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Abstract

Let Pn be the family of all real, non-constant polynomials with degree at most n and
let Qn be the family of all complex, non-constant polynomials with degree at most n.
A set S ⊆ R is called a set of range uniqueness (SRU) for a family F ∈ {Pn,Qn} if
for all f, g ∈ F , f [S] = g[S] ⇒ f = g. And S is called a magic set if for all f, g ∈ F ,
f [S] ⊆ g[S] ⇒ f = g. In this paper we will show that there are magic sets for Pn and
Qn of size s for every s ≥ 2n+1. However, there are no SRUs of size at most 2n for Pn

and Qn. Moreover we will show that SRUs and magic sets are not the same by giving
examples of SRUs for P2 and P3 that are not magic.
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1 Introduction

Let F be a set of functions with a common domain X and a common range Y . A set S ⊆ X
is called a set of range uniqueness (SRU) for F if the following holds: For all f, g ∈ F

f [S] = g[S]⇒ f = g.

And S is called a magic set for F if for all f, g ∈ F

f [S] ⊆ g[S]⇒ f = g.

Note that every magic set is also an SRU. The existence of magic sets and SRUs has already
been studied for several families of functions:

• Berarducci and Dikranjan proved in [1] that under the continuum hypothesis (CH)
there exists a magic set for the family Cn(R) of all nowhere constant, continuous
functions. Halbeisen, Lischka and Schumacher showed in [6] that we can weaken the
requirement by replacing CH by the assumption that the union of less than continuum
many meager sets is meager, i.e. add(M) = c. However, the existence of a magic set
for Cn(R) is not provable in ZFC as Ciesielski and Shelah proved in [3].

• In [2], Burke and Ciesielski proved that SRUs always exist for the family of all
Lebesgue-measurable functions on R.

• In [4], Diamond, Pomerance and Rubel constructed SRUs for the family Cω(C) of
entire functions.

• In [5] the authors of this paper proved that there exist SRUs for the family Pn of all
real, non-constant polynomials of degree at most n of size 2n+ 1 but none of size 2n.

∗Partially supported by SNF grant 200021 178851.
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In this paper we consider magic sets for the family Pn of all real, non-constant polynomials
of degree at most n and for the family Qn of all complex, non-constant polynomials of degree
at most n. We will show that there exist no SRUs, and therefore also no magic sets, of size
at most 2n for Pn and Qn. Then we will give examples of SRUs for P2 and P3 that are not
magic. And finally we will answer one of the open questions in [5] and show that for every
s ≥ 2n+ 1 there is a magic set of size s for the families Pn and Qn.

2 There are no SRUs of size at most 2n for Pn

In [5] we have already shown that there are no SRUs of size 2n: For points x0 < x1 < · · · <
x2n we constructed two functions f, g ∈ Pn such that f = 1− g and

f(x2i) = g(x2i−1) and f(x2i−1) = g(x2i)

for all 1 ≤ i < n. In a similar way we can prove that there are no SRUs of size 2n− 1:

Lemma 1. There are no SRUs of size 2n− 1.

Proof. Let 0 < x1 < x2 = x3 < x4 < · · · < x2n. As in [5] define

Y n := {(y1, y2, . . . , yn) ∈ Rn | yi ∈ {x2i−1, x2i} for all 1 ≤ i ≤ n}

and

An = An(x1, x2, . . . , x2n) =


x1 + x2 x21 + x22 . . . xn1 + xn2
x3 + x4 x23 + x24 . . . xn3 + xn4

...
...

. . .
...

x2n−1 + x2n x22n−1 + x22n . . . xn2n−1 + xn2n


For all y1, y2, . . . , yn ∈ R let

Vn(y1, y2, . . . , yn) =


y1 y21 . . . yn1
y2 y22 . . . yn2
...

...
. . .

...
yn y2n . . . ynn

 .

By [5, Lemma 23] we have that

det(An(x1, x2, x3, . . . , x2n)) =
∑

(y1,y2,...,yn)∈Y n

det(Vn(y1, y2, . . . , yn))

=
∑

(y1,y2,...,yn)∈Y n

y1 6=y2

det(Vn(y1, y2, . . . , yn)) > 0,

because det(Vn(y1, y2, . . . , yn)) > 0 whenever |{y1, y2, . . . , yn}| = n. So, as in [5] we can
conclude that there are functions f, g ∈ Pn with

f(x2i) = g(x2i−1) and f(x2i−1) = g(x2i)

and therefore, there does not exist an SRU of size 2n− 1.

Remark 2. The polynomials f and g we constructed in [5] and in Lemma 1 have degree n.
To see this, note that for all 1 ≤ i ≤ n we have that

(f − g)(x2i−1) = −(f − g)(x2i).

By the intermediate value theorem, (f − g)(x) has at least n pairwise different zeros. Since
f−g 6≡ 0 and since by construction f−g has degree at most n, it follows that deg(f−g) = n.
By construction f − g = 1− 2g. Therefore, deg(f) = deg(g) = n.
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Example 3. Let S :=
{

3
5 ,

11
10 ,

23
10 , 5,

26
5 ,

63
10 , 9

}
. In the following picture we can see two

polynomials f and g of degree 4 with f [S] = g[S] but f 6= g. These polynomials indicate
that S is not an SRU for P4.
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Proposition 4. There does not exist an SRU of size less than 2n− 1.

Proof. Let 1 ≤ s < 2n − 1. Let x1 < x2 < · · · < xs. We want to show that S :=
{x1, x2, . . . , xs} is not an SRU for Pn.

Case 1: s is an even number.

Choose {xs+1, xs+2, . . . , x2n} ⊆ R with xs < xs+1 < xs+2 < · · · < x2n. By [5, Lemma 23]
we can find two functions f, g ∈ Pn with

f(x2i) = g(x2i−1) and f(x2i−1) = g(x2i)

for all 1 ≤ i ≤ n. Therefore we have that

f [S] = g[S] and f [{xs+1, xs+2, . . . , x2n}] = g[{xs+1, xs+2, . . . , x2n}].

So S is not an SRU for Pn.

Case 2: s is an odd number.

Choose {xs+1, xs+2, . . . , x2n−1} ⊆ R with xs < xs+1 < xs+2 < . . . x2n−1. By [5, Lemma 23]
we can find two functions f, g ∈ Pn with

f [S] = g[S] and f [{xs+1, xs+2, . . . , x2n−1}] = g[{xs+1, xs+2, . . . , x2n−1}].

So S is not an SRU for Pn.

3 There are no SRUs of size at most 2n for Qn

We define Qn to be the set of all non-constant polynomials of degree at most n with complex
coefficients. Let S := {x1, x2, . . . , x2n} ⊆ C be a set of cardinality 2n. Our goal is to find
two polynomials f, g ∈ Qn with f [S] = g[S] but f 6= g. By rotating the set S around the
origin of the complex plane we can assume without loss of generality that all real parts of
the points in S are pairwise different. By renaming the elements in the set, we can assume
that

Re(x1) < Re(x2) < · · · < Re(x2n).

