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Abstract.- We prove versions of the Dual Ramsey Theorem and the Dual Ellentuck

Theorem for families of partitions which are defined in terms of games.

0. Introduction

The study of filters associated with the Dual Ramsey Theorem of Carlson and
Simpson [2] was initiated in [13]. [13] was however somewhat limited in scope,
as it took the Dual Ramsey Theorem for granted. The proof (by induction) of
the theorem which is given in [2] involves heterogeneous objects (letters of fixed
“alphabets”), and this was an obstacle to a straightforward rewriting of the proof
in terms of filters. We now return to the subject with a key new tool, namely the
notion of game.

Our approach goes back to Kastanas [12] who obtained a characterization of
completely Ramsey sets in terms of games. The idea of using analogous games in
the framework of Dual Ramsey Theory is not new, as it was considered in 1984 by
Voigt and the second author (see [19]), who were looking for an alternative proof of
Carlson’s Lemma (Lemma 2.4 in [2]) which is the key to the Dual Ramsey Theorem
and the other results of [2]. The attempt misfired and was in fact misguided. The
point is that, just as in Baumgartner’s proof of Hindman’s Theorem [1], which can be
seen as a model for it, Carlson’s proof in [2] of his lemma can be easily reformulated
in the language of games. Once this has been realized, it is a simple matter to isolate
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a combinatorial property of filters such that filters with this property (we call them
game-filters) satisfy the appropriate relativization of Carlson’s Lemma. One can
then proceed and obtain versions for game-filters of the Dual Ramsey Theorem and
the Dual Ellentuck Theorem. Game-filters are thus to the Dual Ramsey Theorem
what Ramsey ultrafilters are to Ramsey’s Theorem.

As their name indicates, game-filters are defined in terms of games. One would
certainly expect that, just as Ramsey ultrafilters, they could also be characterized
combinatorially in other terms. Such a further characterization has however so
far escaped us, which has some unfortunate consequences. For one thing we are
unable to show that game-filters are the only filters which verify the relativized
versions of the Dual Ramsey Theorem and the Dual Ellentuck Theorem. In other
words, our results lack converses. Moreover we were unable to determine whether
the Continuum Hypothesis implies the existence of game-filters (that game-filters
consistently exist has been shown in [6]).

We do not claim that as far as filters of partitions are concerned, the notion
of game-filter is the right notion in the context of Dual Ramsey Theory. Carlson’s
Lemma appears in two guises in [2]. We already mentioned Lemma 2.4 which
is the form we use in the present paper, but what Carlson actually proved is a
strengthened, “specialized ” version of it (Theorem 6.3 in [2] ; see also the main
result of [9]). The filters of partitions that can be associated with the second form
of Carlson’s Lemma are very different from the ones we consider in this paper, since
their members have only finitely many infinite blocks.

We follow the lead of Mathias who obtained in [17] a version of Ellentuck’s
Theorem for a class of filters which are not necessarily maximal (see also [15] and
[5]). In fact we go one step further and relinquish any reference to the notion of
filter, our main motivation being to make proofs more transparent by eliminating

unnecessary hypotheses.

Our objects of study are called game-families. Their definition, again in terms
of games, was inspired by Proposition 16.2 of [15]. Our main results in this context
are generalizations of the Dual Ramsey Theorem and the Dual Ellentuck Theorem.

Section 1 presents basic definitions and notation concerning partitions. Section
2 describes the games which are used throughout the paper. Section 3 introduces
the notion of game-family and gives some examples (some more examples are to be
found in Section 10). Section 4 is devoted to our generalization of Carlson’s Lemma.
Our proof follows rather closely that of Carlson in [2] and makes essential use of
the Hales-Jewett Theorem. The results of Section 5 can be viewed as the core of
what could be called Dual Ellentuck Theory. In fact the generalizations of the Dual
Ellentuck Theorem and the Dual Ramsey Theorem which are presented in Sections
6, 7 and 8 follow in a more or less straightforward manner from these results.
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Section 6 presents a first generalization of the Dual Ellentuck Theorem. This
one is formulated in topological terms and was inspired by a remark in [14]. The
(easy) arguments behind Lemmas 6.2 and 6.3 come from [15]. Section 7 is devoted
to a second generalization of the Dual Ellentuck Theorem, which is this time formu-
lated in terms of partially ordered sets. Section 8 presents our generalization (and
extension) of the Dual Ramsey Theorem. In Section 9 we consider two variants of
Carlson’s Lemma. Finally, Section 10 is concerned with existence and combinatorial
properties of game-filters.

1. Partitions

In this section we introduce some notation.
Given two sets A and B, B4 denotes the set of all functions from A to B.

Let «a,8 < w. By a partition of o into B blocks we mean an onto function
X : @ = B with the property that min(X~({k})) < min (X~!({m})) for all
k,mep with k< m.

Thus the blocks of a partition are ordered as their leaders (i.e. their least
elements).

(a)? denotes the set of all partitions of « into 3 pieces.

We define the block function B: (a)? — P(P(a)) and the leader function
¢ @ (@f xB = a by BX) = {X“'({k}) : k € B} and
£(X, k) = min(X~1({k})).

So, B(X) is simply the set of blocks of X, and the function k —— £(X,k)
enumerates the leaders of X in increasing order.

The segment function s on (a)’ xf is defined by s(X,k) = X | (1—|—€(X, k))

Notice that s(X,k) is a partition of 1+ £(X,k) having k+ 1 blocks. The
only block of s(X,0) is {0}. For k > 0, the first k blocks of s(X, k)
are : {m € X71({0}) : m < £(X,k)}, {m € X7 '({1}) : m < &X,k)},-..,
{m e X71({k —1}) : m < £(X,k)}, and its last block is {/(X,k)}.

If X and Y are partitions of a, we say that Y is coarser than X, or that X
is finer than'Y , and we write Y < X, if each block of Y is a union of blocks of X.

Given v <w and a partition X of o, we put (X)? ={Y € (@) : Y < X}.
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That is, (X)7 is the set of all partitions of « into  blocks that are coarser
than X.
Given X € (a)?, k< and v <w suchthat k+ 1+ < 3, we let
(b, X)? = {Y € (X)F47 5 5(X, k) = s(Y, k).

Hence, (k,X)" is the set of all partitions of « into (k+ 1)+~ blocks that
are coarser than X but have the same k+ 1 first leaders as X.

If Xe(w)” and kew, weset <X >p={s(T,k+1):T e (k,X)“}.

Thus, t isin < X >j exactly when for some ¢ > k41, ¢ is a partition of
14+ ¢(X,7) into k+ 2 Dblocks that is coarser than X | (1 + £(X,%)), and whose
leaders are £(X,0),4(X,1),...,4(X,k),4(X,1).

If Xé€(w)* and k,n€w, weset <X > ={s(T,k+1+n):T € (k,X)“}.
Note that < X >2 =< X >.

Given a nonempty set J and X; € (w)¥ for j € J, we let |:|J X, denote
J

the finest partition of w that is coarser than every Xj;.
(See [13] for a detailed construction of g X;).
j

Let us finally introduce the following operations A (for amalgamation) and D
(for disamalgamation).

For each 6 < w, we let Is denote the identity function on 1+ 4.
Thus B(I;) = {{j}:j <i} forevery i< w.

Let X € (w)* and t € (I;)™, where 0 < m < i < w. We define A(¢,X) € (w)¥
by letting
Bawx) ={ U X'h:r<m} U Hah:a> it
Jjet=r({r})
So if the m blocks of ¢ are eq,...,e;,—1, the blocks of A(t,X) are
U X' U XM X i+ 1), X {i+2)), -

j€eo JEem 1

For each YV € (m — 1,A(t,X))”, we define D(t,X,Y) € (w)* by letting
B(D(t,X,Y)) = EUH UK, where

E=J {x'5) 5 et - {et )

r<m
H=A{U))-( U X7WD):r<m}
et ({r})—{&t.r)}
K ={Y"'({g})) : ¢ > m}.



That is, D(¢t,X,Y) is obtained from Y by “disamalgamating”
Y-1({0}),..., Y '({{m — 1}) as follows. Let r < m — 1 and set

t=1({r}) = {jo,J1,---,4q}- Then
Y ({r}) = BUX ' ({jeh UX ({7} U... UX " ({jg})

for some B C w. We stipulate that

X' {do}) UB, X ({1 }), -, X ({dg})
will be blocks of D(t,X,Y). So, the leaders of D(t,X,Y) are

0(X,0),6(X,1),...,0(X,5), (Y, m),L(Y,m +1),...

2. Games

We now introduce the games which will be used throughout the paper.

