is slightly stronger than properness, but which is often easier to verify
than properness (e.g., for the forcing notions introduced in the forthcoming
chapters).

Axiom A: A forcing notion P = (P, <) is said to satisfy Axiom A if
there exists a sequence {<,: n € w} of orderings on P (not necessarily
transitive) which has the following properties:

(1) For all p,q € P, if ¢ <n41 p then ¢ <, p and ¢ < p.

(2) If (p, € P :n € w) is a sequence of conditions such that p, <,
Pn+1, then there exists a ¢ € P such that for all n € w, p, <, q.

(3) If A C Pis an anti-chain, then for each p € P and every n € w there
is a ¢ € P such that p <,, ¢ and {r € A : r and ¢q are compatible}
is countable.

Examples of forcing notions satisfying Axiom A are forcing notions which are
o-closed or satisfy ccc. Furthermore, one can show that every forcing notion
which satisfies Axiom A is proper, but not vice versa (for a proof and a coun-
terexample see Baumgartner [4], Theorem 2.4 and Section 3 respectively).

Preservation Theorems for Proper Forcing Notions

Below, we state without proofs some preservation theorems for countable sup-
port iteration of proper forcing notions. These preservation theorems will be
crucial in the following chapters, where we consider countable support itera-
tions of length wy of various proper forcing notions — usually starting with a
model in which CH holds.

The first of these preservation theorems states that proper forcing notions
do not collapse w1 and that properness is preserved under countable support
iteration of proper forcing notions (for proofs see Goldstern [6, Corollary 3.14]
and Shelah [9, III. §3]).

THEOREM 20.3. (a) If P is proper and cf(d) > w, then 0l—p cf(§) > w. In
particular, wy is not collapsed.

(b) If P, is a countable support iteration of <@5 NS a>, where for each
B € a we have Og =3 “Qp is proper”, then P, is proper.

The following lemma is in fact just a consequence of THEOREM 20.3.

LEMMA 20.4. Let P,, be a countable support iteration of <Q5 1B e a>, where
for each 3 € a we have 0g =5 “ Qg is a proper forcing notion of size <c¢”. If
CH holds in the ground model and o < wo, then for all 8 € «, 0g =g CH.
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Since, by LEMMA 18.9, no new reals appear at the limit stage ws one can
prove the following theorem — a result which we shall use quite often in the
forthcoming chapters.

THEOREM 20.5. Let P,,, be a countable support iteration of <@5 1B € w2>,
where for each 8 € ws we have

0p =5 “Qp is a proper forcing notion of size <c¢ which adds new reals”.

Further, let V be a model of ZFC + CH and let G be P,,-generic over V.
Then we have

(a) V[G] E ¢ = wy, and

(b) for every set of reals .# C [w]* N'V[G] of size <w; there is a 3 € wy such
that . # C VI[G|s].

Now, let us say a few words concerning preservation of the Laver property
and of “w-boundedness: It can be shown that a countable support iteration of
proper “w-bounding forcing notions is “w-bounding (for a proof see Section 5
and Application 1 of Goldstern [6]).

THEOREM 20.6. If P, is a countable support iteration of <Qg 1B e a>, where
for each 3 € o we have Og =5 “Qp is proper and “w-bounding”, then P, is
“w-bounding.

Further, one can show that the Laver property is preserved under countable
support iteration of proper forcing notions which have the Laver property (for
a proof see Section 5 and Application 4 of Goldstern [6]).

THEOREM 20.7. If P, is a countable support iteration of <Qg NS a>, where
for each B € a we have Ogl—p “Qpg is proper and has the Laver property”,
then P, has the Laver property.

Another property which is preserved under countable support iteration of
proper forcing notions is preservation of P-points: A forcing notion P is said
to preserve P-points if for every P-point % C [w]¥,

0 l—p “% generates an ultrafilter over w”,

i.e., for every set & € [w]“ in the P-generic extension there exists a y €
such that either y C 2 or y C w \ «. In particular, if the forcing notion P is
proper and CH holds in the ground model, then the ultrafilter in the P-generic
extension which is generated by the P-point % is again a P-point.

One can show that preservation of P-points is preserved under countable
support iteration of proper forcing notions (for a proof see Blass and Shelah [5]
or Bartoszynski and Judah [2, Theorem 6.2.6]).

THEOREM 20.8. If P, is a countable support iteration of <Qg NS a>, where
for each 3 € a we have Og =3 “Qp is proper and preserves P-points”, then
P, preserves P-points.
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There are many more preservation theorems for countable support itera-
tion of proper forcing notions. However, what we presented here is all that we
shall use in the forthcoming chapters.

NOTES

The notion of properness, which is slightly more general than Axiom A (intro-
duced by Baumgartner [3]), was discovered and investigated by Shelah [8, 9], who
realised that properness is a property that is preserved under countable support
iteration and that allows to prove several preservation theorems (see for example
Shelah [9, VI.§§1-2], where one can find also proofs of the preservation theorems
given above). For a brief introduction to proper forcing we refer the reader to Gold-
stern [6] and for applications of the Proper Forcing Axiom, which is a generalisation
of Martin's Axiom, see Baumgartner [4].

RELATED RESULTS

105. Reals of minimal degree of constructibility. Let P = (P, <) be a forcing notion
and let g be a real in some P-generic extension of V. Then g is said to be of
minimal degree of constructability, or just minimal, if g does not belong to V
and for every real f in V[g] we have either f € V or g € V|[f], where V]f]
is the smallest model of ZFC containing f and V. In the latter case we say
that f reconstructs g. For example no Cohen real is minimal. Indeed, if ¢ € “w
is a Cohen real over V, then the real ¢ € “w N V][] defined by stipulating
c(n) := ¢(2n) (for all n € w) is also a Cohen real over V. Moreover, c is even
C-generic over V|[c'], which implies that ¢ does not belong to V[c].

106. Alternative definitions of properness. The notion of properness can also be
defined in terms of games or with stationary sets (see for example Jech [7,
Part ITI] or Baumgartner [4, Section 2]).

107. Preservation of ultrafilters. In general, a forcing notion which adds reals does
not preserve all ultrafilters. More precisely, for any forcing notion which adds a
new real, say 7, to the ground model V| there exists an ultrafilter %7 in V which
does not generate an ultrafilter in V[r|. (see Bartoszynski, Goldstern, Judah,
and Shelah [1] or Bartoszynski and Judah [2, Theorem 6.2.2]).

Further, one can show that any forcing notion which adds Cohen, dominating,
or random reals, does not preserve P-points (see Bartoszynski and Judah [2,
Theorem 7.2.22]).
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21

Cohen Forcing revisited

Properties of Cohen Forcing

Since Cohen forcing is countable, it satisfies ccc, hence, Cohen forcing is
proper. Furthermore, since forcing notions with the Laver property do not
add Cohen reals, Cohen forcing obviously does not have the Laver property.

Not so obvious are the facts that Cohen forcing adds unbounded and
splitting, but no dominating reals.

Cohen Forcing adds Unbounded but no Dominating Reals
LEMMA 21.1. Cohen forcing adds unbounded reals.

Proof. Consider Cohen forcing C = ({J,,,‘'w, C ), which is — as we have seen
in Chapter 18 — equivalent to the forcing notion (|J,;,,’2, € ). Let ¢ € “w be
C-generic over some ground model V and let ¢ be the canonical C-name for
c. We show that the function c¢ is not dominated by any function g € “wNV.
Firstly notice that for every C-condition p we have

¢ ¢laom(p) =P-

Let g € “w be any function in the ground model V (i.e., g € “wNV) and let
n € w. Then there exist k¥ > n and a C-condition ¢ > p such that k € dom(q)
and ¢q(k) > g(k). This implies that for every n € w, the set of C-conditions ¢
such that

qlc 3k > n(g(k) < c(k))

is open dense in | J,., ‘w. Hence, there is no C-condition which forces that ¢ is
dominated by some function g € “2N V. Consequently, ¢ is not dominated by
any function from the ground model, or in other words, the function ¢ € “w
is unbounded. —
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LEMMA 21.2. Cohen forcing does not add dominating reals.

Proof. Consider Cohen forcing C = (Fn(w, 2), Q). Let ¢ € “2 be C-generic
over some ground model V. Further, let f € “w be an arbitrary but fixed
function in V(] and let f be a C-name for f. In order to show that f is not
dominating we have to find a function g € “w NV such that for every n € w
there is a k > n such that g(k) > f(k). Let {pr : k¥ € w} be an enumeration
of Fn(w,2), i.e., {px : k € w} = Fn(w,2). For every k € w define

g(k) :min{n :dg > px (qll—(c f(k) :n)}

For every C-condition p and every n € w there is a k > n such that px > p,
and we find a ¢ > py such that ql—c f(k) = g(k). Consequently, for every
n € w, the set of C-conditions ¢ such that

ql=c 3k > n(f(k) = g(k))

is open dense in Fn(w,2). Hence, g € “w NV is not dominated by f € V|,
and since f was arbitrary, this shows that there are no dominating functions
in V]c], or in other words, Cohen forcing does not add dominating reals. -

Cohen Forcing adds Splitting Reals
LEMMA 21.3. Cohen forcing adds splitting reals.

Proof. Consider Cohen forcing C = (Une‘uZQ, g). We show that any real ¢
which is C-generic over some ground model V generates a splitting real: Let
oc = {k € w: c(k) =1} and let o be its canonical C-name. Then for any
infinite set = € [w]* NV and any n € w, the set of C-conditions p such that

phclzNaol >n Az \ ol >n

is open dense, and therefore, o, splits every real in the ground model V, or in
other words, o, is a splitting real. —

Cohen Reals and the Covering Number of Meagre Sets

Below, we shall give a topological characterisation of Cohen reals, but before
we introduce a topology on “w and show how to encode “basic” meagre sets
by reals.

For each finite sequence s = (ng,...,ng—1) of natural numbers, i.e., s €
seq(w), define the basic open set

Os ={f €“w: flx = s}.

A set A C “w is said to be open (in “w) if there is a family . C seq(w)
of finite sequences in w such that A = [J{O;s : s € #}. In particular, 0 as
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well as “w are open. Notice that a set A C “w is open iff for all x € A there
exists an s € seq(w) such that x € O; C A. Furthermore, a set A C “w is
called closed (in “w) if “w \ A is open. Evidently, arbitrary unions and finite
intersections of open sets are open; or equivalently, arbitrary intersections and
finite unions of closed sets are closed. On the other hand, an intersection of
countably many open sets is not necessarily open, and a union of countably
many closed sets is not necessarily closed (see below). Now, intersections of
countably many open sets are called Gs sets, and unions of countably many
closed sets are called Fy, sets. Notice that every open (closed) set is a G5 set
(Fy, set), and that by De Morgan laws, each F, set is the complement of a
Gs set and vice versa. For example the set Cy C “w of eventually constant
functions (i.e., f € Cy iff there is an n € w such that f|, is constant) is an
F, set which is neither closed nor open.

A subset of “w is dense (in “w) if it meets every non-empty open subset
of “w. For example Cj is dense in “w. Notice that every dense subset of “w
must be infinite. On the other hand, A C “w is called nowhere dense if
“w '\ A contains an open dense set. Notice that every nowhere dense set is
contained in a closed nowhere dense set (i.e., the closure of a nowhere dense
set is nowhere dense).

Now, a subset of “w is called meagre if it is contained in the union of
countably many nowhere dense sets. For example Cj is meagre. Since the
closure of a nowhere dense set is nowhere dense, we get that every meagre set
is contained in some meagre F, set, and that the complement of a meagre set
contains a co-meagre G5 set. Moreover, we have the following result.

THEOREM 21.4 (BAIRE CATEGORY THEOREM). The intersection of count-
ably many open dense sets is dense. In particular, the complement of meagre
set is always dense.

Proof. Let (D,, : n € w be a sequence of open dense subsets of “w. We have
to show that D =", .., Dy is dense, i.e., we have to show that for each basic
open set Os, D N Og # (. Let Oy, be an arbitrary but fixed basic open set.
By induction on n € w we construct a sequence tg C t; C ... of elements
of seq(w) such that (), ., O, € DN Oy,. In fact, we just have to make sure
that |, ., tn € “w and that for all n € w, Oy, C D,. Since Dy is open dense,
there exists a ty € seq(w) such that so C tg and O, C (D N Oy, ). Assume
that ¢, € seq(w) is already constructed for some n € w. Then, since D;,41
is open dense, there is a t,41 € seq(w) such that O;, ., C (Dy41 N Oy,) and
|tn+1] > n + 1. Now, by construction, the sequence tg C ¢; C ... has the
required properties. —

By definition, subsets of meagre sets as well as countable unions of meagre
sets are meagre. Thus, the collection of meagre subsets of “w, denoted by .#,
is an ideal on 2 (“w). By the BAIRE CATEGORY THEOREM 21.4, “w ¢ .# but
for every f € “w we have {f} € “w, and therefore the set “w can be covered
by ¢ meagre sets. This observation leads to the following cardinal number.
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DEFINITION. The covering number of .#, denoted cov(.#), is the smallest
number of sets in .# with union “w; more formally

cov(M) =min{|€|:C C MNJC ="w}.

Since countable unions of meagre sets are meagre, and since we can cover “w
by ¢ meagre sets, we obviously have wy < cov(#) < c¢. Moreover, we can
show slightly more:

THEOREM 21.5. p < cov(.4).

Proof. Let {A, C “w: a € k < p} be any infinite family of cardinality x < p
of meagre subsets of “w. We have to show that [ J,., Ao # “w, or equivalently,
we have to show that for any family D = {D,, : @« € k < p} of open dense
subsets of “w we have (D # . Notice the similarity with the proof of the
BAIRE CATEGORY THEOREM 21.4. Let v : seq(w) — w be a bijection. For
every s € seq(w) and every a € k, let

Is,a:{teseq(w):th/\Otha}.

Since D,, is open dense, the set ys o := {V(t) it e 15704} is an infinite subset
of w.

For the moment, let s be an arbitrary but fixed element of seq(w). Then
for any finitely many ordinals ag, ..., a1 in &k we get that (,c; ¥s,a; € [W]“.
Consider the family .Z; = {ys.o : @ € K} C [w]¥. Obviously, .%, has the strong
finite intersection property, and since k < p, % has a pseudo-intersection, say
xs. Thus, for every a € k there exist a k € w such that x5 \ k C ys.q.

Now, for each a € k define hy : seq(w) — w by stipulating he(s) =
min{k € w : x5 \ k C Y50}, and let g, € “w be such that for all n € w,
ga(n) := ho(v~'(n)). Since k < p and p < b, there is a function f € “w
which dominates each g,. By construction,

U — U {Or C¥w:v(t) e xs\ f(r(s))}
s€seq(w)

is an open dense subset of “w which has the property that for each o € k there
is a finite set B, € [seq(w)] ™ such that U, C D, where for E C seq(w),

Ug = U {Or CYw:v(t) exs\ f(v(s)) Nt ¢ E}.

seseq(w)

Notice that for each E € [seq(w)] ¥ Up is open dense, and since there are
only finitely many finite subsets of seq(w), by the BAIRE CATEGORY THEO-
REM 21.4 we get that

T = ﬂ {Ug : E € [seq(w)]~*}

is dense, and since T is contained in each D, we have T' C [ D,. —

ack
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With a product of Cohen forcing we shall construct a model in which
p < cov(#) (see COROLLARY 21.11). The crucial point in the construction
will be the fact that Cohen reals over V are not contained in any meagre F,, set
which can be encoded (explained later) by a real r € “w which belongs to the
ground model V. For this, we have to show the relationship between Cohen
reals and meagre sets and have to explain how to encode meagre F, sets by
real numbers; but first we give the relationship between Cohen reals and open
dense subsets of “w.

Consider Cohen forcing C = (Unew”w, g). To every C-condition s we
associate the open set Oy C “w. Similarly, to every dense set D C |J, o, "w
we associate the set

ﬁ(D):U{Osg%:seD},

which is an open dense subset of “w. On the other hand, if O C “w is an open
dense subset of “w, then the set

2(0)={se |Jw:0,C O}

new

is an open dense subset of |J,,,"w. Notice that for every open dense set
O C “w there is a dense set D C J, ., "w such that O = &(D). Hence, if
¢ € “w is a Cohen real over V, then in V[c] we have

V] E cGﬂ{ﬁ’(D):Dis dense in U”w/\DGV}.
new

Considering the dense set D C J
0 (D) C “w, we get the following

new W as the code for the open dense set

FacT 21.6. A real ¢ € “w is a Cohen real over V if and only if ¢ is contained
in every open dense subset of “w whose code belongs to V.

In order to make the notion of codes more precise, we show how one can
encode meagre F; sets by real numbers r € “w. For this, take two bijections
hi:w — seq(w) and hs : w X w — w, and for r € “w let

Mr:wWXw —> seq(w)
(n,m) — hy(r(ha(n,m))).
For every Fy set A = U, co, Npew “w \ Os,, ., there is a real r € “w, called

code of A, such that for all n,m € w we have 7, (n,m) = sy m. On the other
hand, for every real r € “w let A, C “w be defined by

AT:{fG‘”w:EmGanGw(m(n,m)gf)}.

As a countable union of closed sets, A, is an F, set. Thus, every real r € “w
encodes an F, set, and vice versa, every F, set can be encoded by a real
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r € “w. Now, an Fy set A = J,,c., Nnew “w\ Os, ., is meagre iff |, O
is dense for each m € w. So, for r € “w we have

Sn,m

A, is meagre iff Vs € seq(w)Vm € wIn € w (s C ne(n,m) Vny(n,m) Cs).

The way we have defined A, it does not only depend on the real r, but
also on the model in which we construct A, from r (notice that this fact also
applies to the sets Oy). So, in order to distinguish the sets A, constructed in
different models, for models V of ZFC and r € “w NV we write

Ay:{wawﬁV:ElmEcanEw(m(n,m)Qf)}.

By FACT 21.6 we get that if ¢ € “w is a Cohen real over V, then ¢ is not
contained in any meagre F,, set AY with r € “w N V. Now, let V and V' be
two transitive models of ZFC. Then, for every real r € “w which belongs to
both models V and V' we have

V . . v o.
V E AY is meagre iff V' E AY is meagre.
As a consequence we get the following characterisation of Cohen reals:

PROPOSITION 21.7. Let V be a model of ZFC, let P be a forcing notion in
V, and let G be P-generic over V. Then the real ¢ € “w N V[G] is a Cohen
real over V if and only if ¢ does not belong to any meagre F, set AV with

coder in'V.

Proof. (=) If ¢ € “wN V[G] belongs to some meagre F, set AV with code
rin V, then ¢ € e Mnew “@ \ Oy, (n,m)- Thus, there is an mg € w such
that ¢ does not belong to the open dense set |J,c,, Oy, (n,mo)- Now, consider
Cohen forcing C = (U,¢,,‘w, € ) and let D := {n,(n,mq) : n € w}. Then D is
an open dense subset of UiEWiw which belongs to the model V. On the other
hand we have {c|, : n € w} N D = @) which shows that c is not a Cohen real
over V.

(<) Firstly, recall that every meagre set is contained in some meagre F, set
and that AY is meagre iff AY'°! is meagre, and secondly, notice that AY C
AVIEl Hence, a real ¢ € “w N V[G] which does not belong to any meagre
F, set AX[G] with code 7 in V does belong to every open dense subset of “w
whose code belongs to V, and therefore, by FACT 21.6, ¢ is a Cohen real over
V. —

COROLLARY 21.8. Let P be a forcing notion which does not add Cohen reals
and let G be P-generic over V, where V is a model of ZFC + CH. Then
VI[G] E cov(.#) = w1, in particular, V]G] E p = w;.

Proof. In V, let C = {r € “w : A, is meagre}. Then |C| = w; and we
obviously have | J,..- Ar = “w. In other words, the set of meagre sets {A, :
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r € C'} is of cardinality w; which covers “w. Now, since IP does not add Cohen
reals, in V[G] we have “w\J, ¢ AV = 9. Hence, VIGIE U, cc AYIE = vy,
and since cov(.#) is uncountable we get V[G] E cov(.#) = w;. In particular,
by THEOREM 21.5, V[G] F p = wy. —

We have seen that cov(.#) < ¢ and by THEOREM 21.5 we know that
p < cov(A). So, cov(.#) is an uncountable cardinal number which is less
than or equal to c¢. Below, we shall compare the covering number cov(.#)
with other cardinal characteristics of the continuum and give a model of ZFC
in which p < cov(A).

A Model in which a < 0 = v = cov(.#)

The following lemma will be crucial in our proof that w; < v = cov(.#) = ¢ is
consistent with ZFC (cf. LEMMA 18.1 and Chapter 18 | RELATED RESULT 97).

LEMMA 21.9. Let o be an ordinal number, let C**! be the finite support
product of a + 1 copies of Cohen forcing C = (Fn(w,2), C), and let G
be C®*!-generic over some model V of ZFC. Then G(«) is C-generic over
V[G|,], in particular, | G(«) is a Cohen real over V[G|,].

Proof. Firstly notice that since Fn(w, 2) contains only finite sets, for all tran-
sitive models V', V" of ZFC we have Fn(w, 2)V' = Fn(w,2)V", i.e., Fn(w, 2) is
the same in all transitive models of ZFC, and consequently we get cv' =cVv”.
In particular, CVIGlal = CV,

To simplify the notation, let us work with the forcing notion C,, = (Fn(w X
a,2), Q) instead of C® (recall that by ProposITION 18.3, C, ~ C%). Now,
in the model V]G], fix an arbitrary dense set D C Fn(w,2) and let D be a
C*-name for D. Further, let pg € G|, be such that

po ¢ “D is dense in Fn(w,2)”,
and let
E={{q0,q1) € Fn(w x ,2) x Fn(w,2) : g0 > po Aqocq1 € D} .

We leave it as an exercise to the reader to show that E, which is a subset of
Fn(w x o, 2) x Fn(w,2), is dense above (pg,#). Thus, since (po, ) € (Gla x
G(a)), there is some (go, 1) € (Gla x G(e) NE. So, qo ¢ q1 € D where gy €
Gla, and since ¢ € G(a) we get that ¢; € D which shows that G(«a) N D # 0.
Since D C Fn(w,2) was chosen arbitrarily, we finally get that G(a) is C-
generic over V[G],], or in other words, | J G(«) is a Cohen real over V[G|,].
_|

PROPOSITION 21.10. wy <0 =t = cov(.#) = c¢ is consistent with ZFC.
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Proof. Let V be a model of ZFC + CH, let kK > wy be a regular cardinal,
and let G be C*-generic over V. Since & is regular and by PROPOSITION 18.3
CC" =~ C, by THEOREM 14.21 we have V[G] E ¢ = k. Thus, it remains to
show that V[G] is a model in which ? =t = cov(#Z) = ¢.

By LEMMA 18.9, for every real x in V[G] there is an «, € k such that
z € V[G|,,]- Moreover, since « is regular, for every set of reals X € V[G]
with | X| < k we get that [J{a, : 2 € X} € .

Let &,% C “wNV][G] and .# C [w]* N V[G] be three families in V]G],
each of cardinality strictly less than k. Then there is an ordinal 4 € k such
that all three families &, ¢, and .#, belong to V[G|,].

Since Cohen forcing adds splitting reals (by LEMMA 21.3) and since G(v)
is C-generic over V[G|,] (by LEMMA 21.9), in V[G|, ] there is a real s € [w]*
which is a splitting real over V[G|,]. Hence, the family .#, which belongs to
VI[G|,], is not a reaping family, and since .# was arbitrary, we must have
V[G] E t = c¢. Similarly, since Cohen forcing adds unbounded reals (by
LEMMA 21.1), in V[G|,41] there is a function f € “w which is unbounded
over V[G|,]. Hence, the family &, which belongs to V[G|,], is not a dominat-
ing family, and since & was arbitrary, we must have V[G] F 0 = c.

Assume now that € is a set of codes of meagre F, sets, i.e., for every r € €,
AV cwyiga meagre I, set. Again, since G(v) is C-generic over V[G|,],
UG(M) € N, eq (w\ AVIEH)). Hence, in V[G] we get |J, o, AV # “w, and
since € was arbitrary, we must have V|G| E cov(.#) = c. —

As an immediate consequence of PROPOSITION 18.5 and PROPOSITION 21.10
(using the fact that C,, ~ C*), we get the following consistency result.

COROLLARY 21.11. w1 = a <0 =t = cov(#) = ¢ is consistent with ZFC.
In particular, since p < a, we get that p < cov(.#) is consistent with ZFC.

A Model in which s = b <0

The idea is to start with a model V in which we have wy < p = ¢ (in particular,
VEs=0b=0=¢c), and then add w; Cohen reals to V. It is not hard to
verify that in the resulting model we have w; = s = b. Slightly more difficult
to prove is the fact that we still have 9 = ¢, which is a consequence of the
following result.

