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Au départ, l'art du puzzle semble un art

bref, un art min
e, tout entier 
ontenu

dans un maigre enseignement de la Gestalt-

theorie: l'objet visé n'est pas une somme

d'éléments qu'il faudrait d'abord isoler et

analyser, mais un ensemble, 
'est-à-dire une

forme, une stru
ture: l'élément ne préexiste

pas à l'ensemble, il n'est ni plus immé-

diat ni plus an
ien, 
e ne sont pas les

éléments qui déterminent l'ensemble, mais

l'ensemble qui détermine les éléments : : :

(Georges Pere
,

La Vie mode d'emploi)



iv



Contents

Introdu
tion 1

Chapter I. Partitions, a Dual Form of Sets 9

1. Some basi
 de�nitions 9

2. Partitions of ! 9

3. Notation 10

4. Relations on the set of partitions 10

5. Partitions as the dual form of subsets 11

Chapter II. Dualizations of Cardinal Chara
teristi
s 13

1. On the dual-splitting 
ardinals S and S

0

13

2. On the dual-reaping 
ardinals R and R

0

16

3. What about towers and orthogonal families? 19

4. The diagrams of the results 19

Chapter III. Topologies on the Set of Partition-Ultra�lters 21

1. Partition-ultra�lters 21

2. Topologies on PUF

v

�

(!)

�!

�

and PUF

w

�

(!)

�!

�

21

3. The spa
es PUF

+

v

�

(!)

�!

�

, PUF

�

v

�

(!)

�!

�

, PUF

+

w

�

(!)

�!

�

and PUF

�

w

�

(!)

�!

�

22

4. About the spa
e PUF

+

v

�

(!)

!

�

26

Chapter IV. The Partition Form of Ramsey's Theorem 29

1. Histori
al ba
kground 29

2. The partition form of Ramsey's Theorem 31

3. A weakened form of the Halpern-Läu
hli Theorem 32

4. The �dual form� of Ramsey's Theorem versus its �partition form� 33

Chapter V. The Shattering Cardinal and the Dual Ramsey Property 37

1. The dual Ellentu
k topology and the dual Ramsey property 37

2. The distributivity number dsb(W ) 38

3. The four 
ardinals are equal 38

4. On the 
onsisten
y of H> !

1

40

5. The diagram of the results 41

Chapter VI. Symmetries between two Ramsey properties 43

1. Two Ramsey properties and two notions of for
ing 43

v



2. Basi
 fa
ts 44

3. The dual Ramsey property and Suslin's operation 47

4. Game-families and the for
ing notion P

F

50

5. On dual Mathias for
ing and game-�lters 53

6. More properties of M

[

55

7. Iteration of dual Mathias for
ing 57

8. Appendix: On the dual Ramsey property of proje
tive sets 59

Chapter VII. Ramseyan Ultra�lters and Dual Mathias For
ing 61

1. Introdu
tion 61

2. An ordering on the set of partition-�lters 61

3. Ramseyan ultra�lters 63

4. The happy families' relatives 67

5. The 
ombinatori
s of dual Mathias for
ing 69

Appendix 71

Bibliography 73

List of Symbols 76

Subje
t Index 78

vi



Introdu
tion

Combinatori
s, in
luding in�nitary 
ombinatori
s, is a broad �eld of Mathemati
s

whi
h is quite di�
ult to des
ribe properly. Nevertheless, let us start with a de�nition

of 
ombinatori
s whi
h shall be suitable for our purpose:

Combinatori
s is the bran
h of mathemati
s whi
h studies 
olle
tions

of obje
ts that satisfy 
ertain 
riteria, and is in parti
ular 
on
erned

with de
iding how large or how small su
h 
olle
tions might be.

In the following we give a few examples whi
h should illustrate some aspe
ts of in�ni-

tary 
ombinatori
s appearing later in this work. Let us start with an example from

graph theory.

Example 1 (König's Lemma). A tree is a 
onne
ted undire
ted graph without 
ir
uits

one of whose verti
es is designated as the origin. A tree is in�nite if its set of verti
es

is 
ountable in�nite and it is �nitely bran
hing if ea
h vertex has only �nitely many

su

essors. A bran
h in a tree is a maximal path beginning at the origin. Now,

König's Lemma [43, VI, �2, Satz 6℄ states that every in�nite, �nitely bran
hing tree


ontains an in�nite bran
h. Noti
e that �nitely bran
hing is ne
essary to assure that

the tree is in�nitely high.

Even though this fa
t looks quite obvious, in order to prove it one must use some

kind of 
hoi
e. The full Axiom of Choi
e AC states that a Cartesian produ
t of

non-empty sets is non-empty, or equivalently, that every set of non-empty sets has

a 
hoi
e fun
tion. It is easy to see that König's Lemma follows from AC. On the

other hand, König's Lemma � whi
h is a purely 
ombinatorial result � is equivalent

to the statement AC

!;<!

, whi
h says that every 
ountable family of non-empty �nite

sets has a 
hoi
e fun
tion (
f. [35, Form10℄). It is well known that not only AC, but

also AC

!;<!

and many other weakened forms of AC are independent of the axioms of

Zermelo-Fraenkel Set Theory, denoted by ZF.

At this point, let us brie�y explain the meaning of �independent� and �
onsistent�.

Let � be any set of statements, or axioms, then � is 
alled 
onsistent if we 
annot de-

rive a 
ontradi
tion from �, whi
h is � by Gödel's 
ompleteness theorem � equivalent

to the fa
t that � has a model (e.g., the set of permutations of three obje
ts is a

model for the axioms of group theory). Further, a statement ' is 
alled independent

of � if either set � [ f'g and � [ f:'g is 
onsistent.
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Let us turn ba
k to our example. There are models of ZF in whi
h AC � and


onsequently AC

!;<!

� is true, but there are also models of ZF in whi
h AC

!;<!

� and


onsequently AC � fails. Moreover, there are also models of ZF in whi
h AC

!;<!

is

true but AC fails. Thus, we 
an 
on
lude that even basi
 
ombinatorial statements

like König's Lemma may depend on the underlying model of set theory.

This �rst example shows that � depending on the set theoreti
al axioms we are

starting with � some obje
ts, satisfying 
ertain 
riteria, might or might not exist.

Throughout this work, we will always assume AC, so, our basi
 axiom system will

be ZFC, whi
h is ZF + AC. This also means that we will never dis
uss how mu
h of

AC is needed to get 
ertain results.

The next example 
an be seen as a problem in in�nitary extremal 
ombinatori
s.

The word �extremal� 
omes from the nature of problems this �eld deals with, and

refers to the se
ond part of our de�nition: how large or how small 
olle
tions satisfying


ertain 
riteria might be.

For example, how many people must be on a party to be sure that there are three

people who all either know ea
h other or don't know ea
h other? Or, given a �nite set

of non-zero integers S. How large 
an a set A � S be su
h that A does not 
ontain

the sum of any two of its members. It turns out that (independent of the given set

S) there is always an A whi
h 
ontains at least one-third of the numbers in S.

If the obje
ts 
onsidered are in�nite, then the answer how large or how small


ertain sets 
an be might depend on the underlying model of set theory, as the next

example shows.

Example 2 (reaping number). A family R of in�nite subsets of the natural numbers

! is 
alled reaping (also 
alled unsplitting), if for every 
oloring of ! with two 
olors

there exists a mono
hromati
 set in R. The reaping number r is the minimal size of

a reaping family. Now we 
an ask: How large is r ?

It is easy to see that a reaping family 
annot be 
ountable. Indeed, let A = fA

i

:

i 2 !g be any 
ountable family of in�nite subsets of !. For ea
h i 2 !, pi
k n

i

and m

i

from the set A

i

in su
h a way that for all i 2 !, n

i

< m

i

< n

i+1

. Ea
h n

i

(i 2 !) gets 
olored blue and all other numbers red. For this 
oloring, there is no

mono
hromati
 set in A, and hen
e, A 
annot be a reaping family. Consequently,

assuming the Continuum Hypothesis CH, any reaping family must have the same


ardinality as the 
ontinuum, denoted by 
, and we get the same assuming Martin's

Axiom MA. On the other hand, with the for
ing te
hnique � invented by Paul Cohen

in the early 1960's (
f. [13℄) � one 
an show that the minimal size of a reaping family

is independent of ZFC. In other words, there are models of ZFC in whi
h r = 
, but

there are other models in whi
h r < 
.

So, the se
ond example shows that we get di�erent answers � depending on the

additional axioms of set theory we start with � when we try to de
ide how large or

how small 
ertain 
olle
tions might be.
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Another �eld of 
ombinatori
s is the so-
alled Ramsey Theory, and sin
e many

results in this work are �partition-versions� of 
lassi
al Ramsey-type theorems, let us

give a brief des
ription of Ramsey Theory.

Loosely speaking, Ramsey Theory (whi
h 
an be seen as a part of extremal 
ombi-

natori
s) is that bran
h of 
ombinatori
s whi
h deals with stru
tures preserved under

partitions, or 
olorings. Typi
ally, one looks at the following kind of question: If a

parti
ular obje
t (e.g., algebrai
, geometri
 or 
ombinatorial) is arbitrarily 
olored

with �nitely many 
olors, what kinds of mono
hromati
 stru
tures 
an we �nd?

For example, van der Waerden's Theorem tells us that if the integers are 
olored

with �nitely many 
olors, then there are arbitrarily long mono
hromati
 arithmeti


progressions. Or, for any 
oloring of the points in the Eu
lidean plane with �nitely

many 
olors, there are three mono
hromati
 points whi
h are the veri
es of a right-

angled triangle of unit area.

The most famous result in Ramsey Theory is surely Ramsey's Theorem. In fa
t,

there are two versions of Ramsey's Theorem, an in�nite version [57, Theorem A℄ and

a �nite version [57, Theorem B℄, but be
ause the se
ond one follows from the �rst

one, we 
onsider Theorem A as �Ramsey's Theorem�, also 
alled �Ramsey Theorem�:

Example 3 (Ramsey's Theorem). For any positive integer n, let [!℄

n

denote the set of

all n-element subsets of the natural numbers. Now, Ramsey's Theorem tells us that if

we 
olor [!℄

n

with �nitely many 
olors, we �nd an in�nite subset H � ! su
h that all

n-element subsets of H have the same 
olor, and su
h a set H we 
all homogeneous.

The following is just a 
onsequen
e of Ramsey's Theorem:

Finitary Ramsey Theorem. For all positive integers m;n; r, where n � m, there

exists a number N 2 ! su
h that for every 
oloring of [N ℄

n

with r 
olors, we �nd a

set H 2 [N ℄

m

su
h that [H℄

n

is mono
hromati
.

For example the �party-problem� mentioned above is a typi
al problem in Ramsey

theory and an easy Ramsey-type argument shows that at least six persons must be

on the party. On the other hand, if we ask how many people must get invited to a

party to make sure that there are �ve people who all either know ea
h other or don't

know ea
h other, then the answer is not known, but it is 
onje
tured that at least 43

persons must be invited (see [56℄).

Ramsey's theorems have appli
ations to many di�erent �elds su
h as Bana
h

spa
e theory (
f. [51℄), and set theory without the axiom of 
hoi
e (see e.g., [30,

Proposition 7.3.1℄).

Sometimes, we also get Ramsey-type (or anti Ramsey-type) results even for a

partition into in�nitely many 
lasses. For example, there is a 
oloring of the points

in the Eu
lidean plane with 
ountably many 
olors, su
h that no two points of any

�
opy of the rational line� get the same 
olor (see [42℄). This result 
an be seen as an

anti Ramsey-type theorem (sin
e we are far away from �mono
hromati
 stru
tures�),

and it shows that Ramsey-type theorems 
annot be generalized arbitrarily. On the

3



other hand, one 
an 
onsider just these 
olorings whi
h �behave well�, or whi
h have

some ni
e mono
hromati
 stru
tures, and investigate how 
ompli
ated su
h 
olorings

may be. Su
h an approa
h leads to 
ombinatorial properties, as the next example

illustrates.

Example 4 (Ramsey property). Let [!℄

!

denote the set of all in�nite subsets of !,

and for H 2 [!℄

!

, let [H℄

!

denote the set of all in�nite subsets of H. A set A � [!℄

!

has the Ramsey property if there is an H 2 [!℄

!

su
h that either [H℄

!

� A or

[H℄

!

\ A = ;. In other words, if we 
olor all in�nite subsets of ! with two 
olors,

and we �nd an in�nite subset of !, all of whose in�nite subsets have the same 
olor,

then the 
oloring has the Ramsey property.

With the aid of AC it is not hard to 
onstru
t a set A � [!℄

!

whi
h does not have

the Ramsey property. On the other hand, one 
an show that all analyti
 sets have

the Ramsey property and it is 
onsistent with ZF that ea
h A � [!℄

!

has the Ramsey

property. Further, assuming the existen
e of an ina

essible 
ardinal, one 
an show

that it is 
onsistent with ZFC that all proje
tive sets have the Ramsey property, but

it is not known if the assumption of an ina

essible 
ardinal is ne
essary.

Let us turn ba
k to Ramsey's Theorem whi
h tells us that for every 
oloring

� : [!℄

2

! f0; 1g there is an in�nite homogeneous set H � !. But it does not tell

us where to �nd su
h set H. If there would be an ultra�lter over ! su
h that the

homogeneous set always belongs to the ultra�lter, this would be useful, espe
ially

from a 
ombinatorial point of view. This leads to the following:

Example 5 (Ramsey ultra�lters). Let U be an ultra�lter over !, then U is 
alled a

Ramsey ultra�lter if for every 
oloring � : [!℄

2

! f0; 1g there is an in�nite homoge-

neous set H 2 U .

One 
an show that either CH or MA implies the existen
e of Ramsey ultra�lters.

On the other hand, it is 
onsistent with ZFC that there are no Ramsey ultra�lters at

all. Ramsey ultra�lters, together with Mathias for
ing, play an important role in the

investigation of the Ramsey property, and the beautiful intera
tion between Ramsey

ultra�lters, Mathias for
ing and the Ramsey property was the main motivation to

investigate the 
orresponding theory for sets of partitions.

❀ ❀ ❀

The aim of this work is to investigate 
ombinatorial properties of sets of parti-

tions along the guideline given by the pre
eding examples. Sin
e, from the 
ategory

theoreti
al point of view, partitions are the duals of subsets, going from subsets to

partitions is 
alled �dualization�. The main di�eren
e between subsets of ! and par-

titions of ! is that partitions do not have a proper 
omplement. If they would have,

there would be nothing to do than repla
e the word �subset� by �partition�. But

4



this is not the 
ase, and sometimes, it is not even straightforward to �nd the right

dualization.

For example, 
onsider the spa
es �! (whi
h is the spa
e of ultra�lters over !) and

�! n! (the spa
e of non-prin
ipal ultra�lters over !). If we want to dualize these two

spa
es, we have to dualize �rst the notion of ultra�lters, whi
h gives us the notion of

partition-ultra�lters, de�ned as maximal partition-�lters. It turns out that there are

two natural ways to do this, so we get two sets of partition-ultra�lters. Now, we have

to de�ne a topology on ea
h of these two sets of partition-ultra�lters, and it turns out

that we have again two possibilities to do this. Thus, we end up with four topologi
al

spa
es of partition-ultra�lters, but none of them is homeomorphi
 to �! or to �! n!.

Other di�
ulties and asymmetries o

ur when we try to dualize Ramsey's Theorem

(see Chapter IV) or some 
ardinal 
hara
teristi
s of the 
ontinuum (see Chapter II),

or if we try to �nd a dual form of Ramsey ultra�lters (see Chapter VII).

❀ ❀ ❀

As mentioned above, the following work 
an be seen as a dualization � in terms

of partitions � of the 
ombinatori
s of sets of subsets of !, and 
onsists mainly of

the papers [22℄, [23℄, [24℄ and [27℄, whi
h are all published in refereed journals.

The only ex
eption is Chapter IV (where a theorem is given, whi
h 
an be seen as

the partition form � rather than the dual form � of Ramsey's Theorem). Let us now

brie�y summarize the 
ontent of ea
h 
hapter:

In Chapter I we introdu
e our terminology and give the basi
 de�nitions of par-

titions of !. Further, it is shown that from the 
ategory theoreti
al point of view,

partitions are the duals of subsets, whi
h motivates the term �dualization� for the

pro
ess of going from subsets to partitions.

Hen
eforth, for any property, like the Ramsey property, or 
ardinal 
hara
teristi


of the 
ontinuum, like the reaping number r, et
., the dual Ramsey property or the

dual-reaping 
ardinal R, et
., refers to the 
orresponding partition form of the Ramsey

property and the reaping number, et
.

In Chapter II we dualize some well-known 
ardinal 
hara
teristi
s of the 
onti-

nuum like the reaping number r (see Example 2) and the splitting number s. It

will be shown that the dual forms of these 
ardinal 
hara
teristi
s do in general not

agree with their standard form. For example, it is 
onsistent with ZFC that the dual-

splitting 
ardinal S is stri
tly bigger than s, whi
h would be obvious if S = 
, but it

is also 
onsistent that S is stri
tly smaller than the 
ontinuum. Moreover, one 
an

show that � no matter in whi
h model of ZFC we are � the dual tower number is al-

ways !

1

(the �rst un
ountable 
ardinal), whi
h is smaller than or equal to the 
lassi


tower number; and that a maximal almost orthogonal family � whi
h 
orresponds to

a maximal almost disjoint family � has always the same size as the 
ontinuum, and

5



therefore, su
h a family 
an be stri
tly greater than its 
lassi
al relative. Thus, dual


ardinal numbers 
an be �xed, whereas their 
lassi
al relatives 
an be 
onsistently

moved. On the other hand, there is also a 
ardinal 
hara
teristi
s of the 
ontinuum

whi
h is �xed � like the 
ardinality of a family F � [!℄

!

su
h that for every in�nite

subset of ! there is a disjoint set in F , whi
h has always the same size as the 
on-

tinuum � whereas its dualization O 
an be proved to be greater than or equal to p

(the so-
alled pseudo-interse
tion number) and less than or equal to i (the so-
alled

independent number). Further, it is provable in ZFC that the dual-reaping 
ardinal

R is less than or equal to minfr;Og, but it is greater than or equal to p. Summariz-

ing the previous fa
ts, the dual form of 
ardinal 
hara
teristi
s of the 
ontinuum is


ompletely asymmetri
 to the 
lassi
al ones. The results of this 
hapter 
an also be

found in [22℄.

In Chapter III we investigate the four topologi
al spa
es mentioned above whi
h


an be seen as the dualizations of the spa
es �! and �! n!, whi
h are both 
ompa
t

Hausdor�. Even though all four topologi
al spa
es are natural dualizations of �!

or �! n !, none of these four spa
es is homeomorphi
 to �! or �! n !. To prove

this, we will be using some 
ombinatorial tools like König's Lemma (see Example 1).

In parti
ular, it will be shown that two of these four spa
es are Hausdor� but not


ompa
t, and the other two are not Hausdor� but 
ountable 
ompa
t. Further, the

dualization and the existen
e of P -points will be dis
ussed. For a slightly more general

approa
h in terms of �lters on semilatti
e see [27℄.

After a short introdu
tion to Ramsey Theory, we present in Chapter IV a partition

form of Ramsey's Theorem (see Example 3), whi
h will be used to de�ne Ramseyan

ultra�lters in Chapter VII. Ramsey's Theorem says that if we 
olor the n-element

subsets of ! with �nitely many 
olors, then we �nd an in�nite homogeneous set. So,

in a dual form of Ramsey's Theorem � whi
h was introdu
ed by Timothy Carlson in

[11℄ � we would expe
t that if we 
olor the n-part partitions of ! with �nitely many


olors, then we �nd an in�nite homogeneous partition. But there is a 
oloring of the

2-part partitions of ! with just two 
olors, su
h that there is no in�nite homogeneous

partition of !. So, the dual form of Ramsey's Theorem is not as general as the


lassi
al version. On the other hand, if we repla
e the n-element subsets of ! by n-

part partitions of integers k 2 !, then the 
orresponding partition form of Ramsey's

Theorem has similar features as the 
lassi
al version, even though it is not the proper

dualization (see Chapter I.5).

In Chapter V we begin to investigate the dual Ramsey property (see Example 4).

In this 
ontext, the only important 
ardinal (also used in Chapter VI) is the dual-

shattering 
ardinal H, whi
h is the dualization of the shattering number h. Firstly, it

will be shown how H is related to the dual Ramsey property. In parti
ular, we will

see that H = add(R

[

0

) = 
ov(R

[

0

), where R

[

0

denotes the ideal of 
ompletely dual

Ramsey null sets, and add and 
ov denote the additivity and the 
overing numbers,

respe
tively. Se
ondly, we investigate H itself. One 
an show that H � h and that it

is 
onsistent with ZFC that H < h (even under MA). This would be obvious if H = !

1

,

6



but we will see that H > !

1

as well as H > 
ov(B

0

) (where B

0

denotes the ideal of

meager sets) is 
onsistent with ZFC. The results of this 
hapter 
an be found again

in [22℄.

Finally, after dis
ussing asymmetries in the dualization pro
ess, we look in Chap-

ter VI at the symmetries between the Ramsey property and the dual Ramsey property.

Some results about the dual Ramsey property are straightforward dualizations of re-

sults about the Ramsey property. But as a matter of fa
t we will see that most proofs

in the dual 
ase are mu
h more involved than the 
lassi
 ones. The reason leading

to more sophisti
ated proofs is that a partition � unlike a subset � does not have a

proper 
omplement. It will be shown that the dual Ramsey property is 
losed under

a generalized Suslin operation involving the dual-shattering 
ardinal H. Further, the

notion of game-families and game-�lters will be introdu
ed and dual Mathias for
-

ing (restri
ted to these game-�lters) will be investigated. In parti
ular, it will be

shown that an !

2

-iteration of dual Mathias for
ing with 
ountable support starting

from Gödel's 
onstru
tible universe yields a model in whi
h every �

1

2

-set has the

dual Ramsey property, but not every �

1

2

-set has the Baire property. A similar model

exists with respe
t to the Ramsey property. Almost all results of this 
hapter 
an be

found in [23℄.

In Chapter VII we de�ne an ordering on the set of partition-�lters whi
h is similar

to the Rudin-Keisler ordering on �!. Further, we introdu
e a partition form (whi
h is

not the dual form!) of Ramsey ultra�lters (see Example 5), 
alled Ramseyan ultra�l-

ters. The Rudin-Keisler ordering on �! is de�ned as follows: U � V if U is the image

of V under the 
anoni
al extension �f : �! ! �! of some map f : ! ! !. Now,

Ramsey ultra�lters over ! build the minimal points of the Rudin-Keisler ordering on

�! n !. It will be shown that a similar result is true for Ramseyan ultra�lters with

respe
t to the ordering on the set of partition-�lters, and that CH implies the exis-

ten
e of 2




pairwise non-equivalent Ramseyan ultra�lters. Further, it will be shown

that dual Mathias for
ing restri
ted to a Ramseyan ultra�lter has the same features

as Mathias for
ing restri
ted to a Ramsey ultra�lter. In parti
ular, it has the homo-

geneity property, has pure de
ision and 
an be de
omposed. Ramsey ultra�lters 
an

also be des
ribed as happy families that are also �lters, and so, we also dualize the

notion of happy families and show that the so-
alled relatively happy families have

a similar 
hara
terization in terms of games as their 
lassi
 relatives. Finally, we


onsider the dual form of some 
ardinal 
hara
teristi
s of the 
ontinuum whi
h are

to some extend related to Ramseyan ultra�lters. This 
hapter is essentially [24℄.

7





CHAPTER I

Partitions, a Dual Form of Sets

Most of our set-theoreti
al terminology is standard and 
an be found in textbooks

like [3℄, [36℄ and [44℄. However, let us re
all some frequently used notation.

1. Some basi
 de�nitions

Let S be a set. jSj denotes the 
ardinality of the set S, whi
h is the least ordinal

number � su
h that there exists a bije
tion between S and �. In parti
ular, ! denotes

the least in�nite ordinal, !

1

denotes the least un
ountable ordinal, and so on. Let

P(S) denote the power-set of S. For a 
ardinal number �, let [S℄

�

:= fT 2 P(S) :

jT j = �g and [S℄

<�

:= fT 2 P(S) : jT j < �g.

The least in�nite ordinal number is denoted by ! = f0; 1; 2; : : :g whi
h is the set

of natural numbers, where a natural number n = fk 2 ! : k < ng (in parti
ular,

0 = ;). Further, let 
 := jP(!)j denote the 
ardinality of the 
ontinuum.

For our purpose, without loss of generality we 
onsider the set [!℄

!

as the set of

irrational numbers, and the set [!℄

<!

as the set of rationals. However, sometimes it

is more 
onvenient to identify the reals with the set

!

! (the set of all fun
tions from

! to !) or with the set

!

2 (the set of all fun
tions from ! to f0; 1g).

2. Partitions of !

The main obje
ts of this work will be partitions of !. A partition X of ! is a

subset of P(!) su
h that the following holds:

(i) if b 2 X, then b 6= ;,

(ii) if b

1

; b

2

2 X and b

1

6= b

2

then b

1

\ b

2

= ;,

(iii)

S

X = !.

In other words, a partition of ! is a set of pairwise disjoint, non-empty subsets of

! su
h that the union is all of !. The set of all partitions of ! is denoted by (!)

�!

.

A partition means always a partition of !. If X is a partition and b 2 X, then we


all b a blo
k of X. If a partition has in�nitely many blo
ks (or equivalently, if X is

in�nite) we 
all X an in�nite partition. The set of all in�nite partitions is denoted

by (!)

!

. Further, the set of all �nite partitions is denoted by (!)

<!

.

A partial partition X

0

is a subset of P(!) su
h that (i) and (ii) hold but instead

of (iii) we have

(iii)'

S

X

0

=: dom(X

0

) � !.

9
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Note that a partition is always also a partial partition. If dom(X

0

) 2 !, then X

0

is

a partition of some n 2 !. The set of all partial partitions X

0

where dom(X

0

) 2 ! is

denoted by (N). Further, for s 2 (N), s

�

denotes the partial partition s[ffdom(s)gg.