Define
Y n := {(y1, y2, . . . , yn) ∈ Cn | yi ∈ {x2i−1, x2i} for all 1 ≤ i ≤ n}

and let πn be the set of all permutations of {1, 2, . . . , n}. By translating the set S to
the right in the complex plane we can also assume that for all (y1, y2, . . . , yn) ∈ Y n, all
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M0 ⊆ {1, 2, . . . , n} and all M1 ⊆ [{1, 2, . . . , n}]2 (where [{1, 2, . . . , n}]2 is the family of all
2-element subsets of {1, 2, . . . , n})∣∣∣∣ ∏

k∈M0

Im(yk)
∏

1≤i<j≤n
{i,j}∈M1

(
Im(yj)− Im(yi)

)∣∣∣∣ ≤
≤ 1

2n2(n
2)

∏
k∈M0

Re(yk)
∏

1≤i<j≤n
{i,j}∈M1

(
Re(yj)− Re(yi)

)
.

(1)

We will show that there are f, g ∈ Qn with

f(x2i) = g(x2i−1) and f(x2i−1) = g(x2i)

for all 1 ≤ i ≤ n. The two polynomials will have the form

g(x) =

n∑
j=1

bjx
j with bj ∈ C for j = 1, 2, . . . , n

and
f(x) = 1− g(x).

In order to prove that such polynomials f and g exist we have to show that the following
linear equation is solvable:

x1 + x2 x21 + x22 . . . xn1 + xn2
x3 + x4 x23 + x24 . . . xn3 + xn4

...
...

. . .
...

x2n−1 + x2n x22n−1 + x22n . . . xn2n−1 + xn2n


︸ ︷︷ ︸

=:An


b1
b2
...
bn

 =


1
1
...
1

 .

To do this we have to show that det(An) 6= 0 for every n ∈ N∗. By [5, Lemma 23] we have
that

det(An) =
∑

(y1,...,yn)∈Y n

det(Vn(y1, y2, . . . , yn)),

where

Vn(y1, y2, . . . , yn) =


y1 y21 . . . yn1
y2 y22 . . . yn2
...

...
. . .

...
yn y2n . . . ynn

 .

Note that

det(Vn(y1, y2, . . . , yn)) =
( n∏
k=1

yk

)( ∏
1≤i<j≤n

(yj − yi)
)
.

In particular we have that

Re(det(Vn(y1, . . . , yn))) =
( n∏
k=1

Re(yk)
)( ∏

1≤i<j≤n

(Re(yj)− Re(yi))
)

+R

where each summand in R has the form

±
∏

k∈M0

Im(yk)
∏

1≤i<j≤n
{i,j}∈M1

(
Im(yj)− Im(yi)

) ∏
k 6∈M0

Re(yk)
∏

1≤i<j≤n
{i,j}6∈M1

(
Re(yj)− Re(yi)

)

where M0 ⊆ {1, 2, . . . , n} and M1 ⊆ [{1, 2, . . . , n}]2 are not both empty and M0 ∪M1 has

even cardinality. Since R contains less than 2n2(n
2) summands and by (1) we have that

Re(det(Vn(y1, y2, . . . , yn))) > 0
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for all (y1, . . . , yn) ∈ Y n. Therefore

det(An(y1, y2, . . . , yn)) 6= 0.

This implies that there are f, g ∈ Qn with f [S] = g[S] but f 6= g.

Note that as in Section 2 we can show that there are no SRUs for Qn of size less than 2n.

4 SRUs that are not magic for P2 and P3

Let Pn be the family of all real, non-constant polynomials of degree at most n. For the
family P1 magic sets and SRUs are the same: Let S ⊆ R and assume that S is an SRU. If S
were not magic, there were two functions f, g ∈ P1 with f [S] ⊆ g[S] but f 6= g. But since f
and g are both bijective, it follows that f [S] = g[S] which then implies that f = g because
S is an SRU. But we assumed that f 6= g, which is a contradiction.

However, the following Lemmas show that magic sets and SRUs for P2 and P3 are not the
same:

Lemma 5. The set S :=
{
−2,−1, 2,

√
8,
√

14−
√

8
}

is an SRU for P2 but not a magic

set.

Proof. The set S is not a magic set because for f(x) := x2 and g(x) := 2x2 − x− 2 we have
that

f [S] =
{

1, 4, 8, 14−
√

8
}
⊆
{

1, 4, 8, 14−
√

8, 26− 4
√

2−
√

14−
√

8

}
= g[S].

On the other hand, we now show that S = {x1, x2, x3, x4, x5} is an SRU for P2. First of all
note that f [S] = g[S] with |f [S]| ≤ 2 immediately implies f = g = const. Observe also that
there is no polynomial f ∈ P2 with |f [S]| = 3. So we only have to deal with the case that
|f [S]| ≥ 4. Assume towards a contradiction that there are

f(x) = a0 + a1x+ a2x
2 and g(x) = b0 + b1x+ b2x

2

with f [S] = g[S] , |f [S]| = |g[S]| ≥ 4 and f 6= g. In other words, f and g satisfy a linear
equation of the form


1 x1 x21 −1 −xi1 −x2i1
1 x2 x22 −1 −xi2 −x2i2
1 x3 x23 −1 −xi3 −x2i3
1 x4 x24 −1 −xi4 −x2i4
1 x5 x25 −1 −xi5 −x2i5




a0
a1
a2
b0
b1
b2

 =


0
0
0
0
0


with {i1, i2, . . . , i5} ⊆ {1, 2, 3, 4, 5} and |{i1, . . . , i5}| ≥ 4. By checking all cases, one finds
that the only solution of such a linear equation with f 6= g is

f(x) = 1 +
1

2
x2 and g(x) = −1

2
x+ x2.

But f [S] 6= g[S]. So S is indeed an SRU.

Lemma 6. The set

S :=

{
1, 2, 4, 10, 31,

1

2

(
3 +
√

68581
)
,

1

2

(
3−

√
550558 + 13347

√
68581

)}
is an SRU for P3 but not a magic set.
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Proof. The set S is not a magic set for P3 because for

f(x) = 18(x− 1)(x− 2) and g(x) := (x− 1)(7x2 + 120x− 160)

we have that f [S] ( g[S]. Observe also that there is no polynomial f ∈ P3 with |f [S]| = 3.
So we only have to deal with the case that |f [S]| ≥ 4.

Assume towards a contradiction that there are

f(x) = a0 + a1x+ a2x
2 + a3x

3 and g(x) = b0 + b1x+ b2x
2 + b3x

3

with f [S] = g[S] , |f [S]| = |g[S]| ≥ 4 and f 6= g. In other words, f and g satisfy a linear
equation of the form

1 x1 x21 x31 −1 −xi1 −x2i1 −x3i1
1 x2 x22 x32 −1 −xi2 −x2i2 −x3i2
1 x3 x23 x33 −1 −xi3 −x2i3 −x3i3
1 x4 x24 x34 −1 −xi4 −x2i4 −x3i4
1 x5 x25 x35 −1 −xi5 −x2i5 −x3i5
1 x6 x26 x36 −1 −xi6 −x2i6 −x3i6
1 x7 x27 x37 −1 −xi7 −x2i7 −x3i7





a0
a1
a2
a3
b0
b1
b2
b3


=



0
0
0
0
0
0
0


with {i1, i2, . . . , i7} ⊆ {1, 2, 3, 4, 5, 6, 7} and |{i1, . . . , i7}| ≥ 4. By checking all cases, one
finds that the only solution of such a linear equation with f 6= g is

f(x) =
18

7
x2 − 54

7
x− 124

7
and g(x) = x3 +

113

7
x2 − 40x.

