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Au départ, I’art du puzzle semble un art
bref, un art mince, tout entier contenu
dans un maigre enseignement de la Gestalt-
theorie: ’'objet visé n’est pas une somme
d’éléments qu’il faudrait d’abord isoler et
analyser, mais un ensemble, c¢’est-a-dire une
forme, une structure: I’élément ne préexiste
pas a l’ensemble, il n’est ni plus immé-
diat ni plus ancien, ce ne sont pas les
éléments qui déterminent I’ensemble, mais
Pensemble qui détermine les éléments. . .
(Georges Perec,
La Vie mode d’emploi)
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Introduction

Combinatorics, including infinitary combinatorics, is a broad field of Mathematics
which is quite difficult to describe properly. Nevertheless, let us start with a definition
of combinatorics which shall be suitable for our purpose:

Combinatorics is the branch of mathematics which studies collections
of objects that satisfy certain criteria, and is in particular concerned
with deciding how large or how small such collections might be.

In the following we give a few examples which should illustrate some aspects of infini-
tary combinatorics appearing later in this work. Let us start with an example from
graph theory.

EXAMPLE 1 (Kénig's Lemma). A tree is a connected undirected graph without circuits
one of whose vertices is designated as the origin. A tree is infinite if its set of vertices
is countable infinite and it is finitely branching if each vertex has only finitely many
successors. A branch in a tree is a maximal path beginning at the origin. Now,
Konig’s Lemma [43, VI, §2, Satz 6] states that every infinite, finitely branching tree
contains an infinite branch. Notice that finitely branching is necessary to assure that
the tree is infinitely high.

Even though this fact looks quite obvious, in order to prove it one must use some
kind of choice. The full Axiom of Choice AC states that a Cartesian product of
non-empty sets is non-empty, or equivalently, that every set of non-empty sets has
a choice function. It is easy to see that Konig’s Lemma follows from AC. On the
other hand, Konig’s Lemma — which is a purely combinatorial result —is equivalent
to the statement AC, .., which says that every countable family of non-empty finite
sets has a choice function (cf. [35, Form 10]). Tt is well known that not only AC, but
also AC,, <, and many other weakened forms of AC are independent of the axioms of
Zermelo-Fraenkel Set Theory, denoted by ZF.

At this point, let us briefly explain the meaning of “independent” and “consistent”.
Let X be any set of statements, or axioms, then ¥ is called consistent if we cannot de-
rive a contradiction from ¥, which is — by Godel’s completeness theorem — equivalent
to the fact that ¥ has a model (e.g., the set of permutations of three objects is a
model for the axioms of group theory). Further, a statement ¢ is called independent
of ¥ if either set ¥ U {¢} and ¥ U {—p} is consistent.
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Let us turn back to our example. There are models of ZF in which AC —and
consequently AC,, ., — is true, but there are also models of ZF in which AC, ., — and
consequently AC — fails. Moreover, there are also models of ZF in which AC, ., is
true but AC fails. Thus, we can conclude that even basic combinatorial statements
like Konig’s Lemma may depend on the underlying model of set theory.

This first example shows that — depending on the set theoretical axioms we are
starting with — some objects, satisfying certain criteria, might or might not exist.

Throughout this work, we will always assume AC, so, our basic axiom system will
be ZFC, which is ZF 4+ AC. This also means that we will never discuss how much of
AC is needed to get certain results.

The next example can be seen as a problem in infinitary extremal combinatorics.
The word “extremal” comes from the nature of problems this field deals with, and
refers to the second part of our definition: how large or how small collections satisfying
certain criteria might be.

For example, how many people must be on a party to be sure that there are three
people who all either know each other or don’t know each other? Or, given a finite set
of non-zero integers S. How large can a set A C S be such that A does not contain
the sum of any two of its members. It turns out that (independent of the given set
S) there is always an A which contains at least one-third of the numbers in S.

If the objects considered are infinite, then the answer how large or how small
certain sets can be might depend on the underlying model of set theory, as the next
example shows.

EXAMPLE 2 (reaping number). A family R of infinite subsets of the natural numbers
w is called reaping (also called unsplitting), if for every coloring of w with two colors
there exists a monochromatic set in R. The reaping number v is the minimal size of
a reaping family. Now we can ask: How large is ¢ 7

It is easy to see that a reaping family cannot be countable. Indeed, let A = {A; :
i € w} be any countable family of infinite subsets of w. For each i € w, pick n;
and m; from the set A; in such a way that for all 1 € w, n; < m; < n;y;. Each n;
(i € w) gets colored blue and all other numbers red. For this coloring, there is no
monochromatic set in A, and hence, A cannot be a reaping family. Consequently,
assuming the Continuum Hypothesis CH, any reaping family must have the same
cardinality as the continuum, denoted by ¢, and we get the same assuming Martin’s
Axiom MA. On the other hand, with the forcing technique — invented by Paul Cohen
in the early 1960’s (cf. [13]) — one can show that the minimal size of a reaping family
is independent of ZFC. In other words, there are models of ZFC in which v = ¢, but
there are other models in which v < ¢.

So, the second example shows that we get different answers — depending on the
additional axioms of set theory we start with — when we try to decide how large or
how small certain collections might be.



Another field of combinatorics is the so-called Ramsey Theory, and since many
results in this work are “partition-versions” of classical Ramsey-type theorems, let us
give a brief description of Ramsey Theory.

Loosely speaking, Ramsey Theory (which can be seen as a part of extremal combi-
natorics) is that branch of combinatorics which deals with structures preserved under
partitions, or colorings. Typically, one looks at the following kind of question: If a
particular object (e.g., algebraic, geometric or combinatorial) is arbitrarily colored
with finitely many colors, what kinds of monochromatic structures can we find?

For example, van der Waerden’s Theorem tells us that if the integers are colored
with finitely many colors, then there are arbitrarily long monochromatic arithmetic
progressions. Or, for any coloring of the points in the Euclidean plane with finitely
many colors, there are three monochromatic points which are the verices of a right-
angled triangle of unit area.

The most famous result in Ramsey Theory is surely Ramsey’s Theorem. In fact,
there are two versions of Ramsey’s Theorem, an infinite version [57, Theorem A| and
a finite version [57, Theorem B], but because the second one follows from the first
one, we consider Theorem A as “Ramsey’s Theorem”; also called “Ramsey Theorem”:

EXAMPLE 3 (Ramsey’s Theorem). For any positive integer n, let [w]™ denote the set of
all n-element subsets of the natural numbers. Now, Ramsey’s Theorem tells us that if
we color [w]|™ with finitely many colors, we find an infinite subset H C w such that all
n-element subsets of H have the same color, and such a set H we call homogeneous.

The following is just a consequence of Ramsey’s Theorem:

FINITARY RAMSEY THEOREM. For all positive integers m, n,r, where n < m, there
exists a number N € w such that for every coloring of [N]" with r colors, we find a
set H € [N]™ such that [H]™ is monochromatic.

For example the “party-problem” mentioned above is a typical problem in Ramsey
theory and an easy Ramsey-type argument shows that at least six persons must be
on the party. On the other hand, if we ask how many people must get invited to a
party to make sure that there are five people who all either know each other or don’t
know each other, then the answer is not known, but it is conjectured that at least 43
persons must be invited (see [56]).

Ramsey’s theorems have applications to many different fields such as Banach
space theory (cf. [51]), and set theory without the axiom of choice (see e.g., |30,
Proposition 7.3.1]).

Sometimes, we also get Ramsey-type (or anti Ramsey-type) results even for a
partition into infinitely many classes. For example, there is a coloring of the points
in the Euclidean plane with countably many colors, such that no two points of any
“copy of the rational line” get the same color (see [42]). This result can be seen as an
anti Ramsey-type theorem (since we are far away from “monochromatic structures”),
and it shows that Ramsey-type theorems cannot be generalized arbitrarily. On the
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other hand, one can consider just these colorings which “behave well”, or which have
some nice monochromatic structures, and investigate how complicated such colorings
may be. Such an approach leads to combinatorial properties, as the next example
illustrates.

EXAMPLE 4 (Ramsey property). Let [w]“ denote the set of all infinite subsets of w,
and for H € [w]“, let [H]” denote the set of all infinite subsets of H. A set A C [w]”
has the Ramsey property if there is an H € [w]” such that either [H]Y C A or
[H]* N A = (. In other words, if we color all infinite subsets of w with two colors,
and we find an infinite subset of w, all of whose infinite subsets have the same color,
then the coloring has the Ramsey property.

With the aid of AC it is not hard to construct a set A C [w]” which does not have
the Ramsey property. On the other hand, one can show that all analytic sets have
the Ramsey property and it is consistent with ZF that each A C [w]” has the Ramsey
property. Further, assuming the existence of an inaccessible cardinal, one can show
that it is consistent with ZFC that all projective sets have the Ramsey property, but
it is not known if the assumption of an inaccessible cardinal is necessary.

Let us turn back to Ramsey’s Theorem which tells us that for every coloring
7 : [w]* — {0,1} there is an infinite homogeneous set H C w. But it does not tell
us where to find such set H. If there would be an ultrafilter over w such that the
homogeneous set always belongs to the ultrafilter, this would be useful, especially
from a combinatorial point of view. This leads to the following:

EXAMPLE 5 (Ramsey ultrafilters). Let ¢ be an ultrafilter over w, then U is called a
Ramsey ultrafilter if for every coloring 7 : [w]> — {0, 1} there is an infinite homoge-
neous set H € U.

One can show that either CH or MA implies the existence of Ramsey ultrafilters.
On the other hand, it is consistent with ZFC that there are no Ramsey ultrafilters at
all. Ramsey ultrafilters, together with Mathias forcing, play an important role in the
investigation of the Ramsey property, and the beautiful interaction between Ramsey
ultrafilters, Mathias forcing and the Ramsey property was the main motivation to
investigate the corresponding theory for sets of partitions.

The aim of this work is to investigate combinatorial properties of sets of parti-
tions along the guideline given by the preceding examples. Since, from the category
theoretical point of view, partitions are the duals of subsets, going from subsets to
partitions is called “dualization”. The main difference between subsets of w and par-
titions of w is that partitions do not have a proper complement. If they would have,
there would be nothing to do than replace the word “subset” by “partition”. But
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this is not the case, and sometimes, it is not even straightforward to find the right
dualization.

For example, consider the spaces Sw (which is the space of ultrafilters over w) and
pfw\w (the space of non-principal ultrafilters over w). If we want to dualize these two
spaces, we have to dualize first the notion of ultrafilters, which gives us the notion of
partition-ultrafilters, defined as maximal partition-filters. It turns out that there are
two natural ways to do this, so we get two sets of partition-ultrafilters. Now, we have
to define a topology on each of these two sets of partition-ultrafilters, and it turns out
that we have again two possibilities to do this. Thus, we end up with four topological
spaces of partition-ultrafilters, but none of them is homeomorphic to Sw or to fw \ w.
Other difficulties and asymmetries occur when we try to dualize Ramsey’s Theorem
(see Chapter IV) or some cardinal characteristics of the continuum (see Chapter II),
or if we try to find a dual form of Ramsey ultrafilters (see Chapter VII).

As mentioned above, the following work can be seen as a dualization —in terms
of partitions — of the combinatorics of sets of subsets of w, and consists mainly of
the papers [22], [23], [24| and [27], which are all published in refereed journals.
The only exception is Chapter IV (where a theorem is given, which can be seen as
the partition form — rather than the dual form — of Ramsey’s Theorem). Let us now
briefly summarize the content of each chapter:

In Chapter I we introduce our terminology and give the basic definitions of par-
titions of w. Further, it is shown that from the category theoretical point of view,
partitions are the duals of subsets, which motivates the term “dualization” for the
process of going from subsets to partitions.

Henceforth, for any property, like the Ramsey property, or cardinal characteristic
of the continuum, like the reaping number t, etc., the dual Ramsey property or the
dual-reaping cardinal R, etc., refers to the corresponding partition form of the Ramsey
property and the reaping number, etc.

In Chapter IT we dualize some well-known cardinal characteristics of the conti-
nuum like the reaping number ¢ (see Example 2) and the splitting number s. Tt
will be shown that the dual forms of these cardinal characteristics do in general not
agree with their standard form. For example, it is consistent with ZFC that the dual-
splitting cardinal & is strictly bigger than s, which would be obvious if & = ¢, but it
is also consistent that & is strictly smaller than the continuum. Moreover, one can
show that — no matter in which model of ZFC we are — the dual tower number is al-
ways w; (the first uncountable cardinal), which is smaller than or equal to the classic
tower number; and that a maximal almost orthogonal family — which corresponds to
a maximal almost disjoint family — has always the same size as the continuum, and
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therefore, such a family can be strictly greater than its classical relative. Thus, dual
cardinal numbers can be fixed, whereas their classical relatives can be consistently
moved. On the other hand, there is also a cardinal characteristics of the continuum
which is fixed — like the cardinality of a family F C [w]¥ such that for every infinite
subset of w there is a disjoint set in F, which has always the same size as the con-
tinuum — whereas its dualization © can be proved to be greater than or equal to p
(the so-called pseudo-intersection number) and less than or equal to i (the so-called
independent number). Further, it is provable in ZFC that the dual-reaping cardinal
M is less than or equal to min{r, O}, but it is greater than or equal to p. Summariz-
ing the previous facts, the dual form of cardinal characteristics of the continuum is
completely asymmetric to the classical ones. The results of this chapter can also be
found in [22].

In Chapter IIT we investigate the four topological spaces mentioned above which
can be seen as the dualizations of the spaces fw and Sw \ w, which are both compact
Hausdorff. Even though all four topological spaces are natural dualizations of Sw
or fw \ w, none of these four spaces is homeomorphic to fw or fw \ w. To prove
this, we will be using some combinatorial tools like Konig’s Lemma (see Example 1).
In particular, it will be shown that two of these four spaces are Hausdorff but not
compact, and the other two are not Hausdorff but countable compact. Further, the
dualization and the existence of P-points will be discussed. For a slightly more general
approach in terms of filters on semilattice see [27].

After a short introduction to Ramsey Theory, we present in Chapter IV a partition
form of Ramsey’s Theorem (see Example 3), which will be used to define Ramseyan
ultrafilters in Chapter VII. Ramsey’s Theorem says that if we color the n-element
subsets of w with finitely many colors, then we find an infinite homogeneous set. So,
in a dual form of Ramsey’s Theorem — which was introduced by Timothy Carlson in
[11] — we would expect that if we color the n-part partitions of w with finitely many
colors, then we find an infinite homogeneous partition. But there is a coloring of the
2-part partitions of w with just two colors, such that there is no infinite homogeneous
partition of w. So, the dual form of Ramsey’s Theorem is not as general as the
classical version. On the other hand, if we replace the n-element subsets of w by n-
part partitions of integers k& € w, then the corresponding partition form of Ramsey’s
Theorem has similar features as the classical version, even though it is not the proper
dualization (see Chapter 1.5).

In Chapter V we begin to investigate the dual Ramsey property (see Example 4).
In this context, the only important cardinal (also used in Chapter VI) is the dual-
shattering cardinal £, which is the dualization of the shattering number h. Firstly, it
will be shown how $ is related to the dual Ramsey property. In particular, we will
see that $ = add(R}) = cov(R}), where R} denotes the ideal of completely dual
Ramsey null sets, and add and cov denote the additivity and the covering numbers,
respectively. Secondly, we investigate £ itself. One can show that $ < h and that it
is consistent with ZFC that $ < b (even under MA). This would be obvious if = wy,
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but we will see that H > w; as well as $ > cov(B,) (where B, denotes the ideal of
meager sets) is consistent with ZFC. The results of this chapter can be found again
in [22].

Finally, after discussing asymmetries in the dualization process, we look in Chap-
ter VI at the symmetries between the Ramsey property and the dual Ramsey property.
Some results about the dual Ramsey property are straightforward dualizations of re-
sults about the Ramsey property. But as a matter of fact we will see that most proofs
in the dual case are much more involved than the classic ones. The reason leading
to more sophisticated proofs is that a partition — unlike a subset — does not have a
proper complement. It will be shown that the dual Ramsey property is closed under
a generalized Suslin operation involving the dual-shattering cardinal $. Further, the
notion of game-families and game-filters will be introduced and dual Mathias forc-
ing (restricted to these game-filters) will be investigated. In particular, it will be
shown that an ws-iteration of dual Mathias forcing with countable support starting
from Gédel’s constructible universe yields a model in which every Xi-set has the
dual Ramsey property, but not every A-set has the Baire property. A similar model
exists with respect to the Ramsey property. Almost all results of this chapter can be
found in [23].

In Chapter VII we define an ordering on the set of partition-filters which is similar
to the Rudin-Keisler ordering on fw. Further, we introduce a partition form (which is
not the dual form!) of Ramsey ultrafilters (see Example 5), called Ramseyan ultrafil-
ters. The Rudin-Keisler ordering on Sw is defined as follows: & < V if U is the image
of V under the canonical extension Sf : fw — pfw of some map f : w — w. Now,
Ramsey ultrafilters over w build the minimal points of the Rudin-Keisler ordering on
fw \ w. It will be shown that a similar result is true for Ramseyan ultrafilters with
respect to the ordering on the set of partition-filters, and that CH implies the exis-
tence of 2° pairwise non-equivalent Ramseyan ultrafilters. Further, it will be shown
that dual Mathias forcing restricted to a Ramseyan ultrafilter has the same features
as Mathias forcing restricted to a Ramsey ultrafilter. In particular, it has the homo-
geneity property, has pure decision and can be decomposed. Ramsey ultrafilters can
also be described as happy families that are also filters, and so, we also dualize the
notion of happy families and show that the so-called relatively happy families have
a similar characterization in terms of games as their classic relatives. Finally, we
consider the dual form of some cardinal characteristics of the continuum which are
to some extend related to Ramseyan ultrafilters. This chapter is essentially [24].






CHAPTER 1

Partitions, a Dual Form of Sets

Most of our set-theoretical terminology is standard and can be found in textbooks
like [3], [36] and [44]. However, let us recall some frequently used notation.

1. Some basic definitions

Let S be a set. |S| denotes the cardinality of the set S, which is the least ordinal
number « such that there exists a bijection between S and a.. In particular, w denotes
the least infinite ordinal, w; denotes the least uncountable ordinal, and so on. Let
P(S) denote the power-set of S. For a cardinal number &, let [S]* := {T € P(S) :
IT| = k} and [S]<% :={T € P(S) : |T| < k}.

The least infinite ordinal number is denoted by w = {0,1,2,...} which is the set
of natural numbers, where a natural number n = {k € w : k < n} (in particular,
0 = ). Further, let ¢ := |P(w)| denote the cardinality of the continuum.

For our purpose, without loss of generality we consider the set [w]” as the set of
irrational numbers, and the set [w]|<“ as the set of rationals. However, sometimes it
is more convenient to identify the reals with the set “w (the set of all functions from
w to w) or with the set “2 (the set of all functions from w to {0,1}).

2. Partitions of w

The main objects of this work will be partitions of w. A partition X of w is a
subset of P(w) such that the following holds:

(i) if b € X, then b # (),
(11) if bl, bg € X and bl 7£ bg then b1 N b2 = @,
(i) X = w.
In other words, a partition of w is a set of pairwise disjoint, non-empty subsets of
w such that the union is all of w. The set of all partitions of w is denoted by (w)<*.
A partition means always a partition of w. If X is a partition and b € X, then we
call b a block of X. If a partition has infinitely many blocks (or equivalently, if X is
infinite) we call X an infinite partition. The set of all infinite partitions is denoted
by (w)¥. Further, the set of all finite partitions is denoted by (w)<¥.
A partial partition X’ is a subset of P(w) such that (i) and (ii) hold but instead
of (iii) we have
(iii)’ U X' =: dom(X') C w.
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Note that a partition is always also a partial partition. If dom(X’) € w, then X" is
a partition of some n € w. The set of all partial partitions X' where dom(X') € w is
denoted by (N). Further, for s € (N), s* denotes the partial partition s U{{dom(s)}}.

3. Notation

Throughout this work we will usually denote:

elements of w by lower case letters like n,m, k, h ...

elements of [w]|* by lower case letters like z,y ...

partitions by upper case letters like X, Y ...

finite subsets of [w]” by lower case letters like a,b. ..

elements of (N) by lower case letters like s, ¢.

subsets of [w]“ by calligraphic letters like .7-" S Z/{ :

sets of partitions by even more calligraphic letters hke TS U ...

cardinal characteristics of the continuum which are related to [w]” by lower case
fracture letters like b, t,s...

e cardinal characteristics of the continuum which are related to partitions by upper
case fracture letters like H, R, & . ..