Let F C (w)¥,k €w,X € F and W C F¥ be given. We define the two-person
game Gg(k,X,W) as follows :

Each player makes w moves. I starts by selecting Yy € F N (k,X)“ ; II then
chooses Zy € FN(k,Yp)? ; I now picks Y7 € FN(k+1,Zy) ; II answers by
playing Z; € FN(k+1,Y1)“ ; I then selects Yo € FN(k+2,7Z7)¥ ; II answers
with Z, € FN(k+2,Y5)¥ ; etc.

Observe that
X>YWw2>2Zy2Y12>2212> ...

Also, Yy, Zy,Y1,Z71,... have the same k+1 first leadersas X ; Y1,721,Y5,25,...
have the same k + 2 first leaders as Zy ; Y5, Z5,Y3,Z3,... have the same k + 3
first leaders as Z; ; etc.

I is said to win if (Zy, Z1, Zs,...) € W.

Notice that |—| Z; = U s(Zik+1+14).
e 1EW

Given W C (w)¥, welet Gx(k,X,W) stand for

Grk,X,{(Zo, Z1,...) € F¥ Ie—l Z; e W}).

A standard argument yields the following.
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LEMMA 2.1.- Let F C (w)¥ and W; C F for i € w. Furtherlet k € w
and X € F be such that I has no winning strategy in Ggz(k, X, W), where W
consists of all (Zy, Z1,...) € FY such that Z; € W; for all i € w. Then 1 has a
winning strategy in Gx(k, X, W).

Proof - We define a winning strategy o for I in Gz(k, X, W) as follows.
Let W; be the set of all (Z1,Z5,...) € F x F x --- such that Z; € W;
for all 7 > 1. Then there exists Yy € F N (k,X)¥ such that for every
Z € FN(k,Yy)Y, Z € Wy and II has no winning strategy in Gx(k+1,Z, Wy).
We put o(¢) =Y.

Now let II play Zy. Let W, consist of all (Z5,Z3,...) € F x F x --- such
that Z; € W; for all i > 2. Then there exists Y7 € FN(k+ 1,Z)* such
that for every Z € FN(k+1,Y1)¥,Z € W; and Il has no winning strategy
in Gr(k+2,Z,W,). We put o(Z) =Y. etc.

3. Game-families

This section is devoted to the notion of game-family. Let us start with the
definition.

A game-family is a nonempty subset F of (w)¥ which satisfies the following
two conditions :

(0) For every X € F, II has no winning strategy in G£(0, X, F).

(1) Let X,Y € (w)* and i, € w be such that :

B(Y) = (B(X) - {X~'({i}), X" ({GH}) U X' u X' ({5h}-
Then X € F ifand only if Y € F.

Condition (1) is a type of closure under finite changes : if Y is obtained from
X € (w)¥ by amalgamating finitely many blocks of X, then X € F iff Y € F.

As is shown by the following lemma, game-families satisfy a strengthening of
condition (0).

LEMMA 3.1.- Let F be a game-family. Then for all X € F and k € w, II has
no winning strategy in Gr(k, X, F).

Proof -~ Assume that IT has a winning strategy 7 in Gz(k, X,F), where
X € F and k> 0. Let ¢t denote the unique member of (0,I;)°. Note that
if T belongs to F, then so does A(t,7) since A(t,T) is obtained from
T by amalgamation of blocks T~1({0}),...,771({k}). We define a winning
strategy p forIlin Gx(0,A(t, X),F) as follows. Let I's successive moves be



Y07Y17 ... Set TO = D(t, X, Y()) and Z() = T(T()). We put p(Y()) = A(t, Z())
Thenset 77 = D(t,Zy,Y1) and Z; = T(T(),Tl) We put p(Yy, Y1) = A(t, Z1),
etc. We clearly have that |—| p(Yo,...,Y;) = A(t, |—| (To, ..., Ty)).

Combinatorial applications of our games are mostly based on the following key
lemma.

LEMMA 3.2.- Let F be a game-family, and let o be a strategy for I in
Gr(k,X,¢), where kK € w and X € F. Then I has a winning strateqy o
in Gg(k,X,W), where W consists of all Z € (k,X)¥ such that for ev-
ery T € (k,Z)%, there are Ry € F N (k,a(qﬁ))w, Rie Fn(k+ 1,0(R0))w,

Ry € F (k+2,0(Ro, R1))”,... with Ie_l R =T.
1cw

Proof — We define & as follows. Let II’s successive moves be Zj, Z1,...
We put 0(¢) =o0(¢) and 7(Zy) = o(Zp).

Let t0 for r < k be an enumeration of the elements of (k,Ik_H)O. We
define S?2,Z°,Y and T for r <k as follows :
i) 58 =0(Zy,Z1) ;
i) 89, =17 ;
iii) 72 = A(t?,SS) ;
iv) Y,) =0(Z9) ;
v) T = D(t), 52, Y,).

We put a\'(Z(),Zl) = Tk .

Let t) for d < ¢ be an enumeration of the elements of (k, Ix42)°U(k, Ix42) .
We define S},Z3,Y; and T; for d <q as follows :
(0) Sg =0(Zy,Z1,Z5) ;
(1 s ]+1 = Tl )
@) 7= A5
(3) If t5 € (k,Ik42)°, Y =0(Z3);
(4) If 4 € (k,Tupo)! and £(thk+1)=k+1, Y} =0(Z,23) ;
(5) If th € (k,Ixt2)' and £(tL,k+1) =k+2, Y] =0(Z2,Z}), where
r is such that t2 =1t} (k+2);
(6) Ty = D(tg, g, Yq)-
We put 6(Zo, Z1,22) =T, etc.

Let Z=112. Given T € (k,Z)“, we must find Ry € F N (k,0(¢))“,

1€EW

Ry € Fn(k+1,0(Rp))¥, Ra € FN(k+ 2,0(Ro,R1))“,... such that

[TRr, =T

1€EW



Let us first define Ry. If 4(T,k + 1) = L(Z,k + 1), set Ry = Zj.
If T,k + 1) = £Z,k + 2), there is u € (k,Ix41)° such that
T e (k+1,A(u,Z))”. Then u =t for some r < k. Set Ry = Z°.
If T,k + 1) = £Z,k +3), there is v € (k,Ix42)° such that
T € (k+1,A(w,Z))“. Let v =t,, where d < ¢, and put Ry = Z.
etc.

Next, define R; as follows. If (T, k+2) = 4(Z,k+2), set Ry = Z;. If
LT, k+2) =4£Z,k+3), we must have £(T,k+ 1) = {(Z,k + i), where
i=1 or i=2. Thereis w € (k,Ix42)! such that ¢(w,k+1)=k+4 and
T e (k+2,A(w,Z))*. Then w=1t. for some e <gq. Set R; = Z!. etc.

It follows that if F is a game-family and I has a winning strategy in Gx(k, X, K),
where k € w, X € F and K C (w)¥, then I has a winning strategy in

Grk,X,{Z € (k,X)” : (k, Z)* C K}).

As a rule, Lemma 3.2 will be used in combination with the following, which
easily follows from Lemma 3.1.

LEMMA 3.3.- Let F be a game-family. Then for all X € F and k € w, 1 has
no winning strategy in Gr(k,X, (w)* — F).

Proof - If I had a winning strategy o in Gz(k, X, (w)” — F), then
we could define a winning strategy 7 for II in Gx(k,X,F) by letting
7(Yo,...,Y;) = 0(Yp,...,Y;), which would contradict Lemma 3.1.

It follows from Lemma 3.3 that if F is a game-family and I has a winning
strategy in Gx(k, X, W), where X € F, k € w and W C F“, then there is
(Zo, Z1,Z5,...) € W such that |€_| Z; e FN(k,X)v.

Let us now give some examples of game-families.

For each nonempty subset @ of (w)¥, we put

Fo={Y € (w)¥:(3Z € Q)YTZ € (w)“}.

Note that F,yw = (w)*.

PROPOSITION 3.4.- Let (Q be a nonempty subset of (w)“. Then Fgo 1is a
game-family.

Proof — 1 has a clear winning strategy in Gx,(0,X,Fq) for all
X € Fg.



In order to introduce the next class of examples, we recall some definitions.

Let J be an ideal on w, i.e. a proper subset of P(w) such that (i) P(A4) C J
forall AeJ, (ii) AUBe€J forall A,B € J, and (iii) {n} € J forall n € w.

We put Jt = P(w) — J.

J is weakly selective if given A € J* and f € w? with {f~'({n}):n€w} C J,
there exists C € J* N P(A) such that f is one-to-one on C.

Weset [A];j={BCw:(A—B)U(B—A)e J} forall ACw.
We let [A]; < [A]; just in case A— A’ € J.

J is o-distributive if the notion of forcing (P(w)/J —{[#]s},<s) is o-
distributive, where £W)/; = {[A];: A C w).