LEMMA 21.12. Let P = (P, <) be a forcing notion and let G be P-generic over
some model V of ZFC. If V E |P| < b, then for every function f € “wNV|[G]
we can construct a function gy € “wN'V such that for all h € “wN'V we have

h<*f — h<"gs,

i.e., whenever the function h is dominated by f (in the model V[G)]), it is
also dominated by the function g; from the ground model V. In particular, if
V E b > w; and G is C¥1-generic over V, then V[G] Fd > oV.
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Proof. Let f € “wN VI[G] and let f be a P-name for f (in the ground model
V) such that 0l—p f € “w. For every P-condition p € P define the function
fp € “wN'V by stipulating

fp(n) :min{kEw:Elqu(qll—pf(n) :k)}

Consider the family .# = {f, : p € P} C “w. Since |P| < b, there exists a
function gy € “w (in the ground model V) which dominates each member of
#. Thus, whenever pl=p h <* f we have h <* f, <* gy, which shows that g¢
dominates h. )

In order to see that V[G] F @ > 2V whenever V F b > w; and G is
C“1-generic over V, recall that C** ~ C,,, and notice that ‘ Fn(w x wy, w)‘ <
‘ﬁn(wxwl xw)‘:wl. =

The proof of the following result will be crucial in the proof of PROPOSI-
TION 27.9.

PROPOSITION 21.13. w; =6 =b < 0 = ¢ is consistent with ZFC.

Proof. Let V be a model of ZFC+c¢=p > w; and let G = (¢, : @ € wy) be
C+1-generic over V, where we work with C = (J,,.,,"w, C). We shall show
that V[G]Fw; =s=b<d=c=c".

Since C“! satisfies ccc, all cardinals are preserved and we obviously have
VI[G] E ¢ = ¢V > w;. Furthermore, by LEMMA 18.9, for all f € “w and
x € [w]* which belong to V[G] there is a vy € w; such that f and x belong
to V[{cq : a € 70)].

Since Cohen forcing adds unbounded reals (by LEMMA 21.1) and since c.,
is C-generic over V[G|,,] (by LEMMA 21.9), ¢, € “w is not dominated by any
function in V[{cy : a € 70)], in particular, ¢,, is not bounded by f. Thus,
in V[G], the family {c, : @ € w1} is an unbounded family of cardinality wn,
which shows that V[G] E w; = b.

Similarly, let o., be the splitting real over V[{(cq : o € 7y9)] we get from
the Cohen real c,, using the construction in the proof of LEMMA 21.3. Then
0., every infinite subset of w, in particular, o, splits z. Thus, in V[G], the
family {04 : @ € w1} is a splitting family of cardinality wy, which shows that
V[G] = W1 = 8.

Finally, by LEMMA 21.12 we have V[G] F 2 = 0V > w; which shows that

VIGlEw =s=b<d=c.
_|

NOTES

The results presented in this chapter are all classical and most of them can be
found in textbooks like Kunen [8] or Bartoszynski and Judah [3] (for example the
model in which ¢ > a = w; as well as the corresponding proofs are taken from
Kunen [8, Chapter VIII, §2] and LEMMA 21.12 is just Lemma 3.3.19 of Bartoszynski
and Judah [3]).
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RELATED RESULTS

108. A combinatorial characterisation of cov(.#). Bartoszynski [2] (see also Bar-
toszytiski and Judah [3, Theorem 2.4.1]) showed that cov(.#) is the cardinality
of the smallest family .# C “w with the following property: For each g € “w
thereis an f € .#, such that for all but finitely many n € w we have f(n) # g(n).
For another characterisation of cov(.#) see Chapter 13 | RELATED RESULT 80.

109. p < add(#). The additivity of .#, denoted add(.#), is the smallest number
of meagre sets such that the union is not meagre. Notice that we obviously have
add(A') < cov(A). Piotrowski and Szymariski showed in [12] that p < add(.#Z)
which follows from the fact that add(.#) = min{cov(.#),b} (see Miller [10]
and Truss [16], or Bartoszyriski and Judah [3, Corollary 2.2.9]). For possible
(i.e., consistent with ZFC) relations between add(.#) and cov(.#) and other
cardinal characteristics of the continuum we refer the reader to Bartoszyriski
and Judah [3, Chapter 7].

110. Cohen-stable families of subsets of integers. Kurilic showed in [9] that adding a
Cohen real destroys a splitting family .7 if and only if .# is isomorphic to a split-
ting family on the set of rational numbers whose elements have nowhere dense
boundaries. Consequently, || < cov(.#) implies the Cohen-indestructibility
of .. Further, he showed that for a mad family in order to remain maximal
in any Cohen extension, it is necessary and sufficient that every bijection from
w to the set of rational numbers must have a somewhere dense image on some
member of the family.

A forcing notion, introduced by Solovay [13, 14], which is closely related to Cohen
forcing C is the so-called random forcing, denoted B, which is defined as follows:
B-conditions are closed sets A C R of positive Lebesgue measure, and for two B-
conditions A and B let A < B <= A C B. Further, if G is B-generic (over some
model V), then r = (|G is called a random real.

111. Properties of random forcing. Obviously, random forcing satisfies ccc, and
therefore, random forcing is proper. Furthermore, random forcing is “w-bounding
(see Jech [5, Part I, Lemma 3.3.(a)]), hence, random forcing does not add Co-
hen reals. For more properties of random forcing see Bartoszyriski and Judah [3,
Section 3.2] or Blass [4, Section 11.4].

112. Random reals versus Cohen reals. Let c be a Cohen real over V and let r be a
random real over V[c|. Then, in Vic|[r], there is a Cohen real (but no random
real) over V|[r] (see Pawlikowski [11, Corollary 3.2]).

113. On partitions of “w into w1 disjoint closed sets. If CH holds, then the set of

singletons {{x} Tx € “’w} is obviously a partition of “w into w; disjoint closed
sets. However, if CH fails, then the existence of a partition of “w into w; disjoint
closed sets is independent of ZFC:
Now, Stern [15, §1] showed that if G is C,,-generic over V, where V F GCH,
then, in V]G], there is no partition of “w into wi disjoint closed sets. On the
other hand, Stern [15, §2| also showed that adding ws random reals to a model
in which GCH holds, yields a model in which CH fails, but in which such a
partition of “w still exists.
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114.

115.

10.

11.

12.

On the ezistence of Ramsey ultrafilters. It can be shown that cov(.#) = ¢ iff
every filter generated by < ¢ elements can be extended to a Ramsey ultrafilter
(see Bartoszytiski and Judah [3, Theorem 4.5.6]). In particular, adding w2 Cohen
reals to a model in which GCH holds, yields a model in which Ramsey ultrafilters
exist. On the other hand, Kunen showed in [7] that adding w, random reals to
a model in which GCH holds, yields a model in which there are no Ramsey
ultrafilters (see also Jech [6, Theorem 91]).

Random forcing and the ideal of Lebesgue measure zero sets. Like the set of
meagre sets .4, also the set .4 of Lebesgue measure zero sets forms an ideal.
So, we can investigate add(.#") and cov(.4#"), and compare these cardinal char-
acteristics with add(.#) and cov(.#).

For example, Bartoszyniski showed in [1] that add(.#") < add(.#). Further-
more, by THEOREM 20.6 (using the fact that random forcing is proper and “w-
bounding) it follows that a countable support iteration of length wo, starting in
a model for CH, yields a model in which cov(.#") > cov(.#) (cf. Bartoszytiski
and Judah [3, Model 7.6.8]). For more results concerning random reals and the
ideal .4 see Bartoszynski and Judah [3, Section 3.2].
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22

Silver-Like Forcing Notions

On the one hand, we have seen that every forcing notion which adds domi-
nating reals also adds splitting reals (see FACT 20.1). On the other hand, we
have seen in the previous chapter that Cohen forcing is a forcing notion which
adds splitting reals, but which does not add dominating reals. However, Cohen
forcing adds unbounded reals and as an application we constructed a model
in which s = b < 9 = r. One might ask whether there exists a forcing notion
which is even “w-bounding but still adds splitting reals. In this chapter, we
shall present such a forcing notion and as an application we shall construct a
model in whichs =b=0<rt.

Below, let & be an arbitrary but fixed P-family (introduced in Chapter 10).
For a set  C w, let ®2 denote the set of all functions form z to {0,1}. Silver-
like forcing with respect to &, denoted Sg = (Sg, <), is defined as follows:

Sg:U{mQ:zcéé’}
where z¢ := w \ z, and for p,q € Sg we stipulate
p < q <= dom(p) € dom(q) A qlaom@p) =P -

If & = [w]“, then we call Sg just Silver forcing, and if & is a P-point, then
S is usually called Grigorieff forcing.

As in the case of Cohen forcing we can identify every Sg-generic filter
with a real g € “2, called Silver real, which is in fact just the union of the
functions which belong to the generic filter. More formally, if G is Sg-generic
over some model V, then the corresponding Silver real g € “2 is defined by

g=J{ress:reay.

On the other hand, from a Silver real one can always reconstruct the corre-
sponding generic filter, and therefore, V[G] = V|[g] (we leave the reconstruc-
tion as an exercise to the reader). Furthermore, Silver reals can be charac-
terised as follows: A real g € “2 is a Silver real over a model V of ZFC iff for
every open dense subset D C Sg there is a p € D such that glgom(p) = p-
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Properties of Silver-Like Forcing

Silver-Like Forcing is Proper and “w-bounding

Before we show that Silver-like forcing S¢ is proper and “w-bounding, let us
introduce the following notation: For a condition p € Sg¢ (i.e., p: z — {0,1}
where z¢ € &) and a finite set ¢t C dom(p) let

p-t={q € Ss: dom(q) = dom(p) A qlaom(g)\t = Plaom(p)\¢ } -
LEMMA 22.1. Silver-like forcing Sg is proper.

Proof. As described in Chapter 20, let x be a sufficiently large regular car-
dinal. We have to show that for all countable elementary submodels N =
(N,€) < (Hy, €) which contain Sg, and for all conditions p € Sg N N, there
exists an Sg-condition ¢ > p (in V) which is N-generic (i.e., if g € “2 is a
Silver real over V and ¢ C g, then g is also a Silver real over N).

So, let N = (N, €) be an arbitrary countable elementary submodel of
(Hy, €) and let p € Se NN be an arbitrary Sg-condition which belongs to N.
We shall construct in V an Sg-condition ¢ > p which is N-generic by using
the fact that & is a P-family. Firstly, let {D,, : n € w} be an enumeration
(in V) of all open dense subsets of Sg which belong to N and choose (in V)
some well-ordering “<” on Sg N N. We construct the sought Sg-condition
g > p by running the game Gz: The MAIDEN starts the game by playing
xo := dom(qp)€, where gy € N is the <-least condition such that gy > p and
qo € Dy, and DEATH responds with some finite set sg C xg. Assume that for
some n € w we already have x,, ¢n, and s,. Let t = Jj<;<,, si and y = z,, \ 1.
Now, the MAIDEN plays z,+1 C y such that z,+; = dom(g,+1)¢, where
gn+1 € N is the <-least condition such that g,4+1 > ¢, and gp4+1~t € Dyq1,
and DEATH responds with some finite set s,11 C 1.

Since & is a P-family, this strategy of the MAIDEN is not a winning strategy
and DEATH can play so that 2’ = J,,,, sn belongs to &. For ¢’ = U, c,, ¢n
we have 2/ C dom(q’), and thus, the function ¢ := ¢'|,c is an Sg-condition.
In addition, if g is a Silver real over V such that ¢ C g, then, by construction
of ¢ and the properties of the g,’s, for every n € w we have glqom(q,) € Dn,
which shows that g is a Silver real over N.

LEMMA 22.2. Silver-like forcing Sg is “w-bounding.

Proof. Let G be Sg-generic over V, let f € “w be a function in V[G], and let
f be an Sg-name for f. In order to show that f is bounded by some function
in the ground model, it is enough to prove that for every Sg-condition p € Se
there is a condition ¢y > p and a function g € “w in the ground model V such
that g =g, “g dominates f”.

Firstly, choose some well-ordering “<” on Sg. We construct the condition
go by running the game G; where the MAIDEN plays according to the following



A model in which ? <t 401

strategy: Let mg € w be the smallest integer for which there exists a condition
r > p such that r g, f(0) < mg and let pg be the least such condition r with
respect to the well-ordering “<”. Then the MAIDEN plays zo = dom(po)°®.
For positive integers i € w let t; = (J;c; 5k, where sq,...,s;_1 are the moves
of DEATH, and let py < --- < p;_1 be an increasing sequence of conditions.
Further, let m; € w be the least number for which there exists a condition
r > pi—1 with dom(r) 2 dom(p;—1) Ut; such that for all ¢ € r~f; we have
rl=s, f(i) < m;, and again, let p; be the least such condition r (with respect
to “<”). Then the MAIDEN plays x; = dom(p;)°.

Since & is a P-family, DEATH can play so that |J;c,,si € &. Let h =
Uico Pis then h € #2 for some  C w (but A is not necessarily an Sg-condition).
Now, let go € S¢ be such that dom(qo) = dom(h)\U,c,, 5: and go = Alaom(qo)s
and define the function g € “w by stipulating g(i) := m, (for all i € w). Then
g belongs to the ground model V and by construction we have

qoFse Vi€ w (f(i) < g(i)),

which shows that gy forces that f is dominated by g. —

Silver-Like Forcing adds Splitting Reals
LEMMA 22.3. Silver-like forcing Sg adds splitting reals.

Proof. Let g € “2 be a Silver real over V. We can identify g with the function
f € “w by stipulating

fn)=k < gk)=1 A [{m<k:g(m)=1}=n.

Then the set

of = U{[f(Qn),f(2n+ 1):n Ew}

splits every real in the ground model, where [a,b) := {k € w: a < k < b}. To
see this, recall that & is a free family, and notice that for each real x € [w]¥
in the ground model V and for every n € w, the set

Dyn={peSe:phs, (|:cﬁzif|>n/\ |$\Oj|>n)}

is open dense in Sg. —

A Model in which 0 < ¢

PROPOSITION 22.4. wy; =0 < t = ¢ is consistent with ZFC.

Proof. Let V be a model of ZFC + CH, let P, be an ws-stage, countable
support iteration of Silver forcing (i.e., Silver-like forcing Se with & = [w]¥),
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and let G be P,,-generic over V. Since Silver forcing is of size ¢, by THEO-
REM 20.5.(a) we get V[G] E ¢ = wa. Furthermore, since Silver forcing is proper
and “w-bounding, by THEOREM 20.6 we get that P, is “w-bounding, which
implies that in V[G], Yw NV is a dominating family of size w; (recall that
V E CH), and therefore we have V[G] F d = w;. Finally, since Silver forcing
adds splitting reals, by THEOREM 20.5.(b) we get that no family % C [w]*
of size wy can be a reaping family, thus, V[G] E t = wy. Hence, we get
V[GlEw =0<t=ws =c. —

NOTES

Most of the results presented here can be found in Grigorieff [10] and Halbeisen [11]
(see also Jech [12, p.21f] and Mathias [16]).

RELATED RESULTS

116. Silver-like forcing Se is minimal. Grigorieff proved in [10] that S¢ is minimal
whenever & is a P-point and in Halbeisen [11] it is shown how Grigorieff’s proof
can be generalised to arbitrary P-families.

117. Silver-like forcing has the Laver property. By similar arguments as in the proof
of LEMMA 22.2 one can show that Silver-like forcing has the Laver property.

118. n-Silver forcing. For integers n > 2, the n-Silver forcing notion S, consists
of functions f : A — n, where A C w and w \ A is infinite. S, is ordered by
inclusion, i.e., f < g iff g extends f. Notice that S; is the same as Silver forcing.
If G is S,-generic, then the function | J G : w — n is called an S,-generic real. As
a corollary of a more general result, it is shown in Rostanowski and Steprans [18]
that no countable support iteration of Sy adds an Ss-generic real.

119. Another model in which ® < vr. A model in which wi =a =0 <t=ws = ¢
we get if we add w2 random reals to a model V of ZFC 4+ CH (see for example
Blass [2, Section 11.4]).

A forcing notion, introduced by Sacks [19], which is somewhat similar to Silver-
like forcing, is the so-called Sacks forcing, denoted S,. To show the similarity to
Silver-like forcing we shall define Sacks forcing in terms of perfect sets — but one
can equally well define Sacks forcing in terms of trees. We say that a set T C “2 is
perfect if for every f € T and every n € w there is a g € T and an integer k > n
such that g|, = f|, and f(k) # g(k). The set of S-conditions consists of all perfect
sets T' C “2, and for any S-conditions S and T we stipulate S < T <= T C S.
Furthermore, if G is S-generic then the real (|G € “2 is called a Sacks real.

120. Properties of Sacks forcing. One can show that Sacks forcing has the following
properties:
e Sacks forcing is proper.
e Sacks forcing is “w-bounding.
e Sacks forcing has the Laver property.
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121.

122.

123.

e Sacks forcing is minimal and every new real is a Sacks real.

e Sacks forcing collapses ¢ to b.

For these and further properties of Sacks forcing, as well as for some applications
of Sacks forcing to Ramsey Theory, see Sacks [19], Geschke and Quickert [9],
Brendle [3, 4, 5], Simon [20], Blass [2, Section 11.5], Brendle and Léwe [7], and
Brendle, Halbeisen, and Léwe [6].

Sacks forcing and splitting reals. Baumgartner and Laver [1] showed that Sacks
forcing does not add splitting reals (see also Miller [17, Prop. 3.2]). Now, by
applying the WEAK HALPERN-LAUCHLI THEOREM 11.6, one can show that also
finite products of Sacks forcing do not add splitting reals (see Miller [17, Re-
mark, p. 149] and compare with Chapter 23 | RELATED RESULT 127). Moreover,
Laver [15] showed that even arbitrarily large countable support products of
Sacks forcing do not add splitting reals.

Splitting families and Sacks forcing. Using the methods developed by Brendle
and Yatabe in [8], Kurilic investigated in [14] the stability of splitting families
in several forcing extensions. For example, he proved that a splitting family is
preserved by Sacks forcing if and only if it is preserved by some forcing notion
which adds new reals (compare with Chapter 21 | RELATED REsuLT 110).

Sacks reals out of nowhere. Kellner and Shelah showed in [13] that there is a
countable support iteration of length w which does not add new reals at finite
stages, but which adds a Sacks real at the limit stage w.
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Miller Forcing

So far we have seen that Cohen forcing adds unbounded as well as splitting
reals, but not dominating reals (see Chapter 21), and that Silver forcing adds
splitting reals but not unbounded reals (see Chapter 22). Furthermore, it was
mentioned that Sacks forcing adds neither splitting nor unbounded reals (see
Chapter 22 | RELATED RESULT 120). In this chapter we shall introduce a forc-
ing notion, called Miller forcing, which adds unbounded reals but no splitting
reals. As an application of that forcing notion we shall construct a model in
which v < 0.

Before we introduce Miller forcing, let us first fix some terminology. We
shall identify seq(w) (the set of finite sequences of w) with (J,,,, "w. Conse-
quently, for s € seq(w) with |s| = n + 1 we can write s = (s(0),...,s(n)).
Furthermore, for s,t € seq(w) with |s| < |t| we write s < ¢ if ], = s (i.e., s is
an initial segment of ¢). A set T' C seq(w) is a tree, if it is closed under initial
segments, i.e., t € T and s < t implies s € T'. Elements of a tree are usually
called nodes. Let T C seq(w) be a tree and let s € T be a node of T. Then
the tree T is defined by

T,={teT:txsVs=<t}.
Further, the set of immediate successors of s (with respect to T') is defined by
sucer(s)={teT:Incw(t=5n)},

where $n denotes the concatenation of the sequences s and (n), and finally
let
nextr(s) ={ncw:sneT}.

A tree T C seq(w) is called superperfect, if for every ¢t € T there is an
s € T such that ¢t < s and |succr(s)] = w, i.e., above every node t there
is a node s with infinitely many immediate successors. If T C seq(w) is a
superperfect tree, then let
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split(T) = {s € T : |succr(s)| =w}.

Thus, a tree T' C seq(w) is superperfect if and only if for each s € T there
exists a t € split(T) — a so-called splitting node — such that s < t. For k € w
and T C seq(w), let

split,, (T') = {s € split(T) : |{t € split(T) : t < s}| =k + 1},

i.e., a splitting node s € split(T') belongs to split, (T) if and only if there are
k splitting nodes below s.

Now, Miller forcing, denoted by M = (M, <), also known as rational
perfect set forcing, is defined as follows:

M = {T C seq(w) : T is a superperfect tree} ,
and for T,T" € M we stipulate
T<T < T'CT.

As in the case of Cohen and Silver forcing we can identify every M-generic
filter with a real g € “w, called Miller real, which is in fact the union of
the intersection of the trees in the generic filter. More formally, if G is M-
generic over some model V, then the corresponding Miller real ¢ € “w has
the property that for each n € w we have

gl e({T €M : T €G}.

Since we can reconstruct the generic filter from the corresponding Miller real,
we obviously have V[G] = V|[g] (we leave the reconstruction as an exercise to
the reader).

Properties of Miller Forcing

Miller Forcing is Proper and adds Unbounded Reals
LeEMMA 23.1. Miller forcing is proper.

Proof. As described in Chapter 20, let x be a sufficiently large regular car-
dinal. We have to show that for all countable elementary submodels N =
(N,€) < (Hy, €) which contain M, and for all conditions S € M N N, there
exists an M-condition 7" C S (in V) which is N-generic.

So, let N = (IV,€) be an arbitrary countable elementary submodel of
(Hy,€) and let S € M NN be an arbitrary M-condition which belongs to N.
We shall construct a superperfect tree T' C S which meets every open dense
subset of M which belongs to N: In V|, let {D,, : n € w} be an enumeration of
all open dense subsets of M which belong to N. Firstly, choose a superperfect
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tree T° C S such that 7° € (Do N N). Assume we have already constructed
T° O --- D T™ such that for each i < n, T® € (D; N N). Let {s; : j € w} be
an enumeration of split,, (7). For every j € w and for each t € succrn(s;)
choose a superperfect tree T3t C T} such that Tt ¢ (Dp41 N N) and let

T = | {19 € M :j e wnt € sucern(s)} -

Then T"+! is a superperfect tree and 77! C T, In addition, if G is M-
generic over V and T"*! € G, then there exists a 77! C T+ which belongs
to G, and because T7* € Dy,41, we get GNDyy1 # 0. Now, let T =0, o, T™
Then T' C S is a superperfect tree which is N-generic. —

LeMMA 23.2. Miller forcing adds unbounded reals.

Proof. In order to prove that Miller forcing adds unbounded reals, it is enough
to show that whenever g € “w is a Miller real over some model V| then g is
unbounded. Let f € “w be an arbitrary function in V and let

Dy ={T € M :Vs € split(T) Vn € nextr(s) (f(|s|]) <n)}.

We leave it as an exercise to the reader to show that Dy is open dense in M,
which shows that g £* f. Thus, ¢ is not dominated by f, and since f was
arbitrary, g is unbounded. —

Miller Forcing does not add Splitting Reals
LEMMA 23.3. Miller forcing does not add splitting reals.

Proof. Let V be a model of ZFC, let G be M-generic over V, and let Y be
an M-name for a subset of w in V[G], i.e., there is an M-condition S € M
such that SlpY C w. We shall construct an M-condition S’ C S and an
X € [w]¥ (in V) such that S’ Iy (X CY) V(X NY = 0), which shows that
Y is not a splitting real.

The construction of the superperfect tree S’ and the infinite set X € [w]*
is done in the following three steps.

CLAIM 1. There is an M-condition T C S and a sequence (Y : s € split(T))
(in V) of subsets of w, such that for every s € split(T), each k € w, and for
all but finitely many n € nextr(s) we have

T bFuYNk=YNk,

i.e., for every k € w there exists an ny, € w such that for all n’ € nextrp(s)
withn' >ng, T, FuY Nk=Y,Nk.

Proof of Claim 1. We construct the condition 7' by induction. In particular,
the superperfect tree T will be the intersection of superperfect trees T¢, where
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°=95, T = |J T, and TICT!,

sesplit; (T?)

and where the superperfect trees T; are constructed as follows: Fix an i € w
and a splitting node s € split;(1"). For each n € nextr:(s), choose a super-
perfect tree T}n C T}n such that, for some finite set b, € fin(w), we have

TL Y Nn=by.

For every k € w, let F, = {bn Nk :n € nextpi (s)} Notice that all sets
F}, are finite, in fact, F, C £ (k). Consider now the tree 7 with the infinite
vertex set {(b,k) : k € wAb € Fj}, where two vertices (b, k) and (V',k’)
are joined by an edge iff b C (' Nk) and ¥’ = k + 1. Notice that T is
an infinite, finitely branching tree. Hence, by Konig's Lemma, 7 contains an
infinite branch, say ((0,0),(a1,1),...,{(ax,k),...). Let Yy = U, ax and
define the strictly increasing sequence (n; : j € w) of elements of nextr:i(s) so
that for each k£ € w and for all n; > k we have

T FuY Nk=ag.
Hence, for each k € w and for all but finitely many j € w we have

TSLn‘n—Mgmk:}gﬁk.

Now, let T? = |J,., T%- . Then, for each k € w and for all but finitely many
J

JEW T sn

n € nexts,; (s) we have
S _
TS/;L”_M,}V/QTL—}/SQTL.