4. Relations on the set of partitions

Let X, X5 be two partial partitions. We say that X; is coarser than X, or
that X, is finer than X, and write X; T Xs, if for all blocks b € X; the set
b N dom(Xs) is the union of some sets b; N dom(X;), where each b; is a block of
X,. In particular, {{w}} is the coarsest partition and (w) := {{n} : n € w}
is the finest partition. Let X; M X, denote the finest partlal partition which is
coarser than X; and X3 such that dom(X; M X5) = dom(X;) U dom(X3), and let
X, U X5 denote the coarsest partial partition which is finer than X; and X5 such that
dOHl(Xl L XQ) = dOIIl(Xl) U dOHl(XQ)

If p € [w]=¥ is a finite subset of w, then {p} is a partial partition with dom({p}) =
p. For two partial partitions X; and X, we write X; C* X, if there is a finite set
p C dom(X;) such that X;M{p} C X, and say that X is almost coarser than X5, or
that X5 is almost finer than X;. If X; C* X5, X, C* X; and dom(X;) = dom(X5),
then we write X1 = X,. If X = (w) or X = {{w}}, then X is called trivial; in other
words, X is trivial if X is either the one-block-partition or all blocks of X are finite
and just finitely many blocks contain more than one element.

Let X, Xy be two partial partitions. If each block of X; can be written as the
intersection of a block of X, and dom(X;), then we write X; < X,. Note that
X; < X, implies dom(X;) C dom(X5).

If X is a partial partition, then

Min(X) := {n €w:3b € X (n=min(h))},
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where min(b) := (. If we order the blocks of X by their least element, then X (n)
denotes the n'® block with respect to this ordering and X (n)(k) denotes the k'
element (with respect to the natural ordering) of X (n).

5. Partitions as the dual form of subsets

One can think of the duality between subsets and partitions in a category-theoretic
way.

Let N be an arbitrary set. For our purposes, N will be just w. Consider one-to-one
functions into N from arbitrary domains, and call two such functions, say f: A — N
and g : B — N equivalent if there is a bijection h : A — B such that f = gh. Then
the equivalence classes can be identified with the subsets of N, because f and g are
equivalent if and only if they have the same image.

In fact, in general categories, we can define a “subobject” to be such an equivalence
class. For this, we need category-theoretic definitions of “one-to-one” and “bijection”
A bijection is a map with a two-sided inverse (with respect to composition), and a
map is one-to-one if and only if it is cancellable on the left.

Now we apply the general category-theoretic notion of duality: Reverse the di-
rection of all arrows and (therefore) reverse the order of composition. “Bijection” is
self-dual, but the dual of “one-to-one map” is “right-cancellable map” which amounts
to (in the category of sets) “onto map”. So, the dual of a subobject of N would be
an equivalence class of surjections f: N — A (for arbitrary sets A); here f: N — A
and g : N — B are equivalent if and only if there is a bijection h : B — A such that
f = hg. Untangling the definitions, we find that f and ¢ are equivalent if and only if
the partitions they induce on N (the pre-images of singletons in A and in B) are the
same. In other words, dualizing the notion of subset (or, more precisely, dualizing a
category-theoretic description of subsets) gives (a category-theoretic description of)
partitions.

Further, the inclusion relation on subsets admits a category-theoretic description
in terms of the one-to-one maps; it just says that f = gh for some h, not necessarily
a bijection. Dualizing, you get a description, in terms of surjections, of the “coarser
than” relation on partitions. So, the dualization of the inclusion relation between
subsets is the “coarser than” relation between partitions.

Similarly, where finite sets occur in some theory, we would expect partitions with
finitely many pieces in the dual theory, because both say that the A (or B) above is
finite.

With the concept of dualization we can seek for dualizations of cardinal character-
istics of the continuum (see [12]) or for a dual form of Ramsey’s Theorem (see [11]).
On the other hand, from the combinatorial point of view it is sometimes appropri-
ate to look for a “partition form” of certain combinatorial theorems, which might be
different from the corresponding dual form (see for example Chapter IV).
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CHAPTER 1II

Dualizations of Cardinal Characteristics

The dualization of some cardinal characteristics of the continuum was first inves-
tigated by Jacek Cichon, Adam Krawczyk, Barbara Majcher-Iwanow and Bogdanin
Weglorz in [12]. In this chapter we proceed their work.

Sometimes, it will be convenient to consider infinite partitions such that at least
one block is infinite, thus, let (w)* denote the set of all those partitions.

Two partitions X, X5 € (w)“ are called almost orthogonal, denoted X; 1, X, if
X1MX, & (w)¥; otherwise, they are called compatible, denoted X |X,. If X;MX, =
{{w}}, then they are called orthogonal, denoted X; L X;.

Recall that ¢ := |P(w)| denotes the cardinality of the continuum.

1. On the dual-splitting cardinals &€ and &’

Let X7, X5 be two partitions. We say X splits X, if X;| X5 and there is a partition
Y C X, such that X;1Y. A family % C (w)¥ is called splitting if for each non-
trivial X € (w)¥ there exists an S € . such that S splits X. The dual-splitting
cardinal & (&', respectively) is the least cardinal number £ for which there exists a
splitting family .77 C (w)¥ (.77 C (w)¥', respectively) of cardinality s.

It is obvious that & < &'. In the following, we compare first the dual-splitting
number & with the well-known unbounding number b (a definition of b can be found
in [65]).

THEOREM II.1.1. b < &'.

PROOF. Assume there exists a family .7 = {S, : + < k < b} C (w)¥ which is
splitting. Let B = {b, : ¢+ < k} C [w]* a set of infinite subsets of w such that
b, € S, (for all © < k). Let fp, € “w be the (unique) increasing function such that
range( fy,)=b,. Because xk < b, the set {fy, : ¢ < K} is not unbounded. Therefore,
there exists a one-to-one function d € “w such that f, <* d (for all + < k). With
the function d we construct an infinite partition D. First we define an infinite set of
pairwise disjoint finite sets p; (i € w):

pi == [d'(0),d""1(0)),

where d’ denote the i-fold composition of d. Now, the blocks of D are defined as
follows:

n is in the k"™ block of D < n € p; and i —max {l(l+1)/2<i:l€w} =k
13
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Because d dominates B, for all b, € B there exists a natural number m, such that for
all i > m, we have d'(0) < b,(d*(0)) < d***(i) (cf. |65, page 121]). So, for all i > m,,
pi N'b, # () and therefore by the construction of the blocks of D, b, intersects each
block of D. But this implies that D is not compatible with any element of .~ and
hence, .%” cannot be a splitting family. —

Let us now compare & with the splitting number s (cf. [65]).
COROLLARY II.1.2. It is consistent with ZFC that s < &'.

PROOF. Because b < &' is provable in ZFC, it is enough to show that s < b is
consistent with ZFC, which is proved by Saharon Shelah in [58]. —

Now we show that cov(B,) < & (where B, denotes the ideal of meager sets).
In [12] it is shown that if Kk < cov(B,) and {X, : @ < k} C (w)* is a family of
partitions, then there exists Y € (w)¥ such that Y L X, for each a@ < k. This implies
the following

COROLLARY I1.1.3. cov(B,) < &.

PROOF. Let S,Y € (w)¥. If SLY, then S does not split Y and therefore a family of
cardinality less than cov(B,) can not be splitting. —

As a corollary we get again a consistency result:
COROLLARY II.1.4. Tt is consistent with ZFC that s < &.

PROOF. After an w;-iteration of Cohen forcing with finite support starting from a
model V' = cov(B,) = wy = ¢, we get a model in which w; =5 < cov(B,) = wy = ¢.
Hence, by Corollary I1.1.3, this is a model for w; =5 < & = ws». —

Until now we have max {cov(B,),b} < &', which would be trivial if one could
show that & = ¢. But this is not the case (cf. [12]). To construct a model in which
&' < ¢ we will use a modified version of a forcing notion introduced in [12].

Let F be an arbitrary but fixed ultrafilter over w. Let Q be the notion of forcing
defined as follows: The conditions of Q are pairs (s, A) such that s € (N) (called
the stem of the condition), A € (w)<¥, A(0) € F and s < A, stipulating (s, A) <
(t,B) if and only if t < s and B C A. If (s, A1), (s, As) are two Q-conditions, then
(s, A1 M Ay) < (s, A1), (s, As). Hence, two Q-conditions with the same stem are
compatible and because there are only countably many stems, the forcing notion QQ
is o-centered.

Now we will see that Q adds an infinite partition which is compatible with all
old infinite partitions but is not almost finer than any old partition. (So, the forcing
notion Q is in a sense like the dualization of Cohen forcing.)

LEMMA I1.1.5. Let G be Q-generic over V. Then G € (w)* and V[G] | VX €
(W) NV (GIX A—(X C* G)).
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PRrROOF. Let X € V be an arbitrary, infinite partition. Then for every n € w, the set
D,, is dense in Q, where D, is a set of Q-conditions (s, A), defined as follows:

(1) s(0) has more than n elements,

(2) at least n blocks of X are unions of blocks of A,

(3) there are at least n different blocks b; € X, such that (Jb; € s X.

Therefore, at least one block of G is infinite, because of (1), G is compatible with X,
because of (2), and X is not coarser* than G, because of (3). Now, because X was
arbitrary, the Q-generic partition GG has the desired properties. —

Because the forcing notion Q is o-centered and each @-condition can be encoded
by a real number, forcing with Q does neither collapse any cardinals nor change the
cardinality of the continuum. Thus, following [12], we get:

PROPOSITION I1.1.6. It is consistent with ZFC that &' < «¢.

PRrROOF. Take an w-iteration of Q with finite support, starting from a model in which
¢ = wy, then the w; generic objects form a splitting family. —

Even though a partition does not have a complement, for each non-trivial partition
X we can define a non-trivial partition Y, such that X 1Y: Let X = {b; : i € w} €
(w)“ and assume that the blocks b; are ordered by their least element and that each
block is ordered by the natural order. A block is called trivial, if it is a singleton.
With respect to this ordering define for each non-trivial partition X the partition X*
as follows:

If X € (w)*, then n is in the i*" block of X iff n is the i"* element of a block of
X, and if X ¢ (w)*', then n,m are in the same block of X“ iff n,m are both least
elements of blocks of X.

It is not hard to see that for each non-trivial X € (w)*, X L X4,

A family 7 C (w)*' is called weakly splitting, if for each partition X € (w)*,
there is a W € 77 such that W splits X or W splits X“. The cardinal number
w® is the least cardinal number x for which there exists a weakly splitting family of
cardinality x. (It is obvious that w& < &'.)

A family U is called a w-base for a free ultrafilter F over w provided for every
x € F there is a u € U such that v C x. Define

mu:=min {|| : U C [w]” is a 7-base for a free ultra-filter over w} .

In [2] it is shown that 7u = ¢, where v is the reaping number defined in the intro-
duction (see [69] for more results concerning t).

Now we can give an upper and a lower bound for the size of w®.
THEOREM II.1.7. w® < t.

PROOF. We will show that w& < wu. Let U := {u, € [w]” : ¢ < Tu} be a w-basis for a
free ultrafilter F over w. Without loss of generality we may assume that all the u, € U
are co-infinite. Let 2 = {Y,, € (w)* : u € UNY, = {u; : u; = uV (u; = {n}An &€ u)}}.
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Now we take an arbitrary X = {b; : i € w} € (w)“ and define for every u € U the
sets I, == {i : b Nu # 0} and J, := {j : b Nu = 0}. It is clear that for every u,
I,UJ, =w.

If we find a u € U such that |I,,| = |J,| = w, then Y}, splits X. To see this, define
the two infinite partitions

7y = {ak Cap = U b; vV 3j € J(ar = bj)}
i€l,
and
Zyo={arap = | J b v Fi € L(ax =)}
JE€Ju
We have X MY, = Z; (therefore Z; C X,Y,) and Z, C X but Z5 1Y,

If we find an = € F such that |I,| < w (and therefore |J,| = w), then we find an
x' C x, such that I, = {i} and |b; \ 2’| = w (this is because F is a free ultra-filter).
Now take a u € U such that u C 2/, and since X € (w)*', Y, splits X*.

If we find an = € F such that |.J,| < w (and therefore |I,| = w), let I(n) be an
enumeration of I, and define y := xNJ,, brr)- Then y C x and |z \ y| = w. Hence,
either y or w\ y is a superset of some u € Y. But now |.J,| = w and we are in a former
case. =

A lower bound for w® is cov(B,):
THEOREM IL.1.8. cov(B,) < w®.

PROOF. Let & < cov(B,) and 7 = {W, : 1 < K} C (w)*'. Assume that for each
W, € 77 the blocks are ordered by their least element and each block is ordered by
the natural order. Further assume that b, is the first block of W, which is infinite.
Now, for each ¢+ < k the set D, of functions f € “w such that

Vn,m,k: 3t, € b, 3, € by, Ih € wIty, 1), € byIs € by,
fltn) = Ftn) A ftm) = fFG) A" < s: f(s') = f(s)} =k + 1.
is the intersection of countably many open dense sets and therefore the complement
of a meager set. Because k < cov(B,), we find an unbounded function g € “w such
that g € (,.,, D,. The partition G = {g~"(n) : n € w} € (w)* is orthogonal to each
member of 77" and for each W, € 7" and each k € w, there exists an s € b, such

that s is the k" element of a block of G. Hence, 77" can not be a weakly splitting
family. —

2. On the dual-reaping cardinals i and %’

A family & C (w)“ is called reaping (reaping’, respectively), if for each par-
tition X € (w)? (X € (w)*, respectively) there exists a partition R € & such that
R1X or R C* X. The dual-reaping cardinal %t (R, respectively) is the least
cardinal number x for which there exists a reaping (reaping’, respectively) family of
cardinality k.
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It is clear that %' < R. Further, by finite modifications of the elements of a reaping
family we may replace C* by C in the definition above.

If we cancel in the definition of the reaping number the expression “R C* X, we
get the definition of an orthogonal family:

A family @& C (w)¥ is called orthogonal (orthogonal’, respectively), if for
each non-trivial partition X € (w)® (for each partition X € (w)*’, respectively)
there exists a partition O € @ such that O L X. The dual-orthogonal cardinal ©
(9', respectively) is the least cardinal number r, for which there exists a orthogonal
(orthogonal’, respectively) family of cardinality x. It is obvious that © < ©. Note
that o = ¢, where o is defined like © but for infinite subsets of w instead of infinite
partitions. (Take the complements of the members of an almost disjoint family of
cardinality ¢. Because an orthogonal family must avoid all these complements, it
must have at least the cardinality c.)

It is also clear that each orthogonal”) family is also a reaping!’) family and there-
fore () < ©). Further one can show that ®' is uncountable (cf. [12]). Now we show
that © <0, where 9 is the well-known dominating number (for a definition cf. [65]),
and that cov(B,) < ©'.

THEOREM I1.2.1. &' <.

PROOF. Let {d, € “w : + < 2} be a dominating family. Then it is not hard to see
that the family {D, : + < k} C (w)“, where each D, is constructed from d, like D
from d in the proof of Theorem II.1.1, is an orthogonal family. —

Let i be the least cardinality of an independent family (a definition and some
results can be found in [44]), then

THEOREM II1.2.2. © <.

PROOF. Let Z C [w]* be an independent family of cardinality i. Let 7' := {r €
(Wl :r = NA\UB}, where A,B € [I]<*, A # 0, ANB =), and r = 2 means
|(r\ ) U (z\r)| <w. It is not hard to see that |Z'| = |Z| = i. Now let ./ = ./ U .7
where 7 = {X, € W) :r € T'AX, ={b : by =71V (b ={n} An &r)}} and
Sy 1= {Yr 33X, € A (Y, = Xf)} We see that ./ C (w)“ and |.7| = i. It remains
to show that .7 is an orthogonal family.

Let Z € (w)¥ be arbitrary and let r := Min(Z). If r € 7', then X, 17 (where
X, € .71). And if r ¢ 7', then there exists an r' € Z' such that r N7’ = (). But then
Yy LZ (for Yy € 7). H

Because R < O, the cardinal number i is also an upper bound for ®. But for &,
we also find another upper bound.

THEOREM I1.2.3. R < t.
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PROOF. Like in Theorem II.1.7 we show that & < 7u. Let U := {u, € [w]* : v < Tu}
be as in the proof of Theorem II.1.7 and let

7 ={V,€ W ueUANY,={u:u;=w\uV (u;={n} Anecu)}}.

Take an arbitrary partition X € (w)“. Let r := Min(X) and ry := {n € r: {n} € X}.
If we find a u € U such that u C ry, then Y,, T X. Otherwise, we find a u € U such
that either w C w \ r or u C r \ ry and in both cases Y, L X. —

Now we will show that it is consistent with ZFC that © can be small. For this we
first show that a Cohen real encode an infinite partition which is orthogonal to each
old non-trivial infinite partition. (This result is in fact a corollary of [12, Lemma 5|.)

LEMMA I1.2.4. If ¢ € “w is a Cohen real over V, then C := {¢"'(n) : n € w} €
(W) NV[c] and VX € (w)* NV (=(X = {w}) = CLX).

PrROOF. We will consider the Cohen-conditions as finite sequences of natural numbers,
s={s(i):i1<n<w} Let X ={b; :i € w} €V be an arbitrary, non-trivial infinite
partition. The set D,, ,, of Cohen-conditions s such that

(i) {z:s(i) =0} > n,

(i1) 3k > nJi(s(z) = k),
(iii) Jan € by Ja, € by, A Far, as € by(s(an) = s(ar) A s(an) = s(as)),
is dense for all n,m € w. Note that because of (i), C' € (w)*. Now, because X was
arbitrary, the infinite partition C' is orthogonal to each infinite partition which is in

V. -
We now can show that O can be small:
PROPOSITION I1.2.5. It is consistent with ZFC that O < cov(B,).

PROOF. Take an w;-iteration of Cohen forcing with finite support, starting from a
model in which we have ¢ = wy = cov(B,), then the w; generic objects form an
orthogonal family. Because this wj-iteration of Cohen forcing does not change the
cardinality of cov(B,), we have a model in which w; = © < cov(B,) = ws holds. -

Because it < O, we also get the relative consistency of & < cov(B,). Note that
this is not true for t.

As a lower bound for &t we find p, where p is the pseudo-intersection number (a
definition of p can be found in [65]).

THEOREM IL1.2.6. p <R,
PROOF. In [4] it is proved that p = m__coptered, Where
M, _contered = Min{x : “MA(k) for o-centered posets” fails }.

Let % = {R,: 1 < k < p} be a set of infinite partitions. Now remember that the
forcing notion Q (defined in Section 1) is o-centered and because £ < p we find an
X € (w)¥ such that % does not reap X. —
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As a corollary we get:
COROLLARY I1.2.7. If we assume MA, then it = ¢.

PROOF. If we assume MA, then p = c. —

3. What about towers and orthogonal families?

Let k,,4, be the least cardinal number k for which there exists an infinite maximal
almost orthogonal family of cardinality x, and let Ky be the least cardinal number
k for which there exists a family .7 C (w)* of cardinality x, such that .7 is well-
ordered by C* and -3} € (w)*VX € .7 (Y C* X).

Krawczyk proved that k.., = ¢ (cf. [12]) and Carlson proved that fipper = wy
(cf. |[46]). So, these cardinals are interesting. But what happens if we cancel the word
“almost” in the definition of k4,7 In fact nothing happens since Otmar Spinas has
shown in [62] that an infinite maximal orthogonal family has always cardinality c.

4. The diagrams of the results

Now we summarize the results proved in this chapter together with some other
known results.

The dual-splitting number:

b & c
|
S
|
w cov(By) w t

The dual-reaping number and the dual-orthogonal number:

T i ¢
|
o )
| |

w1 p R R T

In the diagrams, the cardinal characteristics grow larger as one moves up or to the
right.

Consistency results:
es5<8
e & < ¢
e O < cov(By)
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CHAPTER III

Topologies on the Set of Partition-Ultrafilters

In this chapter we define four topologies on the set of partition-ultrafilters over
w and show that none of these topological spaces is homeomorphic to Sw or fw \ w.
For a slightly more general approach in terms of semilattices see [27].

1. Partition-ultrafilters

In this chapter we will consider just homogeneous partitions, i.e., partitions
of w all of whose blocks are infinite, but we do not introduce a new notation, thus,
throughout this chapter, (w)<“ denotes the set of all homogeneous partitions.

We can define partition-filters in two different ways:
A set .7 C (w)=¥ is a C-partition-filter, if the following holds:
(a) {{w}} ¢ .7
(b) For any X,Y € .7 we have X MY € .7.
() fXe€.7 and XCVY € (w)=¥, then Y € .7.

A set .7 C (w)=¥ is a J-partition-filter, if the following holds:

(a) For any X,Y € .7 we have X UY € .7.
(b) If X € 7 and X IV € ()<, then ¥ € .7

A C-partition-filter .7~ C (w)=“ is called principal, if there is a partition X € (w)<¥
such that .7 = {V : X C Y}. A set # C (w)=* is a partition-ultrafilter (of
some type), if 7 is a partition-filter which is not properly contained in any other
partition-filter (of the same type).