Let us now set Fy = {X € (w)¥ : £(X) € JT}, where £(X) = {£(X,7):4 € w}.

Thus, F; is the set of all X € (w)¥ such that the set of leaders of X does
not lie in J.

PROPOSITION 3.5.- Let J be an ideal on w. Then Fj is a game-family if and

only if J 1is o-distributive and weakly selective.

Proof — By Proposition 16.2 of [14], J is o-distributive and weakly selective
if and only if IT has no winning strategy in the game G(C) for every C € J7,
where G(C) is defined as follows : I picks Ag € J* N P(C) ; then II picks
ng € Agp and By € JTNP(Ag— (no+1)) ; then I picks A; € J*NP(By) ;
then II picks ny € 4; and B; € JT N P(A1 — (n1+ 1)) ; etc. Iis the
winner if and only if {n;:i€w} € JT.

Let us now assume that there exists X € F; such that II has a winning
strategy T in Gg,(0,X,Fs). We define a winning strategy p for II
in G(£(X)) as follows. Let I play Ao, As,... . Select Yy € (X)¥ with
£(Yy) — {0} = Ay — {0}, and put

p(Ao) = (¢(7(Yo), 1), {€(r(Yo),i) :i > 1}).
Select Vi € (1,7(Yp))” with {£(Y1,i):i > 1} = Ay, and put

p(Ag, A1) = (U(1(Yo, Y1), 2), {£(T(Yo,Y1),4) 1 i > 2}), etc.

Conversely, assume that there is C' € JT such that IT has a winning strategy
o in G(C). Pick X € (w)¥ with £(X) = CU{0}. We define a winning
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strategy x for Il in Gz, (0,X,F;) as follows. Let I's first move be Y. Let
(no, Bo) = o (£(Yo) —{0}), and pick Z, € (0,Yp)” with £(Zo) = {0,n0}UB,.
We put x(Yy) = Zy. Let I’s next move be Yi. Let (nq,B1) = U(E(Yl) —
{O,ng}), and pick Z; € (1,Y1)¥ with 4(Z;) = {0,n0,n1} U B;. We put
x(Yo, Y1) = Z;, etc.

4. Generalizing Carlson’s Lemma

The section is devoted to the proof of Lemma 4.1 below, which generalizes
Carlson’s Lemma (Lemma 2.4 in [2]). This last asserts that given k € w, X € (w)¥
and D C < X >j, thereis S € (k,X)¥ such that either < S >, C D or else
<8S>,ND=¢.

Throughout the section F will denote a fixed game-family.

LEMMA 4.1.- let kK € w, X € F and D C < X >i. Then there exists
SeFn(k,X) such that either < S > C D orelse <8 > ND = ¢.

The proof of Lemma 4.1 is broken into several steps. We will use the Hales-
Jewett Theorem [10] which reads as follows.

PROPOSITION 4.2.- For all n,c € w— {0}, there exists hy,,.€ w— {0} with the

following property : Given F :nhne — ¢, there are a C hpe,p €0 and m € c
such that F(f) =m for all f € nPre such that fla=¢ and f is constant
on hy.—a.

Given k€w,X € F and D C< X >;, we put

Wp = {(Z(),Zl,...) e FY: S(Zo,k-f—l) € D}
Dt ={v €< X >pp1: (Vt € (k, Iy41)°) A(t,v) € D}
Xp = {(ZO,Zla---) € F¥: S(Zl,k +2) € D+}

SUBLEMMA 4.3.- Let k€ w, X € F and D C< X >, be such that I has
a winning strategy in Gg(k,X,FY —Wp). Then Il has a winning strategy in
Gr(k,X,F¥ — Xp).

Proof — Assume this is not the case. Then clearly I has a winning strategy in
Gr(k,X,F¥—Xp). Hence by Lemmas 3.2 and 3.3, thereis X' € Fn(k, X)“
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with the property that given Z € FN(k, X')¥, thereare B € Fn (k,a(qﬁ))“’,
BZ € Fn (k+1,0(B%))", BZ € Fn (k+2,0(BZ,B%))”,... such that

‘|e—| BZ = Z. Then for any Z € F N (k,X"), s(Z,k +2) ¢ DY since
1cw

(BZ,B%,...)¢ Xp and s(Z,k+2)=s(BZ,k+2).

For each q € w, set e; = q+1+hgyy, (k41)et1, and let Z; denote the set of
all Z € (k,X')* with the following property : Given u € (k, Ix4e,)?™" such
that w=!'({k+1+35}) = {k+1+;} forall j < g, thereis t € (k, Ix+144)° such
that s(A(t, A(u,Z)),k+1) € D. Let T be the set of all (Zy, Z1,...) € F¥
such that Z. € Z; for some ¢ € w.

We claim that II has a winning strategy in Gx(k, X', F¥Y — T).

Assume otherwise. Then by Lemma 2.1, I has a winning strategy o in
Gr(k,X',F“—T). Using Lemmas 3.2 and 3.3, we can find S € Fn(k, X")¥
with the property that for every T € (k,S)“, there are ZI € Fn(k,o(¢))%,
zZT e Fn(k+1,02]))", 2T € Fn (k+2,0(2F,27))",... such that

ZDU ZI =T. Set W={R¢€ (k,S)”: DN < R>;= ¢}. We define a winning
strategy 7 for Il in Gz(k,S,(w)¥ — W) as follows. Let I’s successive moves
be Ty, T1,... Weselect Q € Fn(k,Tp)” so that s(Q,k+1) ¢ D, and we
put 7(Tp) = Q. Let us now define 7(Ty, ..., Tiy1). As Zoit' ¢ Z;, there
exists u € (k, Ixye,)t! such that a) u™'({k+1+j}) ={k+1+7} forall
j <4, and b) s(A(t, A(u, Ze;*)),k+1) ¢ D for all t € (k, [y4144)° We
put 7(To,...,T;11) = A(u,T;+1). We have by Lemma 3.1 that FNW # ¢,
which is contradictory.

By the claim there are ¢ € w and Z € F N (k,X')¥ such that Z € Z,.
By the definition of hjy1, (k41)a+y, there exist ¢ € (k,Ixq144)° and
v € (K, Ipte,—(q+1))* such that s(A(v,A(t,Z)),k +2) € D*, which yields

the desired contradiction. .

SUBLEMMA 4.4.- Let k€ w, X € F and D C< X >, be such that II has

a winning strategy in Gx(k,X,FY — Wp). Then II has a winning strategy in

Gr(k, X, F* — (Wp N Xp)).
Proof - Define D; for i € w by letting Dy = D+ and D;41 = D .
We define a winning strategy 7 for Il in Ggz(k,X,F“ — (Wp N Xp)) as
follows. Given Y € F N (k,X)¥, use Sublemma 4.3 to define a strategy
o for Il in Gg(k,Y,¢) so that for all 4, II has a winning strategy in
Gr(k+1+1, o(Yy,...,Y;),F“ —Wp,). By Lemma 3.1 there are Z € F and
YZ € Fn(k,Y)*, Y € Fn(k+1,0(YF))", Y € Fn(k+2,0(Y 7, YE))", ...
such that Z :Zl;lu o(YZ,...,Y?). Pick i € w and t € (k,Ipqy14:)!
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so that #(t,k+1) = k+1+¢ and s(A(t,Z),k+ 1) € D. We put
T(Y) = A(t, o(YZ,... ,YiZ)). By the definition of ¢, IT has a winning strategy
p in Grlk+1+i,0(YF,...,Y?),F* —Wp,). We put

(Y, Y') = A(t, p(D(t, 0(YY, ..., Y7),Y")))

forall Y € Fn(k+1,7(Y))".

Proof of Lemma 4.1. — The game Ggz(k,X,F* — Wp) is clearly
determined. If T has a winning strategy in the game, then there exists

T € Fn(k,X)“ with the property that DN < T >,= ¢. Now suppose II has
a winning strategy in the game. Let W be the set of all S € (k, X)“ such
that < § >, C D. Define &; for ¢ € w by letting & =D and &4 = 5i+.
Use Sublemma 4.4 to define a strategy 7 for Il in Gx(k, X, (w)® — W) so
that for all 4, s(T(YO, LY, k+ 1+ z) € & and IT has a winning strategy
in Ge(k+1+14,7(Yo,...,Y;),F* —We,,,). As the strategy 7 is clearly a
winning one, we have by Lemma 3.1 that W N F # ¢.

5. Pr

Throughout the section F will denote a fixed game-family.

We set Pr =w x F and order Pr by letting (k', X’) < (k,X) just in case
(', X" C (k, X)v.

Notice that (k',X’') < (k,X) if and only if ¥’ > k and X' € (k, X)“.