3. Notation

Throughout this work we will usually denote:

� elements of ! by lower 
ase letters like n;m; k; h : : :

� elements of [!℄

!

by lower 
ase letters like x; y : : :

� partitions by upper 
ase letters like X; Y : : :

� �nite subsets of [!℄

!

by lower 
ase letters like a; b : : :

� elements of (N) by lower 
ase letters like s; t : : :

� subsets of [!℄

!

by 
alligraphi
 letters like F ;S;U : : :

� sets of partitions by even more 
alligraphi
 letters like F ;S ;U : : :

� 
ardinal 
hara
teristi
s of the 
ontinuum whi
h are related to [!℄

!

by lower 
ase

fra
ture letters like h; r; s : : :

� 
ardinal 
hara
teristi
s of the 
ontinuum whi
h are related to partitions by upper


ase fra
ture letters like H;R;S : : :

4. Relations on the set of partitions

Let X

1

; X

2

be two partial partitions. We say that X

1

is 
oarser than X

2

, or

that X

2

is �ner than X

1

, and write X

1

v X

2

, if for all blo
ks b 2 X

1

the set

b \ dom(X

2

) is the union of some sets b

i

\ dom(X

1

), where ea
h b

i

is a blo
k of

X

2

. In parti
ular,

�

f!g

	

is the 
oarsest partition and (!) :=

�

fng : n 2 !

	

is the �nest partition. Let X

1

u X

2

denote the �nest partial partition whi
h is


oarser than X

1

and X

2

su
h that dom(X

1

u X

2

) = dom(X

1

) [ dom(X

2

), and let

X

1

tX

2

denote the 
oarsest partial partition whi
h is �ner than X

1

and X

2

su
h that

dom(X

1

tX

2

) = dom(X

1

) [ dom(X

2

).

If p 2 [!℄

<!

is a �nite subset of !, then fpg is a partial partition with dom(fpg) =

p. For two partial partitions X

1

and X

2

we write X

1

v

�

X

2

if there is a �nite set

p � dom(X

1

) su
h thatX

1

ufpg v X

2

and say thatX

1

is almost 
oarser thanX

2

, or

that X

2

is almost �ner than X

1

. If X

1

v

�

X

2

, X

2

v

�

X

1

and dom(X

1

) = dom(X

2

),

then we write X

1

�

= X

2

. If X

�

= (!) or X =

�

f!g

	

, then X is 
alled trivial; in other

words, X is trivial if X is either the one-blo
k-partition or all blo
ks of X are �nite

and just �nitely many blo
ks 
ontain more than one element.

Let X

1

; X

2

be two partial partitions. If ea
h blo
k of X

1


an be written as the

interse
tion of a blo
k of X

2

and dom(X

1

), then we write X

1

� X

2

. Note that

X

1

� X

2

implies dom(X

1

) � dom(X

2

).

If X is a partial partition, then

Min(X) :=

�

n 2 ! : 9b 2 X

�

n = min(b)

�	

;
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where min(b) :=

T

b. If we order the blo
ks of X by their least element, then X(n)

denotes the n

th

blo
k with respe
t to this ordering and X(n)(k) denotes the k

th

element (with respe
t to the natural ordering) of X(n).

5. Partitions as the dual form of subsets

One 
an think of the duality between subsets and partitions in a 
ategory-theoreti


way.

Let N be an arbitrary set. For our purposes, N will be just !. Consider one-to-one

fun
tions into N from arbitrary domains, and 
all two su
h fun
tions, say f : A! N

and g : B ! N equivalent if there is a bije
tion h : A ! B su
h that f = gh. Then

the equivalen
e 
lasses 
an be identi�ed with the subsets of N , be
ause f and g are

equivalent if and only if they have the same image.

In fa
t, in general 
ategories, we 
an de�ne a �subobje
t� to be su
h an equivalen
e


lass. For this, we need 
ategory-theoreti
 de�nitions of �one-to-one� and �bije
tion�:

A bije
tion is a map with a two-sided inverse (with respe
t to 
omposition), and a

map is one-to-one if and only if it is 
an
ellable on the left.

Now we apply the general 
ategory-theoreti
 notion of duality: Reverse the di-

re
tion of all arrows and (therefore) reverse the order of 
omposition. �Bije
tion� is

self-dual, but the dual of �one-to-one map� is �right-
an
ellable map� whi
h amounts

to (in the 
ategory of sets) �onto map�. So, the dual of a subobje
t of N would be

an equivalen
e 
lass of surje
tions f : N ! A (for arbitrary sets A); here f : N ! A

and g : N ! B are equivalent if and only if there is a bije
tion h : B ! A su
h that

f = hg. Untangling the de�nitions, we �nd that f and g are equivalent if and only if

the partitions they indu
e on N (the pre-images of singletons in A and in B) are the

same. In other words, dualizing the notion of subset (or, more pre
isely, dualizing a


ategory-theoreti
 des
ription of subsets) gives (a 
ategory-theoreti
 des
ription of)

partitions.

Further, the in
lusion relation on subsets admits a 
ategory-theoreti
 des
ription

in terms of the one-to-one maps; it just says that f = gh for some h, not ne
essarily

a bije
tion. Dualizing, you get a des
ription, in terms of surje
tions, of the �
oarser

than� relation on partitions. So, the dualization of the in
lusion relation between

subsets is the �
oarser than� relation between partitions.

Similarly, where �nite sets o

ur in some theory, we would expe
t partitions with

�nitely many pie
es in the dual theory, be
ause both say that the A (or B) above is

�nite.

With the 
on
ept of dualization we 
an seek for dualizations of 
ardinal 
hara
ter-

isti
s of the 
ontinuum (see [12℄) or for a dual form of Ramsey's Theorem (see [11℄).

On the other hand, from the 
ombinatorial point of view it is sometimes appropri-

ate to look for a �partition form� of 
ertain 
ombinatorial theorems, whi
h might be

di�erent from the 
orresponding dual form (see for example Chapter IV).



12 COMBINATORIAL PROPERTIES OF PARTITIONS



CHAPTER II

Dualizations of Cardinal Chara
teristi
s

The dualization of some 
ardinal 
hara
teristi
s of the 
ontinuum was �rst inves-

tigated by Ja
ek Ci
ho«, Adam Kraw
zyk, Barbara Maj
her-Iwanow and Bogdanin

W�eglorz in [12℄. In this 
hapter we pro
eed their work.

Sometimes, it will be 
onvenient to 
onsider in�nite partitions su
h that at least

one blo
k is in�nite, thus, let (!)

!

0

denote the set of all those partitions.

Two partitionsX

1

; X

2

2 (!)

!

are 
alled almost orthogonal, denoted X

1

?

�

X

2

, if

X

1

uX

2

62 (!)

!

; otherwise, they are 
alled 
ompatible, denoted X

1

jX

2

. If X

1

uX

2

=

�

f!g

	

, then they are 
alled orthogonal, denoted X

1

?X

2

.

Re
all that 
 := jP(!)j denotes the 
ardinality of the 
ontinuum.

1. On the dual-splitting 
ardinals S and S

0

LetX

1

; X

2

be two partitions. We sayX

1

splitsX

2

ifX

1

jX

2

and there is a partition

Y v X

2

su
h that X

1

?Y . A family S � (!)

!

is 
alled splitting if for ea
h non-

trivial X 2 (!)

!

there exists an S 2 S su
h that S splits X. The dual-splitting


ardinal S (S

0

, respe
tively) is the least 
ardinal number � for whi
h there exists a

splitting family S � (!)

!

(S � (!)

!

0

, respe
tively) of 
ardinality �.

It is obvious that S � S

0

. In the following, we 
ompare �rst the dual-splitting

number S

0

with the well-known unbounding number b (a de�nition of b 
an be found

in [65℄).

Theorem II.1.1. b � S

0

.

Proof. Assume there exists a family S = fS

�

: � < � < bg � (!)

!

0

whi
h is

splitting. Let B = fb

�

: � < �g � [!℄

!

a set of in�nite subsets of ! su
h that

b

�

2 S

�

(for all � < �). Let f

b

�

2

!

! be the (unique) in
reasing fun
tion su
h that

range(f

b

�

)=b

�

. Be
ause � < b, the set ff

b

�

: � < �g is not unbounded. Therefore,

there exists a one-to-one fun
tion d 2

!

! su
h that f

b

�

<

�

d (for all � < �). With

the fun
tion d we 
onstru
t an in�nite partition D. First we de�ne an in�nite set of

pairwise disjoint �nite sets p

i

(i 2 !):

p

i

:=

�

d

i

(0); d

i+1

(0)

�

;

where d

i

denote the i-fold 
omposition of d. Now, the blo
ks of D are de�ned as

follows:

n is in the k

th

blo
k of D , n 2 p

i

and i�max

�

l(l + 1)=2 < i : l 2 !

	

= k:

13
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Be
ause d dominates B, for all b

�

2 B there exists a natural number m

�

su
h that for

all i > m

�

we have d

i

(0) � b

�

(d

i

(0)) < d

i+1

(i) (
f. [65, page 121℄). So, for all i > m

�

,

p

i

\ b

�

6= ; and therefore by the 
onstru
tion of the blo
ks of D, b

�

interse
ts ea
h

blo
k of D. But this implies that D is not 
ompatible with any element of S and

hen
e, S 
annot be a splitting family. a

Let us now 
ompare S

0

with the splitting number s (
f. [65℄).

Corollary II.1.2. It is 
onsistent with ZFC that s < S

0

.

Proof. Be
ause b � S

0

is provable in ZFC, it is enough to show that s < b is


onsistent with ZFC, whi
h is proved by Saharon Shelah in [58℄. a

Now we show that 
ov(B

0

) � S (where B

0

denotes the ideal of meager sets).

In [12℄ it is shown that if � < 
ov(B

0

) and fX

�

: � < �g � (!)

!

is a family of

partitions, then there exists Y 2 (!)

!

su
h that Y?X

�

for ea
h � < �. This implies

the following

Corollary II.1.3. 
ov(B

0

) � S.

Proof. Let S; Y 2 (!)

!

. If S?Y , then S does not split Y and therefore a family of


ardinality less than 
ov(B

0

) 
an not be splitting. a

As a 
orollary we get again a 
onsisten
y result:

Corollary II.1.4. It is 
onsistent with ZFC that s < S.

Proof. After an !

1

-iteration of Cohen for
ing with �nite support starting from a

model V j= 
ov(B

0

) = !

2

= 
, we get a model in whi
h !

1

= s < 
ov(B

0

) = !

2

= 
.

Hen
e, by Corollary II.1.3, this is a model for !

1

= s < S = !

2

. a

Until now we have max

�


ov(B

0

); b

	

� S

0

, whi
h would be trivial if one 
ould

show that S

0

= 
. But this is not the 
ase (
f. [12℄). To 
onstru
t a model in whi
h

S

0

< 
 we will use a modi�ed version of a for
ing notion introdu
ed in [12℄.

Let F be an arbitrary but �xed ultra�lter over !. Let Q be the notion of for
ing

de�ned as follows: The 
onditions of Q are pairs hs; Ai su
h that s 2 (N) (
alled

the stem of the 
ondition), A 2 (!)

<!

, A(0) 2 F and s � A, stipulating hs; Ai �

ht; Bi if and only if t � s and B v A. If hs; A

1

i; hs; A

2

i are two Q -
onditions, then

hs; A

1

u A

2

i � hs; A

1

i; hs; A

2

i. Hen
e, two Q -
onditions with the same stem are


ompatible and be
ause there are only 
ountably many stems, the for
ing notion Q

is �-
entered.

Now we will see that Q adds an in�nite partition whi
h is 
ompatible with all

old in�nite partitions but is not almost �ner than any old partition. (So, the for
ing

notion Q is in a sense like the dualization of Cohen for
ing.)

Lemma II.1.5. Let G be Q -generi
 over V . Then G 2 (!)

!

0

and V [G℄ j= 8X 2

(!)

!

\ V

�

GjX ^ :(X v

�

G)

�

:
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Proof. Let X 2 V be an arbitrary, in�nite partition. Then for every n 2 !, the set

D

n

is dense in Q , where D

n

is a set of Q -
onditions hs; Ai, de�ned as follows:

(1) s(0) has more than n elements,

(2) at least n blo
ks of X are unions of blo
ks of A,

(3) there are at least n di�erent blo
ks b

i

2 X, su
h that

S

b

i

2 s uX.

Therefore, at least one blo
k of G is in�nite, be
ause of (1), G is 
ompatible with X,

be
ause of (2), and X is not 
oarser

�

than G, be
ause of (3). Now, be
ause X was

arbitrary, the Q -generi
 partition G has the desired properties. a

Be
ause the for
ing notion Q is �-
entered and ea
h Q -
ondition 
an be en
oded

by a real number, for
ing with Q does neither 
ollapse any 
ardinals nor 
hange the


ardinality of the 
ontinuum. Thus, following [12℄, we get:

Proposition II.1.6. It is 
onsistent with ZFC that S

0

< 
.

Proof. Take an !

1

-iteration of Q with �nite support, starting from a model in whi
h


 = !

2

, then the !

1

generi
 obje
ts form a splitting family. a

Even though a partition does not have a 
omplement, for ea
h non-trivial partition

X we 
an de�ne a non-trivial partition Y , su
h that X?Y : Let X = fb

i

: i 2 !g 2

(!)

!

and assume that the blo
ks b

i

are ordered by their least element and that ea
h

blo
k is ordered by the natural order. A blo
k is 
alled trivial, if it is a singleton.

With respe
t to this ordering de�ne for ea
h non-trivial partition X the partition X

\

as follows:

If X 2 (!)

!

0

, then n is in the i

th

blo
k of X

\

i� n is the i

th

element of a blo
k of

X, and if X =2 (!)

!

0

, then n;m are in the same blo
k of X

\

i� n;m are both least

elements of blo
ks of X.

It is not hard to see that for ea
h non-trivial X 2 (!)

!

, X?X

\

.

A family W � (!)

!

0

is 
alled weakly splitting, if for ea
h partition X 2 (!)

!

,

there is a W 2 W su
h that W splits X or W splits X

\

. The 
ardinal number

wS is the least 
ardinal number � for whi
h there exists a weakly splitting family of


ardinality �. (It is obvious that wS � S

0

.)

A family U is 
alled a �-base for a free ultra�lter F over ! provided for every

x 2 F there is a u 2 U su
h that u � x. De�ne

�u := min

�

jUj : U � [!℄

!

is a �-base for a free ultra-�lter over !

	

:

In [2℄ it is shown that �u = r, where r is the reaping number de�ned in the intro-

du
tion (see [69℄ for more results 
on
erning r).

Now we 
an give an upper and a lower bound for the size of wS.

Theorem II.1.7. wS � r.

Proof. We will show that wS � �u. Let U := fu

�

2 [!℄

!

: � < �ug be a �-basis for a

free ultra�lter F over !. Without loss of generality we may assume that all the u

�

2 U

are 
o-in�nite. LetU =

�

Y

u

2 (!)

!

: u 2 U^Y

u

= fu

i

: u

i

= u_(u

i

= fng^n 62 u)g

	

.
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Now we take an arbitrary X = fb

i

: i 2 !g 2 (!)

!

and de�ne for every u 2 U the

sets I

u

:= fi : b

i

\ u 6= ;g and J

u

:= fj : b

j

\ u = ;g. It is 
lear that for every u,

I

u

[ J

u

= !.

If we �nd a u 2 U su
h that jI

u

j = jJ

u

j = !, then Y

u

splits X. To see this, de�ne

the two in�nite partitions

Z

1

:=

�

a

k

: a

k

=

[

i2I

u

b

i

_ 9j 2 J

u

(a

k

= b

j

)

	

and

Z

2

:=

�

a

k

: a

k

=

[

j2J

u

b

j

_ 9i 2 I

u

(a

k

= b

i

)

	

:

We have X u Y

u

= Z

1

(therefore Z

1

v X; Y

u

) and Z

2

v X but Z

2

?Y

u

.

If we �nd an x 2 F su
h that jI

x

j < ! (and therefore jJ

x

j = !), then we �nd an

x

0

� x, su
h that I

x

0

= fig and jb

i

n x

0

j = ! (this is be
ause F is a free ultra-�lter).

Now take a u 2 U su
h that u � x

0

, and sin
e X 2 (!)

!

0

, Y

u

splits X

\

.

If we �nd an x 2 F su
h that jJ

x

j < ! (and therefore jI

x

j = !), let I(n) be an

enumeration of I

x

and de�ne y := x\

S

k2!

b

I(2k)

. Then y � x and jxnyj = !. Hen
e,

either y or !ny is a superset of some u 2 U . But now jJ

u

j = ! and we are in a former


ase. a

A lower bound for wS is 
ov(B

0

):

Theorem II.1.8. 
ov(B

0

) � wS.

Proof. Let � < 
ov(B

0

) and W = fW

�

: � < �g � (!)

!

0

. Assume that for ea
h

W

�

2 W the blo
ks are ordered by their least element and ea
h blo
k is ordered by

the natural order. Further assume that b

i(�)

is the �rst blo
k of W

�

whi
h is in�nite.

Now, for ea
h � < � the set D

�

of fun
tions f 2

!

! su
h that

8n;m; k : 9t

n

2 b

n

9t

m

2 b

m

9h 2 ! 9t

h

; t

0

h

2 b

h

9s 2 b

i(�)

f(t

n

) = f(t

h

) ^ f(t

m

) = f(t

0

h

) ^ jfs

0

� s : f(s

0

) = f(s)gj = k + 1:

is the interse
tion of 
ountably many open dense sets and therefore the 
omplement

of a meager set. Be
ause � < 
ov(B

0

), we �nd an unbounded fun
tion g 2

!

! su
h

that g 2

T

�<�

D

�

. The partition G = fg

�1

(n) : n 2 !g 2 (!)

!

0

is orthogonal to ea
h

member of W and for ea
h W

�

2W and ea
h k 2 !, there exists an s 2 b

i(�)

, su
h

that s is the k

th

element of a blo
k of G. Hen
e, W 
an not be a weakly splitting

family. a

2. On the dual-reaping 
ardinals R and R

0

A family R � (!)

!

is 
alled reaping (reaping

0

, respe
tively), if for ea
h par-

tition X 2 (!)

!

(X 2 (!)

!

0

, respe
tively) there exists a partition R 2 R su
h that

R?X or R v

�

X. The dual-reaping 
ardinal R (R

0

, respe
tively) is the least


ardinal number � for whi
h there exists a reaping (reaping

0

, respe
tively) family of


ardinality �.
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It is 
lear that R

0

� R. Further, by �nite modi�
ations of the elements of a reaping

family we may repla
e v

�

by v in the de�nition above.

If we 
an
el in the de�nition of the reaping number the expression \R v

�

X", we

get the de�nition of an orthogonal family:

A family O � (!)

!

is 
alled orthogonal (orthogonal

0

, respe
tively), if for

ea
h non-trivial partition X 2 (!)

!

(for ea
h partition X 2 (!)

!

0

, respe
tively)

there exists a partition O 2 O su
h that O?X. The dual-orthogonal 
ardinal O

(O

0

, respe
tively) is the least 
ardinal number �, for whi
h there exists a orthogonal

(orthogonal

0

, respe
tively) family of 
ardinality �. It is obvious that O

0

� O. Note

that o = 
, where o is de�ned like O but for in�nite subsets of ! instead of in�nite

partitions. (Take the 
omplements of the members of an almost disjoint family of


ardinality 
. Be
ause an orthogonal family must avoid all these 
omplements, it

must have at least the 
ardinality 
.)

It is also 
lear that ea
h orthogonal

(0)

family is also a reaping

(0)

family and there-

fore R

(0)

� O

(0)

. Further one 
an show that R

0

is un
ountable (
f. [12℄). Now we show

that O

0

� d, where d is the well-known dominating number (for a de�nition 
f. [65℄),

and that 
ov(B

0

) � O

0

.

Theorem II.2.1. O

0

� d.

Proof. Let fd

�

2

!

! : � < dg be a dominating family. Then it is not hard to see

that the family fD

�

: � < �g � (!)

!

, where ea
h D

�

is 
onstru
ted from d

�

like D

from d in the proof of Theorem II.1.1, is an orthogonal family. a

Let i be the least 
ardinality of an independent family (a de�nition and some

results 
an be found in [44℄), then

Theorem II.2.2. O � i.

Proof. Let I � [!℄

!

be an independent family of 
ardinality i. Let I

0

:= fr 2

[!℄

!

: r

�

=

T

A n

S

Bg, where A;B 2 [I℄

<!

, A 6= ;, A \ B = ;, and r

�

= x means

j(r n x)[ (x n r)j < !. It is not hard to see that jI

0

j = jIj = i. Now let I = I

1

[ I

2

where I

1

:=

�

X

r

2 (!)

!

: r 2 I

0

^ X

r

= fb

i

: b

i

= r _ (b

i

= fng ^ n 62 r)g

	

and

I

2

:=

�

Y

r

: 9X

r

2 I

1

(Y

r

= X

\

r

)

	

. We see that I � (!)

!

and jI j = i. It remains

to show that I is an orthogonal family.

Let Z 2 (!)

!

be arbitrary and let r := Min(Z). If r 2 I

0

, then X

r

?Z (where

X

r

2 I

1

). And if r 62 I

0

, then there exists an r

0

2 I

0

su
h that r \ r

0

= ;. But then

Y

r

0

?Z (for Y

r

0

2 I

2

). a

Be
ause R � O, the 
ardinal number i is also an upper bound for R. But for R,

we also �nd another upper bound.

Theorem II.2.3. R � r.
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Proof. Like in Theorem II.1.7 we show that R � �u. Let U := fu

�

2 [!℄

!

: � < �ug

be as in the proof of Theorem II.1.7 and let

U =

�

Y

u

2 (!)

!

: u 2 U ^ Y

u

= fu

i

: u

i

= ! n u _ (u

i

= fng ^ n 2 u)g

	

:

Take an arbitrary partitionX 2 (!)

!

. Let r := Min(X) and r

1

:=

�

n 2 r : fng 2 X

	

.

If we �nd a u 2 U su
h that u � r

1

, then Y

u

v X. Otherwise, we �nd a u 2 U su
h

that either u � ! n r or u � r n r

1

and in both 
ases Y

u

?X. a

Now we will show that it is 
onsistent with ZFC that O 
an be small. For this we

�rst show that a Cohen real en
ode an in�nite partition whi
h is orthogonal to ea
h

old non-trivial in�nite partition. (This result is in fa
t a 
orollary of [12, Lemma 5℄.)

Lemma II.2.4. If 
 2

!

! is a Cohen real over V , then C := f


�1

(n) : n 2 !g 2

(!)

!

0

\ V [
℄ and 8X 2 (!)

!

\ V

�

:(X

�

= f!g)! C?X

�

.

Proof. We will 
onsider the Cohen-
onditions as �nite sequen
es of natural numbers,

s = fs(i) : i < n < !g. Let X = fb

i

: i 2 !g 2 V be an arbitrary, non-trivial in�nite

partition. The set D

n;m

of Cohen-
onditions s su
h that

(i) jfi : s(i) = 0gj � n,

(ii) 9k > n 9i(s(i) = k),

(iii) 9a

n

2 b

n

9a

m

2 b

m

9l 9a

1

; a

2

2 b

l

�

s(a

n

) = s(a

1

) ^ s(a

m

) = s(a

2

)

�

,

is dense for all n;m 2 !. Note that be
ause of (i), C 2 (!)

!

0

. Now, be
ause X was

arbitrary, the in�nite partition C is orthogonal to ea
h in�nite partition whi
h is in

V . a

We now 
an show that O 
an be small:

Proposition II.2.5. It is 
onsistent with ZFC that O < 
ov(B

0

).

Proof. Take an !

1

-iteration of Cohen for
ing with �nite support, starting from a

model in whi
h we have 
 = !

2

= 
ov(B

0

), then the !

1

generi
 obje
ts form an

orthogonal family. Be
ause this !

1

-iteration of Cohen for
ing does not 
hange the


ardinality of 
ov(B

0

), we have a model in whi
h !

1

= O < 
ov(B

0

) = !

2

holds. a

Be
ause R � O, we also get the relative 
onsisten
y of R < 
ov(B

0

). Note that

this is not true for r.

As a lower bound for R

0

we �nd p, where p is the pseudo-interse
tion number (a

de�nition of p 
an be found in [65℄).

Theorem II.2.6. p � R

0

.

Proof. In [4℄ it is proved that p = m

�-
entered

, where

m

�-
entered

= minf� : \MA(�) for �-
entered posets� fails g:

Let R = fR

�

: � < � < pg be a set of in�nite partitions. Now remember that the

for
ing notion Q (de�ned in Se
tion 1) is �-
entered and be
ause � < p we �nd an

X 2 (!)

!

0

su
h that R does not reap X. a
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As a 
orollary we get:

Corollary II.2.7. If we assume MA, then R

0

= 
.

Proof. If we assume MA, then p = 
. a

3. What about towers and orthogonal families?

Let �

mao

be the least 
ardinal number � for whi
h there exists an in�nite maximal

almost orthogonal family of 
ardinality �, and let �

tower

be the least 
ardinal number

� for whi
h there exists a family F � (!)

!

of 
ardinality �, su
h that F is well-

ordered by v

�

and :9Y 2 (!)

!

8X 2 F (Y v

�

X).

Kraw
zyk proved that �

mao

= 
 (
f. [12℄) and Carlson proved that �

tower

= !

1

(
f. [46℄). So, these 
ardinals are interesting. But what happens if we 
an
el the word

�almost� in the de�nition of �

mao

? In fa
t nothing happens sin
e Otmar Spinas has

shown in [62℄ that an in�nite maximal orthogonal family has always 
ardinality 
.

4. The diagrams of the results

Now we summarize the results proved in this 
hapter together with some other

known results.

The dual-splitting number:

b

S

0




S

!

1


ov(B

0

)

wS

r

The dual-reaping number and the dual-orthogonal number:

d

i




O

0

O

!

1

p

R

0

R

r

In the diagrams, the 
ardinal 
hara
teristi
s grow larger as one moves up or to the

right.

