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Abstract

Let P, be the family of all real, non-constant polynomials with degree at most n and
let Q,, be the family of all complex, non-constant polynomials with degree at most n.
A set S C R is called a set of range uniqueness (SRU) for a family F € {P,, Qn} if
for all f,g € F, f[S] = g[S] = f = g¢. And S is called a magic set if for all f,g € F,
fIS] € g[S] = f = g. In this paper we will show that there are magic sets for P, and
Q,, of size s for every s > 2n+ 1. However, there are no SRUs of size at most 2n for P,,
and Q,. Moreover we will show that SRUs and magic sets are not the same by giving
examples of SRUs for P2 and Ps that are not magic.
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1 Introduction

Let F be a set of functions with a common domain X and a common range Y. A set S C X
is called a set of range uniqueness (SRU) for F if the following holds: For all f,g € F

fiSl=glS1=f=y
And S is called a magic set for F if for all f,g € F

fIS1cylSl=f=g.

Note that every magic set is also an SRU. The existence of magic sets and SRUs has already
been studied for several families of functions:

e Berarducci and Dikranjan proved in [I] that under the continuum hypothesis (CH)
there exists a magic set for the family C™(R) of all nowhere constant, continuous
functions. Halbeisen, Lischka and Schumacher showed in [6] that we can weaken the
requirement by replacing CH by the assumption that the union of less than continuum
many meager sets is meager, i.e. add(M) = ¢. However, the existence of a magic set
for C™(R) is not provable in ZFC as Ciesielski and Shelah proved in [3].

e In [2], Burke and Ciesielski proved that SRUs always exist for the family of all
Lebesgue-measurable functions on R.

e In [4], Diamond, Pomerance and Rubel constructed SRUs for the family C“(C) of
entire functions.

e In [5] the authors of this paper proved that there exist SRUs for the family P, of all
real, non-constant polynomials of degree at most n of size 2n + 1 but none of size 2n.
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In this paper we consider magic sets for the family P,, of all real, non-constant polynomials
of degree at most n and for the family Q,, of all complex, non-constant polynomials of degree
at most n. We will show that there exist no SRUs, and therefore also no magic sets, of size
at most 2n for P,, and Q,,. Then we will give examples of SRUs for P, and Ps that are not
magic. And finally we will answer one of the open questions in [5] and show that for every
s > 2n + 1 there is a magic set of size s for the families P,, and Q,,.

2 There are no SRUs of size at most 2n for P,

In [5] we have already shown that there are no SRUs of size 2n: For points z¢g < 21 < -+ <
Zo, we constructed two functions f,g € P, such that f =1 — g and

f(z2i) = g(x2i-1) and f(z2i-1) = g(x2:)
for all 1 <i < n. In a similar way we can prove that there are no SRUs of size 2n — 1:

Lemma 1. There are no SRUs of size 2n — 1.

Proof. Let 0 < 21 < 29 =23 < T4 < -+ < Tg,. As in [5] define

YY" = {(ylyy27---7yn) cR" ‘ Y; € {3321‘_1,32‘21‘} foralll <i< ’/l}

and
1 + 29 zi—!—zé at +
n o .
An:An(x17l'27...,.'E2n): T3 + X4 r3 + T} T3 + T,
Ton—1 + Ton x%n_ll—l— x3, .. xgn_1.+ Th,
For all y1,y2,...,yn € R let
Valryeroow) = | 0 y2
By [0, Lemma 23] we have that
det(A, (1, 29,x3,...,%2,)) = Z det(Viu(y1, 92, -« -, Yn))

(y1,925-,yn)EY™
= Z det(vn(y17y2a'~'7yn)) > 07

(Y1,9250-,yn)EY™
Y17£Y2

because det(V,,(y1,¥y2,.-.,yn)) > 0 whenever |{y1,y2,...,yn}| = n. So, as in [5] we can
conclude that there are functions f,g € P, with

f(@2:) = g(z2i-1) and f(22i-1) = g(z2:)
and therefore, there does not exist an SRU of size 2n — 1. O

Remark 2. The polynomials f and g we constructed in [5] and in Lemma have degree n.
To see this, note that for all 1 < i <n we have that

(f = 9)(@2i-1) = —(f — 9)(w2:)-

By the intermediate value theorem, (f — g)(x) has at least n pairwise different zeros. Since
f—g # 0 and since by construction f—g has degree at most n, it follows that deg(f—g) = n.
By construction f —g=1— 2g. Therefore, deg(f) = deg(g) = n.



Example 3. Let S := {%, %, %,5, %, %,9}. In the following picture we can see two

polynomials / and g of degree 4 with f[S] = g[S] but f # g. These polynomials indicate
that S is not an SRU for Py.

v

1 2 3 4 GW 10 x

-0

—1 +
Proposition 4. There does not exist an SRU of size less than 2n — 1.

Proof. Let 1 < s < 2n—1. Let z1 < 29 < --- < zs. We want to show that S :=
{z1,22,...,2s} is not an SRU for P,,.

Case 1: s is an even number.
Choose {Ts41,Zs42,---,Tan} C R with 25 < 2441 < Zs42 < -+ < Tap. By [Bl Lemma 23]
we can find two functions f, g € P,, with

f(z2i) = g(x2i-1) and f(z2i-1) = g(z2:)

for all 1 < ¢ < n. Therefore we have that

fIS] = gl9] and f[{zss1,Tst2s - Tan}] = g[{Tst1, Tst2,y .- Tan}].
So S is not an SRU for P,,.

Case 2: s is an odd number.

Choose {Zs11,Ts+2,--.,Tan—1} C R with 25 < 2541 < Ts42 < ...Z2p—1. By [B, Lemma 23]
we can find two functions f, g € P, with

fIS] = g1S] and f[{xsi1, Tst2y--sTan—1}] = g[{Ts+1, Tst2y -+ Tan—1}]-

So S is not an SRU for P,,. O

3 There are no SRUs of size at most 2n for 9,

We define Q,, to be the set of all non-constant polynomials of degree at most n with complex
coefficients. Let S := {z1,xa,...,22,} C C be a set of cardinality 2n. Our goal is to find
two polynomials f,g € Q,, with f[S] = ¢[S] but f # g. By rotating the set S around the
origin of the complex plane we can assume without loss of generality that all real parts of
the points in S are pairwise different. By renaming the elements in the set, we can assume
that

Re(z1) < Re(za) < -+ < Re(xan).