Notice that a C-partition-ultrafilter 7~ which does not contain a finite partition is
always non-principal, and vice versa, a principal partition-ultrafilter always contains
a finite partition, in fact, it contains a 2-block partition (see [27, Fact 3.1]). Thus,
if 77 is a non-principal C-partition-ultrafilter, X € 27 and X C* Y, then Y € 7.
Similarly, if 77 is a J-partition-ultrafilter, X € 2 and Y C* X, then Y € 7.

Let PUF¢ ((w)=*) and PUF5((w)=*) denote the set of all C-partition-ultrafilters
and _J-partition-ultrafilters, respectively, on w.

2. Topologies on PUFc ((w)=*) and PUF5((w)=¥)

In the following, we will define two topologies on PUF((w)<*) as well as on
PUF5 ((w)=), but let us do it just for PUFc ((w)=¥). First define for each X € (w)=¥

21
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two sets
(X)" :={% € PUF((w)=¥) : X € 7}

and

(X) ={7z¢€ PUF;((w)S“’) X ¢z} = PUF;((w)S“’) \ (X)*.
Set O := {(X)T: X € (w)*¥}and O~ := {(X)™ : X € (w)=¥} and call the topology
generated by O the positive topology 7% and the topology generated by O~ the
negative topology 7. Note that O% is a base for 7", but O~ is not a base for 7.
This difference accounts for some of the asymmetries. In the same way we can define
the negative and positive topology on PUF5((w)<¥).

In the sequel, the topological space (PUFc ((w)=¥),7") is denoted by PUF{ ((w)=*)
and (PUFC ((w)=¥),77) is denoted by PUFZ ((w)=¥). Similarly, (PUF5((w)=¥),7 ") is
denoted by PUFY, ((w)=*) and (PUF5((w)=*),7~) by PUF5((w)=¥).

Let UF(P(w)) denote the set of ultrafilters over w and let UF([w]*) denote the
set of non-principal ultrafilters over w. Following the construction above, one can
define four topologies on UF(P(w)), namely UFE(P(w)), UFC (P(w)), UFS(P(w)) and
UFS (P(w)), but each of these topological spaceg is homeomc_)rphic to ﬂw,_the space of
ultrafilters over w. Further, one can also define four topologies on UF ([w]*) (which is
the set of non-principal ultrafilters over w), namely UF{ ([w]?), UFc ([w]*), UFZ ([w]?)
and UF5 ([w]“’), but each of these topological spaces is ‘homeomorphic to Sw \7w, the
space of non-principal ultrafilters over w.

FACT I11.2.1. The spaces PUF[ ((w)=*), PUF_ ((w)<¥), PUFY ((w)=*) and PUF5 ((w)=*)
are all Ty spaces (i.e., all singletons are closed).

PROOF. For any singleton {#} look at [y, (X)" for the positive topology and
Uxes (X)~ for the negative topology. A simple argument using the maximality of
partition-ultrafilters shows that these sets are just the complement of {Z}. But since
they are open in the respective topologies, {7} is closed in either topology. —

3. The spaces PUF/ ((w)<¥), PUF_ ((w)<*), PUF((w)=*) and PUFS((w)<*)

3.1. Principal spaces. We shall call a topological space principal if it contains
an open set with just one element. Being principal is obviously a property preserved
under homeomorphisms, so it is a topological invariant. Concerning PUFt ((w)g“’), we
like to mention the following:

FACT IIL3.1. If 7 € PUFL ((w)=*) and % contains a finite partition, then there is a
2-block partition X such that 7 = {Y € (w)<¥: X C Y}, and hence, 7 is principal.

PROOF. Let m := min{n : 3V € Z/(|Y| = n)}. This minimum exists by assumption.
Let X € 7 be such that |X| = m.

First we show that for all Y € 72 we have X C Y. Suppose this is not the
case for some Y € 7/, then we have X # X MY € 7 (since 7 is a filter), which
implies | X MY| < |X| = m and contradicts the definition of m. On the other hand,
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there is a 2-block partition Z with Z C X, and because Z C X we get Z C Y
for any Y € 7. Therefore, since 7 is an ultrafilter, we get Z = X, which implies
{YeW:XCY}=%and m=2. —
This leads to the following observation:

FACT I11.3.2. The space PUFE((w)S‘”) is a principal topological space, whereas the
space PUFY ((w)=*) is non-principal.

PROOF. That PUF{((w)=*) is principal follows directly from Fact IIL3.1. For the
second assertion we note that for every partition Y € (w)=¥ we find Z;,Z, € (w)=*
such that Y C Z,, Y C Zy and Z, U Z, ¢ (w)=¥, and therefore, we find 71, 7 €
PUF;((w)S“’) with 7, € 771 and Z; € 75, which implies that 7/, and 7’5 both belong
to (Y)*. So, for each Y € (w)=¥, the set ()" is not a singleton. In fact, by this
argument, PUFY ((w)=¥) does not have any finite open sets. —

3.2. The space PUF{((w)<¥). First notice that like in the space Sw, the principal
C-partition-ultrafilters form a dense set in PUFJ,:“((w)S“’), but since there are contin-
uum many 2-block partitions (one for each subset of w), they cannot witness that the
space PUFE((w)S“’) is separable. Moreover, we get the following

OBSERVATION II1.3.3. The space PUF ((w)=) is not separable.

PROOF. Spinas proved in [62] that there is an uncountable set {X, : 1 € I} C (w)*
of infinite partitions such that X, M X, = {{w}} whenever . # /' (see the end of
Chapter IT). Thus, (X,)" N (X,)™ = 0 (for © # /'), which implies that there is no
countably dense set in the space PUFE((W)Sw). =

PROPOSITION IIL.3.4. The space PUF{ ((w)=*) is a Hausdorff space.

PROOF. Let 7 and 7" be two distinct C-partition-ultrafilters. Because 727 # 7 and
both are maximal C-partition-filters, we find partitions X € 27 and Y € 7" such that
XY = {{w}}. Thus, we get 7 € (X)*, 7" € (V)" and (X)" N (V)" =0. -

For two partitions X,V € (w)=* we write X LcY if X MY = {{w}}. Before we
prove the next proposition, we state the following useful

LEMMA II1.3.5. If Xj,..., X, € (w)S¥ is a finite set of non-trivial partitions, then
there is a non-trivial partition ¥ € (w)=“ such that Y L X; for all i < n.

PROOF. Let Z, := Min(X,). If Z; is such that Z; N X; 1 (k) # 0 for every k < |X;,4],
then Z;;; = Z;. Otherwise, we define 7,1 O Z; as follows: If Z; N X; (k) # 0,
then Z’i+1 N Xl+1(k) = Zz N XZ+1(I{Z), and if ZZ N Xl+1(k) = @, then Zi+1 N X'H»l(k) =
min(X; (k). It is easy to see that w \ Z; is infinite for every ¢ < n. Finally, let
Y = {Y(0),Y(1)} € (w)¥ be such that Z, C Y (0) and by construction we get

PROPOSITION 111.3.6. The space PUF{ ((w)<*) is not compact.



24 COMBINATORIAL PROPERTIES OF PARTITIONS

PROOF. Let A= {(X)*: X € (w)}, then it is easy to see that | J.A = PUF{((w)=¥).
We will show that A is a cover with no finite subcovers. Assume to the contrary that
there are finitely many infinite partitions Xy, ..., X, € (w)* such that (Xo)*U...U
(Xn)" = PUF{ ((w)=¥). By Lemma II1.3.5 we find a non-trivial partition ¥V € (w)<¥
such that Y LcX; (for all i < n). Let % € PUF((w)=*) be such that ¥ € 7, then
X; ¢ 7 (for all i < n), which contradicts the assumption. —

3.3. The space PUF_ ((w)<).
PROPOSITION II1.3.7. The space PUFE((w)S“’) is not a Hausdorff space.

PROOF. Let 27 and 7" be two distinct J-partition-ultrafilters. Take any non-trivial
partitions Xy, ..., X, Yp,...,¥; € (w)=¥ such that

7€ (Xo) N...N(Xy) and 77 € (Yo) N...N(Ye) .
Now, by Lemma II1.3.5, there is a non-trivial partition Z such that Z1-X,; (for
i < k) and ZLcYj (for j < £), which implies Z € (,,.(Xi)™ N [;,(Y;)". Hence,
Nick (Xi)™ N;<,(Y7)™ is not empty. =

PROPOSITION II1.3.8. The space PUFZ ((w)=*) is countably compact.

PROOF. Let A = {N4; : i € w} be such that [JA = .., (N 4:) = PUF((w)=),
where each A, is a finite set of open sets of the form (X)~ for some X € (w)<“. Assume
Uier (N A;) # PUF((w)=¥) for every finite set I C w. If A; = {(X§) ..., (X}) "}
and A; = {(X})~,...,(X7)} and N4, UNA; # PUF ((w)=*), then we find a
% € PUFc((w)=¥) such that 2~ € PUF((w)=¥) \ (N 4; UN4;). Hence, there are
k < n and ¢ < m such that X} and X/ are both in 7, which implies X} N X/ #
{{w}}. We define a tree T as follows: For n € w the sequence (so, ... ,s,) belongs
to T if and only if for every i < n there is an (X})~ € A; such that s; = X} and
(soM...Ms,) # {{w}}. The tree T, ordered by inclusion, is by construction (and by
our assumption) a tree of height w and each level of T is finite. Therefore, by Konig’s
Lemma, the tree T’ contains an infinite branch. Let (X : i € w) be an infinite branch
of T, where X' € A;. By construction of T', for every finite I = {ig,...,1,} C w we
have X ... 1 X' # {{w}}. Thus, the partitions constituting the branch have
the finite intersection property and therefore we find a 72 € PUF;((w)S“’) such that
X' e 7 forevery i € w. Now, 7 ¢ |J,.,(X")~ which implies that 7 ¢ J.A, but this
contradicts | J.A = PUF¢ ((w)=¥). -

3.4. The space PUFY ((w)=¥).

PROPOSITION II1.3.9. The space PUFY ((w)=*) is a Hausdorff space.

PROOF. Let 7 and 7~ be two distinct J-partition-ultrafilters. Because 7z # 7~
and both are maximal filters, we find partitions X € 7z and Y € 7 such that
X UY ¢ (w)s“. Hence we get 77 € (X)*, 77 € (V)" and (X)" N (V)T = 0. -
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For two partitions X,V € (w)=¥ we write X 17V if X MY ¢ (w)=*. Before we
prove the next proposition, we state the following useful

LEMMA I11.3.10. If Xj,..., X, € (w)<¥ is a finite set of non-trivial, finite partitions,
then there is a finite partition Y € (w)<* such that Y 15X, for all i < n.

PROOF. Define an equivalence relation on w as follows:
st <— Vi,k(s € Xi(k) - te Xz(k))

Because every partition X; is finite and we only have finitely many partitions X;, at
least one of the equivalence classes must be infinite, say I. Since each block of each
partition X; is infinite and the partitions have been assumed to be non-trivial, we
also must have w \ I is infinite. Let Iy := I and define I;y; := L;U{s;y1} in such a
way that for any ¢t € I we have s,41 € X;11(k) =t ¢ X;p1(k). Let Y :={[,,w\ I,,},
then Y € (w)=¥ and for every i < n, Y U X; contains a finite block and therefore,
Y 15X, (for all i < n). 1

PROPOSITION IT1.3.11. The space PUFZ ((w)=*) is not compact.

PROOF. Let A = {(X)": X € (w)<“}, then it is easy to see that | J A = PUF5 ((w)=¥).
Assume to the contrary that there are finitely many finite partitions Xy,...,X, €
(w)<¥ such that (Xo)* U...U (X,)" = PUF5((w)=*). By Lemma IIL.3.10 we find a
Y € (w)<“ such that Y 15X, (for all i < n). Let 7 € PUF5((w)=¥) be such that
Y € 7, then X; ¢ 7 (for all i < n), which contradicts the assumption. —

3.5. The space PUF- ((w)=).
PROPOSITION I11.3.12. The space PUF5 ((w)=¥) is not a Hausdorff space.

PROOF. We first show that if 22 € (X)~ for some X € (w)*, then there is an
X' € (w)<¥ such that X' C X (and therefore (X')” C (X)7) and 7 € (X')". Since
7 € (X)7, there is a Y € p such that Y U X ¢ (w)=¥, which is equivalent to the
following statement (recall that we only allowed infinite blocks): There are y € Y
and z € X such that z Ny is a non-empty, finite set. Now, for X' := {z,w \ z} we
obviously have X' C X and p € (X')".
Let 2 and 7~ be two distinct J-partition-ultrafilters and take any partitions
X0y s X, Yo, ..., Y] € (w)=¥ such that 27 € (Xo) " N...N(Xg) and 7" € (Y) N
.N (Y;)~. By the fact mentioned above we may assume that the X;’s as well as
the Y;’s are finite partitions. Now, by Lemma II1.3.10, there is a finite partition Z
such that Z15X; (for ¢ < k) and Z_15Y; (for j <), which implies Z € [,.,.(X;)™ N

M;</(Y3)™. Hence, M, (Xi)~ N, (¥;)” is not empty. 4
PROPOSITION I11.3.13. The space PUF5 ((w)=¥) is countably compact.

PrROOF. Replacing “I1” by “LJ” and “C” by “J”, one can simply copy the proof of
Proposition III.3.8. —
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3.6. Conclusion. Now we are ready to state the main result of this paper.

THEOREM I11.3.14. None of the spaces PUFL ((w)<¥), PUF_ ((w)<*), PUFY ((w)=) and
PUF4 ((w)f‘“) is homeomorphic to fw or fw \ w. Moreover, no two of the spaces fw,
Bw \ w, PUFL ((w)=¥), PUF_ ((w)=*) and PUFY ((w)=) are homeomorphic.

PROOF. The proof is given in the following table which is just the compilation of the
results from the previous sections. The separation property T; holds for all spaces
and thus does not help to discern any two of these spaces; it is just included for
completeness.

Bw | Bw\w || PUFE ((w)=*) | PUFC ((w)=*) | PUFY ((w)=¥) | PUFS ((w)=¥)
principal YES No YES No
T YeEs | YES YES YES YES YES
Hausdorff YEs | YEs YESs No YESs No
ctb. compact || YES | YES YES YES
compact YeEs | YES No No

4. About the space PUFL ((w))

In the following we investigate the space PUF{((w)), where PUFc ((w)“) denotes
the set of all non-principal C-partition-ultrafilters.

Notice first that for X,Y € (w)“, in PUF{((w)¥) we have (X)* C (V)" if and
only if X C* Y.

4.1. The height of tree m-bases of PUF((w)“). We first give the definition of
the dual-shattering cardinal $, which will be further investigated in Chapter V. A
family .o/ C (w)* is called maximal almost orthogonal (mao) if .o/ is a maximal
family of pairwise orthogonal partitions (see also the end of Chaper IT). As a matter
of fact we like to mention that every infinite mao family has the cardinality of the
continuum (cf. [12]| or [62]). A family .22 of mao families of partitions shatters a
partition X € (w)¥, if there is an .o/ € .27 and two distinct partitions in .27 which are
both compatible (i.e., not orthogonal) with X. A family of mao families of partitions
is shattering if it shatters each partition of (w)“. The dual-shattering cardinal $
is the least cardinal number x for which there is a shattering family of cardinality «.

The dual-shattering cardinal  is a dualization of the well-known shattering num-
ber h introduced by Bohuslav Balcar, Jan Pelant and Petr Simon in [1] and the letter
h comes from the word “height”. In [1] it is proved that

h = min{x : there is a tree w-base for fw \ w of height £},

where a family B of non-empty open sets is called a w-base for a space S provided
every non-empty open set of S contains a member of B, and a tree w-base T is
a m-base which is a tree when considered as a partially ordered set under reverse
inclusion (i.e., for every ¢ € T the set {s € T : s D t} is well-ordered by D). The
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height of an element ¢ € T is the ordinal « such that {s € T : s D t} is of order type
a, and the height of a tree T is the smallest ordinal o such that no element of T" has
height a.

One can show that H < h and < &, where & is the dual-splitting cardinal
(cf. [12] or see Chapter V).

It is consistent with ZFC that £ = X, = 2% (see Chapter V or [22]) and also that
N, = H < b =R, (cf [62]). Further, it is consistent with ZFC + MA + 2% = R, that
H=N < [’) =N, (Cf [10])
Following Balcar, Pelant and Simon, it is not hard to prove the following

PROPOSITION I11.4.1. Let £ be the dual-shattering cardinal defined as above, then
$ = min {x : there is a tree 7-base for PUF ((w)®) of height «} .

PROOF. Bearing in mind that for every countable decreasing sequence of basic open
sets (Xo)T D (X1)" D ... D (X,)* D ... there is a basic open set (V) such that for
all i € w we have (Y)™ C (X;)" (cf. [46, Proposition 4.2]), one can follow the proof
of the Base Matrix Lemma 2.11 of [1]. —

Because the shattering number and the dual-shattering cardinal can be different,
this gives us an asymmetry between the two spaces fw \ w and PUF{ ((w)®).

4.2. On P-points in PUF{((w)). In this section we give a sketch of the proof that
P-points exist in PUFE((w)“) if we assume CH, and that in general, both existence
and non-existence of P-points are consistent with the axioms of set theory.

An C-partition-ultrafilter % in PUF{ ((w)) is a P-point if the intersection of any
family of countably many neighbourhoods of 7 is a (not necessarily open) neighbour-
hood of 7.

First we show that a P-point in PUFf ((w)®) induces in a canonical way a P-point

in fw \ w.

LEMMA IIL.4.2. If there is a P-point in PUF{ ((w)“), then there is a P-point in fw \ w
as well. -

PROOF. Let 7 be a P-point in PUF ((w)“), then it is not hard to see that the filter
generated by {Min(X) : X € p} is a P-point in fw \ w. -

PROPOSITION I11.4.3. It is consistent with ZFC that PUF{ ((w)) does not contain any
P-point. -

PROOF. Saharon Shelah proved in [60, Chapter VI, §4] that it is consistent with ZFC
that there are no P-points in fw \ w. But in a model of ZFC in which there are no
P-points in fw \ w, there are also no P-points in PUFE((w)“’) by Lemma I11.4.2.

Let W = ((w)¥, <) be the partial order defined as follows:
X<Y «— XLC"Y.

The forcing notion W is a natural dualization of P(w)/fin.



28 COMBINATORIAL PROPERTIES OF PARTITIONS

LEMMA IIL4.4. If G, is W-generic over V, then G, is a P-point in PUF{ ((w)*) in the
model V[G,]. -

PROOF. First notice that the forcing notion W is o-closed (cf. [46, Proposition 4.2|)
and hence, W does not add new reals. For every countable set of neighbourhoods
{N; : i € w} of the filter G), we find a countable set of partitions {X; : i € w} C G,
such that (X;)* C N; and X; C* X for i > j. Now, since every partition X € (w)
can be encoded by a real number and W does not add new reals, there is a W-
condition Y which forces that the sequence Xy *3 X;*3J ... belongs to V, and since
W is o-closed we find an infinite partition Z C Y such that Z C* X for every ¢ € w.
Hence, Z forces that (Z)* belongs to [,., Vi and that Z belongs to G,,. —

€W
PROPOSITION II1.4.5. Assume CH, then there is a P-point in PUFE((w)“).

PROOF. Assume V |= CH. Let x be large enough such that P((w)*) € H(x), i.e.,
the power-set of (w)¥ (in V) is hereditarily of size < x. Let N be an elementary
submodel of (H (x), €) containing all the reals of V such that |N| = 2%. We consider
the forcing notion W in the model N. Since |N| = 2% in V there is an enumeration
{D, C (w)* : a < 2%} of all dense sets of W which lie in N. Since W is o-
closed and because V = CH, W is 2%_closed in V and therefore we can construct
a descending sequence {X, : o < 2%} in V such that X, € D, for each a < 2%,
Let G, := {X € (w)* : X, C X for some X,}, then G, is W-generic over N. By
Lemma I11.4.4 we have N[G,] | “there is a P-point in PUFf ((w)“)” and because N
contains all reals of V and every countable descending sequence of basic open sets
(Y;)™ can be encoded by a real number, the P-point G, in the model N[G,] is also a
P-point in PUFJE((w)“’) in the model V, which completes the proof. —



CHAPTER IV

The Partition Form of Ramsey’s Theorem

In this chapter we present a generalized version of Carlson’s Lemma which can be
seen as the partition form of Ramsey’s Theorem.

1. Historical background

The earliest results in Ramsey Theory are the theorems of Bartel L. van der
Waerden and Frank P. Ramsey. We begin by discussing van der Waerden’s Theorem:

VAN DER WAERDEN’S THEOREM. For all n,r € w there exists an N € w such that
for every coloring of {0,..., N} with r + 1 colors, there exists a monochromatic
arithmetic progression of length n + 1.