But f [S] 6= g[S]. So S is indeed an SRU.

In the above Lemma, the two polynomials showing that the set S is not magic for P3, are of
degree 2 and 3. In the next Lemma we show that there is an SRU S and two polynomials
of degree 3 showing that S is not magic.

Lemma 7. The set
S := {1, 2, 5, 12, 23, 27, α}

with

α =
8

3
− 13

3
3
√

3197764− 9
√

126243143179
− 1

3

3

√
3197764− 9

√
126243143179

is an SRU for P3 but not a magic set.

Proof. The set S is not a magic set for P3 because for

f(x) = 21(x− 1)(x− 2)(x− 5) and g(x) := (x− 1)(−1150x2 + 17213x− 13656)

we have that f [S] ( g[S]. Observe also that there is no polynomial f ∈ P3 with |f [S]| = 3.
So we only have to deal with the case that |f [S]| ≥ 4.

Assume towards a contradiction that there are

f(x) = a0 + a1x+ a2x
2 + a3x

3 and g(x) = b0 + b1x+ b2x
2 + b3x

3

with f [S] = g[S] , |f [S]| = |g[S]| ≥ 4 and f 6= g. In other words, f and g satisfy a linear
equation of the form

1 x1 x21 x31 −1 −xi1 −x2i1 −x3i1
1 x2 x22 x32 −1 −xi2 −x2i2 −x3i2
1 x3 x23 x33 −1 −xi3 −x2i3 −x3i3
1 x4 x24 x34 −1 −xi4 −x2i4 −x3i4
1 x5 x25 x35 −1 −xi5 −x2i5 −x3i5
1 x6 x26 x36 −1 −xi6 −x2i6 −x3i6
1 x7 x27 x37 −1 −xi7 −x2i7 −x3i7





a0
a1
a2
a3
b0
b1
b2
b3


=



0
0
0
0
0
0
0


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with {i1, i2, . . . , i7} ⊆ {1, 2, 3, 4, 5, 6, 7} and |{i1, . . . , i7}| ≥ 4. By checking all cases, one
finds that the only solution of such a linear equation with f 6= g is

f(x) =
6933

575
− 357

1150
x+

84

575
x2 − 21

1150
x3 and g(x) =

30869

1150
x− 18363

1150
x2 + x3.

But f [S] 6= g[S]. So S is indeed an SRU.

5 Magic sets for Pn

In this section we will show that for every s ≥ 2n + 1 there is a magic set of size s for the
set Pn of all real, non-constant polynomials of degree at most n.

Remark 8. For n ≥ 1 the condition that Pn does not contain any constant polynomials
is necessary for the existence of a magic set. Otherwise let M ⊆ R be a non-empty set,
f(x) ≡ c for a c ∈ R and let g be a non-constant polynomial with g(m) = c for an m ∈M .
Then we have that

{c} = f [M ] ⊆ g[M ]

but f 6= g.

First of all we want to give some general definitions:

Definition 9. A directed graph H is a pair (V,E), where V is a set (the vertices of H) and
E ⊆ V × V (the edges of H). For every v ∈ V we define

indegreeH(v) := |{v′ ∈ V | (v′, v) ∈ E}|,
outdegreeH(v) := |{v′ ∈ V | (v, v′) ∈ E}| and

degH(v) := indegreeH(v) + outdegreeH(v).

Definition 10. Let H = (V,E) be a directed graph.

• A cycle is a subgraph C = (VC , EC) of H with VC = {c0, c1, . . . , cm−1} and EC =
{(ci, c(i+1)modm) | i ∈ N} for an m ≥ 2.

• A loop is a subgraph L = (VL, EL) of H with VL = {w} and EL = {(w,w)}.

• A solitary path is a directed path P = ({v0, v1, . . . , vm}, {(vi, vi+1) | i = 0, 1, . . . ,m−
1}) with indegreeH(v0) = 0, degH(vm) > 2 and degH(vi) = 2 for all 1 ≤ i ≤ m− 1.

Definition 11. Let l ∈ N. Cycles and loops C0 = (VC0
, EC0

), . . . , Cl = (VCl
, ECl

) are called
obviously different if for every 0 ≤ i ≤ l there is a

yi ∈ VCi \

 l⋃
j=0,j 6=i

VCj

 .

Definition 12. Let H be a directed graph and let H1 and H2 be two subgraphs of H. Then
H1 and H2 are called undirected edge disjoint iff H1 and H2 do not share any edges even if
we replace all edges in H1 and H2 by undirected edges.

Let k, n ∈ N∗ with k ≥ 2n and let {x0, x1, . . . , xk} ⊆ R. For all 0 ≤ i ≤ k let vi :=
(xi, x

2
i , . . . , x

n
i ). The following family H will play a crucial role in the construction of magic

sets of size k + 1 for the set Pn.

Definition 13. Let H be the family of all directed graphs H = (V,E) with vertex set
V = {v0, v1, . . . , vk} and a set E of directed edges such that for each v ∈ V we have that

outdegreeH(v) ≥ 1.
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We now partition the family H into three parts, namely the graphs of type αn, βn and γn.

Definition 14. A graph H ∈ H is of type

• γn iff there are more than n− 1 solitary paths in H.

• βn iff there are more than n obviously different loops and cycles in H and H is not of
type γn.

• αn iff H is neither of type γn nor of type βn.

In Section 5.1, we will consider graphs of type αn and we will show in Corollary 23, that for
every graph H = (V,E) of type αn, there is a (2n+ 1)× (2n+ 1)-matrix

MH(x0, x1, . . . , xk) =


1 vi0 −vj0
1 vi1 −vj1
...

...
...

1 vi2n −vj2n


with il, jl ∈ {0, 1, . . . , k} (for all 0 ≤ l ≤ 2n) and (vil , vjl) ∈ E (for all 0 ≤ l ≤ 2n), such that
for all open sets U ⊆ Rk+1 there is an open set UH ⊆ U with

det
(
MH(x0, x1, . . . , xk)

)
6= 0 (2)

for all (x0, x1, . . . , xk) ∈ UH .

Concerning graphs H = (V,E) of type βn, let C0 = (VC0
, EC0

), . . . , Cn = (VCn
, ECn

) be
n + 1 obviously different loops and cycles. Let xi0 , xi1 , . . . , xin be n + 1 vertices of H such
that for each 0 ≤ l ≤ n,

xil ∈ VCl
\

 n⋃
m=0,m 6=l

VCm

 .

We will show in Section 5.2 that for every open set U ⊆ Rk+1 there is an open set UH ⊆ U
such that for all (x0, x1, . . . , xk) ∈ UH we have

det
(
NH(x0, x1, . . . , xk)

)
6= 0 , (3)

where

NH(x0, x1, . . . xk) =


|VC0
|
∑

x∈VC0
x

∑
x∈VC0

x2 . . .
∑

x∈VC0
xn

|VC1 |
∑

x∈VC1
x

∑
x∈VC1

x2 . . .
∑

x∈VC1
xn

...
...

...
. . .

...
|VCn
|
∑

x∈VCn
x
∑

x∈VCn
x2 . . .