Define
Y™ ={(y1,y2, .- yn) €EC" | y; € {@2;—1,29;} forall 1 <i < n}

and let 7w, be the set of all permutations of {1,2,...,n}. By translating the set S to
the right in the complex plane we can also assume that for all (y1,y2,...,yn) € Y™, all



My C {1,2,...,n} and all My C [{1,2,...,n}]? (where [{1,2,...,n}]? is the family of all
2-element subsets of {1,2,...,n})

[T me) ] (i) —Im(yn)‘ <

ke My 1<i<j<n
{i,j €M

(1)
H Re(yx) H (Re(y;) — Re(y)).
2”2 kEM 1<i<j<n
{i,jyeM

We will show that there are f,g € Q,, with

f(xzz) = g(x2i71) and f(fEZifl) = g(ifzi)

for all 1 <4 < n. The two polynomials will have the form

= ijxj with b; € Cfor j =1,2,...,n
j=1
and
flx) =1—g().
In order to prove that such polynomials f and g exist we have to show that the following
linear equation is solvable:

Ty + T2 3 + 23 ] +zy by 1
3+ x4 r3 + 23 x5+ af ba 1
+ 2 2 n n b 1
Ton—1+ Toan Tgp_1 T T2y - Ty T Toy n
=:A,

To do this we have to show that det(4,) # 0 for every n € N*. By [5, Lemma 23] we have
that

det(An) = Z det(v’n(ylv Y2, ... 7y'n))7
(Y1,,Yn)EY™
where )
vy yr
Y2 Y5 .. Yy
Vn(y17y2a-‘-7yn): . . . .
Yn Yn oo YN
Note that
det(Va(y1:y2, -+, Yn)) (I]:yk)( 11 yj—-yﬂ)-
1<i<j<n

In particular we have that
Re(det(Va(yn,- ) = ([ Re(we) ) ( [T (Rely) — Re(w)) + R
k=1 1<i<j<n

where each summand in R has the form

+ H Im(yx) H (Im(yj — Im(y;) H Re(yk) H (Re(yj) - Re(yi))
keM, 1<i<j<n k¢ M, 1<i<j<n
{i.7}eM {i,j}¢M
where My C {1,2,...,n} and M; C [{1,2,...,n}]? are not both empty and My U M; has
even cardinality. Since R contains less than 979(2) summands and by we have that

Re(det(Vn(yla Ya,. .. 7y7l))) >0



for all (y1,...,yn) € Y. Therefore

det(An(yl, Y2, ... 7yn)) 7& 0.

This implies that there are f,g € Q,, with f[S] = g[S] but f # g.
Note that as in Section we can show that there are no SRUs for Q,, of size less than 2n.

4 SRUs that are not magic for P, and Ps

Let P,, be the family of all real, non-constant polynomials of degree at most n. For the
family P; magic sets and SRUs are the same: Let S C R and assume that S is an SRU. If S
were not magic, there were two functions f, g € P; with f[S] C g[S] but f # g. But since f
and g are both bijective, it follows that f[S] = g[S] which then implies that f = g because
S is an SRU. But we assumed that f # g, which is a contradiction.

However, the following Lemmas show that magic sets and SRUs for Py and P53 are not the
same:

Lemma 5. The set S := {—2, —1,2,v/8,/14 — \/g} is an SRU for Py but not a magic
set.

Proof. The set S is not a magic set because for f(z) := 22 and g(z) := 222 — x — 2 we have
that

18] = {1,4,8,14— Jé} C {1,4,8, 14— /8,26 — 4v2 — \/14 — Jé} = g[9).

On the other hand, we now show that S = {21, za, 23, x4, 25} is an SRU for P,. First of all
note that f[S] = g[S] with | f[S]| < 2 immediately implies f = g = const. Observe also that
there is no polynomial f € Py with |f[S]| = 3. So we only have to deal with the case that
|f[S]| > 4. Assume towards a contradiction that there are

f(x) = ag + a1 + axx® and g(x) = by + b1z + box”

with f[S] = g[S] , |f[S]] = |9[S]| > 4 and f # g. In other words, f and ¢ satisfy a linear
equation of the form

1z 22 -1 —axy fasfl 0
1 29 23 -1 —m, —xi Zl 0
1 3 23 -1 —ay, —xfs b2 =10
1 24 23 -1 —x —xi bo 0
1 x5 22 -1 —ay —xi b; 0

with {i1,4a,...,i5} C {1,2,3,4,5} and |{i1,...,i5}| > 4. By checking all cases, one finds
that the only solution of such a linear equation with f # g is

1 1
flx)=1+ 5332 and g(x) = —35% + 2.

But f[S] # g[S]. So S is indeed an SRU. O

Lemma 6. The set

1 1
5= {1, 2,4,10,31, (3 n \/68581) . (3 _ \/550558 n 13347\/68581) }

is an SRU for Ps but not a magic set.



Proof. The set S is not a magic set for P because for
f(z) =18(x — 1)(z — 2) and g(z) := (z — 1)(72? + 120z — 160)

we have that f[S] C g[S]. Observe also that there is no polynomial f € Ps with |f[S]| = 3.
So we only have to deal with the case that |f[S]| > 4.

Assume towards a contradiction that there are
f(z) = ap + a1z + az?® + azz® and g(x) = by + bz + box? + b3a®

with f[S] = g[S] , |f[S]| = |g[S]] > 4 and f # g. In other words, f and g satisfy a linear
equation of the form

1 2z 23 23 -1 —ay —x%l —xf’l ZO 0
1 2o 22 23 —1 -y _37122 —xi al 0
1 23 22 23 -1 —uw -, —x% a2 0
1 zy 23 23 -1 —uxy —xi fxli b3 =10
1 x5 22 af -1 —xy, —al —al bo 0
1 zg ag xy —1 —wy —ai —x) bl 0
1 27 22 28 -1 —uay _95127 —xi bz 0

with {i1,i0,...,i7} € {1,2,3,4,5,6,7} and |{i1,...,i7}| > 4. By checking all cases, one
finds that the only solution of such a linear equation with f # g is

18 5 54 124 3 113
f(x) - T and g(x) =2+ -3 0x
But f[S] # ¢[S]. So S is indeed an SRU. O

In the above Lemma, the two polynomials showing that the set S is not magic for P3, are of
degree 2 and 3. In the next Lemma we show that there is an SRU S and two polynomials
of degree 3 showing that S is not magic.

Lemma 7. The set
S:=1{1,2,5,12,23,27, a}

with

8 13
33 %/3197764 —9v126243143179

is an SRU for Ps but not a magic set.

1
—3 \3/3197764 —9v126243143179

o=

Proof. The set S is not a magic set for P3 because for
f(z) =21(z — 1)(x — 2)(z — 5) and g(z) := (z — 1)(—11502* + 172132 — 13656)

we have that f[S] C g[S]. Observe also that there is no polynomial f € P3 with |f[S]| = 3.
So we only have to deal with the case that | f[S]| > 4.