Consisten
y results:

� s < S

� S

0

< 


� O < 
ov(B

0

)
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CHAPTER III

Topologies on the Set of Partition-Ultra�lters

In this 
hapter we de�ne four topologies on the set of partition-ultra�lters over

! and show that none of these topologi
al spa
es is homeomorphi
 to �! or �! n !.

For a slightly more general approa
h in terms of semilatti
es see [27℄.

1. Partition-ultra�lters

In this 
hapter we will 
onsider just homogeneous partitions, i.e., partitions

of ! all of whose blo
ks are in�nite, but we do not introdu
e a new notation, thus,

throughout this 
hapter, (!)

�!

denotes the set of all homogeneous partitions.

We 
an de�ne partition-�lters in two di�erent ways:

A set F � (!)

�!

is a v-partition-�lter, if the following holds:

(a)

�

f!g

	

=2 F .

(b) For any X; Y 2 F we have X u Y 2 F .

(
) If X 2 F and X v Y 2 (!)

�!

, then Y 2 F .

A set F � (!)

�!

is a w-partition-�lter, if the following holds:

(a) For any X; Y 2 F we have X t Y 2 F .

(b) If X 2 F and X w Y 2 (!)

�!

, then Y 2 F .

A v-partition-�lter F � (!)

�!

is 
alled prin
ipal, if there is a partition X 2 (!)

�!

su
h that F = fY : X v Y g. A setU � (!)

�!

is a partition-ultra�lter (of

some type), ifU is a partition-�lter whi
h is not properly 
ontained in any other

partition-�lter (of the same type).

Noti
e that a v-partition-ultra�lterU whi
h does not 
ontain a �nite partition is

always non-prin
ipal, and vi
e versa, a prin
ipal partition-ultra�lter always 
ontains

a �nite partition, in fa
t, it 
ontains a 2-blo
k partition (see [27, Fa
t 3.1℄). Thus,

ifU is a non-prin
ipal v-partition-ultra�lter, X 2U and X v

�

Y , then Y 2U .

Similarly, ifU is a w-partition-ultra�lter, X 2U and Y v

�

X, then Y 2U .

Let PUF

v

�

(!)

�!

�

and PUF

w

�

(!)

�!

�

denote the set of allv-partition-ultra�lters

and w-partition-ultra�lters, respe
tively, on !.

2. Topologies on PUF

v

�

(!)

�!

�

and PUF

w

�

(!)

�!

�

In the following, we will de�ne two topologies on PUF

v

�

(!)

�!

�

as well as on

PUF

w

�

(!)

�!

�

, but let us do it just for PUF

v

�

(!)

�!

�

. First de�ne for ea
h X 2 (!)

�!

21
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two sets

(X)

+

:= fU 2 PUF

v

�

(!)

�!

�

: X 2U g

and

(X)

�

:= fU 2 PUF

v

�

(!)

�!

�

: X =2U g = PUF

v

�

(!)

�!

�

n (X)

+

:

Set O

+

:= f(X)

+

: X 2 (!)

�!

g and O

�

:= f(X)

�

: X 2 (!)

�!

g and 
all the topology

generated by O

+

the positive topology �

+

and the topology generated by O

�

the

negative topology �

�

. Note that O

+

is a base for �

+

, but O

�

is not a base for �

�

.

This di�eren
e a

ounts for some of the asymmetries. In the same way we 
an de�ne

the negative and positive topology on PUF

w

�

(!)

�!

�

.

In the sequel, the topologi
al spa
e




PUF

v

�

(!)

�!

�

; �

+

�

is denoted by PUF

+

v

�

(!)

�!

�

and




PUF

v

�

(!)

�!

�

; �

�

�

is denoted by PUF

�

v

�

(!)

�!

�

. Similarly,




PUF

w

�

(!)

�!

�

; �

+

�

is

denoted by PUF

+

w

�

(!)

�!

�

and




PUF

w

�

(!)

�!

�

; �

�

�

by PUF

�

w

�

(!)

�!

�

.

Let UF

�

P(!)

�

denote the set of ultra�lters over ! and let UF

�

[!℄

!

�

denote the

set of non-prin
ipal ultra�lters over !. Following the 
onstru
tion above, one 
an

de�ne four topologies on UF

�

P(!)

�

, namely UF

+

�

�

P(!)

�

, UF

�

�

�

P(!)

�

, UF

+

�

�

P(!)

�

and

UF

�

�

�

P(!)

�

, but ea
h of these topologi
al spa
es is homeomorphi
 to �!, the spa
e of

ultra�lters over !. Further, one 
an also de�ne four topologies on UF

�

[!℄

!

�

(whi
h is

the set of non-prin
ipal ultra�lters over !), namely UF

+

�

�

[!℄

!

�

, UF

�

�

�

[!℄

!

�

, UF

+

�

�

[!℄

!

�

and UF

�

�

�

[!℄

!

�

, but ea
h of these topologi
al spa
es is homeomorphi
 to �! n !, the

spa
e of non-prin
ipal ultra�lters over !.

Fa
t III.2.1. The spa
es PUF

+

v

�

(!)

�!

�

, PUF

�

v

�

(!)

�!

�

, PUF

+

w

�

(!)

�!

�

and PUF

�

w

�

(!)

�!

�

are all T

1

spa
es (i.e., all singletons are 
losed).

Proof. For any singleton fU g look at

S

X=2U

(X)

+

for the positive topology and

S

X2U

(X)

�

for the negative topology. A simple argument using the maximality of

partition-ultra�lters shows that these sets are just the 
omplement of fU g. But sin
e

they are open in the respe
tive topologies, fU g is 
losed in either topology. a

3. The spa
es PUF

+

v

�

(!)

�!

�

, PUF

�

v

�

(!)

�!

�

, PUF

+

w

�

(!)

�!

�

and PUF

�

w

�

(!)

�!

�

3.1. Prin
ipal spa
es. We shall 
all a topologi
al spa
e prin
ipal if it 
ontains

an open set with just one element. Being prin
ipal is obviously a property preserved

under homeomorphisms, so it is a topologi
al invariant. Con
erning PUF

+

v

�

(!)

�!

�

, we

like to mention the following:

Fa
t III.3.1. IfU 2 PUF

v

�

(!)

�!

�

andU 
ontains a �nite partition, then there is a

2-blo
k partition X su
h thatU = fY 2 (!)

�!

: X v Y g, and hen
e,U is prin
ipal.

Proof. Let m := minfn : 9Y 2U (jY j = n)g. This minimum exists by assumption.

Let X 2U be su
h that jXj = m.

First we show that for all Y 2 U we have X v Y . Suppose this is not the


ase for some Y 2U , then we have X 6= X u Y 2U (sin
eU is a �lter), whi
h

implies jX u Y j < jXj = m and 
ontradi
ts the de�nition of m. On the other hand,
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there is a 2-blo
k partition Z with Z v X, and be
ause Z v X we get Z v Y

for any Y 2U . Therefore, sin
eU is an ultra�lter, we get Z = X, whi
h implies

fY 2 (!)

�!

: X v Y g =U and m = 2. a

This leads to the following observation:

Fa
t III.3.2. The spa
e PUF

+

v

�

(!)

�!

�

is a prin
ipal topologi
al spa
e, whereas the

spa
e PUF

+

w

�

(!)

�!

�

is non-prin
ipal.

Proof. That PUF

+

v

�

(!)

�!

�

is prin
ipal follows dire
tly from Fa
t III.3.1. For the

se
ond assertion we note that for every partition Y 2 (!)

�!

we �nd Z

1

; Z

2

2 (!)

�!

su
h that Y v Z

1

, Y v Z

2

and Z

1

t Z

2

=2 (!)

�!

, and therefore, we �ndU

1

;U

2

2

PUF

w

�

(!)

�!

�

with Z

1

2U

1

and Z

2

2U

2

, whi
h implies thatU

1

andU

2

both belong

to (Y )

+

. So, for ea
h Y 2 (!)

�!

, the set (Y )

+

is not a singleton. In fa
t, by this

argument, PUF

+

w

�

(!)

�!

�

does not have any �nite open sets. a

3.2. The spa
e PUF

+

v

�

(!)

�!

�

. First noti
e that like in the spa
e �!, the prin
ipal

v-partition-ultra�lters form a dense set in PUF

+

v

�

(!)

�!

�

, but sin
e there are 
ontin-

uum many 2-blo
k partitions (one for ea
h subset of !), they 
annot witness that the

spa
e PUF

+

v

�

(!)

�!

�

is separable. Moreover, we get the following

Observation III.3.3. The spa
e PUF

+

v

�

(!)

�!

�

is not separable.

Proof. Spinas proved in [62℄ that there is an un
ountable set fX

�

: � 2 Ig � (!)

!

of in�nite partitions su
h that X

�

u X

�

0

=

�

f!g

	

whenever � 6= �

0

(see the end of

Chapter II). Thus, (X

�

)

+

\ (X

�

0

)

+

= ; (for � 6= �

0

), whi
h implies that there is no


ountably dense set in the spa
e PUF

+

v

�

(!)

�!

�

. a

Proposition III.3.4. The spa
e PUF

+

v

�

(!)

�!

�

is a Hausdor� spa
e.

Proof. LetU andV be two distin
t v-partition-ultra�lters. Be
auseU 6=V and

both are maximalv-partition-�lters, we �nd partitions X 2U and Y 2V su
h that

X u Y =

�

f!g

	

. Thus, we getU 2 (X)

+

,V 2 (Y )

+

and (X)

+

\ (Y )

+

= ;. a

For two partitions X; Y 2 (!)

�!

we write X?

v

Y if X u Y =

�

f!g

	

. Before we

prove the next proposition, we state the following useful

Lemma III.3.5. If X

0

; : : : ; X

n

2 (!)

�!

is a �nite set of non-trivial partitions, then

there is a non-trivial partition Y 2 (!)

�!

su
h that Y?

v

X

i

for all i � n.

Proof. Let Z

0

:= Min(X

0

). If Z

i

is su
h that Z

i

\X

i+1

(k) 6= ; for every k � jX

i+1

j,

then Z

i+1

= Z

i

. Otherwise, we de�ne Z

i+1

� Z

i

as follows: If Z

i

\ X

i+1

(k) 6= ;,

then Z

i+1

\X

i+1

(k) = Z

i

\X

i+1

(k); and if Z

i

\X

i+1

(k) = ;, then Z

i+1

\X

i+1

(k) =

min(X

i+1

(k)). It is easy to see that ! n Z

i

is in�nite for every i � n. Finally, let

Y = fY (0); Y (1)g 2 (!)

�!

be su
h that Z

n

� Y (0) and by 
onstru
tion we get

Y?

v

X

i

for all i � n. a

Proposition III.3.6. The spa
e PUF

+

v

�

(!)

�!

�

is not 
ompa
t.



24 COMBINATORIAL PROPERTIES OF PARTITIONS

Proof. Let A = f(X)

+

: X 2 (!)

!

g, then it is easy to see that

S

A = PUF

+

v

�

(!)

�!

�

.

We will show that A is a 
over with no �nite sub
overs. Assume to the 
ontrary that

there are �nitely many in�nite partitions X

0

; : : : ; X

n

2 (!)

!

su
h that (X

0

)

+

[ : : : [

(X

n

)

+

= PUF

+

v

�

(!)

�!

�

. By Lemma III.3.5 we �nd a non-trivial partition Y 2 (!)

�!

su
h that Y?

v

X

i

(for all i � n). LetU 2 PUF

v

�

(!)

�!

�

be su
h that Y 2U , then

X

i

=2U (for all i � n), whi
h 
ontradi
ts the assumption. a

3.3. The spa
e PUF

�

v

�

(!)

�!

�

.

Proposition III.3.7. The spa
e PUF

�

v

�

(!)

�!

�

is not a Hausdor� spa
e.

Proof. LetU andV be two distin
t w-partition-ultra�lters. Take any non-trivial

partitions X

0

; : : : ; X

k

; Y

0

; : : : ; Y

`

2 (!)

�!

su
h that

U 2 (X

0

)

�

\ : : : \ (X

k

)

�

and V 2 (Y

0

)

�

\ : : : \ (Y

`

)

�

:

Now, by Lemma III.3.5, there is a non-trivial partition Z su
h that Z?

v

X

i

(for

i � k) and Z?

v

Y

j

(for j � `), whi
h implies Z 2

T

i�k

(X

i

)

�

\

T

j�`

(Y

j

)

�

. Hen
e,

T

i�k

(X

i

)

�

\

T

j�`

(Y

j

)

�

is not empty. a

Proposition III.3.8. The spa
e PUF

�

v

�

(!)

�!

�

is 
ountably 
ompa
t.

Proof. Let A = f

T

A

i

: i 2 !g be su
h that

S

A =

S

i2!

(

T

A

i

) = PUF

v

�

(!)

�!

�

,

where ea
h A

i

is a �nite set of open sets of the form (X)

�

for someX 2 (!)

�!

. Assume

S

i2I

(

T

A

i

) 6= PUF

v

�

(!)

�!

�

for every �nite set I � !. If A

i

= f(X

i

0

)

�

; : : : ; (X

i

n

)

�

g

and A

j

= f(X

j

0

)

�

; : : : ; (X

j

m

)

�

g and

T

A

i

[

T

A

j

6= PUF

v

�

(!)

�!

�

, then we �nd a

U 2 PUF

v

�

(!)

�!

�

su
h thatU 2 PUF

v

�

(!)

�!

�

n

�

T

A

i

[

T

A

j

�

. Hen
e, there are

k � n and ` � m su
h that X

i

k

and X

j

`

are both inU , whi
h implies X

i

k

u X

j

`

6=

�

f!g

	

. We de�ne a tree T as follows: For n 2 ! the sequen
e hs

0

; : : : ; s

n

i belongs

to T if and only if for every i � n there is an (X

i

k

)

�

2 A

i

su
h that s

i

= X

i

k

and

(s

0

u : : :u s

n

) 6=

�

f!g

	

. The tree T , ordered by in
lusion, is by 
onstru
tion (and by

our assumption) a tree of height ! and ea
h level of T is �nite. Therefore, by König's

Lemma, the tree T 
ontains an in�nite bran
h. Let hX

i

: i 2 !i be an in�nite bran
h

of T , where X

i

2 A

i

. By 
onstru
tion of T , for every �nite I = f�

0

; : : : ; �

n

g � ! we

have X

�

0

u : : : u X

�

n

6=

�

f!g

	

. Thus, the partitions 
onstituting the bran
h have

the �nite interse
tion property and therefore we �nd aU 2 PUF

v

�

(!)

�!

�

su
h that

X

i

2U for every i 2 !. Now,U =2

S

i2!

(X

i

)

�

whi
h implies thatU =2

S

A, but this


ontradi
ts

S

A = PUF

v

�

(!)

�!

�

. a

3.4. The spa
e PUF

+

w

�

(!)

�!

�

.

Proposition III.3.9. The spa
e PUF

+

w

�

(!)

�!

�

is a Hausdor� spa
e.

Proof. Let U andV be two distin
t w-partition-ultra�lters. Be
ause U 6= V

and both are maximal �lters, we �nd partitions X 2 U and Y 2 V su
h that

X t Y =2 (!)

�!

. Hen
e we getU 2 (X)

+

,V 2 (Y )

+

and (X)

+

\ (Y )

+

= ;. a
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For two partitions X; Y 2 (!)

�!

we write X?

w

Y if X u Y =2 (!)

�!

. Before we

prove the next proposition, we state the following useful

Lemma III.3.10. If X

0

; : : : ; X

n

2 (!)

<!

is a �nite set of non-trivial, �nite partitions,

then there is a �nite partition Y 2 (!)

<!

su
h that Y?

w

X

i

for all i � n.

Proof. De�ne an equivalen
e relation on ! as follows:

s � t () 8i; k

�

s 2 X

i

(k)$ t 2 X

i

(k)

�

Be
ause every partition X

i

is �nite and we only have �nitely many partitions X

i

, at

least one of the equivalen
e 
lasses must be in�nite, say I. Sin
e ea
h blo
k of ea
h

partition X

i

is in�nite and the partitions have been assumed to be non-trivial, we

also must have ! n I is in�nite. Let I

�1

:= I and de�ne I

i+1

:= I

i

_

[fs

i+1

g in su
h a

way that for any t 2 I we have s

i+1

2 X

i+1

(k)! t =2 X

i+1

(k). Let Y := fI

n

; ! n I

n

g,

then Y 2 (!)

�!

and for every i � n, Y t X

i


ontains a �nite blo
k and therefore,

Y?

w

X

i

(for all i � n). a

Proposition III.3.11. The spa
e PUF

+

w

�

(!)

�!

�

is not 
ompa
t.

Proof. LetA = f(X)

+

: X 2 (!)

<!

g, then it is easy to see that

S

A = PUF

w

�

(!)

�!

�

.

Assume to the 
ontrary that there are �nitely many �nite partitions X

0

; : : : ; X

n

2

(!)

<!

su
h that (X

0

)

+

[ : : : [ (X

n

)

+

= PUF

w

�

(!)

�!

�

. By Lemma III.3.10 we �nd a

Y 2 (!)

<!

su
h that Y?

w

X

i

(for all i � n). LetU 2 PUF

w

�

(!)

�!

�

be su
h that

Y 2U , then X

i

=2U (for all i � n), whi
h 
ontradi
ts the assumption. a

3.5. The spa
e PUF

�

w

�

(!)

�!

�

.

Proposition III.3.12. The spa
e PUF

�

w

�

(!)

�!

�

is not a Hausdor� spa
e.

Proof. We �rst show that if U 2 (X)

�

for some X 2 (!)

!

, then there is an

X

0

2 (!)

<!

su
h that X

0

v X (and therefore (X

0

)

�

� (X)

�

) andU 2 (X

0

)

�

. Sin
e

U 2 (X)

�

, there is a Y 2 p su
h that Y t X =2 (!)

�!

, whi
h is equivalent to the

following statement (re
all that we only allowed in�nite blo
ks): There are y 2 Y

and x 2 X su
h that x \ y is a non-empty, �nite set. Now, for X

0

:= fx; ! n xg we

obviously have X

0

v X and p 2 (X

0

)

�

.

Let U and V be two distin
t w-partition-ultra�lters and take any partitions

X

0

; : : : ; X

k

; Y

0

; : : : ; Y

l

2 (!)

�!

su
h thatU 2 (X

0

)

�

\ : : : \ (X

k

)

�

andV 2 (Y

0

)

�

\

: : : \ (Y

l

)

�

. By the fa
t mentioned above we may assume that the X

i

's as well as

the Y

i

's are �nite partitions. Now, by Lemma III.3.10, there is a �nite partition Z

su
h that Z?

w

X

i

(for i � k) and Z?

w

Y

j

(for j � l), whi
h implies Z 2

T

i�k

(X

i

)

�

\

T

j�l

(Y

j

)

�

. Hen
e,

T

i�k

(X

i

)

�

\

T

j�l

(Y

j

)

�

is not empty. a

Proposition III.3.13. The spa
e PUF

�

w

�

(!)

�!

�

is 
ountably 
ompa
t.

Proof. Repla
ing �u� by �t� and �v� by �w�, one 
an simply 
opy the proof of

Proposition III.3.8. a
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3.6. Con
lusion. Now we are ready to state the main result of this paper.

Theorem III.3.14. None of the spa
es PUF

+

v

�

(!)

�!

�

, PUF

�

v

�

(!)

�!

�

, PUF

+

w

�

(!)

�!

�

and

PUF

�

w

�

(!)

�!

�

is homeomorphi
 to �! or �! n !. Moreover, no two of the spa
es �!,

�! n !, PUF

+

v

�

(!)

�!

�

, PUF

�

v

�

(!)

�!

�

and PUF

+

w

�

(!)

�!

�

are homeomorphi
.

Proof. The proof is given in the following table whi
h is just the 
ompilation of the

results from the previous se
tions. The separation property T

1

holds for all spa
es

and thus does not help to dis
ern any two of these spa
es; it is just in
luded for


ompleteness.

�! �! n ! PUF

+

v

�

(!)

�!

�

PUF

�

v

�

(!)

�!

�

PUF

+

w

�

(!)

�!

�

PUF

�

w

�

(!)

�!

�

prin
ipal Yes No Yes No

T

1

Yes Yes Yes Yes Yes Yes

Hausdor� Yes Yes Yes No Yes No


tb. 
ompa
t Yes Yes Yes Yes


ompa
t Yes Yes No No

a

4. About the spa
e PUF

+

v

�

(!)

!

�

In the following we investigate the spa
e PUF

+

v

�

(!)

!

�

, where PUF

v

�

(!)

!

�

denotes

the set of all non-prin
ipal v-partition-ultra�lters.

Noti
e �rst that for X; Y 2 (!)

!

, in PUF

+

v

�

(!)

!

�

we have (X)

+

� (Y )

+

if and

only if X v

�

Y .

4.1. The height of tree �-bases of PUF

+

v

�

(!)

!

�

. We �rst give the de�nition of

the dual-shattering 
ardinal H, whi
h will be further investigated in Chapter V. A

family A � (!)

!

is 
alled maximal almost orthogonal (mao) if A is a maximal

family of pairwise orthogonal partitions (see also the end of Chaper II). As a matter

of fa
t we like to mention that every in�nite mao family has the 
ardinality of the


ontinuum (
f. [12℄ or [62℄). A family Aa of mao families of partitions shatters a

partitionX 2 (!)

!

, if there is an A 2 Aa and two distin
t partitions in A whi
h are

both 
ompatible (i.e., not orthogonal) with X. A family of mao families of partitions

is shattering if it shatters ea
h partition of (!)

!

. The dual-shattering 
ardinal H

is the least 
ardinal number � for whi
h there is a shattering family of 
ardinality �.

The dual-shattering 
ardinal H is a dualization of the well-known shattering num-

ber h introdu
ed by Bohuslav Bal
ar, Jan Pelant and Petr Simon in [1℄ and the letter

h 
omes from the word �height�. In [1℄ it is proved that

h = minf� : there is a tree �-base for �! n ! of height �g ;

where a family B of non-empty open sets is 
alled a �-base for a spa
e S provided

every non-empty open set of S 
ontains a member of B, and a tree �-base T is

a �-base whi
h is a tree when 
onsidered as a partially ordered set under reverse

in
lusion (i.e., for every t 2 T the set fs 2 T : s � tg is well-ordered by �). The
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height of an element t 2 T is the ordinal � su
h that fs 2 T : s ) tg is of order type

�, and the height of a tree T is the smallest ordinal � su
h that no element of T has

height �.

One 
an show that H � h and H � S, where S is the dual-splitting 
ardinal

(
f. [12℄ or see Chapter V).

It is 
onsistent with ZFC that H = �

2

= 2

�

0

(see Chapter V or [22℄) and also that

�

1

= H < h = �

2

(
f. [62℄). Further, it is 
onsistent with ZFC + MA + 2

�

0

= �

2

that

H = �

1

< h = �

2

(
f. [10℄).

Following Bal
ar, Pelant and Simon, it is not hard to prove the following

Proposition III.4.1. Let H be the dual-shattering 
ardinal de�ned as above, then

H = min

�

� : there is a tree �-base for PUF

+

v

�

(!)

!

�

of height �

	

:

Proof. Bearing in mind that for every 
ountable de
reasing sequen
e of basi
 open

sets (X

0

)

+

� (X

1

)

+

� : : : � (X

n

)

+

� : : : there is a basi
 open set (Y )

+

su
h that for

all i 2 ! we have (Y )

+

� (X

i

)

+

(
f. [46, Proposition 4.2℄), one 
an follow the proof

of the Base Matrix Lemma 2.11 of [1℄. a

Be
ause the shattering number and the dual-shattering 
ardinal 
an be di�erent,

this gives us an asymmetry between the two spa
es �! n ! and PUF

+

v

�

(!)

!

�

.

4.2. On P -points in PUF

+

v

�

(!)

!

�

. In this se
tion we give a sket
h of the proof that

P -points exist in PUF

+

v

�

(!)

!

�

if we assume CH, and that in general, both existen
e

and non-existen
e of P -points are 
onsistent with the axioms of set theory.

An v-partition-ultra�lterU in PUF

+

v

�

(!)

!

�

is a P -point if the interse
tion of any

family of 
ountably many neighbourhoods ofU is a (not ne
essarily open) neighbour-

hood ofU .

First we show that a P -point in PUF

+

v

�

(!)

!

�

indu
es in a 
anoni
al way a P -point

in �! n !.

Lemma III.4.2. If there is a P -point in PUF

+

v

�

(!)

!

�

, then there is a P -point in �! n!

as well.

Proof. LetU be a P -point in PUF

+

v

�

(!)

!

�

, then it is not hard to see that the �lter

generated by fMin(X) : X 2 pg is a P -point in �! n !. a

Proposition III.4.3. It is 
onsistent with ZFC that PUF

+

v

�

(!)

!

�

does not 
ontain any

P -point.

Proof. Saharon Shelah proved in [60, Chapter VI, �4℄ that it is 
onsistent with ZFC

that there are no P -points in �! n !. But in a model of ZFC in whi
h there are no

P -points in �! n !, there are also no P -points in PUF

+

v

�

(!)

!

�

by Lemma III.4.2. a

Let W = h(!)

!

;�i be the partial order de�ned as follows:

X � Y () X v

�

Y :

The for
ing notion W is a natural dualization of P(!)=�n.
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Lemma III.4.4. If G

p

is W -generi
 over V, then G

p

is a P -point in PUF

+

v

�

(!)

!

�

in the

model V[G

p

℄.

Proof. First noti
e that the for
ing notion W is �-
losed (
f. [46, Proposition 4.2℄)

and hen
e, W does not add new reals. For every 
ountable set of neighbourhoods

fN

i

: i 2 !g of the �lter G

p

we �nd a 
ountable set of partitions fX

i

: i 2 !g � G

p

su
h that (X

i

)

+

� N

i

and X

i

v

�

X

j

for i � j. Now, sin
e every partition X 2 (!)

!


an be en
oded by a real number and W does not add new reals, there is a W -


ondition Y whi
h for
es that the sequen
e X

0

�

w X

1

�

w : : : belongs to V, and sin
e

W is �-
losed we �nd an in�nite partition Z v Y su
h that Z v

�

X

i

for every i 2 !.

Hen
e, Z for
es that (Z)

+

belongs to

T

i2!