∑
x∈VCn

xn

 .

In Section 5.3 we will show that for every graph H of type γn there is an n× n-matrix

LH(x0, x1, . . . , xk) =


vj0 − vi0
vj1 − vi1

...
vjn−1

− vin−1


such that

• jl, il ∈ {0, 1, . . . , k} for all 0 ≤ l ≤ n− 1;

• vil and vjl are different but have the same successor in H and

• for all open sets U ⊆ Rk+1 there is an open set UH ⊆ U such that for all (x0, x1, . . . , xk) ∈
UH we have that

det
(
LH(x0, x1, . . . , xk)

)
6= 0 . (4)
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As a consequence of (2), (3) and (4) and since |H| <∞, we can find a point (m0,m1, . . . ,mk) ∈
Rk+1 such that for all H ∈ H of type αn

det(MH(m0, . . . ,mk)) 6= 0,

for all H ∈ H of type βn
det(NH(m0, . . . ,mk)) 6= 0,

and for all H ∈ H of type γn

det(LH(m0, . . . ,mk)) 6= 0.

This leads to the following

Theorem 15. The set M := {m0,m1, . . . ,mk} is a magic set for Pn.

Proof. Assume towards a contradiction that M is not a magic set for Pn. So, there are two
non-constant polynomials

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

and
g(x) = b0 + b1x+ b2x

2 + · · ·+ bnx
n

such that f [M ] ⊆ g[M ] but f 6= g. Let H = (V,E) with

V := M and E := {(mi,mj) | f(mi) = g(mj)}.

Note that H ∈ H. There are three cases:

Case 1: H is of type αn.

In this case

MH(m0,m1, . . . ,mk) =


1 vi0 −vj0
1 vi1 −vj1
...

...
...

1 vi2n −vj2n


has non-zero determinant. Note that for all 0 ≤ l ≤ n we have that

f(mil) = g(mjl) ⇐⇒
(a0 − b0) + (a1mil + · · ·+ anm

n
il

)− (b1mjl + · · ·+ bnm
n
jl

) = 0.

So, f and g satisfy the following system of linear equations:

MH(m0, . . . ,mk) ·



a0 − b0
a1
...
an
b1
...
bn


=



0
0
...
0
0
...
0


.

Since det (MH(m0, . . . ,mk)) 6= 0, this equation has only the trivial solution. Therefore,
f = g, which is a contradiction to our assumption that M is not a magic set.

Case 2: H is of type βn.

In this case

NH(m0, . . . ,mk) =


|VC0
|
∑

x∈VC0
x

∑
x∈VC0

x2 . . .
∑

x∈VC0
xn

|VC1 |
∑

x∈VC1
x

∑
x∈VC1

x2 . . .
∑

x∈VC1
xn

...
...

...
. . .

...
|VCn
|
∑

x∈VCn
x
∑

x∈VCn
x2 . . .

∑
x∈VCn

xn


9



with n+1 obviously different cycles C0 = (VC0
, EC0

), C1 = (VC1
, EC1

), . . . , Cn = (VCn
, ECn

).
For all 0 ≤ i ≤ n we have that ∑

m∈VCi

(f − g)(m) = 0.

In other words, we have to solve the following system of linear equations:

NH(m0, . . . ,mk) ·


a0 − b0
a1 − b1

...
an − bn

 =


0
0
...
0

 .

Since det(NH(m0, . . . ,mk)) 6= 0 this equation has only the trivial solution. Therefore, f = g,
which is again a contradiction.

Case 3: H is of type γn.

In this case

LH(m0,m1, . . . ,mk) =


vj0 − vi0
vj1 − vi1

...
vjn−1

− vin−1


has non-zero determinant. For all 0 ≤ l ≤ n − 1 the points mil and mjl have the same
successors in H. Therefore,

f(mjl) = f(mil) ⇐⇒ a1(mjl −mil) + a2(m2
jl
−m2

il
) + · · ·+ an(mn

jl
−mn

il
) = 0

for all 0 ≤ l ≤ n− 1. In other words, f satisfies the following system of linear equations:

LH(m0,m1, . . . ,mk) ·


a1
a2
...
an

 =


0
0
...
0

 .

Since det(LH(m0,m1, . . . ,mk)) 6= 0 this equation has only the trivial solution. Therefore,
f is a constant polynomial. This is a contradiction.

5.1 Graphs and matrices of type αn

Remark 16. From now on we assume that there is at least one solitary path in every graph
of type αn. If a graph H of type αn has no solitary path, it is of type 1n (i.e., it has at most
n obviously different cycles and loops) and we can find a suitable matrix as in [5].

Definition 17. Let G = (V,E) be a graph. Assume, that for each edge in E either the
foot or the head is marked. The marked vertices are called relevant. Then v ∈ V is called a
unique vertex iff

indegreeG(v) = 0, outdegreeG(v) = 1

and v is the relevant vertex of the edge incident with v.

Definition 18. Let n ∈ N∗ and let H = (V,E) be a graph of type αn with |V | ≥ 2n+ 1. A
good sequence of length m ∈ N of H is a sequence of graphs

(∅, ∅) = H0 = (V0, E0) ⊆ H1 = (V1, E1) ⊆ · · · ⊆ Hm = (Vm, Em) ⊆ H = (V,E)

such that for all 0 ≤ l < m the set El+1 \ El has one of the following forms:

(a) El+1 \ El = {(vi, vj), (vj , vt)} with 0 ≤ i, j, t ≤ k, i 6= j and j 6= t. Moreover, if vj is
contained in an edge in El together with a vs, then vs is a unique vertex of Hl. The
relevant vertex of both edges (vi, vj) and (vj , vt) is vj .
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(b) El+1 \ El = {(vi, vj), (vs, vt)} with 0 ≤ i, j, s, t ≤ k, i 6= j, i 6= t and s 6= t. Moreover,
if vt or vi is contained in an edge in El together with a vp then vp is a unique vertex
of Hl. The relevant vertex of (vi, vj) is vi and the relevant vertex of (vs, vt) is vt.

(c) El+1 \El = {(vi, vi), (vj , vt)} with 0 ≤ i, j, t ≤ k and j 6= t. Moreover, if vi and vj are
contained in an edge in El together with a vs, then vs is a unique vertex of Hl. The
relevant vertex of (vi, vi) is vi and the relevant vertex of (vj , vt) is vj .

(d) El+1 \El = {(vi, vi), (vt, vj)} with 0 ≤ i, j, t ≤ k and j 6= t. Moreover, if vi and vj are
contained in an edge in El together with a vs, then vs is a unique vertex of Hl. The
relevant vertex of (vi, vi) is vi and the relevant vertex of (vt, vj) is vj .

(e) El+1 \ El = {(vi, vj), (vs, vt)} with i 6= j and s 6= t. We have that indegreeH(vi) = 0
and for all 0 ≤ q ≤ l we have that Eq \Eq−1 contains an edge with a unique vertex of
Hl. Moreover we assume that if there is an edge in El containing vt and a vp we have
that either vp is a unique vertex of Hl or (vt, vp) ∈ El. The relevant vertex of (vi, vj)
is vi and the relevant vertex of (vs, vt) is vt.