Assume towards a contradiction that there are
fl@)=ao+ a1z + asz? + azz® and g(z) = by + bz + box? + bya®

with f[S] = ¢S], |f[S]] = |9[S]] > 4 and f # g. In other words, f and g satisfy a linear
equation of the form

ao

1 oz 2?2 28 -1 —ay —x?l fx?l a 0
1 @y 23 23 -1 -—uxy fxfz fx?z al 0
1 z3 23 ay —1 —wmy, —a —x a2 0
1 x4 23 23 -1 —xy —xa —xi b3 0
1 x5 22 23 -1 —uay —x?s —xfs bO 0
1 ze 22 28 -1 —wxy —x?ﬁ —x?ﬁ bl 0
1 z7 22 28 -1 -y, —xi fx;‘i bi 0



with {i1,49,...,i7} C {1,2,3,4,5,6,7} and |{i1,...,i7}| > 4. By checking all cases, one
finds that the only solution of such a linear equation with f # g is

6033 357 84 , 21 30860 18363 ,
= —_—— — —_— —_——_—— d = Y .
F@) = e~ 50" 5% 1o A @) = gt et e

But f[S] # ¢[S]. So S is indeed an SRU. O

5 Magic sets for P,

In this section we will show that for every s > 2n + 1 there is a magic set of size s for the
set P, of all real, non-constant polynomials of degree at most n.

Remark 8. For n > 1 the condition that P, does not contain any constant polynomials
1s necessary for the existence of a magic set. Otherwise let M C R be a non-empty set,
f(x)=c for a ¢ € R and let g be a non-constant polynomial with g(m) = ¢ for an m € M.
Then we have that

{c} = fIM] C g[M]
but f #g.

First of all we want to give some general definitions:

Definition 9. A directed graph H is a pair (V, E), where V is a set (the vertices of H) and
E CV xV (the edges of H). For every v € V we define

indegreey (v) := |{v € V| (v/,v) € E}|,
outdegreey (v) := [{v' € V | (v,v") € E}| and
degy (v) := indegreey (v) 4 outdegree; (v).

Definition 10. Let H = (V, E) be a directed graph.

e A cycle is a subgraph C = (V, E¢) of H with Vo = {cg,c1,...,¢m-1} and E¢ =
{(cis cit1)ymodm) | © € N} for an m > 2.

e A Joop is a subgraph L = (Vi,, Ep) of H with Vi, = {w} and F;, = {(w,w)}.

e A solitary path is a directed path P = ({vo,v1,...,0m}, {(vi,vi11) | i =0,1,...,m —
1}) with indegreey (vo) = 0, degy (vm) > 2 and degy (v;) =2 forall 1 <i<m — 1.

Definition 11. Let [ € N. Cycles and loops Cy = (Vi,, Ecy ), - - -, C1t = (Veo,, B¢, ) are called
obviously different if for every 0 < i <[ there is a

!
Yi € Vo, \ U Ve,
=057

Definition 12. Let H be a directed graph and let H; and H be two subgraphs of H. Then
H, and H are called undirected edge disjoint iff H; and Hs do not share any edges even if
we replace all edges in Hy and Hs by undirected edges.

Let k,n € N* with k& > 2n and let {zg,21,...,2x} C R. For all 0 < ¢ < k let v; :=
(wi,22,...,2%). The following family H will play a crucial role in the construction of magic

sets of size k + 1 for the set P,,.

Definition 13. Let H be the family of all directed graphs H = (V, E) with vertex set
V = {wg,v1,...,vx} and a set E of directed edges such that for each v € V' we have that

outdegreey (v) > 1.



We now partition the family H into three parts, namely the graphs of type ay,, 8, and ~,.
Definition 14. A graph H € H is of type

e 7, iff there are more than n — 1 solitary paths in H.

e (3, iff there are more than n obviously different loops and cycles in H and H is not of
type Yn.

e «,, iff H is neither of type =, nor of type 3,.

In Section [5.1] we will consider graphs of type a,, and we will show in Corollary [23] that for
every graph H = (V, E) of type a,, there is a (2n 4+ 1) x (2n 4 1)-matrix

1 Vig —Ujq

1 Uiy —Uj,
My (zo,21,...,21) =

1 Vigp  ~Vjan

with 4,7, € {0,1,...,k} (for all 0 <1 < 2n) and (v;,,v;,) € E (for all 0 <1 < 2n), such that
for all open sets U C RF*t! there is an open set Uy C U with

det(My (zg, 21,...,2x)) #0 (2)
for all (xo,21,...,2r) € Un.
Concerning graphs H = (V, E) of type B, let Co = Voo, Fcy),---,Cn = (Ve,, Ec,) be
n + 1 obviously different loops and cycles. Let z;,, z;,,...,2;, be n+ 1 vertices of H such

that for each 0 <[ <n,

x;, € Vg \ U Ve,

m=0,m#l
We will show in Section that for every open set U C R**! there is an open set Uy C U
such that for all (xg,z1,...,7;) € Ug we have
det(Nu (o, @1, ..., 21)) #0, (3)

where

|VC()| ZIEVCU T Z:EGVCU xz Tt ZIGVCO z"

|VC1| ZzGVGl € ZIGVcl € Tt Z:I?EVcl z"

Ny (xo,21,...2%) = . ) ) .
|VC71,| ZibeVCn Z Z:EEVC"’ xz e ZIGVCW/ xn

In Section [5.3] we will show that for every graph H of type 7, there is an n x n-matrix
Vjo — Vig
Vi — Uiy
Ly(zo,21,...,2) =

U1 = Vip_1
such that
e ji,i;€{0,1,...;k}foral 0 <l <n-—1;
e v;, and v, are different but have the same successor in H and

e for all open sets U C R¥*! there is an open set Uy C U such that for all (xq, z1,...,2) €
Uy we have that

det(Ly(zo,21,...,2x)) #0. (4)



As a consequence of , and and since |H| < oo, we can find a point (mg, m1, ...

RE+L such that for all H € H of type ay,

det(Mpg(mg, ..., mg)) # 0,
for all H € H of type 8,
det(Ng(mo,...,mg)) #0,
and for all H € H of type 7,
det(Lg(mo,...,mg)) # 0.
This leads to the following
Theorem 15. The set M := {mgy, my,...,my} is a magic set for P,.