N

i

and that Z belongs to G

p

. a

Proposition III.4.5. Assume CH, then there is a P -point in PUF

+

v

�

(!)

!

�

.

Proof. Assume V j= CH. Let � be large enough su
h that P((!)

!

) 2 H(�), i.e.,

the power-set of (!)

!

(in V) is hereditarily of size < �. Let N be an elementary

submodel of hH(�);2i 
ontaining all the reals of V su
h that jNj = 2

�

0

. We 
onsider

the for
ing notion W in the model N. Sin
e jNj = 2

�

0

, in V there is an enumeration

fD

�

� (!)

!

: � < 2

�

0

g of all dense sets of W whi
h lie in N. Sin
e W is �-


losed and be
ause V j= CH, W is 2

�

0

-
losed in V and therefore we 
an 
onstru
t

a des
ending sequen
e fX

�

: � < 2

�

0

g in V su
h that X

�

2 D

�

for ea
h � < 2

�

0

.

Let G

p

:= fX 2 (!)

!

: X

�

v X for some X

�

g, then G

p

is W -generi
 over N. By

Lemma III.4.4 we have N[G

p

℄ j= �there is a P -point in PUF

+

v

�

(!)

!

�

� and be
ause N


ontains all reals of V and every 
ountable des
ending sequen
e of basi
 open sets

(Y

i

)

+


an be en
oded by a real number, the P -point G

p

in the model N[G

p

℄ is also a

P -point in PUF

+

v

�

(!)

!

�

in the model V, whi
h 
ompletes the proof. a



CHAPTER IV

The Partition Form of Ramsey's Theorem

In this 
hapter we present a generalized version of Carlson's Lemma whi
h 
an be

seen as the partition form of Ramsey's Theorem.

1. Histori
al ba
kground

The earliest results in Ramsey Theory are the theorems of Bartel L. van der

Waerden and Frank P. Ramsey. We begin by dis
ussing van der Waerden's Theorem:

van der Waerden's Theorem. For all n; r 2 ! there exists an N 2 ! su
h that

for every 
oloring of f0; : : : ; Ng with r + 1 
olors, there exists a mono
hromati


arithmeti
 progression of length n+ 1.

This result was �rst proved by van der Waerden in [67℄ (for a short but not easy

proof see [20℄ and for a des
ription of how van der Waerden found his proof we

refer the reader to [68℄). Almost 40 years after van der Waerden's proof, Alfred W.

Hales and Robert I. Jewett found a proof for a proper 
ombinatorial statement whi
h

implies van der Waerden's Theorem. To state the Hales-Jewett Theorem, we �rst

have to give the de�nition of a 
ombinatorial line.

For n;N 2 ! where N > 0, a set fx

0

; : : : ; x

n

g � f0; : : : ; ng

N

is 
alled a 
ombina-

torial line i� for ea
h m < N we have x

i

(m) = i (for all i � n) or x

i

(m) = x

i+1

(m)

(for all i < n); and the former 
ase is true for at least one m < N . Now we 
an

formulate the

Hales-Jewett Theorem. For all n; r 2 !, there exists a positive natural num-

ber N su
h that for every 
oloring of f0; : : : ; ng

N

with r + 1 
olors, there exists a

mono
hromati
 
ombinatorial line.

This result was �rst proved by Hales and Jewett in [31℄ (a very sophisti
ated

proof providing a primitive re
ursive bound for the Hales-Jewett fun
tion is given by

Shelah in [59℄).

On De
ember 16th, 1929, Ramsey's arti
le �On a problem of formal logi
� was

issued (
f. [57℄). This arti
le begins with two 
ombinatorial theorems whi
h are The-

orem A and Theorem B. Be
ause the se
ond one follows from the �rst one, we 
onsider

Theorem A as the �Ramsey Theorem�, also 
alled �Ramsey's Theorem�, and 
all The-

orem B the �Finitary Ramsey Theorem�, be
ause it is the �nite version of Theorem A.

In order to state these two theorems of Ramsey, we have to give again some

notations.

29
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For n 2 !, we denote the set of all n-element sets of natural numbers by [!℄

n

.

Further, for any set of natural numbers H and n 2 !, [H℄

n

denotes the set of all

n-element subsets of H. Ramsey's Theorem states as follows.

Ramsey's Theorem. For every n 2 ! and for every 
oloring of [!℄

n

with �nitely

many 
olors, there exists an in�nite set H � ! su
h that [H℄

n

is mono
hromati
.

The �nite version of Ramsey's Theorem, whi
h is Theorem B of [57℄, is the fol-

lowing:

Finitary Ramsey Theorem. For all m;n; r 2 !, where n � m, there exists an

N 2 ! su
h that for every 
oloring of [N ℄

n

with r + 1 
olors, there exists a set

H 2 [N ℄

m

su
h that [H℄

n

is mono
hromati
.

The Finitary Ramsey Theorem was dis
overed and proved independently by Paul

Erdös and George Szekerés (see [16℄). They arrived at it in the following geometri
al


ontext.

Erdös-Szekerés Theorem. For every n 2 !, there exists an N 2 ! with the

following property: If P is a set of N points of the Eu
lidean plane without 3 
olinear

points, then P 
ontains n points whi
h form the verti
es of a 
onvex n-gon.

The Hales-Jewett Theorem and the Finitary Ramsey Theorem are 
ommonly 
on-

sidered as the two main roots of Ramsey Theory. Both results are 
oloring theorems

of the same type, so it is surprising that they remained quite unrelated for a long time

until Ronald L. Graham and Bru
e L. Roths
hild extended in [19℄ the Hales-Jewett

Theorem in a remarkable way. Using the notion of n-parameter sets, they proved a

result ([19, Corollary 10℄) from whi
h one 
an derive both the Hales-Jewett Theorem

and the Finitary Ramsey Theorem (see also [55℄). For any set X and n 2 !, let (X)

n

denote the set of all partitions of X 
ontaining exa
tly n pie
es.

Graham-Roths
hild Result. For any m;n; r 2 !, where m � n, there exists a

natural number N su
h that for every 
oloring of (N)

n

with r+1 
olors, there exists

a partition P 2 (N)

n

su
h that (P )

n

is mono
hromati
.

This result looks very similar to the Finitary Ramsey Theorem. The relation

be
omes 
learer if we 
onsider an n-element subset of N as an inje
tive fun
tion from

n into N , and similarly, a partition of N 
ontaining n pie
es as a surje
tive fun
tion

from N onto n, where we identify in both 
ases two fun
tions if they are equal modulo

a permutation of n. Therefore, partitions with n pie
es are a dual form of sets with

n elements (see also Chapter I).

For more ba
kground and further results in Ramsey Theory we refer the reader

to [50℄ and [21℄.

Ten years after Graham and Roths
hild proved their 
ombinatorial result, Steve G.

Simpson tried to prove a dual version of the Ramsey Theorem and su

eeded with

the help of Timothy J. Carlson. The original motivation of Simpson to prove su
h a

dualization of Ramsey's Theorem was to �nd a 
ombinatorial statement whi
h is like
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the theorem of Leo Harrington and Je� Paris (
f. [52℄), but stronger in the sense that

it 
annot be proved in reasonably strong subsystems of se
ond-order arithmeti
. The


ru
ial point in the proof of the so-
alled Dual Ramsey Theorem, whi
h is Theorem 1.2

of [11℄, is the Lemma 2.4 of [11℄, whi
h was proved in a slightly stronger form by

Carlson (
f. [11, Theorem 6.3℄). In the following we give a slightly more general

version of Carlson's Lemma whi
h 
an be seen as the partition form of Ramsey's

Theorem.

2. The partition form of Ramsey's Theorem

Remember that for s 2 (N), s

�

denotes the partition s [

�

fdom(s)g

	

, and noti
e

that js

�

j = jsj+ 1.

For s 2 (N) and X 2 (!)

!

with s v X, let

(s;X)

!

:= fY 2 (!)

!

: s � Y v Xg :

A set (s;X)

!

, where s and X are as above, is 
alled a dual Ellentu
k neighbor-

hood (
f. [11, p. 275℄ or Chapter V).

For a natural number n, let (!)

n�

denote the set of all u 2 (N) su
h that juj = n.

Further, for n 2 ! and X 2 (!)

!

let

(X)

n�

:= fu 2 (N) : juj = n ^ u

�

v Xg ;

and if s 2 (N) is su
h that jsj � n and s v X, let

(s;X)

n�

:= fu 2 (N) : juj = n ^ s � u ^ u

�

v Xg :

With the notation given above, we 
an state our main result as follows:

Theorem IV.2.1. For any 
oloring of (!)

n�

with r + 1 
olors, where r; n 2 ! and

n > 0, there exists an in�nite partition X 2 (!)

!

su
h that (X)

n�

is mono
hromati
.

To prove the Theorem IV.2.1, we will make use of Carlson's Lemma (see [11,

Lemma 2.4℄). In our notation it reads as follows.

Carlson's Lemma. For any 
oloring of (!)

n�

with r + 1 
olors, where r; n 2 ! and

n > 0, and for any dual Ellentu
k neighborhood (s;X)

!

, where jsj � n, there exists

a Y 2 (s;X)

!

su
h that (s; Y )

n�

is mono
hromati
.

With this result we are prepared to give the

Proof of Theorem IV.2.1. The proof is by indu
tion on n. For n = 1, Theo-

rem IV.2.1 follows immediately from Carlson's Lemma. So, let n; r 2 ! be given su
h

that 1 < n and assume that Theorem IV.2.1 is already proved for all n

0

2 ! with

n

0

< n.

Fix an arbitrary 
oloring � : (!)

n�

! r + 1. Let X

0

2 (!)

!

and let s

0

2 (N) be

su
h that js

0

j = n � 1 and s

�

0

� X

0

. Further assume we already have 
onstru
ted

X

i

2 (!)

!

and s

i

2 (N) su
h that js

i

j = (n� 1) + i and s

�

i

� X

i

.

We 
onstru
t partitions s

i+1

and X

i+1

with the same properties as above. As a

byprodu
t, the 
onstru
tion yields a partial mapping � from (!)

(n�1)�

to r + 1.
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Let ft

i

k

2 (N) : k � h

i

g be an enumeration of all t v s

i

with dom(t) = dom(s

i

)

and jtj = n � 1. Let Y

i

�1

:= X

i

, then by Carlson's Lemma, for ea
h k there exists a

Y

i

k

2 (s

�

i

; Y

i

k�1

)

!

su
h that �j

((t

i

k

)

�

;Y

i

k

)

n�

is 
onstant, say

�j

((t

i

k

)

�

;Y

i

k

)

n�

=: �(t

i

k

) :

Let X

i+1

:= Y

i

h

i

and let s

i+1

2 (N) be su
h that s

�

i+1

� X

i+1

and js

i+1

j = (n � 1) +

(i + 1). Finally, let Y 2 (!)

!

be the unique partition su
h that for all i 2 ! we

have s

i

� Y . For ea
h u 2 (Y )

n�

there exist exa
tly two numbers i; k 2 ! su
h that

(t

i

k

)

�

� u, and we 
an de�ne

�(u) := �(t

i

k

) :

Noti
e that �(u) is well de�ned for every u 2 (Y )

n�

. By the indu
tion hypothesis we

�nd a Z 2 (Y )

!

su
h that �j

(Z)

(n�1)�

is 
onstant, say �j

(Z)

(n�1)�

= fjg. Let s

�

v Z

be su
h that jsj = n and let s

�

0

� s be su
h that js

0

j = n � 1. The domain of

s

0

, dom(s

0

), 
orresponds with dom(s

i

) for some i 2 !. Consider now the partition

X

i+1

. By the 
onstru
tion of X

i+1

we know that for all t v s

i

with jtj = n � 1

and dom(t) = dom(s

i

) we have �j

(t

�

;X

i+1

)

n�

is 
onstant and by the 
onstru
tion of Z,

this 
onstant value is j, thus �j

(t

�

;X

i+1

)

n�

= fjg and in parti
ular �(s

�

0

) = j. Hen
e,

be
ause (s; Z)

!

� (s

�

0

; X

i+1

)

!

, we get �(s) = j, whi
h 
ompletes the proof. a

3. A weakened form of the Halpern-Läu
hli Theorem

One 
an show that the Finitary Ramsey Theorem, the Ramsey Theorem as well

as the Hales-Jewett Theorem, the Graham-Roths
hild Result and a weakened form

of the Halpern-Läu
hli Theorem are derivable from Theorem IV.2.1. We just give the

proof for the weakened Halpern-Läu
hli Theorem (the full form, proved by James D.

Halpern and Hans Läu
hli, 
an be found in [32℄).

To state this weakened form, we have to give �rst some notations: For k 2 !, let

k

2 be the set of all fun
tions � : k ! 2 and let 2

<!

:=

S

k2!

k

2. A set T � 2

<!

is


alled a tree if for every � 2 T and k � dom(�) we have �j

k

2 T . So, the set 2

<!

itself forms a tree. For a tree T � 2

<!

and l 2 ! let

T (l) := f� 2 T : dom(�) = lg :

If T

d

= T

0

� : : :� T

d�1

�

�

2

<!

�

d

where d 2 ! is a produ
t of trees T

i

� 2

<!

, then for

l 2 ! let

T

d

(l) := f� 2 T

d

: � 2 T

0

(l)� : : :� T

d�1

(l)g :

A tree T � 2

<!

is 
alled perfe
t if for ea
h � 2 T there exist two distin
t fun
tions

�

0

; �

1

2 T su
h that dom(�

0

) = dom(�

1

) and �

0

j

dom(�)

= �

1

j

dom(�)

= �.

Corollary IV.3.1. For every positive d 2 !, and for every 
oloring of

S

l2!

�

l

2

�

d

with �nitely many 
olors, there exists a produ
t of perfe
t trees T

d

= T

0

� : : :� T

d�1

and an in�nite set H � ! su
h that

S

l2H

T

d

(l) is mono
hromati
.
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Proof. Let d be a �xed positive natural number and let n := 2

d

. Be
ause j

d

2j = 2

d

,

there exists a one-to-one 
orresponden
e � between n and

d

2. For any l 2 !, an

element h�

0

; : : : ; �

d�1

i 2

�

l

2

�

d

is a sequen
e of length d of fun
tions �

i

: l ! 2. For

any l 2 ! we de�ne the fun
tion � :

�

l

2

�

d

!

�

d

2

�

l

as follows:

�(h�

0

; : : : ; �

d�1

i) := h�

0

; : : : ; �

l�1

i where �

j

(i) := �

i

(j) :

Noti
e that for ea
h l 2 !, the fun
tion � is a one-to-one fun
tion from

�

l

2

�

d

onto

�

d

2

�

l

. Now we de�ne the fun
tion � : (!)

n�

!

�

2

<!

�

d

by

�(s) := �

�1

(h�

0

; : : : ; �

dom(s)�1

i) ;

where �

j

(i) := �(k)(i) for j 2 s(k). Note that �(s) 2

�

dom(s)

2

�

d

. Finally, for any


oloring � :

S

l2!

�

l

2

�

d

! r + 1, where r 2 !, we de�ne the 
oloring � : (!)

n�

!

r + 1 by stipulating �(s) := �(�(s)). Let X 2 (!)

!

be as in the 
on
lusion of

Theorem IV.2.1 (w.r.t. the 
oloring �). Let s

�

n

� X be su
h that js

n

j = n and let

H := Min(X) nMin(s

n

). Further let

S

n

:= ft 2 (N) : t � s

n

_ (s

n

� t v X ^ jtj = n)g

and de�ne

T

d

:= f� : 9t 2 S

n

(� = �(t))g :

We leave it to the reader to 
he
k that T

d

and H are as desired and that they have

the desired properties. a

4. The �dual form� of Ramsey's Theorem versus its �partition form�

Let us 
ompare Theorem IV.2.1 with the so-
alled Dual Ramsey Theorem of Carl-

son and Simpson (
f. [11, Theorem 1.2℄). The following notations are used to state

their Dual Ramsey Theorem.

For n 2 ! let (!)

n

denote the set of all partitions of ! 
ontaining exa
tly n blo
ks

and for X 2 (!)

!

let

(X)

n

:= fY 2 (!)

n

: Y v Xg :

For s 2 (N) let O

s

:= fX 2 (!)

n

: s � Xg � (!)

n

. For a �nite set S � (N) de�ne

B

S

:=

T

s2S

O

s

, then the set of all B

S

, where S � (N) is �nite, forms a basis of a

topology on (!)

n

. Now we 
an formulate the

Dual Ramsey Theorem. If � : (!)

n

! r+ 1, where n; r 2 !, is su
h that for ea
h

i � r, �

�1

(i) is a Borel set (with respe
t to the produ
t topology), then there exists

an X 2 (!)

!

su
h that �j

(X)

n

is 
onstant.

A restri
tion on the 
oloring is ne
essary be
ause one 
an show � using AC � that

there exists a 
oloring of (!)

2

with 2 
olors su
h that for no in�nite partition X, (X)

2

is mono
hromati
.

As mentioned above, the Graham-Roths
hild result is � in terms of partitions �

the analogue of the Finitary Ramsey Theorem, but stronger in the sense that it also
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implies the Hales-Jewett Theorem (whi
h deals in some sense also with partitions).

Further, the Graham-Roths
hild result, the Finitary Ramsey Theorem, the Hales-

Jewett Theorem, are 
ompletely �nite results. On the �in�nite� side we have the

Dual Ramsey Theorem, whi
h is in some sense the analogue � in terms of partitions �

of the Galvin-Prikry result. Putting all together, we get the following diagram, where

the �partition-results� are on the left, results dealing with �sets of singletons� are on

the right, and where an arrow means an impli
ation:

Dual Ramsey Theorem

?

?

y

? ? ? ���! Ramsey Theorem

?

?

y

?

?

y

Graham-Roths
hild ���! Finitary Ramsey Theorem

?

?

y

Hales-Jewett

What is missing in this diagram is a �partition version� of the Ramsey Theorem,

or equivalently, an in�nite version of the Graham-Roths
hild result. Now, Theo-

rem IV.2.1 �lls this gap, and even though it is just a 
onsequen
e of the Dual Ramsey

Theorem, one 
an de�ne in a natural way its asso
iated �lters, whi
h will play an

important r�le in Chapter VII (see also [24℄). (Noti
e that su
h a 
onstru
tion does

not exist with respe
t to the Dual Ramsey Theorem.) These partition-�lters 
an be

seen as a strengthened version of the well-studied Ramsey �lters over !, and they are

important in the investigation of the 
ombinatori
s of Dual Mathias for
ing, whi
h is

the �partition version� of Mathias for
ing (
f. Chapter VII).

As mentioned above, the Dual Ramsey Theorem does not hold for arbitrary 
ol-

orings. This is similar to the 
ase when the in�nite subsets of ! are 
olored: One


an show � using AC � that there is a 
oloring of [!℄

!

with 2 
olors, su
h that for no

S 2 [!℄

!

, [S℄

!

is mono
hromati
. This yields to the following property of 
olorings of

[!℄

!

.

Ramsey Property: A �nite 
oloring of [!℄

!

has the Ramsey property, if there is a

set S 2 [!℄

!

su
h that [S℄

!

is mono
hromati
.

Fred Galvin and Karel Prikry proved in [17℄ that every Borel-
oloring has the

Ramsey property. Moreover, Ja
k Silver has shown in [61℄ that this holds also for

every analyti
 
oloring.

There is a natural analogue of the Galvin-Prikry result in terms of partitions,

namely the so-
alled Dual Galvin-Prikry Theorem (see [11, Theorem 1.3℄), and sim-

ilar to the Galvin-Prikry result, the Dual Galvin-Prikry Theorem yields to the dual
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Ramsey property (introdu
ed in [11℄). Further, in Chapter VI (see also [23℄) we will

see that also every analyti
 
oloring has the dual Ramsey property.

With these results, we get the following diagram:

Dual Galvin-Prikry ���! Galvin-Prikry

?

?

y

?

?

y

Theorem IV.2.1 ���! Ramsey Theorem

?

?

y

?

?

y

Graham-Roths
hild ���! Finitary Ramsey Theorem

Considering these symmetries between the Ramsey Theorem and Theorem IV.2.1, it

is reasonable to 
onsider Theorem IV.2.1 as the partition form of Ramsey's Theorem.

Another Ramsey type theorem whi
h is slightly stronger than Theorem IV.2.1 
an be

found in [28℄.
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CHAPTER V

The Shattering Cardinal and the Dual Ramsey Property

In Chapter III Se
tion 4.1 we de�ned the dual-shattering 
ardinal H as the min-

imum height of a tree �-base of PUF

+

v

�

(!)

!

�

. In this 
hapter we will give some

equivalent de�nitions of H and show that H > !

1

is 
onsistent with ZFC.

1. The dual Ellentu
k topology and the dual Ramsey property

First we de�ne a topology on the set of in�nite partitions: Let X 2 (!)

!

and

s 2 (N) su
h that s v X, then

(s;X)

!

:= fY 2 (!)

!

: s � Y ^ Y v Xg

and

(X)

!

:= (;; X)

!

:

Now, let the basi
 open sets on (!)

!

be the sets (s;X)

!

(where X and s as above).

These sets are 
alled the dual Ellentu
k neighborhoods. The topology on (!)

!

indu
ed by the dual Ellentu
k neighborhoods is 
alled the dual Ellentu
k topology

(
f. [12℄).

Let C � (!)

!

be a set of partitions, then we say that C has the dual Ramsey

property, or that C is dual Ramsey, if there is a partition X 2 (!)

!

su
h that

(X)

!

� C or (X)

!

\C = ;. If for ea
h dual Ellentu
k neighborhood (s; Y )

!

there is

an X 2 (s; Y )

!

su
h that (s;X)

!

� C or (s;X)

!

\C = ;, we 
all C 
ompletely

dual Ramsey. If for ea
h dual Ellentu
k neighborhood the latter 
ase holds, we say

that C is 
ompletely dual Ramsey null.

Remark 1. In [11℄ it is proved that a set is 
ompletely dual Ramsey if and only if

it has the Baire property with respe
t to the dual Ellentu
k topology, and that it

is 
ompletely dual Ramsey null if and only if it is meager with respe
t to the dual

Ellentu
k topology. From this it follows that a set is 
ompletely dual Ramsey null if

and only if the 
omplement 
ontains a dense and open subset (with respe
t to the

dual Ellentu
k topology).

Let R

[

0

be the set of sets of partitions whi
h are 
ompletely dual Ramsey null.

The set R

[

0

� P

�

(!)

!

�

is an ideal whi
h is not prime. Let us 
onsider the additivity

number add(R

[

0

) and the 
overing number 
ov(R

[

0

) of the ideal R

[

0

: add(R

[

0

) is

the smallest 
ardinal � su
h that there exists a family Jj = f J

�

2 R

[

0

: � < �g with

S

Jj 62 R

[

0

; and 
ov(R

[

0

) is the smallest 
ardinal � su
h that there exists a family

Jj = f J

�

2 R

[

0

: � < �g with

S

Jj = (!)

!

.

37
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Be
ause (!)

!

62 R

[

0

, it is 
lear that add(R

[

0

) � 
ov(R

[

0

). Further, it is easy to see

that !

1

� add(R

[

0

). Later we will see that add(R

[

0

) = 
ov(R

[

0

).

2. The distributivity number dsb(W )

A 
omplete Boolean algebra hB;�i is 
alled �-distributive, where � is a 
ardinal,

if and only if for every family hu

�i

: i 2 I

�

; � < �i of members of B the following

holds:

Y

�<�

X

i2I

�

u

�i

=

X

f2

Q

�<�

I

�

Y

�<�

u

�f(�)

:

It is well known (
f. [36℄) that for a for
ing notion hP;�i the following statements

are equivalent:

� r.o.(P ) is �-distributive (where �r.o.� stands for �regular open�).

� The interse
tion of � open dense sets in P is dense.

� Every family of � maximal anti-
hains of P has a 
ommon re�nement.

� For
ing with P does not add a new subset of �.

Let the for
ing notion W = h(!)

!

;v

�

i be de�ned as at the end of Chapter III, and let

the distributivity number dsb(W ) be the least 
ardinal � for whi
h the Boolean

algebra r.o.(W ) is not �-distributive.

3. The four 
ardinals are equal

Now we will show that the four 
ardinals H, add(R

[

0

), 
ov(R

[

0

) and dsb(W ) are

all equal. This is a similar result as in the 
ase when we 
onsider in�nite subsets of

! instead of in�nite partitions (
f. [54℄ and [1℄).

Fa
t V.3.1. If T � (!)

!

is an open and dense set with respe
t to the dual Ellentu
k

topology, then it 
ontains a mao family.

Proof. First 
hoose an almost orthogonal family A � T whi
h is maximal in T .

Now for an arbitrary X 2 (!)

!

, T \ (X)

!

6= ;. So, X must be 
ompatible with some

A 2 A and therefore A is mao. a

Lemma V.3.2. H � add(R

[

0

).

Proof. Let hS

�

: � < � < Hi be a sequen
e of 
ompletely dual Ramsey null sets

and let T

�

� (!)

!

n S

�

(� < �) be su
h that T

�

is open and dense with respe
t to

the dual Ellentu
k topology (whi
h is always possible by Remark 1). For ea
h � < �

let

T

�

�

:=

�

X 2 (!)

!

: 9Y 2 T

�

�

X v

�

Y ^ :(X

�

= Y )

�	

:

It is easy to see that for ea
h � < � the set T

�

�

is open and dense with respe
t to the

dual Ellentu
k topology.

Let U

�

� T

�

�

(� < �) be mao. Be
ause � < H, the set hU

�

: � < �i 
annot be

shattering. Let for � < � U

�

�

:= fX 2 (!)

!

: 9Z

�

2 U

�

(X v

�

Z

�

)g, then U

�

�

� T

�

and

T

�<�

U

�

�

is open and dense with respe
t to the dual Ellentu
k topology:
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T

�<�

U

�

�

is open: 
lear.

T

�<�

U

�

�

is dense: Let (s; Z)

!

be arbitrary. Be
ause hU

�

: � < �i is not shattering,

there is a Y 2 (s; Z)

!

su
h that 8� < � 9X

�

2 U

�

(Y v

�

X

�

): Hen
e, Y 2

T

�<�

U

�

�

.