This result was first proved by van der Waerden in [67] (for a short but not easy
proof see [20] and for a description of how van der Waerden found his proof we
refer the reader to [68]). Almost 40 years after van der Waerden’s proof, Alfred W.
Hales and Robert I. Jewett found a proof for a proper combinatorial statement which
implies van der Waerden’s Theorem. To state the Hales-Jewett Theorem, we first
have to give the definition of a combinatorial line.

Forn, N € w where N > 0, aset {xq,...,z,} C {0,...,n}" is called a combina-
torial line iff for each m < N we have x;(m) = ¢ (for all i < n) or z;(m) = z;41(m)
(for all i < n); and the former case is true for at least one m < N. Now we can
formulate the

HALES-JEWETT THEOREM. For all n,r € w, there exists a positive natural num-
ber N such that for every coloring of {0,...,n}" with r + 1 colors, there exists a
monochromatic combinatorial line.

This result was first proved by Hales and Jewett in [31] (a very sophisticated
proof providing a primitive recursive bound for the Hales-Jewett function is given by
Shelah in [59]).

On December 16th, 1929, Ramsey’s article “On a problem of formal logic” was
issued (cf. [57]). This article begins with two combinatorial theorems which are The-
orem A and Theorem B. Because the second one follows from the first one, we consider
Theorem A as the “Ramsey Theorem”, also called “Ramsey’s Theorem”, and call The-
orem B the “Finitary Ramsey Theorem”, because it is the finite version of Theorem A.

In order to state these two theorems of Ramsey, we have to give again some
notations.

29
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For n € w, we denote the set of all n-element sets of natural numbers by [w]".
Further, for any set of natural numbers H and n € w, [H]" denotes the set of all
n-element subsets of H. Ramsey’s Theorem states as follows.

RAMSEY’S THEOREM. For every n € w and for every coloring of [w]™ with finitely
many colors, there exists an infinite set H C w such that [H]™ is monochromatic.

The finite version of Ramsey’s Theorem, which is Theorem B of [57], is the fol-
lowing:

FINITARY RAMSEY THEOREM. For all m,n,r € w, where n < m, there exists an
N € w such that for every coloring of [N]" with r 4+ 1 colors, there exists a set
H € [N]™ such that [H]" is monochromatic.

The Finitary Ramsey Theorem was discovered and proved independently by Paul
Erdos and George Szekerés (see [16]). They arrived at it in the following geometrical
context.

ERDOS-SZEKERES THEOREM. For every n € w, there exists an N € w with the
following property: If P is a set of N points of the Euclidean plane without 3 colinear
points, then P contains n points which form the vertices of a convex n-gon.

The Hales-Jewett Theorem and the Finitary Ramsey Theorem are commonly con-
sidered as the two main roots of Ramsey Theory. Both results are coloring theorems
of the same type, so it is surprising that they remained quite unrelated for a long time
until Ronald L. Graham and Bruce L. Rothschild extended in [19] the Hales-Jewett
Theorem in a remarkable way. Using the notion of n-parameter sets, they proved a
result (|19, Corollary 10]) from which one can derive both the Hales-Jewett Theorem
and the Finitary Ramsey Theorem (see also [55]). For any set X and n € w, let (X )"
denote the set of all partitions of X containing exactly n pieces.

GRAHAM-ROTHSCHILD RESULT. For any m,n,r € w, where m > n, there exists a
natural number N such that for every coloring of (V)™ with r + 1 colors, there exists
a partition P € (N)" such that (P)™ is monochromatic.

This result looks very similar to the Finitary Ramsey Theorem. The relation
becomes clearer if we consider an n-element subset of N as an injective function from
n into N, and similarly, a partition of N containing n pieces as a surjective function
from N onto n, where we identify in both cases two functions if they are equal modulo
a permutation of n. Therefore, partitions with n pieces are a dual form of sets with
n elements (see also Chapter I).

For more background and further results in Ramsey Theory we refer the reader
to [50] and [21].

Ten years after Graham and Rothschild proved their combinatorial result, Steve G.
Simpson tried to prove a dual version of the Ramsey Theorem and succeeded with
the help of Timothy J. Carlson. The original motivation of Simpson to prove such a
dualization of Ramsey’s Theorem was to find a combinatorial statement which is like
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the theorem of Leo Harrington and Jeff Paris (cf. [52]), but stronger in the sense that
it cannot be proved in reasonably strong subsystems of second-order arithmetic. The
crucial point in the proof of the so-called Dual Ramsey Theorem, which is Theorem 1.2
of [11], is the Lemma 2.4 of [11], which was proved in a slightly stronger form by
Carlson (cf. [11, Theorem 6.3]). In the following we give a slightly more general
version of Carlson’s Lemma which can be seen as the partition form of Ramsey’s
Theorem.

2. The partition form of Ramsey’s Theorem

Remember that for s € (N), s* denotes the partition s U {{dom(s)}}, and notice
that [s*| = |s| + 1.
For s € (N) and X € (w)* with s C X, let
(5, X) :={YV € (w):s<YLC X}.
A set (s, X)“, where s and X are as above, is called a dual Ellentuck neighbor-
hood (cf. [11, p.275] or Chapter V).

For a natural number n, let (w)™ denote the set of all u € (N) such that |u| = n.
Further, for n € w and X € (w)“ let

(X)"™ :={ue(N):|u/=nAu"C X};
and if s € (N) is such that |s] <n and s C X, let
(s, X)" :={ue (N): |Juj=nAs<uAu"CX}.
With the notation given above, we can state our main result as follows:

THEOREM IV.2.1. For any coloring of (w)™ with r + 1 colors, where r,n € w and
n > 0, there exists an infinite partition X € (w)* such that (X)™ is monochromatic.

To prove the Theorem IV.2.1, we will make use of Carlson’s Lemma (see [11,
Lemma 2.4|). In our notation it reads as follows.

CARLSON’S LEMMA. For any coloring of (w)™ with r 4+ 1 colors, where r,n € w and
n > 0, and for any dual Ellentuck neighborhood (s, X')“, where |s| < n, there exists
aY € (s, X)% such that (s,Y)™ is monochromatic.

With this result we are prepared to give the

PROOF OF THEOREM IV.2.1. The proof is by induction on n. For n = 1, Theo-
rem [V.2.1 follows immediately from Carlson’s Lemma. So, let n,r € w be given such
that 1 < n and assume that Theorem IV.2.1 is already proved for all n’ € w with
n' < n.

Fix an arbitrary coloring 7 : (w)™ — r + 1. Let X € (w)* and let so € (N) be
such that |so] = n — 1 and s§ < Xj. Further assume we already have constructed
X; € (w)¥ and s; € (N) such that |s;] = (n— 1) +i and sf < Xj.

We construct partitions s;;; and X;,; with the same properties as above. As a
byproduct, the construction yields a partial mapping x from (w)®™=D* to r + 1.
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Let {t; € (N) : k < h;} be an enumeration of all ¢ C s; with dom(¢) = dom(s;)
and |t| =n — 1. Let Y, := Xj, then by Carlson’s Lemma, for each k there exists a
Vi€ (st, Y} |)“ such that 7|41y v;)n- 18 constant, say

Tl vy = X ()

Let Xjy1 := Y} and let s;41 € (N) be such that sf,; < X;11 and [s;41] = (n — 1) +
(i + 1). Finally, let Y € (w)” be the unique partition such that for all i € w we
have s; < Y. For each u € (Y)"* there exist exactly two numbers i, k € w such that
(t:)* < u, and we can define
x(u) = x(t;) -

Notice that x(u) is well defined for every u € (Y)™*. By the induction hypothesis we
find a Z € (Y)* such that x| ;m-1+ is constant, say x|zm-n- = {j}. Let s* £ Z
be such that |s| = n and let s§j < s be such that |sy] = n — 1. The domain of
s, dom(sp), corresponds with dom(s;) for some i € w. Consider now the partition
X;41. By the construction of X;,; we know that for all ¢t C s; with |[t| = n — 1
and dom(t) = dom(s;) we have 7|+ x,, )=+ is constant and by the construction of Z,
this constant value is j, thus 7| x, = = {j} and in particular 7(s§) = j. Hence,
because (s, Z)“ C (s§, Xit1)”, we get 7(s) = j, which completes the proof. —

3. A weakened form of the Halpern-Liuchli Theorem

One can show that the Finitary Ramsey Theorem, the Ramsey Theorem as well
as the Hales-Jewett Theorem, the Graham-Rothschild Result and a weakened form
of the Halpern-L&auchli Theorem are derivable from Theorem TV.2.1. We just give the
proof for the weakened Halpern-Léuchli Theorem (the full form, proved by James D.
Halpern and Hans Lauchli, can be found in [32]).

To state this weakened form, we have to give first some notations: For k£ € w, let
*2 be the set of all functions p : k — 2 and let 2< := [, 2. A set T C 2<% is
called a tree if for every p € T and k < dom(pu) we have pl, € T. So, the set 2<%
itself forms a tree. For a tree T' C 2<¥ and [ € w let

T(l):={peT:dom(u)=1}.
HT=Tyx...xTy ,C (2<“)d where d € w is a product of trees T; C 2<“, then for
[l €wlet
T :={peT peTyll) x...x Ty_i(I)}.

A tree T' C 2<% is called perfect if for each u € T there exist two distinct functions
vy, 1 € T such that dom(vy) = dom(rq) and vg|dom(u) = V1]dom(p) = 1

COROLLARY IV.3.1. For every positive d € w, and for every coloring of |J,., (12)d
with finitely many colors, there exists a product of perfect trees T% = Ty x ... x Ty_;
and an infinite set H C w such that J;,c,, T%(1) is monochromatic.
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PROOF. Let d be a fixed positive natural number and let n := 2¢. Because |?2| = 2,
there exists a one-to-one correspondence ¢ between n and 92. For any [ € w, an

element (19, ... , g 1) € (l2)d is a sequence of length d of functions p; : | — 2. For
any | € w we define the function & : (12)d — (d2)l as follows:

E((pos - -+ ta1)) = (o, - - -, 1) where v;(i) := p;(j) -

Notice that for each [ € w, the function £ is a one-to-one function from (l2)d onto
(d2)l. Now we define the function 7 : (w)™ — (2<“)d by

n(s) ==& (o, .-, Vdom(s)-1)) »
where v;(1) := ((k)(:) for j € s(k). Note that n(s) € (dom(s)Q)d. Finally, for any
coloring 7 : (U, (l2)d — r + 1, where r € w, we define the coloring 7 : (w)™ —
r + 1 by stipulating 7(s) := m(n(s)). Let X € (w)* be as in the conclusion of

Theorem IV.2.1 (w.r.t.the coloring 7). Let sX < X be such that |s,| = n and let
H := Min(X) \ Min(s,). Further let

Spi={te(N):t<s, V (s, <tCXAt|]=n)}
and define
T :={p:3t € Su(n=n(t)}.

We leave it to the reader to check that 7% and H are as desired and that they have
the desired properties. —

4. The “dual form” of Ramsey’s Theorem versus its “partition form”

Let us compare Theorem IV.2.1 with the so-called Dual Ramsey Theorem of Carl-
son and Simpson (cf. [11, Theorem 1.2]). The following notations are used to state
their Dual Ramsey Theorem.

For n € w let (w)™ denote the set of all partitions of w containing exactly n blocks
and for X € (w)“ let

(X)":={Yew":YCX}.
For s € (N) let Oy := {X € (w)" : s < X} C (w)". For a finite set S C (N) define
Bs := (),cq Os, then the set of all Bg, where S C (N) is finite, forms a basis of a
topology on (w)"™. Now we can formulate the

DUAL RAMSEY THEOREM. If 7 : (w)" — r+ 1, where n,r € w, is such that for each
i <r, 7 (i) is a Borel set (with respect to the product topology), then there exists
an X € (w)¥ such that 7|y is constant.

A restriction on the coloring is necessary because one can show — using AC — that
there exists a coloring of (w)? with 2 colors such that for no infinite partition X, (X)?
is monochromatic.

As mentioned above, the Graham-Rothschild result is —in terms of partitions —
the analogue of the Finitary Ramsey Theorem, but stronger in the sense that it also
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implies the Hales-Jewett Theorem (which deals in some sense also with partitions).
Further, the Graham-Rothschild result, the Finitary Ramsey Theorem, the Hales-
Jewett Theorem, are completely finite results. On the “infinite” side we have the
Dual Ramsey Theorem, which is in some sense the analogue — in terms of partitions —
of the Galvin-Prikry result. Putting all together, we get the following diagram, where
the “partition-results” are on the left, results dealing with “sets of singletons” are on
the right, and where an arrow means an implication:

Dual Ramsey Theorem

777 — Ramsey Theorem

l

Graham-Rothschild ——— Finitary Ramsey Theorem

Hales-Jewett

What is missing in this diagram is a “partition version” of the Ramsey Theorem,
or equivalently, an infinite version of the Graham-Rothschild result. Now, Theo-
rem [V.2.1 fills this gap, and even though it is just a consequence of the Dual Ramsey
Theorem, one can define in a natural way its associated filters, which will play an
important role in Chapter VII (see also [24]). (Notice that such a construction does
not exist with respect to the Dual Ramsey Theorem.) These partition-filters can be
seen as a strengthened version of the well-studied Ramsey filters over w, and they are
important in the investigation of the combinatorics of Dual Mathias forcing, which is
the “partition version” of Mathias forcing (cf. Chapter VII).

As mentioned above, the Dual Ramsey Theorem does not hold for arbitrary col-
orings. This is similar to the case when the infinite subsets of w are colored: One
can show — using AC — that there is a coloring of [w]¥ with 2 colors, such that for no
S € [w]?, [S]¥ is monochromatic. This yields to the following property of colorings of
).

RAMSEY PROPERTY: A finite coloring of [w]“ has the Ramsey property, if there is a
set S € [w]¥ such that [S]* is monochromatic.

Fred Galvin and Karel Prikry proved in [17] that every Borel-coloring has the
Ramsey property. Moreover, Jack Silver has shown in [61]| that this holds also for
every analytic coloring.

There is a natural analogue of the Galvin-Prikry result in terms of partitions,
namely the so-called Dual Galvin-Prikry Theorem (see [11, Theorem 1.3]), and sim-
ilar to the Galvin-Prikry result, the Dual Galvin-Prikry Theorem yields to the dual
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Ramsey property (introduced in [11]). Further, in Chapter VI (see also [23]) we will

see that also every analytic coloring has the dual Ramsey property.
With these results, we get the following diagram:

Dual Galvin-Prikry —— Galvin-Prikry
Theorem IV.2.1 —— Ramsey Theorem

l l

Graham-Rothschild —— Finitary Ramsey Theorem

Considering these symmetries between the Ramsey Theorem and Theorem IV.2.1, it
is reasonable to consider Theorem IV.2.1 as the partition form of Ramsey’s Theorem.
Another Ramsey type theorem which is slightly stronger than Theorem IV.2.1 can be

found in [28].
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CHAPTER V

The Shattering Cardinal and the Dual Ramsey Property

In Chapter IIT Section 4.1 we defined the dual-shattering cardinal $ as the min-
imum height of a tree m-base of PUFJ,:“((w)“). In this chapter we will give some
equivalent definitions of $ and show that £ > w; is consistent with ZFC.

1. The dual Ellentuck topology and the dual Ramsey property

First we define a topology on the set of infinite partitions: Let X € (w)“ and
s € (N) such that s C X, then
(s, X) ={V € (w)¥:s<YAYLCX}
and
(X)7:= (0, X)~.

Now, let the basic open sets on (w)“ be the sets (s, X)“ (where X and s as above).
These sets are called the dual Ellentuck neighborhoods. The topology on (w)“
induced by the dual Ellentuck neighborhoods is called the dual Ellentuck topology
(cf. [12]).

Let 7 C (w)¥ be a set of partitions, then we say that % has the dual Ramsey
property, or that #” is dual Ramsey, if there is a partition X € (w) such that
(X)¥ C Z or (X)“Nn z = . If for each dual Ellentuck neighborhood (s, Y)“ there is
an X € (s,Y)“ such that (s, X)¥ C # or (s,X)“N ¢ =0, we call # completely
dual Ramsey. If for each dual Ellentuck neighborhood the latter case holds, we say
that 7" is completely dual Ramsey null.

REMARK 1. In [11] it is proved that a set is completely dual Ramsey if and only if
it has the Baire property with respect to the dual Ellentuck topology, and that it
is completely dual Ramsey null if and only if it is meager with respect to the dual
Ellentuck topology. From this it follows that a set is completely dual Ramsey null if
and only if the complement contains a dense and open subset (with respect to the
dual Ellentuck topology).

Let R} be the set of sets of partitions which are completely dual Ramsey null.
The set R} C P((w)“) is an ideal which is not prime. Let us consider the additivity
number add(R}) and the covering number cov(R?) of the ideal R): add(R}) is
the smallest cardinal  such that there exists a family 7 = { 7, € R} : a < k} with
U/ ¢ R>; and cov(R}) is the smallest cardinal  such that there exists a family
7 ={/a € R):a <k} with | 7 = (w).
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Because (w)“ ¢ R}, it is clear that add(R?) < cov(R}). Further, it is easy to see
that w; < add(R3). Later we will see that add(R?) = cov(R}).

2. The distributivity number dsh(W)

A complete Boolean algebra (B, <) is called s-distributive, where x is a cardinal,
if and only if for every family (u,; : i € I,,a < k) of members of B the following

holds:
1> wai= > ] was

a<k i€ly fe Il In a<k

a<lk
It is well known (cf. [36]) that for a forcing notion (P, <) the following statements
are equivalent:

r.0.(P) is k-distributive (where “r.0.” stands for “regular open”).

The intersection of x open dense sets in P is dense.

Every family of ¥ maximal anti-chains of P has a common refinement.

Forcing with P does not add a new subset of &.

Let the forcing notion W = ((w)¥, C*) be defined as at the end of Chapter I1I, and let
the distributivity number dsb(W) be the least cardinal x for which the Boolean
algebra r.o.(W) is not x-distributive.

3. The four cardinals are equal

Now we will show that the four cardinals 9, add(Rj), cov(R}) and dsb(W) are
all equal. This is a similar result as in the case when we consider infinite subsets of
w instead of infinite partitions (cf. [54] and [1]).

FACT V.3.1. If .77 C (w)¥ is an open and dense set with respect to the dual Ellentuck
topology, then it contains a mao family.

PROOF. First choose an almost orthogonal family .o~ C .77 which is maximal in .7
Now for an arbitrary X € (w)¥, .7 N(X)¥ # (). So, X must be compatible with some
A € .o/ and therefore .o/ is mao. —

LEMMA V.3.2. $ < add(R?).

PROOF. Let (.7, : @ < A < 9) be a sequence of completely dual Ramsey null sets
and let .7, C (w)¥ \ “% (a < A) be such that .77, is open and dense with respect to
the dual Ellentuck topology (which is always possible by Remark 1). For each o < A
let
Tp={Xe W :WeT,(XT"YA~(X=Y))}.

It is easy to see that for each o < A the set T} is open and dense with respect to the
dual Ellentuck topology.

Let U, C T (o < A) be mao. Because A < 9, the set (U, : & < A) cannot be
shattering. Let for o < A U} := {X € (w)¥ : 37, € Uo(X C* Z,,)}, then U C T,

and (,., U; is open and dense with respect to the dual Ellentuck topology:
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() U is open: clear.
<<

() UZ is dense: Let (s, Z)“ be arbitrary. Because (U, : @ < ) is not shattering,
a<A

there is a Y € (s, Z)* such that Vo < A3X, € U,(Y C* X,). Hence, Y €

Further we have by construction

M Uan U Sa =0,

a< a<A

a<A

which completes the proof. —
LEMMA V.3.3. < dsh(W).

PROOF. Let (T, : a < A < H) be a sequence of open and dense sets with respect to

the dual Ellentuck topology. Now the set [, _, Us, constructed as in Lemma V.3.2,

is dense (and even open) and a subset of (,_, T,. Therefore $ < dsh(W). —
LEMMA V.3.4. add(R}) < 9.

PROOF. Let (%, : @ < 9) be a shattering family and for @ <  let
D= {X:3Y € Z(X T* Y)}.

For each a < $, &/, is dense and open with respect to the dual Ellentuck topology:
4 is open: clear.
%, is dense: Let (s, Z)“ be arbitrary and X € (s, Z)“. Because %, is mao, there is
aY € 2, such that X' := X MY € (w)”. Let X" = X' such that X" € (s, Z)“, then
X" C*Y.

Now we show that (),_g Ps = 0 and therefore (J,_g ((w)*\ Z4) = (w)“. Assume
there is an X € [,.¢ T, then Vo < H3Y, € f&?fa(X C* Y,). But this contradicts
that (#, : @ < 9) is shattering. —

LEMMA V.3.5. dsh(W) < 9.