7mk) S

Proof. Assume towards a contradiction that M is not a magic set for P,,. So, there are two

non-constant polynomials

f(x) =ap + a1 + agx® + - - + apa"

and

g(x) = by + byx + box® + -+ + bpa™
such that f[M] C g[M] but f # g. Let H = (V, E) with

V=M and E := {(m;,m;) | f(m;) =g(m;)}.

Note that H € H. There are three cases:

Case 1: H is of type au,.

In this case

My (mo,my,...,my)

1 Vig Yjo
Uiy —Vj,
1 Vigp  ~VUjop

has non-zero determinant. Note that for all 0 <! < n we have that

f(mi) = g(mj,) <

(ao = bo) + (armi, + -+ +apmyj) — (bymy, +--- +b,m} ) = 0.

So, f and g satisfy the following system of linear equations:

ag — bo 0
aq 0
MH(mO,...,mk)- (079 =10
by 0
b, 0
Since det (Mg (mo,...,mg)) # 0, this equation has only the trivial solution. Therefore,

f = g, which is a contradiction to our assumption that M is not a magic set.

Case 2: H is of type (,.

In this case

|VCO‘ ZxEVCO

Vel Ysev,
NH(mO,...,mk = . .Cl

‘Vcn‘ ZreVCn

2
Z ZxEVCO :U2 T Zaccho z"
x Z%Vcl x? L. erVcl "
T Zzevcn 2 ... Zmevcn "



with n+1 obviously different cycles Co = (Viy, By, ), C1 = (Vey, Ecy ), -, Cn = (Ve , Ec,)-
For all 0 < i < n we have that

> (f—g)(m)=0.

meVg,

In other words, we have to solve the following system of linear equations:

ao—bo 0
al—bl 0
NH(mO7"'amk)' : = :
an — by, 0

Since det(Ng (mg, ..., my)) # 0 this equation has only the trivial solution. Therefore, f = g,
which is again a contradiction.

Case 3: H is of type .

In this case

LH(mo,ml,...7mk) =

Vi1 = Vip_y
has non-zero determinant. For all 0 < [ < n — 1 the points m;, and m;, have the same
successors in H. Therefore,

flmy) = f(ms) <= ar(mg, —mi,) +az(mj, —mi) + -+ an(mj, —mj)) =0

i

for all 0 <1 < n — 1. In other words, f satisfies the following system of linear equations:

aq 0
a9 0
Ly (mg,m1,...,myg) - | =
an 0
Since det(Lg (mog,m1,...,my)) # 0 this equation has only the trivial solution. Therefore,
f is a constant polynomial. This is a contradiction. O

5.1 Graphs and matrices of type «,

Remark 16. From now on we assume that there is at least one solitary path in every graph
of type a,. If a graph H of type o, has no solitary path, it is of type 1, (i.e., it has at most
n obviously different cycles and loops) and we can find a suitable matriz as in [5].

Definition 17. Let G = (V, E) be a graph. Assume, that for each edge in E either the
foot or the head is marked. The marked vertices are called relevant. Then v € V is called a
unique vertex iff

indegree(v) = 0, outdegrees(v) =1

and v is the relevant vertex of the edge incident with v.

Definition 18. Let n € N* and let H = (V, E) be a graph of type a, with |V| > 2n+1. A
good sequence of length m € N of H is a sequence of graphs

(0,0) =Ho = (Vo, Eo) CH, = (V1,E1) C--- CHp = (Viy, Ey) CH=(V,E)
such that for all 0 <1 < m the set Ejy; \ E; has one of the following forms:
(a) Eip1\ Er = {(vi,v5), (vj,ve)} with 0 < 4,5t <k, i # j and j # t. Moreover, if v; is

contained in an edge in E; together with a v,, then v is a unique vertex of H;. The
relevant vertex of both edges (v;,v;) and (vj,v¢) is v;.

10



(b) Ery1 \ Ep = {(vi,v5), (vs,v)} with 0 <4, j,s,t <k, 1% j, 1% tand s #t. Moreover,
if v; or v; is contained in an edge in Ej together with a v, then v, is a unique vertex
of H;. The relevant vertex of (v;,v;) is v; and the relevant vertex of (vs,v;) is vy.

(¢) Eix1\ By = {(vi,v), (vj,v)} with 0 <4, j,¢ <k and j # t. Moreover, if v; and v; are
contained in an edge in F; together with a v, then v, is a unique vertex of H;. The
relevant vertex of (v;,v;) is v; and the relevant vertex of (v;,v:) is v;.

(d) Eig1 \ Er = {(vi,vi), (ve,v5)} with 0 <4,5,t <k and j # t. Moreover, if v; and v; are
contained in an edge in E; together with a v,, then v is a unique vertex of H;. The
relevant vertex of (v;,v;) is v; and the relevant vertex of (vy,v;) is v;.

(e) Eix1\ Er = {(vi,vj), (vs,v¢)} with ¢ # j and s # ¢. We have that indegreey(v;) = 0
and for all 0 < ¢ <! we have that E; \ E,_; contains an edge with a unique vertex of
H;. Moreover we assume that if there is an edge in E; containing v; and a v, we have
that either v, is a unique vertex of H; or (v, v,) € Ej. The relevant vertex of (v;,v;)
is v; and the relevant vertex of (vg,v:) is vy.

Lemma 19. Let n € N*. Every graph H = (Vg, Eg) of type a, with |Vg| > 2n+1 has a
good sequence

(®7®) =Hy = (V07E0) CH = (VlaEl) c---CH,= (VmaEm) CH

of length m with |Ep,| > 2n and an edge z = (29, 21) ¢ E,, such that neither zy nor z1 is a
relevant vertex of any edge in E,,.

Proof. Let H = (Vy,Eg) be a graph of type «,. If there is a vertex v € Vg with
outdegreey (v) > 2 and indegreey(v) = 0 remove all but one edge containing v. The
resulting graph is still of type «a,,. Let £ be the set of all isolated loops of H. To be more
precise
L:={({v},{(v,0)}) € H | degy(v) = 2}.

Let T = {So0,S51,...,5} (for an [ € N) be the set of all solitary paths in H. Let 0 <34 < [.
If S; ends in a vertex v in which only solitary paths end we have that (v,v) € Ey. Add
this edge to .S; iff this loop has not already been added to a S; with j < ¢. Define Z := Sp.
Note that [7] > 1 by Remark[16] Remove Z from 7. Let S be the set of all first edges of
the remaining solitary paths in 7 that contain an odd number of edges.

Step 1: Removing isolated loops with solitary paths.