Finally, let T°t! = |J {T: : s € split;(T%)}. Notice that for all j < i,
split;(T*1) = split;(T"); thus, T = (¢, T" is a superperfect tree. By con-
struction, for every s € split(T), for each k € w, and for all but finitely many
n € nextr(s) we have

T Y Nk=Y.Nk,

where (Y : s € split(T)) is an infinite sequence of subsets of w which belongs
to the ground model V. Actaim 1

In the next step we prune the tree T' so that the corresponding sets Y, (or
their complements) have the strong finite intersection property sfip (i.e., in-
tersections of finitely many sets are infinite).

CLAIM 2. There exists a superperfect tree T' C T such that
(1) {Ys :s € split(T")} has the sfip; or
(2) {w\Y;:sesplit(T”")} has the sfip.
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Proof of Claim 2. Let % C [w]* be an arbitrary ultrafilter over w. We partition
the set split(T) according to whether the set Y belongs to % or not. More
precisely, let U = {s € split(T) : Ys € % } and V = {s € split(T) : (w\Ys) €
%}. Then UNV = and U UV = split(T). We are in at least one of the
following two cases:

e There exists an s € split(T') such that split(Ts) C U.
e For all s € split(T) there exists a t € split(Ts) with t € V.

In the former case, let T’ = T, and in the latter case, we can construct a
superperfect tree 7" C T such that split(T') C V — we leave the construction
of T' as an exercise to the reader.

If split(T") C U, then {YS 18 € sp]it(T’)} has the sfip; and if split(T') C V,
then {w\Y; : s € split(T")} has the sfip. Actaim 2

In the last step we construct a set X € [w]* which is not split by Y.
CrAM 3. Let T' C T be a superperfect tree such that

% = {Y, : s € split(T")} or  #={w\Ys:sesplit(T')}

has the sfip. Then there exists a sequence of superperfect trees (T : i € w),
where T® C T and Tt C T? (for all i € w), as well as a sequence of natural
numbers (m; : i € w), where m; < m;y1 (for all i € w), such that (), T* is
a superperfect tree and either

1EW

View(T'Fym; €Y) o View(T'hym;¢Y).

Proof of Claim 3. We just consider the case when %) has the sfip, in which
case we shall later get X N'Y = (; the other case, in which would later get
X CY, is handled analogously and is left as an exercise to the reader.

In order to get (., T* € M, we shall construct an auxiliary sequence
(F; : i € w) of increasing finite subsets of split(T"), i.e., for every i € w,
F; C F;y1 and F; € fin (split(Ti)). Moreover, we shall construct (F; : i € w)
such that (J,.,, F; is infinite and ., Fi = split (M;c, T7)-

Let 77! :== T, m_y := 0, and let F_; = {s} for some s € split(T").
Agsume that for some ¢ € w, we have already constructed a superperfect tree
T=' € M, mi—1 € w, and F;_; € fin (split(T"~')). Choose a natural number
m; > m;_1 such that m; € ﬂseFiil(w \ Y5). This can be done since % has
the sfip, i.e., (,cp,_,(w\ Ys) is infinite. Now, with respect to the finite set
E—l define

[Fifl] = {t € seq(w) :ds e Fifl(t < S)} .

Then [F;_1] is a finite subtree of T"~1. Suppose that sy € [F;_1] is a terminal
node of [F;_4], i.e., for all n € w, sgn ¢ [F;_1]. By construction of Y;,, for all
but finitely many n € nextpi-1(sp) we have

T Y N(m +1) =Y, N (m; +1).
Son
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Hence, since m; ¢ Y, for all but finitely many n € nextpi-1(sg) we have
Toinl Fym; ¢ Y.
Now, we prune 7°~! by deleting the finitely many subtrees T;)an with
Toinl Fyum; €Y.

Furthermore, we do exactly the same for all other terminal nodes of the finite
tree [F;_1]. Then, we do the same for all interior nodes of [F;_1], except that
we retain all subtrees Tgl with sn € [Fi_1].

The resulting tree T? is superperfect and has the property that

Tibym; Y.

Notice that by construction, if s € [F;_;] is an interior node of [F;_;] and
§n € [Fi—1] (for some n € w), then §n € T*. Now, choose a finite set F; such
that F;_y C F; € fin (split(Ti)) which has the following property: For each
s € F;_1, for which there is an ny € w such that §n, € T\ [F;_1], there exists
ate F;\ F;_1 such that $hs < t. We leave it as an exercise to the reader to
verify that the resulting tree (.., 7" is superperfect. Actaim 3

T?. Then, in the case when %}

€W
Now, let X := {m; : i € w} and S’ :=
has the sfip, we have

1EW
S/”_MXQXZQ,

and otherwise we have
SFyXCY.

In other words, whenever G is M-generic over V, then Y[G] is not a splitting
real over V, and since Y was an M-name for an arbitrary subset of w, this
shows that Miller forcing does not add splitting reals. —

As an immediate consequence we get
Fact 23.4. Miller forcing does not add dominating reals.

Proof. By FACT 20.1 we know that every forcing notion which adds domi-
nating reals also adds splitting reals. Thus, since Miller forcing does not add
splitting reals, it also does not add dominating reals. —

Miller Forcing Preserves P-Points

By a similar construction as in the proof of LEMMA 23.3 we can show that
every P-point in the ground model generates an ultrafilter in the M-generic
extension.

LEMMA 23.5. Miller forcing preserves P-points.
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Proof. Suppose that % C [w]* is a P-point in the ground model V and that
G is M-generic over V. We have to show that % generates an ultrafilter in
VI[G], i.e, for every Y C w in V|[G] there exists an X € % in V such that
either X CY or X NY = (). For this, let Y be an M-name for an arbitrary
but fixed subset of w in V[G] (i.e., there is an M-condition S € M such that
SymY C w). We shall construct an M-condition S’ C Sandan X € % in V
such that either S’y X CY or S’y X NY = (. Since Y[G] is arbitrary,
this would imply that the filter in V[G], generated by %, is an ultrafilter.
As in the proof of LEMMA 23.3, we first construct an M-condition 7" C §
and a sequence <YS 1 s € sp]it(T)> of subsets of w, such that for every s €
split(T'), for each k € w, and for all but finitely many n € nextr(s), we have

T buY Nk=Y,Nk.

Now, we construct a superperfect tree 77 C T such that either {Ys i s €
split(T")} € % or {w\ Y : s € split(T")} C %. Since % is a P-point,
there exists an X’ € % such that for all s € split(T”), either X’ C* Y, or
X' C* (w\Ys).

Below we just consider the case when X’ C* Yy and leave the other case
as an exercise to the reader.

In the next step we build a sequence s,, € split(T’), such that both sets,
{s2n : n € w} and {s2,41 : n € w}, will be the splitting nodes of some M-
condition. At the same time we build a strictly increasing sequence of natural
numbers (k,, : n € w), such that for all n € w, X'\ k, C Y5,,.

The construction is by induction on n: Firstly, let so € splity(1”), let
$1 = S0, and let kg = 0. If necessary, modify X’ such that X’ C Y, = Y5, .
Assume that for some n € w, we have already constructed so,, San+1, k2n,
and ko,41. Let ¢, 7 € w be such that

bl (z-i-])(l;-j 1),

Notice that ¢ and j are unique and that n + 1 > i. Now, we choose a new
splitting node son12 € split(T'), i.e., Sopt2 & {s1 : I < 2n + 1}, such that
SQme < Son+2 for some mo € HeXtT/(SQi) with mg > k2n+1, and

YYS2n+2 N k2n+1 = szm N k2n+1 .

In order to see that such a splitting node s2,,42 exists, notice that 2n+2 > 2i
and that for all but finitely many m € nextrs(s2;),

T, . b Y Nkangr = Yoo, Nkanyr -

Hence, there exists an mg € nextr(s2;) with mg > kan41, such that for all
Sony2 = S2imo we have Yy, ., Nkopy1r = Ys,, N koyyr. Finally, we choose
kon42 > kont1 large enough such that

X'\ kant2 CYs

2n42 °
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The splitting node sa,+3 € split(T”) (with s2;41 Mo < S2n+3) and the integer
kon+3 > konto are chosen similarly.

Notice that by construction, for each node s € {s2, : n € w} there are
infinitely many nodes ¢ € {sa, : n € w} such that s < ¢, and the same holds
for the set {san+1 : n € w}. Thus, {s2, : n € w} and also {s2,41 : n € w}
are the splitting nodes of superperfect subtrees of 7. Let Sy, S1 € T be such
that split(Sp) = {s2n : n € w} and split(S1) = {s2nt1 : n € w} respectively.
Further, let

XO = XIQU{[kgn,anJrl) ne w}

and
X1 = X'n U {[k2n+1,k/’2n+2) n e UJ}

where [k, k') = {m € w : k < m < k'}. Without loss of generality we may
assume that Xy € 7. The goal is to show that Sy -y Xo C Y, which is done
in the following two claims:

CLAIM 1. For every s € split(Sp), Xo C Ys.

Proof of Claim 1. Firstly, notice that for every s € split(Sp) there is an n € w
such that s = s9,. We prove that Xy C Y, by induction on n: By the choice
of X’ we have X’ C Y,,; hence, Xg C Y. If n > 0, then by the choice of ko,
we have

XO \ k2n g }/s

2n 9

and by the definition of Xy we have
XoNkan = XoNkap—1.
Therefore, we find an i < n such that
Ys,, Nkopn—1 =Y, Nkop_1.

Now, by induction we have Xy C Y,,, thus, (Xo N kan—1) C Yi,, Nkop_1.
Since (Xo Nkan) = (Xo Nkan—1) and (Xo \ ka2pn) C Y, , we finally get

Xo = (XoNkan) U (Xo\ k2n) C (Ys,, Nkon—1)UYs,, =Y, .

4|Claim 1

CrLAamM 2. Syl Xo C Y.

Proof of Claim 2. Assume towards a contradiction that there is an M-
condition S C Sy and an m € X such that

Skymé¢Y.

Let s € sp]ito(g). By construction of T', and since~5~‘ C T, for each k € w and
for all but finitely many n € nextg(s) we have S =y Y Nk = Y, Nk. In
particular, for k = m + 1 and for some ng € nextg(s) we have
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S’%UII—MmGXHmGYS.

S
Since Xy C Y, and m € X, this implies

sz‘ho II—MmEX,

which contradicts our assumption that Slym ¢yY. Actaim 2

Thus, in the case when for all s € split(T'), X' C* Y, there is an X € %
(where X is either Xy or X;) and an M-condition S" C T’ (where S’ is either
So or S1) such that S’y X C Y. In the other case (which was left to the
reader), in which for all s € split(T’), X' C* (w\Y;), thereis an X € % and
an S C T” such that S’y X NY = (. So, in both cases, % generates an
ultrafilter in the M-generic extension, which is what we had to show. —

A Model in which + < 0

Below we show that after adding wo Miller reals to a model V of ZFC+ CH, we
get a model V[G] in which v = w; and ? = ws. The reason why V[G] F 0 = wo
is that Miller forcing adds unbounded reals, and the reason why V[G] F t = w;
is in fact a consequence of the following

FAcT 23.6. If there exists an ultrafilter % which is generated by some filter
F C |w]¥ of cardinality k, then v < k.

Proof. Firstly notice that for all z € [w]“, either z € % or (w\ z) € %.
Secondly, since .% generates %, for all 2’ € % there is a y € .# such that
y C a’. This shows that .% is a reaping family. =

PROPOSITION 23.7. wy; =t < 0 = ¢ is consistent with ZFC.

Proof. Let P, be a countable support iteration of Miller forcing, let V be a
model of ZFC + CH, and let G be P,,-generic over V.

Since Miller forcing is of size ¢, by THEOREM 20.5.(a) we get V[G] F ¢ = wa,
and since Miller forcing adds unbounded reals, by THEOREM 20.5.(b) we get
that no family % C [w]“ of size w; can be a dominating family. Hence, we get
V[G] Fo= w2.

Now we show that V[G] F v = wy: Firstly, notice that CH implies that
every ultrafilter is of cardinality wy, and recall that CH implies the existence
of P-points. Thus, since V F CH, there are P-points in V of cardinality
wi. Since Miller forcing is proper and the iteration is a countable support
iteration, by THEOREM 20.8 we get that every P-point % (of cardinality wy)
in the ground model V generates an ultrafilter % C [w]¥ in V[G]. Thus, by
FAcT 23.6, we have V[G] E t = w;. —
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NOTES

All non-trivial results presented in this chapter are essentially due to Miller and can
be found in [14]. In that paper, he introduced what is now called Miller forcing, but
which he called rational perfect set forcing. Miller thought about this forcing notion
when he worked on his paper [13], where he used a fusion argument which involved
preserving a dynamically chosen countable set of points (see [13, Lemmata 8 & 9]).
This led him to perfect sets in which the rationals in them are dense, and shortly
after, he realised that this is equivalent to forcing with superperfect trees. Even
though superperfect trees appeared first in papers of Kechris [10] and Louveau [12],
Miller was the first who investigated the corresponding forcing notion.

RELATED RESULTS

124. Characterising Miller reals. By the proof of LEMMA 23.2 we know that every
Miller real g is unbounded. On the other hand, one can show that every function
f € “w in the M-generic extension V[g] which is unbounded (i.e., not dominated
by any function in V) is a Miller real (see Miller [14, Proposition 2]). Further-
more, one can show that Miller forcing is minimal (see Miller [14, p. 147]).

125. Miller forcing has the Laver property. One can show that Miller forcing has the
Laver property (see Bartoszyniski and Judah [1, Theorem 7.3.45]) and therefore
does not add Cohen reals. Since the Laver property is preserved under countable
support iterations, there are no Cohen reals in the model constructed in the
proof of PROPOSITION 23.7.

126. Miller forcing does not add Cohen, dominating, or random reals. Since every
forcing notion which preserves P-points does not add Cohen, dominating, or
random reals (see Chapter 20 | RELATED RESULT 107), Miller forcing adds nei-
ther Cohen, nor dominating, nor random reals.

127. M x M adds splitting reals. Even though Miller forcing does not add splitting
reals, a product of Miller forcing M x M always adds splitting reals (see Miller [14,
Remark, p. 151] and compare with Chapter 22 | RELATED RESULT 121).

128. Miller forcing satisfies Axiom A. Miller forcing is not just proper, it even sat-
isfies the slightly stronger Axiom A (see Bartoszyriski and Judah [1, p.360]).

129. Miller forcing preserves MA(o-centred). If V E MA(o-centred) and g is a Miller
real over V, then V[g] £ MA(o-centred) (see Brendle [5]). Recall that by Chap-
ter 13| RELATED RESULT 79, MA(o-centred) <= p = ¢, and compare this
result with THEOREM 19.4, which says that Cohen forcing preserves p = c.

130. Cardinal characteristics in Miller’s model. In Miller’s model, which is the model
constructed in the proof of PROPOSITION 23.7, we also have w1 = a = s (see for
example Blass [2, Section 11.9]). Furthermore, the proof of PROPOSITION 23.7
shows that in Miller’s model we even have u < 9 (see also Blass and Shelah [3]).

Another forcing notion with superperfect trees as conditions, which was introduced
by Laver in [11], is the so-called Laver forcing, denoted L: L-conditions are ordered
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pairs (s,T"), where T' C seq(w) is a superperfect tree, s € T, and for all ¢t € T' we
have either ¢t < s or s < t At € split(T) (i.e., Ts = T and every node ¢t = s is a
splitting node of T'). For L-conditions (s,T) and (s',7) let (5,T) < (s',T') <
s < 8 AT’ C T. Furthermore, for ultrafilters % C [w]” we define restricted
Laver forcing, denoted Lo, as follows: A pair (s,7') is an Lo -condition if it is an
L-condition which has the property that for all ¢ € split(7T") we have nextr(t) € % .

131.

132.

133.

134.

135.

136.

137.

138.

Laver forcing and Borel’s conjecture. A set X C R has strong measure zero
if for every sequence of positive reals {e, : n € w} there exists a sequence
of intervals {I, : n € w}, such that for all n € w, pu(ln) < &n, and X C
UnEw I,,. Furthermore, Borel’s conjecture is the statement that there are no
uncountable strong measure zero sets (see Borel [4]). Now, Goldstern, Judah,
and Shelah [6] showed that b = w; implies that Borel’s conjecture fails. On the
other hand, using Laver forcing, Laver showed in [11] that Borel’s conjecture is
consistent with ZFC + ¢ = w2 (cf. Bartoszynski and Judah [1, Section 8.3]).

Combinatorial properties of Laver forcing. Laver forcing satisfies Axiom A (see
Bartoszynski and Judah [1, Lemma 7.3.27]), and therefore, Laver forcing is
proper. Since Laver forcing has the Laver property (see Bartoszynski and Ju-
dah [1, Theorem 7.3.29]), it does not add Cohen reals. However, Laver forcing
adds dominating reals (see Bartoszyrski and Judah [1, Lemma 7.3.28]), and
therefore, Laver forcing adds splitting reals. Furthermore, one can show that
Laver forcing is minimal (see Gray [8]).

L x L adds Cohen reals. Even though Laver forcing does not add Cohen reals,
by a similar argument as in the proof of FACT 24.9, one can show that a product
of Laver forcing . x L. always adds Cohen reals.

Two Laver reals added iteratively always force CH. Brendle [5, Theorem 3.4]
showed that Laver forcing collapses 0 to w1, and Goldstern, Repicky, Shelah,
and Spinas [7, Theorem 2.7] showed that Laver forcing (as well as Miller forcing)
collapses ¢ to a cardinal < §. Thus, two Laver reals added iteratively always force
CH (cf. Chapter 24 | RELATED RESULT 139).

On the consistency of s < b. An ws-stage iteration with countable support
of Laver forcing, starting in a model of ZFC + CH, yields a model in which
w1 =5 < b =c (see Blass [2, Section 11.7]).

Combinatorial properties of restricted Laver forcing Lo . If % C [w]¥ is an
ultrafilter, then restricted Laver forcing Lo, obviously satisfies ccc. It is not hard
to show that restricted Laver forcing Lo adds dominating reals and therefore
adds splitting reals. Furthermore, since restricted Laver forcing Ly has pure
decision (see Judah and Shelah [9, Theorem 1.7]), by a similar argument as in
the proof of COROLLARY 24.8, one can show that L4 has the Laver property.

Restricted Laver forcing Lo, collapses d to wi. Brendle [5, Corollary 3.10.(a)]
showed that restricted Laver forcing L collapses ? to w1 (cf. RELATED RE-
surT 134).

On the consistency of hom < c. Judah and Shelah showed in [9, Theorem 1.16]
that if a real r € [w]* is Lo -generic over V, then for each colouring 7 : [w]? — 2
in the ground model there exists an n € w such that 7|}, .2 is constant. Now,
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let P, = (Qa : @ € w1) be an w;-stage iteration with finite support, where for
each o € w1, Q. is restricted Laver forcing Lo, (for some ultrafilter % C [w]®).
Further, let V be a model of ZFC in which ¢ > w; and let G be Py, -generic over
V. Then V[G] is a model in which w; = hom < c.
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Mathias Forcing

In this chapter we investigate a forcing notion which is closely related to
RAMSEY’S THEOREM 2.1 and to Ramsey ultrafilters (defined in Chapter 10).
So, it is not surprising that also Ramsey families (also defined in Chapter 10)
are involved.

With respect to an arbitrary but fixed Ramsey family & we define Math-
ias forcing Mg = (Mg, <) as follows:

Mg = {(s,x): s € fin(w) A € & A max(s) < min(z)}

(s,2) <(t,y) <= sCtAyCax At\sCux

If & = [w]¥, then we write just M instead of M. The finite set s of a Mathias
condition (s, z) is called the stem of the condition. Each Mg-generic filter G
corresponds to a generic real m € [w]¥, called Mathias real, which is in fact
just the union of the stems of the conditions which belong to the generic filter

G,ie,m={scfinw): 3z e &((s,2) € G)}.

Properties of Mathias Forcing

Mathias Forcing adds Dominating Reals
LEMMA 24.1. Mathias forcing Mg adds dominating reals.

Proof. We show that a Mathias real is always dominating: Let m be Mg-
generic over the ground model V, let p = (s, x) be an arbitrary Mg-condition,
and let g € “w NV be an arbitrary function in V. It is enough to show that
there exists an Mg-condition ¢ > p such that ¢, “m dominates g”. In
order to construct the condition ¢ we run the game G, where the MAIDEN
plays according to the following strategy: The MAIDEN’s first move is

zo =\ (9(n0)"),
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where ng = |s|, and for i € w she plays
Tip1 = x; \ max {g(no +1i)7, af} ,

where a; is the i'" move of DEATH. Since & is a Ramsey family, this strategy
is not a winning strategy for the MAIDEN and DEATH can play such that
y:={a;: 1 €w} € & Now, by construction we get that (s,y) > p and

(5,9) b Yk > no (m(k) > g(k)),
which shows that m is a dominating real over V. —
Together with Fact 20.1 we get

COROLLARY 24.2. Mathias forcing Mg adds splitting reals.

Mathias Forcing is Proper and has the Laver Property

Properness of Mathias forcing and that it has the Laver property follow quite
easily from the fact that for every condition (s, ) and every sentence ¢ of the
forcing language there is a (s,y) which decides . This property of Mathias
forcing is known as pure decision and is one of the main features of Mathias
forcing.

THEOREM 24.3. Let (s,z) be an Mg-condition and let ¢ be a sentence of
the forcing language. Then there is an (s,y) > (s,a) — with the same stem
as (s,x) — such that either (s,y) Fm, ¢ or (s,y) Fwm, —p (i.e., (s,y) decides
the sentence ).

Before we can prove the theorem, we have to introduce some terminology
and prove some auxiliary results: For every Mg-condition (s,x) € Mg let

[s,2]Y ={z € Ww]“:sCzCsUx}.

Notice that the sets [s, z]“ agree with the sets of the base for the Ellentuck
topology which was introduced in Chapter 9.

For a (fixed) open set O C Mg let O := [J{[s,2]* : (s,2) € O}. An
Mg-condition (s, z) is called good (with respect to O), if there is a condition
(s,y) > (s,z) such that [s,y]* C O; otherwise it is called bad. Furthermore,
the condition (s, z) is called ugly if (s U {a},z \ a™) is bad for all a € .
Notice that if (s,x) is ugly, then (s,z) is bad, too. Finally, (s,z) is called
completely ugly if (s U{ag,...,ant,x\ ajl‘) is bad for all {ag,...,a,} Cx
with ag < ... < ay-

LEMMA 24.4. If an Me-condition (s,x) is bad, then there is a condition
(s,y) > (s,x) which is ugly.
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Proof. We run the game G, where the MAIDEN plays according to the fol-
lowing strategy: She starts the game by playing xg := x, and then, for i € w,
she plays x;41 C (z; \ ;) such that [s U {a;},x;11]* C O if possible, and
zi+1 = (z;\ a;") otherwise. Strictly speaking we assume that & is well-ordered
and that x;41 is the first element of & with the required properties. However,
since this strategy is not a winning strategy for the MAIDEN, DEATH can play
so that z := {a; : i € w} € & Now, let y = {a; € z : [sU{a;},z41]* C O}.
Because & is a free family, by LEMMA 10.2 we get that y or z \ y belongs to
&.If y € &, then [s,y]* C O which would imply that (s,z) is good, but this
contradicts the premise of the lemma. Hence, z \ y € &, which implies that
(s,2z\ y) is ugly. =

LEMMA 24.5. If an Mg-condition (s,z) is ugly, then there is a condition
(s,y) > (s,x) such that (s,y) is completely ugly.

Proof. This follows by an iterative application of LEMMA 24.4. In fact, for
every i € w, the MAIDEN can play a set x; € & such that for each ¢ C
{ao, ...,a;_1}, either the condition (s Ut, ;) is ugly or [s Ut,z;]* € O. Now
DEATH can play such that y := {a; : i € w} € &. Assume that there exists a
finite set ¢ C y such that (s U,y \ max(t)1) is good. Notice that since (s, )
was assumed to be ugly, t # 0. Now let to be a smallest finite subset of y such
that g0 = (s U o,y \ max(to)™) is good and let t; = ¢ \ {max(t9)}. Then
by definition of ¢g, the condition ¢y = (s Uty ,y \ max(tg)) is not good, and
hence, by the strategy of the MAIDEN, it must be ugly, but if ¢; is ugly, then
qo is bad, which is a contradiction to our assumption. Thus, there is no finite
set t C y such that (s Ut,y \ max(#)T) is good, which implies that all these
conditions are ugly, and therefore (s,y) is completely ugly. =

Now we are ready to prove that Mathias forcing M has pure decision:

Proof of Theorem 24.3. Let (s,x) be an Mg-condition and let ¢ be a sen-
tence of the forcing language. With respect to ¢ we define O := {q € Mg :
g, ¢} and Oz := {q € Mg : qIpm, —¢}. Clearly O and O are both open
and O UQOs is even dense in Mg. By LEMMA 24.5 we know that for any (s, x)
there exists (s,y) > (s,z) such that either [s,y]* C Oy or [s,y]* N Oy = 0.
In the former case we have (s,y) -, ¢ and we are done. In the latter case
we find (s,y’) > (s,y) such that [s,y']¥ € Os. (Otherwise we would have
[s,9]“ N (O1 UOy) = (), which is impossible by the density of O; UO,.) Hence,
(5,9") e —ep- =

As a consequence of THEOREM 24.3 we can show that each infinite subset
of a Mathias real is a Mathias real.