Further we have by 
onstru
tion

\

�<�

U

�

�

\

[

�<�

S

�

= ;;

whi
h 
ompletes the proof. a

Lemma V.3.3. H � dsb(W ).

Proof. Let hT

�

: � < � < Hi be a sequen
e of open and dense sets with respe
t to

the dual Ellentu
k topology. Now the set

T

�<�

U

�

�

, 
onstru
ted as in Lemma V.3.2,

is dense (and even open) and a subset of

T

�<�

T

�

. Therefore H � dsb(W ). a

Lemma V.3.4. add(R

[

0

) � H.

Proof. Let hR

�

: � < Hi be a shattering family and for � < H let

D

�

:= fX : 9Y 2 R

�

(X v

�

Y )g :

For ea
h � < H, D

�

is dense and open with respe
t to the dual Ellentu
k topology:

D

�

is open: 
lear.

D

�

is dense: Let (s; Z)

!

be arbitrary and X 2 (s; Z)

!

. Be
ause R

�

is mao, there is

a Y 2 R

�

su
h that X

0

:= X uY 2 (!)

!

. Let X

00

�

= X

0

su
h that X

00

2 (s; Z)

!

, then

X

00

v

�

Y .

Now we show that

T

�<H

P

�

= ; and therefore

S

�<H

�

(!)

!

nD

�

�

= (!)

!

. Assume

there is an X 2

T

�<H

D

�

, then 8� < H 9Y

�

2 R

�

(X v

�

Y

�

). But this 
ontradi
ts

that hR

�

: � < Hi is shattering. a

Lemma V.3.5. dsb(W ) � H.

Proof. In the proof of Lemma V.3.4 we 
onstru
ted a sequen
e hD

�

: � < Hi of

open and dense sets with an empty interse
tion. Therefore

T

�<H

D

�

is not dense. a

Corollary V.3.6. 
ov(R

[

0

) � H.

Proof. In the proof of Lemma V.3.4, we proved in fa
t that 
ov(R

[

0

) � H. a

Corollary V.3.7. add(R

[

0

) = 
ov(R

[

0

) = dsb(W ) = H.

Proof. It is 
lear that add(R

[

0

) � 
ov(R

[

0

). By the Lemmas V.3.3 and V.3.5 we

know that H = dsb(W ). Further by the Lemma V.3.2 and the Corollary V.3.6 it

follows that H � add(R

[

0

) � 
ov(R

[

0

) � H. Hen
e we have add(R

[

0

) = 
ov(R

[

0

) =

dsb(W ) = H. a
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Corollary V.3.8. The union of less than H 
ompletely dual Ramsey sets is dual

Ramsey, but the union of H 
ompletely dual Ramsey sets 
an be a set whi
h does not

have the dual Ramsey property.

Proof. Follows from Remark 1 and Corollary V.3.7. a

4. On the 
onsisten
y of H> !

1

First, let us give some fa
ts 
on
erning the dual Mathias for
ing: The 
onditions

of dual Mathias for
ing M

[

are pairs hs;Xi su
h that s 2 (N), X 2 (!)

!

and

s v X, stipulating

hs;Xi � ht; Y i if and only if (s;X)

!

� (t; Y )

!

(see also Chapter VII.5).

It will be shown in Chapter VI.2 that dual Mathias for
ing 
an be de
omposed as

W � M

[

U

, where W =




(!)

!

;v

�

�

and M

[

U

denotes restri
ted dual Mathias for
ing,

i.e., 
onditions must have their se
ond 
oordinate in U , where U is a W -generi


partition-ultra�lter (see again Chapter VII.5).

Be
ause dual Mathias for
ing has pure de
ision (see Chapter VI.2), it is proper

and has the Laver property and therefore adds no Cohen reals. (For the de�nition of

properness and the Laver property we refer the reader to [18℄.)

After an !

2

-iteration of dual Mathias for
ing with 
ountable support, starting

from a model in whi
h the 
ontinuum hypothesis holds, we get a model in whi
h the

dual-shattering 
ardinal H is equal to !

2

.

Let V be a model of CH and let P

!

2

:= hP

�

;

_

Q

�

: � � !

2

; � < !

2

i be a 
ountable

support iteration of dual Mathias for
ing, i.e., for all � < !

2

,

P

�

\

_

Q

�

� M

[ 00

:

In the sequel we will not distinguish between a member of W and its representative.

In the proof of the following theorem, a set C � !

2

is 
alled an !

1

-
lub if C is

unbounded in !

2

and 
losed under in
reasing sequen
es of length !

1

.

Theorem V.4.1. If G is P

!

2

-generi
 over V , where V j= CH, then V [G℄ j= H = !

2

.

Proof. In V [G℄ let hD

�

: � < !

1

i be a family of open dense subsets of W . Be
ause

dual Mathias for
ing is proper and by a standard Löwenheim-Skolem argument, we

�nd a !

1

-
lub C � !

2

su
h that for ea
h � 2 C and every � < !

1

the set D

�

\ V [G

�

℄

belongs to V [G

�

℄ and is open dense in W

V [G

�

℄

. Let A 2 W

V [G℄

be arbitrary. By

properness and generi
ity and be
ause P

!

2

has 
ountable support, we may assume

that A 2 G(�)

0

for an � 2 C, where G(�)

0

is the �rst 
omponent a

ording to

the de
omposition of Mathias for
ing of the

_

Q

�

[G

�

℄-generi
 obje
t determined by G.

As � 2 C, G(�)

0


learly meets every D

�

(� < !

1

). But now X

�

, the

_

Q

�

-generi


partition (determined by G(�)

00

) is below ea
h member of G(�)

0

, hen
e below A and

in

T

�<!

1

D

�

. Be
ause A was arbitrary, this proves that

T

�<!

1

D

�

is dense in W and

therefore dsb(W ) > !

1

. Again by properness of dual Mathias for
ing V [G℄ j= 2

!

0

= !

2

and we �nally have V [G℄ j= H = !

2

. a
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In the model 
onstru
ted in the proof of Theorem V.4.1 we have H > t, where t is

the well-known tower number (for a de�nition of t 
f. [65℄). Moreover, we 
an show

the following:

Corollary V.4.2. The statement H > 
ov(B

0

) is relatively 
onsistent with ZFC.

Proof. Be
ause dual Mathias for
ing is proper and does not add Cohen reals, P

!

2

does also not add Cohen reals. Further it is known that t � 
ov(B

0

) (
f. [53℄ or

[3℄). Now be
ause for
ing with P

!

2

does not add Cohen reals, in V [G℄, the 
overing

number 
ov(B

0

) is still !

1

(be
ause ea
h real in V [G℄ is in a meager set with 
ode in

V ). This 
ompletes the proof. a

Remark 2. In [65℄ Theorem3.1.(
) it is shown that ! � � < t implies that 2

�

= 2

!

0

.

We do not have a similar result for the dual-shattering 
ardinal H. If we start our

for
ing 
onstru
tion P

!

2

with a model V j= CH+ 2

!

1

= !

3

, then again by properness

of dual Mathias for
ing we have V [G℄ j= H = !

2

= 2

!

0

< 2

!

1

= !

3

, where G is

P

!

2

-generi
 over V .

Remark 3. By iterating just Mathias for
ing, Spinas showed in [62℄ that H < h is


onsistent with ZFC. Further, Jörg Brendle has proved in [10℄ that also MA + !

1

=

H < h = !

2

= 
 is 
onsistent with ZFC.

5. The diagram of the results

In ZFC it is provable that H � h and H � S, where S is the dual-splitting 
ardinal

(
f. [12℄ or see Chapter II). Thus, if we summarize the results whi
h are known about

H, we get the following diagram:

b

S

0




h

H

S

!

1


ov(B

0

)

In the diagram, the 
ardinal 
hara
teristi
s grow larger as one moves up or to the

right.

Consisten
y results:

� 
ov(B

0

) < H

� H < 
ov(B

0

) (this is be
ause h < 
ov(B

0

) is 
onsistent with ZFC)

� MA + !

1

= H < h = !

2

= 
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CHAPTER VI

Symmetries between two Ramsey properties

In this 
hapter we 
ompare the Ramsey property with the dual Ramsey property,

whi
h was introdu
ted in Chapter V. Even though the two properties are di�erent,

it 
an be shown that all 
lassi
al results known for the Ramsey property also hold for

the dual Ramsey property. In parti
ular we will see that the dual Ramsey property

is 
losed under a generalized Suslin operation (the similar result for the Ramsey

property was proved by Matet). Further we 
ompare two notions of for
ing, the

Mathias for
ing and a dual form of it, and will give some symmetries between them.

1. Two Ramsey properties and two notions of for
ing

First we de�ne a topology on [!℄

!

. Let x 2 [!℄

!

and a 2 [!℄

<!

su
h that max(a) <

min(x); then [a; x℄

!

:= fy 2 [!℄

!

: y � (a [ x) ^ a � yg. Now let the basi
 open sets

on [!℄

!

be the sets [a; x℄

!

. These sets are 
alled the Ellentu
k neighborhoods. The

topology indu
ed by the Ellentu
k neighborhoods is 
alled the Ellentu
k topology.

Related to the Ellentu
k topology we get the Mathias for
ing M , whi
h is

de�ned as follows:

ha; xi 2 M , a 2 [!℄

<!

^ x 2 [!℄

!

^ max(a)<min(x);

ha; xi � hb; yi , b � a ^ x � y ^ (a n b) � y:

If ha; xi is an M -
ondition, then we 
all a the stem of the 
ondition. The Mathias

for
ing M has a lot of 
ombinatorial properties (see [49℄, [39℄, or [25℄). Note that we


an 
onsider an M -
ondition ha; xi as an Ellentu
k neighborhood [a; x℄

!

and ha; xi �

hb; yi if and only if [a; x℄

!

� [b; y℄

!

.

The 
lassi
al Ramsey property is a property of sets of in�nite subsets of ! (of

sets of reals). A set A � [!℄

!

has the Ramsey property (or is Ramsey) if 9x 2

[!℄

!

([x℄

!

� A _ [x℄

!

\ A = ;): If there exists an x su
h that [x℄

!

\ A = ; we 
all A

a Ramsey null set. A set A � [!℄

!

is 
ompletely Ramsey if for every Ellentu
k

neighborhood [s; y℄

!

there is an x 2 [s; y℄

!

su
h that [s; x℄

!

� A or [s; x℄

!

\A = ;. If

we are always in the latter 
ase, then we 
all A 
ompletely Ramsey null.

The dual Ramsey property, whi
h is a property of sets of partitions, was

already introdu
ed in Chapter V.1, where one 
an �nd also the de�nition of the dual

Ellentu
k topology.

Related to the dual Ellentu
k topology we get the dual Mathias for
ing M

[

,

whi
h was already de�ned in Chapter V. Dual Mathias for
ing is similarly to Mathias

43
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for
ing, but uses the dual Ellentu
k neighborhoods instead of the Ellentu
k neighbor-

hoods. So,

hs;Xi 2 M

[

, (s;X)

!

is a dual Ellentu
k neighborhood

and

hs;Xi � ht; Y i , (s;X)

!

� (t;Y )

!

:

If hs;Xi is an M

[

-
ondition, then we 
all s again the stem of the 
ondition. Be
ause

dual Mathias for
ing is very 
lose to Mathias for
ing, it also has some ni
e properties

similar to those of M .

Now we 
an start to give some symmetries between the two Ramsey properties

and between the two Mathias for
ings.

2. Basi
 fa
ts

In this se
tion we give the tools to 
onsider sets of partitions as sets of reals

and to 
ompare the two Ramsey properties. We will give also some basi
 fa
ts and

well-known results 
on
erning the dual Ramsey property and dual Mathias for
ing.

Further we give some symmetries between Mathias for
ing and the dual Mathias

for
ing.

To 
ompare the two Ramsey properties we �rst show that we 
an 
onsider ea
h

A � [!℄

!

as a set of in�nite partitions of ! and vi
e versa. For this we de�ne some

arithmeti
al relations and fun
tions.

Let n;m 2 !, then div(n;m) := maxfk 2 ! : k �m � ng and

&fn;mg :=

1

2

�

(maxfn;mg)

2

�maxfn;mg

�

+minfn;mg ;

where we 
onsider &fn;mg as unde�ned if n = m.

Let x 2 [!℄

!

; then trans(x) � ! is su
h that n 62 trans(x) i� there is a �nite

sequen
e s of natural numbers of length l + 1 su
h that

n = &fs(0); s(l)g and 8k 2 f1; : : : ; lg

�

&fs(k � 1); s(k)g 62 x

�

:

Note that trans(x) � x. If x 2 [!℄

!

, then we 
an 
onsider x as a partition with

\

x

(n;m) () n = m or &fn;mg 62 trans(x):

The 
orresponding partition of a real x 2 [!℄

!

is denoted by 
p(x). Note that


p(x) 2 (!)

!

i� 8k 9n > k 8m < n

�

:\

x

(n;m)

�

, and further, if y � x, then 
p(y) v


p(x).

A partition X of ! we en
ode by a real p
(X) (the partition 
ode of X) as

follows.

p
(X) :=

�

k 2 ! : 9n 9m

�

k = &fn;mg ^ :\

X

(n;m)

�	

:

Note that if X

1

v X

2

then p
(X

1

) � p
(X

2

). With these de�nitions we get the

following.

Fa
t VI.2.1. The dual Ellentu
k topology is �ner than the topology of the Baire

spa
e.
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Proof. Let s 2 !

<!

and U

s

= ff 2 !

!

: s � fg be a basi
 open set in the Baire

spa
e !

!

. Be
ause there is a bije
tion between !

!

and [!℄

!

, we 
an write U

s

as a set

V

s

0

= fr 2 [!℄

!

: s

0

� r ^min(r n s) > max(s)g :

Now 
p[V

s

0

℄\(!)

!

(where 
p[V

s

0

℄ := f
p(r) : r 2 V

s

0

g) is open with respe
t to the dual

Ellentu
k topology. Therefore, the dual Ellentu
k topology is �ner than the topology

of the Baire spa
e. a

Remark 1. A similar result is true for the Ellentu
k topology (
f. [15℄).

Fa
t VI.2.2. A set C � (!)

!

is 
ompletely dual Ramsey if and only if C has the

Baire property with respe
t to the dual Ellentu
k topology and it is 
ompletely dual

Ramsey null if and only if it is meager with respe
t to the dual Ellentu
k topology.

Proof. This is proved in [11℄. a

Remark 2. The analogous result is known for the Ramsey property with respe
t to

the Ellentu
k topology (
f. [15℄).

Let us now give some symmetries between the two Mathias for
ings: If X

G

is

M

[

-generi
 over V and Y 2 (X

G

)

!

, then also Y is M

[

-generi
 over V (
f. [11, Theo-

rem 5.5℄). From this it follows immediately that M

[

is proper and therefore does not


ollapse !

1

.

Further, for any M

[

-
ondition hs;Xi and any senten
e � of the for
ing language

M

[

, there is an M

[

-
ondition hs; Y i � hs;Xi su
h that hs; Y i

M

[

� or hs; Y i

M

[

:�

(
f. [11, Theorem 5.2℄ ). This property is 
alled pure de
ision.

Remark 3. The similar results for Mathias for
ing M 
an be found in [49℄ (or in

[37℄).

We 
an write dual Mathias for
ing as a two step iteration where one �rst for
es

with W =




(!)

!

;v

�

�

(de�ned in Chapter III).

Also Mathias for
ing 
an be written as a two step iteration, where the �rst step

is the for
ing notion U = hP(!)=�n;�

�

i, where x �

�

y if jx n yj < !.

Fa
t VI.2.3. The for
ing notion W is �-
losed and if D is W -generi
 over V, then

Min(D ) is a Ramsey ultra�lter in V[D ℄.

Proof. Let X

1

� X

2

� : : : be a de
reasing sequen
e W -
onditions. Choose a

sequen
e f

i

(i 2 !) of �nite sets of natural numbers, su
h that X

i+1

u ff

i

g v X

i

.

De�ne y

0

:= X

0

(0) and y

n

:= X

n

(k) where k := 3 +

S

i<n

(

S

f

i

). Now

Y := fy

i

: i 2 !g [ (! n

[

i2!

y

i

)

is 
oarser

�

than ea
h X

i

(i 2 !) and therefore W is �-
losed.

Now we 
laim that the set fMin(X) : X 2 D g is a Ramsey ultra�lter in V[D ℄.

Remember that a for
ing notion whi
h is �-
losed adds no new reals to V (
f. [36,
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Lemma 19.6℄). Take a � 2 2

[!℄

2

and a Y 2 (!)

!

, then by Ramsey's Theorem, for

Min(Y ) 2 [!℄

!

there exists an in�nite r � Min(Y ) su
h that � is 
onstant on [r℄

2

.

Finally let

X :=

�

b : b 2 Y ^ b \ r 6= ;

	

[

[

�

b : b 2 Y ^ b \ r = ;

	

;

then X v Y and Min(X) = r. Thus, H

�

:=

�

X 2 (!)

!

: �j

[Min(X)℄

2

is 
onstant

	

is

dense in W , and therefore H

�

\D 6= ;. a

Remark 4. It is easy to see that the for
ing notion U is �-
losed. Further we have

that if U is U-generi
 over V, then U is a Ramsey ultra�lter in V[U ℄.

The for
ing notion W is stronger than the for
ing notion U.

Fa
t VI.2.4. IfU is W -generi
, then the set fMin(X) : X 2U g is U-generi
.

Proof. Let A � [!℄

!

be a maximal anti-
hain in U, i.e., A is a maximal almost

disjoint family. Then the set D

A

:=

�

X 2 W : 9a 2 A(Min(X) �

�

a)

	

is dense in

W . a

We de�ne now the se
ond step of the two step iteration: Let F � (!)

!

, then the

partial order P

F

is de�ned as follows.

hs;Xi 2 P

F

, X 2 F ^ (s;X)

!

is a dual Ellentu
k neighborhood,

hs;Xi � ht; Y i , (s;X)

!

� (t;Y )

!

:

Remark 5. For F � [!℄

!

we 
an de�ne the partial order P

F

similarly.

Fa
t VI.2.5. Let

_

U be the 
anoni
al W -name for the W -generi
 obje
t, then

W � P

_

U

� M

[

:

Proof.

W � P

_

U

=

�


p; h~s;

~

Xi

�

: p 2 W ^ p

W

h~s;

~

Xi 2 P

_

U

	

=

�


p; h~s;

~

Xi

�

: p 2 (!)

!

^ p

W

(

~

X 2

_

U ^ ~s v

~

X)

	

:

Now the embedding

h : M

[

�! W � P

_

U

hs;Xi 7�!




X; h�s;

�

Xi

�

is a dense embedding (see [18℄ De�nition 0.8):

1. It is easy to see that h preserves the order relation �.

2. Let hp; h~s;

~

Xii 2 W � P

_

U

. Be
ause W is �-
losed, there is a 
ondition q � p,

a segment s 2 (N) and a partition X 2 (!)

!

su
h that q

W

�s = ~s ^

�

X =

~

X.

Evidently,




q; h�s;

�

Xi

�

2 W � P

_

U

is stronger than




p; h~s;

~

Xi

�

. Let Z := q uX and

let Z

0

v

�

Z be su
h that s v Z

0

, and we have h

�

hs; Z

0

i

�

�




p; h~s;

~

Xi

�

.

a
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Remark 6. Let

_

U be the 
anoni
al U-name for the U-generi
 obje
t, then U�P

_

U

� M :

The dual Mathias for
ing is stronger than the Mathias for
ing.

Fa
t VI.2.6. The dual Mathias for
ing adds Mathias reals.

Proof. LetU be W -generi
 over V; then by Fa
t VI.2.4, U := fMin(X) : X 2U g

is U-generi
 over V. Now we de�ne h : P

U

! P

U

as follows.

h : P

U

�! P

U

hs;Xi 7�!




Min(s);Min(X) nMin(s)

�

For h, the following is true:

(i) If q

1

; q

2

2 P

U

, q

1

� q

2

, then h(q

1

) � h(q

2

).

(ii) For all q 2 P

U

and for all p

0

� h(q), there is a q

0

2 P

U

su
h that q and q

0

are


ompatible and h(q

0

) � p

0

.

Therefore, with [37℄ Part I, Lemma 2.7 we �nally get V

M

� V

M

[

. a

3. The dual Ramsey property and Suslin's operation

In this se
tion we will show that the dual Ramsey property is 
losed under a

generalized Suslin operation. As a 
orollary we will get the already known result that

analyti
 sets are 
ompletely dual Ramsey.

Following Chapter V, letR

[

0

� P

�

(!)

!

�

be the ideal of all 
ompletely dual Ramsey

null sets. Re
all that add(R

[

0

) is the smallest 
ardinal � su
h that there exists a family

Jj = f J

�

2 R

[

0

: � < �g with

S

Jj 62 R

[

0

, and that 
ov(R

[

0

) is the smallest 
ardinal

� su
h that there exists a family Jj = f J

�

2 R

[

0

: � < �g with

S

Jj = (!)

!

. In

Chapter V (see also [22℄) it is shown that 
ov(R

[

0

) = add(R

[

0

) = H (where H is the

dual-shattering 
ardinal) and that H > !

1

is relatively 
onsistent with ZFC.

Let Seq(�) := �

<!

and for f 2 �

!

and n 2 !, let

�

f(n) denote the �nite sequen
e




f(0); f(1); : : : ; f(n � 1)

�

. The generalized Suslin operation A

�

(for a 
ardinal

�) is de�ned as follows:

A

�

�

Q

s

: s 2 Seq(�)

	

:=

[

f2�

!

\

n2!

Q

�

f(n)

;

where Q

s

� (!)

!

for all s 2 Seq(�). In Theorem VI.3.5 below we will show that for

ea
h 
ardinal � < H, the 
ompletely dual Ramsey sets are 
losed under the operation

A

�

. But �rst we give some other results.

A set R � (!)

!

is dual Ellentu
k meager if R is meager with respe
t to the

dual Ellentu
k topology. Remember that a set is dual Ellentu
k meager if and only

if it is 
ompletely dual Ramsey null and a set is 
ompletely dual Ramsey if and only

if it has the Baire property with respe
t to the dual Ellentu
k topology.

If (s;X)

!

is a dual Ellentu
k neighborhood, then we say that R is dual Ellentu
k

meager in (s;X)

!

if R \ (s;X)

!

is dual Ellentu
k meager. By [11, Theorem 4.1℄, R
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is dual Ellentu
k meager in (s;X)

!

if for all (t;Y )

!

� (s;X)

!

there exists a partition

Z 2 (t;Y )

!

su
h that (t;Z)

!

\R = ;.

Fix a set R � (!)

!

and let

M :=

[

�

(s;X)

!

: R is dual Ellentu
k meager in (s;X)

!

	

:

Further let M(R ) :=M \R . We �rst show the following.

Lemma VI.3.1. If (s;X)

!

is a dual Ellentu
k neighborhood su
h that (s;X)

!

� M ,

then R is dual Ellentu
k meager in (s;X)

!

.

Proof. If (s;X)

!

� M , then (s;X)

!

=

S

�

(t;Y )

!

� (s;X)

!

: R is dual Ellentu
k

meager in (t;Y )

!

	

. Let N :=

S

�

(u;Z)

!

� (s;X)

!

: R\(u;Z)

!

= ;

	

. Be
ause N is an

Ellentu
k open set, N is 
ompletely dual Ramsey. Therefore, for any (t;Y )

!

� (s;X)

!

there exists a partition Y

0

2 (t;Y )

!

su
h that (t;Y

0

)

!

� N or (t;Y

0

)

!

\N = ;. If we

are in the latter 
ase, then be
ause (t;Y

0

)

!

� (s;X)

!

, we �nd a (u;Y

00

)

!

� (t;Y

0

)

!

su
h

that R is dual Ellentu
k meager in (u;Y

00

)

!

. Hen
e, there exists a (u;Z)

!

� (u;Y

00

)

!

su
h that (u;Z)

!

\R = ;, whi
h 
ontradi
ts (t;Y

0

)

!

\ N = ;. So we are always in

the former 
ase, whi
h implies that R is dual Ellentu
k meager in (s;X)

!

. a

With this result, we 
an easily prove the following

Lemma VI.3.2. The set M(R ) is dual Ellentu
k meager.

Proof. Take a dual Ellentu
k neighborhood (s;X)

!

and let

S :=

[

�

(t;Z)

!

� (s;X)

!

: R is dual Ellentu
k meager in (t;Z)

!

	

:

Then S, as the union of open sets, is open and a subset of (s;X)

!

. Be
ause (s;X)

!

is also 
losed (in the dual Ellentu
k topology), the set C := (s;X)

!

n S is 
losed. By

[11, Theorem 4.1℄, the sets C and S both are 
ompletely dual Ramsey. Therefore

we �nd for every (s

0

;X

0

)

!

� (s;X)

!

a partition Y 2 (s

0

;X

0

)

!

su
h that (s

0

;Y )

!

� S

or (s

0

;Y )

!

� C. Now if (s

0

;Y )

!

� S, then by Lemma VI.3.1, R is dual Ellentu
k

meager in (s

0

;Y )

!

and if (s

0

;Y )

!

� C, then (s

0

;Y )

!

\ M(R ) = ;. To see this,

assume there is an H 2 M(R ) \ (s

0

;Y )

!

. Be
ause H 2 M(R ) there exists a

dual Ellentu
k neighborhood (t;Z)

!

su
h that H 2 (t;Z)

!

and R is dual Ellentu
k

meager in (t;Z)

!

. Be
ause H 2 (t;Z)

!

and H 2 (s

0

;Y )

!

there is a dual Ellentu
k

neighborhood (u;U)

!

� (t;Z)

!

\ (s

0

;Y )

!

. But with (u;U)

!

� (t;Z)

!

it follows that

R is dual Ellentu
k meager in (u;U)

!

and therefore (u;U)

!

� S, a 
ontradi
tion to

(u;U)

!

� (s

0

;Y )

!

� C.

Therefore, in both 
ases M(R ) is dual Ellentu
k meager in (s

0

;Y )

!

� (s

0

;X

0

)

!

and be
ause (s;X)

!

and (s

0

;X

0

)

!