PROOF. In the proof of Lemma V.3.4 we constructed a sequence (f/a ca < 9) of
open and dense sets with an empty intersection. Therefore 1), 9 Pa isnot dense.

COROLLARY V.3.6. cov(R?) < 9.
PROOF. In the proof of Lemma V.3.4, we proved in fact that cov(R?) < 9. —
COROLLARY V.3.7. add(R}) = cov(R}) = dsh(W) = 9.

PROOF. Tt is clear that add(Rj) < cov(Rj). By the Lemmas V.3.3 and V.3.5 we
know that $ = dsb(W). Further by the Lemma V.3.2 and the Corollary V.3.6 it
follows that § < add(Rj) < cov(R}) < . Hence we have add(R}) = cov(R}) =
dsh(W) = . =
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COROLLARY V.3.8. The union of less than $ completely dual Ramsey sets is dual
Ramsey, but the union of £ completely dual Ramsey sets can be a set which does not
have the dual Ramsey property.

PrOOF. Follows from Remark 1 and Corollary V.3.7. —

4. On the consistency of 9> w;

First, let us give some facts concerning the dual Mathias forcing: The conditions
of dual Mathias forcing M’ are pairs (s, X) such that s € (N), X € (w)¥ and
s C X, stipulating

(s, X) < (t,Y) if and only if (s,X)* C (¢,Y)*

(see also Chapter VIL5).

It will be shown in Chapter VI.2 that dual Mathias forcing can be decomposed as
W s M, where W = ((w)¥,C* ) and M’, denotes restricted dual Mathias forcing,
i.e., conditions must have their second coordinate in 7/, where 7 is a W-generic
partition-ultrafilter (see again Chapter VIL.5).

Because dual Mathias forcing has pure decision (see Chapter VI.2), it is proper
and has the Laver property and therefore adds no Cohen reals. (For the definition of
properness and the Laver property we refer the reader to [18].)

After an ws-iteration of dual Mathias forcing with countable support, starting
from a model in which the continuum hypothesis holds, we get a model in which the
dual-shattering cardinal 9 is equal to ws.

Let V' be a model of CH and let P,,, := (P,, Qg c v < wy, f < wy) be a countable

support iteration of dual Mathias forcing, i.e., for all & < wsy, p, “Qn ~ M.

In the sequel we will not distinguish between a member of W and its representative.
In the proof of the following theorem, a set C' C wy is called an w;-club if C' is
unbounded in ws and closed under increasing sequences of length w;.

THEOREM V.4.1. If G is P,,-generic over V, where V' = CH, then V[G] = 9 = ws.

PROOF. In V[G] let (D, : v < wy) be a family of open dense subsets of W. Because
dual Mathias forcing is proper and by a standard Lowenheim-Skolem argument, we
find a wy-club C' C w, such that for each o € C' and every v < w; the set D, NV[G,]
belongs to V[G,] and is open dense in WYI%I Let A € WVl be arbitrary. By
properness and genericity and because P,, has countable support, we may assume
that A € G(«) for an a € C, where G(«)" is the first component according to
the decomposition of Mathias forcing of the Qa[Ga]—generic object determined by G.
As a € C, G(a) clearly meets every D, (v < w;). But now X,, the Q,-generic
partition (determined by G(a)") is below each member of G(«)’, hence below A and
in (,.,, Dv. Because A was arbitrary, this proves that [, ., D, is dense in W and
therefore dsh(W) > w;. Again by properness of dual Mathias forcing V|G| | 240 = w,
and we finally have V[G] E 9 = ws. —
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In the model constructed in the proof of Theorem V.4.1 we have $ > t, where t is
the well-known tower number (for a definition of t cf.[65]). Moreover, we can show
the following:

COROLLARY V.4.2. The statement $ > cov(B,) is relatively consistent with ZFC.

PROOF. Because dual Mathias forcing is proper and does not add Cohen reals, P,,
does also not add Cohen reals. Further it is known that t < cov(B,) (cf. [53] or
[3]). Now because forcing with P, does not add Cohen reals, in V[G], the covering
number cov(B,) is still w; (because each real in V[G] is in a meager set with code in
V). This completes the proof. —

REMARK 2. In [65] Theorem 3.1.(c) it is shown that w < k < t implies that 2% = 2«0,
We do not have a similar result for the dual-shattering cardinal . If we start our
forcing construction P,,, with a model V' |= CH + 2“1 = w3, then again by properness
of dual Mathias forcing we have V[G] E 9 = wy = 20 < 2" = w3, where G is
P,,-generic over V.

REMARK 3. By iterating just Mathias forcing, Spinas showed in [62| that $ < b is
consistent with ZFC. Further, Jorg Brendle has proved in [10] that also MA + w; =
$ < bh =wy = cis consistent with ZFC.

5. The diagram of the results

In ZFC it is provable that < h and $ < &, where & is the dual-splitting cardinal
(cf. [12] or see Chapter IT). Thus, if we summarize the results which are known about
9, we get the following diagram:

T & ¢
b

|

T

01‘1 —— cov(B,)

In the diagram, the cardinal characteristics grow larger as one moves up or to the
right.

Consistency results:
e cov(B,) < 9
e H < cov(B,) (this is because h < cov(B,) is consistent with ZFC)
e MA + w =9H < hZWQ:C
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CHAPTER VI

Symmetries between two Ramsey properties

In this chapter we compare the Ramsey property with the dual Ramsey property,
which was introducted in Chapter V. Even though the two properties are different,
it can be shown that all classical results known for the Ramsey property also hold for
the dual Ramsey property. In particular we will see that the dual Ramsey property
is closed under a generalized Suslin operation (the similar result for the Ramsey
property was proved by Matet). Further we compare two notions of forcing, the
Mathias forcing and a dual form of it, and will give some symmetries between them.

1. Two Ramsey properties and two notions of forcing

First we define a topology on [w]“. Let = € [w]* and a € [w]<¥ such that max(a) <
min(x); then [a,z]” :={y € [w]* : y C (aUx) Aa C y}. Now let the basic open sets
on [w]” be the sets [a, 2]“. These sets are called the Ellentuck neighborhoods. The
topology induced by the Ellentuck neighborhoods is called the Ellentuck topology.

Related to the Ellentuck topology we get the Mathias forcing M, which is
defined as follows:

(a,2) EM & a€w]™ A x€w® A max(a)<min(r),
(a,2) < (by) & bCa AN xCy A (a\b) Cuy.

If (a, ) is an M-condition, then we call a the stem of the condition. The Mathias
forcing M has a lot of combinatorial properties (see [49], [39], or [25]). Note that we
can consider an M-condition (a,x) as an Ellentuck neighborhood [a, z]* and (a, z) <
(b, y) if and only if [a, z]* C [b,y]“.

The classical Ramsey property is a property of sets of infinite subsets of w (of
sets of reals). A set A C [w]“ has the Ramsey property (or is Ramsey) if 3z €
[W]“([z]* € AV [z]* N A = (). If there exists an z such that [z]* N A = () we call A
a Ramsey null set. A set A C [w]¥ is completely Ramsey if for every Ellentuck
neighborhood [s, y]“ there is an z € [s,y]* such that [s,z]* C A or [s,z]* N A =0. If
we are always in the latter case, then we call A completely Ramsey null.

The dual Ramsey property, which is a property of sets of partitions, was
already introduced in Chapter V.1, where one can find also the definition of the dual
Ellentuck topology.

Related to the dual Ellentuck topology we get the dual Mathias forcing M,
which was already defined in Chapter V. Dual Mathias forcing is similarly to Mathias
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forcing, but uses the dual Ellentuck neighborhoods instead of the Ellentuck neighbor-
hoods. So,

(s, X) eM’ & (5,X)* is a dual Ellentuck neighborhood

and
(s, X) < (t,Y) & (s,X)“ C (t,Y)~.
If (s, X) is an M’-condition, then we call s again the stem of the condition. Because
dual Mathias forcing is very close to Mathias forcing, it also has some nice properties
similar to those of M.
Now we can start to give some symmetries between the two Ramsey properties
and between the two Mathias forcings.

2. Basic facts

In this section we give the tools to consider sets of partitions as sets of reals
and to compare the two Ramsey properties. We will give also some basic facts and
well-known results concerning the dual Ramsey property and dual Mathias forcing.
Further we give some symmetries between Mathias forcing and the dual Mathias
forcing.

To compare the two Ramsey properties we first show that we can consider each
A C [w]“ as a set of infinite partitions of w and vice versa. For this we define some
arithmetical relations and functions.

Let n,m € w, then div(n,m) := max{k € w: k-m < n} and

¢{n,m} := %((max{n, m})? — max{n,m}) + min{n, m},

where we consider ¢{n,m} as undefined if n = m.
Let z € [w]¥; then trans(x) C w is such that n ¢ trans(x) iff there is a finite
sequence s of natural numbers of length [ + 1 such that

n=c{s(0),s()} and Vk € {1,... 1}({s(k —1),s(k)} & z).
Note that trans(z) C z. If x € [w]”, then we can consider z as a partition with
0:(n,m) <= n=m or ¢{n,m} & trans(x).

The corresponding partition of a real z € [w]* is denoted by cp(x). Note that
cp(z) € () iff Vk3In > kVm < n (=z(n,m)), and further, if y C z, then cp(y) C
cp(z).

A partition X of w we encode by a real pc(X) (the partition code of X) as
follows.

pe(X) = {k € w:In3Im (k = ¢{n,m} A =lix(n,m))}.

Note that if X; T Xy then pc(X;) C pc(Xs). With these definitions we get the
following.

FAcT VI.2.1. The dual Ellentuck topology is finer than the topology of the Baire
space.
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PROOF. Let s € w< and Us; = {f € w* : s C f} be a basic open set in the Baire
space w”. Because there is a bijection between w* and [w]*, we can write Us as a set

Vi ={r € w]”:s CrAmin(r\ s) > max(s)}.

Now ¢p[Vy|N(w)® (where cp[Vy] := {cp(r) : r € Vi }) is open with respect to the dual
Ellentuck topology. Therefore, the dual Ellentuck topology is finer than the topology
of the Baire space. —

REMARK 1. A similar result is true for the Ellentuck topology (cf. [15]).

FACT VI.2.2. A set C' C (w)” is completely dual Ramsey if and only if C' has the
Baire property with respect to the dual Ellentuck topology and it is completely dual
Ramsey null if and only if it is meager with respect to the dual Ellentuck topology.

PROOF. This is proved in [11]. —

REMARK 2. The analogous result is known for the Ramsey property with respect to
the Ellentuck topology (cf. [15]).

Let us now give some symmetries between the two Mathias forcings: If X is
M -generic over V and Y € (X¢)“, then also Y is MP-generic over V (cf. [11, Theo-
rem 5.5]). From this it follows immediately that M is proper and therefore does not
collapse wj.

Further, for any MP-condition (s, X) and any sentence ® of the forcing language
M, there is an M’-condition (s,Y) < (s, X) such that (s,Y) l-yp ® or (s,Y) IF—pp =@
(cf. [11, Theorem 5.2| ). This property is called pure decision.

REMARK 3. The similar results for Mathias forcing M can be found in [49] (or in
[37]).

We can write dual Mathias forcing as a two step iteration where one first forces
with W = ((w)“,C* ) (defined in Chapter III).

Also Mathias forcing can be written as a two step iteration, where the first step
is the forcing notion U = (P (w)/fin, C*), where x C* y if |z \ y| < w.

FAcT VI.2.3. The forcing notion W is o-closed and if &7 is W-generic over V, then
Min( 2 ) is a Ramsey ultrafilter in V[ &/ ].

PrOOF. Let X7 > X, > ... be a decreasing sequence W-conditions. Choose a
sequence f; (i € w) of finite sets of natural numbers, such that X; ., N {f;} C X,.
Define yo := X(0) and y,, := X, (k) where &k := 3+ J,_, (U fi). Now

Y::{yi:iEw}U(w\in)
1EW
is coarser* than each X; (i € w) and therefore W is o-closed.
Now we claim that the set {Min(X): X € & } is a Ramsey ultrafilter in V[ Z/].
Remember that a forcing notion which is o-closed adds no new reals to 'V (cf. |36,
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Lemma 19.6]). Take a 7 € 2" and a Y € (w)¥, then by Ramsey’s Theorem, for
Min(Y) € [w]* there exists an infinite r C Min(Y) such that 7 is constant on [r]%.
Finally let

Xe={b:beYAbnr#0tul J{b:beyY Abnr=0},

then X C Y and Min(X) = r. Thus, #; := {X € (w)* : T|pin(x)2 18 constant} is
dense in W, and therefore #; N & # (). —

REMARK 4. It is easy to see that the forcing notion U is o-closed. Further we have
that if ¢/ is U-generic over V, then U is a Ramsey ultrafilter in V[Uf].

The forcing notion W is stronger than the forcing notion U.
FAacT VI.24. If 7 is W-generic, then the set {Min(X) : X € 2} is U-generic.

PROOF. Let A C [w]¥ be a maximal anti-chain in U, i.e., A is a maximal almost
disjoint family. Then the set &4 := {X € W : Ja € A(Min(X) C* a)} is dense in
W. .

We define now the second step of the two step iteration: Let .7 C (w)¥, then the
partial order P is defined as follows.

(s,X)ePr & Xe€.7 A (s,X)”is adual Ellentuck neighborhood,
(s, X) <(t,Y) & (s,X)¥C(t,Y).
REMARK 5. For F C [w]¥ we can define the partial order Pr similarly.

FACT VI.2.5. Let 7 be the canonical W-name for the W-generic object, then
WxP, ~ M.
PROOF.
WxP, = {(p,(3X)):peWAplw(5X)eP,}
= {(p, <§,)~(>> pe WY Apw(X e ZAGC )Z')}
Now the embedding
h: M — WxB,
(5, X) — (X, (X))
is a dense embedding (see [18| Definition 0.8):

1. It is easy to see that h preserves the order relation <.

2. Let (p, (5, X)) € W P,. Because W is o-closed, there is a condition ¢ < p,
a segment s € (N) and a partition X € (w)* such that ¢bw3s = §A X = X.
Evidently, <q, <§,X>> € W=« P, is stronger than <p, (s, )~(>> Let Z := ¢ X and
let Z' C* Z be such that s C Z’, and we have h((s, Z’)) < <p, (3, )~(>>

_|
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REMARK 6. Let U be the canonical U-name for the U-generic object, then UxF,; ~ M.
The dual Mathias forcing is stronger than the Mathias forcing.
FAcT VI.2.6. The dual Mathias forcing adds Mathias reals.

PROOF. Let 7 be W-generic over V; then by Fact VI.2.4, U := {Min(X) : X € 7'}
is U-generic over V. Now we define h : P, — B, as follows.

h: P, — By
(s,X) +— (Min(s),Min(X) \ Min(s))
For h, the following is true:
(i) If 1,92 € Py 1 < go, then h(q1) < h(ga).

(ii) For all ¢ € P, and for all p’ < h(q), there is a ¢ € P, such that ¢ and ¢ are
compatible and h(q') < p'.

Therefore, with [37] Part I, Lemma 2.7 we finally get VM C v —

3. The dual Ramsey property and Suslin’s operation

In this section we will show that the dual Ramsey property is closed under a
generalized Suslin operation. As a corollary we will get the already known result that
analytic sets are completely dual Ramsey.

Following Chapter V, let R} C P((w)“) be the ideal of all completely dual Ramsey
null sets. Recall that add(R?) is the smallest cardinal & such that there exists a family
7 =1{/.€R):a<k}with |JZ ¢ R, and that cov(R}) is the smallest cardinal
K such that there exists a family 7 = {7, € R} : a < k} with J £ = (w)*. In
Chapter V (see also [22]) it is shown that cov(R}) = add(R}) = © (where 9 is the
dual-shattering cardinal) and that £ > w; is relatively consistent with ZFC.

Let Seq(x) := k<% and for f € k* and n € w, let f(n) denote the finite sequence
(f(0), f(1),..., f(n—1)). The generalized Suslin operation A, (for a cardinal
k) is defined as follows:

Az seSed(w)} = | ) G »

feERY nEw

where @; C (w)¥ for all s € Seq(x). In Theorem VI.3.5 below we will show that for
each cardinal x < 9, the completely dual Ramsey sets are closed under the operation
A,. But first we give some other results.

A set # C (w)“ is dual Ellentuck meager if 27 is meager with respect to the
dual Ellentuck topology. Remember that a set is dual Ellentuck meager if and only
if it is completely dual Ramsey null and a set is completely dual Ramsey if and only
if it has the Baire property with respect to the dual Ellentuck topology.

If (5,X)% is a dual Ellentuck neighborhood, then we say that & is dual Ellentuck
meager in (s,X)“ if % N(s,X)* is dual Ellentuck meager. By [11, Theorem 4.1|, &
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is dual Ellentuck meager in (s,X)% if for all (¢,Y)* C (s,X)* there exists a partition
Z € (t,Y)“ such that (t,Z2)* N 2% = 0.
Fix a set % C (w)¥ and let

M = U {(s,X)“: 2 is dual Ellentuck meager in (s,X)*}.
Further let M (%) := M N 2. We first show the following.

LEMMA VL3.1. If (5,X)% is a dual Ellentuck neighborhood such that (s,X)* C M,
then 27 is dual Ellentuck meager in (s,X)*.

PROOF. If (5,X)* C M, then (s,X)* = J{(t,Y)* C (s,X)* : R is dual Ellentuck
meager in (£,Y)“}. Let N := |J {(u,2)* C (s,X)* Rﬂ(uZ =0}. Because N is an
Ellentuck open set, N is completely dual Ramsey. Therefore, for any (¢,Y)* C (s,X)

there exists a partition Y’ € (¢,Y)¥ such that (¢,Y")* C N or (,Y')* NN = ). If we
are in the latter case, then because (¢,Y”)* C (s,X)¥, we find a (u,Y")* C (¢,Y’)* such
that & is dual Ellentuck meager in (u,Y"”)“. Hence, there exists a (u,2)* C (u,Y")¥
such that (u,Z)¥ N 2 = (), which contradicts (¢,Y')* " N = (). So we are always in
the former case, which implies that &7 is dual Ellentuck meager in (s,X)“. —

With this result, we can easily prove the following
LEMMA VI.3.2. The set M (% ) is dual Ellentuck meager.
PROOF. Take a dual Ellentuck neighborhood (s,X)“ and let

S = U {(t,Z)* C (s,X)”: @ is dual Ellentuck meager in (¢,2)“} .

Then S, as the union of open sets, is open and a subset of (s,X)“. Because (s,X)“
is also closed (in the dual Ellentuck topology), the set C := (s,X)“ \ S is closed. By
[11, Theorem 4.1], the sets C' and S both are completely dual Ramsey. Therefore
we find for every (s',X')¥ C (s,X)* a partition Y € (s',X')¥ such that (s',Y)* C S
r (§,Y) C C. Now if (¢,Y)¥ C S, then by Lemma VI.3.1, & is dual Ellentuck
meager in (s, Y)“ and if (¢,Y)¥ C C, then (s,\Y)* N M(2%) = 0. To see this,
assume there is an H € M(2) N (s",Y)¥. Because H € M(% ) there exists a
dual Ellentuck neighborhood (¢,2)% such that H € (t,Z7)% and & is dual Ellentuck
meager in (t,7)%. Because H € (t,Z)¥ and H € (¢',Y)¥ there is a dual Ellentuck
neighborhood (u,U)¥ C (¢,2)* N (¢',Y)¥. But with (u,U)* C (¢,2)“ it follows that
2 is dual Ellentuck meager in (u, ) and therefore (u,U)* C S, a contradiction to
(u,U)* C (¢,Y)* CC.

Therefore, in both cases M (27 ) is dual Ellentuck meager in (s',Y)¥ C (s',X")¥
and because (s5,X)¥ and (s',X")¥ C (s,X)“ were arbitrary, the set M (27 ) is dual
Ellentuck meager in each dual Ellentuck neighborhood. Hence, the set M (%) is
dual Ellentuck meager. —

COROLLARY VI.3.3. The set %7 U ((w)*\ M) has the dual Ellentuck Baire property.
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PROOF. Because M is open, (w)* \ M is closed and 27 U ((w)*\ M) = (% N M) U
(w)*\ M) = M(2)U ((w)*\ M) which is the union of a meager set and a closed
set, and therefore has the dual Ellentuck Baire property. —

THEOREM VI.34. If &% C (w)“, then we can construct a set %7 O & which has the
dual Ellentuck Baire property and whenever #z° C &% \ & has the dual Ellentuck
Baire property, then # is dual Ellentuck meager.