COROLLARY 24.6. If m € [w]“ is a Mathias real over V and m’ is an infinite
subset of m, then m’ is a Mathias real over V too.
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Proof. Let D C Mg be an arbitrary open dense subset of Mg which belongs
to V and let D’ be the set of all conditions (s, z) € Mg such that for all ¢ C s,
[t,z]“ C D. Notice that D’ belongs to V.

First we show that D’ is a dense (and by definition also open) subset of
Mg: For this take an arbitrary condition (s,x) € D and let {t; : 0 < i < h} be
an enumeration of all subsets of s. Because D is open dense in Mg we find a
condition (%o, o) such that yo C x and [tg, yo]* € D. Moreover, for each i < h
we find a condition (ti-i-layi—i-l) such that Yi+1 C Y; and [ti+1,yi+1]w S D.
Now, let y := yp,. Then (s,y) € D', which implies that D’ is dense in M.

Let m € [w]¥ be a Mathias real over V and let m/ be an infinite subset
of m. Since D’ is an open dense subset of Mg and m is an Mg-generic real,
there exists a condition (s,2) € D’ such that s Cm C sUxz. Fort =m/Ns
we get t C m’ C t Uz, and by definition of D’ we have [t,z]* C D. Thus, m/
meets the open dense set D, and since D was arbitrary, this completes the
proof. -

As a consequence we get properness of Mathias forcing:
COROLLARY 24.7. Mathias forcing Mg is proper.

Proof. Let V be a model of ZFC. Further, let N = (N, €) be a countable
elementary submodel of (H,, €) which contains Mg, and let (s,z) € Mg NN.
Since N is countable (in V), there exists a Mathias real m € [s,z]* NV over
N. Notice that (s,m \ s) > (s,z) and that (s,m \ s) belongs to V. Now, by
COROLLARY 24.6, every m’ € [s,m \ s]* is a Mathias real over N, and hence,
the Mg-condition (s,m \ s) is N-generic. —

In Chapter 21 we have seen that Cohen forcing adds unbounded reals,
but not dominating reals. Now we shall show that Mathias forcing M, even
though it adds dominating reals, it does not add Cohen reals (but see also
FacT 24.9):

COROLLARY 24.8. Mathias forcing Mg has the Laver property and therefore
does not add Cohen reals.

Proof. Let f € “wNV be an arbitrary function which belongs to V and let g
be an Mg-name for a function in “w such that 0y, Vn € w(g(n) < f(n)).
Further, let F be the set of all functions S : w — fin(w) such that for every
n € w, |S(n)| < 2". We have to show that 0y, 3S € FN'V Vn € w(g(n) €
S(n)). In other words, we have to show that for every Me-condition (s,z)
there exists an (s,y) > (s,z) and an S € F NV such that (s,y) M, Vn €
w(g(n) € S(n)).

By THEOREM 24.3, and since g is bounded by f(n), for every Mlg-condition
(t,z) and for every n € w there exists a condition (¢,2") > (¢, z) which decides
g(n), ie., (t,2')Fwm, g(n) = k for some k < f(n). Let (s,x) be any Mg-
condition. We run the game G, where the MAIDEN plays according to the
following strategy: She starts the game by playing xo C « such that (s, )
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decides g(0), and we define S(0) := {k < f(0) : (s,20) Fm, g(n) = k}.
Notice that |S(0)| = 1 = 2°. In general, for n € w, the MAIDEN plays x,+1 C
(n \ @) such that for every a C {ag,...,an}, (sUa,z,11) decides g(n + 1),
and we define S(n + 1) as the set of all k < f(n + 1) such that, for some
a C {ag,...,an}, (sUG xny1) Fm, g(n + 1) = k. Notice that |S(n + 1)| <
|2 ({ao, - .., an}) = 2""1. Since this strategy is not a winning strategy for
the MAIDEN, DEATH can play such that y := {a, : n € w} € &. Now, by
construction, S € F NV and for each n € w we have (s,y) Fwu, g(n) € S(n).
Thus, the set S and the Mg-condition (s,y) have the required properties,
which completes the proof. —

Since Mathias forcing has the Laver property and is proper, a countable
support iteration of Mathias forcing notions does not add Cohen reals. How-
ever, the next result shows that this is not true for a product of Mathias
forcing (compare with Chapter 23 | RELATED RESULT 127 and with Chap-
ter 22| RELATED RESULT 121):

FAcT 24.9. The product of any two Mathias forcing notions always adds Co-
hen reals.

Proof. Let G1 X G2 be Mg x Mg-generic over some model V of ZFC and let
my and mg be the corresponding Mathias reals (recall that mq,ma € [w]*).
Further, let mq,m2 € “w be the (unique) strictly increasing functions which
map w onto my and my respectively (i.e., fori € {1, 2}, m; is strictly increasing
and m;[w] = m;). We shall show that ¢, m, € “2, defined by stipulating

S {0 i (k) < ma (),
’ 1 otherwise,
is a Cohen real over V.
For s € fin(w) we define 5 € Isly similarly, ie., s = {5(k) : k € |s|} and
for all k,1 € |s| with k& <1 we have 5(k) < 5(I). Further, for s,¢ € fin(w) with
[s| = |t| let vs,¢ € 5Ly be such that

ak) = {o if s(k) < £(k),

1 otherwise.

Now, let
E= {<(Sﬂ1")ﬂ (t,y)> €EMe x Mg : |S| = |t|}
and consider the following function:
I: E — Um
new
<(Sa$)a (tay)> — Vs,t

Obviously, whenever D C |J,,.,, "2 is open dense, then I'"'[D] = {p € Ms x
Mg :I'(p) € E} is dense in Mg x Mg, and since Yymq,ma) is Mg x Mg-generic
over V, we get that ¢, m, is a Cohen real over V. =
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A Model in which p < b

Before we construct a model in which p < f, we shall show that M ~ Ux* Mg,
where U = ([w]“/fin, < ) (which was introduced in Chapter 14). To simplify
the notation we write w instead of [w]¥/ fin.

LEMMA 24.10. M ~ U * My, where %/ is the canonical U-name for the U-
generic ultrafilter.

Proof. Firstly, recall that every (Ux*Mg, )-condition is of the form <[z]~, (t, y)>,
where N
[2]=u“(t,y) is an Mg -condition”,

in particular, [z]" Iy y € % . Furthermore, since U does not add new reals, for
every U-name (t, y) for an My -condition, and for every U-condition [z]", there
is an M-condition (s, ) in the ground model and a U-condition [2/]” > [z]
such that

2] +u (s,:c) = (t,~y) .
With these facts one can show that the function

h: M — JJX]\{%

(s,2) — ([al"(5,2))

is a dense embedding — we leave the details as an exercise to the reader.
Hence, by FACT 14.3, we get that Mathias forcing M is equivalent to the two-
step iteration U * Moy, . —

As a side-result of LEMMA 24.10 we get that whenever m € [w] is a Mathias
real over V, then the set = {& C w : m C* z} is U-generic over V, in
particular, % is a Ramsey ultrafilter in V[%]. The following fact is just a
reformulation of this observation.

FAacT 24.11. If m is a Mathias real over V, then m is almost homogeneous
for all colourings 7 : [w]? — 2 which belong to V.

PROPOSITION 24.12. p = cov(M) < b is consistent with ZFC.

Proof. By THEOREM 21.5, and since w; < p, it is enough to show that w; =
cov(M) < b = wy is consistent with ZFC.
First we show that a ws-iteration with countable support of Mathias forc-
ing, starting from a model V of ZFC + CH, yields a model in which h = ws.
Let P, = <Qa o € w2> be a countable support iteration of Mathias
forcing, i.e., for all @« € wy we have 0, lp, “Q, is Mathias forcing”. By
LEMMA 24.10 we may assume that for all a € wo we have

0, Ip, Qa is the two-step iteration U Mg, 7.
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Let V be a model of ZFC 4+ CH and let G be P,,-generic over V. Since
Mathias forcing is proper, by THEOREM 20.5.(a) we have V[G] E ¢ = wa. In
order to show that V[G] F hh = ws it is enough to show that in V]G], the
intersection of any family of size w; of open dense subsets of & is non-empty.

CrAM 1. If each family {D, : v € w1} of open dense subsets of & which
belongs to V[G] has non-empty intersection, then b > w;.

Proof of Claim 1. The proof is by contraposition. Assume that 7 = {47, :
v € wy} is a shattering family. For every v € wy let

D,={yew”:3zed, (yc 2)}.

Since 7 is shattering, for every x € [w]* there is a vy € wy such that z has
infinite intersection with at least two distinct members of <7,,, which implies
that z ¢ D,, and shows that (\{D, : v € w1} = 0. Actaim 1

The following claim is a kind of reflection principle (cf. THEOREM 15.2).

Cram 2. Let {D, : v € w1} be a family of open dense subsets of w which
belongs to V[G]. Then there is an o € wq such that for every v € w; the set
D, NV[G|,] belongs to V[G|,] and is open dense in &VIClal

Proof of Claim 2. Tt is enough to find an ordinal o € ws such that for every v €
w1, D,NV[G|4] belongs to V[G|,] and is dense in &V “lo) — that D, NV[G].]
is open in & V[€le) follows from the fact that V[G|,] is transitive.

Since Mathias forcing is proper and V £ CH, by LEMMA 20.4 we get that
for each v € ws, V[G|,] F CH. For every v € wz let {z) : n € w1} be an
enumeration of [w]* N V[G|,]. Since no new reals are added at limit stages
of uncountable cofinality (see LEMMA 18.9), for all n,v € ws there is a least
ordinal vy > v, 7, € wa, such that there is a set y,; € D, N V[G|ﬁ] with

yy C* a7 Let B(y) = U {w : (n,v) €wi xwi} and for £ € w let

Ugfeg B¢ (0) if € is a limit ordinal,
SO el
B(AY(0)  ifE=¢+1.

Then o = | {55(0) 1€ € wl}, which is a limit ordinal below ws of cofinality
w1, has the required properties. Actaim 2

For every v € wy let D], = D, N V[G|,]. Further, let %, be the U-generic
Ramsey filter over V[G|,], determined by G. In the model V|G|, ][%]), %o
meets every D) (i.e., for every v € wy, % N D) # 0). Now, for m,, the
My, -generic Mathias real over V[G|,][%,] (i.e., the second component of the
decomposition of Mathias forcing), we have m, € ({D, : v € wi} which
shows that ({D), : v € w1} is non-empty. Thus, by CLAIM 1 and since V[G] E
¢ = Wa, V[G] = h = W3.

It remains to show that V[G] F w; = cov(M). For this, recall that
Mathias forcing has the Laver property and therefore, by PROPOSITION 20.2,
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Mathias forcing does not add Cohen reals. Now, since the Laver prop-
erty is preserved under countable support iteration of proper forcing no-
tions (see THEOREM 20.7), a countable support iteration of Mathias forcing
does not add Cohen reals to the ground model. Hence, by COROLLARY 21.8

(which says that cov(M) is preserved if no Cohen reals are added) we have
V|G| E wy = cov(M). —

NOTES

Mathias forcing restricted to happy families (which are slightly more general than
Ramsey families) was introduced and investigated by Mathias in [11]. However, most
of the results presented in this chapter can be found in Halbeisen [5].

RELATED RESULTS

139. Mathias forcing collapses ¢ to h and 0 to wi. The fact that Mathias forcing
collapses ¢ to b is just a consequence of LEMMA 24.10 and the fact that ultrafilter
forcing U collapses ¢ to h (see Chapter 25 | RELATED RESULT 144). Furthermore,
Brendle [2, Corollary 3.10.(c)/(d)] showed that Mathias forcing collapses ? to
w1, and since h < 9, one gets that two Mathias reals added iteratively always
force CH (cf. Chapter 23 | RELATED RESULT 134).

140. Mathias forcing and Borel’s conjecture. By adding random reals to the model
constructed in the proof of PROPOSITION 24.12, Judah, Shelah, and Woodin [10]
showed that Borel’s conjecture is consistent with ¢ being arbitrarily large
(cf. Chapter 23 | RELATED RESULT 131), and see also Bartoszyiiski and Judah [1,
Theorem 8.3.7]).

141. Restricted Mathias forcing which does not add dominating reals. Canjar showed
in [3] that under the assumption d = ¢, there exists an ultrafilter % over w
such that My, does not add dominating reals. Further, he showed that such an
ultrafilter is necessarily a P-point.

142. Between Laver and Mathias forcing. If 7/ is an ultrafilter, then restricted Math-
ias forcing My, is equivalent to restricted Laver forcing L, if and only if %
is a Ramsey ultrafilter (see Judah and Shelah [8, Theorem 1.20]). On the other
hand, if % is not a Ramsey ultrafilter, then M4, and L4 can be quite different
(see Judah and Shelah [9]).

143. The Ramsey property of projective sets: The hierarchy of projective subsets
of [w]*” is defined as follows: Let A C ([w]”)" be a k-dimensional set (for some
positive integer k). Then A is a X1i-set if A the projection along [w]* of a closed
set C C ([w]*)**", and A is a IIj-set if it is the complement of a Xi-set. In
general, for integers n > 1, A is a 3}, | ;-set if A the projection along [w]* of a
(k + 1)-dimensional II;,-set, and A is a I}, -set if it is the complement of a
Ei_i_l—set. Furthermore, we say that A is a Al-set if A is a X}:-set as well as
a IT}-set. Below, X}, TI5, and AL, denote the collections of the corresponding
subsets of [w]*. The sets A C [w]“ belonging to one of the collections X%, TI%,
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or AL, are called projective sets. With respect to inclusion, we get the following
diagram:

If all £} -sets A C [w]* have the Ramsey property (defined in Chapter 9), then
we shall write 31, (%); the notations IT}, (%) and AL, (%) are defined accordingly.
It is natural to ask whether all projective sets have the Ramsey property. Even
though the answer to this question is not decidable in ZFC, one can show the
following facts:

e Forallncw: Tp(R) <= ML(Z) (trivial).

AY(Z) <= X3(%) (see Judah and Shelah [8, Theorem 2.7]).

ZFC I- 1 () (see Silver [13] or Ellentuck [4]).

L ¥ A}(%) (cf. Judah and Shelah [8, Lemma 2.2]).

Con(ZFC) = Con (ZFC + Aj(Z)) (see Judah [7, Theorem 0.8]).

Furthermore, Mathias showed in [11, Section 5] — using Mathias forcing — that
if ZFC+“there is a strongly inaccessible cardinal” is consistent (where x is
strongly inaccessible if x is a regular limit cardinal and for all X < &, 2* < k),
then so is ZFC +“every projective set has the Ramsey property”. However, it
is still open whether one can take “Mathias’ inaccessible” away, i.e., whether
one can construct a model of ZFC in which all projective sets have the Ram-
sey property without assuming the existence of a strongly inaccessible cardinal
(cf. Shelah [12]). Moreover, it is not even known whether X3(%) implies the
existence of a strongly inaccessible cardinal. For partial results see Halbeisen
and Judah [6, Theorem 5.3] and Brendle [2, Proposition 4.3].
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On the Existence of Ramsey Ultrafilters

So far we have seen that p = ¢ implies the existence of Ramsey ultrafilters (see
PROPOSITION 10.9). In particular, if we assume CH, then Ramsey ultrafilters
exist. Moreover, by PROPOSITION 13.9 we know that MA(countable) implies
the existence of 2° mutually non-isomorphic Ramsey ultrafilters. Furthermore,
by THEOREM 21.5 we know that p < cov(M), and Chapter 13 | RELATED RE-
SuLT 80 tells us that MA(countable) is equivalent to cov(M) = c. Hence,
cov(M) = ¢ is a sufficient condition for the existence of Ramsey ultrafilters
and it is natural to ask whether cov(M) = c¢ is necessary, too. In the first
section of this chapter we shall give a negative answer to this question by con-
structing a model of ZFC+ cov(M) < ¢ in which there is a Ramsey ultrafilter.
Since in that model we have h = ¢ and b is related to the Ramsey property
(cf. Chapter 9), one might think that perhaps h = ¢ implies the existence of
a Ramsey ultrafilter; but this is not the case, as we shall see in the second
section of this chapter.

There may be a Ramsey Ultrafilter and cov(.Z) < ¢

In the proof of PROPOSITION 24.12 we have constructed a model V of ZFC,
usually called Mathias’ model, in which cov(.#) < ¢. Furthermore, PROPO-
SITION 14.18 states that if G is U-generic over V, where U = ([w]¥/fin, < ),
then |JG is a Ramsey ultrafilter in V[G]; in particular, ultrafilter forcing U
adds a Ramsey ultrafilter to V. Recall that [w]“/fin = {[z]" : z € [w]*} and
[]” < [y <= vy C* z. So, at first glance we just have to force with U
over Mathias’ model. However, in order to get a model in which there exists
a Ramsey ultrafilter and cov(.#) < ¢, it has to be shown that ultrafilter forc-
ing U does not collapse ¢ to cov(.#) — for this, we first show that ultrafilter
forcing U does not collapse ¢ to any cardinal below b.

LEMMA 25.1. If G is U-generic over V, then V[G] E ¢ > bV, in other words,
ultrafilter forcing U does not collapse ¢ to any cardinal k < hV.
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Proof. Let G be U-generic over some model V of ZFC. Since the forcing notion
U is o-closed (by the proof of THEOREM 8.1), and since o-closed forcing notions
do not add reals (by LEMMA 14.17), ultrafilter forcing U does not add any new
reals to the ground model V. In particular we have V[G] F ¢ < ¢V. Thus, in
order to show that V[G] E ¢ >V, it is enough to prove that in V[G] there is
no surjection from some x < hY onto ¢ (which implies ¢ Z hV).

Let « be a cardinal with V F k < b and let g € V[G] be a function from &
to ¢. In order to prove that g fails to be surjective, it is enough to show that
g is in the ground model V — notice that this would imply V F ¢ < k < b,
contradicting the fact that h < c¢. Let g be a U-name for g and let zy € [w]*
be such that [zo] -y g : x — ¢ For each a € k let

Do ={[y] : lynao] <wV (y T 2o Ay € c([y] Fugla) =7))}.

Each D, is open dense. Thus, for each @ € k we can choose a mad family
&/ C|JDq. Now, by LEMMA 8.14 there is a mad family & C [w]¥ such that

Va € kVy € o, Jx € o (x C* y).

Furthermore, let D = {[y]” : 3z € &/(y C* z)}. Then D is open dense and
therefore G N D is non-empty. For [yo]” € (G N D) we get [yo]” < [z0]7, in
particular, [yo|” -y g : & — ¢. Moreover, by construction of D,

Va € k3y € c([yo] Fugla) =7).

Let go : & — ¢ be such that for all a € &, [yo] v g(@) = go(a). Then go
belongs to the ground model V and in addition we have [yo] =y g = go. Now,
since [yo]” € G, this shows that g = g[G] belongs to V. —

With this result, we easily can construct a model with a Ramsey ultrafilter in
which cov( ) < c.

PRroOPOSITION 25.2. The existence of a Ramsey ultrafilter is consistent with
ZFC + cov(A) < c.

Proof. Let V be Mathias’ model (i.e., the model constructed in the proof of
PROPOSITION 24.12), and let G be U-generic over V. Then we have

VEw =cov()<bh=rc=uws,
and by LEMMA 25.1 we get V[G] F hY = ¢, in particular,
V|G| E cov(A) < c.

Finally, by PROPOSITION 14.18 we get that (JG is a Ramsey ultrafilter in
V[G], and therefore, V[G] is a model with a Ramsey ultrafilter in which
cov( M) < c. =
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There may be no Ramsey Ultrafilter and §h = ¢

The goal of this section is to show that there are no Ramsey ultrafilters in
Mathias’ model — which is a model of h = ¢. In fact we prove that not even
rapid filters exist in that model. For this we first prove a few auxiliary results
concerning wo-iterations of Mathias forcing. Then we recall the definition of
rapid filters (cf. Chapter 10 | RELATED RESULT 70) and show that every Ram-
sey ultrafilter is a rapid filter; and finally we prove that there are no rapid
filters in Mathias’ model.

Let us start by recalling some terminology of Mathias forcing M = (M, <)
and by introducing some notation: Let (s,z) and (¢,y) be two M-conditions.
Recall that

(s,2) <(t,y) <= sCtAyCax At\sCx.
Now, let us define
(5,2) < (t,y) <= (s,2) < (Ly) As=t.

In order to define “<™” for positive integers n € w, we write sets x € [w]¥ in
increasing order, i.e., z = {ay : k € w} where k < k' — ap < ax. By abuse
of notation we shall just write z = {ap < a1 < ---}. Now, for n € w and
z={ap < a1 <---} we define

(s,2) <" (t,y) <= (s,2) <° (t,y) A Vk €n(ax €y).

In this notation, the fact that Mathias forcing has pure decision (see THE-
OREM 24.3) can be expressed as follows: Let p € M be an M-condition and
let ¢ be a sentence of the forcing language. Then there exists a ¢ € M with
p <% ¢ such that either ql—y; ¢ or ¢y —.

In order to get familiar with this notation we prove the following fact.
Notice that this fact was already used implicitly in the previous chapter (e.g.,
in the proof of COROLLARY 24.8).

FacT 25.3. Let g be an M-name for a function g € “w and let no € w be a
fixed integer. Further, let p € M and k € w be such that

pl=m g(no) ck.
Then there are ¢ € M and ly € k such that p <° ¢ and
g g(no) =lo-

Proof. Since Mathias forcing has pure decision (see THEOREM 24.3), there is
a go € M with p <° gy such that

golmg(ng) =0 or  qlu \/ g(no) =1,
0<i<k
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where \/,_,_, @1 is an abbreviation for 1 V -+ -V g_1. In the latter case, by
pure decision we find a ¢; € M with gy <° ¢; such that

q1 Fmg(no) =1 or q1 Fm \/ g(no) =1.
1<l<k

Proceeding this way, we finally find a ¢ € M with p <% g and an [y € k such
that qlI—wm g(no) = lo. -

To prove the following lemma, we just have to iterate this procedure.

LEMMA 25.4. Let g be an M-name for a function g € “w and let ng € w be a
fixed integer. Further, let p € M and k € w be such that

plmg(no) € k.
Then, for every i € w, there are ¢; € M and I; C k such that p < g,
|Iz| <1+ 1, and
Tt \/ g(no) =1.
lern;

Proof. The proof is by induction on ¢: For ¢ = 0, this is just FACT 25.3. So,
let us assume that the lemma holds for some i € w. In other words, there are
¢ € M and I; C k such that p < ¢;, |I;| <i+ 1, and ¢; - Vleli g(no) =1.
Let p = (s,2z) and ¢; = (s,y;), where z = {ag < a; < ---} and y; = {bp <
by < ---} respectively. Notice that for all j € 4, a; = b;. If a; = b;, then, for
Iiy1 :=I; and g;y1 = q;, we get

qi+1 M \/ g(no) =1.
el

Otherwise, we have a; < b; (since p <¢ ¢;), and by FACT 25.3, we find ¢/ C y\a;
and ;41 € k such that

(sU{a;:j <i},y) Fu g(no) = liv1-

Now, for I;11 := I; U{li1+1} and g;41 := (s U{a;:j < i},y’) we get

gi+1 M \/ g(no) =1,
lelitq

where by construction, p <! ¢;11 and |[;11]| < i+ 2. -

The next result uses the fact that Mathias forcing is proper (see COROL-
LARY 24.7).
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LEMMA 25.5. Let V be a model of ZFC, let {ay : k € w} be a countable set
of M-names for ordinals, such that for some p € M we have

plmVEk € w(ar € wa).

Then, for every i € w, there is a countable set A C ws in V, as well as a
q € M with p < q, such that

gl Vk € w(ay € A).

Proof. Let N = (N, €) be a countable elementary submodel of (H,, €) which
contains M, {ay : k € w}, and p, where p = (s,x). Since N is countable
(in V), there exists a Mathias real mg € [s,z]* NV over N. Notice that
(s,mg \ s) > (s,z) and that (s,mq \ s) belongs to V. By COROLLARY 24.6,
every mg € [s,mg \ s]* is a Mathias real over N, and hence, the M-condition
q = (s,mg \ s) is N-generic. Now, for A := N N ws, which is countable in
V., we get that ¢y Vk € w(ar € A), which proves the lemma in the case
when i = 0. For ¢ > 0, we can proceed as in the proof of LEMMA 25.4 — the
details are left as an exercise to the reader. —

In the following result we introduce what is called a fusion argument:

FacT 25.6. Let (p, : n € w) be a sequence of M-conditions such that for all
n € w, pn < ppy1. Further assume that there is an my € w such that for all
n > mg, pp <" pn+1. Then there exists an M-condition p,, such that for all
n 2> mo, pn <" Pu-

Proof. For n € w, let p, = (sp,x,) where x,, = {2,(0) < z,(1) < ---}, and
define

Do = (Smo U{@m,(7) i € mo}, {xi(i — 1) : mg €1 € w}).