Lemma 19. Let n ∈ N∗. Every graph H = (VH , EH) of type αn with |VH | ≥ 2n+ 1 has a
good sequence

(∅, ∅) = H0 = (V0, E0) ⊆ H1 = (V1, E1) ⊆ · · · ⊆ Hm = (Vm, Em) ⊆ H

of length m with |Em| ≥ 2n and an edge z = (z0, z1) /∈ Em such that neither z0 nor z1 is a
relevant vertex of any edge in Em.

Proof. Let H = (VH , EH) be a graph of type αn. If there is a vertex v ∈ VH with
outdegreeH(v) ≥ 2 and indegreeH(v) = 0 remove all but one edge containing v. The
resulting graph is still of type αn. Let L be the set of all isolated loops of H. To be more
precise

L := {({v}, {(v, v)}) ⊆ H | degH(v) = 2}.
Let T = {S0, S1, . . . , Sl} (for an l ∈ N) be the set of all solitary paths in H. Let 0 ≤ i ≤ l.
If Si ends in a vertex v in which only solitary paths end we have that (v, v) ∈ EH . Add
this edge to Si iff this loop has not already been added to a Sj with j < i. Define Z := S0.
Note that |T | ≥ 1 by Remark 16. Remove Z from T . Let S be the set of all first edges of
the remaining solitary paths in T that contain an odd number of edges.

Step 1: Removing isolated loops with solitary paths.

Assume that S 6= ∅ and L 6= ∅. Let s = (s0, s1) ∈ S and let t = (t0, t0) ∈ L. Add s, t and the
corresponding edges to H0. Call the resulting graph H1. Note that E1 \E0 has the form (c)
and that s contains a unique vertex. Remove t from L and remove s from S. The relevant
vertex of s is s0 and the relevant vertex of t is t0. Redo this construction until either S = ∅
or L = ∅.

From now on we assume that L = ∅. The construction in the other case is similar. Let

(∅, ∅) = H0 ⊆ H1 ⊆ · · · ⊆ Hm0

with m0 ∈ N be the good sequence we constructed so far.

Step 2: Adding cycles.

Let C0 = (VC0
, EC0

), C1 = (VC1
, EC1

), . . . , Cl1 = (VCl1
, ECl1

) be a maximal family of pair-
wise disjoint cycles in H. If there is a cycle C = Cj for a 0 ≤ j ≤ l1 that contains a vertex
to which Z points, assume that C = Cl1 . This is important because we might have to add
edges of the form (e). Assume that we have already added C0, C1, . . . , Ci−1 for a 0 ≤ i ≤ l1
to Hm1 and defined a good sequence

(∅, ∅) = H0 ⊆ H1 ⊆ · · · ⊆ Hm′

for an m′ ≥ m0. Now we want to add Ci. If the solitary path Z points to a vertex in VCi

mark this vertex v0 with a cross.
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Case 1: There is a vertex v0 ∈ VCi
that is marked with a cross.

If S 6= ∅ let Mi ⊆ S be maximal with 0 ≤ |Mi| + 1 ≤ |ECi | and such that |Mi| + |ECi | is
even. If S = ∅ let Mi = ∅. Remove Mi from S.

Case 1.1: |Mi|+ |ECi
| is even.

There are two subcases:

• Mi 6= ∅.
Let e = (e0, e1) be the first edge in ECi

coming after v0 and let s = (s0, s1) ∈ Mi.
Add e, s and the corresponding vertices to Hm′ . We call the resulting graph Hm′+1.
Note that Em′+1 \ Em′ is of the form (b). Remove e and s from ECi and Mi. The
relevant vertex of e is e1 and the relevant vertex of s is s0. Note that e1 6= v0 because
|Mi|+ 1 ≤ |ECi

|. In particular v0 is not a relevant vertex of any edge in Hm′+1.

• Mi = ∅.
There is a vertex w ∈ VCi

\ {v0} such that both edges e = (e0, e1) and f = (f0, f1)
containing w are still in ECi . We assume that w is the first vertex with this property
coming after v0 in Ci. Add e, f and the corresponding vertices to Hm′ . We call the
resulting graph Hm′+1. Note that Em′+1 \ Em′ is of the form (a). Remove e and f
from ECi

. The relevant vertex of e and of f is w. Note that v0 is not a relevant vertex
of any edge in Hm′+1.

Case 1.2: |Mi|+ |ECi
| is odd.

Note that we are only in this case when Mi = ∅ and Ci is still the original cycle. Let
y = (y0, y1) be the first edge in ECi coming after v0. By the assumption in Case 1 we have
in particular that i = l1. So there is no cycle Ci+1. If |EZ | is even, add y, the third last
(or if this is not possible the first) edge f = (f0, f1) of Z and the corresponding vertices to
Em′ . We call the resulting graph Hm′+1. Note that Em′+1 \Em′ has the form (b). Remove
f from Z and y from ECi . The relevant vertex of y is y1 and the relevant vertex of f is f0.
If there is no cycle Ci+1 and |EZ | is odd, remove y from ECi .

Case 2: There is no vertex in VCi
that is marked with a cross.

Let Mi ⊆ S be maximal with |Mi| ≤ |ECi
|. Remove Mi from S.

Case 2.1: |Mi|+ |ECi
| is odd.

Note that in this case |Mi| < |ECi
| and therefore, S = ∅ (we removed Mi from S). So for

all j > i we will have that Mj = ∅.

• There is a j > i such that |ECj
| = |ECj

|+ |Mj | is odd.

Let e = (e0, e1) ∈ ECi
be an arbitrary edge. Note that Ci is still equal to the original

cycle. Otherwise we would not be in this subcase. Let f = (f0, f1) ∈ ECj
be an

arbitrary edge. That is, if possible, ending in a vertex that is marked with a cross.
Add e, f and the corresponding edges to Hm′ . We call the resulting graph Hm′+1.
Note that Em′+1 \Em′ is of the form (b). Remove e from ECi and remove f from ECj .
The relevant vertex of e is e1 and the relevant vertex of f is f0.

• There is no j > i such that |ECj
| = |ECj

|+ |Mj | is odd.

If |EZ | is even, let e = (e0, e1) ∈ ECi
be an arbitrary edge and let f = (f0, f1) be the

third last (or if this is not possible the first) edge in Z. Add e, f and the corresponding
vertices to Hm′ . Call the resulting graph Hm′+1. Note that Em′+1 \Em′ has the form
(b). Remove f from Z and e from ECj

.

If |EZ | is odd let e = (e0, e1) ∈ ECi be an arbitrary edge. Remove e from ECi .

Case 2.2: |Mi|+ |ECi
| is even.

There are two subcases:

12



• Mi 6= ∅.
If ECi

does not contain all edges of the original cycle Ci let e = (e0, e1) be the first
edge in ECi

. Otherwise let e be an arbitrary edge in ECi
. Let s = (s0, s1) ∈Mi. Add

e, s and the corresponding edges to Hm′ . We call the resulting graph Hm′+1. Note
that Em′+1 \ Em′ has the form (b) or (e). Remove e and s from Mi and ECi . The
relevant variable of e is e1 and the relevant variable of s is s0.

• Mi = ∅.
In this case let w be the first vertex in Ci with degCi

(w) = 2 (or if Ci is still the
original cycle choose a w ∈ VCi

with degCi
(w) = 2). Add the edges e, f ∈ ECi

that
contain w to Hm′ . We call the resulting graph Hm′+1. Note that Em′+1 \Em′ has the
form (a). Remove e and f from ECi

. The relevant vertex of e and of f is w.