PROOF. Let & := &% U ((w)* \ M) where M is as above. By Lemma VI.3.2 and
Corollary VI.3.3 we know that 2 has the dual Ellentuck Baire property. Now let
v C 2 \ % with the dual Ellentuck Baire property. If # is not dual Ellentuck
meager, then there exists a dual Ellentuck neighborhood (u,U)“, such that (u,U)*\ %
and therefore (u,U)* N 2 are dual Ellentuck meager. Hence, & is dual Ellentuck
meager in (u,U)* and therefore (u,U)* C M. Since (u,U)*N ¢ # @ and Z NM =0,
there is a Y € (u,U)¥ such that Y ¢ M, a contradiction to & is dual Ellentuck
meager in (u,U)%. —

Now we can prove the following.

THEOREM VI.3.5. Let £ < 9 be a cardinal number and for each s € Seq(x) let
@ C (w)¥. If all the sets «; are completely dual Ramsey, then the set

A {7 s € Seq(k)}
is completely dual Ramsey, too.

PROOF. Let {<; : s € Seq(k)} be a set of completely dual Ramsey sets and let
&/ = A {7, s € Seq(r)}. For two sequences s and f in k=¥ we write s C f if s is
an initial segment of f. If s € K< is a finite sequence, then |s| denotes the length of
s. Without loss of generality we may assume that <; O < whenever s C t.

For s € Seq(k) let

fERY NEW
sCf n>|s|

In addition we have .o C &, .% = |J,<, -%~a and .7 = .o4. By Theorem VI1.3.4,
for each s € Seq(k) we find a & O .94 which is completely dual Ramsey and if
v C %, \ -% has the dual Ramsey property, then % is dual Ramsey null. Because
@y O o7 is completely dual Ramsey, we may assume that &7 C <; and therefore

= A 15 € Sea() }
Let & := %. Note that .o/ = |J

Ua<r Zla)- Now we show that

P\ o C UL@@Q U m@f(n)g U (%\U%Aa)

a<kK JERY n€w s€Seq(k) a<kK

Yoy € Uack Zay, and therefore & C

a<k <
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Assume z & |, (.f%’s\anf%’sﬁa). If we have for all & < &, that v € Z,), then z ¢ 7.
And if there exists an ag < & such that x € Z,,), because = & [ J, (55’5 \ anf’%’sﬁa)
we find an o such that x € Z,, 4, and finally we find an f € x“ such that for all
n < w: T € Zfy,. But this implies that x € .o/ Now, because

PN\ Za €N\ Ao =%\ %
a<lKk a<lKk
and because |J,_, #s~q is the union of less than $ completely dual Ramsey sets,
Zs\Un<r Fs~a is completely dual Ramsey and as a subset of &, \ .24, it is completely
dual Ramsey null. Therefore, % \ .o/ as a subset of the union of less than $ completely
dual Ramsey null sets is completely dual Ramsey null, and because & is completely
dual Ramsey, .o/ is completely dual Ramsey too. —

REMARK 7. A similar result holds also for the Ramsey property and is proved by
Matet in [47].

As a corollary we get a result which was first proved by Carlson and Simpson
(cf. [11]).

COROLLARY VI1.3.6. Every analytic set is completely dual Ramsey.

PROOF. This follows from Theorem VI.3.5 and because each analytic set .o/ C [w]¥
can be written as

7 = A{Q; : s € Seq(w)}

where each Qs C [w]“ is a closed set in the Baire space. —

REMARK 8. For a similar result see [15] or [61].

4. Game-families and the forcing notion P~

Firstly we define a game and the corresponding game-families. Secondly we show
that for game-families .7, the forcing notion P has pure decision and if X is P
generic and Y € (X)¥, then Y is P,--generic, too.

We call a family .7 C (w)¥ non-principal if for all X € .7 thereisa Y € .7
such that Y C X and =(Y = X). A family .7 is closed under refinement if
X C Y and X € .7 implies that Y € .. Further, it is closed under finite
changes if for all s € (N) and X € .7, s X € .7.

In the sequel, .7 is always a non-principal family which is closed under refinement
and finite changes.

If s € (N)and s C X € .7, then we call the dual Ellentuck neighborhood
(s,X)“ an .7 -dual Ellentuck neighborhood and write (s,X)“- to emphasize that
X € 7. Aset @ C (w)” is called .7 -open if @ can be written as the union of
.7 -dual Ellentuck neighborhoods.

Fix a family .7 C (w)“ which is non-principal and closed under refinement and
finite changes. Let X € .7 and s € (N) be such that s T X. We associate with
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(s,X)“- the following game. This type of game was introduced first by Kastanas in
[40].

I (Xo) (X1) (X2)
I <t0v }/0> <t17 }/1> <t27 }/2>

All the X; of player T and the Y; of player II must be elements of the family .7.
Player I plays (X) such that Xy € (s,X)%-, then II responds with (to, Yp), where Y €
(5,X0)%, s < t§ < Yy and |tg] = |s|. (Recall that for s € (N), s* = s U {{dom(s)}}.)
For n > 1, the n'® move of player I is (X,) such that X,, € (¢&_,,Y,_1)% and
then player IT responds with (¢,,Y,) where Y, € (¢:_,,X,)%, t:_, <t <Y, and
|ta| = |tn—1]| + 1. Player I wins iff the only Y with ¢, < Y (for all n) is in .7. We
denote this game by G(.7") starting with (s, X).

A non-principal family .7 which is closed under refinement and finite changes is
a game-family if player IT has no winning strategy in the game G(.7).

A family .7 C (w)¥ is called a filter if for any X,V € .7 also X NY € .7
A filter which is also a game-family is called a game-filter. Note that (w)“ is a
game-family but not a game-filter. It is not known if game-filters exist under CH, but
as we will see in Theorem VI.5.1, the existence of game-filters is consistent with ZFC.

Let @ C (w)” be an .7 -open set. Call (5,X)“- good (with respect to ), if for
some Y € (5,X)%-N.7, (s,Y)“ C 7; otherwise call it bad. Note that if (s,X)%-
bad and Y € (5,X)%-N.7, then (s,Y)% is bad, too. We call (s,X)%- ugly if (¢*, ) -
is bad for all s < t* C X Wlth |t| = |s|. Note that if (s,X)“- is ugly, then (s,X)“- is
bad, too.

To prove the following two lemmas, we will follow in fact the proof of Lemma 19.15
in [41].

LEMMA VI.4.1. Let .7 be a game-family and ¢ C (w)¥ an .7 -open set. If (s,X)“-
is bad (with respect to ¢”), then there exists a Z € (s,X)“- such that (s,2)%- is ugly.

PROOF. We begin by describing a strategy for player IT in the game G(.7) starting
with (s, X). Let (X,) be the n'" move of player I and ¢, be such that s < t,,
lt,] = |s| +mn and t; < X,,. Let {t! : i < m} be an enumeration of all ¢ such that
s <t Cty, [t| = |s| and dom(t) = dom(t,). Further let Y~ := X,,. Now choose for
each 4 < m a partition Y* € .7 such that Y C Y1 ¢* < Y? and ((t1)*,Y*)“- is bad
or ((t1)*, Y- C . Finally, let Y, :== Y™ and let player II play (¢, Y,).

Because player II has no winning strategy, player I can play so that the only YV
with ¢, < Y (for all n) belongs to .7. Let Sy := {t* T Y : s <t Alt]| = |s|};
then, because of the strategy of player II, for all ¢ € Sy we have either (¢t*,Y)%- is
bad or (t*,Y)% C . Now let Cy := {t € Sy : (t,Y)% is bad} and C; := {t €
Sy : (tY)“- C @} = Sy \ Cy. By a result of [29] (see also [26, Section 7|), there
exists a partition Z € (s,Y)%- N .7, such that S; C Cy or Sz C Cy. If we are in
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the latter case, we have (s,7)%- C 7, which contradicts that (s,X)“- is bad. So we
must have S; C C, which implies that (s,7)%- is ugly and completes the proof of
the Lemma. -

LEMMA VI.4.2. If .7 is a game-family and 7 C (w)* is an .7 -open set, then for every
.7 -dual Ellentuck neighborhood (s,X)%- there exists a Y € (s,X)“ N .7 such that
(s,Y)o- C @ or (s,Y)-N7N.7 = 0.

PRrROOF. If (5,X)“- is good, then we are done. Otherwise we consider the game G(.7")
starting with (s, X'). Let (X;) be the first move of player 1. Because (s,Xq)“- is bad,
by Lemma VI.4.1 we can choose Y' € (5,Xy)%-N.7 such that (s,Y")%- is ugly. Let ¢,
be such that s < t5 < Y” and |ty] = |s|. Now we choose Yj € (¢5,Y")“-N .7 such that
(t5,Y0)“- is ugly, which is is possible because (to,Y")%- is ugly and therefore (¢§,Y” )f"-
is bad. Note that for all ¢ with s < ¢ C ¢, and dom(¢) = dom(¢y) we have (t*,Y5)*-
ugly. Now player II plays (to, Yp).

Let (X, ;1) be the (n+ 1) move of player I. By the strategy of player 1T we have
(t*,X,41)%- is ugly for all ¢t with s < ¢ C t,, and dom(¢) = dom(¢,). Let ¢,,; be such
that [ty1] = |[tal + 1 = |s|+ n and ¢ < t5., < Xpy1. Let {#i., : i < m} be an
enumeration of all ¢ such that s < ¢ C ¢,,; and dom(t) = dom(t,41). Further let
y-l.= Xny1. Now choose for each i < m a partition Y? € .7 such that Y’ C Y1,
t*+1 < Y*and ((¢),,)*,Y")“ is ugly. (This is possible because we know that (¢*,X})*-
is ugly for all £ < n and ¢t with s < ¢ C #;, and dom(#) = dom(#), which implies that
((t:41)*, Xn41)% is bad.) Finally, let Y, 41 := Y™ and let player II play (t,41, Yy11).

Because player II has no winning strategy, player I can play so that the only YV
with ¢, < Y (for all n) belongs to .. We claim that (s,Y)“- N @ N.% = (). Let
Z € (s,Y)-NneN.7 . Because 7 is .7 -open we find a ¢t < Z such that (¢*,2)%- C .
Because t* C Y we know by the strategy of player II that (¢*,Y)“- is bad. Hence,
there is no Z € (¢*,Y)“- such that (t*,2)%- C . This completes the proof. —|

Now we give two properties of the forcing notion P, where P is defined as in
Section 2 and .7 is a game-family. Note that for .7 = (w)“ (which is obviously a
game-family) the forcing notion P is the same as dual Mathias forcing. First we
show that the forcing notion P, has pure decision.

THEOREM VI.4.3. Let .7 be a game-family and let ® be a sentence of the forcing
language P-. For any P,--condition (s,X)“- there exists a P~-condition (s,Y)%- <
(5,X)%- such that (s,Y)% p_- @ or (s,Y)% Ip_- —=P.

PrROOF. With respect to & we define
A ={Y :(t,Y)% Fp_-®forsomet <Y € .7}

and

Gy ={Y : (,Y)% Ip-—=® for some t <Y € .7 }.
Clearly 4 and % are both .7 -open and ) U % is even dense (with respect to the
partial order P,-). Because .7 is a game-family, by Lemma VI.4.2 we know that for
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any (s,X)% € P there exists Y € (5,X)% N .7 such that either (s,Y)“- C ¢ or

(s,Y)*-N ¢ N.7 = (. In the former case we have (s,Y)“-Ip_® and we are done.

In the latter case we find Y’ € (s5,Y)% N .7 such that (s,Y")% C . (Otherwise

we would have (s,Y")“-N (% U @) N .7 = (), which is impossible by the density of
1 U %.) Hence, (5,Y")%-p_ —®. -

Let .7 be a game-family. If G is P,--generic, then let X :=[)G. Now Xg is an
infinite partition and G = {(s5,2)%- : s < Xg C Z}. Therefore we can consider the
partition Xq € (w)¥ as a P~-generic object. Further we have G C P~ is P~-generic
if and only if Xg € |JD for all D C P which are dense in P-. Note that if D is
dense in P, then |J D is .7 -open.

The next theorem shows in fact that if .7 is a game-family, then P~ is proper.

THEOREM VI1.4.4. Let .% C (w)“ be a game-family. If Xy € (w)“ is P-generic over
V and Y} € (X()¥ N V[Xy], then Yj is also P.--generic over V.

PROOF. Take an arbitrary dense set D C P, i.e., for all (s,X)“- there exists a
(t,Y)%- C (s,X)% such that (¢,Y)“- € D. Let D' be the set of all (s,Z)“- such that
(t,Z2)“- C|UD for all t C s with dom(¢) = dom(s).

First we show that D’ is dense in P-. For this take an arbitrary (s,W)“- and let
{t; : 0 < i < m} be an enumeration of all ¢ € (N) such that ¢t C s and dom(t) =
dom(s). Because D is dense in P~ and | D is .7 -open, we find for every t; a W' € .7
such that ¢; T W’ and (¢;,W')%- C |JD. Moreover, if we define W_; := W, we can
choose for every ¢ < m a partition W; € .7 such that W; C W;_{, s < W, and
(t;,W;)% C U D. Now (s,W,;,)% € D' and because (s,W,,;)% C (s,W)“-, D' is dense
in ]P)/‘

Since D' is dense and X, € (w)” is Ps-generic, there exists a (s,2)%- € D’ such
that s < Xo C Z. Because Yy € (Xp)¥ we have t < Yy C Z for some ¢t C s and
because (¢t,7)“- C |JD, we get Yy € |JD. Hence, Y, € | D for every dense D C P,
which completes the proof. —

REMARK 9. Similar results are proved in [49] and [48].

5. On dual Mathias forcing and game-filters

In this section we show that it is consistent with ZFC that game-filters exist.
Further we show that the dual Mathias forcing M’ is flexible and with this result we
can prove that if V is X}-M’-absolute, then wV is inaccessible in L, where L denotes
Godel’s constructible universe.

In the sequel, let W be the forcing notion we defined in section 2.

THEOREM VL5.1. If 77 is W-generic over V, then 7 is a game-filter in V[7] with
respect to the game G(7).

PROOF. Because 7 is W-generic over V, we know that 727 C (w)¥ is a non-principal
family in V[7] which is closed under refinement and finite changes, and for X,V € 72
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we also have X MY € 7. It remains to show that player II has no winning strategy
in the game G(7).

Let & be a W-name for a strategy for player II in the game G(#/), where 7 is the
canonical W-name for the W-generic object. Let us assume that player II will follow
this strategy. We may assume that

1y “ is a strategy for IT in the game G(%)”.

If
Z”_W 6(<X0>7 <£07 }N/E)>a R <Xn>) = <£na n>a
then for n > 1 we get

Zhwy (|tn] = |t 1| + 1AE | < <Y, C X, AY, € %)

l

and for n = 0 we have

Zhw(lto] = 15| A5 <t <Y, CXo T X AYy € %),
where (3, X) is the starting point of G(%).

Now let (5, X) (the starting point of the game G(#)) be such that (3,X)“ is a
W-name for a dual Ellentuck neighborhood and let Z, € (w)* N’V be a W-condition
in V such that Zol—w X € #%. Therefore, Zylw “(s, X) is a #-dual Ellentuck
neighborhood". By Fact VI.2.3 we know that the forcing notion W adds no new reals
(and therefore no new partitions) to V. So, we find a Z) C* 7, and a dual Ellentuck
neighborhood (s,X)* in V such that

Zyl=w (3, X) = (3, X),
where 5§ and X are the canonical W-names for s and X. Because Zjl-w X € 7,
we must have Z) < X, which is the same as Z) C* X. Finally put X, € (w)“ such
that X, = Z) and X, € (5,X)“. Player I plays now (Xp). Since player II follows the

strategy &, player II plays now &((Xy)) =: (fo, Y5). Again by Fact VI.2.3 there exists
a Z; C* X, and a dual Ellentuck neighborhood (¢9,Yy)” in 'V such that

Zl “_W <£07 %> = <£U; Y/b> .

And again by Z; l—w Yy € 7 we find X; = 7 such that ts < X; C'Y). Player I plays
now (X,).

In general, if a(<X0> (to, Yo), ..., (Xn)) = (£,,Y,), then player T can play X, 4
such that X, - (£, Y,) = (tn,Y> and t& < X1 CY,. For n > m we also have
X, C X,,. Let Y € (w)“ be the such that ¢, <Y (for all n), then

Y Iy “the only Y such that #, < Y (for all n) is in 7 ”.

Hence, the strategy & is not a winning strategy for player IT and because ¢ was an
arbitrary strategy, player II has no winning strategy at all. —

REMARK 10. A similar result is proved in [49] (see also [47]).
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As a corollary we get that the forcing notion P,, where 727 is W-generic over V,
has pure decision in V[7Z].

COROLLARY VI.5.2. Let 27 be W-generic over V. Then the forcing notion P, has
pure decision in V[7].

PRrooOF. This follows from Theorem VI1.4.3 and Theorem VI.5.1. —

Corollary VI1.5.2 follows also from the facts that the dual Mathias forcing has pure
decision (cf. [11]) and that it can be written as a two step iteration as in section 2.

REMARK 11. If U is U-generic over V, then B, has pure decision in V[U] (cf. [49]).

6. More properties of M’

Let P be a notion of forcing in the model V. We say that V is 3!-P-absolute if
for every X.-sentences ® with parameters in V the following holds for any G' which
is P-generic over V:

V | @ if and only if V|G| E ®.

Now we will show that if V is X}-MP-absolute, then «wV is inaccessible in L. For
this we first will translate the dual Mathias forcing in a tree forcing notion.

If s € (N), then s is a partition of some natural number n € w and therefore s is
a finite set of finite sets of natural numbers. Let ¢ be a finite set of natural numbers,
then #t is such that for all k¥ € w we have div(ft, 2¥) is odd < k € s. Remember that
div(n,m) := max{k € w: k- m < n}. Now, let gs be such that for all k£ € w:

div(ts, 2%) is odd < k = tt for some t € s.

In fact, s is defined for any finite set of finite sets of natural numbers. If s € (N),
then |s| denotes the cardinality of s, which is the number of blocks of s.

For s € (N) with |s| = k let § be the finite sequence (n,...,n;) where n; := fs;
and s; € (N) is such that |s;| =i and sf < s*.

Now let p = (5,X)* be an M’-condition. Without loss of generality we may
assume that s* C X. The tree 7, C w<* is defined as follows.

c€T, & HeN)(t"<s*Vs<)At'CXANo=1).

FACT VI.6.1. Let p, ¢ be two M’-conditions. Then T, is a subtree of T} if and only if
p=q

Finally let Ty = {7, : p € M’}; then Ty is a set of trees. We stipulate that
T, < T, if T, is a subtree of T,. Then (by Fact VI.6.1) forcing with Ty := (Typ, <)
is the same as forcing with M.

Now we will give the definition of a flexible forcing notion P. But first we have to

give some other definitions.
A set T C w<¥ is called a Laver-tree if

Tisatreeand 3r € TVo € T(c CTV (T Co A {n:0"neT} =w)).
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We call 7 the stem of T. For ¢ € T we let succy(o) := {n : 0~n € T}, the
successors of c in T, and T,:={c € T:0 Cp N pCo}.
For a Laver-tree T, we say A C T is a front if 0 # 7 in A implies ¢ Z 7 and for
all f € [T] there is an n € w such that f|, € A.
The meaning of p < [®] and p N [®] are U, C [®] and U, N [®], respectively.
(i) We say a forcing notion P is Laver-like if there is a P-name 7 for a dominating
real such that

(i) the complete Boolean algebra generated by the family {[#(i) = n] : i,n € w}
equals r.0.(P), and

(ii) for each condition p € P there exists a Laver-tree T C w<“ so that for all
o € T we have:

p(Ty,) == H Z {pN[Fligry = 7] : 1g(r) =n} €r.o.(P)\ {0}.
new 7€T,
We express this by saying p(T') # 0, where p(T) := p(Tysem(r))-
(ii) If 7 is a P-name that witnesses that P is Laver-like, we say that P has strong
fusion if for countably many open dense sets D,, C P and for p € P, there is a
Laver-tree T such that p(T') # () and for each n the set

{o €T :p(T)N[Fligo) =0] € Dy}
contains a front.

(iii) A Laver-like P is closed under finite changes if given p € P and Laver trees
T and T" so that for all o € T", if p(T') # 0 then [succr (o) \ sucer(0)| < w, then
p(T") # 0, too.

We call a forcing notion P flexible, if P is Laver-like, has strong fusion and is
closed under finite changes.

With this definition we can show — as a further symmetry between the forcing
notions M and M — that dual Mathias forcing M’ is flexible.

LEMMA VI.6.2. The dual Mathias forcing M’ is flexible.

PROOF. Since M ~ T, it is enough to prove that the forcing notion Ty is flexible.
Let 7 be the canonical Ty -name for the Ty, -generic object. By the definition of the
function “f” and the construction of Ty, 7 is a name for a dominating real. The rest
of the proof is similar to the proof that Mathias forcing is flexible, which is given in
[25]. =

Let W be a submodel of V. If all ¥)-sets in V with parameters in V.N'W
have the Ramsey property R or the dual Ramsey property R’, then we write V =
S (R)w and V | ZL(R’)w, respectively. If V.= W, then we omit the index W.
The notations for Al -sets and IT.-sets are similar. Further, B stands for the Baire
property and L stands for Lebesgue measurability.