Assume that S # () and £ # 0. Let s = (s0,s1) € S and let t = (¢g,%9) € L. Add s,¢ and the
corresponding edges to Hy. Call the resulting graph H;. Note that E; \ Ey has the form (c)
and that s contains a unique vertex. Remove ¢t from £ and remove s from S. The relevant
vertex of s is sg and the relevant vertex of ¢ is tg. Redo this construction until either S = §)

or £L=10.

From now on we assume that £ = (). The construction in the other case is similar. Let
(0,0)=Hy C Hy C -+ C Hpn,

with mg € N be the good sequence we constructed so far.

Step 2: Adding cycles.

Let Co = (Vo,, Ec,), C1 = (Voy, Ecy ), - -+, Cly = (Vo Ec,, ) be a maximal family of pair-
wise disjoint cycles in H. If there is a cycle C' = Cj for a 0 < j < [; that contains a vertex
to which Z points, assume that C' = C},. This is important because we might have to add
edges of the form (e). Assume that we have already added Cy, C1,...,Ci—1 fora 0 <i <l
to H,,, and defined a good sequence

(0,0)=Ho CH  C---C Hpy
for an m’ > mg. Now we want to add C;. If the solitary path Z points to a vertex in Vg,

mark this vertex vy with a cross.
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Case 1: There is a vertex vy € V¢, that is marked with a cross.

If S # 0 let M; C S be maximal with 0 < |M;|+ 1 < |E,| and such that |M;| + |E¢,]| is
even. If S = ) let M; = (). Remove M; from S.

Case 1.1: |M;| + |E¢,| is even.

There are two subcases:

OMZ‘#(Z).

Let e = (eg,e1) be the first edge in E¢, coming after vy and let s = (sg,$1) € M,.
Add e, s and the corresponding vertices to H,,». We call the resulting graph H,, ;1.
Note that E,,/ 11 \ Ene is of the form (b). Remove e and s from F¢, and M,;. The
relevant vertex of e is e; and the relevant vertex of s is so. Note that e; # vy because
|IM;|+1 < |Eg,|. In particular vy is not a relevant vertex of any edge in H,r41.

.Mzzw

There is a vertex w € Vi, \ {vo} such that both edges e = (eg,e1) and f = (fo, f1)
containing w are still in E¢,. We assume that w is the first vertex with this property
coming after vy in C;. Add e, f and the corresponding vertices to H,,,. We call the
resulting graph H,, 1. Note that E,, 11 \ Fyy is of the form (a). Remove e and f
from E¢,. The relevant vertex of e and of f is w. Note that vy is not a relevant vertex
of any edge in Hyy/41.

Case 1.2: |M;| + |Ec,| is odd.

Note that we are only in this case when M; = 0 and C; is still the original cycle. Let
y = (Yo, y1) be the first edge in E¢, coming after vy. By the assumption in Case 1 we have
in particular that ¢ = ;. So there is no cycle C;y1. If |[Ey| is even, add y, the third last
(or if this is not possible the first) edge f = (fo, f1) of Z and the corresponding vertices to
E,,,. We call the resulting graph H,, ;1. Note that F,, 11 \ E,, has the form (b). Remove
f from Z and y from E¢,. The relevant vertex of y is y; and the relevant vertex of f is fj.
If there is no cycle C;41 and |Ez| is odd, remove y from E¢,.

Case 2: There is no vertex in V¢, that is marked with a cross.

Let M; C S be maximal with |[M;| < |E¢,|. Remove M, from S.

Case 2.1: | M;|+ |E¢,| is odd.

Note that in this case |[M;| < |E¢,| and therefore, S = §) (we removed M; from S). So for
all j > ¢ we will have that M; = 0.

e There is a j > i such that |Eg,| = [Ec,| + |M;] is odd.

Let e = (eg, 1) € E¢; be an arbitrary edge. Note that C; is still equal to the original
cycle. Otherwise we would not be in this subcase. Let f = (fo, f1) € Ec, be an
arbitrary edge. That is, if possible, ending in a vertex that is marked with a cross.
Add e, f and the corresponding edges to H,, . We call the resulting graph H,, ;1.
Note that Ey, 41\ Epy is of the form (b). Remove e from E¢, and remove f from Eg;.
The relevant vertex of e is e; and the relevant vertex of f is fy.

e There is no j > i such that |E¢,| = [Ec,| 4+ |M;] is odd.

If |[Ez| is even, let e = (ep,e1) € E¢, be an arbitrary edge and let f = (fo, f1) be the
third last (or if this is not possible the first) edge in Z. Add e, f and the corresponding
vertices to H,, . Call the resulting graph H,, ;1. Note that E,, 1 \ E,, has the form
(b). Remove f from Z and e from E¢;.

If |Ez| is odd let e = (eg,e1) € E¢; be an arbitrary edge. Remove e from Eg,.

Case 2.2: |M;|+ |Ec¢,| is even.

There are two subcases:

12



OMZ‘#@.

If F¢, does not contain all edges of the original cycle C; let e = (eg, e1) be the first
edge in E¢,. Otherwise let e be an arbitrary edge in E¢,. Let s = (so,51) € M,;. Add
e, s and the corresponding edges to H,,. We call the resulting graph H,, ;1. Note
that E,41 \ Epy has the form (b) or (e). Remove e and s from M; and E¢,. The
relevant variable of e is e; and the relevant variable of s is sg.

.Mi:(a.

In this case let w be the first vertex in C; with degc, (w) = 2 (or if C; is still the
original cycle choose a w € Vg, with degg, (w) = 2). Add the edges e, f € E¢, that
contain w to H,,. We call the resulting graph H,, 1. Note that E,, ;1\ Ey, has the
form (a). Remove e and f from E¢,. The relevant vertex of e and of f is w.

Assume that we have done this construction for all cycles Cy, C1,...,C),. Let
0,0)=Ho CH1 C--- C Hy,
with my1 > mg be the good sequence we constructed so far.

Step 3: Adding paths.

Let Py = (Vp,, Ep,) be a maximal path in H which is undirected edge disjoint from H,,,.
In addition we require that all vertices (except possibly the first or the last one) are disjoint
from the vertices in H,,,. If possible let Py be a path such that Z points to a vertex vg in
Vpy \ Viny- Let po € N be the number of vertices in Vp, that are not in V4, .

Case 1: The solitary path Z points to a vertex vg € Vp, \ Vin, -

If S # 0 let Ny € S be maximal with |[Ny| + 1 < pg such that |[Ap| + po is even. If S = () let
No := 0. Remove Ny from S.

Case 1.1: |No| + po is even.

There are two subcases:

0./\/’075@.