Assume that we have done this construction for all cycles C0, C1, . . . , Cl1 . Let

(∅, ∅) = H0 ⊆ H1 ⊆ · · · ⊆ Hm1

with m1 ≥ m0 be the good sequence we constructed so far.

Step 3: Adding paths.

Let P0 = (VP0 , EP0) be a maximal path in H which is undirected edge disjoint from Hm1 .
In addition we require that all vertices (except possibly the first or the last one) are disjoint
from the vertices in Hm1

. If possible let P0 be a path such that Z points to a vertex v0 in
VP0
\ Vm1

. Let p0 ∈ N be the number of vertices in VP0
that are not in Vm1

.

Case 1: The solitary path Z points to a vertex v0 ∈ VP0
\ Vm1

.

If S 6= ∅ let N0 ⊆ S be maximal with |N0|+ 1 ≤ p0 such that |N0|+ p0 is even. If S = ∅ let
N0 := ∅. Remove N0 from S.

Case 1.1: |N0|+ p0 is even.

There are two subcases:

• N0 6= ∅.
Let e = (e0, e1) be the first edge in P0. If it points to v0 remove it from P0 and from
H. Otherwise let s = (s0, s1) ∈ S. Add e, s and the corresponding vertices to Hm2

.
Call the resulting graph Hm1+1. Note that Em1+1 \Em1

is of the form (b), (c) or (d).
The relevant vertex of e is e1 and the relevant vertex of s is s0. Remove s and e from
N0 and from EP0 .

• N0 = ∅.
Let w 6= v0 be the first vertex in the path that is contained in exactly two edges of P0.
Let e and f be the two edges containing w. Add them and the corresponding vertices
to Hm1

and call the resulting graph Hm1+1. Note that Em1+1 \Em1
has the form (a),

(c) or (d). Remove e and f from P0. The relevant vertex of e and of f is w.

Repeat the procedure described in Case 1.1 until |EP0 | ≤ 1. Remove the remaining edge
from EP0

.

Case 1.2: |N0|+ p0 is odd.

Note that we are only in this case when N0 = ∅.

• On the right or on the left of v0 there is an even number of edges.

Let w 6= v0 be the first vertex in the path that is contained in exactly two edges of P0

and w 6∈ {z0, z1} if we have already defined an edge z = (z0, z1). Let e and f be the
two edges containing w. Add e, f and the corresponding vertices to Hm1

and call the
resulting graph Hm1+1. Note that Em1+1 \Em1 has the form (a), (c) or (d). Remove
e and f from EP0 or from EZ . The relevant vertex of e and of f is w.
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• We are not in the first subcase and v0 is the first vertex in VP0
\ Vm1

.

Let e be the first edge in P0. Remove e from H and add back the original Z to H.
This graph H is of type αn. Redo the whole construction. Note that at one point we
will never be in this case anymore.

• We are not in the first two subcases.

If P0 ends in a vertex of a cycle Ci that is relevant for an edge in Em1
mark that last

vertex of P0 with a cross and redo the whole construction with the same cycles and
paths. If necessary remove one edge s from Mi and add it to N0. So we can now
assume that the last vertex in P0 is not relevant for any edge in Em1 . There are two
cases we have to look at:

– If |N0| = 1, let e = (e0, e1) be the first edge in P0 (note that e1 6= v0) and
let s = (s0, s1) ∈ N0. Add e, s and the corresponding vertices to Hm1

and
remove them from P0 and from N0. Call the resulting graph Hm1+1. Note that
Em1+1 \ Em1 is of the form (b). The relevant vertex of e is e1 and the relevant
vertex of s is s0.

– If N0 = ∅, let e = (e0, e1) be the first edge in P0. Note that by assumption
e1 6= v0. Let f = (f0, f1) be the third last (or if this is not possible the first) edge
in Z. Add e, f and the corresponding vertices to Hm1 . Call the resulting graph
Hm1+1. Note that Em1+1 \Em1 is of the form (b), (c) or (d). Remove e form P0

and f from Z.

If now |EZ | = 0 let z = (z0, z1) be the first edge coming after v0 in P0. In
particular we have that z0 = v0. Note that neither z0 nor z1 is a relevant vertex
of an edge we added to H0 so far. Moreover, it will never be a relevant vertex of
any edge we will add in the future.

Repeat the procedure described in Case 1.2 until |EP0 | ≤ 1. Remove the remaining edge
from P0.

Case 2: The solitary path Z does not point to a vertex in P0.

Let N0 ⊆ S be maximal with |N0| ≤ p0. Remove N0 from S.

Case 2.1: N0 6= ∅.

Let e = (e0, e1) be the first edge in P0 and let f = (f0, f1) ∈ N0. Add e, f and the
corresponding vertices to Hm1

. Call the resulting graph Hm1+1. Note that Em1+1 \ Em1
is

of the form (b). Remove e and f from N0 and from EP0
. The relevant vertex of e is e1 and

the relevant vertex of f is f0

Case 2.2: N0 = ∅.

Let w be the first vertex in P0 that is contained in exactly two edges e, f ∈ EP0
. Add

e, f and the corresponding vertices to Hm1 . Call the resulting graph Hm1+1. Note that
Em1+1 \Em1 is of the form (a). Remove e and f from EP0 . The relevant vertex of e and of
f is w.

Repeat this procedure until |EP0
| ≤ 1. Remove the remaining edges from P0.

Do the same procedure for all paths in H. Let

(∅, ∅) = H0 ⊆ H1 ⊆ · · · ⊆ Hm2

with m2 ≥ m1 be the good sequence we constructed so far.

Step 4: Adding the rest of the solitary paths.

Add Z to T . And if |EZ | ≥ 2 is odd, add the first edge of Z to S. Define

T2 := {S ∈ T | |ES | ≥ 2} = {T0, T1, . . . , Tl3}

14



for an l3 ∈ N. Assume that Z = Tl3 if |EZ | ≥ 2. Note that if Z ends in a vertex v in which
only solitary paths end, Z contains the loop (v, v).

Let F = ∅. Assume that we have already added T0, T1, . . . , Ti−1 for a 0 ≤ i ≤ l2 to Hm2

and we defined a good sequence

(∅, ∅) = H0 ⊆ H1 ⊆ · · · ⊆ Hm′

with a m′ ≥ m2. Now we want to add Ti = (VTi , ETi).

Case 1: |ETi | > 2 is even and S 6= ∅.

Let s = (s0, s1) be the third last edge in ETi
and let t = (t0, t1) ∈ S. Add s, t and the

corresponding vertices to Hm′ . Call the resulting graph Hm′+1. Note that Em′+1 \ Em′ is
of the form (b). Remove t from S and s from ETi . If t is contained in a Tj , j > i, remove t
from ETj . The relevant vertex of s is s1 and the relevant vertex of t is t0.

Case 2: |ETi | > 2 is even and S = ∅.

Let w be the first vertex in Ti with degTi
(w) = 2. Let e and f be two edges containing w.

Add e, f and the corresponding vertices to Hm′ . Call the resulting graph Hm′+1. Note that
Em′+1 \ Em′ is of the form (a) or (d). Remove e and f from ETi . The relevant vertex of e
and of f is w.