Now we can prove the following
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THEOREM VIL.6.3. If V is T}-M’-absolute, then «wV is inaccessible in L.

PROOF. To prove the corresponding result for Mathias forcing (cf. [25]), one uses
only that M is flexible and that, if V is X}-Mrabsolute, then V | X3(R), which
is the same as X3-M-absoluteness (cf. [25, Theorem 4.1]). Therefore, it is enough to
prove that 33-M-absoluteness implies 33-M-absoluteness. It follows immediately
from Fact VI.2.6 that V. C VM C VMb, and since X3-formulas are upwards absolute,
this completes the proof. —

7. Iteration of dual Mathias forcing

In this section we will build two models in which every ¥i-set is dual Ramsey. In
the first model ¢ = w; and in the second model ¢ = wy. With the result that dual
Mathias forcing has the Laver property we further can show that X3(R’) implies
neither 33(L) nor X3(B), but first we give a result similar to Theorem 1.15 of [39].

LEMMA VL.7.1. Let 7 be W-generic over V. If Xg is P,-generic over V[7/], then
V[7][Xe] = Z3(R)v.

PROOF. Let X¢ be the canonical name for the P, -generic object X over V[%] and
let p(Y) be a Xj-formula with parameters in V. By Theorem VI.5.1 and Corol-
lary VI.5.2, the forcing notion P, has pure decision. So, there exists a P, -condition
p € V[7Z| with empty stem, or in other words, there is a p € Z so that V[Z|E
“Di-p, o(Xg)” or V[Z]E “plp, —¢(Xg)”. Assume the former case holds. Be-
cause X C* ¢ for all ¢ € 7, there is an f € [w]|<¥ such that Xg M {f} C p.
By Theorem VI.5.1 and Theorem VI.4.4 we know that if X is P, -generic over V[Z]
and X' € (X)“ N V[#Z][X¢g], then X' is also P,-generic over V[Z]. Hence, every
X C Xg M {f} C pis P,-generic over V[Z] and therefore V[Z]|[X(] E o(X{).
Because Xj-formulas are absolute we get V[Z][X¢] | ¢(X5). Thus, V[Z][X¢] E
AXVY € (X)“(p(Y)). The case when V[Z]E “pl—p, =p(Xg)” is similar. Hence,
we finally have V[Z][X¢] | Z5(R)v. —

REMARK 12. The proof of the analogous result can be found in [39].

Because Gddel’s constructible universe L has a Aj-well-ordering of the reals, L
is neither a model for A}(R’) nor a model for Aj(R). But we can build a model in
which ¢ = w; and all $}-sets are dual Ramsey.

THEOREM VI.7.2. After an wi-iteration of dual Mathias forcing with countable sup-
port starting from L, we get a model in which every 23-set of reals is dual Ramsey
and ¢ = wy.

PROOF. The proof follows immediately from Fact VI.2.5, Lemma VI.7.1 and the fact
that dual Mathias forcing is proper. —

REMARK 13. The proof of a similar result can be found in [38].
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We can build also a model in which all ¥3-sets are dual Ramsey and in which
= Ws.

THEOREM VI.7.3. After an ws-iteration of dual Mathias forcing with countable sup-
port starting from L, we get a model in which every 23-set of reals is dual Ramsey
and ¢ = ws.

PROOF. In Chapter V (see also [22]) it was shown that an w,-iteration of dual Mathias
forcing with countable support starting from L yields a model in which ¢ = ws
and the union of fewer than wy completely dual Ramsey sets is completely dual
Ramsey. Now because each Xi-set can be written as the union of w; analytic sets,
and because analytic sets are completely dual Ramsey, all Z3-sets are dual Ramsey
in that model. —

REMARK 14. A similar result is true because an ws-iteration of Mathias forcing with
countable support starting from L yields a model in which b = ws (cf. [63]), and b can
be considered as the additivity of the ideal of completely Ramsey null sets (cf. [54]).

For the next result we have to give first the definition of the Laver property: A
cone A is a sequence (A, : k € w) of finite subsets of w with |A4;| < 2¥. We say
that A covers a function f € w if for all positive k € w we have f(k) € A;. For a
function H € “w, we write I1H for the set {f € w* : Vk > 0 (f(k) < H(k))}. Now,
a forcing notion P is said to have the Laver property iff for every H € “w in V|,

1Ip“Vf € IIH3A € V(A is a cone covering f)”.

Like Mathias forcing, dual Mathias forcing has the Laver property and therefore
adds no Cohen reals (cf. [18] or [3]).

LEMMA VI.7.4. The forcing notion M’ has the Laver property.

PROOF. Given f, H € “w such that for all £ > 0, f(k) < H(k). Let (s, X) be any
M -condition. Because M’ has pure decision and f(1) < H(1), we find a Y € (s,X)*
such that (s,Yp) decides f(1). Set sy := s. Suppose we have already constructed
sn € (N) and Y, € (w)“ such that s < s,, |s,] = |s] + n and (s,,Y,)” is a dual
Ellentuck neighborhood. Choose Y, 1 € (s,,Y5)” such that for all A~ € (N) with
s < h C s, and dom(h) = dom(s,), (h,Y, 1) decides f(k) for all k& < 2"*!. Further,
let s,11 € (N) be such that s, < sp11, |Spe1] = |Sn]+1 =|s|+n+1and s,41 < Yii1.
Finally, let Y be the unique partition such that for all n € w, s, < Y. Evidently, the
MP-condition (s,Y’) is stronger than the given M’-condition (s, X'} (or equal). Now,
if k,n € w such that 2" < k < 2" then let {h; : j < m} be an enumeration of all
s < h C s, with dom(h) = dom(s,,). It is clear that m < 22". Further, let

Ap={lew:3j <m((h;,Y) by f(k) =1)},
then |A;| < m < 22", and because 2" < k we have |4;| < 2%, If we define Ay := {I €

w: (s,Y) =y f(0) = I}, then the M’-condition (s,Y) forces that A := (A; : k € w)
is a cone for f. —
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Using these results we can prove the following
THEOREM VL.7.5. $(R’) implies neither (L) nor X(B).

PROOF. Because a forcing notion with the Laver property adds no Cohen reals and
because the Laver property is preserved under countable support iterations of proper
forcings (with the Laver property), in the model constructed in Theorem VI.7.2 no
real is Cohen over L. Therefore, in that model A}(B) fails, and because X3(L)
implies X3(B) (cf. [38]), also £5(L) must fail in that model. —

REMARK 15. For the analogous result see [39].

8. Appendix: On the dual Ramsey property of projective sets

Although the Ramsey property and the dual Ramsey property are very similar,
one can show that the two Ramsey properties are different.

THEOREM VI.8.1. Using the axiom of choice one can construct a set which is Ramsey
but not dual Ramsey.

PROOF. We will construct a set R C [w]|* which is Ramsey but not dual Ramsey.

Remember that the relation “ = " is an equivalence-relation on (w)*, where X =Y
if and only if there are f,g € [w]<¥ such that X M {f} C Y and Y N {g} C X.
For X € (w)“, let {X~ denote the equivalence class of X. Now, choose from each
equivalence class X~ an element Ax and for X € (w)“ let
hx =min{|f|+]g|: f,g € W]~ and X N {f} C Ay and Ax N {g} C X}.
Further, define a function F': (w)* — {0, 1} by stipulating
| 1 if hx is odd,
F(X) = { 0 otherwise.

Then the set {X € (w)¥ : F(X) = 1} is obviously not dual Ramsey and therefore,
the set R := {z € [w]* : IX € (w)*(z = pe(X) A F(X) = 1)} is not dual Ramsey as
well.

Now, define r := {¢{k,k + 1} : k € w}, where “¢” as in Section 2, then cp(r) =
{{w}} € (w)” and hence, [r]* N R = (. So, the set R is Ramsey. —

On the other hand, for projective sets one can show that the dual Ramsey property
is stronger than the Ramsey property.

LEMMA VI.82. If V = =} (R), then V = I} (R).

PROOF. Given a X! -formula ¢(z) with parameters in V. Let ¢(y) be defined as
follows:

U(y) <= Fo(z =Min (cp(y)) A p(2)).
It is easy to see that 1(y) is also a X!-formula (even with the same parameters as
). Now, if there is an X € (w)“ such that for all Y € (X)¥, ¢(pc(Y’)) holds, then
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for all y € [z]* where © = Min(X), ¢(y) holds. The case where for all Y € (X),
—1p(pe(Y)) holds, is similar. —

In [11, Section 5|, Carlson and Simpson prove that in the Solovay model, con-
structed by collapsing an inaccessible cardinal to w;, every projective set is dual
Ramsey (it is unknown whether the inaccessible cardinal is necessary for that).

Another question connected to the dual Ramsey property of projective sets is the
following. As with the standard Ramsey property we can ask whether an appropriate
amount of determinacy implies the dual Ramsey property. As usually with regularity
properties of sets of reals we would expect that Det(IT!) implies the dual Ramsey
property for all 3} 41 sets. But a direct implication using determinacy is not as easy
as with the more prominent regularity properties (as Lebesgue measurability and
the Baire property) since the games connected to the dual Ramsey property (the
Banach-Mazur games in the dual Ellentuck topology) cannot be played using natural
numbers.

The same problem had been encountered with the classical Ramsey property and
had been solved by Leo Harrington and Alexander Kechris in [33] by making use of
the scale property and the periodicity theorems. They showed the following.

PROPOSITION VI.8.3. If Det(Aj, ), then every I}, ,-set is Ramsey.

Using the techniques of Harrington and Kechris, Benedikt Léwe could strengthen
their result and prove the following (see [26, Section 6]).

PROPOSITION VI.8.4. If Det(Aj, ,), then every X}, ,-set is dual Ramsey.



CHAPTER VII

Ramseyan Ultrafilters and Dual Mathias Forcing

In this chapter we investigate families of partitions which are related to special
coideals, so-called happy families, and give a dual form of Ramsey ultrafilters in terms
of partitions. The combinatorial properties of these partition-ultrafilters, which we
call Ramseyan ultrafilters, are similar to those of Ramsey ultrafilters. For example
it will be shown that dual Mathias forcing restricted to a Ramseyan ultrafilter has
the same features as Mathias forcing restricted to a Ramsey ultrafilter. Further we
introduce an ordering on the set of partition-filters and consider the dual form of
some cardinal characteristics of the continuum.

1. Introduction

The Stone-Cech compactification Sw of the natural numbers, or equivalently, the
ultrafilters over w, is a well-studied space (cf. e.g. [66] and [14]) which has a lot of
interesting topological and combinatorial features (cf. [34] and [64]). In the late
1960’s, a partial ordering on the non-principal ultrafilters Sw\w, the so-called Rudin-
Keisler ordering, was established and “small” points with respect to this ordering
were investigated rigorously (cf. [8], [5], [6] and [45]). The minimal points have a
nice combinatorial characterization which is related to Ramsey’s Theorem (cf. [57,
Theorem A]) and so, the ultrafilters which are minimal with respect to the Rudin-
Keisler ordering are also called Ramsey ultrafilters (for further characterizations of
Ramsey ultrafilters see [3, Chapter 4.5]). Families, not necessarily filters, having sim-
ilar combinatorial properties as Ramsey ultrafilters, are the so-called happy families
(cf. [49]), which are very important in the investigation of Mathias forcing (cf. [49]).

In the sequel we will introduce an ordering on the set of partition-filters which
is similar to the Rudin-Keisler ordering on fw \ w and introduce a partition form of
Ramsey ultrafilters, so-called Ramseyan ultrafilters. Further we will investigate dual
Mathias forcing restricted to Ramseyan ultrafilters and consider the dual form of some
cardinal characteristics of the continuum which are related to Ramseyan ultrafilters.

2. An ordering on the set of partition-filters

Following Chapter III, let PF((w)S“’) denote the set of all partition-filters. We
define a partial ordering on PF((w)S“’) which has some similarities with the Rudin-
Keisler ordering on fw \ w.

61
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To keep the notation short, for #° C P(P(w)) and a function f : w — w we
define
FUF) = X)X e )
where for X € # we define

X)) = {f'(b) 1 be X},
where for b C w, f1(b) := {n: f(n) € b}.
Let f : w — w be any surjection from w onto w and let X € (w)<¥ be any
partition. Then f(X) denotes the finest partition such that whenever n and m lie in
the same block of X, then f(n) and f(m) lie in the same block of f(X).

For any partition-filter .7~ € PF((w)=*) define
f(7)={Y e=:3X e 7 (f(X)CY)}.
We define the ordering “<” on PF((w)<*) as follows:
7 <@ ifand only if .7 = f( <) for some surjection f:w — w.

Since the identity map is a surjection and the composition of two surjections is again
a surjection, the partial ordering “<” is reflexive and transitive.

FACT VI1.2.0.1. Let .7, & € PF((w)=*) and assume f( %) = .7 for some surjection
f:iw—»w. Then < C f~'(F)and f7'(.7) € pF((w)Sw)_

PROOF. Let # = f~1(.7), where f : w — w is such that f( <) =.7. Since .7 is
a partition-filter and f is a function, for any X;, Xy € .7 we have X; M X5 € .7 and
HXI N Xy) = f71(X)) N f7Y(X3), and therefore, 5# is a partition-filter. Further,
for any Y € < we get f(V) € .7 and f~'(f(Y)) C Y, which implies & C #. -

The ordering “<” induces in a natural way an equivalence relation “~" on the set of
partition-filters PF ((w)=<¥):

7 ~ ¢ ifand only if .7 << and ¥ <S.7 .

So, the ordering “<” induces a partial ordering of the set of equivalence classes of
partition-filters. Concerning partition-ultrafilters, we get the following.

FACT VIL.2.0.2. Let 2/, 7 € PUF((w)S“’) and assume that 7 is principal or contains
a partition, all of whose blocks are infinite. If 2 ~ 77, then there is a permutation
h of w such that h(7%) = 7.

PROOF. Because 77<7" and 7 <7/, there are surjections f and ¢ from w onto w
such that 77 = f(#) and 2 = g(7"), and because 7z and 7" are both partition-
ultrafilters, by Fact VII.2.0.1 we get 2 = f~}(7") and 7" = g~ }(%).
First assume that 7 is principal and therefore contains a 2-block partition X =
{bg, b1 }. Because g }(X) € 77, the partition-ultrafilter 7" is also principal and we
get

7={Y e w*:¢'(X)CY},
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where

{g bo (61)} = {Cﬂacl}-

Now, because 7 = f‘l(%’), we must have f~'(¢g7'(X)) = X, which implies that
F=(g7"(b;)) € {bo, b1} (for i € {0,1}). If one of the blocks of X is finite, say by, then
fls, as well as g|f@m,) must be one-to-one, and therefore, by has the same cardinality
as ¢yg. Hence, no matter if one of the blocks of X is finite or not, we can define a
permutation h of w such that h(by) = ¢y and h(b;) = ¢;, which implies h(7) = 7.

Now assume that 7 contains a partition X = {b; : i € w}, all of whose blocks b; are
infinite. Because g is a surjection, g1 (X), which is a member of 77, is a partition, all
of whose blocks are infinite. Let h be a permutation of w such that h(b;) = g 1(b;).
Take any Y € 7~ with Y C ¢ !(X). By the definition of A we have h=}(Y) = g(Y)
and since 77 = g(7") there is a Z € 7 such that ¢(Y) = Z, which implies h(Z) =Y,
hence, h(7) = 7. —

The following proposition shows that “<” is directed upward (for a similar result
concerning the Rudin-Keisler ordering see [5, p. 147]).

FACT VI1.2.0.3. For any partition filters &7, ¥ € PF((w)=¥), there is a partition-filter
7 € PF((w)=¥), such that & <.7 and ?‘<J

PROOF. Let p; and g, be two functions from w into w defined by ¢;(n) := 2n and
02(n) :=2n+1. For a partition X and i € {0,1}, let 0;(X) := {0:(b) : b € X'}, where
0i(b) :={0;(n) : n € b}. Now, take any two partition-filters &7, # € PF((w)=*) and
define .7 by

_{Ql UQQ ) XegdAanYe ?j}

Clearly, this defines a partition-filter. Define two surjections f and g from w onto w
as follows:

_ 5 if n is even,
f(n) {0 .

otherwise.
n—=1 :
= if n is odd,
g(n) =4 2 .
0 otherwise.

It is easy to verify that f(.7) = @ and ¢g(.7) = &, which implies & <.7 and
*<.F -
3. Ramseyan ultrafilters

3.1. Coloring segments. For the reader’s convenience, let us recall some defini-
tions: For n € w, (w)™ denotes the set of all u € (N) such that |u| = n. Further, for
n€wand X € (w)“ let

X)) :={ue(N):|u=nAu"C X};
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and if s € (N) is such that |s| <n and s C X, let
(5, X)" :={ue(N): [u=nAs<uAu"CX}.
Let us state again Theorem IV.2.1:

PROPOSITION VII.3.1.1. For any coloring of (w)("“)* with r+1 colors, where r,n € w,
and for any Z € (w)®, there is an infinite partition X € (Z)* such that (X)™+1* is
monochromatic.

As we have seen in Chapter IV, this combinatorial result —which can also be de-
rived from [11, Theorem 1.2| —is the partition form of Ramsey’s Theorem.

We say that a surjection f : w — w respects the partition X € (w)*, if we
have f='(f(X)) = X, otherwise, we say that it disregards the partition X. If
FHf(X)) = {w}, then we say that f completely disregards the partition X.

LEMMA VIIL.3.1.2. For any surjection f : w — w and for any Z € (w)“, there is an
X € (Z)¥ such that f either respects or completely disregards the partition X.

PROOF. For a surjection f :w — w, define the coloring 7 : (w)** — {0, 1} as follows.
7(s) := 0 if and only if f(s(0)) N f(s(1)) = @. By Proposition VIL.3.1.1, there is
a partition X € (Z)“ such that (X)?* is monochromatic with respect to 7, which
implies that f respects X in case of 7|(x)y- = {0}, and f completely disregards X is
case of 7|(yy- = {1}. =

In the sequel we will use a slightly stronger version of Proposition VII.3.1.1, which is
given in the following two corollaries.

COROLLARY VII.3.1.3. For any coloring of (w)™*+1)* with r+1 colors, where r,n, k €
w, and for any dual Ellentuck neighborhood (s,Y)*, where |s| = n + 1, there is an
infinite partition X € (s,Y)* such that (s, X)™+¥+D* is monochromatic.

PROOF. Let (s,Y)“ be any dual Ellentuck neighborhood, with |s| =n +1 > 1. Set
Y'i=5s0Y, R:= U, py Y'(i) and Y := Y'\{Y'(i) : i <n+1}, and take any order-
preserving bijection f : w\ R — w. Then Z := f(Y%) is an infinite partition of w. For
u € (Z)"TF1* we define £(u) € (s, Y)"HE+1* as follows. dom(&(u)) := f~'(dom(u))
and for i <n+k+1,

§(u)(i) == {

Let 7 : (w)™**+D* — r 1+ 1 be any coloring. Define 7 : (w)"™#+D* — » 4+ 1 by
stipulating 7(u) := 7(£(u)). By Proposition VII.3.1.1 there is an infinite partition
X' € (Z)¥ such that (X')"*F1* is monochromatic with respect to the coloring 7.
Now let X € (w)* be such that

LYy u X)) fori<n+1
X(@) = {f‘l(X’(i)) otherwise.

(Y'(i) ndom(u)) U f~'(u(i)) fori<mn+1,
M (u(d)) otherwise.
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Then, by definition of 7 and X', X € (s5,Y)* and (s, X)®**+1)* is monochromatic
with respect to 7. —

COROLLARY VIL3.1.4. For any coloring of |J, . (w)"*1* with r + 1 colors, where
r,k € w, and for any Z € (w)*, there is an infinite partition X € (Z)% such that for
any n € w and for any s < X with [s| =n + 1, (s, X)""*+D* is monochromatic.

PrOOF. Using Corollary VII.3.1.3 repeatedly, we can construct the partition X €
(w)® straight forward by induction on n. —

We say that a family #° C (w)“ has the segment-coloring-property, if for every
coloring of J, ., (w)E+1* with r + 1 colors, where 7,k € w, and for any Z € 7,
there is an infinite partition X € (Z)¥ N %, such that for any n € w and for any
s < X with |s| =n 4+ 1, (s, X)®++1* is monochromatic.

If a partition-ultrafilter 77 € PUF((w)“) has the segment-coloring-property, then
it is called a Ramseyan ultrafilter.

The next lemma shows that every partition-filter .7~ € PF((w)*) which has the
segment-coloring-property is a partition-ultrafilter. A similar result we have for Ram-
sey filters over w, since every Ramsey filter is an ultrafilter.