Let e = (eg,e1) be the first edge in Py. If it points to vy remove it from Py and from
H. Otherwise let s = (sg,s1) € S. Add e, s and the corresponding vertices to H,,,.
Call the resulting graph H,,, 11. Note that Fy,, 11\ Ep, is of the form (b), (c) or (d).
The relevant vertex of e is e; and the relevant vertex of s is sg. Remove s and e from
N and from Ep,.

.N():(Z)-

Let w # vg be the first vertex in the path that is contained in exactly two edges of F.
Let e and f be the two edges containing w. Add them and the corresponding vertices
to H,,, and call the resulting graph H,,,+1. Note that E,,, +1 \ E,,, has the form (a),
(c) or (d). Remove e and f from Fy. The relevant vertex of e and of f is w.

Repeat the procedure described in Case 1.1 until |Ep,| < 1. Remove the remaining edge
from Ep,.

Case 1.2: |Ny| + po is odd.

Note that we are only in this case when Ny = ().

e On the right or on the left of vy there is an even number of edges.

Let w # vg be the first vertex in the path that is contained in exactly two edges of Py
and w & {zo, 21} if we have already defined an edge z = (zg,21). Let e and f be the
two edges containing w. Add e, f and the corresponding vertices to H,,, and call the
resulting graph H,,,+1. Note that E,,, +1 \ En, has the form (a), (¢) or (d). Remove
e and f from Ep, or from Ey. The relevant vertex of e and of f is w.

13



e We are not in the first subcase and vy is the first vertex in Vp, \ Vi, .

Let e be the first edge in Fy. Remove e from H and add back the original Z to H.
This graph H is of type «,. Redo the whole construction. Note that at one point we
will never be in this case anymore.

e We are not in the first two subcases.

If Py ends in a vertex of a cycle C; that is relevant for an edge in E,,, mark that last
vertex of Py with a cross and redo the whole construction with the same cycles and
paths. If necessary remove one edge s from M; and add it to Ay. So we can now
assume that the last vertex in Py is not relevant for any edge in E,,,. There are two
cases we have to look at:

— If [No] = 1, let e = (eg,e1) be the first edge in Py (note that e; # wvg) and
let s = (so,51) € My. Add e, s and the corresponding vertices to H,,, and
remove them from Py and from Njy. Call the resulting graph H,,, 1. Note that
E. 41\ Em, is of the form (b). The relevant vertex of e is e; and the relevant
vertex of s is sg.

—If My = 0, let e = (eg,e1) be the first edge in Py. Note that by assumption
e1 # vo. Let f = (fo, f1) be the third last (or if this is not possible the first) edge
in Z. Add e, f and the corresponding vertices to H,,,. Call the resulting graph
H,,, +1. Note that E,,, 11\ Ep, is of the form (b), (¢) or (d). Remove e form P,
and f from Z.

If now |Ez| = 0 let z = (z9,%1) be the first edge coming after vy in Py. In
particular we have that zy = vg. Note that neither zy nor z; is a relevant vertex
of an edge we added to Hy so far. Moreover, it will never be a relevant vertex of
any edge we will add in the future.

Repeat the procedure described in Case 1.2 until |[Ep,| < 1. Remove the remaining edge
from Pp.

Case 2: The solitary path Z does not point to a vertex in F.
Let My C S be maximal with |[Ny| < pg. Remove Aj from S.

Case 2.1: Ny # 0.

Let e = (eg,e1) be the first edge in Py and let f = (fo,f1) € No. Add e, f and the
corresponding vertices to H,,,. Call the resulting graph H,,, +1. Note that E,,, +1 \ Ep, is
of the form (b). Remove e and f from Ny and from Ep,. The relevant vertex of e is e; and
the relevant vertex of f is fy

Case 2.2: Ny = 0.

Let w be the first vertex in P, that is contained in exactly two edges e, f € Ep,. Add
e, f and the corresponding vertices to H,,,. Call the resulting graph H,,,+1. Note that
Eppy+1 \ By, is of the form (a). Remove e and f from Ep,. The relevant vertex of e and of
fisw.

Repeat this procedure until |[Ep,| < 1. Remove the remaining edges from Fp.

Do the same procedure for all paths in H. Let
0,0)=Ho CH1 C--- C Hy,
with mo > my be the good sequence we constructed so far.

Step 4: Adding the rest of the solitary paths.
Add Z to T. And if |Ez| > 2 is odd, add the first edge of Z to S. Define

T2 = {S€T| |ES| 22}:{T0aT17""Tl3}
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for an I3 € N. Assume that Z = T, if |Ez| > 2. Note that if Z ends in a vertex v in which
only solitary paths end, Z contains the loop (v, v).

Let F = (). Assume that we have already added Ty, Ti,...,T;—q for a 0 < i < Iy to Hyp,,
and we defined a good sequence

0,0)=Ho CH, C - C Hp
with a m’ > ma. Now we want to add T; = (Vr,, Er,).

Case 1: |Er,| > 2 is even and S # ().

Let s = (so,s1) be the third last edge in E7, and let t = (to,t1) € S. Add s, t and the
corresponding vertices to H,, . Call the resulting graph H,, +1. Note that E,, 11 \ Ep is
of the form (b). Remove ¢ from S and s from Er,. If t is contained in a T}, j > 4, remove t
from Er;. The relevant vertex of s is s7 and the relevant vertex of ¢ is tg.

Case 2: |Er,| > 2 is even and S = 0.

Let w be the first vertex in T; with degr, (w) = 2. Let e and f be two edges containing w.
Add e, f and the corresponding vertices to H,,s. Call the resulting graph H,, 11. Note that
E41 \ En is of the form (a) or (d). Remove e and f from Er,. The relevant vertex of e
and of f is w.

Case 3: |Er,| > 2 is odd and S\ Eg, # 0.

Let e = (eq, e1) be the third last edge in Er, and let f = (fo, f1) € S\ {e}. Add e, f and the
corresponding vertices to H,, . The resulting graph is called H,,s11. Note that FE,, 11\ Ep
is of the form (b). The relevant vertex of e is e; and the relevant vertex of f is f1. Remove
e from Er, and f from S. Remove the first edge of Er, from S.

Case J: |Er,| > 2 is odd and S\ Er, = 0.

Let z = (29, 21) be the first edge in E7,. Remove z from Fr, and from S. Note that neither
zp nor z; will ever be a relevant vertex of an edge we add to Hy.

Case 5: |Er,| = 2.

There are two subcases:

e T, = Z and we haven’t defined an edge z yet.

Let z = (z0,21) be the last edge in E7,. Remove both edges from Er,. Note that
neither zg nor z; are relevant vertices of any edge in E,,/.

e We are not in the first subcase and Er, does not contain a loop.

Add the two edges in Er, to the set F' and remove them from Er,.

e We are not in the first subcase and Er, does contain a loop.