We leave it as an exercise to the reader to show that p, has the required
properties. —

Below we shall generalise the previous results to countable support itera-
tions of Mathias forcing, but first let us introduce some notations: Let V be
a model of ZFC, let P, = (Q, : v € wa) be the countable support iteration of
length wy of Mathias forcing M, and let G = (G(7) : 7 € ws) be P,,,-generic
over V. Furthermore, for § < wy, K € fin(5), Pg-conditions p and ¢, and
n € w, define

p<kq <= p<qgAVy€EK (q,p, p(v) <" q(7)).

The next result shows how fusion arguments work in countable support
iterations of Mathias forcing.
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LEMMA 25.7. Let 8 be an ordinal with 1 < 8 < wo and let (p, : n € w) be
a sequence of Pg-conditions. Furthermore, let (K, : n € w) be an increasing
chain of finite subsets of 8 (i.e., n <n' — K, C K,) such that

U K, = U supp(pn) and Vn € w(pn <k, Pnt1)-

new new

Then there is a Pg-condition p,, such that for each n € w, pp <% pu-

Proof. For every vy € 3, p(7y) is a P,-name for an M-condition. Thus, p,(v) =
(8n,Zn) where z,, = {2,(0) < z,(1) < ---}. For v € U,c,, Kn, let mo =
min{n € w: vy € K, } and define

pw(')/) = (§m0 U {Qsmo(i) S mO}v {QSI(Z - 1) tmo €1 € w}) .

In the case when v ¢ |, ., Kn define p,(v) = 0,. We leave it as an exercise
to the reader to show that p, has the required properties. —

In order to state the next result, we have to introduce again some notation:
For ordinals o < 8 < wo we say that ¢ is a Png-condition iff there is a P,,-
condition p = (p(7) : 7 € wa) such that ¢ = (p(y) : @« < v < B). In particular,
Pys-conditions are the same as Pg-conditions.

LEMMA 25.8. Let 8 be an ordinal with 1 < 8 < wy and let p be a Pg-
condition. Furthermore, let K = {o < --- < o} be a finite subset of § (i.e.,
i €w) and let n € w.

(a) Let {ax : k € w} be a countable set of Pg-names for ordinals such that
p"—[pvﬂ Vk ew (Qék S WQ) .

Then there is a countable set A C wo in V and a Pg-condition p’ with p <% p’
such that
P, VE € w (o € A).

(b) Let § be an ordinal, where § < § < wq, and assume that for some Pg-name
r we have
pl=p, “r is a Pgs-condition”.

Then there is a Pg-condition p’ with p < p’ and a Pgs-condition ¢ such that
Pli-p,r=gq.

In particular, p’ U q is a Ps-condition (which is in general not the case for
pur).

(c) Let g be a Pg-name for a function g € “w and let ng € w be a fixed
integer. Further, assume that for some k € w,

p"_[p:ﬂ g(no) cek.
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Then there is an I C k with |I| < (n+1)" and a Pg-condition py with p <% po
such that

po =p, \/ g(no) =1.
lel

Proof. (a) Firstly recall that since Mathias forcing is proper, also Ps, as a
countable support iteration of proper forcing notions, is proper (see THEO-
REM 20.3.(b)). Thus, let N = (N, €) be a countable elementary submodel of
(Hy, €) which contains Ps, {as : k € w}, p, and . Now, by similar arguments
as in the proof of LEMMA 25.5 we can construct a Pg-condition p’ with the
required properties — the details are left as an exercise to the reader.

b) As a consequence of (a), there is a Pg-condition p’ with p <% p’ as well
B p P gD
as a countable set A C [3,0) in V such that

p'p, supp(r) C A.

For v € [5,9) \ 4, let g(vy) := 0,. Otherwise, for v € A, let ¢(v) := r(y). Then
q € Pgs and p’ I=p, 1 = ¢, as required.
(c) The proof is by induction on 8, where 1 < 8 < ws: Thus, we have to
consider the case when 8 = 1, which we have already done in LEMMA 25.4,
the case when f is a successor ordinal, and the case when [ is a limit ordinal.
For 8 = d+1, where 1 < §, we just consider the case when § = «; and leave
the other case — which is similar to the case when (3 is a limit ordinal — as
an exercise to the reader. For p(§) = (s, ), where z = {z(0) < z(1) < --- },
and for every j < n let

rj=(sU{z@):icj},{z(i):j<icw}).

Notice that r; is a Ps-name for an M-condition. In particular, if p|s € G|s,
where G|s is Ps-generic over V, then V[G|s] E “r;[Gls] is an M-condition”.
Since LEMMA 25.4 holds in V[G|s], there is a Ps-name 7; for an M-condition
such that

pls Fp, (l’j <O ri A3l € k() g(ng) = l)) :

In particular, if p[s € G|s, then, for somel € k, V[G|s] F 1}[G|s] =m g(no) = L.
Now, by induction on j, where 0 < j < n, we can construct Ps-conditions g;,
Ps-names for M-conditions f;, as well as subsets I; C k, which satisfy the
following conditions:

L4 p|5 S}L{mg q0 S}L{mg e S?(ﬁ(; Adn,
e for each j <n we have |[;| < (n+ 1)1,

e for each j <n, g;l=p, 1 = g(no) € I; (for this, encode 1% -y g(no) =1
by a function g,, stipulating g,/ (no) =1 < 1’ =M g(no) = I, and apply
LEMMA 25.4),

e 1, is such that ¢, Urj, =p, g(no) € U<, ;-



434 25 On the Existence of Ramsey Ultrafilters

Then, for po := ¢, Ur;, and I := {J,.,,
and po e, ey 9(no) =1, as required.

Assume now that 8 is a limit ordinal and that the lemma, is true for o; +1
(notice that a; + 1 < ). Let r be a P,,+1-name for some Py, 41 3-condition
such that

I; we have p <% po, |I| < (n+ 1),

Pla;+1 "_]P’ai+1 (p|[ai+15) <rndle k(l’ ”_Pai+1[a Q(RO) = l)) :

Applying part (b) of the lemma to «; + 1, we get a Py, +1-condition p’ with
Dla;+1 <% p’ and a P,, 11 g-condition ¢ such that

p/ "_Pai+1 r=gq.

By induction hypothesis, there is a Py, 4+1-condition ¢’ with p’ <% ¢’ and an
I C k with |I] < (n + 1)%, such that

¢ e, AeI(qhe, ., gno)=1).
Finally, let pg = ¢’ U q. Then pg has the required properties. —

The next result, which will be crucial in the proof that there are no rapid
filters in Mathias’ model, concludes our investigation of ws-stage countable
support iterations of Mathias forcing.

LEMMA 25.9. Let V be a model of ZFC, let P,,, be the countable support
iteration of length wy of Mathias forcing M, and let G = (G(7) : v € wa) be
P, -generic over V. Furthermore, let f be an M-name for the first Mathias
real, more precisely, f is the name for a strictly increasing function in “w such
that

0., e, {f(i):icw}= U {s: 32 € [w]“((s,x) € G(0))}.

If g is a P,,-name for a strictly increasing function in “w such that for some
P, -condition p we have

plep,, Vi€ w(f(z) < g(z)) ,

then there are infinite sets %y, %1 C w in V, where %y N % is finite, and
P,,,-conditions po, p1, where po > p < p1, such that

[30 ”_[p’w2 g[w] g fo and ]31 ”_[p’w2 g[w] g fl .

Proof. Before we can start the proof, we have to introduce some notations:
Firstly notice that if ¢ is a P,,-condition, then ¢(0) is an M-condition, i.e.,
q(0) = (s,z) where s € fin(w) and =z € [w]¥. We call s the stem of ¢(0)
and write s = stem (q(O ) Let g be a P,,-condition such that the stem of
q(0) is empty, i.e., ¢(0) = (0, z) for some = € [w]¥. For every ¢t € fin(x) let
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q(0); := (¢t,z\t ), where { T = max(t)+1. Notice that ¢(0); is an M-condition,
stem (¢(0);) = t, and ¢(0) < q(0);.
Now, let us begin with the proof: Assume that for some P,,,-condition p
we have
plp,, Vi€ w(f(i) <g(i)).

By induction on n we shall construct an infinite sequence (p, : n € w) of
IP,,,-conditions such that p = py and for every n € w we have p, <% pni1,
where the finite sets K,, C ws are such that 0 € Ky, n <n’ — K,, C K/, and
Uncow Kn = Unew supp(pn) (the construction of the K,’s with the required
properties is left as an exercise to the reader).

For the sake of simplicity, let us assume that the stem of p(0) is empty
(i.e., p = (@,z) for some z € [w]*), which implies that the stems of the p,’s
are empty, too. This way we even get infinite sets %, #; C w such that
Fo N S = 0. We leave it as an exercise to the reader to verify that the case
when the stem of p(0) is non-empty yields infinite sets %, and .#; such that
the intersection %y N .#; is still finite.

The goal is that for each n € w and foreach t = {ko < - - < kp41} C Zpt1,
where py,4+1(0) = (0, 2p+1), we have

Prnt1(0)f Prtiln,we) Fee, 9w N [kns kngr) C I,

where I; C [kn,knt1) is such that [I;] < (n 4 1) - (n + 1)5=|. The infinite
sequence (p, : n € w) is constructed as follows: Assume that we have already
constructed p, for some n € w (recall that py = p). So, p, = (0, z,,) for some
Ty € [w]“. Let t = {ko < -+ < kny1} C z,, be an arbitrary but fixed subset
of x,, of cardinality n + 2 and let p; := p,(0){ pnl[,w,)- Then, for each i <n,

we obviously have

P, 9(0) > ko Vv \/ g(i) =1.
l€kpnt1

Notice that since p;I—p, Vi < n + 1(f(z) = k;), and since g is strictly in-
creasing, p; -p,, Vi > n(g(i) > kny1). Hence, by applying LEMMA 25.8.(c)
(n + 1)-times (for each i < n), we find a P,-condition ¢; with p; <% ¢, as
well as a set Iy C [ky, kny1), such that || < (n4 1) - (n + 1)/%»l and

gt =p,, glw] N [kn, kny1) C I; .

Since t was arbitrary, for each ¢ € fin(x,) of cardinality n + 2 we find a ¢
with p; <% q; such that ¢ -p,, g[w] N [kn, knt1) C I, where I; is as above.
Moreover, by induction on max(t) (similar to the proof of CLAIM below),
we can construct a Py,-condition p,41 such that p,1+1(0) = (0,2,41) and
Pn <%, Pn+1, and for every finite set ¢ = {ko < -+ < kny1} C wpyq of
cardinality n + 2 we have

Prt1(0)e =0 Pt l1,w0) = Qtl[1,w0)
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and
Prt1(0)f Prtil[n,w) Feo, 9w 0 [hn, kngr) C 1

Thus, p,41 has the required properties, which completes the construction of
the sequence (p, : n € w).

By LEMMA 25.7, let p,, be the fusion of the p,’s. Since p <° p,, the stem
of p,, is empty, and therefore p,, = (@, z) for some z € [w]“. By construction,
for each t = {ko < -+ < kpm41} € fin(z), where m € w, we have

Pw (O)tpr|[1,w2) ”_IP’wZ g[w] N [kma km—i—l) ClL.

It remains to construct infinite sets %, % C w in V, where %, N .# is finite,
and P,,-conditions po, p1, where po > p,, < p1, such that poI-p,, glw] C H
and p; I=p,,, g[w] C . For this, we first prove the following
Cram. Let p,(0) = (0,2) (for some z € [w]¥), and for every x € [z]¥, let
Sy = U{L : t € fin(z)}, where I, is as above. Then there are infinite sets
2,9 € [2]¥ such that %; N %y is finite. Moreover, since we assumed that
stem (p,,(0)) = 0, we even get .7; N 75 = 0.
Proof of Claim. By construction, for every t = {kg < -+ < kp41} € fin(z),
It C [kn, kny1) and |I;] < (n+ 1)/%=I+1 Notice that the size of I; depends on
|t|, but not on the particular set . For every n € w, let F(n) := (n+1)/%nl+1,
Then, for every non-empty ¢ € fin(z) we have |I;| < F(Jt|) (notice that for
every ko € z, I,y = 0). For each non-empty set s = {ko < --- < k, } € fin(2)
let

succ,(s) = {t €fin(z) 1 t = {ko < -+ < kn <kny1}},

ie, t € succ,(s) iff t = sU {kyy1} for some k,1 € z with kpp1 > ki
Then, for each non-empty set s = {ko < -+ < k,} € fin(z) we get that
& = {I : t € succ.(s)} is an infinite set of finite subsets of [k;,w), where
the cardinality of the finite sets I; € &, is bounded by F(|s| + 1). By similar
arguments as in the proof of the A-System Lemma 13.2, for each non-empty
set s = {ko < -+ < kn} € fin(z) we can construct an infinite set 2z’ € [2]* and
a finite set A; C [k,,w), such that for any distinct ¢,¢' € succ, (s) we have
I; N Iy € Ag. In other words, for any distinct ¢,t' € succ,/(s), I \ As and
I/ \ A are disjoint. Moreover, we can construct an infinite set zo € [2]*, and
for every non-empty s = {ko < --- < k,} € fin(zo) a finite set As; C [ky,w),
such that for any distinct ¢,¢' € succ,,(s) we have

LNI CA,. (A)

Now, we are ready to construct the sets & and ¢ in [2] with the required
properties: Firstly, let zg and yo be two disjoint infinite subsets of zy. Let
ko = min(zg) and let Iy € yo be such that {j > max (A{ko}). By (A) we find
sets z1 € [xo]“ and y1 € [yo]* such that for all ¢ € succy, ({ko}) and all t/ €
succy, ({lo}), It N Iy = (. Now, choose k1 € x1 such that k1 > ko, and l; € y1
such that I; > max { max(Ayy, ), max(Agy, r,3) }- Again by (A) we find sets
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x9 € [x1]¥ and ya € [y1]* such that for all ¢ € succ,, ({k1}) Usuce,, ({ko, k1})
and all ¢’ € succy, ({l1}) Usucey,({lo,l1}), I N Iy = 0. Proceeding this way,
we finally get Z,§ € [20]* such that for all ¢ € fin(Z) and all ¢’ € fin(g) we
have I, N Iy = (), and hence, .%; N .7 = 0. Fctaim
NOW, let ﬁo = (@,i‘)ﬁpwl[h&) and ﬁl = (@,Q)ﬁpwhlw). Then ﬁo > p < ]31,
and by construction of & and § we have

Po =p,, g[w] C Y and P1 =p,, g[w] Cc
where #; N .#; = (), which completes the proof. —

Before we show that every Ramsey ultrafilter is rapid, let us briefly recall
the notion of rapid filters (given in Chapter 10 | RELATED RESULT 70), as well
as the notion of Q-points (also given in Chapter 10):

A free filter # C [w]* is called a rapid filter if for each f € “w there
exists an @ € .Z such that for all n € w, |z N f(n)| < n. Furthermore, a free
ultrafilter 7 C [w]“ is a Q-point if for each partition of w into finite pieces
{I, Cw:n € w}, (ie., for each n € w, I, is finite), there is an x € % such
that for each n € w, |z N I,| < 1. The following fact is just a consequence of
these definitions.

FAcT 25.10. Every Q-point is a rapid filter.

Proof. Let 7 C [w]* be a Q-point and let f € “w be any strictly increasing
function. Let Iy := [0, f(0)), and for n € w let I,,11 := [f(n), f(n+1)). Then
{I, Cw:n € w} is obviously a partition of w into finite pieces. Since %
is a Q-point (in particular a free ultrafilter), there is an x € % such that
zN f(0) =0 and for each n € w, |[xNI,| <1, ie,foraln€cw, |zNf(n)] <n.
Thus, % is a rapid filter. -

By FACT 10.10 we know that every Ramsey ultrafilter is a Q-point, and there-
fore, every Ramsey ultrafilter is rapid.

Now, we are ready to prove the main result of this section.

PROPOSITION 25.11. It is consistent with ZFC+ b = ¢ that there are no rapid
filters. In particular, since every Ramsey ultrafilter is rapid, it is consistent
with ZFC 4+ b = ¢ that there are no Ramsey ultrafilters.

Proof. Since h = ¢ in Mathias’ model, it is obviously enough to prove that
there are no rapid filters in Mathias’ model. So, let P,,, = (Q4 : ¥ € wa) be
the countable support iteration of length ws of Mathias forcing M, starting in
a model V of ZFC + CH. Furthermore, let .% be a P,,,-name for a filter in the
P,,,-generic extension of V (i.e., 0, I=p,, “Z is a filter”) and let G be P,,-
generic over V. Then, similar to CLAIM 2 in the proof of PROPOSITION 24.12,
there is an a < wq such that Z[G] N V[G|,] € VI[G|a]-

Let us work in the model V[G|,], i.e., we consider V[G|,] as the ground
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model: In V[G|,], let f be an M-name in V[G|,] for the next Mathias real,
i.e., fis the M-name for a strictly increasing function in “w such that

O FPo, {f(n) inew} = U {s:32 € w“((s,2) € G(a)) }.

Assume towards a contradiction that % is rapid. Then there is a Pg,,,-name
g for a strictly increasing function in “w and a P,,,,-condition p, such that

plp,,, ¥n € w(g(n) > f(n)) Nglwl € Z. (%)

By LEMMA 25.9 (with respect to the ground model V[G],]), there are P,,,,-
conditions pp and p; with pg > p < p1, and almost disjoint sets %, # € [w]*
in V[G|q,], such that

[30 ”_[p’aw2 g[w] g fo and ]31 ”_[p’aw2 g[w] g fl .

In particular, if po g, glw] € Z[Gla], then p1l-p,,, glw] & Z[G|a], and
vice versa. Hence, plfp,,, glw] € Z[G|,], which is a contradiction to (x).

Thus, since . was arbitrary, there are no rapid filters in VI[G]. .

awg awg

NOTES

Using results of Laver’s (|7, Lemmata 5 & 6]), Miller [8] showed that there are no
rapid filters in Laver’s model (cf. RELATED RESULT 146). In the proof that there are
no rapid filters in Mathias’ model given above, we essentially followed Miller’s proof
by translating the corresponding results of Laver’s to iterations of Mathias forcing.

RELATED RESULTS

144. Ultrafilter forcing U collapses ¢ to . By LEMMA 25.1 we already know that
ultrafilter forcing U does not collapse ¢ to any cardinal x < b, i.e., if G is U-
generic over V, then V[G] E ¢ > hV. Thus, in order to show that V[G] F ¢ = hV,
it is enough to show that V[G] F ¢ < hV. In particular, it is enough to show
that there is a surjection in V[G] which maps hY onto ¢: Let us work in the
model V. By the BASE MATRIX LEMMA 2.11 of Balcar, Pelant, and Simon [1]
(see Chapter 8 | RELATED RESULT 51), there exists a shattering family J¢% =
{e% C [w]” : £ € b} which has the property that for each z € [w]* there is a
£ € bhand an A € o such that A C* z. Now, for each A € [w]* let ¥4 C [A]*
be an almost disjoint family of cardinality ¢ and let ha : €4 — ¢ be a surjection.
Furthermore, we define the U-name f for a function from some subset of h to ¢
by stipulating .

f= {<<€,_v>,[:v]~>:£e hbAyE c/\aAe%(me%A/\hA(x):y)}.
In particular, if <(§,.fy>, [z]) € [, then

[z Fu f(§) =~
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145.

146.

147.

148.

149.

By the properties of 4, for every y € [w]” there is a £ € h and an A € & such
that A C* y. Thus, there exists an z € ¥4 (in particular, z C* y), such that
ha(xz) = . In other words, for every y € [w]* and each ~ € ¢, there are x C* y
and § € b such that [z]" -y f(£) = . Hence,

Dy = {[z]": 2] Fu3€ € «(f(6) =)}

is an open dense subset of [w]*/fin, and therefore, f[G] is a surjection from
some subset of h onto ¢, which shows that V[G] ¢ < V.

A model in which there are no Ramsey ultrafilters. The first model in which
there are no Ramsey ultrafilters was constructed by Kunen [6] using measure
algebras (see also Jech [4, Theorem 91]).

There are no rapid ultrafilters in Laver’s model. Miller [8] showed that there are
no rapid ultrafilters in Laver’s model (i.e., the model we get after a countable
support iteration of length wo of Laver forcing starting in a model of ZFC+ CH).
However, like in Mathias’ model, there are still P-points in Laver’s model (see
Roitman [10]).

There are no Q-points in Miller’s model. According to Miller [9, p.156], there
are no @Q-points in Miller’s model (i.e., the model we get after a countable
support iteration of length wy of Miller forcing starting in a model of ZFC+ CH).
On the other hand, since Miller forcing preserves P-points (by LEMMA 23.5),
there are still P-points in Miller’s model. Further notice that in Miller’s model
we have 0 = ¢ (cf. THEOREM 10.16).

Models without rapid ultrafilters and large continuum. We have seen that there
exists a model of ZFC in which there are no rapid ultrafilters and ¢ = wo.
It is natural to ask whether the continuum can be further increased without
adding rapid ultrafilters; this is indeed the case: For any cardinal x there exists
a model of ZFC in which there are no rapid ultrafilters and ¢ > x (see Judah
and Shelah [5, Theorem 2.0], or Bartoszyiiski and Judah [2, Theorem 4.6.7]).

Borel’s conjecture and the eristence of Ramsey ultrafilters. Judah [3] showed
that Borel’s conjecture holds in the model constructed in the proof of PrRoPO-
SITION 25.2 (see Bartoszyrnski and Judah [2, Theorem 8.3.14]). Thus, Borel’s
conjecture does not contradict the existence of a Ramsey ultrafilter (compare
with Chapter 23 | RELATED RESULT 131 and RELATED RESULT 146).
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Combinatorial Properties of Sets of Partitions

In this chapter we shall investigate combinatorial properties of sets of par-
titions of w, where we try to combine as many topics or voices (to use a
musical term) as possible. As explained in Chapter 11, partitions of w are to
some extent the dual form of subsets of w. Thus, we shall use the term “dual”
to denote the partition forms of Mathias forcing, of Ramsey ultrafilters, of
cardinal characteristics, et cetera. Firstly, we shall investigate combinatorial
properties of a dual form of unrestricted Mathias forcing (which was intro-
duced in Chapter 24). In particular, by using the PARTITION RAMSEY THE-
OREM 11.4, which is a dual form of RAMSEY’S THEOREM 2.1 (and which was
the main result of Chapter 11), we shall prove that dual Mathias forcing has
pure decision. Secondly, we shall dualise the shattering number b (introduced
in Chapter 8 and further investigated in Chapter 9), and show how it can be
increased by iterating dual Mathias forcing (cf. PROPOSITION 24.12). Finally,
we shall dualise the notion of Ramsey ultrafilters (introduced and investigated
in Chapter 10), and show — using the methods developed in Part IT and the
previous chapter — that the existence of these dual Ramsey ultrafilters is con-
sistent with ZFC + CH as well as with ZFC 4+ —~CH.

A Dual Form of Mathias Forcing

Firstly, let us recall some terminology — for more detailed definitions see
Chapter 11: The set of all infinite partitions of w is denoted by (w)“, and
(IN) denotes the set of all (finite) partitions of natural numbers. For P € (IN)
or P € (w)¥, let Min(P) := {min(p) : p € P} and Dom(P) := |JP. For
partitions P and Q (e.g., P € (IN) and Q € (w)¥) we write P C Q if Q
restricted to Dom(P) is finer than P. Furthermore, for partitions P and
Q, let PN Q (PUQ) denote the finest (coarsest) partition R such that
Dom(R) = Dom(P) UDom(Q) and R is coarser (finer) than P and Q. Let
S € (IN) and X € (w)“. If for each s € S there exists an € X such that
x N Dom(S) = s, then we write S < X. Similarly, for S,T € (IN), where
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Dom(S) C Dom(T), we write S < T if for each s € S there exists at € T
such that tNDom(S) = s. Finally, for S € (IN) and X € (w)* with S C X, let

(5, X)={Y e w*:S<YCX}.

A set (S, X)¥, where S and X are as above, is called a dual Ellentuck
neighbourhood.

Now, we are ready to define a dual form of Mathias forcing (i.e., a form of
Mathias forcing in terms of partitions): Similar to Mathias forcing M, intro-
duced in Chapter 24, we define dual Mathias forcing M* = (M*, <) by
stipulating;:

M ={(5X):Se(IN) A X € (w)* AS<xX}
(S, X)<(T,Y) < (T,Y)* C (S, X)*

Notice that (S, X) < (T,Y) <= S < TAY C X. Thus, we get dual Mathias
forcing from Mathias forcing by replacing subsets of w with partitions of w.
However, as we shall see below, dual Mathias forcing is much stronger than
Mathias forcing (see also RELATED RESULT 151), but first, let us show that
dual Mathias forcing is at least as strong as Mathias forcing:

FacT 26.1. Dual Mathias forcing adds Mathias reals and consequently it also
adds dominating reals.