LEMMA VIL3.1.5. If .7 C (w)¥ is a partition-filter which has the segment-coloring-
property, then .7 C (w)“ is a partition-ultrafilter.

PROOF. Take any Z € (w)¥ such that for any X € .7, ZM X € (w)“. Define the
coloring 7 : (w)* — {0,1} by stipulating 7(u) = 0 if and only if u € (Z)%**. Because
.7 has the segment-coloring-property, there is a partition X € .7 such that (X)?* is
monochromatic with respect to 7, which implies that X T Z in case of 7|(x)2 = {0},
and X M7 = {w} in case of 7|(x)- = {1}. By the choice of Z we must have X C Z,
thus, since .7 is a partition-filter, Z € .7 . —

The following lemma gives a relation between Ramseyan and Ramsey ultrafilters.

LEMMA VIL3.1.6. If 77 is a Ramseyan ultrafilter, then {Min(X)\ {0} : X € 2} is a
Ramsey ultrafilter over w (to be pedantic, one should say “over w \ {0}”).

PROOF. Let 7 : [w]” — r be any coloring of the n-element subsets of w with r colors,
where n and r are positive natural numbers. Define 7 : (w)™ — r by stipulating
m(s) := 7(Min(s*) \ {0}). Take X € 7 such that (X)™ is monochromatic with
respect to m, then, by the definition of 7, the set [Min(X) \ {0}]™ is monochromatic
with respect to 7. —

Ramsey ultrafilters over w build the minimal points of the Rudin-Keisler ordering on
fw \ w. This fact can also be expressed by saying that a non-principal ultrafilter U is
a Ramsey ultrafilter if and only if any function ¢ : w — w is either constant or one-
to-one on some set of . By Lemma VII.3.1.2, we get a similar result for Ramseyan
ultrafilters with respect to the ordering “<”.
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THEOREM VIL.3.1.7. If 7 is a Ramseyan ultrafilter, then for any surjection f : w — w
there is an X € 7 such that f either respects or completely disregards X.

PROOF. The proof is the same as the proof of Lemma VII.3.1.2, but restricted to the
partition-ultrafilter 7. —

3.2. On the existence of Ramseyan ultrafilters. As we have seen above, every
Ramseyan ultrafilter induces a Ramsey ultrafilter over w. It is not clear if the con-
verse holds as well. However, Ramseyan ultrafilters are always forceable: Let W be
the forcing notion consisting of infinite partitions, stipulating X <YV < X C* Y.
W is the natural dualization of the forcing notion U = (P(w)/fin, C*), which was
defined in Chapter VI, and it is not hard to see that if < is W-generic over V, then
¢ is a Ramseyan ultrafilter in V[ <]. Since W is o-closed, as a consequence we
get that Ramseyan ultrafilters exist if we assume CH. On the other hand we know
by Lemma VII.3.1.6 that Ramseyan ultrafilters cannot exist if there are no Ramsey
ultrafilters. Kenneth Kunen proved (cf. [36, Theorem 91]) that it is consistent with
ZFC that Ramsey ultrafilters don’t exist. We like to mention that Saharon Shelah
showed that even p-points, which are weaker ultrafilters than Ramsey ultrafilters,
may not exist (see [58, VI §4]). He also proved that it is possible that —up to iso-
morphisms — there exists a unique Ramsey ultrafilter (see [58, VI §5]).

In the following, ¢ denotes the cardinality of the continuum and 2° denotes the
cardinality of its power-set.

Andreas Blass proved that MA implies the existence of 2° Ramsey ultrafilters (see
[5, Theorem 2|). He mentions in this paper that with CH in place of MA, this result
is due to Keisler and with 1 in place of 2%, it is due to Booth (cf. [8, Theorem 4.14]).
Further he mentions that his proof is essentially the union of Keisler’s and Booth’s
proof. However, Blass’ proof uses at a crucial point that MA implies that the tower
number is equal to ¢. Such a result we don’t have for partitions, because Timothy
Carlson proved that the dual-tower number is equal to w; (see [46, Proposition 4.3|).
So, concerning the existence of Ramseyan ultrafilters under MA, we cannot simply
translate the proof of Blass, and it seems that MA and sets of partitions are quite
unrelated. But as mentioned above, if one assumes CH, then Ramseyan ultrafilters
exist. Moreover, with respect to the equivalence relation “~” (defined in Section 2) we
get the following (for a similar result w.r.t. the Rudin-Keisler ordering see [5, p. 149]).

THEOREM VIIL.3.2.1. CH implies the existence of 2° pairwise non-equivalent Ramseyan
ultrafilters.

PROOF. Assume V = CH. Let x be large enough such that P((w)¥) € H(x), i.e., the
power set of (w)“ (in V) is hereditarily of size < y. Let N be an elementary submodel
of (H(x), €) with |N| = wy, containing all reals (or equivalently, all partitions) of V.
We consider the forcing notion W in the model N. Since |N| = wy, in V there
is an enumeration {D, C (w)* : o < wi} of all dense sets of W which lie in N.
For any 7 € (w)* NV, let YZO"O,YZO"1 € D, be such that YZO"O cC* Z, YZO"1 C* 7
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and Y30 MY ¢ (w)¥ (since D, is dense, such partitions exist). For any function
¢ : ¢ — {0,1} we can construct a set Hr = {X, : @ < w} in V such that for
all f < a < w; we have X, C* Y)?lf(m. By construction, for any function (, the
set G¢ == {X € (w)¥ : X, C* X for some X, € H¢} is W-generic over N, thus, a
Ramseyan ultrafilter in N[G,|, and since W is o-closed and therefore adds no new
reals, G¢ is also a Ramseyan ultrafilter in V. Furthermore, if { # (', then the two
Ramseyan ultrafilters G and G are different (consider the two partitions Xgq € H,
and Xj,, € Hy, where ((8) # ('(3)). Hence, in V, there are 2° Ramseyan ultrafilters.
Because there are only ¢ surjections from w onto w, no equivalence class (w.r.t. “~")
can contain more than ¢ Ramseyan ultrafilters, so, in V, there must be 2° pairwise
non-equivalent Ramseyan ultrafilters. —

4. The happy families’ relatives

4.1. Relatively happy families. As we will see below, the partition-families which
have the segment-coloring-property are related to special coideals, so-called happy
families, which are introduced and rigorously investigated by Adrian Mathias in [49].
So, partition-families with the segment-coloring-property can be considered as “rela-
tives of happy families”.

Let us first consider the definition of Mathias’ happy families. Recall that [w]® is
the set of all infinite subsets of w, and that [w]|<¥ is the set of all finite subsets of w.
A set T C P(w) is a free ideal, if 7 is an ideal which contains the Fréchet ideal
[w]<“. A set F C P(w) is a free filter, if {y : w \ y € F} is an ideal containing the
Fréchet ideal. For a € [w]<¥, let a* := max{n + 1 : n € a}, in particular, 0* = 0.
For xz,y € P(w) we write y C* z if (y \ ) € [w]=¥. For a set B C P(w), let fil(B)
be the free filter generated by B, so, z € fil(B) if and only if there is a finite set
Yo, - -+ »Yn € Bsuch that (yoN...Ny,) C* z.

A set z C w is said to diagonalize the family {z, : a € [w]<¥}, if x C zy and for
all @ € [w]<¥, if max(a) € z, then (z\ a*) C z,.

The family A C P(w) is happy, if P(w) \ A is a free ideal and whenever fil{z, :
a € [w]<¥} C A, there is an x € A which diagonalizes {z, : a € [w]<“}.

In terms of happy families one can define Ramsey ultrafilters as follows: A Ramsey
ultrafilter is an ultrafilter that is also a happy family.

Now we turn back to partitions. The Fréchet ideal corresponds to the set of finite
partitions, and therefore, the notion of a free filter corresponds to partition-filters
containing only infinite partitions, hence, to partition-filters .7 C (w)“. For a set
2 C (w)¥, let fil(%7) be the partition-filter generated by &, so, X € fil(%) if and
only if there is a finite set of partitions Yy, ..., Y, € & such that (YyM...MY,) C* X.

A partition X is said to diagonalize the family {X; : s € (N)}, if X C X and
for all s € (N), if s* < X, then (|Js* M X) C X,.

The family .o C (w)” is relatively happy, if whenever fil{X; : s € (N)} C
.o/, there is an X € .o/ which diagonalizes {X; : s € (N)}. An example of a
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relatively happy family is (w)“, the set of all infinite partitions (compare with [49,
Example 0.2]). Another example of a much smaller relatively happy family is given
in the following theorem (compare with [49, p.63]).

THEOREM VIIL4.1.1. Every Ramseyan ultrafilter is relatively happy.

PROOF. Let 27 C (w)“ be a partition-ultrafilter which has the segment-coloring-
property and let {X; : s € (N)} C 2 be any family. Since 7 is a partition-filter, we
obviously have fil{ X, : s € (N)} C #. For t € (N) with [t| > 2, let s; be such that
st <t and |s;| = |t| — 2. Define the coloring 7 : | J,._(w)™2* — {0, 1} by stipulating

new

o [0 U7 25

1 otherwise.

Let X € (Xp)” N # be such that for any n € w and for any s* < X with |s| =
n, (5*,X)("+2)* is monochromatic with respect to w. Take any s* < X. Since
(s*, X)UsI+2)* {5 monochromatic with respect to 7, each #* C X with s* < ¢ and
|t] = |s|+2 gets the same color. Hence, for all such #’s we have either (|Js*Mt*) C X,
which implies X C* X, or ([Js* M¢*) Z X,, which implies X M X, ¢ (w)“. The
latter is impossible, since it contradicts the assumption that 7 is a partition-filter.
So, we are always in the former case, which completes the proof. —

4.2. A game characterization. There is a characterization of happy ultrafilters
over w, i.e., of Ramsey ultrafilters, in terms of games (cf. [3, Theorem 4.5.3]). A
similar characterization we get for relatively happy partition-ultrafilter.

Let 77 be a partition-ultrafilter. Define a game G(7) played by players I and II
as follows:

I )(1 )(2 )(3

1I S1 S9 S3
Player I on the n-th move plays a partition X,, € 7. Player II responds with a
segment s, € (N) such that [s,| =n, si_; < s, and for all m < n, (Js;, Ns:) C
X i1, where sg := (0. Player I wins if and only if the unique partition X with s, < X
(for all n) is not in 7.

THEOREM VIL.4.2.1. Let 77 € PUF((w)®), then player I has a winning strategy in
G(7) if and only if 7 is not relatively happy.

PROOF. Assume first that the partition-ultrafilter 7 is relatively happy and that
{X,: s € (N)} is a strategy for player I. This means, player I begins with X and
then, if s, is the n-th move of player I, player I plays X, . Because 7 is relatively
happy, there is a partition X € 7 which diagonalizes the family {X, : s € (N)},
in particular, X © Xjy. Now, by the definition of X and by the rules of the game
G(7’), player IT can play the segments of X. More precisely, player II plays on the
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n-th move the segment s, so that |s,| =n and s} < X. Since X € 7, the strategy
{X;:s € (N)} was not a winning strategy for player I.

Now assume that the strategy o = {X; : s € (N)} is not a winning strategy
for player I. Consider the game where player I is playing according to the strategy
o. In this game, player IT can play segments s, such that the unique partition X
with s, < X (for all n) is in . We have to show that X diagonalizes the family
{X;:s5€(N)}. Forn € w,let s, € (N) be such that s < X and |s,| = n. Fixm € w,
then, by the rules of the game, for any n > m we have (U sy T s;‘l) C Xynt1, which
implies (Us;fn r X) C X,.11. Since player I follows the strategy o, X,,.1 = X,
and because m was arbitrary, for all m € w we get (|Js;, M X) C X, . Hence, X
diagonalizes the family {X; : s € (N)}. -

5. The combinatorics of dual Mathias forcing

Let us first recall some properties of Mathias forcing and dual Mathias forcing,
respectively: Mathias forcing restricted to a non-principal ultrafilter ¢, denoted by
My, consists of the ordered pairs (a,z) € M with x € U. Mathias forcing has a lot
of nice combinatorial properties (some of them are mentioned below) which also hold
for Mathias forcing restricted to a Ramsey ultrafilter (see [49]). Dual Mathias forcing
restricted to a partition-ultrafilter 2 € PUF((w)®), denoted by M’,, consists of the
ordered pairs (s, X) € M’ with X € 7 (see e.g. [23] and [26]). As we have seen
before, both, Mathias forcing as well as dual Mathias forcing, are proper forcings.
Moreover, both have (i) a decomposition, (ii) pure decision and (iii) the homogeneity
property (see e.g. [49], [11], [23], or Chapter VI):

(i) Decomposition: M ~ U % M;, where U is the canonical U-name for the U-
generic object (U as in Section 3.2).

M’ ~ W x Mb/-/, where 7 is the canonical W-name for the W-generic object (W
as in Section 3.2).

(ii) Pure decision: For any M-condition (a,z) and any sentence ® of the forcing
language M, there is an M-condition (a,y) < (a,z) such that either (a,y) =y ®
or {a,y) - —P.
Similarly, for any M’-condition (s, X') and any sentence ® of the forcing language
M, there is an MP’-condition (s,Y) < (s, X) such that either (s,Y) -, ® or
(s,Y) F=yp 0®.

(iii) Homogeneity property: If zq is M-generic over V and y € [zg]¥, then y is
also M-generic over V.
If X is M’-generic over V and Y € (X¢)¥, then Y is also MP-generic over V.

In Chapter VI (see also [23]) it was shown that if .7 C (w)“ is a so-called game-family,
then M’ - has pure decision and the homogeneity property (see Theorem VI.4.3 and
Theorem VI1.4.4, respectively). Game-families have the segment-coloring-property
and therefore, the so-called game-filters, i.e., game-families which are partition-filters,
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are Ramseyan ultrafilters. Unlike for Ramseyan ultrafilters, it is not clear if CH im-
plies the existence of game-filters, so, it seems that game-filters are stronger than
Ramseyan ultrafilters. However, in the sequel we show that if 77 € PUF((w)“’) is a
Ramseyan ultrafilter, then M, has pure decision and the homogeneity property.

Recently, Stevo Todorcevié¢ gave an abstract presentation of Ellentuck’s theorem
by introducing the notion of a quasi ordering with approrimations which admits a
finitization and the notion of a Ramsey space. The ABSTRACT ELLENTUCK THEO-
REM says that a quasi ordering with approximations which admits a finitization and
satisfies certain axioms is a Ramsey space.

Let 77 € PUF((w)“) be a partition-ultrafilter and let “C” be the quasi ordering
on 7. For each n € w, let the function p, : 2 — (N) be such that p,(X) is the
unique s with s* < X and |s| = n. Let p be the sequence (p;,)ne,. It is easy to verify
that the triple (7/,C,p) is a quasi ordering with approximations. For n,m € w
and X,Y € 7 define: p,(X) Cpn pp(Y) if and only if dom (p,(X)) = dom (pn(Y))
and p,(X) C p,(Y). This definition verifies that (7/,C, p) admits a finitization.
If (s, X)“ is a dual Ellentuck neighborhood and X € %/, then (s, X)¥ N 7 is called
a 7/-dual Ellentuck neighborhood. The topology on 7/, induced by the Z’-dual
Ellentuck neighborhoods, is called the Z-dual Ellentuck topology. With respect
to the 7Z7-dual Ellentuck topology, the topological space 7 is a Ramsey space, if for
any subset S C 7 which has the Baire property with respect to the Z’-dual Ellentuck
topology, and for any 7/-dual Ellentuck neighborhood (s, Y)“ N7/, there is a partition
X € (s,Y)¥ N 7 such that either (s, X)*NzZ CSor (s, X)* Nz C 2\ S.

Let 7 € PUF((w)“) be a Ramseyan ultrafilter. Since the triple (7, C, p) satisfies
certain axioms, by Todorcevi¢’s ABSTRACT ELLENTUCK THEOREM, the Ramseyan
ultrafilter 77 with respect to the Z-dual Ellentuck topology is a Ramsey space. More-
over, we get the following two results.

THEOREM VIL5.1. If 7 is a Ramseyan ultrafilter, then M’, has pure decision.

PROOF. Let ® be any sentence of the forcing language M’,. With respect to ® we
define

Dy:={Y € z: forsome t <Y, (t,Y)l=p —®},
and

Dy:={Y e7: forsomet <Y, (t,Y)lp ®}.
Clearly Dy and D; are both open (w.r.t. the Z/-dual Ellentuck topology) and DyU D
is dense (w.r.t. the partial order in M’,). Because 7 is a Ramsey space, for any

7/-dual Ellentuck neighborhood (s,Y) N 7 there is an X € (s,Y)¥ N 7 such that
either

(5, X)*NZ C Dy or (s,X)*NzZNDy=0.
In the former case we have (s, X) =y, =@ and we are done. In the latter case we
find X’ € (s,X)¥ N % such that (s, X")* N7 C D;. (Otherwise we would have
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(s, X")* Nz N (DyU D) = B, which is impossible by the density of Dy U D;.) Hence,
(s, X" = O —
THEOREM VIL5.2. If 7 is a Ramseyan ultrafilter, then M’, has the homogeneity
property.

PROOF. For a dense set D C M,

7

UD ={X € (w)”: X € (s,Y)“ for some (s,Y) € D}.

let

It is clear that a partition X is M’ -generic if and only if X € |J D for each dense
set D C M’,. Let D C M’, be an arbitrary dense set and let D’ be the set of all
(s, Z) € M, such that (t,Z)* C |J D for all t C s with dom(¢) = dom(s).

First we show that D’ is dense in M’,. For this, take an arbitrary (s, W) €
M, and let {t; : 0 < i < m} be an enumeration of all ¢ € (N) such that ¢t C s
and dom(#) = dom(s). Because D is dense in M’,, | J D is open (w.r.t. the Z-dual
Ellentuck topology), and since 7 is a Ramsey space, for every t; we find a W’ € 7
such that ¢; © W' and (¢;, W')* C |JD. Moreover, if we define W_; := W, for
every 1 < m we can choose a partition W; € 7 such that W, C W, 1, s < W, and
(t;, W;)¥ CUD. Thus, (s,W,,) € D', and because (s, W,,,) < (s, W), D' is dense in
M, .

Let X¢ be M, -generic and let Y € (X)* be arbitrary. Since D' is dense, there is
a condition (s, Z) € D' such that s < X¢ C Z. Since Y € (Xg)¥, we have t <Y C 7
for some ¢ C s with dom(¢) = dom(s), and because (¢, Z2)* C |JD, we get Y € |JD.
Hence, Y € | D for each dense set D C M?,, which completes the proof. =

Appendix

In this section we are gathering some results concerning the dual form of some
cardinal characteristics of the continuum. For the definition of the classical cardinal
characteristics, as well as for the relation between them, we refer the reader to [69].

First we consider the shattering cardinal h. This cardinal was introduced in [1] as
the minimal height of a tree w-base of fw \ w. Later it was shown by Szymon Plewik
in ([54]) that h = add(R,) = cov(R,), where R, denotes the ideal of completely
Ramsey null sets. It is easy to see that p < b, and therefore, MA(o-centered) implies
h=rc

The dual form of the classical cardinal characteristics were introduced and in-
vestigated in [12]| and further investigated in [22]. Concerning the dual-shattering
cardinal 9, one easily gets w; < H < b, and in [22] it is shown that $ > w; is consis-
tent relative to ZFC and that $ = add(R3) = cov(R}), where Rj denotes the ideal of
completely dual Ramsey null sets. After all these symmetries, one would not expect
the following: MA + (¢ > 9) is consistent relative to ZFC. This was proved by Jorg
Brendle in [10] and implies that $ < p is consistent relative to ZFC.

Concerning the reaping and the dual-reaping number v and R, respectively, the
situation looks different. It is shown in [23] that p < % < min{r,i}, and thus
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we get MA(o-centered) implies ®# = ¢. Further, it is easy to show that % < U,
where Ul denotes the partition-ultrafilter base number, i.e., the dual form of u, and
consequently, MA(o-centered) implies U = .

For a Ramsey ultrafilter ¢/, Brendle introduced in [9] the ideal R, , which is the
ideal of completely Ramsey null sets with respect to the ultrafilter ¢/. Concerning this
ideal R,,, he showed for example that hom < non(R,,), where hom is the homo-
geneity number investigated by Blass in [7, Section 6]. There, Blass also investigated
the so-called partition number pat and showed that par = min{b, s}. Now, replacing
the Ramsey ultrafilter 2/ by a Ramseyan ultrafilter 7/, one obtains the ideal R}, of
completely dual Ramsey null sets with respect to 7 as the dualization of the ideal
R, ., and replacing the colorings of [w]® — involved in the definition of hom and par —
by colorings of (w)?*, one obtains the cardinal characteristics Hom and Par and could
begin to investigate them, but this is left for further research.

O
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