� (s;X)

!

were arbitrary, the set M(R ) is dual

Ellentu
k meager in ea
h dual Ellentu
k neighborhood. Hen
e, the set M(R ) is

dual Ellentu
k meager. a

Corollary VI.3.3. The set R [

�

(!)

!

nM

�

has the dual Ellentu
k Baire property.
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Proof. Be
ause M is open, (!)

!

nM is 
losed and R [

�

(!)

!

nM

�

= (R \M) [

�

(!)

!

nM

�

= M(R ) [

�

(!)

!

nM

�

whi
h is the union of a meager set and a 
losed

set and therefore has the dual Ellentu
k Baire property. a

Theorem VI.3.4. If R � (!)

!

, then we 
an 
onstru
t a setB � R whi
h has the

dual Ellentu
k Baire property and whenever C �B n R has the dual Ellentu
k

Baire property, then C is dual Ellentu
k meager.

Proof. LetB := R [ ((!)

!

nM) where M is as above. By Lemma VI.3.2 and

Corollary VI.3.3 we know thatB has the dual Ellentu
k Baire property. Now let

C �B n R with the dual Ellentu
k Baire property. If C is not dual Ellentu
k

meager, then there exists a dual Ellentu
k neighborhood (u;U)

!

, su
h that (u;U)

!

nC

and therefore (u;U)

!

\R are dual Ellentu
k meager. Hen
e, R is dual Ellentu
k

meager in (u;U)

!

and therefore (u;U)

!

�M . Sin
e (u;U)

!

\C 6= ; and C \M = ;,

there is a Y 2 (u;U)

!

su
h that Y 62 M , a 
ontradi
tion to R is dual Ellentu
k

meager in (u;U)

!

. a

Now we 
an prove the following.

Theorem VI.3.5. Let � < H be a 
ardinal number and for ea
h s 2 Seq(�) let

Q

s

� (!)

!

. If all the sets Q

s

are 
ompletely dual Ramsey, then the set

A

�

fQ

s

: s 2 Seq(�)g

is 
ompletely dual Ramsey, too.

Proof. Let fQ

s

: s 2 Seq(�)g be a set of 
ompletely dual Ramsey sets and let

A := A

�

fQ

s

: s 2 Seq(�)g. For two sequen
es s and f in �

�!

we write s � f if s is

an initial segment of f . If s 2 �

<!

is a �nite sequen
e, then jsj denotes the length of

s. Without loss of generality we may assume that Q

s

� Q

t

whenever s � t.

For s 2 Seq(�) let

A

s

:=

[

f2�

!

s�f

\

n2!

n�jsj

Q

�

f(n)

:

In addition we have A

s

� Q

s

, A

s

=

S

�<�

A

s

_

�

and A = A

;

. By Theorem VI.3.4,

for ea
h s 2 Seq(�) we �nd aB

s

� A

s

whi
h is 
ompletely dual Ramsey and if

C �B

s

nA

s

has the dual Ramsey property, then C is dual Ramsey null. Be
ause

Q

s

� A

s

is 
ompletely dual Ramsey, we may assume thatB

s

� Q

s

and therefore

A =A

�

�

B

s

: s 2 Seq(�)

	

:

Let B := B

;

. Note that A =

S

�<�

A

h�i

�

S

�<�

B

h�i

, and therefore B �

S

�<�

B

h�i

. Now we show that

B nA �

[

�<�

B

h�i

�

[

f2�

!

\

n2!

B

�

f(n)

�

[

s2Seq(�)

�

B

s

n

[

�<�

B

s

_

�

�

:
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Assume x 62

S

s

�

B

s

n

S

�<�

B

s

_

�

�

. If we have for all � < �, that x 62B

h�i

, then x 62B .

And if there exists an �

0

< � su
h that x 2B

h�

0

i

, be
ause x 62

S

s

�

B

s

n

S

�<�

B

s

_

�

�

we �nd an �

1

su
h that x 2B

h�

0

;�

1

i

and �nally we �nd an f 2 �

!

su
h that for all

n � !: x 2B

�

f(n)

. But this implies that x 2 A . Now, be
ause

B

s

n

[

�<�

B

s

_

�

�B

s

n

[

�<�

A

s

_

�

=B

s

nA

s

and be
ause

S

�<�

B

s

_

�

is the union of less than H 
ompletely dual Ramsey sets,

B

s

n

S

�<�

B

s

_

�

is 
ompletely dual Ramsey and as a subset ofB

s

nA

s

, it is 
ompletely

dual Ramsey null. Therefore,B nA as a subset of the union of less than H 
ompletely

dual Ramsey null sets is 
ompletely dual Ramsey null, and be
auseB is 
ompletely

dual Ramsey, A is 
ompletely dual Ramsey too. a

Remark 7. A similar result holds also for the Ramsey property and is proved by

Matet in [47℄.

As a 
orollary we get a result whi
h was �rst proved by Carlson and Simpson

(
f. [11℄).

Corollary VI.3.6. Every analyti
 set is 
ompletely dual Ramsey.

Proof. This follows from Theorem VI.3.5 and be
ause ea
h analyti
 set A � [!℄

!


an be written as

A = AfQ

s

: s 2 Seq(!)g

where ea
h Q

s

� [!℄

!

is a 
losed set in the Baire spa
e. a

Remark 8. For a similar result see [15℄ or [61℄.

4. Game-families and the for
ing notion P

F

Firstly we de�ne a game and the 
orresponding game-families. Se
ondly we show

that for game-families F , the for
ing notion P

F

has pure de
ision and if X is P

F

-

generi
 and Y 2 (X)

!

, then Y is P

F

-generi
, too.

We 
all a family F � (!)

!

non-prin
ipal if for all X 2 F there is a Y 2 F

su
h that Y v X and :(Y

�

= X). A family F is 
losed under re�nement if

X v Y and X 2 F implies that Y 2 F . Further, it is 
losed under �nite


hanges if for all s 2 (N) and X 2 F , s uX 2 F .

In the sequel, F is always a non-prin
ipal family whi
h is 
losed under re�nement

and �nite 
hanges.

If s 2 (N) and s v X 2 F , then we 
all the dual Ellentu
k neighborhood

(s;X)

!

an F -dual Ellentu
k neighborhood and write (s;X)

!

F

to emphasize that

X 2 F . A set O � (!)

!

is 
alled F -open if O 
an be written as the union of

F -dual Ellentu
k neighborhoods.

Fix a family F � (!)

!

whi
h is non-prin
ipal and 
losed under re�nement and

�nite 
hanges. Let X 2 F and s 2 (N) be su
h that s v X. We asso
iate with
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(s;X)

!

F

the following game. This type of game was introdu
ed �rst by Kastanas in

[40℄.

I hX

0

i hX

1

i hX

2

i

: : :

II ht

0

; Y

0

i ht

1

; Y

1

i ht

2

; Y

2

i

All the X

i

of player I and the Y

i

of player II must be elements of the family F .

Player I plays hX

0

i su
h that X

0

2 (s;X)

!

F

, then II responds with ht

0

; Y

0

i, where Y

0

2

(s;X

0

)

!

F

, s � t

�

0

� Y

0

and jt

0

j = jsj. (Re
all that for s 2 (N), s

�

= s [ ffdom(s)gg.)

For n � 1, the n

th

move of player I is hX

n

i su
h that X

n

2 (t

�

n�1

;Y

n�1

)

!

F

and

then player II responds with ht

n

; Y

n

i where Y

n

2 (t

�

n�1

;X

n

)

!

F

, t

�

n�1

� t

�

n

� Y

n

and

jt

n

j = jt

n�1

j + 1. Player I wins i� the only Y with t

n

� Y (for all n) is in F . We

denote this game by G(F ) starting with hs;Xi.

A non-prin
ipal family F whi
h is 
losed under re�nement and �nite 
hanges is

a game-family if player II has no winning strategy in the game G(F ).

A family F � (!)

!

is 
alled a �lter if for any X; Y 2 F , also X u Y 2 F .

A �lter whi
h is also a game-family is 
alled a game-�lter. Note that (!)

!

is a

game-family but not a game-�lter. It is not known if game-�lters exist under CH, but

as we will see in Theorem VI.5.1, the existen
e of game-�lters is 
onsistent with ZFC.

Let O � (!)

!

be an F -open set. Call (s;X)

!

F

good (with respe
t to O ), if for

some Y 2 (s;X)

!

F

\ F , (s;Y )

!

F

� O ; otherwise 
all it bad. Note that if (s;X)

!

F

is

bad and Y 2 (s;X)

!

F

\F , then (s;Y )

!

F

is bad, too. We 
all (s;X)

!

F

ugly if (t

�

;X)

!

F

is bad for all s � t

�

v X with jtj = jsj. Note that if (s;X)

!

F

is ugly, then (s;X)

!

F

is

bad, too.

To prove the following two lemmas, we will follow in fa
t the proof of Lemma 19.15

in [41℄.

Lemma VI.4.1. Let F be a game-family and O � (!)

!

an F -open set. If (s;X)

!

F

is bad (with respe
t to O ), then there exists a Z 2 (s;X)

!

F

su
h that (s;Z)

!

F

is ugly.

Proof. We begin by des
ribing a strategy for player II in the game G(F ) starting

with hs;Xi. Let hX

n

i be the n

th

move of player I and t

n

be su
h that s � t

n

,

jt

n

j = jsj + n and t

�

n

� X

n

. Let ft

i

n

: i � mg be an enumeration of all t su
h that

s � t v t

n

, jtj = jsj and dom(t) = dom(t

n

). Further let Y

�1

:= X

n

. Now 
hoose for

ea
h i � m a partition Y

i

2 F su
h that Y

i

v Y

i�1

, t

�

n

� Y

i

and ((t

i

n

)

�

;Y

i

)

!

F

is bad

or ((t

i

n

)

�

;Y

i

)

!

F

� O . Finally, let Y

n

:= Y

m

and let player II play ht

n

; Y

n

i.

Be
ause player II has no winning strategy, player I 
an play so that the only Y

with t

n

� Y (for all n) belongs to F . Let S

Y

:= ft

�

v Y : s � t ^ jtj = jsjg;

then, be
ause of the strategy of player II, for all t 2 S

Y

we have either (t

�

;Y )

!

F

is

bad or (t

�

;Y )

!

F

� O . Now let C

0

:= ft 2 S

Y

: (t;Y )

!

F

is badg and C

1

:= ft 2

S

Y

: (t

�

;Y )

!

F

� O g = S

Y

n C

0

. By a result of [29℄ (see also [26, Se
tion 7℄), there

exists a partition Z 2 (s;Y )

!

F

\ F , su
h that S

Z

� C

0

or S

Z

� C

1

. If we are in
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the latter 
ase, we have (s;Z)

!

F

� O , whi
h 
ontradi
ts that (s;X)

!

F

is bad. So we

must have S

Z

� C

0

, whi
h implies that (s;Z)

!

F

is ugly and 
ompletes the proof of

the Lemma. a

Lemma VI.4.2. If F is a game-family and O � (!)

!

is an F -open set, then for every

F -dual Ellentu
k neighborhood (s;X)

!

F

there exists a Y 2 (s;X)

!

F

\ F su
h that

(s;Y )

!

F

� O or (s;Y )

!

F

\ O \ F = ;.

Proof. If (s;X)

!

F

is good, then we are done. Otherwise we 
onsider the game G(F )

starting with hs;Xi. Let hX

0

i be the �rst move of player I. Be
ause (s;X

0

)

!

F

is bad,

by Lemma VI.4.1 we 
an 
hoose Y

0

2 (s;X

0

)

!

F

\F su
h that (s;Y

0

)

!

F

is ugly. Let t

0

be su
h that s � t

�

0

� Y

0

and jt

0

j = jsj. Now we 
hoose Y

0

2 (t

�

0

;Y

0

)

!

F

\F su
h that

(t

�

0

;Y

0

)

!

F

is ugly, whi
h is is possible be
ause (t

0

;Y

0

)

!

F

is ugly and therefore (t

�

0

;Y

0

)

!

F

is bad. Note that for all t with s � t v t

0

and dom(t) = dom(t

0

) we have (t

�

;Y

0

)

!

F

is

ugly. Now player II plays ht

0

; Y

0

i:

Let hX

n+1

i be the (n+1)

th

move of player I. By the strategy of player II we have

(t

�

;X

n+1

)

!

F

is ugly for all t with s � t v t

n

and dom(t) = dom(t

n

). Let t

n+1

be su
h

that jt

n+1

j = jt

n

j + 1 = jsj + n and t

�

n

� t

�

n+1

� X

n+1

. Let ft

i

n+1

: i � mg be an

enumeration of all t su
h that s � t v t

n+1

and dom(t) = dom(t

n+1

). Further let

Y

�1

:= X

n+1

. Now 
hoose for ea
h i � m a partition Y

i

2 F su
h that Y

i

v Y

i�1

,

t

�

n+1

� Y

i

and ((t

i

n+1

)

�

;Y

i

)

!

F

is ugly. (This is possible be
ause we know that (t

�

;X

k

)

!

F

is ugly for all k � n and t with s � t v t

k

and dom(t) = dom(t

k

), whi
h implies that

((t

i

n+1

)

�

;X

n+1

)

!

F

is bad.) Finally, let Y

n+1

:= Y

m

and let player II play ht

n+1

; Y

n+1

i.

Be
ause player II has no winning strategy, player I 
an play so that the only Y

with t

n

� Y (for all n) belongs to F . We 
laim that (s;Y )

!

F

\ O \ F = ;: Let

Z 2 (s;Y )

!

F

\O \F . Be
ause O is F -open we �nd a t � Z su
h that (t

�

;Z)

!

F

� O .

Be
ause t

�

v Y we know by the strategy of player II that (t

�

;Y )

!

F

is bad. Hen
e,

there is no Z 2 (t

�

;Y )

!

F

su
h that (t

�

;Z)

!

F

� O . This 
ompletes the proof. a

Now we give two properties of the for
ing notion P

F

, where P

F

is de�ned as in

Se
tion 2 and F is a game-family. Note that for F = (!)

!

(whi
h is obviously a

game-family) the for
ing notion P

F

is the same as dual Mathias for
ing. First we

show that the for
ing notion P

F

has pure de
ision.

Theorem VI.4.3. Let F be a game-family and let � be a senten
e of the for
ing

language P

F

. For any P

F

-
ondition (s;X)

!

F

there exists a P

F

-
ondition (s;Y )

!

F

�

(s;X)

!

F

su
h that (s;Y )

!

F

P

F

� or (s;Y )

!

F

P

F

:�.

Proof. With respe
t to � we de�ne

O

1

:= fY : (t;Y )

!

F

P

F

� for some t � Y 2 F g

and

O

2

:= fY : (t;Y )

!

F

P

F

:� for some t � Y 2 F g :

Clearly O

1

and O

2

are both F -open and O

1

[ O

2

is even dense (with respe
t to the

partial order P

F

). Be
ause F is a game-family, by Lemma VI.4.2 we know that for
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any (s;X)

!

F

2 P

F

there exists Y 2 (s;X)

!

F

\ F su
h that either (s;Y )

!

F

� O

1

or

(s;Y )

!

F

\ O

1

\ F = ;. In the former 
ase we have (s;Y )

!

F

P

F

� and we are done.

In the latter 
ase we �nd Y

0

2 (s;Y )

!

F

\ F su
h that (s;Y

0

)

!

F

� O

2

. (Otherwise

we would have (s;Y

0

)

!

F

\ (O

2

[ O

1

) \ F = ;, whi
h is impossible by the density of

O

1

[ O

2

.) Hen
e, (s;Y

0

)

!

F

P

F

:�. a

Let F be a game-family. If G is P

F

-generi
, then let X

G

:=

T

G. Now X

G

is an

in�nite partition and G = f(s;Z)

!

F

: s � X

G

v Zg. Therefore we 
an 
onsider the

partition X

G

2 (!)

!

as a P

F

-generi
 obje
t. Further we have G � P

F

is P

F

-generi


if and only if X

G

2

S

D for all D � P

F

whi
h are dense in P

F

. Note that if D is

dense in P

F

, then

S

D is F -open.

The next theorem shows in fa
t that if F is a game-family, then P

F

is proper.

Theorem VI.4.4. Let F � (!)

!

be a game-family. If X

0

2 (!)

!

is P

F

-generi
 over

V and Y

0

2 (X

0

)

!

\V[X

0

℄, then Y

0

is also P

F

-generi
 over V.

Proof. Take an arbitrary dense set D � P

F

, i.e., for all (s;X)

!

F

there exists a

(t;Y )

!

F

� (s;X)

!

F

su
h that (t;Y )

!

F

2 D. Let D

0

be the set of all (s;Z)

!

F

su
h that

(t;Z)

!

F

�

S

D for all t v s with dom(t) = dom(s).

First we show that D

0

is dense in P

F

. For this take an arbitrary (s;W )

!

F

and let

ft

i

: 0 � i � mg be an enumeration of all t 2 (N) su
h that t v s and dom(t) =

dom(s). Be
ause D is dense in P

F

and

S

D is F -open, we �nd for every t

i

aW

0

2 F

su
h that t

i

v W

0

and (t

i

;W

0

)

!

F

�

S

D. Moreover, if we de�ne W

�1

:= W , we 
an


hoose for every i � m a partition W

i

2 F su
h that W

i

v W

i�1

, s � W

i

and

(t

i

;W

i

)

!

F

�

S

D. Now (s;W

m

)

!

F

2 D

0

and be
ause (s;W

m

)

!

F

� (s;W )

!

F

, D

0

is dense

in P

F

.

Sin
e D

0

is dense and X

0

2 (!)

!

is P

F

-generi
, there exists a (s;Z)

!

F

2 D

0

su
h

that s � X

0

v Z. Be
ause Y

0

2 (X

0

)

!

we have t � Y

0

v Z for some t v s and

be
ause (t;Z)

!

F

�

S

D, we get Y

0

2

S

D. Hen
e, Y

0

2

S

D for every dense D � P

F

,

whi
h 
ompletes the proof. a

Remark 9. Similar results are proved in [49℄ and [48℄.

5. On dual Mathias for
ing and game-�lters

In this se
tion we show that it is 
onsistent with ZFC that game-�lters exist.

Further we show that the dual Mathias for
ing M

[

is �exible and with this result we


an prove that if V is �

1

4

-M

[

-absolute, then !

V

1

is ina

essible in L, where L denotes

Gödel's 
onstru
tible universe.

In the sequel, let W be the for
ing notion we de�ned in se
tion 2.

Theorem VI.5.1. IfU is W -generi
 over V, thenU is a game-�lter in V[U ℄ with

respe
t to the game G(U ).

Proof. Be
auseU is W -generi
 over V, we know thatU � (!)

!

is a non-prin
ipal

family in V[U ℄ whi
h is 
losed under re�nement and �nite 
hanges, and for X; Y 2U
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we also have X u Y 2U . It remains to show that player II has no winning strategy

in the game G(U ).

Let ~� be a W -name for a strategy for player II in the game G(

_

U ), where

_

U is the


anoni
al W -name for the W -generi
 obje
t. Let us assume that player II will follow

this strategy. We may assume that

1

W

\~� is a strategy for II in the game G(

_

U )":

If

Z

W

~�(h

~

X

0

i; h

~

t

0

;

~

Y

0

i; : : : ; h

~

X

n

i) = h

~

t

n

;

~

Y

n

i;

then for n � 1 we get

Z

W

(j

~

t

n

j = j

~

t

n�1

j+ 1 ^

~

t

�

n�1

�

~

t

�

n

�

~

Y

n

v

~

X

n

^

~

Y

n

2

_

U )

and for n = 0 we have

Z

W

(j

~

t

0

j = j~sj ^ ~s �

~

t

�

0

�

~

Y

0

v

~

X

0

v

~

X ^

~

Y

0

2

_

U ) ;

where h~s;

~

Xi is the starting point of G(

_

U ).

Now let h~s;

~

Xi (the starting point of the game G(

_

U )) be su
h that (~s;

~

X)

!

is a

W -name for a dual Ellentu
k neighborhood and let Z

0

2 (!)

!

\V be a W -
ondition

in V su
h that Z

0 W

~

X 2

_

U . Therefore, Z

0 W

\(~s;

~

X)

!

is a

_

U -dual Ellentu
k

neighborhood". By Fa
t VI.2.3 we know that the for
ing notion W adds no new reals

(and therefore no new partitions) to V. So, we �nd a Z

0

0

v

�

Z

0

and a dual Ellentu
k

neighborhood (s;X)

!

in V su
h that

Z

0

0

W

h~s;

~

Xi = h�s;

�

Xi ;

where �s and

�

X are the 
anoni
al W -names for s and X. Be
ause Z

0

0

W

�

X 2

_

U ,

we must have Z

0

0

� X, whi
h is the same as Z

0

0

v

�

X. Finally put X

0

2 (!)

!

su
h

that X

0

�

= Z

0

0

and X

0

2 (s;X)

!

. Player I plays now h

�

X

0

i. Sin
e player II follows the

strategy ~�, player II plays now ~�(h

�

X

0

i) =: h

~

t

0

;

~

Y

0

i. Again by Fa
t VI.2.3 there exists

a Z

1

v

�

X

0

and a dual Ellentu
k neighborhood (t

0

;Y

0

)

!

in V su
h that

Z

1 W

h

~

t

0

;

~

Y

0

i = h

�

t

0

;

�

Y

0

i :

And again by Z

1 W

�

Y

0

2

_

U we �nd X

1

�

= Z

1

su
h that t

�

0

� X

1

v Y

0

. Player I plays

now h

�

X

1

i.

In general, if ~�(h

~

X

0

i; h

~

t

0

;

~

Y

0

i; : : : ; h

~

X

n

i) = h

~

t

n

;

~

Y

n

i, then player I 
an play

�

X

n+1

su
h that X

n W

h

~

t

n

;

~

Y

n

i = h

�

t

n

;

�

Y

n

i and t

�

n

� X

n+1

v Y

n

. For n � m we also have

X

n

v X

m

. Let Y 2 (!)

!

be the su
h that t

n

� Y (for all n), then

Y

W

\the only

~

Y su
h that

~

t

n

�

~

Y (for all n) is in

_

U ":

Hen
e, the strategy ~� is not a winning strategy for player II and be
ause ~� was an

arbitrary strategy, player II has no winning strategy at all. a

Remark 10. A similar result is proved in [49℄ (see also [47℄).
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As a 
orollary we get that the for
ing notion P

U

, whereU is W -generi
 over V,

has pure de
ision in V[U ℄.

Corollary VI.5.2. LetU be W -generi
 over V. Then the for
ing notion P

U

has

pure de
ision in V[U ℄.

Proof. This follows from Theorem VI.4.3 and Theorem VI.5.1. a

Corollary VI.5.2 follows also from the fa
ts that the dual Mathias for
ing has pure

de
ision (
f. [11℄) and that it 
an be written as a two step iteration as in se
tion 2.

Remark 11. If U is U-generi
 over V, then P

U

has pure de
ision in V[U ℄ (
f. [49℄).

6. More properties of M

[

Let P be a notion of for
ing in the model V. We say that V is �

1

n

-P-absolute if

for every �

1

n

-senten
es � with parameters in V the following holds for any G whi
h

is P-generi
 over V:

V j= � if and only if V[G℄ j= � :

Now we will show that if V is �

1

4

-M

[

-absolute, then !

V

1

is ina

essible in L. For

this we �rst will translate the dual Mathias for
ing in a tree for
ing notion.

If s 2 (N), then s is a partition of some natural number n 2 ! and therefore s is

a �nite set of �nite sets of natural numbers. Let t be a �nite set of natural numbers,

then ℄t is su
h that for all k 2 ! we have div(℄t; 2

k

) is odd , k 2 s. Remember that

div(n;m) := maxfk 2 ! : k �m � ng. Now, let ℄s be su
h that for all k 2 !:

div(℄s; 2

k

) is odd , k = ℄t for some t 2 s :

In fa
t, ℄s is de�ned for any �nite set of �nite sets of natural numbers. If s 2 (N),

then jsj denotes the 
ardinality of s, whi
h is the number of blo
ks of s.

For s 2 (N) with jsj = k let �s be the �nite sequen
e hn

1

; : : : ; n

k

i where n

i

:= ℄s

i

and s

i

2 (N) is su
h that js

i

j = i and s

�

i

� s

�

.

Now let p = (s;X)

!

be an M

[

-
ondition. Without loss of generality we may

assume that s

�

v X. The tree T

p

� !

<!

is de�ned as follows.

� 2 T

p

, 9t 2 (N)

�

(t

�

� s

�

_ s � t) ^ t

�

v X ^ � =

�

t

�

:

Fa
t VI.6.1. Let p; q be two M

[

-
onditions. Then T

p

is a subtree of T

q

if and only if

p � q.

Finally let T

M

[

:= fT

p

: p 2 M

[

g; then T

M

[

is a set of trees. We stipulate that

T

p

� T

q

if T

p

is a subtree of T

q

. Then (by Fa
t VI.6.1) for
ing with T

M

[

:= hT

M

[

;�i

is the same as for
ing with M

[

.

Now we will give the de�nition of a �exible for
ing notion P. But �rst we have to

give some other de�nitions.

A set T � !

<!

is 
alled a Laver-tree if

T is a tree and 9� 2 T 8� 2 T

�

� � � _ (� � � ^ jfn : �

_

n 2 Tgj = !)

�

:
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We 
all � the stem of T . For � 2 T we let su



T

(�) := fn : �

_

n 2 Tg, the

su

essors of � in T , and T

%

:= f� 2 T : � � % ^ % � �g.

For a Laver-tree T , we say A � T is a front if � 6= � in A implies � 6� � and for

all f 2 [T ℄ there is an n 2 ! su
h that f j

n

2 A.

The meaning of p � [[�℄℄ and p \ [[�℄℄ are U

p

� [[�℄℄ and U

p

\ [[�℄℄, respe
tively.

(i) We say a for
ing notion P is Laver-like if there is a P-name ~r for a dominating

real su
h that

(i) the 
omplete Boolean algebra generated by the family

�

[[~r(i) = n℄℄ : i; n 2 !

	

equals r.o.(P), and

(ii) for ea
h 
ondition p 2 P there exists a Laver-tree T � !

<!

so that for all

� 2 T we have:

p(T

�

) :=

Y

n2!