Just as any other poset, (Pr,<) can be viewed as a notion of forcing, which,
in case F = (w)¥, is known as dual Mathias forcing (see [2]).

In this section we describe some key properties of (Pr,<). The treatment of
this material uses ideas of [15] and [16].

A C Pr is inductive if we have that (k,X) € A ifand only if (k+1,Y) €A
whenever (k+ 1,Y) € Px issuch that (k+1,Y) < (k, X).

We observe that if A C Pr is inductive, then it is open, which means that
{(K,X")e Pr: (K, X') < (k,X)} CA for every (k,X) € A.

The following collects some easy examples of inductive sets.
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LEMMA 5.1.-
(i) {(k,X) € Pr:(k,X)Y CW} is inductive for every W C (w)¥.
(ii) {(k,X) € Pr: FN(k,X)¥ CW} is inductive for every W C F.

(iii) Let n € w—{0}. Then {(k,X) € Pr: (kN (n—1),X)n-D=-(knr-1)) C W}
is inductive for every W C (w)".

(iv) {(k,X) € Pr: (k,X)IF @} is inductive for every sentence ¢ of the forcing
language of (Pr,<).

We will see that the notion of forcing (Px, <) has pure decision.

LEMMA 5.2.- Let (k,X) € Pr and an inductive A C Pr be such that (k,Z) ¢ A
forall Z € FN(k,X)“. Then there exists Z € FN(k,X)* with the property that
(K", Z2") ¢ N forall (K',Z') € Pr with (K',Z'") < (k,2Z).

Proof -
Claim 1. There exists X' € F N (k,X)¥ with the following property :

Let t € (k,Ix4;)?, where j <i < w, besuch that £(t,k+j)=Fk+i If
(k+37,T) € A for some T € Fﬂ(k+j,A(t,X’))w, then (k+j,A(t,X’)) € A.

Proof of Claim 1. We start by defining a strategy o for I in Ggz(k, X, ¢)
as follows. We put o(¢) = X. Let us now define o(Zy,...,Z;). Put

Z={YeFn(k+144,%)*: (k+1+i,Y)¢cA}.

If Z+# ¢, then pick Y € Z and put o(Zy,...,Z;) =Y. Otherwise put
O'(Z(],...,Zi) == Zz

Now let & be defined as in the proof of Lemma 3.2. By Lemma 3.3, there are
So € F(k,5(¢))“, S1 € Fn(k+1,5(50))", S2 € FN(k+2,5(So,51))",...
such that |€_| S; € F. We put X' =[1 S;-

1€Ew

Let 4,7 with 0<j <i<w, t€ (k Ixy;)’ with £(t,k+j)=k+i, and
T € Fn(k+j,A{t,X")Y with (k+ 4,T) € A. Set v =1 | k+ 1.
There exist Z7 € F n (k,o(¢)”, 2zf € Fn (k+ 1,0(Zg))w,
7ZF € Fn(k+2,02F,2F))",... such that D ZT = T. As
T € Fn (k+ j, ZJT_I)“, we have that (k4 j,0(%7,...,2] })) € A.
It follows that (k+j, A(u,&(SO,...,Si))) € A, since
A(u,5(S,.-.,8:)) € (k+j,0(28 .., ZF1))". As X' € (k+4,5(So,---,5:))
and A(u,&(SO,...,Si)) = A(t,E(SO,...,Si)), we have that
(k+j,A(t,X")) € A, which concludes the proof of Claim 1.

w
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Claim 2. I has a winning strategy p in Ggz(k, X', W), where W consists
of all (Zy,Z1,...) € F¥ such that (k+1+4,7) ¢ A forall i €w and
TeFn(k+1+i,2).

Proof of Claim 2. Define

0 :< X' > | J{t € (b, Tegs)' 1 £(L, k+1) = K + 1}
i>1

so that for all u €< X' >;, u = s(A(p(u),X’),k + 1). Then define

F:< X' >,— 2 by letting F(u) =0 if and only if (k+1, A(p(u), X)) € A.
By Lemma 4.1, there are Yy € F N (k,X')Y and ey € 2 such that F
takes the constant value ey, on < Y, >,. We have that ey, = 1, since
Yo € FN(k,X)¥ and for every (k+1,T) € Pr with (k+1,T) < (k,Y)),
there is u € <Yy >, such that (k+ 1,7) < (k+ 1,A(p(u),X’)). If
T € FN (k,Yy)* then setting u = s(T,k + 1), we have that F(u) =1
and T € FN (k+ 1,A(<p(u),X’))w, and therefore (k+1,7) ¢ A. We put
p(¢) = Yo.

Now let II play Z;. Clearly (k+1,T) ¢ A forall T € Fn (k+1,Zy)~.
Define
P < Zy Skt1 — U {tE (k)+1,Ik+1+i)1 :é(t,k+2) :k+1+i}
i>1

so that for all v €< Zy >k+1, v = s(A(W(v),Zy),k + 2). Then define
H: < Zy >p11— 2 by letting H(v) =0 if and only if (k+2, A(p(v), Zy)) €
A. By Lemma 4.1, there exists Y; € FN(k+ 1,Zp)* such that H is
constant on < Y7 >p4q. It is readily checked that (k+ 2,7) ¢ A for all
TeFn(k+1,Y1)Y. We put p(Zy) =Yi, etc. This completes the proof of
Claim 2.

By Lemmas 3.2 and 3.3, there exists Z € F N (k,X)“ such that for every
T € FN(k,Z)*, there are Zy € FN(k,p(¢))*, Z1 € Fn (k+ l,p(Zo))w,
Zy € FO(k+2,0(Z0, Z1))", ... with IG_I Z;=T. Then (k+1+i,T)¢A
forall Te FN(k,Z)¥ and i€ w.

It follows from Lemma 5.2 that if A C Px is inductive, then A is dense in

Pz if and only if for every (k,X) € Pz, thereis Z € FN (k,X)* such that
(k, Z) € A.

PROPOSITION 5.3.- Let ¢ be a sentence of the forcing language of (Px,<). Then
for every (k,X) € Pr, there exists Z € FN(k,X)* such that either (k,Z)IF ¢
or else (k,Z)IF = .

Proof - By Lemmas 5.1. (iv) and 5.2.
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Proposition 5.3 generalizes Lemma 5.2 of [2].

PROPOSITION 5.4.- Let Ag,A1 be inductive subsets of Pr. Then AgU Ay is
dense in Px if and only if for every (k,X) € Pr, there exists Z € FN (k,X)¥
with (k,Z) S A() U Al.

Proof — The right-to-left implication is obvious. To show the other im-
plication, assume that (k,X) € Pr is such that (k,Z) ¢ Ag UA; for all
Z € FnN(k,X)“. By Lemma 5.2, there exists Zy € F N (k,X)¥ such that
(¢,Y) ¢ Ay forall (¢,Y) € Pr with (q,Y) < (k,Zp). Again by Lemma 5.2,
there exists Z; € FN(k,Zy)¥ suchthat (r,T) ¢ A; forall (r,T) € Pr with
(r,T) < (k,Z1). Thus AgUA; is not dense in Pg, since (r,7) ¢ AgU A,
for all (r,T) € Pr with (r,T) < (k,Z1).

Finally, let us show that the collection of all inductive dense subsets of Pr is
closed under countable intersections.

LEMMA 5.5.- Let A; be an inductive subset of Pr for each i € w, and let

(k,X) € Pr be such that (k,Z) ¢ (| A; forevery Z € FN(k,X)“. ThenII has a
1EW

winning strategy in Gx(k, X, F¥—-W), where W consists of all (Zy,Z1,...) € F¥

with the property that there exists i € w such that (k+1+14,5) ¢ A; for all

SeFn(k+1+1,2;)~.

Proof - Assume otherwise. Then by Lemma 2.1, I has a winning strategy
p in Gr(k,X,F¥—W).

Let us define a strategy o for I in Ggx(k,X,¢) as follows. We put
o(¢) = p(¢). Given Zy € Fn(k,p($))”, we select Sy € Fn(k+1,2Zy)"
so that (k+ 1,50)“ € Ay, and we put o(Zy) = p(Sp). Given Z; €
Fn(k+1,0(Z))", weselect S; € FN(k+2,21)” sothat (k+2,51) € Ay,
and we put o(Zy, Z1) = p(Sy, S1), etc.

By Lemmas 3.2 and 3.3, we can find Z € F N (k,X)¥ such that for every
T € FN(k,Z)*, thereare Z € FN(k,0(4)), ZT € Fn(k+1,0(27))",
Z¥ e F (k+2,0(2F,2Z7))", ... with IE‘I ZT =T.