Proof. Firstly, let My be the set of all M-conditions (s, ) for which we have
0 €s,orincase s =0, 0 € x, and let My = (M, <). Obviously, the forcing
notions My and M are equivalent. Secondly, define the function h : M* — M
by stipulating

h: M* — My
(5,X) +— (Min(S),Min(X) \ Min(9)) .
Then, the function A satisfies the following conditions:

o forall qo,q1 € M*, if o <m-q1 then h(qo) <m h(q1),
e forall ¢ € M* and each p € My with h(q) <m p, there is a ¢’ € M* with
q <m- ¢ such that p <y h(q').

We leave it as an exercise to the reader to verify that this implies that whenever
G* is M*-generic, then {(Min(S), Min(X) \ Min(S)) € My : (5,X) € G*}
is My-generic. Thus, dual Mathias forcing M* adds Mathias reals, and since
Mathias reals are dominating, it also adds dominating reals. —

One of the main features of Mathias forcing is that it has pure decision.
This is also the case for dual Mathias forcing and the proof is essentially the
same as the proof for the corresponding result for Mathias forcing. However,
at a crucial point we have to use the PARTITION RAMSEY THEOREM 11.4 —a
dual form of RAMSEY’S THEOREM 2.1 — which will serve as a kind of Pigeon-
Hole Principle.
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THEOREM 26.2. Let (So, Xo) be an M*-condition and let ¢ be a sentence of
the forcing language. Then there exists an M*-condition (Sp, Yy) > (So, Xo)
such that either (Sp,Yy) Fm+ ¢ or (So, Yo) Fm- —p (i.e., (So, Yo) decides ).

Proof. We follow the proof of THEOREM 24.3: For any set O C M* which is
open with respect to the dual Ellentuck topology, let

0 :=J{(5,x):(5.X) 0}

With respect to a fixed open set O C M*, we call the condition (S, X) good
if there is a Y € (S,Y)“ such that (9, X)“ C O; otherwise, we call it bad.
Furthermore, we call (S, X) ugly if (T, X) is bad for all § < T* C X with
IT| = |S|, where T* := T U { Dom(T)}.

CLAIM 1. If the condition (S, X) is bad, then thereis aY € (S, X)“ such that
(S,Y) is ugly.

Proof of Claim 1. We follow the proof of LEMMA 24.4: Let Zy := X and let
Ty := S. Assume we have already defined Z,,_; € (w)* and T,_; € (IN)
for some positive integer n. Let T;, be such that S < T,, |T,,| = |S] + n,
and T < Z,—1. Let {U; : i < m} be an enumeration of all 7' such that
S <TECT,,|T| =S and Dom(T) = Dom(T},). Further, let Z=! := Z,,_;.
Now, choose for each i < m a partition Z? € (w)“ such that Z! C Zi~1,
T} < Z"and either (U;,U;M1Z%) isbad or (U}, Z")* C O, and let Z,,41 := Z™.
Finally, let Z € (w)* be the only partition such that for all n € w, T;,, < Z.
By construction of Z, for all T € (S, Z)(5D") where

(8, 2)15)" ={T e (N): |T| = [SINS K TAT*C Z},

we have either (T*,Z)* C O or (T*,Z) is bad. Now, for n = |S|, define the
sets Co := {T € (8,2)™" : (T*,Z) isbad} and C, = {T € (S,2)" :
(T*,Z)~ C @}. Then, by the properties of Z, Co UC; = (S, Z)(™)". Hence, by
the PARTITION RAMSEY THEOREM 11.4, there exists a Y € (5, Z) such that
either (S,Y)™)" C Cy or (S,Y)™" C €. Thus, since (S, X) is bad, (S,Y) is
ugly. Actaim 1

Moreover, by a similar construction as in the proof of LEMMA 24.5 we can
prove the following

CrAM 2. If the condition (S, X) is bad, then thereis aY € (S, X)* such that
(S, Y)*Nn0O = 0.

Proof of Claim 2. By CLAIM 1, there is a Zy € (S, X)“ such that (5, Zp)
is ugly, ie., for all T € (N) with S < T* C Zy and |T| = |S|, (T*, Z)
is bad. Let Tp € (IN) be such that T} < Zp and |Ty| = |S|. Then, since
(S, Zy) is ugly, (T, Zo) is bad. Assume that for some n € w we have already
constructed (Tn,, Z,) > (To, Zo) with T¥ < Z,, and |T,,| = |S| + n, such that
for all T € (N) with Ty < T C T,, and Dom(7T') = Dom(7},) we have either
(T*, TN Z,) is bad or (T, Z,)* C O. Let T,41 be such that T} < T/, < Z,,
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and |T,11| = |T| + 1. By applying CLAIM 1 to every T € (IN) with Ty < T C
Ty+1 and Dom(T") = Dom(T},41), we find a Z,, 41 € (T, Z,)* such that for
all T € (N) with Ty T C T},4+1 and Dom(7T") = Dom(7},+1), we have either
(T*, TN Zpy1)is bad or (T, Zp11)® CO. Let Y = Unew Tns i-e., Y is the only
(infinite) partition such that for all n € w, T}, X Y.

Assume towards a contradiction that (S,Y)¥ N O # (. Then there are
T € (N) with S < T C Y such that (7,Y)* C O, ie., (T,T1Y) is good.
Choose Ty (with S < Ty £ Y) of least cardinality such that (T, ToMY') is good.
Since (S,Y) is ugly, |To| > |S|. Hence, we find a Ty C Y with S < T} < To
and |T1| = |Tp| — 1. By construction of Y, (11,71 MY) is either ugly or good.
In the former case, (Tp,Tp MY) would be bad (a contradiction to the choice
of Tp), and in the latter case, Tp would not be of least cardinality (again a
contradiction to the choice of Tp). Thus, (S,Y)* N O = ), which completes
the proof. Actaim 2

Now, let ¢ be a sentence of the forcing language. With respect to ¢ we define
O1:={qe M*: gy~ ¢} and Oy := {qg € M*: ¢y~ ~¢}. Notice that O; U
O is an open dense subset of M*. If the M*-condition (Sp, Xo) is good with
respect to O, there is a Yy € (Sp, Xo)® such that (Sp, Yp)® C Oy. Otherwise,
if (So, Xo) is bad with respect to Oy, by CLAIM 2 there is a Yy € (So, Xo)®
such that (S, Yp)“NO; = (. In the former case we have (Sp, Yp) =y ¢ and we
are done. In the latter case we proceed as follows: Since (Sp, Yp)*NO; = () and
01 UQOs is dense, for every (So, Zo) > (So, Yp) there exists a (T, Z) > (So, Zo)
such that (T, Z) € Oq. This implies that (Sp,Yy) cannot be bad with respect
to Oy, since otherwise, by CLAIM 2 we would find an (Sy, Zo) > (So, Yp) such
that (So, Zo)* N (01 UOz) = (. Thus, (So, Yp) is good with respect to Oy and
we find (Sp,Yy) > (S0, Yo) such that (Sp, Yy)“ C Os, i.e., (So,Yy) Fn= —p.

_|

Now, having THEOREM 26.2 at hand, it is not hard to show that dual
Mathias forcing is proper and has the Laver property: Firstly, notice that to
each G C M* which is M*-generic over some model V there exists a unique
infinite partition X¢g € (w)“ with the property that for all S € (IN),

S<Xq <= Y € (W((S,Y)eq).

Thus, every M*-generic set G C M™* corresponds to a unique M*-generic par-
tition X € (w)?, which we call Mathias partition. Following the proof of
COROLLARY 24.6 we can show that if X is a Mathias partition over V and
Y C X¢ is an infinite partition, then Y is a Mathias partition over V, too. Fur-
thermore, by similar arguments as in the proofs of COROLLARIES 24.7 & 24.8,
one can show that dual Mathias forcing is proper and has the Laver property,
in particular, dual Mathias forcing does not add Cohen reals (the details are
left as an exercise to the reader).

A feature of Mathias forcing is that it can be written as a two-step iter-
ation. More precisely, M ~ U x My, where % is the canonical U-name for
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the U-generic ultrafilter (see LEMMA 24.10). Before we can prove the corre-
sponding result with respect to dual Mathias forcing, we have to introduce a
dual form of U and have to define restricted dual Mathias forcing: Firstly, for
X, Y € (w)¥let Y C* X <= 3F € fin(w)(Y N {F} C X); notice that {F}
is a one-block partition with domain F'. Now, let U* = ((w)“’, < ), where

X<Y < YLC*X.

Strictly speaking, ((w)‘*’, < ) is not, a partially ordered set since “<” is not
anti-symmetric (i.e., X <Y and Y < X does not imply X =Y"). However, it
is slightly easier to drop anti-symmetry than to work with equivalence classes.

Furthermore, for any family of infinite partitions .#* C (w)*, let M%. =
(M%.,<), where M. is the set of all M*-conditions (S, X) such that X €
Z*. Now, the dual form of LEMMA 24.10 reads as follows.

LEMMA 26.3. M* ~ U* * Ml},., where %" is the canonical U*-name for the
U*-generic filter. ’

Before we prove LEMMA 26.3, we first show that the forcing notion U* is o-
closed and that it adds Ramsey ultrafilters.

LEMMA 26.4. The forcing notion U* is o-closed, and whenever % * is U*-
generic over V, then there is a Ramsey ultrafilter in V[%*].

Proof. U* is o-closed: Let Xo < X; < --- be an increasing sequence of infinite
partitions (i.e., for all i € w, X;4+1 C* X;). Choose a sequence (F; : i € w) of
finite sets of natural numbers such that for all i € w, X;11 M{F;} C X,. For
every X € (w)¥, order the blocks of X by their least element, and for k € w, let
X (k) denote the k" block with respect to this ordering. Define yo := Xo(0),
and for positive integers n, let y,, := X, (k), where k := n+,.,,(U Fi). Now,
let Y :={y;:i € w}U(w\ U,e, %) Then, for each i € w we have Y C* X;,
which shows that U* is o-closed.

U* adds Ramsey ultrafilters: We show that the set { Min(X)\{0} : X € *}
is a Ramsey ultrafilter over w'\ {0}: Firstly, recall that a forcing notion which is
o-closed does not add new reals to the ground model (see LEMMA 14.17). Let
7 : [w]? — 2 be an arbitrary colouring and let Y € (w)“. Then, by RAMSEY’S
THEOREM 2.1, there exists an infinite set & C Min(Y") with 0 ¢ = such that =
is constant on [r]2. Now, let

X ={b:beY Amin(b) Gz}UU{b:bGY/\min(b) ¢a}.
Then X C Y, X € (w)¥, and Min(X) \ {0} = x. Consequently we get that
D, = {X S (w)w : 7T|[Min(X)\{0}]2 is constant}

is open dense, which implies that D, N %* # (). Finally, since the colouring
7 was arbitrary, this shows that { Min(X) \ {0} : X € %*} is a Ramsey
ultrafilter over w \ {0}. —
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As a consequence we get the following

FAacT 26.5. Forcing with U* does not add new partitions to the ground model.

Proof. First, notice that partitions X can be encoded by real numbers rx C w,
for example let

rx ={kcw:Inmewk=n{n,m}AIA({n,m}C X))},

where 7 is a bijection between w X w and w, and X (1) is as above.
Now, by LEMMA 14.17 we know that o-closed forcing notions do not add
new reals — and therefore no new partitions — to the ground model. —

Now we are ready to give the

Proof of LEMMA 26.3. Since U* does not add new partitions, for every U*-
name (7,Y") for an M3, .-condition, and for every partition Z € (w)¥, there
is an M*-condition (S, X) in the ground model as well as a partition Z’ C* Z
such that

Z' - (S, X) = (T,Y).

We leave it as an exercise to the reader to show that

he MY — (W) x M,
(8,X) —  (X.(8,X))

is a dense embedding. Hence, by FACT 14.3, dual Mathias forcing M* is equiv-
alent to the two-step iteration U* * M, .. —

At this point, we would like to say a few words about the two-step itera-
tions U * Mg, and U* * M7,. respectively: At first glance, the iterations look
very similar and in both cases we start with a forcing notion which is o-closed.
However, My, satisfies ccc, which is not the case for M}, .. The reason for this
is that partitions of w— in contrast to subsets of w — do not have “comple-
ments”, which changes the situation drastically, especially when we work with
partition ultrafilters (see below).

In order to investigate dual Mathias forcing in greater details, we have
to define first a dual form of the shattering cardinal h: Two partitions
X,Y € (w)¥ are called almost orthogonal, denoted X L, Y,if XMY ¢ (w)*,
otherwise they are called compatible. A family &* C (w)“ is called maxi-
mal almost orthogonal (mao) if &* is a maximal family of pairwise almost
orthogonal partitions. Furthermore, a family J#* of mao families of partitions
shatters a partition X € (w)¥, if there are &* € #* and two distinct par-
titions Y, Y’ € &* such that X is compatible with both Y and Y”. Finally, a
family of mao families of partitions is shattering, if it shatters each member
of (w)¥. Now, the dual shattering number $) is the smallest cardinality of
a shattering family; more formally
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$ =min {|A#*| : A is shattering} .

What can we say about the size of 7 Now, like for h we can show that
the cardinal $) is uncountable and less than or equal to c.

FacT 26.6. w1 <$H <c.

Proof. w1 < $: Let = {</} : n € w} be a countable set of mao families.
We construct a partition X € (w)“ which is not shattered by 7 : Let X, €
oy, and for n € w, let X, 11 = X, M Y,11, where Y,, € &7, is such that
X, MYat1 € (w)¥. Then, by the first part of LEMMA 26.4, there exists an X
such that for all n € w, X C* X,.

$H < ¢: Recall that each partition X € (w)“ can be encoded by a real rx.
Now, for each X € (w)* choose a mao family </ which contains two distinct
partitions Yp, Y7 € (w)* such that both, Y and Y7, are compatible with X.
Then {Jz{;(‘ X € (w)“’} is a shattering family of cardinality less than or equal
to c. —

Compared to other cardinal characteristics of the continuum, §) is quite small,
in fact we get

PROPOSITION 26.7. $ <h.

Proof. Notice first that for every mad family &/ C [w]* there is a mao family
* C (w)¥ consisting of partitions X € (w)¥ such that Min(X) \ {0} is
contained in some element of o7 Let . = {27 : { € h} be a shattering family
of mad families and let 7 = {</ : { € h} be the corresponding family of
mao families. By contraposition we show that if #* is not shattering, then
also 47 is not shattering: So, suppose that #* is not shattering. Then there
is a partition X € (w)“ which is not shattered by o (for any £ € ). Thus,
for every £ € b, we find an X¢ € &7 such that X C* X, and therefore,
Min(X) C Min(X¢). Hence, Min(X) is not shattered by any <7, which shows
that J# is not a shattering family. —

Another small cardinal characteristic which is less than or equal to b is
p. So, it is natural to compare §) with p. On the one hand, one can show
that p = $ < b is consistent with ZFC (see RELATED RESULT 151). On the
other hand, one can show that also £ < h = p is consistent with ZFC (see
RELATED RESULT 152). Hence, $) can be small even in the case when p or b is
large. However, by a countable support iteration of dual Mathias forcing we
can enlarge $) without changing the size of p and show that alsop < H =h is
consistent with ZFC.

PROPOSITION 26.8. p = cov(M) < § = b is consistent with ZFC.

Proof (Sketch). Since p < cov(M) (by THEOREM 21.5), and since w; < p,
it is enough to show that w; = cov(M) < $ = wy is consistent with ZFC.
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We can just follow PROPOSITION 24.12 (replacing Mathias forcing with dual
Mathias forcing). Thus, let P, = (Qa : a € wa) be a countable support
iteration of dual Mathias forcing and let G be P,,-generic over some model
V of ZFC + CH.

Firstly, show that V[G] E $ = h = wo: For this, use the fact that dual
Mathias forcing, like Mathias forcing, is proper, that M* ~ U* x M, ., and
that $ <. '

Secondly, show that V[G] E wy = cov(M): For this, use the fact that dual
Mathias forcing, like Mathias forcing, has the Laver property and therefore
does not add Cohen reals. Furthermore, recall that the Laver property is
preserved under countable support iteration of proper forcing notions and
that cov(M) remains unchanged if no Cohen reals are added. Thus, since
V E CH, we get V[G] F w1 = cov(M). a

A Dual Form of Ramsey Ultrafilters

In Chapter 10 we have seen several equivalent definitions of Ramsey ultra-
filters. For example, a filter % C [w]¥ is a Ramsey ultrafilter if for every
colouring  : [w]* — 2 there is an 2 € % such that 7|(,)2 is constant, which
is equivalent to saying that the MAIDEN does not have a winning strategy in
the game G, , defined by

MAIDEN Zo 2 T D) T2 D)
. S N N
Y2 \ / \ / \ /
DEATH ao < al < as <

in which DEATH wins the game G,, if and only if {a; : i € w} belongs to % .

Moreover, by Chapter 10| RELATED RESULT 71, % C [w]¥ is a Ramsey
ultrafilter iff the MAIDEN does not have a winning strategy in the game G, ,
defined by

MAIDEN (ag, %o) (a1, 21 (az,z2)

)
G \ / \ /
DEATH Yo Y1 Y2

in which the MAIDEN wins the game G/, if and only if {a; : i € w} does not
belong to % . The dual form of the latter game is in fact just the game G, -
which we introduced in Chapter 11:

MAIDEN (S0, Xo) (S1,X1) (S2, X2)

o UNSNN

DEATH Y, Y,
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In that game, we require that the first move (Sp, Xg) of the MAIDEN is such
that Xo € * and that (S§, Xo)“ is a dual Ellentuck neighbourhood. Fur-
thermore, we require that for each n € w, the n'" move of DEATH Y, is such
that Y, € (S¥, X,,)* and Y,, € *, and that the MAIDEN plays (Sp+1, Xn+1)
such that

4 S;; < Sn—i—la |Sn+1| = |Sn| + 17 S;;+1 C Yn: and
o Xni1€(SE o, Y)rnUr.

n

Finally, the MAIDEN wins the game G,, . if and only if the (unique) infinite
partition X € (w)“ such that S, < X (for all n € w) does not belong to the
family % *.

With respect to the game G,, - we define dual Ramsey ultrafilters as follows
(for another dual form of Ramsey ultrafilters see RELATED RESULT 158): A
family .#* C (w)¥ is a partition-filter if .#* is closed under refinement and
finite coarsening, and if for all X, Y € #* we have XY € .#*. Furthermore,
a partition-filter 7* C (w)“ is a partition-ultrafilter if %7* is not properly
contained in any partition-filter. Finally, a partition-ultrafilter 7* C (w)“ is
a Ramsey partition-ultrafilter if the MAIDEN does not have a winning
strategy in the game G, .

It is easy to show that every Ramsey partition-ultrafilter %* C (w)
generates a Ramsey ultrafilter 7 C [w]“. In fact, if Z* is a Ramsey partition-
ultrafilter, then { Min(X)\ {0} : X € *} C [w]* is a Ramsey ultrafilter over
w \ {0}. On the other hand, it is not at all clear whether Ramsey ultrafilters
also generate Ramsey partition-ultrafilters— in fact it seems that Ramsey
partition-ultrafilters are much stronger than Ramsey ultrafilters. However,
the following result shows that the existence of Ramsey partition-ultrafilters
is consistent with ZFC.

w

THEOREM 26.9. If %* is U*-generic over V, then % * is a Ramsey partition-
ultrafilter in V% *].

Proof. Because % * is U*-generic over V, * C (w)“ is a partition-filter in
V[%*]. Furthermore, since U* is o-closed (by LEMMA 26.4), U* does not add
new partitions which implies that % * is a partition-ultrafilter in V[ *].

It remains to show that in V[%*], the MAIDEN does not have a winning
strategy in the game G,, .. For this, let ¢ be a U*-name for a strategy for the
MAIDEN in the game G,, -, i.e.,

0y~ “g is a strategy for the MAIDEN in the game G, -”,

where 7/ is the canonical U*-name for the U*-generic filter. Let us assume
that the MAIDEN follows the strategy ¢[% *] in the model V[%*]. Further-
more, let Zy € (w)“ be such that

Zo =u- g(0) = (So, Xo) -
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In particular, since ¢ is the % -name for a strategy,
Zo y- ‘XO S 02/*

Assume that for some n € w we have already constructed an M*-condition
Zn > Zo such that

Zn Iy Q'((,SO, ‘XO)?XO; B (A‘Sjnflaz,(nfl)aznfl) = (§n,)~(n) .

Then, since does not add new partitions, we find a U*-condition Z/, > Z,
(i.e., Z!, C* Z,) and a dual Ellentuck neighbourhood (S, X,,) in V such that

Z:z Fu- (gmgn) = (San)-
Because Z/] > Z,,, we have
Z’:L ”_TU* g((,SOa‘XO)aYO; ey (,\‘S,’n—la Xn—l)agn—l) = (Sn; Xn) .

In particular, Z/ Fy- X,, € %", which implies that Z/ and X,, are com-
patible. Finally, DEATH plays a partition Y, such that Y,, C* (Z/ N X,)
and Y, € (S, X,)¥. Proceeding this way, we get an increasing sequence
So < S1 < -+ of partitions of (IN).

Now, let W € (w)¥ be the unique partition such that for all n € w,
Sn < W. Notice that W belongs to V. Then W is an infinite partition (i.e.,
an U*-condition), Wiy~ W € %, and for each n € w, W C* (Z], N X,,).
Thus, by construction we get

W =y~ “g is not a winning strategy for the MAIDEN in the game G,, ",

and since ¢ was an arbitrary strategy, the MAIDEN does not have a winning
strategy at all. —

As a consequence we get that the existence of Ramsey partition-ultrafilters
is consistent with ZFC + CH (just force with U* over a model in which CH
holds). Unlike for Ramsey ultrafilters, it is not known whether CH implies
the existence of Ramsey partition-ultrafilters. On the other hand, replacing
U with U* in the proof that ultrafilter forcing U collapses ¢ to h (see Chap-
ter 25| RELATED RESULT 144), one can show that the forcing notion U* col-
lapses ¢ to £, and since $) > wy is consistent with ZFC (by PROPOSITION 26.8),
we get that the existence of Ramsey partition-ultrafilters is also consistent
with ZFC + —CH.

NOTES

Dual Mathias forcing was introduced and investigated by Carlson and Simpson
in [4] (e.g., they showed that dual Mathias forcing has pure decision). The dual
shattering number was introduced and investigated by Cichon, Krawczyk, Majcher-
Iwanow, and Weglorz in [5] (e.g., they showed that $ < h). However, most of the
results presented in this chapter are taken from Halbeisen [6, 7].
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RELATED RESULTS

Dualising cardinal characteristics of the continuum. The first who studied sys-
tematically the dual forms of cardinal characteristics of the continuum were Ci-
chon, Krawczyk, Majcher-Iwanow, and Weglorz. For example they showed that
£ is regular, that < b, and that 9% < r. Before their work [5] was published
in 2000, the paper was already available as a preprint in 1994 and motivated for
example the work of Brendle [2], Spinas [15] and Halbeisen [6].

On the consistency of p = $ < h. Spinas [15, Theorem 4.2] showed that in
Mathias’ model, which is the model we get after a countable support iteration
of length wy of Mathias forcing starting in a model of ZFC + CH, we have
p = 9 < b. In particular, this shows that Mathias forcing does not add Mathias
partitions; otherwise, by the proof of PROPOSITION 26.8 (originally proved in
Halbeisen [6]), we would have $) = b in Mathias’ model.

On the consistency of $ < p. Brendle [2] showed that $ < b is consistent with
ZFC+ MA. In particular, also $ < p = b is consistent with ZFC. To some extent
this shows that dual Mathias forcing is far away from being a ccc forcing notion,
even in the case when we restrict dual Mathias forcing to a partition-ultrafilter.

Dualisations of a and t. We have seen above how one could dualise the shatter-
ing cardinal f, and we have seen that both statements, ) = w; = $ and = w»,
are consistent with ZFC. Now, it is somewhat surprising that the dual forms of a
and t are absolute (i.e., they cannot be moved). In particular, Krawczyk proved
in [5] that the size of a maximal almost orthogonal family (i.e., the dualisation
of a mad family) is always equal to ¢, and Carlson proved that the dual tower
number is always equal to wi (see Matet [13, Proposition 43]).

Converse dual cardinal characteristics. If we replace the ordering “C” on (w)®
with “J”) we obviously get other kinds of dual cardinal characteristics: The
so-called converse dual cardinal characteristics were first introduced and in-
vestigated by Majcher-Iwanow [12], whose work was continued by Brendle and
Zhang in [3], where it is shown for example that the converse dual tower number
is equal to p.

The dual Ramsey property. In Chapter 9 we have seen that the shattering car-
dinal b is closely related to the Ramsey property. Now, one can show in a similar
way that the dual shattering cardinal §) is closely related to the so-called dual
Ramsey property, which was introduced and investigated by Carlson and Simp-
son in [4], and further investigated by Halbeisen in [6, 7] and by Halbeisen and
Loéwe in [9].

Ultrafilter spaces on the semilattice of partitions. There is essentially just one
way to define a topology on the set of ultrafilters over w. This topological
space is usually denoted by Sw (cf. Chapter 9 | RELATED RESULT 63). On the
other hand, there are four natural ways to define a topology on the set of
partition-ultrafilters. Moreover, one can show that the corresponding four spaces
of partition-ultrafilters are pairwise non-homeomorphic, but still have some of
the nice properties of Sw (see Halbeisen and Léwe [10]).