X

�2T

�

�

p \ [[~rj

lg(�)

= � ℄℄ : lg(�) = n

	

2 r.o.(P) n f0g :

We express this by saying p(T ) 6= ;, where p(T ) := p(T

stem(T )

).

(ii) If ~r is a P-name that witnesses that P is Laver-like, we say that P has strong

fusion if for 
ountably many open dense sets D

n

� P and for p 2 P, there is a

Laver-tree T su
h that p(T ) 6= ; and for ea
h n the set

�

� 2 T : p(T ) \ [[~rj

lg(�)

= �℄℄ 2 D

n

	


ontains a front.

(iii) A Laver-like P is 
losed under �nite 
hanges if given p 2 P and Laver trees

T and T

0

so that for all � 2 T

0

, if p(T ) 6= ; then jsu



T

(�) n su



T

0

(�)j < !, then

p(T

0

) 6= ;, too.

We 
all a for
ing notion P �exible, if P is Laver-like, has strong fusion and is


losed under �nite 
hanges.

With this de�nition we 
an show � as a further symmetry between the for
ing

notions M and M

[

� that dual Mathias for
ing M

[

is �exible.

Lemma VI.6.2. The dual Mathias for
ing M

[

is �exible.

Proof. Sin
e M

[

� T

M

[

, it is enough to prove that the for
ing notion T

M

[

is �exible.

Let ~r be the 
anoni
al T

M

[

-name for the T

M

[

-generi
 obje
t. By the de�nition of the

fun
tion �℄� and the 
onstru
tion of T

M

[

, ~r is a name for a dominating real. The rest

of the proof is similar to the proof that Mathias for
ing is �exible, whi
h is given in

[25℄. a

Let W be a submodel of V. If all �

1

n

-sets in V with parameters in V \W

have the Ramsey property R or the dual Ramsey property R

[

, then we write V j=

�

1

n

(R)

W

and V j= �

1

n

(R

[

)

W

, respe
tively. If V =W, then we omit the index W.

The notations for �

1

n

-sets and �

1

n

-sets are similar. Further, B stands for the Baire

property and L stands for Lebesgue measurability.

Now we 
an prove the following
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Theorem VI.6.3. If V is �

1

4

-M

[

-absolute, then !

V

1

is ina

essible in L.

Proof. To prove the 
orresponding result for Mathias for
ing (
f. [25℄), one uses

only that M is �exible and that, if V is �

1

4

-M -absolute, then V j= �

1

2

(R), whi
h

is the same as �

1

3

-M -absoluteness (
f. [25, Theorem 4.1℄). Therefore, it is enough to

prove that �

1

3

-M

[

-absoluteness implies �

1

3

-M -absoluteness. It follows immediately

from Fa
t VI.2.6 that V � V

M

� V

M

[

, and sin
e �

1

3

-formulas are upwards absolute,

this 
ompletes the proof. a

7. Iteration of dual Mathias for
ing

In this se
tion we will build two models in whi
h every �

1

2

-set is dual Ramsey. In

the �rst model 
 = !

1

and in the se
ond model 
 = !

2

. With the result that dual

Mathias for
ing has the Laver property we further 
an show that �

1

2

(R

[

) implies

neither �

1

2

(L) nor �

1

2

(B), but �rst we give a result similar to Theorem 1.15 of [39℄.

Lemma VI.7.1. LetU be W -generi
 over V. If X

G

is P

U

-generi
 over V[U ℄, then

V[U ℄[X

G

℄ j= �

1

2

(R

[

)

V

.

Proof. Let

_

X

G

be the 
anoni
al name for the P

U

-generi
 obje
t X

G

over V[U ℄ and

let '(Y ) be a �

1

2

-formula with parameters in V. By Theorem VI.5.1 and Corol-

lary VI.5.2, the for
ing notion P

U

has pure de
ision. So, there exists a P

U

-
ondition

p 2 V[U ℄ with empty stem, or in other words, there is a p 2 U so that V[U ℄j=

\p

P

U

'(

_

X

G

)" or V[U ℄j= \p

P

U

:'(

_

X

G

)". Assume the former 
ase holds. Be-


ause X

G

v

�

q for all q 2 U , there is an f 2 [!℄

<!

su
h that X

G

u ffg v p.

By Theorem VI.5.1 and Theorem VI.4.4 we know that if X is P

U

-generi
 over V[U ℄

and X

0

2 (X)

!

\ V[U ℄[X

G

℄, then X

0

is also P

U

-generi
 over V[U ℄. Hen
e, every

X

0

G

v X

G

u ffg v p is P

U

-generi
 over V[U ℄ and therefore V[U ℄[X

0

G

℄ j= '(X

0

G

).

Be
ause �

1

2

-formulas are absolute we get V[U ℄[X

G

℄ j= '(X

0

G

). Thus, V[U ℄[X

G

℄ j=

9X 8Y 2 (X)

!

�

'(Y )

�

. The 
ase when V[U ℄j= \p

P

U

:'(

_

X

G

)" is similar. Hen
e,

we �nally have V[U ℄[X

G

℄ j= �

1

2

(R

[

)

V

. a

Remark 12. The proof of the analogous result 
an be found in [39℄.

Be
ause Gödel's 
onstru
tible universe L has a �

1

2

-well-ordering of the reals, L

is neither a model for �

1

2

(R

[

) nor a model for �

1

2

(R). But we 
an build a model in

whi
h 
 = !

1

and all �

1

2

-sets are dual Ramsey.

Theorem VI.7.2. After an !

1

-iteration of dual Mathias for
ing with 
ountable sup-

port starting from L, we get a model in whi
h every �

1

2

-set of reals is dual Ramsey

and 
 = !

1

.

Proof. The proof follows immediately from Fa
t VI.2.5, Lemma VI.7.1 and the fa
t

that dual Mathias for
ing is proper. a

Remark 13. The proof of a similar result 
an be found in [38℄.
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We 
an build also a model in whi
h all �

1

2

-sets are dual Ramsey and in whi
h


 = !

2

.

Theorem VI.7.3. After an !

2

-iteration of dual Mathias for
ing with 
ountable sup-

port starting from L, we get a model in whi
h every �

1

2

-set of reals is dual Ramsey

and 
 = !

2

.

Proof. In Chapter V (see also [22℄) it was shown that an !

2

-iteration of dual Mathias

for
ing with 
ountable support starting from L yields a model in whi
h 
 = !

2

and the union of fewer than !

2


ompletely dual Ramsey sets is 
ompletely dual

Ramsey. Now be
ause ea
h �

1

2

-set 
an be written as the union of !

1

analyti
 sets,

and be
ause analyti
 sets are 
ompletely dual Ramsey, all �

1

2

-sets are dual Ramsey

in that model. a

Remark 14. A similar result is true be
ause an !

2

-iteration of Mathias for
ing with


ountable support starting from L yields a model in whi
h h = !

2

(
f. [63℄), and h 
an

be 
onsidered as the additivity of the ideal of 
ompletely Ramsey null sets (
f. [54℄).

For the next result we have to give �rst the de�nition of the Laver property: A


one

�

A is a sequen
e hA

k

: k 2 !i of �nite subsets of ! with jA

k

j < 2

k

. We say

that

�

A 
overs a fun
tion f 2 !

!

if for all positive k 2 ! we have f(k) 2 A

k

. For a

fun
tion H 2

!

!, we write �H for the set

�

f 2 !

!

: 8k > 0

�

f(k) < H(k)

�	

. Now,

a for
ing notion P is said to have the Laver property i� for every H 2

!

! in V,

1

P

\8f 2 �H 9

�

A 2 V(

�

A is a 
one 
overing f)":

Like Mathias for
ing, dual Mathias for
ing has the Laver property and therefore

adds no Cohen reals (
f. [18℄ or [3℄).

Lemma VI.7.4. The for
ing notion M

[

has the Laver property.

Proof. Given f;H 2

!

! su
h that for all k > 0, f(k) < H(k). Let hs;Xi be any

M

[

-
ondition. Be
ause M

[

has pure de
ision and f(1) < H(1), we �nd a Y

0

2 (s;X)

!

su
h that hs; Y

0

i de
ides f(1). Set s

0

:= s. Suppose we have already 
onstru
ted

s

n

2 (N) and Y

n

2 (!)

!

su
h that s � s

n

, js

n

j = jsj + n and (s

n

;Y

n

)

!

is a dual

Ellentu
k neighborhood. Choose Y

n+1

2 (s

n

;Y

n

)

!

su
h that for all h 2 (N) with

s � h v s

n

and dom(h) = dom(s

n

), hh; Y

n+1

i de
ides f(k) for all k < 2

n+1

. Further,

let s

n+1

2 (N) be su
h that s

n

� s

n+1

, js

n+1

j = js

n

j+1 = jsj+n+1 and s

n+1

� Y

n+1

.

Finally, let Y be the unique partition su
h that for all n 2 !, s

n

� Y . Evidently, the

M

[

-
ondition hs; Y i is stronger than the given M

[

-
ondition hs;Xi (or equal). Now,

if k; n 2 ! su
h that 2

n

� k < 2

n+1

, then let fh

j

: j � mg be an enumeration of all

s � h v s

n

with dom(h) = dom(s

n

). It is 
lear that m < 2

2

n

. Further, let

A

k

:=

�

l 2 ! : 9j � m

�

hh

j

; Y i

M

[

f(k) = l

�	

;

then jA

k

j � m < 2

2

n

, and be
ause 2

n

� k we have jA

k

j < 2

k

. If we de�ne A

0

:=

�

l 2

! : hs; Y i

M

[

f(0) = l

	

, then the M

[

-
ondition hs; Y i for
es that

�

A := hA

k

: k 2 !i

is a 
one for f . a
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Using these results we 
an prove the following

Theorem VI.7.5. �

1

2

(R

[

) implies neither �

1

2

(L) nor �

1

2

(B).

Proof. Be
ause a for
ing notion with the Laver property adds no Cohen reals and

be
ause the Laver property is preserved under 
ountable support iterations of proper

for
ings (with the Laver property), in the model 
onstru
ted in Theorem VI.7.2 no

real is Cohen over L. Therefore, in that model �

1

2

(B) fails, and be
ause �

1

2

(L)

implies �

1

2

(B) (
f. [38℄), also �

1

2

(L) must fail in that model. a

Remark 15. For the analogous result see [39℄.

8. Appendix: On the dual Ramsey property of proje
tive sets

Although the Ramsey property and the dual Ramsey property are very similar,

one 
an show that the two Ramsey properties are di�erent.

Theorem VI.8.1. Using the axiom of 
hoi
e one 
an 
onstru
t a set whi
h is Ramsey

but not dual Ramsey.

Proof. We will 
onstru
t a set R � [!℄

!

whi
h is Ramsey but not dual Ramsey.

Remember that the relation \

�

= " is an equivalen
e-relation on (!)

!

, whereX

�

= Y

if and only if there are f; g 2 [!℄

<!

su
h that X u ffg v Y and Y u fgg v X.

For X 2 (!)

!

, let fX

�

denote the equivalen
e 
lass of X. Now, 
hoose from ea
h

equivalen
e 
lass X

�

an element A

X

and for X 2 (!)

!

let

h

X

:= min

�

jf j+ jgj : f; g 2 [!℄

<!

and X u ffg v A

X

and A

X

u fgg v X

	

:

Further, de�ne a fun
tion F : (!)

!

! f0; 1g by stipulating

F (X) :=

�

1 if h

X

is odd,

0 otherwise.

Then the set fX 2 (!)

!

: F (X) = 1g is obviously not dual Ramsey and therefore,

the set R :=

�

x 2 [!℄

!

: 9X 2 (!)

!

�

x = p
(X)^ F (X) = 1

�	

is not dual Ramsey as

well.

Now, de�ne r := f&fk; k + 1g : k 2 !g, where �&� as in Se
tion 2, then 
p(r) =

�

f!g

	

62 (!)

!

and hen
e, [r℄

!

\ R = ;. So, the set R is Ramsey. a

On the other hand, for proje
tive sets one 
an show that the dual Ramsey property

is stronger than the Ramsey property.

Lemma VI.8.2. If V j= �

1

n

(R

[

), then V j= �

1

n

(R).

Proof. Given a �

1

n

-formula '(x) with parameters in V. Let  (y) be de�ned as

follows:

 (y) () 9x

�

x = Min

�


p(y)

�

^ '(x)

�

:

It is easy to see that  (y) is also a �

1

n

-formula (even with the same parameters as

'). Now, if there is an X 2 (!)

!

su
h that for all Y 2 (X)

!

,  

�

p
(Y )

�

holds, then
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for all y 2 [x℄

!

where x = Min(X), '(y) holds. The 
ase where for all Y 2 (X)

!

,

: 

�

p
(Y )

�

holds, is similar. a

In [11, Se
tion 5℄, Carlson and Simpson prove that in the Solovay model, 
on-

stru
ted by 
ollapsing an ina

essible 
ardinal to !

1

, every proje
tive set is dual

Ramsey (it is unknown whether the ina

essible 
ardinal is ne
essary for that).

Another question 
onne
ted to the dual Ramsey property of proje
tive sets is the

following. As with the standard Ramsey property we 
an ask whether an appropriate

amount of determina
y implies the dual Ramsey property. As usually with regularity

properties of sets of reals we would expe
t that Det(�

1

n

) implies the dual Ramsey

property for all �

1

n+1

sets. But a dire
t impli
ation using determina
y is not as easy

as with the more prominent regularity properties (as Lebesgue measurability and

the Baire property) sin
e the games 
onne
ted to the dual Ramsey property (the

Bana
h-Mazur games in the dual Ellentu
k topology) 
annot be played using natural

numbers.

The same problem had been en
ountered with the 
lassi
al Ramsey property and

had been solved by Leo Harrington and Alexander Ke
hris in [33℄ by making use of

the s
ale property and the periodi
ity theorems. They showed the following.

Proposition VI.8.3. If Det(�

1

2n+2

), then every �

1

2n+2

-set is Ramsey.

Using the te
hniques of Harrington and Ke
hris, Benedikt Löwe 
ould strengthen

their result and prove the following (see [26, Se
tion 6℄).

Proposition VI.8.4. If Det(�

1

2n+2

), then every �

1

2n+2

-set is dual Ramsey.



CHAPTER VII

Ramseyan Ultra�lters and Dual Mathias For
ing

In this 
hapter we investigate families of partitions whi
h are related to spe
ial


oideals, so-
alled happy families, and give a dual form of Ramsey ultra�lters in terms

of partitions. The 
ombinatorial properties of these partition-ultra�lters, whi
h we


all Ramseyan ultra�lters, are similar to those of Ramsey ultra�lters. For example

it will be shown that dual Mathias for
ing restri
ted to a Ramseyan ultra�lter has

the same features as Mathias for
ing restri
ted to a Ramsey ultra�lter. Further we

introdu
e an ordering on the set of partition-�lters and 
onsider the dual form of

some 
ardinal 
hara
teristi
s of the 
ontinuum.

1. Introdu
tion

The Stone-�e
h 
ompa
ti�
ation �! of the natural numbers, or equivalently, the

ultra�lters over !, is a well-studied spa
e (
f. e.g. [66℄ and [14℄) whi
h has a lot of

interesting topologi
al and 
ombinatorial features (
f. [34℄ and [64℄). In the late

1960's, a partial ordering on the non-prin
ipal ultra�lters �!n!, the so-
alled Rudin-

Keisler ordering, was established and �small� points with respe
t to this ordering

were investigated rigorously (
f. [8℄, [5℄, [6℄ and [45℄). The minimal points have a

ni
e 
ombinatorial 
hara
terization whi
h is related to Ramsey's Theorem (
f. [57,

Theorem A℄) and so, the ultra�lters whi
h are minimal with respe
t to the Rudin-

Keisler ordering are also 
alled Ramsey ultra�lters (for further 
hara
terizations of

Ramsey ultra�lters see [3, Chapter 4.5℄). Families, not ne
essarily �lters, having sim-

ilar 
ombinatorial properties as Ramsey ultra�lters, are the so-
alled happy families

(
f. [49℄), whi
h are very important in the investigation of Mathias for
ing (
f. [49℄).

In the sequel we will introdu
e an ordering on the set of partition-�lters whi
h

is similar to the Rudin-Keisler ordering on �! n ! and introdu
e a partition form of

Ramsey ultra�lters, so-
alled Ramseyan ultra�lters. Further we will investigate dual

Mathias for
ing restri
ted to Ramseyan ultra�lters and 
onsider the dual form of some


ardinal 
hara
teristi
s of the 
ontinuum whi
h are related to Ramseyan ultra�lters.

2. An ordering on the set of partition-�lters

Following Chapter III, let PF

�

(!)

�!

�

denote the set of all partition-�lters. We

de�ne a partial ordering on PF

�

(!)

�!

�

whi
h has some similarities with the Rudin-

Keisler ordering on �! n !.

61
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To keep the notation short, for H � P

�

P(!)

�

and a fun
tion f : ! ! ! we

de�ne

f

�1

(H ) := ff

�1

(X) : X 2 H g ;

where for X 2 H we de�ne

f

�1

(X) := ff

�1

(b) : b 2 Xg ;

where for b � !, f

�1

(b) := fn : f(n) 2 bg.

Let f : ! � ! be any surje
tion from ! onto ! and let X 2 (!)

�!

be any

partition. Then f(X) denotes the �nest partition su
h that whenever n and m lie in

the same blo
k of X, then f(n) and f(m) lie in the same blo
k of f(X).

For any partition-�lter F 2 PF

�

(!)

�!

�

de�ne

f(F ) :=

�

Y 2 (!)

�!

: 9X 2 F

�

f(X) v Y

�	

:

We de�ne the ordering �.� on PF

�

(!)

�!

�

as follows:

F .G if and only if F = f(G ) for some surje
tion f : ! � ! :

Sin
e the identity map is a surje
tion and the 
omposition of two surje
tions is again

a surje
tion, the partial ordering �.� is re�exive and transitive.

Fa
t VII.2.0.1. Let F ;G 2 PF

�

(!)

�!

�

and assume f(G ) = F for some surje
tion

f : ! � !. Then G � f

�1

(F ) and f

�1

(F ) 2 PF

�

(!)

�!

�

.

Proof. Let H = f

�1

(F ), where f : ! � ! is su
h that f(G ) = F . Sin
e F is

a partition-�lter and f is a fun
tion, for any X

1

; X

2

2 F we have X

1

uX

2

2 F and

f

�1

(X

1

uX

2

) = f

�1

(X

1

) u f

�1

(X

2

), and therefore, H is a partition-�lter. Further,

for any Y 2G we get f(Y ) 2 F and f

�1

(f(Y )) v Y , whi
h implies G � H . a

The ordering �.� indu
es in a natural way an equivalen
e relation �'� on the set of

partition-�lters PF

�

(!)

�!

�

:

F 'G if and only if F .G and G .F :

So, the ordering �.� indu
es a partial ordering of the set of equivalen
e 
lasses of

partition-�lters. Con
erning partition-ultra�lters, we get the following.

Fa
t VII.2.0.2. LetU ;V 2 PUF

�

(!)

�!

�

and assume thatU is prin
ipal or 
ontains

a partition, all of whose blo
ks are in�nite. IfU 'V , then there is a permutation

h of ! su
h that h(U ) =V .

Proof. Be
auseU .V andV .U , there are surje
tions f and g from ! onto !

su
h thatV = f(U ) andU = g(V ), and be
auseU andV are both partition-

ultra�lters, by Fa
t VII.2.0.1 we getU = f

�1

(V ) andV = g

�1

(U ).

First assume that U is prin
ipal and therefore 
ontains a 2-blo
k partition X =

fb

0

; b

1

g. Be
ause g

�1

(X) 2V , the partition-ultra�lterV is also prin
ipal and we

get

V =

�

Y 2 (!)

�!

: g

�1

(X) v Y

	

;
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where

g

�1

(X) =

�

g

�1

(b

0

); g

�1

(b

1

)

	

=: f


0

; 


1

g :

Now, be
auseU = f

�1

(V ), we must have f

�1

�

g

�1

(X)

�

= X, whi
h implies that

f

�1

�

g

�1

(b

i

)

�

2 fb

0

; b

1

g (for i 2 f0; 1g). If one of the blo
ks of X is �nite, say b

0

, then

f j

b

0

as well as gj

f(b

0

)

must be one-to-one, and therefore, b

0

has the same 
ardinality

as 


0

. Hen
e, no matter if one of the blo
ks of X is �nite or not, we 
an de�ne a

permutation h of ! su
h that h(b

0

) = 


0

and h(b

1

) = 


1

, whi
h implies h(U ) =V .

Now assume thatU 
ontains a partition X = fb

i

: i 2 !g, all of whose blo
ks b

i

are

in�nite. Be
ause g is a surje
tion, g

�1

(X), whi
h is a member ofV , is a partition, all

of whose blo
ks are in�nite. Let h be a permutation of ! su
h that h(b

i

) = g

�1

(b

i

).

Take any Y 2V with Y v g

�1

(X). By the de�nition of h we have h

�1

(Y ) = g(Y )

and sin
eU = g(V ) there is a Z 2U su
h that g(Y ) = Z, whi
h implies h(Z) = Y ,

hen
e, h(U ) =V . a

The following proposition shows that �.� is dire
ted upward (for a similar result


on
erning the Rudin-Keisler ordering see [5, p. 147℄).

Fa
t VII.2.0.3. For any partition-�ltersD ;E 2 PF

�

(!)

�!

�

, there is a partition-�lter

F 2 PF

�

(!)

�!

�

, su
h that D .F and E .F .

Proof. Let %

1

and %

2

be two fun
tions from ! into ! de�ned by %

1

(n) := 2n and

%

2

(n) := 2n+1. For a partition X and i 2 f0; 1g, let %

i

(X) := f%

i

(b) : b 2 Xg, where

%

i

(b) := f%

i

(n) : n 2 bg. Now, take any two partition-�lters D ;E 2 PF

�

(!)

�!

�

and

de�ne F by

F :=

�

%

1

(X) [ %

2

(Y ) : X 2 D ^ Y 2 E

	

:

Clearly, this de�nes a partition-�lter. De�ne two surje
tions f and g from ! onto !

as follows:

f(n) =

(

n

2

if n is even,

0 otherwise.

g(n) =

(

n�1

2

if n is odd,

0 otherwise.

It is easy to verify that f(F ) = D and g(F ) = E , whi
h implies D .F and

E .F . a

3. Ramseyan ultra�lters

3.1. Coloring segments. For the reader's 
onvenien
e, let us re
all some de�ni-

tions: For n 2 !, (!)

n�

denotes the set of all u 2 (N) su
h that juj = n. Further, for

n 2 ! and X 2 (!)

!

let

(X)

n�

:=

�

u 2 (N) : juj = n ^ u

�

v X

	

;
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and if s 2 (N) is su
h that jsj � n and s v X, let

(s;X)

n�

:=

�

u 2 (N) : juj = n ^ s � u ^ u

�

v X

	

:

Let us state again Theorem IV.2.1:

Proposition VII.3.1.1. For any 
oloring of (!)

(n+1)�

with r+1 
olors, where r; n 2 !,

and for any Z 2 (!)

!

, there is an in�nite partition X 2 (Z)

!

su
h that (X)

(n+1)�

is

mono
hromati
.

As we have seen in Chapter IV, this 
ombinatorial result �whi
h 
an also be de-

rived from [11, Theorem 1.2℄ � is the partition form of Ramsey's Theorem.

We say that a surje
tion f : ! � ! respe
ts the partition X 2 (!)

!

, if we

have f

�1

(f(X)) = X, otherwise, we say that it disregards the partition X. If

f

�1

(f(X)) = f!g, then we say that f 
ompletely disregards the partition X.

Lemma VII.3.1.2. For any surje
tion f : ! � ! and for any Z 2 (!)

!

, there is an

X 2 (Z)

!

su
h that f either respe
ts or 
ompletely disregards the partition X.

Proof. For a surje
tion f : ! � !, de�ne the 
oloring � : (!)

2�

! f0; 1g as follows.

�(s) := 0 if and only if f(s(0)) \ f(s(1)) = ;. By Proposition VII.3.1.1, there is

a partition X 2 (Z)

!

su
h that (X)

2�

is mono
hromati
 with respe
t to �, whi
h

implies that f respe
ts X in 
ase of �j

(X)

2�

= f0g, and f 
ompletely disregards X is


ase of �j

(X)

2�

= f1g. a

In the sequel we will use a slightly stronger version of Proposition VII.3.1.1, whi
h is

given in the following two 
orollaries.

Corollary VII.3.1.3. For any 
oloring of (!)

(n+k+1)�

with r+1 
olors, where r; n; k 2

!, and for any dual Ellentu
k neighborhood (s; Y )

!

, where jsj = n + 1, there is an

in�nite partition X 2 (s; Y )

!

su
h that (s;X)

(n+k+1)�

is mono
hromati
.

Proof. Let (s; Y )

!

be any dual Ellentu
k neighborhood, with jsj = n + 1 � 1. Set

Y

0

:= suY , R :=

S

i<n+1

Y

0

(i) and Y

R

:= Y

0

nfY

0

(i) : i < n+1g, and take any order-

preserving bije
tion f : ! nR! !. Then Z := f(Y

R

) is an in�nite partition of !. For

u 2 (Z)

n+k+1�

we de�ne �(u) 2 (s; Y )

n+k+1�

as follows. dom(�(u)) := f

�1

(dom(u))

and for i < n+ k + 1,

�(u)(i) :=

(

�

Y

0

(i) \ dom(u)

�

[ f

�1

(u(i)) for i < n+ 1,

f

�1

(u(i)) otherwise.

Let � : (!)

(n+k+1)�

! r + 1 be any 
oloring. De�ne � : (!)

(n+k+1)�

! r + 1 by

stipulating �(u) := �(�(u)). By Proposition VII.3.1.1 there is an in�nite partition

X

0

2 (Z)

!

su
h that (X

0

)

n+k+1�

is mono
hromati
 with respe
t to the 
oloring � .

Now let X 2 (!)

!

be su
h that

X(i) :=

(

Y

0

(i) [ f

�1

(X

0

(i)) for i < n+ 1

f

�1

(X

0

(i)) otherwise.
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Then, by de�nition of � and X

0

, X 2 (s; Y )

!

and (s;X)

(n+k+1)�

is mono
hromati


with respe
t to �. a

Corollary VII.3.1.4. For any 
oloring of

S

n2!