1ew
For each T € FN(k,Z)¥, we have that (k+1,T) € Ay, as (k+1,T) <
(k+1,0(ZF)) and (k+1,0(Z])) € Ag. Hence (k,Z) € Ay.
Let Y € FN(k,Z)¥. Foreach T € FN(k+1,Y)¥, we have that (k+2,T) €
Ay, as (k+2,T) < (k+2,0(2,2T)) and (k+2,0(2F,2ZT)) € A;. Hence
(k+1,Y) € A;. Tt follows that (k,Z) € Ay, etc.

Thus (k,Z) € ﬂ A;, which brings the desired contradiction.

1€EwW
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PROPOSITION 5.6.- Let A; C Pr be inductive and dense in Pr for each i € w.
Then ﬂ A; is inductive and dense in Pr.

1EW

Proof — This is immediate from Proposition 5.4 and Lemma 5.5. .

6. Generalizing the Dual Ellentuck Theorem 1 : the Ellen-
tuck way

The main result of this section is Theorem 6.4, which generalizes the Dual
Ellentuck Theorem of Carlson and Simpson [2]. It is stated in topological terms,
just as Ellentuck’s original theorem and its dual version.

Throughout this section F will denote a fixed game-family.

We let Nx (respectively, Cx) consist of all W C F with the property that
for all (k,X) € Pr, there exists Z € FN (k,X)¥ such that WnN(k,Z)" = ¢
(respectively, such that either FN(k,Z)Y CW or WnN(k,2Z)Y = ¢).

Note that we only consider subsets W of F. For another approach dealing
with all subsets of (w)%, see the next section. The N in Nz stands for “dual
Ramsey null” and the C in Cx for “completely dual Ramsey”.

We let N r (respectively, Cr) consist of all W C F with the property that
the set of all (k,X) € Pr such that W N (k,X)¥ = ¢ (respectively, such that
either FN(k,X)* CW or WnN(k,X)¥=¢) is densein Pr.

LEMMA 6.1.- The following hold :

(i) Cxr =Cr.
(i) Nr = N .

(iii) Nz is closed under countable unions.
Proof - (i) and (ii) : By Lemma 5.1 (ii) and Proposition 5.4.

(iii) : By Lemma 5.1 (ii) and Proposition 5.6.

Let X be a topological space, and let Py denote the collection of all its
nonempty basic open sets.
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We let N(X) (respectively, C(X)) consist of all W C X such that
{p € Px : pNW = ¢} (respectively, {p € Px : p CW or pNW = ¢}) is
dense in (Py, Q).

LEMMA 6.2.- Given W C X, we have the following :

(i) W € N(X) if and only if W is nowhere dense.
(ii) W € C(X) if and only if there is an open set U such that WAU is nowhere
dense.

Proof — Set Os={p€Px:pC S} forevery SC X. Then W € N(X)
if and only if Ox_w is dense if and only if W is nowhere dense, which
proves (i).

To prove the left-to-right implication of (ii), it suffices to observe that if W €
C(X), then Ow UOx_w is dense and (W — Ow) N (Ow UOx_w) = ¢.
The reverse implication easily follows from (i) and the fact that U € C(X)

for every open set U. .

LEMMA 6.3.- Assume that N (X) is closed under countable unions. Then C(X)
is the set of all W C X which have the Baire property.

Proof - Immediate from Lemma 6.2.

Now assume that {Z € (w)¥ : Y < Z} C F forall Y € F. If (k,X),
(k',X') € P aresuch that (FN(k,X)“)N(FN(K,X")*) # ¢, then it is readily
checked that

(FN (kX)) N (FN#E, X)) =Fn(kUk', XNX)~.

Hence we can put a topology on F by taking as basic open sets ¢ and all sets of
the form F N (k, X)¥, where (k,X) € Pg. Tt is simple to see that N (F) =N
and C(F)=_Cr.

THEOREM 6.4.- Assume that F is closed under refinement. Then Cx is the set
of all W C F which have the Baire property.

Proof - By Lemmas 6.1 and 6.3.

The Dual Ellentuck Theorem (Theorem 4.1 in [2]) asserts that C(,). is the set
of all W C (w)* which have the Baire property. It is an immediate consequence
of Theorem 6.4 since (w)“ is obviously closed under refinement.



18

7. Generalizing the Dual Ellentuck Theorem 2 : the Mathias
way

The purpose of this section is again to generalize the Dual Ellentuck Theo-
rem. We will this time follow Mathias, whose version of Ellentuck’s Theorem (see
Proposition 4.12 in [17]) is stated in terms of dense subsets of partial orderings, and
not in topological terms. Let us remark that already in the previous section, the
Ellentuck-type Theorem 6.4 was derived from the Mathias-type Lemma 6.1.

Part of the appeal of Ellentuck’s Theorem lies in its compactness. Here is
one statement which serves several purposes, e.g. 1) it gives a characterization
of the completely Ramsey sets, 2) it shows that every Ellentuck neighborhood is
completely Ramsey, and 3) it shows that completely Ramsey sets are closed under
the operation A. When one generalizes Ellentuck’s Theorem in a context where
a topological formulation is not handy, as Mathias did, tasks 1), 2), 3) have to be
handled separately. We are faced with a situation of this type in the present section,
and so our generalization of the Dual Ellentuck theorem is made of the combination
of three theorems, namely Theorem 7.1, Theorem 7.6 and Theorem 7.7. We also
have to check that the Dual Ellentuck Theorem can be deduced from our so-called
generalization of it. This we do at the end of the section.

Throughout this section F will denote a fixed game-family.

We let N (respectively, C%) consist of all W C (w)¥ with the property that
for every (k,X) € Pr, there exists Z € FN(k,X)¥ such that WnN (k,2)Y =¢
(respectively, such that either (k,Z)Y CW or Wn(k,2)Y = ¢).

We let N ; (respectively, E;) consist of all W C (w)¥ with the property
that the set of all (k,X) € Pr such that W N (k,X)¥ = ¢ (respectively, such
that either (k,X)¥ CW or Wn(k,X)¥ =¢) is densein Pr.

We observe that Nx = Ng N P(F).

THEOREM 7.1.- The following hold :
(i) ¢4 =C5.
(i) N =N
(iii) N ;): is closed under countable unions.

Proof — (i) and (ii) : By Lemma 5.1 (i) and Proposition 5.4.
(iii) : By Lemma 5.1 (i) and Proposition 5.6.

When F = (w)¥, Theorem 7.1 is equivalent to Lemma 6.1 since
w

() C‘("w)w, ﬁ‘(‘}w)w and E((Uw)w are respectively equal to ./\/'(w)w, Cluwyws N(w)w
and E(w)w.
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C4 and N% can also be described in the language of games. We will use the
following fact.

LEMMA 7.2.- Let (k,X) € Pr and W C (w)¥ be such that II has a winning
strategy in Gx(k,X,W). Then I has a winning strategy in Gx(k,T,(w)* — W)
forall T € FN(k,X)%.

Proof - Fix T € Fn(k,X)¥, and select a winning strategy 7 for II in
Gr(k,X,W). We define a winning strategy o for I in Gx(k, T, (w)* — W)
as follows. Put Ry = U (k+1,7(Y))“. By Lemmas 5.1 (i) and 5.2,
Y eFN(k,T)«
there exists Sy € F N (k,T)¥ such that (k,Sp)¥ C Ry. We set o(¢) = Sp.
Let II’s answer to So be Z,. Pick Yy € Fn (k, 7)Y so that
Zy € (k+1,7(Yp))”. Now put R; = U (k +2,7(Y5,Y))“. By
Y EeFN(k+1,Z0)%
Lemmas 5.1 (i) and 5.2, thereis S1 € FN(k+1, Zy)¥ with (k+1,51)“ C R;.

We set o(Zp) = Sy, etc.

|
PROPOSITION 7.3.- Given W C (w)¥, the following are equivalent :
(i) W e N¥.
(ii) IT has a winning strategy in Gx(k, X, W) for every (k,X) € Pg.
(iii) I has a winning strategy in Gx(k, X, (w)¥Y — W) for every (k,X) € Pgr.
Proof — (i) — (ii) : Clear.
(ii) — (iii) : By Lemma 7.2.
(iii) — (i) : By Lemmas 3.2 and 3.3. .
PROPOSITION 7.4.- Given W C (w)¥, the following are equivalent :
(i) W e C%.
(ii) The game Ggz(k,X,W) is determined for every (k,X) € Pg.
Proof - (i) — (ii) : Clear.
(ii) — (i) : By Lemmas 7.2, 3.2 and 3.3. .

We mention that in particular, Propositions 7.3 and 7.4 provide new character-
izations of N(,y» and C(yw.
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LEMMA 7.5.- Given (k,X) € Py and (k',X') € Pr, there exists (k",X") €
Pr such that k" <kUK' UL, (K", X") < (K',X') and either (k",X")* C (k,X)*
or (K", X")°N (k, X))k =k = ¢.