Partition-filters. In [14], Matet introduced partition-filters associated with
HINDMAN’S THEOREM and the MILLIKEN-TAYLOR THEOREM respectively (see
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Chapter 2 | RELATED RESULT 3) and investigated the existence as well as com-
binatorial properties of these partition-filters. For a slightly different approach
to filters associated to HINDMAN’S THEOREM see Blass [1].

158. Ramsey partition-ultrafilters versus Ramseyan ultrafilters” Above, we have in-
troduced Ramsey partition-ultrafilters in terms of the game G,, «, which is, by
Chapter 10 | RELATED RESULT 71, related to Ramsey ultrafilters % C [w]*. Fur-
thermore, we have seen that the existence of these Ramsey partition-ultrafilters
is consistent with ZFC (see also Halbeisen [7, Theorem 5.1]). Ramsey partition-
ultrafilters have very strong combinatorial properties (see for example Halbeisen
and Matet [11]), and it seems that they are significantly stronger than Ram-
sey ultrafilters. For example it is not known whether CH implies the existence
of Ramsey partition-ultrafilters, whereas CH implies the existence of 2° mutu-
ally non-isomorphic Ramsey ultrafilters (see Chapter 10 | RELATED RESULT 64).
Now, instead of defining Ramsey partition-ultrafilters in terms of the game G, «,
we could equally well take another approach: In Chapter 10 we defined Ramsey
ultrafilters in terms of colourings of [w]?, i.e., % C [w]* is a Ramsey ultrafil-
ter if for every colouring 7 : [w]® — 2 there is an € % such that ()2 18
constant. Dualising — and slightly strengthening — this property, we get what
is called a Ramseyan ultrafilter. A partition-ultrafilter * C (w)® is a Ram-
seyan ultrafilter if for every finite colouring of (w)™, there is an X € %* such
that (X)™" is monochromatic. Unlike for Ramsey partition-ultrafilters, it is
known that CH implies that there are 2° mutually non-isomorphic Ramseyan
ultrafilters (see Halbeisen [8, Theorem 2.2.1]). Thus, it seems that Ramseyan
ultrafilters are somewhat weaker than Ramsey partition-ultrafilters — but it is
also possible that they are equivalent.
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Suite

In this chapter we shall demonstrate how the tools we developed in the previ-
ous chapters can be used to shed new light on a classical problem in Measure
Theory.

Assuming the Continuum Hypothesis, Banach and Kuratowski proved a
combinatorial theorem which implies that a finite measure defined for each
subset of R vanishes identically if it is zero for points (for the notion of
measure we refer the reader to Oxtoby [3, p.14]). We shall consider this
result — which will be called BANACH-KURATOWSKI THEOREM — from a set-
theoretical point of view, and among others it will be shown that the BANACH-
KURATOWSKI THEOREM is equivalent to the existence of a K-Lusin set of size
¢ and that the existence of such a set is independent of ZFC + —~CH.

The original proof of the BANACH-KURATOWSKI THEOREM is due to Ba-
nach and Kuratowski [1], THEOREM 27.1 is due to Halbeisen, and the non-
classical results of this chapter are all due to Bartoszynski. References and
some more results related to the BANACH-KURATOWSKI THEOREM can be
found in Bartoszynski and Halbeisen [2].

Prelude

Historical background. In a paper of 1929, Banach and Kuratowski in-
vestigated the following problem in Measure Theory: Does there exist a non-
vanishing finite measure defined for each subset of R which is zero for points?
They showed that such a measure does not exist if one assumes CH. In fact,
assuming CH, they proved the following combinatorial theorem and showed
that it implies the non-existence of such a measure (notice that it is sufficient
to consider just measures on subsets of the unit interval [0, 1]).

THEOREM OF BANACH AND KURATOWSKI. If CH holds, then there is an
infinite matrix Aj, C [0, 1], where i, k € w, such that:

(a) For eachi € w, [0,1] = e, A}
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(b) For each i € w, if k # k' then A} N Al, = 0.

(c) For every infinite sequence (ko,k1,...,k;,...) of natural numbers,

() (A§UAjU...UAL) s countable.

1EW

Below, we call an infinite matrix A% C [0,1] (where i,k € w) for which (a),
(b), and (c) hold a BK-Matrix.

Concerning the measure-theoretical problem we would like to mention that
Ulam [4] proved the following generalisation of the BANACH-KURATOWSKI
THEOREM: If no cardinal less than or equal to ¢ is weakly inaccessible, then
every finite measure defined for all subset of R which is zero for points vanishes
identically. For further results in this context we refer the reader to Oxtoby [3,
Chapter 5].

Allemande

A cardinal characteristic called I. Before we give a slightly modified
version of the original proof of the BANACH-KURATOWSKI THEOREM we in-
troduce the following notion.

Recall that for functions f,g € Yw, f < g <= f(n) < g(n) for all
n € w. Now, for .# C “w, let A(F) denote the least cardinality such that for
each g € “w, the cardinality of the set {f € . : f < g} is strictly less than
A(.Z). For any family .# C “w we obviously have A(.%) < ¢T. Furthermore,
for families # C “w of size ¢ one can easily show that w; < A(.%). Thus,
for families .# C “w of size ¢ we have w; < A\(F) < ¢T, which leads to the
following definition:

[=min{A(F): F C“wA|F|=c}

If one assumes CH, then one can easily construct a family .# C “w of cardi-
nality ¢ such that A\(#) = w1, hence, CH implies [ = w;.

In our notation, the crucial point in the original proof of Banach and
Kuratowski reads as follows.

THEOREM 27.1. The existence of a BK-Matrix is equivalent to [ = w;.

Proof. (<) Let .# C “w be a family of cardinality ¢ with A(%) = w;. In
particular, for each g € “w, the set {f € &# : f < g} is at most countable.
Since the interval [0, 1] has cardinality c, there is a one-to-one function h from
[0,1] onto .Z. For z € [0,1], let n? := h(x)(7). Now, for i,k € w, define the
sets A% C [0,1] as follows:

re Al —= k=n?.
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We leave it as an exercise to the reader to check that these sets satisfy
the conditions (a) and (b) of a BK-Matrix. For (c), take any sequence
(ko,k1,... ki, ...) of w and pick an arbitrary = € ;¢ (Aj UAT U... U A} ).
By definition, for each i € w, z is in Af U Aj U... U Aj . Hence, for each
i € w we get n? < k;, which implies that for g € “w with g(i) := k; we have
h(z) < g. Now, since A(F) = wy, h(z) € F and = was arbitrary, the set
{ze0,1]: h(z) <g} = Mjes, (AU AT U...U A} ) is at most countable.

(=) Let A% C [0,1], where i,k € w, be a BK-Matrix and let .% C “w be the
family of all functions f € “w such that (., Azj}(i) is non-empty. Is is easy
to see that .# has cardinality ¢. Now, for any sequence (ko, k1,...,ki,...) of
natural numbers, the set (., (AjUA]U...UA] ) is at most countable, which
implies that for g € “w with g(¢) := k;, the set {f € .F : f < g} is at most
countable. Hence, A\(.#) = w;. —

Courante

Lusin and K -Lusin sets. Before we can define the notions of Lusin and K-
Lusin sets respectively, we have to introduce the notion of a compact set (for
the notions open, closed, dense, and meagre we refer the reader to Chapter 21).
A set X C “w is compact if for every set . C seq(w) of finite sequences in w
such that X C (J . Os, there exists a finite subset {so,...s,-1} C.% such
that X C (U, Os,. In other words, X C “w is compact if every open cover
of X has a finite subcover.

The following lemma gives a combinatorial characterisation of compact
subsets of “w.

LEMMA 27.2. The closure of a set A C “w is compact if and only if there is a
function fo € “w such that AC {f € “w: f < fo}.

Proof. For A C%wlet Ty = {g|n g€ AANE w}. Then (T4, C) is obviously
a tree. Notice that if A denotes the closure of A, then Ty = T;. Now, (T4, Q)
is finitely branching if and only if for each n € w, {g(n) 1 g € A} is finite; in
which case we can define fy € “w by stipulating fo(n) := max {g(n) : g € A}
(and get that for all g € A, g < fp). Thus, it is enough to prove that a closed
set A is compact if and only if (T4, C) is finitely branching.

(=) If (T4, Q) is not finitely branching, then there is an ng € w such that
Fno = {9lno : g € A} is infinite. On the one hand, A C J{Os : s € %, },
but on the other hand, for any finite subset {sg,...sm-1} C %, we have
AL Uiem Os,» hence, A is not compact.

(<) Assume that (T4,C) is finitely branching. Let . C seq(w) be such
that A € J,c» Os and let Ty = {gln 19 € AAn € wAVE < n(gl, ¢
7 )} . First we show that T4 is finite: Assume towards a contradiction that
Ty is infinite. Then, by Kénig's Lemma, (TA, C) contains an infinite branch,
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say go € “w. Now, go belongs to A (since A is closed), but by construction
g0 ¢ Usecsr Os, a contradiction. We say that ¢ € Ty is a leaf of T, if for
all n € w, in ¢ Ta. Let L(T4) denote the finite set of leaves of T4. Now,
let A = {tf\n it € TA/\n cwAtn € TA}. Notice that YOQTA = 0.
Then, since (T4, C) is finitely branching, .74 is finite, and by definition we
get . C {tAn teTaAnecwhine #}. Moreover, A C [ J{O; : s € A},
which shows that A is compact. —

An uncountable set X C “w is a Lusin set if for each meagre set M C “w,
X N M is countable; and an uncountable set X C “w is a K-Lusin set if for
each compact set K C “w, X N K is countable.

Fact 27.3. Every Lusin set is a K-Lusin set.

Proof. By LEMMA 27.2, every compact set K C “w is meagre (even nowhere
dense), and therefore, every Lusin set is a K-Lusin set. —

Let @Q be a countable dense subset of “w. Then X C “w is concentrated
on Q if every open subset of “w containing @, contains all but countably
many elements of X. Finally, a subset of “w is called concentrated if it is
concentrated on some countable dense subset of “w.

PROPOSITION 27.4. The following statements are equivalent:

(a) There exists a K-Lusin set of cardinality c.

(b) There exists a concentrated set of cardinality c.

Proof. (b)=-(a) Let X C “w be concentrated on some countable dense set
@ C “w. One can show that there exists a homeomorphism between “w \ Q
and “w, i.e., there exists a bijection h : “w \ @ — “w which maps open sets
to open sets and closed sets to closed sets (the details are left to the reader).
Let K be an arbitrary compact subset of “w. Then h~![K] is also compact,
and therefore “w \ h™1[K] is an open set containing Q. Thus, since X is
concentrated on @, “w \ h~1[K] contains all but countably many elements of
X and consequently h[X] N K is countable; and since K was arbitrary, this
implies that the image under h of a set concentrated on @ of cardinality ¢ is
a K-Lusin set of the same cardinality.

(a)=(b) Similarly, if @ C “w is a countable dense set and h : “w\ Q — “w is
a homeomorphism, then the pre-image under h of a K-Lusin set of cardinality
¢ is a concentrated set of the same cardinality. —

Sarabande

The cardinal | and the existence of large K -Lusin sets. The following
result — even though it follows quite easily from the definitions —is in fact
the heart of our set-theoretical investigation of the BANACH-KURATOWSKI
THEOREM.
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THEOREM 27.5. [ = w; if and only if there is a K-Lusin set of cardinality c.

Proof. (=) Assume [ = w; and let ¥ C “w be a set of cardinality ¢ such
that for each g € “w, {f € & : f < g} is countable. By LEMMA 27.2, for
each closed and compact set K C “w there is a function gx € “w such that
K C{g€“w:g<gk} Thus, for every closed and compact set K we have
FNK C{feZ:f < gk} iscountable, hence, Z is a K-Lusin set of
cardinality .

(<) Let X C “w be a K-Lusin set of cardinality ¢. By LEMMA 27.2, for
each g € “w the set K; = {f € “w: f < g} is closed and compact. Thus,
XNKy,={feX:f<g}iscountable. Hence, A\(X) = wy and since |X| =¢
we have [ = w;y. —

Gavotte I & 11

K -Lusin sets and the cardinals b and 0.

PROPOSITION 27.6. The existence of a K-Lusin set of cardinality ¢ implies
b=w; and 0 =c.

Proof. Let X C “w be a K-Lusin set of cardinality ¢. On the one hand, every
uncountable subset of X is unbounded, so, b = w;. On the other hand, every
function g € “w dominates only countably many elements of X. Hence, no
family % C “w of cardinality strictly less than ¢ can dominate all elements of
X, and thus, 0 =c¢. —

By the definition of K-Lusin sets we get that K-Lusin sets are exactly those
(uncountable) subsets of “w all whose uncountable subsets are unbounded,
which explains that K-Lusin sets are also called strongly unbounded; K-Lusin
sets play an important role in preserving unbounded families in iterations of
proper forcing notions.

The existence of K-Lusin sets of cardinality c.

LEMMA 27.7. If G is C.-generic over V, then
V|[G] E “there is a Lusin set of cardinaltiy ¢”.

Proof. With G we can construct a set C' = {ca o€ c} of Cohen reals of
cardinality c¢. Further, let r be a C.-name for the code of a meagre F, set
A, € V[G] and let T = supp(r) (cf. Chapter 21). Clearly, I C ¢ is countable,
and by PROPOSITION 21.7, for each o € ¢\ I we have V[G] E ¢, ¢ A,. Hence,
C'N A, is countable in V]G], and since C. preserves cardinalities and A, was
arbitrary, V[G| E “C is a Lusin set of cardinaltiy ¢”.

THEOREM 27.8. The existence of a K -Lusin set of cardinality ¢ is independent
of ZFC + —CH. Equivalently, the existence of a BK-Matrix is independent of
ZFC 4 —CH.



460 27 Suite

Proof. Firstly, notice that by THEOREM 27.1 and THEOREM 27.5 the existence
of a BK-Matrix is equivalent to the existence of a K-Lusin set of cardinality
¢. Now, by LEMMA 27.7 and FACT 27.3 it is consistent with ZFC that there
is a K-Lusin set (even a Lusin set) of cardinality ¢. On the other hand, it is
consistent with ZFC that b > w; or that 0 < ¢ (cf. Chapter 18). Therefore, by
PROPOSITION 27.6, it is consistent with ZFC that there are no K-Lusin sets
of cardinality c. —

K -Lusin sets and the cardinals b and 0. As an immediate consequence
of PROPOSITION 27.6 and THEOREM 27.8 we get that wy = b < 0 = ¢ is
consistent with ZFC. Since Cohen reals are unbounded and since Cohen forcing
does not add dominating reals (see Chapter 21), PROPOSITION 27.6 is in fact
just a consequence of LEMMA 27.7.

In the next section, a very similar construction will be used to show that
the converse of PROPOSITION 27.6 is not provable in ZFC.

Gigue

A model without K-Lusin sets in which b = w; and 0 = c.

PROPOSITION 27.9. It is consistent with ZFC that b = w; and 0 = ¢, but
there is no K-Lusin set of cardinality c.

Proof. Let V be a model of ZFC in which p = ¢ = wy. Let G = <ca o€ w1>
be C¥1-generic over V. In the resulting model V[G]| we have b = w; and
0 = wa (see PROPOSITION 21.13). On the other hand, there is no K-Lusin set
of cardinality ¢ in V[G]. Why? Suppose X C “w has cardinality wo. Take a
countable ordinal « and a subset X’ C X of cardinality wy such that X’ C
VIG|.], where G|, = (cs : B € a). Now, V[G|,] = V] for some Cohen real ¢
(by FAcT 18.4), and V(] F p = ¢ (by THEOREM 19.4), and since p < b we have
V|c| E b = ws. Thus, there is a function which dominates uncountably many
elements of X’. Hence, by the remark after PROPOSITION 27.6, X cannot be
a K-Lusin set. —

One after another, the bells jangled into silence,
lowered their shouting mouths and were at peace.

DOROTHY L. SAYERS
The Nine Tailors, 1934



References 461

REFERENCES

1. STEFAN BANACH AND KAZIMIERZ KURATOWSKI, Sur une généralisation du prob-
Iéme de la mesure, Fundamenta Mathematicae, vol. 14 (1929), 127-131.

2. ToMEK BARTOSZYNSKI AND LORENZ HALBEISEN, On a theorem of Banach and
Kuratowski and K-Lusin sets, Rocky Mountain Journal of Mathematics,
vol. 33 (2003), 1223-1231.

3. JouN C. OxToBY, Measure and Category, 2nd ed., [Graduate Texts in Math-
ematics 2], Springer-Verlag, New York, 1980.

4. StaNiseaw UraMm, Zur Masstheorie in der allgemeinen Mengenlehre, Funda-
menta Mathematicae, vol. 16 (1930), 140-150.

5. DoOROTHY L. SAYERS, The Nine Tailors, Changes Rung on an Old Theme
in Two Short Touches and Two Full Peals, Harcourt, Brace and Company,
New York, 1934.






Index

Symbols

logic
M E @, 309
Con(T), 38
T+, 42
T V¥ ¢, 37
TH1, 36
3 (exists), 32
31, 45
V (for all), 32
free(y), 33
€, 44
< (iff), 32
1, 39
IE ¢, 40
M E ¢, 309
M ¥ ¢, 40
N < M, 308
F, 40
- (not), 32
- Con(T), 38
p(z/t), 34
p =1, 38
o™, 309
— (implies), 32
2, 39
V (or), 32
A (and), 32

axioms

AC, 2, 111

AD, 146

C(No, < Ng), 134
C(No, Ng), 134
C(Ng, 00), 134
C(No,n), 134

C(o0, < o), 134
C(o0o,n), 135

CH, 4, 85, 190

Cn, 135

DC, 145

GCH, 190

KL, 135

MA, 278, 365

MA (countable), 279
MA (k), 277

MA (o-centred), 279
PIT, 131

RPP, 135

ZF, 58

ZFA, 168

ZFC, 111

ZFC*, 272, 308

forcing

G(w), 356
Gla, 356
B, 396
C*, 346
Cy, C, 286
Ca, 346

Ay, 293

L, 414

Lo, 415

M*, 442

M, Mg, 417

M, 406

G, G, 288

P~ Q, 290

PxQ, 351

P., 355

P, s-condition, 432

U, 286

S, 402

Se, 399

T, 288

U*, 445

I=p, 292-294

z, 287

e, 293

rk(z), 287

supp(p), 345, 355

plq, 275

p L g, 113, 275

cce, 276, 301
classes and models

Q, 46

L, 112

V, 58

VI[G], 288



464

VE, 287
Vi, 309
Vr,, 171
Vr,, 173
Vi, 174
V,, 182
V., 181
sets
0, 47
A°, 215
Clo,1], 81
514, 11

[w]“/ fin, 286
Bw \ w, 222
A, 215

Nz, 48
ﬂLEI Yoy 48
Uz, 47
ULEI Yes 47
UiE:l: Ai, 52
dom(f), 52
0, 11, 45
extg(z), 312
[w]=*, 11
seq' ' (A), 80
Ja, 193

x€, 225

<So,...,85,...>a, 53

<S/3 A< OL), 53
(m,y), 47
Ty, 227
A, 80

N, 3

P, 80

Q, 23, 80
R, 54

Z, 80

w, 11, 50
H,, 380
H., 315
Lo, 112
Va, 58, 287

o.t.(R), 62
P(x), 52
ran(f), 52
[w]®, 11
seq(A), 80
TC(S), 59
{z,y}, 46
£18], 12, 52
f|Sa 127 52
4B, 12

cardinals

[m]?, 83

|A], 60
fin(m), 83
add(./"), 397
add(Ro), 213
add(A), 396
Ro, 60

Ny, 85

Nq, 107

2™ 61

3., 381
cf(N), 125
cov(A), 397
cov(Ro), 213
cov(A), 390
9, 446

a, 194

b, 191

¢, 4, 123, 190
0, 191

b, 201

hom, 5, 199
m+n, 82
m-n, 82

p, 191

par, 5, 199

v, 3, 194

i, 196

ts, 205

5, 192

t, 205
2123

u, 206

kT, 122

w1, 85, 123, 190
Wa, 107

ideals

N, 397

Ro, 213
A, 389
filters
fil(«), 226
Ft, 225
partitions
P C Q, 250, 441
PQ, 250, 441
P U Q, 250, 441
S < X, 250, 441
S*, 251
X1.Y, 446
Min(P), 251

w
S, X)“, 251, 442
w)*, 250, 441
(w)*, 254

miscellaneous

A= A, 153
A=~ A, 153
HJ(n,r), 246
R(n,m), 22
Ri(p), 247
fixe (S), 170
sym (z), 326
symy (x), 169
a+1,50

|S], 11

N, 48
cnfo(ar), 88
cnf(a), 88

U, 47

0, 47

[z]7, 12
f:A— B, 52
f:A— B, 52
f:A< B, 52
seq' ' (A), 53
o' o | 202
seq(A), 53

\, 12, 48

C, 45

c, 45



Symbols

A, 20
al|b, 13
f<*g,191
§x, 173

x C*y, 190

|A| = |BJ, 53
|A] < |BJ, 53
|A] < |BJ, 53

|A] <" |BJ, 84

465



466

Names

A page number is given in italics when that page contains a biographical note about
the person being indezxed.