(!)

(n+k+1)�

with r + 1 
olors, where

r; k 2 !, and for any Z 2 (!)

!

, there is an in�nite partition X 2 (Z)

!

su
h that for

any n 2 ! and for any s � X with jsj = n+ 1, (s;X)

(n+k+1)�

is mono
hromati
.

Proof. Using Corollary VII.3.1.3 repeatedly, we 
an 
onstru
t the partition X 2

(!)

!

straight forward by indu
tion on n. a

We say that a family C � (!)

!

has the segment-
oloring-property, if for every


oloring of

S

n2!

(!)

(n+k+1)�

with r + 1 
olors, where r; k 2 !, and for any Z 2 C ,

there is an in�nite partition X 2 (Z)

!

\ C , su
h that for any n 2 ! and for any

s � X with jsj = n+ 1, (s;X)

(n+k+1)�

is mono
hromati
.

If a partition-ultra�lterU 2 PUF

�

(!)

!

�

has the segment-
oloring-property, then

it is 
alled a Ramseyan ultra�lter.

The next lemma shows that every partition-�lter F 2 PF

�

(!)

!

�

whi
h has the

segment-
oloring-property is a partition-ultra�lter. A similar result we have for Ram-

sey �lters over !, sin
e every Ramsey �lter is an ultra�lter.

Lemma VII.3.1.5. If F � (!)

!

is a partition-�lter whi
h has the segment-
oloring-

property, then F � (!)

!

is a partition-ultra�lter.

Proof. Take any Z 2 (!)

!

su
h that for any X 2 F , Z u X 2 (!)

!

. De�ne the


oloring � : (!)

2�

! f0; 1g by stipulating �(u) = 0 if and only if u 2 (Z)

2�

. Be
ause

F has the segment-
oloring-property, there is a partition X 2 F su
h that (X)

2�

is

mono
hromati
 with respe
t to �, whi
h implies that X v Z in 
ase of �j

(X)

2�

= f0g,

and X u Z = f!g in 
ase of �j

(X)

2�

= f1g. By the 
hoi
e of Z we must have X v Z,

thus, sin
e F is a partition-�lter, Z 2 F . a

The following lemma gives a relation between Ramseyan and Ramsey ultra�lters.

Lemma VII.3.1.6. IfU is a Ramseyan ultra�lter, then fMin(X) n f0g : X 2U g is a

Ramsey ultra�lter over ! (to be pedanti
, one should say �over ! n f0g�).

Proof. Let � : [!℄

n

! r be any 
oloring of the n-element subsets of ! with r 
olors,

where n and r are positive natural numbers. De�ne � : (!)

n�

! r by stipulating

�(s) := �(Min(s

�

) n f0g). Take X 2 U su
h that (X)

n�

is mono
hromati
 with

respe
t to �, then, by the de�nition of �, the set [Min(X) n f0g℄

n

is mono
hromati


with respe
t to � . a

Ramsey ultra�lters over ! build the minimal points of the Rudin-Keisler ordering on

�! n!. This fa
t 
an also be expressed by saying that a non-prin
ipal ultra�lter U is

a Ramsey ultra�lter if and only if any fun
tion g : ! ! ! is either 
onstant or one-

to-one on some set of U . By Lemma VII.3.1.2, we get a similar result for Ramseyan

ultra�lters with respe
t to the ordering �.�.
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Theorem VII.3.1.7. IfU is a Ramseyan ultra�lter, then for any surje
tion f : ! � !

there is an X 2U su
h that f either respe
ts or 
ompletely disregards X.

Proof. The proof is the same as the proof of Lemma VII.3.1.2, but restri
ted to the

partition-ultra�lterU . a

3.2. On the existen
e of Ramseyan ultra�lters. As we have seen above, every

Ramseyan ultra�lter indu
es a Ramsey ultra�lter over !. It is not 
lear if the 
on-

verse holds as well. However, Ramseyan ultra�lters are always for
eable: Let W be

the for
ing notion 
onsisting of in�nite partitions, stipulating X � Y , X v

�

Y .

W is the natural dualization of the for
ing notion U = hP(!)=�n;�

�

i, whi
h was

de�ned in Chapter VI, and it is not hard to see that if G is W -generi
 over V, then

G is a Ramseyan ultra�lter in V[G ℄. Sin
e W is �-
losed, as a 
onsequen
e we

get that Ramseyan ultra�lters exist if we assume CH. On the other hand we know

by Lemma VII.3.1.6 that Ramseyan ultra�lters 
annot exist if there are no Ramsey

ultra�lters. Kenneth Kunen proved (
f. [36, Theorem 91℄) that it is 
onsistent with

ZFC that Ramsey ultra�lters don't exist. We like to mention that Saharon Shelah

showed that even p-points, whi
h are weaker ultra�lters than Ramsey ultra�lters,

may not exist (see [58, VI x4℄). He also proved that it is possible that � up to iso-

morphisms � there exists a unique Ramsey ultra�lter (see [58, VI x5℄).

In the following, 
 denotes the 
ardinality of the 
ontinuum and 2




denotes the


ardinality of its power-set.

Andreas Blass proved that MA implies the existen
e of 2




Ramsey ultra�lters (see

[5, Theorem 2℄). He mentions in this paper that with CH in pla
e of MA, this result

is due to Keisler and with 1 in pla
e of 2




, it is due to Booth (
f. [8, Theorem 4.14℄).

Further he mentions that his proof is essentially the union of Keisler's and Booth's

proof. However, Blass' proof uses at a 
ru
ial point that MA implies that the tower

number is equal to 
. Su
h a result we don't have for partitions, be
ause Timothy

Carlson proved that the dual-tower number is equal to !

1

(see [46, Proposition 4.3℄).

So, 
on
erning the existen
e of Ramseyan ultra�lters under MA, we 
annot simply

translate the proof of Blass, and it seems that MA and sets of partitions are quite

unrelated. But as mentioned above, if one assumes CH, then Ramseyan ultra�lters

exist. Moreover, with respe
t to the equivalen
e relation �'� (de�ned in Se
tion 2) we

get the following (for a similar result w.r.t. the Rudin-Keisler ordering see [5, p. 149℄).

Theorem VII.3.2.1. CH implies the existen
e of 2




pairwise non-equivalent Ramseyan

ultra�lters.

Proof. Assume V j= CH. Let � be large enough su
h that P((!)

!

) 2 H(�), i.e., the

power set of (!)

!

(inV) is hereditarily of size < �. LetN be an elementary submodel

of hH(�);2i with jNj = !

1

, 
ontaining all reals (or equivalently, all partitions) of V.

We 
onsider the for
ing notion W in the model N. Sin
e jNj = !

1

, in V there

is an enumeration fD

�

� (!)

!

: � < !

1

g of all dense sets of W whi
h lie in N.

For any Z 2 (!)

!

\ V, let Y

�;0

Z

; Y

�;1

Z

2 D

�

be su
h that Y

�;0

Z

v

�

Z, Y

�;1

Z

v

�

Z
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and Y

�;0

Z

u Y

�;1

Z

=2 (!)

!

(sin
e D

�

is dense, su
h partitions exist). For any fun
tion

� : 
 ! f0; 1g we 
an 
onstru
t a set H

�

= fX

�

: � < !

1

g in V su
h that for

all � < � < !

1

we have X

�

v

�

Y

�;�(�)

X

�

. By 
onstru
tion, for any fun
tion �, the

set G

�

:= fX 2 (!)

!

: X

�

v

�

X for some X

�

2 H

�

g is W -generi
 over N, thus, a

Ramseyan ultra�lter in N[G

�

℄, and sin
e W is �-
losed and therefore adds no new

reals, G

�

is also a Ramseyan ultra�lter in V. Furthermore, if � 6= �

0

, then the two

Ramseyan ultra�lters G

�

and G

�

0

are di�erent (
onsider the two partitionsX

�+1

2 H

�

andX

0

�+1

2 H

�

0

, where �(�) 6= �

0

(�)). Hen
e, inV, there are 2




Ramseyan ultra�lters.

Be
ause there are only 
 surje
tions from ! onto !, no equivalen
e 
lass (w.r.t. �'�)


an 
ontain more than 
 Ramseyan ultra�lters, so, in V, there must be 2




pairwise

non-equivalent Ramseyan ultra�lters. a

4. The happy families' relatives

4.1. Relatively happy families. As we will see below, the partition-families whi
h

have the segment-
oloring-property are related to spe
ial 
oideals, so-
alled happy

families, whi
h are introdu
ed and rigorously investigated by Adrian Mathias in [49℄.

So, partition-families with the segment-
oloring-property 
an be 
onsidered as �rela-

tives of happy families�.

Let us �rst 
onsider the de�nition of Mathias' happy families. Re
all that [!℄

!

is

the set of all in�nite subsets of !, and that [!℄

<!

is the set of all �nite subsets of !.

A set I � P(!) is a free ideal, if I is an ideal whi
h 
ontains the Fré
het ideal

[!℄

<!

. A set F � P(!) is a free �lter, if fy : ! n y 2 Fg is an ideal 
ontaining the

Fré
het ideal. For a 2 [!℄

<!

, let a

�

:= maxfn + 1 : n 2 ag, in parti
ular, 0

�

= 0.

For x; y 2 P(!) we write y �

�

x if (y n x) 2 [!℄

<!

. For a set B � P(!), let �l(B)

be the free �lter generated by B, so, x 2 �l(B) if and only if there is a �nite set

y

0

; : : : ; y

n

2 B su
h that (y

0

\ : : : \ y

n

) �

�

x.

A set x � ! is said to diagonalize the family fx

a

: a 2 [!℄

<!

g, if x � x

0

and for

all a 2 [!℄

<!

, if max(a) 2 x, then (x n a

�

) � x

a

.

The family A � P(!) is happy, if P(!) n A is a free ideal and whenever �lfx

a

:

a 2 [!℄

<!

g � A, there is an x 2 A whi
h diagonalizes fx

a

: a 2 [!℄

<!

g.

In terms of happy families one 
an de�ne Ramsey ultra�lters as follows: A Ramsey

ultra�lter is an ultra�lter that is also a happy family.

Now we turn ba
k to partitions. The Fré
het ideal 
orresponds to the set of �nite

partitions, and therefore, the notion of a free �lter 
orresponds to partition-�lters


ontaining only in�nite partitions, hen
e, to partition-�lters F � (!)

!

. For a set

B � (!)

!

, let �l(B ) be the partition-�lter generated byB , so, X 2 �l(B ) if and

only if there is a �nite set of partitions Y

0

; : : : ; Y

n

2B su
h that (Y

0

u : : :uY

n

) v

�

X.

A partition X is said to diagonalize the family fX

s

: s 2 (N)g, if X v X

;

and

for all s 2 (N), if s

�

� X, then

�

S

s

�

uX

�

v X

s

.

The family A � (!)

!

is relatively happy, if whenever �lfX

s

: s 2 (N)g �

A , there is an X 2 A whi
h diagonalizes fX

s

: s 2 (N)g. An example of a
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relatively happy family is (!)

!

, the set of all in�nite partitions (
ompare with [49,

Example 0.2℄). Another example of a mu
h smaller relatively happy family is given

in the following theorem (
ompare with [49, p. 63℄).

Theorem VII.4.1.1. Every Ramseyan ultra�lter is relatively happy.

Proof. Let U � (!)

!

be a partition-ultra�lter whi
h has the segment-
oloring-

property and let fX

s

: s 2 (N)g �U be any family. Sin
eU is a partition-�lter, we

obviously have �lfX

s

: s 2 (N)g �U . For t 2 (N) with jtj � 2, let s

t

be su
h that

s

�

t

� t and js

t

j = jtj�2. De�ne the 
oloring � :

S

n2!

(!)

(n+2)�

! f0; 1g by stipulating

�(t) :=

(

0 if

�

S

s

�

t

u t

�

�

v X

s

t

,

1 otherwise.

Let X 2 (X

;

)

!

\U be su
h that for any n 2 ! and for any s

�

� X with jsj =

n, (s

�

; X)

(n+2)�

is mono
hromati
 with respe
t to �. Take any s

�

� X. Sin
e

(s

�

; X)

(jsj+2)�

is mono
hromati
 with respe
t to �, ea
h t

�

v X with s

�

� t and

jtj = jsj+2 gets the same 
olor. Hen
e, for all su
h t's we have either

�

S

s

�

ut

�

�

v X

s

,

whi
h implies X v

�

X

s

, or

�

S

s

�

u t

�

�

6v X

s

, whi
h implies X u X

s

=2 (!)

!

. The

latter is impossible, sin
e it 
ontradi
ts the assumption thatU is a partition-�lter.

So, we are always in the former 
ase, whi
h 
ompletes the proof. a

4.2. A game 
hara
terization. There is a 
hara
terization of happy ultra�lters

over !, i.e., of Ramsey ultra�lters, in terms of games (
f. [3, Theorem 4.5.3℄). A

similar 
hara
terization we get for relatively happy partition-ultra�lter.

LetU be a partition-ultra�lter. De�ne a game G(U ) played by players I and II

as follows:

I X

1

X

2

X

3

: : :

II s

1

s

2

s

3

Player I on the n-th move plays a partition X

n

2 U . Player II responds with a

segment s

n

2 (N) su
h that js

n

j = n, s

�

n�1

� s

n

and for all m < n,

�

S

s

�

m

u s

�

n

�

v

X

m+1

, where s

0

:= ;. Player I wins if and only if the unique partition X with s

n

� X

(for all n) is not inU .

Theorem VII.4.2.1. Let U 2 PUF

�

(!)

!

�

, then player I has a winning strategy in

G(U ) if and only ifU is not relatively happy.

Proof. Assume �rst that the partition-ultra�lterU is relatively happy and that

fX

s

: s 2 (N)g is a strategy for player I. This means, player I begins with X

;

and

then, if s

n

is the n-th move of player II, player I plays X

s

n

. Be
auseU is relatively

happy, there is a partition X 2U whi
h diagonalizes the family fX

s

: s 2 (N)g,

in parti
ular, X v X

;

. Now, by the de�nition of X and by the rules of the game

G(U ), player II 
an play the segments of X. More pre
isely, player II plays on the
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n-th move the segment s

n

, so that js

n

j = n and s

�

n

� X. Sin
e X 2U , the strategy

fX

s

: s 2 (N)g was not a winning strategy for player I.

Now assume that the strategy � = fX

s

: s 2 (N)g is not a winning strategy

for player I. Consider the game where player I is playing a

ording to the strategy

�. In this game, player II 
an play segments s

n

su
h that the unique partition X

with s

n

� X (for all n) is inU . We have to show that X diagonalizes the family

fX

s

: s 2 (N)g. For n 2 !, let s

n

2 (N) be su
h that s

�

n

� X and js

n

j = n. Fixm 2 !,

then, by the rules of the game, for any n > m we have

�

S

s

�

m

u s

�

n

�

v X

m+1

, whi
h

implies

�

S

s

�

m

u X

�

v X

m+1

. Sin
e player I follows the strategy �, X

m+1

= X

s

m

,

and be
ause m was arbitrary, for all m 2 ! we get

�

S

s

�

m

u X

�

v X

s

m

. Hen
e, X

diagonalizes the family fX

s

: s 2 (N)g. a

5. The 
ombinatori
s of dual Mathias for
ing

Let us �rst re
all some properties of Mathias for
ing and dual Mathias for
ing,

respe
tively: Mathias for
ing restri
ted to a non-prin
ipal ultra�lter U , denoted by

M

U

, 
onsists of the ordered pairs ha; xi 2 M with x 2 U . Mathias for
ing has a lot

of ni
e 
ombinatorial properties (some of them are mentioned below) whi
h also hold

for Mathias for
ing restri
ted to a Ramsey ultra�lter (see [49℄). Dual Mathias for
ing

restri
ted to a partition-ultra�lterU 2 PUF

�

(!)

!

�

, denoted by M

[

U

, 
onsists of the

ordered pairs hs;Xi 2 M

[

with X 2U (see e.g. [23℄ and [26℄). As we have seen

before, both, Mathias for
ing as well as dual Mathias for
ing, are proper for
ings.

Moreover, both have (i) a de
omposition, (ii) pure de
ision and (iii) the homogeneity

property (see e.g. [49℄, [11℄, [23℄, or Chapter VI):

(i) De
omposition: M � U � M

_

U

, where

_

U is the 
anoni
al U-name for the U-

generi
 obje
t (U as in Se
tion 3.2).

M

[

� W � M

[

_

U

, where

_

U is the 
anoni
al W -name for the W -generi
 obje
t (W

as in Se
tion 3.2).

(ii) Pure de
ision: For any M -
ondition ha; xi and any senten
e � of the for
ing

language M , there is an M -
ondition ha; yi � ha; xi su
h that either ha; yi

M

�

or ha; yi

M

:�.

Similarly, for any M

[

-
ondition hs;Xi and any senten
e � of the for
ing language

M

[

, there is an M

[

-
ondition hs; Y i � hs;Xi su
h that either hs; Y i

M

[

� or

hs; Y i

M

[

:�.

(iii) Homogeneity property: If x

G

is M -generi
 over V and y 2 [x

G

℄

!

, then y is

also M -generi
 over V.

If X

G

is M

[

-generi
 over V and Y 2 (X

G

)

!

, then Y is also M

[

-generi
 over V.

In Chapter VI (see also [23℄) it was shown that if F � (!)

!

is a so-
alled game-family,

then M

[

F

has pure de
ision and the homogeneity property (see Theorem VI.4.3 and

Theorem VI.4.4, respe
tively). Game-families have the segment-
oloring-property

and therefore, the so-
alled game-�lters, i.e., game-families whi
h are partition-�lters,
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are Ramseyan ultra�lters. Unlike for Ramseyan ultra�lters, it is not 
lear if CH im-

plies the existen
e of game-�lters, so, it seems that game-�lters are stronger than

Ramseyan ultra�lters. However, in the sequel we show that ifU 2 PUF

�

(!)

!

�

is a

Ramseyan ultra�lter, then M

[

U

has pure de
ision and the homogeneity property.

Re
ently, Stevo Todor£evi¢ gave an abstra
t presentation of Ellentu
k's theorem

by introdu
ing the notion of a quasi ordering with approximations whi
h admits a

�nitization and the notion of a Ramsey spa
e. The Abstra
t Ellentu
k Theo-

rem says that a quasi ordering with approximations whi
h admits a �nitization and

satis�es 
ertain axioms is a Ramsey spa
e.

LetU 2 PUF

�

(!)

!

�

be a partition-ultra�lter and let �v� be the quasi ordering

onU . For ea
h n 2 !, let the fun
tion p

n

:U ! (N) be su
h that p

n

(X) is the

unique s with s

�

� X and jsj = n. Let p be the sequen
e (p

n

)

n2!

. It is easy to verify

that the triple (U ;v; p) is a quasi ordering with approximations. For n;m 2 !

and X; Y 2U de�ne: p

n

(X) v

�n

p

m

(Y ) if and only if dom

�

p

n

(X)

�

= dom

�

p

m

(Y )

�

and p

n

(X) v p

m

(Y ). This de�nition veri�es that (U ;v; p) admits a �nitization.

If (s;X)

!

is a dual Ellentu
k neighborhood and X 2U , then (s;X)

!

\U is 
alled

aU -dual Ellentu
k neighborhood. The topology onU , indu
ed by theU -dual

Ellentu
k neighborhoods, is 
alled theU -dual Ellentu
k topology. With respe
t

to theU -dual Ellentu
k topology, the topologi
al spa
eU is a Ramsey spa
e, if for

any subset S �U whi
h has the Baire property with respe
t to theU -dual Ellentu
k

topology, and for anyU -dual Ellentu
k neighborhood (s; Y )

!

\U , there is a partition

X 2 (s; Y )

!

\U su
h that either (s;X)

!

\U � S or (s;X)

!

\U �U n S.

LetU 2 PUF

�

(!)

!

�

be a Ramseyan ultra�lter. Sin
e the triple (U ;v; p) satis�es


ertain axioms, by Todor£evi¢'s Abstra
t Ellentu
k Theorem, the Ramseyan

ultra�lterU with respe
t to theU -dual Ellentu
k topology is a Ramsey spa
e. More-

over, we get the following two results.

Theorem VII.5.1. IfU is a Ramseyan ultra�lter, then M

[

U

has pure de
ision.

Proof. Let � be any senten
e of the for
ing language M

[

U

. With respe
t to � we

de�ne

D

0

:= fY 2U : for some t � Y , ht; Y i

M

[

U

:�g ;

and

D

1

:= fY 2U : for some t � Y , ht; Y i

M

[

U

�g :

Clearly D

0

and D

1

are both open (w.r.t. theU -dual Ellentu
k topology) and D

0

[D

1

is dense (w.r.t. the partial order in M

[

U

). Be
ause U is a Ramsey spa
e, for any

U -dual Ellentu
k neighborhood (s; Y )

!

\U there is an X 2 (s; Y )

!

\U su
h that

either

(s;X)

!

\U � D

0

or (s;X)

!

\U \D

0

= ; :

In the former 
ase we have hs;Xi

M

[

U

:� and we are done. In the latter 
ase we

�nd X

0

2 (s;X)

!

\U su
h that (s;X

0

)

!

\U � D

1

. (Otherwise we would have
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(s;X

0

)

!

\U \ (D

0

[D

1

) = ;, whi
h is impossible by the density of D

0

[D

1

.) Hen
e,

hs;X

0

i

M

[

U

�. a

Theorem VII.5.2. IfU is a Ramseyan ultra�lter, then M

[

U

has the homogeneity

property.

Proof. For a dense set D � M

[

U

, let

[

D := fX 2 (!)

!

: X 2 (s; Y )

!

for some hs; Y i 2 Dg :

It is 
lear that a partition X

G

is M

[

U

-generi
 if and only if X

G

2

S

D for ea
h dense

set D � M

[

U

. Let D � M

[

U

be an arbitrary dense set and let D

0

be the set of all

hs; Zi 2 M

[

U

su
h that (t; Z)

!

�

S

D for all t v s with dom(t) = dom(s).

First we show that D

0

is dense in M

[

U

. For this, take an arbitrary hs;W i 2

M

[

U

and let ft

i

: 0 � i � mg be an enumeration of all t 2 (N) su
h that t v s

and dom(t) = dom(s). Be
ause D is dense in M

[

U

,

S

D is open (w.r.t. theU -dual

Ellentu
k topology), and sin
eU is a Ramsey spa
e, for every t

i

we �nd a W

0

2U

su
h that t

i

v W

0

and (t

i

;W

0

)

!

�

S

D. Moreover, if we de�ne W

�1

:= W , for

every i � m we 
an 
hoose a partition W

i

2U su
h that W

i

v W

i�1

, s � W

i

and

(t

i

;W

i

)

!

�

S

D. Thus, hs;W

m

i 2 D

0

, and be
ause hs;W

m

i � hs;W i, D

0

is dense in

M

[

U

.

Let X

G

be M

[

U

-generi
 and let Y 2 (X

G

)

!

be arbitrary. Sin
e D

0

is dense, there is

a 
ondition hs; Zi 2 D

0

su
h that s � X

G

v Z. Sin
e Y 2 (X

G

)

!

, we have t � Y v Z

for some t v s with dom(t) = dom(s), and be
ause (t; Z)

!

�

S

D, we get Y 2

S

D.

Hen
e, Y 2

S

D for ea
h dense set D � M

[

U

, whi
h 
ompletes the proof. a

Appendix

In this se
tion we are gathering some results 
on
erning the dual form of some


ardinal 
hara
teristi
s of the 
ontinuum. For the de�nition of the 
lassi
al 
ardinal


hara
teristi
s, as well as for the relation between them, we refer the reader to [69℄.

First we 
onsider the shattering 
ardinal h. This 
ardinal was introdu
ed in [1℄ as

the minimal height of a tree �-base of �! n!. Later it was shown by Szymon Plewik

in ([54℄) that h = add(R

0

) = 
ov(R

0

), where R

0

denotes the ideal of 
ompletely

Ramsey null sets. It is easy to see that p � h, and therefore, MA(�-
entered) implies

h = 
.

The dual form of the 
lassi
al 
ardinal 
hara
teristi
s were introdu
ed and in-

vestigated in [12℄ and further investigated in [22℄. Con
erning the dual-shattering


ardinal H, one easily gets !

1

� H � h, and in [22℄ it is shown that H > !

1

is 
onsis-

tent relative to ZFC and that H = add(R

[

0

) = 
ov(R

[

0

), where R

[

0

denotes the ideal of


ompletely dual Ramsey null sets. After all these symmetries, one would not expe
t

the following: MA + (
 > H) is 
onsistent relative to ZFC. This was proved by Jörg

Brendle in [10℄ and implies that H < p is 
onsistent relative to ZFC.

Con
erning the reaping and the dual-reaping number r and R, respe
tively, the

situation looks di�erent. It is shown in [23℄ that p � R � minfr; ig, and thus
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we get MA(�-
entered) implies R = 
. Further, it is easy to show that R � U,

where U denotes the partition-ultra�lter base number, i.e., the dual form of u, and


onsequently, MA(�-
entered) implies U = 
.

For a Ramsey ultra�lter U , Brendle introdu
ed in [9℄ the ideal R

0;U

, whi
h is the

ideal of 
ompletely Ramsey null sets with respe
t to the ultra�lter U . Con
erning this

ideal R

0;U

, he showed for example that hom � non(R

0;U

), where hom is the homo-

geneity number investigated by Blass in [7, Se
tion 6℄. There, Blass also investigated

the so-
alled partition number par and showed that par = minfb; sg. Now, repla
ing

the Ramsey ultra�lter U by a Ramseyan ultra�lterU , one obtains the ideal R

[

0;U

of


ompletely dual Ramsey null sets with respe
t toU as the dualization of the ideal

R

0;U

, and repla
ing the 
olorings of [!℄

2

� involved in the de�nition of hom and par �

by 
olorings of (!)

2�

, one obtains the 
ardinal 
hara
teristi
s Hom and Par and 
ould

begin to investigate them, but this is left for further resear
h.

❦
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