Proof - If X' € (k,X), then (kUK ,X)* C (kX)) If
X' € (X)“ - (k,X)¥, then (KUK ,X")ON (k,X)*k9E)~k = ¢ Let us finally
assume that X' ¢ (X)“. Then there are ig,i1,j € w such that iy < iy,

X YLD N (XY ({io}) # ¢ and X~H{5}) N (X)) ({ia}) # ¢. Pick te
(K'U1,I;,)° with ¢(i0) # t(¢1). Then (k'U1,A(t,X"))°N (k, X)*'VD~-k = ¢

THEOREM 7.6.- (k,X)” € C4 for every (k,X) € Pye.

Proof — By Theorem 7.1 (i) and Lemma 7.5.

Let us recall the following definition. Let R, C (w)* for z € U w™. Then
new

the result of applying the operation A to the R,’s is the set U ﬂ Ry ;-
heww i€w

THEOREM 7.7.- C% is closed under the operation A.

Proof - Let R, € C% for z € U w". Given z € w", where n € w, we

new
put W?% = U ﬂ Rpy; and for every j € w, WJ = waH{m)} | Notice
hDz i€w
that W® C R, and W= =[] Wy

JEW
Fix k € w and X € F. Let us assume that W? N (k,T)* # ¢ for all
T € FN(k,X)“. Then there exists Sy € FN(k, X)“ such that (k,Sp)¥ C Ry.
We are going to define a winning strategy 7 for Il in Gx(k, S, (w)¥ — W?).
Let I's successive moves be Yj,Yq,...

By Lemmas 5.1 (i) and 5.5, IT has a winning strategy 7o in Gx(k, Sp, F“ —
Wy), where W, consist of all (Zy, Z1,...) € F¥ with the property that
there exists j € w such that W N (k+1+45T)¥ # ¢ forall T € Fn(k+
1+44,Z;)°. Set Z{ = 10(Yy), Z} = 10(Yo,Y1), etc. Now pick jp € w so that
W N(k+1+j0,T)® # ¢ forall T € FN(k+ 1+ jo, 22)°. Put z1 = {(0,50)}
and pick Sy € FN (k+1+jo,23)" so that (k+ 1+ jo,S1)” C Ry,. We
put 7(Yp,...,Y;) = ZY for every i< jo, and 7(Yy,...,Yj,) = S1.

By Lemmas 5.1 (i) and 5.5, IT has a winning strategy 71 in Gg(k+ 1+
Jo,S1, F¥ — Wy), where W,; consists of all (Zy, Z1,...) € F¥ with the
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property that there exists j € w such that W' N(k+2+jo+3,T)” # ¢ for
all T€ FN(k+2+jo+3,2;)*. Set Zy = Tl( Yio+1): Z1 = T1(Yjo1, Yig42),
etc. Now pick j1 € w so that W' N (k+2+jo+ j1,T)* # ¢ for
all T € FNO(k+2+jo+41,%})". Put z = 23 U{(1,51)}, and pick
Sy e Fn(k+2+ jo +j1,Z}1)w so that (k+2+ jo+ j1,S52)¥ C Ry,. We put
T(Yo,---,Yjot14i) = Z} for every i < ji, and 7(Yp,...,Yjo4+144,) = So,
etc.

Thus Gz(k,X,W?) is determined for every (k,X) € Pz, and therefore

We e C% by Proposition 7.4. .

Let us mention one last property of N%.

PROPOSITION 7.8.- Let T € (w)¥ be such that X ¢ (T)¥ forall X € F. Then
{Y € (w)“:YMNT ¢ (w)'} € N

Proof — Fix (k,X) € Pr. As (0,T)¥ € N¥ by Theorem 7.6, there exists
Y e Fn(k,X)¥ suchthat (T)“N(0,Y)“ = ¢. Define S € (w)¥ by letting

B(S) ={X"'({i}) :i < kYUY ({5}) - UX )5 €wl—{e}).

Then S € FN(k,X)¥. Moreover, TNS € (w )"’” for some m € w. If m =1,
then clearly (k,S)¥ C {Z € (w)¥ : TN Z € (w)'}. Let us now suppose that
m > 1. Pick jg € w for d < m so that S~'({js}) C (TT18)~1({d}).

Put ¢ =kU ( U jd). Clearly, there exists r < m with the property that

d<m
“1({4}) € (TMS)~1({r}) for infinitely many j € w. Pick eg,e1,---,e€m_1

sothat ¢ < ey <e; < -+ <ep1 <w and for all d < m, S~'({eq}) C
(TT1S)~1({r}). Now select t € (g, Iemfl)0 so that eq € t71({jq}) for all
d < m, and set Z = A(t,S). Then Z € Fn (k,X)“. Moreover, we have
that (k,Z)Y C{R € (w)“:TTR € (w)'}.

Assume that F has the property that for any two members X, X' of F,
either XMX' € F or XIMX' ¢ (w)¥. Then we can put a topology on (w)¥ by
taking as basic open sets ¢ and all (k,X)¥ for (k,X) € Pr.

THEOREM 7.9.- Assume that given X,X' € F, either XMNX' € F or
XMX" ¢ (w)¥. Then C% s the set of all W C (w)¥ which have the Baire

property.

Proof — By Lemma 6.3 and Theorem 7.1 ((i) and (iii))

Observe that the Dual Ellentuck Theorem follows from Theorem 7.9 since the
assumption of Theorem 7.9 trivially holds if F = (w)¥.
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8. Generalizing the Dual Ramsey Theorem

The purpose of this section is to obtain a satisfactory generalization of the Dual
Ramsey Theorem. The reader might wonder why we should devote a whole section
to the subject. Doesn’t the Dual Ramsey Theorem follow from the Dual Ellentuck
Theorem, just as Ramsey’s Theorem does from Ellentuck’s Theorem ? Some words
of explanation are in order, especially since the terminology is somewhat misleading.
The Dual Ellentuck Theorem deals with partitions of w into infinitely many blocks,
whereas the Dual Ramsey Theorem is an infinite collection of statements, each one
of which deals with partitions of w into a fixed finite number of blocks. The Dual
Ellentuck is an “if and only if” statement and has thus reached its final form, unlike
the Dual Ramsey Theorem which is only an “if’ statement. There are actually two
versions of the Dual Ramsey Theorem, which are both stated in topological terms.
The first one, which is Theorem 1.2 in [2], does follow from the Dual Ellentuck
Theorem. The second one, which is due to Promel and Voigt [18] strengthens the
result of Carlson and Simpson. It is not clear to us whether it can be easily deduced
from the Dual Ellentuck Theorem. Moreover, each one of these two versions was
obtained as a special case of an “alphabetized” result (respectively, Theorem 2.2 in
[2], which again follows from the Dual Ellentuck Theorem, and Theorem B in [18]).

As for us, we forsake the topological approach and do it the Mathias way,
which works fine. Our results generalize the Dual Ramsey Theorem in the sense
that Theorem B of [18] can be deduced from them. They are however incomplete
inasmuch as we have been unable to show closure under operation A (except for
the special case when the game-family is in fact a game-filter, see Section 10).

Throughout the remainder of this section F and n will denote, respectively,
a fixed game-family and a fixed element of w — {0,1}.

We set PE={(k,X) € Pr:k<n}.

We let N7 (respectively, C%) consist of all W C (w)™ with the property that
for all (k,X) € PZ, there exists Z € FN(k,X)” such that WnN(k,Z)""17%F =¢
(respectively, such that either (k,Z)""!"F CW or Wn(k,Z)""17% = ¢).

We let N ;_— (respectively, E;—) consist of all W C (w)™ with the property
that the set of all (k,X) € P% such that WnN(k,X)"~1=F = ¢ (respectively, such
that either (k, X)"'"* CW or Wn(k,X)""17% = ¢) is dense in PZ.

LEMMA 8.1.- Let A be a dense open subset of P}, andlet d <n and (k,X) € Pr
with k >mn—1. Then there exists Y € FN(k,X)“ such that (n—1,A(t,Y)) € A
for every t € (d,I;)"~179.
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Proof — Let t; for j < g be an enumeration of the elements of (d, I;,)"~!~%.
Define Z;,7; and Y; for j <gq so that

(0) Zo = A(to, X) ;

(1) Zis1 = Ati+1,Y3) 5

(2) T; e Fn(n—1,Z;)¥

(3) (n—1,t;) € A

(4) Yo = (to,X,To) ;

(5) Yit1 = D(ti+1,Y:, T).
Then setting Y =Y,, we have that Y is as desired.