Ackermann, Wilhelm, 65 Cichon, Jacek, 450, 451
Aniszczyk, Bohdan, 222 Cohen, Paul J., 271, 305, 339
Argyros, Spiros A.; 25, 262 Corazza, Paul, 222

Aristotle, 31, 35, 64
De la Vallée Poussin, Charles J., 6
Bachmann, Heinz, 68, 69, 105, 107, 140, Dedekind, Richard, 65, 66, 69, 104

142, 143 Detlovs, Vilnis, 65
Balcar, Bohuslav, 204, 206, 222, 438 Devlin, Dennis, 24
Banach, Stefan, 154, 164, 165, 455, 456 Dimitriou, Ioanna, XI, 340
Banakh, Taras O., 24 Diserens, Gearéidin, XI
Bar-Hillel, Yehoshua, 67, 138, 139 Dordal, Peter Lars, 206
Bartoszynski, Tomek, 241, 242, 370, Dow, Alan, 206

383, 384, 395, 396, 397, 414, 415, Doxiadis, Apostolos, 65

424, 439, 455 Dzamonja, Mirna, 264
Baumgartner, James E., 207, 360, 382,

384, 403 Easton, William B., 322, 361
Bell, John L., 141 Ebbinghaus, Heinz-Dieter, 65, 68, 139
Bell, Murray G., 283, 370 Ellentuck, Erik, 221, 425
Benson, David J., 6 Engelking, Ryszard, 221
Bernays, Paul, 65, 66, 139, 142, 145 Erdés, Paul, 21, 22, 23, 204, 262
Bernstein, Felix, 69, 107 Euclid, 66

Blass, Andreas, XI, 140, 141, 204, 205, Euler, Leonhard, 69
206, 241, 264, 283, 339, 340, 383,

396, 402, 403, 414, 415, 452 Faber, Georg, 106
Bocheriski, Joseph M., 64 Farah, Ilijas, 262
Bolzano, Bernard, 66 Feferman, Anita Burdman, 64
Boole, George, 64, 1/0-141 Feferman, Solomon, 305, 339
Booth, David, 241, 242 Felgner, Ulrich, 140, 145, 186, 204
Borel, Emile, 69, 70, 415 Felouzis, Vaggelis, 262
Bourbaki, Nicolas, 139 Fichtenholz, Grigorii, 204
Brendle, Jorg, 22, 205, 206, 360, 403, Fischer, Vera, 206
414, 415, 424, 425, 451 Flum, Jorg, 65
Brown, Jack B., 222 Flumini, Dandolo, XI
Brown, Tom, 262 Font, Josep Maria, 141
Brunel, Antoine, 25 Forster, Thomas E., 108, 143, 144
Fraenkel, Adolf Abraham, 31, 44, 67,
Campbell, Paul J., 139 68, 69, 104, 105, 107, 137, 138,
Canjar, R. Michael, 283, 424 139, 140, 184, 186, 339
Cantor, Georg, 30-31, 54, 66, 6667, 68, Frankiewicz, Ryszard, 222
69, 105, 138, 140 Frege, Gottlob, 64, 65, 70
Carlson, Timothy J., 222, 261, 262, 263, Fremlin, David H., 283, 284, 370
450, 451
Chang, Chen Chung, 314 Galilei, Galileo, 6, 66

Church, Alonzo, 105 Galvin, Fred, 221, 241



Names

Gauntt, Robert. J., 144

Geschke, Stefan, 403

Godel, Kurt, 65—66, 112, 139, 190, 271,
304

Goldstein, Rebecca, 66

Goldstern, Martin, 65, 206, 360, 382,
383, 384, 415

Goodstein, Reuben L., 106

Gowers, W. Timothy, 25

Graham, Ronald L., 21, 22, 23, 24, 261,
263

Grassmann, Hermann, 65

Grattan-Guinness, Ivor, 67

Gray, Charles W., 415

Grigorieff, Serge, 402

Hajnal, Andras, 23

Halbeisen, Lorenz, 22, 24, 25, 104, 105,
108, 185, 186, 207, 221, 241, 261,
262, 263, 402, 403, 424, 425, 450,
451, 452, 455

Halbeisen, Stephanie, XI

Hales, Alfred W., 246, 261

Hallett, Michael, 138

Halpern, James D., 142, 184, 185, 261,
262, 263, 264

Harrington, Leo, 22

Hartogs, Friedrich, 70, 70, 140

Hausdorff, Felix, 68, 140, 142, 164, 204,
206, 315, 340

Henkin, Leon, 65, 143

Hermes, Hans, 65

Hernandez-Hernéndez, Fernando, 206

Herrlich, Horst, 145, 146

Hessenberg, Gerhard, 140

Hilbert, David, 65, 67

Hindman, Neil, 23, 24, 222, 264

Hodges, Wilfried, 314

Howard, Paul, 141, 142, 144

Hrusak, Michael, 206, 283

Hungerbiihler, Norbert, 24, 108, 262

Jansana, Ramon, 141

Jech, Thomas, 22, 139, 140, 141, 143,
144, 145, 146, 184, 185, 186, 221,
283, 307, 314, 315, 322, 339, 340,
361, 370, 384, 396, 397, 402, 439

Jewett, Robert 1., 246, 261

Jourdain, Philip E. B., 65, 140

467

Judah, Haim, 65, 241, 242, 243, 370,
383, 384, 395, 396, 397, 414, 415,
424, 425, 439

Jukna, Stasys, 261

Kakutani, Shizuo, 204

Kalemba, Piotr, 221

Kanamori, Akihiro, 67, 68, 139, 146,
204, 305

Kanellopoulos, Vassilis, 262

Kantorovitch, Leonid V., 204

Kaye, Richard, 65

Kechris, Alexander S., 414

Keisler, H. Jerome, 241, 314

Kellner, Jakob, 403

Kerdnen, Veikko, 262

Keremedis, Kyriakos, 142

Ketonen, Jussi A., 204, 241

Khomskii, Yurii, 206

Kirby, Lauri, 106

Kleene, Stephen Cole, 65, 67, 68, 70

Kleinberg, Eugene M., 141

Kneser, Hellmuth, 139

Komjath, Péter, 23

Konig, Julius, 140

Konig, Dénes, 6

Korselt, Alwin, 69

Krawczyk, Adam, 450, 451

Kunen, Kenneth, 204, 241, 283, 305,
307, 314, 315, 322, 360, 361, 370,
395, 397, 439

Kuratowski, Casimir, 68, 139, 455, 456

Kurepa, Djuro, 105, 140

Kurili¢, Milos S., 396, 403

Laczkovich, Miklés, 165

Laflamme, Claude, 241, 243

Lagrange, Joseph-Louis, 30

Landman, Bruce M., 262

Larson, Jean A., 264

Lauchli, Hans, 105, 142, 143, 145, 185,
186, 261, 263, 264

Laver, Richard, 264, 403, 414, 415, 438

Leader, Imre, 264

Lebesgue, Henri, 105

Le$niewski, Stanistaw, 140

Lévy, Azriel, 66, 67, 105, 138, 139, 143,
144, 184, 185, 262, 314, 339

Lewin, Mordechai, 21



468

Lindenbaum, Adolf, 69, 104, 105, 140,
141, 184

Lothaire, 266

Louveau, Alain, 222, 414

Lowe, Benedikt, 22, 340, 403, 451

Lowenheim, Leopold, 68

Miiller Aloys, 64

MacHale, Desmond, 141

Majcher-Iwanow, Barbara, 450, 451

Mancosu, Paolo, 66

Marczewski, Edward, 145

Martin, Donald A., 283, 370

Matet, Pierre, 221, 247, 261, 263, 451,
452

Mathias, Adrian Richard David, 145,
146, 241, 242, 402, 424, 425

Mendelson, Elliott, 68, 184

Mijares, José G., 222

Miller, Arnold W., 283, 396, 403, 414,
438, 439

Milliken, Keith R., 23, 264

Mirimanoff, Dimitry, 68

Mitchell, William J., 264

Montague, Richard, 314

Montenegro, Carlos H., 143

Moore, Gregory H., 138, 139, 140, 142,
305

Morris, Walter D., 21

Mostowski, Andrzej, 65, 144, 145, 184,
186, 314

Mycielski, Jan, 143, 146

Neumann, John von, 66, 67, 68, 69, 105,

140, 164
Nilli, Alon, 261
Noether, Emmy, 65

Odell, Edward W., 25
Oxtoby, John C., 455, 456

Papadimitriou, Christos H., 65
Paris, Jeff B., 22, 106

Pawlikowski, Janusz, 396

Peano, Giuseppe, 64-65, 69, 137-138
Peirce, Charles S., 66

Pelant, Jan, 204, 222, 438

Perron, Oskar, 69

Pelczyniski, Aleksander, 207

Pigozzi, Don, 141

Pin, Jean-Eric, 261
Pincus, David, 144, 145, 262
Piotrowski, Zbigniew, 396
Piper, Greg, 206

Plato, 29, 66

Pleasants, Peter A. B., 262
Plewik, Szymon, 221, 222
Podnieks, Karlis, 65
Prikry, Karel, 221
Protasov, Igor V., 24
Promel, Hans J., 261
Putnam, Hilary, 65

Quickert, Sandra, 403

Rado, Richard, 22

Radziszowski, Stanistaw P., 23

Raisonnier, Jean, 165

Ramovié¢, Goran, 264

Ramsey, Arthur M., 21

Ramsey, Frank P., 12, 21, 141

Rang, Bernhard, 67

Rasiowa, Helena, 141, 143

Repicky, Miroslav, 415

Robertson, Aaron, 262

Robinson, Raphael M., 153, 154, 164

Roitman, Judy, 370, 439

Rosenthal, Haskel, 207

Rostanowski, Andrzej, 402

Rothschild, Bruce L., 21, 22, 261, 263

Rubin, Herman, 139, 142

Rubin, Jean E., 139, 141, 142, 144

Rudin, Mary Ellen, 283

Rudin, Walter, 241, 242

Russell, Bertrand, 65, 66, 67, 70, 138,
139, 140

Sacks, Gerald E., 402, 403

Sayers, Dorothy L., VII, 460

Schmidt, Erhard, 138

Schoenflies, Arthur M., 67

Schréder, Ernst, 66, 69, 105

Schur, Issai, 21

Scott, Dana, 305, 339

Shanin, Nikolai A., 283

Shapiro, Stewart, 138

Shelah, Saharon, 104, 105, 165, 184,
185, 186, 204, 205, 206, 241, 242,



Names

247, 261, 264, 283, 370, 382, 383,
384, 403, 414, 415, 424, 425, 439

Sierpinski, Wactaw, 104, 105, 107, 138,
140, 142, 164, 165, 204, 207

Sikorski, Roman, 141, 143

Silver, Jack, 221, 425

Simon, Petr, 204, 222, 403, 438

Simpson, Steve G., 222, 261, 262, 263,
450, 451

Sixt, Jorg, XI

Skolem, Thoralf, 44, 67, 68

Sloane, Neil J. A., 24

Slomson, Alan B., 141

Sobociriski, Bolestaw, 142

Sochor, Antonin, 339

Soifer, Alexander, 22

Solovay, Robert M., 165, 283, 370, 396

Soltan, Valeriu, 21

Specker, Ernst, 105, 184

Spencer, Joel H., 21, 22, 261

Spinas, Otmar, 415, 451

Spisiak, Ladislav, 66, 105

Stedman, Fabian, VII, 30

Steinhaus, Hugo, 146

Steprans, Juris, 402

Stern, Jacques, 396

Strauss, Dona, 23, 24, 222, 264

Sucheston, Louis, 25

Sudakov, Vladimir N., 207

Sudan, Gabriel, 142

Szekerés, George, 21

Szpilrajn, Edward, 145

Szymariski, Andrzej, 396

Tarski, Alfred, 69, 104, 105, 107, 140,
141, 142, 143, 144, 154, 164, 165,
207

Tarsy, Michael, 21

Taylor, Alan D., 23

Teichmiiller, Oswald, 139, 139

Thomas, Wolfgang, 65, 67

469

Todoréevi¢, Stevo, 25, 222, 262, 370

Truss, John K., 105, 108, 142, 143, 144,
145, 186, 396

Tukey, John W., 139

Ulam, Stanistaw, 456

Van der Waerden, Bartel L., 246, 261
Van Douwen, Eric K., 204, 205, 206
Van Mill, Jan, 222, 242

Van Heijenoort, Jean, 64

Vaughan, Jerry E., 204

Verbitski, Oleg V., 24

Voigt, Bernd, 261

Vojtas, Peter, 66, 105, 205

von Plato, Jan, 68

Vorobets, Yaroslav B., 24
Vuksanovié, Vojkan, 24

Weglorz, Bogdan, 450, 451
Wagon, Stan, 165

Wang, Hao, 65

Wapner, Leonard M., 165
Weiss, William, 283
Whitehead, Alfred North, 65
Wieferich, Arthur, 24
Wilson, Trevor M., 165
Wimmers, Edward L., 242
Wisniewski, Kazimierz, 143
Wojciechowska, Anna, 221
Woodin, W. Hugh, 146, 424

Yatabe, Shunsuke, 403

Zapletal, Jind¥ich, 206

Zarlino, Gioseffo, 1, 6, 11, 29, 79, 111,
153, 167, 189, 211, 225, 245, 269,
375

Zermelo, Ernst, 31, 44, 63, 67-68, 69,
111, 114, 138-139, 140

Zhang, Shuguo, 451

Zorn, Max, 139



470

Subjects

Proper definitions as well as theorems with their proofs are indicated by boldface page
numbers, theorems without proofs are indicated by page numbers without serifs, and

historical notes are indicated by page numbers given in italics.

addition
cardinal, 123
ordinal, 56
algebra

algebra of sets, 128
Boolean algebra, 127, 140
Lindenbaum algebra, 129, 141
atoms, 168
Axiom
of Atoms, 168
of Choice (AC), 3, 18, 20, 44, 58, 68,
69, 111, 113-122, 197-139, 157,
159, 177, 184, 185, 186, 298
of Determinacy, 146
of Empty Set, 45
of Empty Set (for ZFA), 168
of Extensionality, 45
of Extensionality (for ZFA), 168
of Foundation, 58, 68, 68, 88, 106,
119
of Infinity, 22, 48, 66, 314
of Pairing, 46, 298
of Power Set, 51-52, 315
of Regularity, 68
of Union, 47
Schema of Replacement, 55, 68, 91,
314
Schema of Separation, 48
axiom, 34
logical, 34-35
non-logical, 35
schema, 34
systems:
finite fragments of ZFC, 272, 308
Group Theory, 35—36
Peano Arithmetic, 36, 106
Zermelo-Fraenkel, 45-58
axiom-like statements:
Axiom A, 382
Continuum Hypothesis (CH), 85, 139,
190, 204, 455

Generalised Continuum Hypothesis,
139, 143, 190
Martin’s Axiom (MA), 4, 241, 242,
278, 283, 365
Pigeon-Hole Principle, 2
infinite version, 2, 13, 14
Singular Cardinal Hypothesis, 143

Baire Category Theorem, 389
Baire property, 215
binary mess, 131

consistent with, 132
Borel’s conjecture, 415, 424

Canonical Ramsey Theorem, 20, 22
Cantor normal form, 88
Cantor products, 54, 69
Cantor’s diagonal argument, 66
Cantor’s Normal Form Theorem, 88,
105
Cantor’s Theorem, 61, 66, 81, 122
Cantor-Bernstein Theorem, 53—54, 55,
69, 70-71, 80, 81, 105
cardinal characteristics, 3
cardinality, 11, 53
Carlson’s Lemma, 255—258, 259, 261
Cartesian product, 52
Cayley graph, 155
choice principles:
Axiom of Choice for Finite Sets, 134,
141
Compactness Theorem for Proposi-
tional Logic, 132-133, 141
Consistency Principle, 132—133
Countable Axiom of Choice, 134,
141, 145
Hausdorft’s Principle, 142
Koénig’s Lemma, 2-3, 6, 15, 16, 135,
141, 143, 173, 457
Kuratowski-Zorn Lemma, 116—117,
139
Kurepa’s Principle, 116, 119, 140,
185, 292, 340
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Linear-Ordering Principle, 140
Multiple Choice, 118-119, 140, 185,
340
Order-Extension Principle, 144, 186
Ordering Principle, 144, 186
Prime Ideal Theorem, 131, 133-134,
141, 177-180, 186, 331
Principle of Dependent Choices, 145
Ramseyan Partition Principle, 135
Teichmiiller’s Principle, 116117,
131, 139
Trichotomy of Cardinals, 69,
121-122, 140
Tukey’s Lemma, 113
Ultrafilter Theorem, 131, 133, 141
Well-Ordering Principle, 114-115,
138, 140, 298, 330
class, 50
Cohen forcing C, 346
adds splitting reals, 388
adds unbounded reals, 387
Cohen real, 345
does not add dominating reals, 388
equivalent forms, 346
is proper, 387
Compactness Theorem, 43, 143, 312,
318
comparable, 113
compatible, 113, 275
condition, 275
stronger, 286
weaker, 286
consistency
of ZF, 63
constructible universe, 112, 139
countable chain condition (ccc), 276
cumulative hierarchy, 58-59

De Morgan laws, 128

Deduction Theorem, 37

Delta-System Lemma, 276-277

doughnut, 21
property, 21, 22

dual Mathias forcing M*, 442
adds dominating reals, 442
adds Mathias reals, 442
has pure decision, 443—444
has the Laver property, 444
is proper, 444
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Mathias partition, 444
Dual Ramsey Theorem, 261, 263

Ellentuck topology (on [w]“), 216
Ellentuck’s Theorem, 217-218, 221,
222

equivalence class, 12
Euler number e, 55, 96
exponentiation

cardinal, 123

ordinal, 57

family

P-family, 237

o-reaping, 205

almost disjoint, 194
refining, 202

dominating, 191

free, 226

happy, 226, 241

independent, 195

maximal almost disjoint, 194
strongly, 243

maximal independent, 196

Ramsey, 237

reaping (unsplittable), 3, 193

shattering, 200
refining, 202

splitting, 192

strong finite intersection property

(sfip), 190

tower, 205

ultrafilter base, 206

unbounded, 191

filter, 130

P-generic, 276

dual, 130

free, 226

normal, 169, 326

prime, 130

principal, 130

rapid, 242, 437

trivial, 130

ultrafilter
P-point, 232
Q-point, 232, 437
Ramsey, 5, 229, 397
simple P.-point, 242

unbounded, 242
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Finite Ramsey Theorem, 14-15, 17, 21, dual Mathias forcing M*, 442
102, 179, 183, 247, 263 Grigorieff forcing, 399
forcing, 305 Laver forcing L, 414
P-generic filter, 290 Mathias forcing M, Mg, 417
P-name, 287 Miller forcing M, 406
collapsing of cardinals, 301 random forcing B, 396
condition, 286 rational perfect set forcing,
N-generic, 381 see Miller forcing, 406
support, 345, 355 restricted Laver forcing Lo, , 415
generic extension, 292 Sacks forcing S, 402
generic model, 292 Silver forcing, 399
iteration, 355 Silver-like forcing S, 399
countable support, 355 ultrafilter forcing U, 287
finite support, 355 Forcing Theorem, 294—296
language, 289 Fréchet
name, 287 filter, 130, 225
canonical, 288 ideal, 130
hereditarily symmetric, 326 function, mapping, 52
nice, 321 automorphism of P, 325
symmetric, 326 bijective, 52
notion, 285 choice, 111
“w-bounding, 378 domain, 52
k-closed, 303 finite-to-one, 233
o-closed, 299 image, 52
dense embedding, 290 injective, 52
equivalent, 290 one-to-one, 52
Laver property, 379 onto, 52
preserve P-points, 383 range, 52
proper, 381 surjective, 52
satisfies k-cc, 322
satisfies ccc, 301 Godel’s Completeness Theorem, 41, 42,
preservation of cardinals, 301 65, 143, 317
preservation of cofinalities, 301 Godel’s Incompleteness Theorem,
product 43-44, 65-66
finite support, 345 Godel’s Second Incompleteness
real Theorem, 44, 63, 65-66, 315
dominating, 377 game, 236
Mathias, 417 run, 236
Miller, 406 strategy, 237
minimal (degree of constructability), winning strategy, 237
384 Generic Model Theorem, 297, 318
Sacks, 402 Goodstein sequences, 106
splitting, 377 Gower’s Dichotomy Theorem, 25
unbounded, 377 graph, 1
relationship (), 292—294 connected, 1
symmetric submodel, 326 cycle-free, 1
forcing notions: edge, 1
Ke, Ko, 303 infinite, 1

Cohen forcing C, C,, 286 vertex, 1
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Hales-Jewett function, 246

Hales-Jewett Theorem, 246—249, 256,
261, 263

Halpern-Lauchli Theorem, 184,
261-262, 263-264

Hartogs’ Theorem, 62—-63, 70, 84, 85,
120

Hausdorff’s Paradox, 154

Hindman’s Theorem, 23

ideal, 129

dual, 130

normal, 170

prime, 130

principal, 130

trivial, 130
incomparable, 113
incompatible, 113, 275
Induction Schema, 63
Inequality of Konig-Jourdain-Zermelo,

126-127, 140

Jech-Sochor Embedding Theorem,
334-338

Konig’s Theorem, 140
kernel, 169

L&uchli’s Lemma, 100-104, 105, 171
Lowenheim-Skolem Theorem, 68, 308,
314, 315
Laver forcing L, 414
has the Laver property, 415
is minimal, 415
is proper, 415
satisfies Axiom A, 415
Laver forcing Lo,
adds dominating reals, 415
adds splitting reals, 415
has pure decision, 415
has the Laver property, 415
satisfies ccc, 415
logic
€-automorphism, 169
€-isomorphism, 334
Z-formulae, 32
absolute, 311
assignment, 39
atomic formula, 33
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bound variable, 33
complete theory, 42
consistent, 38
consistent relative to, 42
consistent with, 42
constant symbols, 32
definable over, 112
definition, 36
domain of 2, 39
elementary substructure, 308
equality symbol, 32
equivalent formulae, 38
first-order, 32—42
formal proof, 36—37
formula, 33
Polish notation, 33, 132
free variable, 33
function symbols, 32
higher-order, 31
incomplete theory, 42
inconsistent, 38
independent, 42
inference rules, 36
Generalisation, 36
Modus Ponens, 36
interpretation I, 39
isomorphic structures, 307
language ., 32
logical operators, 32
logical quantifiers, 32
logical symbols, 32
model, 40
non-logical symbols, 32
propositional, 132
realisation, 132
reflect, 309
relation symbols, 32
relativisation, 309
satisfiable, 132
satisfies, 132
sentence, 34
set model, 308
structure A, 39
substitution, 34
admissible, 34
tautology, 38
term, 33
theory, 42
variables, 32
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propositional, 132

Mathias forcing M, M, 417
adds dominating reals, 417—418
adds splitting reals, 418
has pure decision, 418—419
has the Laver property, 420421
is proper, 420
Mathias real, 417
stem of a condition, 417
Miller forcing M, 406
adds unbounded reals, 407

does not add dominating reals, 410
does not add splitting reals, 407410

has the Laver property, 414

is minimal, 414

is proper, 406—407

Miller real, 406

preserves P-points, 410—413

satisfies Axiom A, 414
Milliken-Taylor Theorem, 23, 25

Mostowski’s Collapsing Theorem, 312,

318
multiplication
cardinal, 123
ordinal, 56

natural numbers, 11
non-negative integers, 11
number
o-reaping, 205
additivity of Ro, 213
additivity of .#Z, 396
algebraic, 80
almost disjoint, 194
bounding, 191
cardinal, 60, 69-70, 122
D-finite (Dedekind-finite), 79
aleph, 60, 79
cofinality, 125
Dedekind-infinite, 79
finite, 60, 79
inaccessible, 315
infinite, 60, 79
limit, 123
measurable, 340
regular, 125
singular, 125
successor, 123

transfinite, 79
covering of Ro, 213
covering of .Z, 390
dominating, 191
dual shattering, 446
homogeneity, 199
homogeneous, 5
independence, 196
natural, 51
ordinal, 46, 68

addition, 56

exponentiation, 57

limit, 50

multiplication, 56

order type, 62

successor, 50
partition, 5, 199
pseudo-intersection, 191
reaping, 3, 194
shattering, 201
splitting, 192
tower, 205
transcendental, 81
ultrafilter, 206

operation

associative, 35

partition, 250

almost orthogonal, 446
block, 250
coarser, finer, 250
compatible, 446
domain, 250
dual Ellentuck neighbourhood, 251,
442
dual Ellentuck topology, 251
family
complete, 251
free, 251
Ramsey, 252
filter, 449
finite, 250
infinite, 250
maximal almost orthogonal, 446
Ramsey ultrafilter, 449
segmented, 254
shattering family, 446
ultrafilter, 449
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Partition Ramsey Theorem, 255—259,
260, 261, 262-263, 443

partition regularity, 264

Peano Arithmetic, 6/-65

permutation model, 169, 184
basic Fraenkel model, 171
second Fraenkel model, 173
ordered Mostowski model, 174
in which seq(m) < fin(m), 180
in which m* < [m]?, 182

Prime Ideal Theorem, 184

Ramsey numbers, 22
Ramsey property, 21, 22, 212
completely, 212
null, 212
Ramsey Theory, 4
Ramsey’s Original Theorem, 18-19
Ramsey’s Theorem, 5, 12—-14, 16, 19,
21, 22, 23, 136, 198, 201, 211, 232,
254, 263, 445
random forcing B, 396
is “w-bounding, 396
is proper, 396
random real, 396
Reflection Principle, 309-311, 313,

314, 318
relation
n-ary, 53

almost contained, 190
almost disjoint, 194
anti-symmetric, 113, 285
binary, 53
dominates, 191
equivalence relation, 11-12
extensional, 312
linear ordering, 113
membership, 44
partial ordering, 113
reflexive, 11, 113
splits, 192
symmetric, 12
transitive, 12, 113
well-founded, 312
well-ordering, 53, 114
representatives, 12
restricted Laver forcing Lo, , 415
Russell’s Paradox, 31, 67

Sacks forcing S, 402
does not add splitting reals, 403
has the Laver property, 402
is “w-bounding, 402
is minimal, 403
is proper, 402
Schréder-Bernstein Theorem, 69
Schur’s Theorem, 16, 21-22
set
K-Lusin, 458
D-finite (Dedekind-finite), 79, 10/
F, (in “w), 389
Gs (in “w), 389
€-minimal, 46
almost homogeneous, 5, 19, 199
anti-chain, 113, 276, 290
chain, 113
closed
in “w, 389
compact, 457
concentrated, 458
on @, 458
congruent, 153
countable, 11
dense
above p, 292
in “w, 389
in P, 276, 290
difference, 48
directed, 276, 290
downwards closed, 276
equidecomposable, 153
extension (of x), 312
filter (on P), 276, 290
finite, 51
finite character, 116
hereditarily < k, 315
hereditarily symmetric, 169
homogeneous, 5, 12
inductive, 47
infinite, 51
intersection, 48
linearly ordered, 113
Lusin, 458
maximal anti-chain, 113
meagre
in “w, 389
monochromatic, 12
natural numbers, 51
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open, 276, 290
in “w, 388
ordered by €, 46
ordered pair, 47
partially ordered, 113
o-centred, 279
o-linked, 283
centred, 279
countable, 279
strict sense, 113
partition, 87
perfect, 402
power set, 52
proper subset, 45
pseudo-intersection, 190
real numbers, 54
sequence, 53
subset, 45
transfinite, 79
transitive, 46
transitive closure, 59
uncountable, 60
union, 47
well-orderable, 114
well-ordered by €, 46
Set Theory, 66-67
Silver-like forcing Se, 399
adds splitting reals, 401
Grigorieff forcing: & a P-point, 399
has the Laver property, 402
is “w-bounding, 400—401
is minimal, 402
is proper, 400
Silver forcing: & = [w]“, 399
Silver real, 399
Skolem Paradox, 68
Soundness Theorem, 41
support, 170
Suslin operation, 219
generalised, 219

symmetric, 169
symmetric difference, 20
symmetry group (of z), 169

topology

w-base, 222
base, 215
closed, 214
closure, 215
dense, 215
interior, 215
meagre, 215
nowhere dense, 215, 389
on X, 214
open, 214
basic, 215
points, 214
P-point, 241
space, 214
tree m-base, 222
Transfinite Induction Theorem, 51
Transfinite Recursion Theorem, 55—56,
69, 92, 93
tree, 1, 259, 405
branch, 2
finitely branching, 2
height, 222
node, 405
perfect, 260
root, 1
superperfect, 405

urelements, 168

Van der Waerden numbers, 262
Van der Waerden’s Theorem, 4, 246,
261, 262

Weak Halpern-Lauchli Theorem, 260,
261, 403
Wieferich primes, 13, 24