Do the same as in Case 2.

Repeat the procedure with all solitary paths. Let
0,0)=HyCH, C---CHp,
with mg > mo be the good sequence we constructed so far.

Step 5: Adding the set F.

Let F' = {{eo, fo},{e1, f1},---.,{ew, fi,}} with a l4 € N. The pairs of edges are enumerated
in the order we added them to F'. Now add e, fo and the corresponding vertices to H,,,.
Call the resulting graph H,,,+1. Note that E,,,+1 \ En, has the form (a). The relevant
vertex of eg and of fy is the vertex they share. Repeat the procedure with {f1,e1}, {f2, €2}
and so on. O
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Example 20. In this example we will construct a good sequence for the following graph H

of type au,:
/\ / /[
Figure 1: Graph H = (V, E).
/
[ ] \
— e \ o<——o
Figure 2: solitary path Z. Figure 3: My and cycle Cjy.
/ -
~
Figure 4: Ny and path P,. Figure 5: Path P;.

. VAN
a—4

Figure 6: Path Ps. Figure 7: Path Ps.

'Qﬂ \/\/ AN
/N, /

Figure 8: Graph H = (V,E). The squared vertices are
relevant vertices of an edge. The numbers show the order
in which the edges are added.

(end example)

Let k > n, and for all 0 < 4,5 < k and all 0 < s < n define

— 2 s 2 s
Vi = Uj 1= (T, X7y, T, — Ty — TG, — )

and
— 2 s 2 s
Lo —vj = Lz, o7, ..., 2, —Tj, =T, ..., —T;).

For every graph H = (V, E) of type «,, choose a good sequence
(0,0) = Ho = (Vo, Eo) € Hi = (Vi, E1) C -+ C Hy = (Vi, Ep)

with |E,| = 2n and an additional edge z = (29, 21) such that neither zp nor z; is a relevant
vertex for any edge in E,,. For every graph H of type o, and all 0 <[ < nlet My, (xo,...,zk)
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be a square matrix with pairwise different rows v;_—v; where (v;,v;) € Fg,. Forall0 <1 <n
we define

C:= {Mu,(xo,...,x) | H is a graph of type a,, } .
Furthermore, we define My to be the square matrix with 2n + 1 pairwise different rows

1_v;- — v; where (v;,v;) € E, or (v;,v;) = 2.

Definition 21. Let Ry := () and po(zg,...,xx) := 1. For every 1 <1 < n let R; be the set
of all relevant vertices of the edges in E; \ E;_1. We define

(o, @1, ..., Tk) = ( 11 xé)pl—1($o,ﬂ?1,-~-,$k)-

v, ERY
The polynomial p; is called the relevant polynomial of My, (xg, 1, ..., xk).

Lemma 22. Let H be a graph of type o, let 1 <1 <n and let Mg, € C;. Then we have
that

det(Mp,) = pi + @,

where Py is plus or minus the relevant polynomial of H; and q; is a polynomial that contains
no term of the form +p;.

Proof. We prove the Lemma by induction on [. For [ = 1 it is clear. So assume that
2 <l < n. By the induction hypothesis we have that

det(MHzf1) =pi—1+qi-1
with the properties described in the Lemma. There are five cases:

Case 1: E; \ E;_; has the form (a).

There are two rows

Zo =Vi-— Uy

Z1 =Uj-— Ut

in My, such that v; and —v; are only contained in these two rows and in rows that also
contain a unique vertex of H;. We first do a Laplace expansion of My, along Zy. So we
have that

det(Mp,) = eoxé det(Mu,) + 7,

where 7 is a polynomial, ¢ € {—1,1} and My, is the matrix we obtain from My, when
we delete the row Zy and the 2/-th column. Now we do a Laplace expansion along the
remainders of the row Z;. We get

det(Mp,) = elxé- det(Mp,_,)+0 = 61535'(17171 +q-1)+6,
where § is a polynomial and €; € {—1,1}. So we have that
det(Mp,) = 6061$?l(pl,1 +aq-1)+ eomgé + 7.

Define
D= 60611‘?@ and q; := 6061$?lql,1 + oné»(s + .

It remains to prove that ¢; does not contain a term of the form +p;. First we show that ~
does not contain a term of the form #£p;. If v does not contain a term containing x?l we are
done. So there are terms in v containing x?l. But then not the whole x?l comes from the
rows Zg, Z1. Since outside of Zy and Z; the vertex v; is only contained in rows together with
unique vertices of H;_1, there is a unique variable (i.e. the variable belonging to a unique
vertex) which is not contained in the term with m?l in it. So there are no terms in 7 of the
form +p;.

17



Similarly we can show that there are no terms in eyx ;0 of the form +£p;. By the properties
of ¢;_1 also eoelx?lql_l does not contain a term of the form +p;. So ¢; has the desired
properties.

Case 2: E; \ E;_; has the form (b).

There are two rows

Z() =Vi-— Uy

Z1 = Vs- — Vg

in My, such that v;, —v;,v; and —v; are only contained in these two rows and in rows
together with a unique vertex of H; 1. After doing two Laplace expansions we see that

det(Mpy,) = eoelxéxi(plq +q-1) + eoxﬁé + 7.

Define
e | p— d R (W) l5
Di = €p€17;xyPi—1 and qp 1= €9€1T;Tyq1—1 + €0T;0 + .

If v does not contain a term containing z!z! we are done. Otherwise not the whole zlx!

comes from the rows Zy and Z;. Since outside of Zy and Z; the vertices v; and v; are only
contained in rows together with unique vertices of H;_;, there is a unique variable (i.e. the
variable belonging to a unique vertex) which is not contained in the term with xﬁxi in it.
So there are no terms in 7 of the form +p;. Similarly we can show that €yzl§ does not
contain terms of the form +p;. By the properties of ¢;_1 the polynomial eoelxéméql,l does
not contain a term of the form =+p;.

Case 3: E; \ E;_; has the form (c).

This case is similar to Case 2.
Case 4: E; \ E;—1 has the form (d).
This case is similar to Case 2.

Case 5: E; \ E;_; has the form (e).

There are two rows

ZO = V- — Uy

Z1 = VUs- — V¢

in My, such that indegreey (v;) = 0 and such that v is only contained in rows together with
a unique variable or on the left side. Moreover, for all 0 < [’ < [ we have that one of the
edges in Ey \ Ep_q contains a unique vertex of H;_;. After doing two Laplace expansions
we see that
det(My,) = eperatal (T + qi1) + coxld + .
Define
Pl = coerzizipi1 and g = eoerziwyqi1 + €T;0 + 7.