LEMMA 8.2.- Let A be a dense open subset of P%, and let (k,X) € P%.
Then there exists T € F N (k,X)“ such that (n—1,A(t,T)) € A for every

te

U &*

n—1<j<w

Proof — Let W consist ofall 7' € FN(k,X)“ suchthat (n—1,A(t, 7)) € A

for every t € U (k,Ij)”_l_k. We define a winning strategy 7 for

n—1<j<w
IT'in Gg(k,X,F — W) as follows. Let I successively play Yp,Yq,... If

i <n-—1-k, weput 7(Yp,...,Y;) =Y. Otherwise, we use Lemma 8.1
to find Z; € Fn(k+1,Y;)Y such that (n — 1, A(t, ZZ)) € A for every
t € (k,Iry)" 1%, and we put 7(Yp,...,Y;) = Z;. Tt follows from Lemma
3.1 that W # ¢. .

THEOREM 8.3.- The following hold :

(i) C% =Cr.

(i) N2t =Ny.

eeey AP . .
(i) Nz s closed under countable unions.

Proof — (i) : It is immediate that C% C C'. To show the reverse inclusion,
fix WeCy and (k,X) € P} By Lemma 8.2 there exists T € F N (k, X )*
such that for every ¢ € U (k, I;)"'7%, either (n— 1,A(t,T))0 cw
n—1<j<w

or Wn(n-— 1,A(t,T))0 = ¢. Let us assume that W N (k,Y)""17%F £ ¢
for every Y € F N (k,T)¥. Then by Lemmas 5.1 (iii) and 5.2, there exists
Z € FN(k,T)* such that WN(n—1,2")° £ ¢ forevery Z' € FN(k,Z)~.
It is easy to see that (k, Z)" 17k C W.

(ii) : By Lemma 8.2.

(iii) : Let W; € Ny for each i € w.

Set
Ai = {(k,X) € Pr: (kN (n—1),X) 707600 g gy
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for every ¢ € w. Each A; is inductive, by Lemma 5.1 (iii), and dense, by
Lemma 8.1. Hence ﬂ A; 1is inductive and dense by Proposition 5.6. It now

(IS
follows from Proposition 5.4 that U W; € Nz. -
€W
THEOREM 8.4.- (k,X)" 7% € C% for every (k,X) € Plye-
Proof - By Theorem 8.3 (i) and Lemma 7.5. .
PROPOSITION 8.5.- C% is closed under countable unions.
Proof — By Theorem 8.3 (i), it suffices to show that any countable union

of members of C% liesin Cy. Thus let W; € C% for i € w, and let
(k,X) € PZ. Set

A = {(K, X") € Pr: (K0 (n—1),X') NW; = ¢}.
for every i € w. Assume that (k,Z2) ¢ ﬂ A; forevery Z € Fn (k,X)v.

Then by Lemmas 5.1 (iii) and 5.5, there :efgst TeFn(k,X)¥ and i €w
such that (k+1+414,5) ¢ A; forall Se€ Fn(k+1+14,T)“. Let us first
assume that k+1+7 < n. Then there exists S € FN(k+1+44,7)¥ such that
either (k+1+4,S)"~1=¢+14+) CW; or (k+141i,8)" 1-k++) Ny, = 4.
Clearly, (k+1+1i,85) < (k, X). Moreover (k+1+1i,S) ¢ A;, and consequently
(k+1+4,8)r1-(k+149) C U W;. Assume now that k+1+4 > n. By
Lemma 8.1, there exists Y EZG.;)-" N(k+1+1i,T)¥ such that for every t €
(k, Ty140)" 1%, either (n—1,A4(t,Y))" CW; or (n—1,A(tY))’nW; = ¢.
There exists u € (k, I+144)" 7% such that (n — 1,A(u,Y))0 C W;, since
otherwise we would have (n—1,Y)°NW; = ¢ and therefore (k+1+i,Y) € A;,
a contradiction. Clearly, (n — 1, A(u,Y)) < (k,X) and (n— 1,A(u,Y))0 -

U ws. .

1EW

(n—=1)—=(k'N(n-1))

Finally, let us see how the Prmel-Voigt version of the Dual Ramsey Theorem
can be derived from the results of this section.

We topologize (w)™ by taking as basic open sets ¢ and all sets of the form
{X € (w)":tC X}, where t € U (m)".
mew

The following is readily checked.

LEMMA 8.6.- {X € (w)":tC X} € (. forevery te€ U (m)™.

mew

The following is due to Prmel and Voigt (see Theorem G in [18]).
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LEMMA 8.7.- Let k <n, andlet W be a meager subset of (w)™. Then there is
X € (w)* such that W N (k,X)""17%F = 4.

Proof - Select U; for j € w so that each U; is a dense open subset of

(w)¥ and W N (ﬂ U;) = ¢. Define X, X1, Xs,... € (w)¥ as follows :

JEwW
Set X(]:Iw.
Pick u € U (n — 1,I;)° so that (n — 1,A4(u,X,))° C Uy. Set
n—1<3
X1 = A(U,X())

Let tqy for d < q be an enumeration of the elements of (k,I,)"~!~%. Define
Sq, Yy, Zg and ug for d < q so that

(0) Zo = X1 ;
(1) Sd = A(td,Zd) N
2 uae |J (n-1,1)";

n—1<4
(3) Ya = A(ua, Sa) ;
(4) (n=1,Y4)° CUoN Uy ;

(5) Za+1 = D(ta, Za,Ya) if d <gq.

Then set Xy = D(tq, Zy,Yq). etc.
Finally, X = D X; is as desired.
jEw

The following is Theorem B in [18].

PROPOSITION 8.8.- Suppose that k <n and 0 <r <w, andlet F:(w)" =1 be
such that F~1({i}) has the Baire property for each i < r. Then there is Z € (w)¥
such that F is constant on (k,Z)"~17*,

Proof - For i < r, select an open subset U; of (w)" such that
U;AF~1({i}) is meager. By Lemma 8.7, there is X € (w)“ such that

(U @AF—({n)) Ntk X)m=* = 4.

i<r
By Proposition 8.5 and Lemma 8.6, there is Z € (k, X)“ such that for each
i < r, either (k,Z)""17% C U; (and hence (k,Z)"~1=%k C F~1({i})), or
U; N (k,Z)""1=F = ¢ (and hence F~1({i}) N (k,Z)""17F = ¢). Clearly,
(k,Z)"=1=F C F~1({j}) for some j <r.
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9. The segment-coloring property

F C (w)¥ has the segment-coloring property if given n € w, X € F and
F : U (p)™ — 2, thereis Z € FN(X)¥ such that for every k € w, F is

m,peEw
constant on < Z >7.

In this short section we show that every game-family has the segment-coloring
property. We will need the following generalization of Lemma 4.1.

PROPOSITION 9.1.- Suppose that F is a game-family, and let n,k € w, X € F
and D C < X >}. Then there exists S € FN(k,X)“ such that either < S >% CD
orelse <S>} ND=d¢.

Proof - This is a consequence of Theorem 7.1 (i) since clearly
{V € (w)¥:s(Y,k+1+n)eD}eCr

Proposition 9.1 generalizes Proposition 7.7 of [8].

PROPOSITION 9.2.- Suppose that F is a game-family. Then F has the segment-
coloring property.

Proof - Fix n€w, X € F and F: U (p)™ — 2. Let W be the
m,pEw

set of all (Zy,Z1,...) € F¥ such that for every ¢ € w, F' is constant on
< Z; >7. It easily follows from Proposition 9.1 that II has a winning strategy
in G£(0,X,F¥ —W). Since II has no winning strategy in G#(0,X,F), one
canfind Zy € (X)¥,Zy € (1,20)¥, Z2 € (2,Z1)%,...sothat (Zy, Z1,...) €W
and [ Z; € F. Given k € w, <i|;|u Z; >y C < Zy >3 and hence F is

1€EW

constant on <l—| Zi >y .
1€w

10. Game-filters

A filter on (w)* 1is a subset F of (w)¥ such that (a) XY € F for all
X, YeF,and (b){Y € (W)¥: X <Y} CF forall X € F.

By a game-filter we mean a game-family which is a filter on (w)“.

This section is concerned with existence and properties of game-filters.
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Let us first remark that every game-family is associated with a filter on (w)®.

We set F, ={Z € (w)¥: (VX € F) ZI'X € (w)¥} for every F C (w)¥.

LEMMA 10.1.- If F is a game-family, then
Fe={Z e (w2 : (VX e F)IY € F) Y < ZMNX}.

Proof - Given Z € F, and X € F, there exists by Theorem 7.6
Y € Fn (X)¥ such that either (Y)Y C (Z[NX)¥ or (Y)Y N (ZIMNX)* = ¢.
We have that ZIMY € (Y)“ N (ZMNX)“, and therefore Y € (ZINX)“.