Case 3: |ETi | > 2 is odd and S \ ETi 6= ∅.

Let e = (e0, e1) be the third last edge in ETi
and let f = (f0, f1) ∈ S \{e}. Add e, f and the

corresponding vertices to Hm′ . The resulting graph is called Hm′+1. Note that Em′+1 \Em′

is of the form (b). The relevant vertex of e is e1 and the relevant vertex of f is f1. Remove
e from ETi and f from S. Remove the first edge of ETi from S.

Case 4: |ETi | > 2 is odd and S \ ETi = ∅.

Let z = (z0, z1) be the first edge in ETi
. Remove z from ETi

and from S. Note that neither
z0 nor z1 will ever be a relevant vertex of an edge we add to H0.

Case 5: |ETi
| = 2.

There are two subcases:

• Ti = Z and we haven’t defined an edge z yet.

Let z = (z0, z1) be the last edge in ETi
. Remove both edges from ETi

. Note that
neither z0 nor z1 are relevant vertices of any edge in Em′ .

• We are not in the first subcase and ETi
does not contain a loop.

Add the two edges in ETi to the set F and remove them from ETi .

• We are not in the first subcase and ETi does contain a loop.

Do the same as in Case 2.

Repeat the procedure with all solitary paths. Let

(∅, ∅) = H0 ⊆ H1 ⊆ · · · ⊆ Hm3

with m3 ≥ m2 be the good sequence we constructed so far.

Step 5: Adding the set F .

Let F = {{e0, f0}, {e1, f1}, . . . , {el4 , fl4}} with a l4 ∈ N. The pairs of edges are enumerated
in the order we added them to F . Now add e0, f0 and the corresponding vertices to Hm3

.
Call the resulting graph Hm3+1. Note that Em3+1 \ Em3 has the form (a). The relevant
vertex of e0 and of f0 is the vertex they share. Repeat the procedure with {f1, e1}, {f2, e2}
and so on.
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Example 20. In this example we will construct a good sequence for the following graph H
of type αn:

Figure 1: Graph H = (V,E).

Figure 2: solitary path Z. Figure 3: M0 and cycle C0.

Figure 4: N0 and path P0. Figure 5: Path P1.

Figure 6: Path P2. Figure 7: Path P3.

6

7

7

6 9 9

4 5

8 8 3

z

4

10

1

2

10

2

3

5
1

Figure 8: Graph H = (V,E). The squared vertices are
relevant vertices of an edge. The numbers show the order
in which the edges are added.

(end example)

Let k ≥ n, and for all 0 ≤ i, j ≤ k and all 0 ≤ s ≤ n define

vi − vj := (xi, x
2
i , . . . , x

s
i ,−xj ,−x2j , . . . ,−xsj)

and
1 vi − vj := (1, xi, x

2
i , . . . , x

s
i ,−xj ,−x2j , . . . ,−xsj).

For every graph H = (V,E) of type αn choose a good sequence

(∅, ∅) = H0 = (V0, E0) ⊆ H1 = (V1, E1) ⊆ · · · ⊆ Hn = (Vn, En)

with |En| = 2n and an additional edge z = (z0, z1) such that neither z0 nor z1 is a relevant
vertex for any edge in En. For every graphH of type αn and all 0 ≤ l ≤ n letMHl

(x0, . . . , xk)

16



be a square matrix with pairwise different rows vi −vj where (vi, vj) ∈ EHl
. For all 0 ≤ l ≤ n

we define
Cl :=

{
MHl

(x0, . . . , xk) | H is a graph of type αn

}
.

Furthermore, we define MH to be the square matrix with 2n + 1 pairwise different rows
1 vi − vj where (vi, vj) ∈ En or (vi, vj) = z.

Definition 21. Let R0 := ∅ and p0(x0, . . . , xk) := 1. For every 1 ≤ l ≤ n let Rl be the set
of all relevant vertices of the edges in El \ El−1. We define

pl(x0, x1, . . . , xk) =
( ∏
vi∈Rl

xli

)
pl−1(x0, x1, . . . , xk).

The polynomial pl is called the relevant polynomial of MHl
(x0, x1, . . . , xk).

Lemma 22. Let H be a graph of type αn, let 1 ≤ l ≤ n and let MHl
∈ Cl. Then we have

that
det(MHl

) = pl + ql,

where pl is plus or minus the relevant polynomial of Hl and ql is a polynomial that contains
no term of the form ±pl.

Proof. We prove the Lemma by induction on l. For l = 1 it is clear. So assume that
2 ≤ l ≤ n. By the induction hypothesis we have that

det(MHl−1
) = pl−1 + ql−1

with the properties described in the Lemma. There are five cases:

Case 1: El \ El−1 has the form (a).

There are two rows

Z0 = vi − vj
Z1 = vj − vt

in MHl
such that vj and −vj are only contained in these two rows and in rows that also

contain a unique vertex of Hl. We first do a Laplace expansion of MHl
along Z0. So we

have that
det(MHl

) = ε0x
l
j det(MHl

) + γ,

where γ is a polynomial, ε0 ∈ {−1, 1} and MHl
is the matrix we obtain from MHl

when
we delete the row Z0 and the 2l-th column. Now we do a Laplace expansion along the
remainders of the row Z1. We get

det(MHl
) = ε1x

l
j det(MHl−1

) + δ = ε1x
l
j(pl−1 + ql−1) + δ,

where δ is a polynomial and ε1 ∈ {−1, 1}. So we have that

det(MHl
) = ε0ε1x

2l
j (pl−1 + ql−1) + ε0x

l
jδ + γ.

Define
pl := ε0ε1x

2l
j pl−1 and ql := ε0ε1x

2l
j ql−1 + ε0x

l
jδ + γ.

It remains to prove that ql does not contain a term of the form ±pl. First we show that γ
does not contain a term of the form ±pl. If γ does not contain a term containing x2lj we are

done. So there are terms in γ containing x2lj . But then not the whole x2lj comes from the
rows Z0, Z1. Since outside of Z0 and Z1 the vertex vj is only contained in rows together with
unique vertices of Hl−1, there is a unique variable (i.e. the variable belonging to a unique
vertex) which is not contained in the term with x2lj in it. So there are no terms in γ of the
form ±pl.
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Similarly we can show that there are no terms in ε0xjδ of the form ±pl. By the properties
of ql−1 also ε0ε1x

2l
j ql−1 does not contain a term of the form ±pl. So ql has the desired

properties.

Case 2: El \ El−1 has the form (b).

There are two rows

Z0 = vi − vj
Z1 = vs − vt

in MHl
such that vi,−vi, vt and −vt are only contained in these two rows and in rows

together with a unique vertex of Hl−1. After doing two Laplace expansions we see that

det(MHl
) = ε0ε1x

l
ix

l
t(pl−1 + ql−1) + ε0x

l
iδ + γ.

Define
pl := ε0ε1x

l
ix

l
tpl−1 and ql := ε0ε1x

l
ix

l
tql−1 + ε0x

l
iδ + γ.