Note that there is no term in y that contains x! because Zj is the only row in My, containing
x;. So v does not contain a term of the form +p;.

Assume towards a contradiction that there is a term in § containing %. But then 2! contains
an 2! with 0 < I’ < [ maximal from an other row than Z;. If this 2! comes from a row that
also contains a unique variable, then the term containing x! does not contain this unique
variable. So this is not possible. Therefore, the #! comes from a row of the form

V- — Up

forap e {0,1,...,k}\ {¢t}. But then the term does not contain the the unique variable in
p;—1 that has power I’. This is a contradiction. So €yx!d does not contain a term of the form
+p;. By the properties of q,_; the polynomial epe;xtzlg,_1 does not contain a term of the
form +p;. O
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Corollary 23. Let H be a graph of type a,,. For every open set U C RF*1 there is an open
subset Ug C U such that for all (xg,x1,...,2%) € Uy

det(Myg(zg, 21, ...,21)) # 0.

Proof. 1t suffices to prove that

det(Myg(zg, 21,...,21)) Z 0.

By Lemma[22] we have that
det(MHn) =Dn + gn,

where P, is plus or minus the relevant polynomial of H,, and ¢, is a polynomial that contains
no term of the form £p,,. Let z = (v, v;) be the edge in E that does not contain a relevant
vertex of any edge in E,,. Do a Laplace expansion of My along the row

1,’[}1‘, — Uj.

We have that
det(Mpg(xo,...,2%)) = det(My) + v =Dn + ¢n + 7,

where v is a polynomial in which each term either contains x; or x;. Since p,, does not
contain terms with x; or z; in it, we have that

det(MH(.%‘o, PN ,.’I,‘k)) 7_é 0.

This finishes the proof. O

5.2 Graphs of type 3,
Let H = (V,E) € H be a graph of type ,. So H contains at least n + 1 obviously different

loops and cycles Cy = (Vg,, Fcy),C1 = Vou, Ecy )y -, Cn = (Vio,,, Ec, ). Without loss of
generality we can assume that for all 0 < i < n we have that

n
T; € Vci \ U ch

J=0,j#1
Let )
n
|VCO| erVCO T ZacEVcO x T ZxEVCO x
|VC1| Zzchl x ZzeVCl x2 cee ZrGVCl z"
NH(.’L'()“Tl,...,xk;): . . .
|VCn| ZmGVCn x ZmGVcn x2 ce ZxEVCn x"
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Then we have that

2
Vool ®o x5 ...
2
Vel 1 zf ... 2}
det(Ng(xo,x1, ... ,2n,0,...,0)) =det )
2
Ve,| zn zz ... al
T x3 ...l
2
T i ... z}
. : ; n
— E : 1+2 Ti-1 L1 - Ty
- (71) |VC'z|det 2 n
o Ti4+1 le—Q—l J,‘H_l
- n
Ti42 .’El+2 l‘l+2
Ty 2 xn

n

=D (V'WVal [I @—z)#o.

1=0 0<i<j<n
W5l
Therefore, det(Ng(zo,...,71)) Z 0. So, for every open set U C R¥*! there is an open set

Ug C U such that for all (zg,...,xx) € Uy

det(NH(.To, N ,xk)) 79 0.

5.3 Graphs of type v,

Let H = (V,E) € H be a graph of type v,. Let Vj C V be a maximal subset such that
the direct successors of the vertices in V|, are pairwise different. Since H contains at least
n solitary paths there is a set Wy C V' \ V) which contains at least n points. We define the

matrix Ly (zo,x1,...,2x) belonging to H as follows:
Vjo — Vig
Vj, Uiy
LH(.ro,...,l‘k): : 5

,anfl - Uinfl

where for all 0 <1 < n — 1 the vertices v;, € Vp and v;, € Wy have the same successor in H
and the vertices vj,, 0 <1 < n — 1, are pairwise different.

Lemma 24. Let H = (V, E) € H be a graph of type v, and let
LH(I()a s axk)
be a matriz belonging to H. Then we have that det(Lyg(xg, z1,...,2)) Z 0.
Proof. Let Vy and Wy be as above. Without loss of generality we assume that z;, = x; for

all 0 <[ <n-—1. Since Vo N Wy # 0 we have that Vo C {@p41,...,7x}. Let Tpi1 = Tpio =
--» =12, = 0. Then we have that

o g g
1 x? b
LH($U7x1,...,£Un7O,...7O): .
2
In—1 Tp_1 Ty_y

This is a Vandermonde matrix. Its determinant is not constantly equal to zero. Therefore,
det(Ly(zo,z1,...,2x)) Z 0. O
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6 Magic sets for O,

To construct a magic set for Q,, we could redo the construction from Section@ However,
this is not necessary:

Fact 25. Let M C R be a magic set for Py, and let f € P,. Then we have that |f[M]| >
n+ 1.

Proof. Let M = {my,ma,...,mi} C R be a magic set for P,, and assume towards a con-
tradiction that there is an f € P, with |f[M]| < n. Note that k > 2n + 1 by Section[2]
So, there is a non-constant polynomial g € P,, with ¢ # f and g[{mi,...,m,}] = f[M].
Therefore, f[M] C g[M] but f # g which contradicts the assumption that M is a magic set
for P,. O]

Lemma 26. FEvery magic set for P, is also a magic set for Q.

Proof. Let M C R be a magic set for P,, and let f,g € Q,, with f[M] C g[M]. Let

f(@) = fo(z) +ifi(z) and g(x) = go(x) +igi(x)

where fo, f1,90 and g; are polynomials of degree at most n with real coefficients. By our
assumption we have that

fo[M] € go[M] and  fi[M] C g:[M],

because f[M] C g[M] and M contains only real numbers. Note that fo or fi is not constant.
Without loss of generality we assume that f; is not constant. Since fi[M] C ¢1[M], g1 is
also not constant. So, we have that f; = g¢g; because M is a magic set for P,. If fy
is also not constant, it follows that fy = go and therefore f = g. So, assume that f
is constantly equal to ¢ € R. By Fact there are my, mo,...,mu4+1 € M such that
filmy), fi(ma), ..., fi(m,41) are pairwise different. Since f[M] C g[M] there are pairwise
different m;,, m4,,...,m;,,., € M such that for 1 <k <n +1 we have

c+ifi(mk) = go(mi,) +igi(mi,) = filme) = gi1(mi,) Ac= go(mi,).

So, go(x) — ¢ is a polynomial of degree at most n that has at least n 4+ 1 zeros. This shows
that gg is constantly equal to ¢. Therefore we have fy = gg which implies f = g. O
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