PROPOSITION 10.2.- If F is a game-family, then F, is a filter on (w)¥.

Proof — Let Zy,Z; € F.. Given X € F, there is by Lemma 10.1 Y € F
with Y < Zy[X. We have that Z;1Y € (w)¥. Hence (Zy[1Z1)INX € (w)“.
Thus Zyl1Z; € Fi.

Let us make the following remark. Given a game-family F, set F = {Y €
(w)* : (3X € F)X < Y}. Then F is also a game-family. Moreover F C F,
Fiv = (F), and F = F. We do not know whether F can be recovered from F,,
i.e. whether {Y € (w)* : (VZ € F,)ZINY € (w)“} C F (notice that the reverse

inclusion is obvious).

Game-filters have attractive combinatorial properties. The Dual Ellentuck The-
orem can be relativized to game-filters in two different ways (see Theorem 6.4 and
the remark at the end of Section 7). The Dual Ramsey Theorem also admits a nice
formulation in this context. Let F be a game-filter, and let n € w — {0,1}. Then
we can put a topology on (w)™ by taking as basic open sets ¢ and all (k, X)"~1=F
for (k, X) € P%. Moreover by Lemma 6.3 and Theorem 8.3 ((i) and (iii)), C% is the
set of all W C (w)® which have the Baire property with respect to this topology.
Let us further remark that by Proposition 7.2 of [13], every game-filter is maximal
(as a filter on (w)¥).

We will now see that game-filters can be added by forcing. Let us start with a
few definitions.

Let X,Y € (w)¥. We write X <* Y just in case A(t,X) <Y for some

te [ Ju)"

1€EW

We write X ~Y to mean that X <*Y and Y <* X.
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Weput X ={Z € (w)“: X ~ Z}.
We let X < Y just in case X <*Y.

We set Qr = {X:X € F} forall F C (w)“.

LEMMA 10.3.- Let F be a game-family. Then (Qx,<) is o-distributive.

Proof — Let E; be a dense open subset of QQx for each ¢ € w. To show
that ﬂ E; is dense, let X € Q7 be arbitrary. We are going to define a

Winnirlléwstrategy 7 for Il in Gx(0,X,F“ —W), where W consists of all
(Zo, Z1,...) € F¥ such that Z; € E; forevery i € w. Todefine 7(Yy,...,Y;),
pick T; € F so that T, € E; and T; < Y;. Thenselect Z; € Tzﬂ(z',Yi)w, and
put 7(Y,...,Y;) = Z;. There are Yy € N (0,X)*, Y1 € Fn (1,7(Yo))",

Y, € Fn (2,7(Yo,Y1))“, ... such that |_| (Yo,...,Y;) € F. Then setting
s=[1r (Yy,...,Y;), we have that S<X and S€ ﬂEz

1EW )
1EW

Thus (see Lemma 19.6 in [11]) assuming F is a game-family, forcing with
(Qx,=<) adds no new functions from w into V.

Let F be a game-family, and let H be @Qz-generic over V. Then in V[H],
we set
En={XeW)”:(AY e H)Y g X}.

The following generalizes Theorem 5.1 in [6].

THEOREM 10.4.- Let F be a game-family, and let H be Qx-generic over V.
Then in V[H], Fx C €y and Eg is a game-filter.

Proof — We have by Lemma 10.1 that {Y € Q7 :Y < Z} is dense in Qx
for every Z € F,, which proves the first assertion. Let us now turn to the

second assertion. We clearly have that €y is a filter on (w)¥.

Moreover,
X C &y for every X € £y. To complete the proof, it suffices to show that

IT has no winning strategy in Gy, (0,1,,Hpg), where Hyg =|JH.

Let T' be the canonical name for the generic object. Let X e Qr and a
name p be such that

X IF p is a strategy for IT in G,.(0, I, Hr).

We will define (in V') a strategy 7 for Ilin G#(0, X, ¢). To define 7(Yp,...,Y;),
we proceed as follows. There exist R; € Pr and Z; € (w)® such that
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Ri <Y, and R; I+ p(Yy,...,Y;) = Z;. We use Theorem 7.6 to find
S; € FN(R;)” such that either (S;)“ C (Z;)“ or (8;)¥ N (Z;)¥ = ¢. As
S; I (Z;) € T, we have that S; < Z;. We pick T; € $;N (144, %;)* and put
7(Yo,...,Y;) = T;. Notice that IE_I T, :le_l Z;. There are Yy € F N (0,X),
A% 1cw

Y; € FN (1, 7(Y)), Yo € FN(2,7(Yo, ¥2))", - -+ with |_| (Yo,...,Y;) € F.
Setting T = |—| (Yo,...,Y;), we have that T I+ (T ) € Hr, and therefore
7] p(Yo,-..,Y;) € Hr. Hence

1EW

T I p is not a winning strategy for IT in Gy, (O, I,, Hr).

We do not know whether CH implies the existence of game-filters. On the other
hand, it is shown in [7] that under CH there are many filters on (w)“ with the
segment-coloring property. See [8] and [13] for more constructions of nice filters on
(w)¥ under CH.

We will finally use an argument of Di Prisco and Henle [3] to show that the
existence of a game-filter is compatible with a partition property which contradicts
the Axiom of Choice.

For T € (w)¥ and k€ w— {0}, we set

OfF ={X € (w®*: (vie{L,2,....khX"'({i}) =T~ ({i})}-

We put a topology on (w)“ by taking as basic open sets ¢ and all O for
T € (w)* and k € w—{0}.

F:(w)? — 2 is clopen if F71({j}) is open for all j < 2.
clopen
W ——

(w)? asserts the following : For every clopen F : (w)¥ — 2, there
exists X € (w)* such that F' is constant on (X)“.

For 8 with 2 < 8 <w, w¢+— (w)? asserts that for every F : (w)? — 2,
there exists X € (w)“ such that F is constant on (X)P.

As was shown in [2], w <— (w)? does not hold under the Axiom of Choice.

1
It is not difficult to check that w m

n with 2<n < w.

(w)* implies w <— (w)™ for every

Concerning the hypothesis of the following proposition, let us recall that it was
shown in [2] that if ZFC + “there exists an inaccessible cardinal” is consistent,
then so is ZF+DCH w +— (w)*.
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THEOREM 10.5.- Assume that DC + w +— (w)¥ holds in V, and let H be

l
Q(w)~ - generic over V. Then w &oren (w)¥ holds in V[H].

Proof — Let X € @)~ and a name F be such that

X IF F is a clopen function from (©)? to 2.
In V, define K : (X)“ — 3 so that for 7 =0,1,K(Y) = j if and only if
YIFF(Y)=j. Pick Y € (X)¥ with K being constant on (Y)“. There
are Y e (Y)¥,7€2, T € (w)” and k € w— {0} such that

Y'IF (Y € OF and OF C F~Y({j})).
Define Y € (Y)“ by letting

BY") = {Y7 ({ih) i e {1,k J{(O) 2 ({m)) -
(U Y'dih) :imew)—{9}).

1€{1,....,k}

Then clearly K(Y")=j. Hence K is identically j on (Y)“.

Define Z, S € (Y)“ by letting
B(Z) {27 ({0})} = (Y ({2n + 1))t m € w)

and
B(S) - {5 ({oh)} = {Yy'({2n}) 1 n €w — {0}}.
Let R € (S)“ be given. We claim that Z I+ F(R) = j. Suppose otherwise.
Then there exist Z’' € (Z)¥, D € (w)* and ¢ € w— {0} such that
7' I (R € 0% and 0% C F='({1 - j})).
Set d=nN{cew:4(Z',c)>¥D,q)} and define Z" € (Y)¥ by letting
Bz - {zn 7 op} = {pdip 1 <i <o UL W o > af

Then Z” IF F(Z") =1 -7, which contradicts the fact that K(Z") = j.
Thus Z - F is constant on ($)%.

The combination of Theorems 9.4 and 9.5 shows that if ZF + DC + w +— (w)¥

clopen
<—

is consistent, then so is ZF + w (w)¥ + “there exists a game-filter”.

Let us conclude with the following easy observation.

PROPOSITION 10.6.- Let F be a filter on (w)”. Then there evists F : (w)?> — 2
such that for every X € F, F is not constant on (X)2.
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Proof - Define 0: (w)? — U (w)? by letting
2<f<w

B(0(s)) = {s7*(on} U {{m}:me s 1}
Then define F : (w)? — 2 by letting F(S) = 1 if and only if (S) € F.
Given X € F, define Y,Z,T € (w)? by letting Y~1({0}) = X~1({0}),
Z7'{1}) = X~'({1}) and T7'({1}) = X~1({2}). Then F(Y) = 1. As
6(Z)6(T) € (w)!, we do not have that F(Z) = F(T) = 1.
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