If γ does not contain a term containing xlix
l
t we are done. Otherwise not the whole xlix

l
t

comes from the rows Z0 and Z1. Since outside of Z0 and Z1 the vertices vi and vj are only
contained in rows together with unique vertices of Hl−1, there is a unique variable (i.e. the
variable belonging to a unique vertex) which is not contained in the term with xlix

l
t in it.

So there are no terms in γ of the form ±pl. Similarly we can show that ε0x
l
iδ does not

contain terms of the form ±pl. By the properties of ql−1 the polynomial ε0ε1x
l
ix

l
tql−1 does

not contain a term of the form ±pl.

Case 3: El \ El−1 has the form (c).

This case is similar to Case 2.

Case 4: El \ El−1 has the form (d).

This case is similar to Case 2.

Case 5: El \ El−1 has the form (e).

There are two rows

Z0 = vi − vj
Z1 = vs − vt

in MHl
such that indegreeH(vi) = 0 and such that vt is only contained in rows together with

a unique variable or on the left side. Moreover, for all 0 ≤ l′ < l we have that one of the
edges in El′ \ El′−1 contains a unique vertex of Hl−1. After doing two Laplace expansions
we see that

det(MHl
) = ε0ε1x

l
ix

l
t(pl−1 + ql−1) + ε0x

l
iδ + γ.

Define
pl := ε0ε1x

l
ix

l
tpl−1 and ql := ε0ε1x

l
ix

l
tql−1 + ε0x

l
iδ + γ.

Note that there is no term in γ that contains xli because Z0 is the only row in MHl
containing

xi. So γ does not contain a term of the form ±pl.

Assume towards a contradiction that there is a term in δ containing xlt. But then xlt contains
an xl

′

t with 0 < l′ < l maximal from an other row than Z1. If this xl
′

t comes from a row that
also contains a unique variable, then the term containing xlt does not contain this unique
variable. So this is not possible. Therefore, the xl

′

t comes from a row of the form

vt − vp

for a p ∈ {0, 1, . . . , k} \ {t}. But then the term does not contain the the unique variable in
pl−1 that has power l′. This is a contradiction. So ε0x

l
iδ does not contain a term of the form

±pl. By the properties of ql−1 the polynomial ε0ε1x
l
ix

l
tql−1 does not contain a term of the

form ±pl.
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Corollary 23. Let H be a graph of type αn. For every open set U ⊆ Rk+1 there is an open
subset UH ⊆ U such that for all (x0, x1, . . . , xk) ∈ UH

det(MH(x0, x1, . . . , xk)) 6= 0.

Proof. It suffices to prove that

det(MH(x0, x1, . . . , xk)) 6≡ 0.

By Lemma 22 we have that
det(MHn) = pn + qn,

where pn is plus or minus the relevant polynomial of Hn and qn is a polynomial that contains
no term of the form ±pn. Let z = (vi, vj) be the edge in EH that does not contain a relevant
vertex of any edge in En. Do a Laplace expansion of MH along the row

1 vi − vj .

We have that
det(MH(x0, . . . , xk)) = det(Mn) + γ = pn + qn + γ,

where γ is a polynomial in which each term either contains xi or xj . Since pn does not
contain terms with xi or xj in it, we have that

det(MH(x0, . . . , xk)) 6≡ 0.

This finishes the proof.

5.2 Graphs of type βn

Let H = (V,E) ∈ H be a graph of type βn. So H contains at least n+ 1 obviously different
loops and cycles C0 = (VC0

, EC0
), C1 = (VC1

, EC1
), . . . , Cn = (VCn

, ECn
). Without loss of

generality we can assume that for all 0 ≤ i ≤ n we have that

xi ∈ VCi
\

 n⋃
j=0,j 6=i

VCj

 .

Let

NH(x0, x1, . . . , xk) =


|VC0
|
∑

x∈VC0
x

∑
x∈VC0

x2 . . .
∑

x∈VC0
xn

|VC1 |
∑

x∈VC1
x

∑
x∈VC1

x2 . . .
∑

x∈VC1
xn

...
...

...
. . .

...
|VCn
|
∑

x∈VCn
x
∑

x∈VCn
x2 . . .

∑
x∈VCn

xn


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Then we have that

det(NH(x0, x1, . . . ,xn, 0, . . . , 0)) = det


|VC0
| x0 x20 . . . xn0

|VC1
| x1 x21 . . . xn1

...
...

...
. . .

...
|VCn
| xn x2n . . . xnn



=

n∑
l=0

(−1)l+2|VCl
|det



x0 x20 . . . xn0
x1 x21 . . . xn1
...

...
. . .

...
xl−1 x2l−1 . . . xnl−1
xl+1 x2l+1 . . . xnl+1

xl+2 x2l+2 . . . xnl+2
...

...
. . .

...
xn x2n . . . xnn



=

n∑
l=0

(−1)l|VCl
|
∏

0≤i<j≤n
i,j 6=l

(xj − xi) 6≡ 0.

Therefore, det(NH(x0, . . . , xk)) 6≡ 0. So, for every open set U ⊆ Rk+1 there is an open set
UH ⊆ U such that for all (x0, . . . , xk) ∈ UH

det(NH(x0, . . . , xk)) 6= 0.

5.3 Graphs of type γn

Let H = (V,E) ∈ H be a graph of type γn. Let V0 ⊆ V be a maximal subset such that
the direct successors of the vertices in V0 are pairwise different. Since H contains at least
n solitary paths there is a set W0 ⊆ V \ V0 which contains at least n points. We define the
matrix LH(x0, x1, . . . , xk) belonging to H as follows:

LH(x0, . . . , xk) =


vj0 − vi0
vj1 − vi1

...
vjn−1 − vin−1

 ,

where for all 0 ≤ l ≤ n− 1 the vertices vil ∈ V0 and vjl ∈W0 have the same successor in H
and the vertices vjl , 0 ≤ l ≤ n− 1, are pairwise different.

Lemma 24. Let H = (V,E) ∈ H be a graph of type γn and let

LH(x0, . . . , xk)

be a matrix belonging to H. Then we have that det(LH(x0, x1, . . . , xk)) 6≡ 0.

Proof. Let V0 and W0 be as above. Without loss of generality we assume that xjl = xl for
all 0 ≤ l ≤ n− 1. Since V0 ∩W0 6= ∅ we have that V0 ⊆ {xn+1, . . . , xk}. Let xn+1 = xn+2 =
· · · = xk = 0. Then we have that

LH(x0, x1, . . . , xn, 0, . . . , 0) =


x0 x20 . . . xn0
x1 x21 . . . xn1
...

...
. . .

...
xn−1 x2n−1 . . . xnn−1

 .

This is a Vandermonde matrix. Its determinant is not constantly equal to zero. Therefore,
det(LH(x0, x1, . . . , xk)) 6≡ 0.
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6 Magic sets for Qn

To construct a magic set for Qn we could redo the construction from Section 5. However,
this is not necessary:

Fact 25. Let M ⊆ R be a magic set for Pn and let f ∈ Pn. Then we have that |f [M ]| ≥
n+ 1.

Proof. Let M = {m1,m2, . . . ,mk} ⊆ R be a magic set for Pn and assume towards a con-
tradiction that there is an f ∈ Pn with |f [M ]| ≤ n. Note that k ≥ 2n + 1 by Section 2.
So, there is a non-constant polynomial g ∈ Pn with g 6= f and g[{m1, . . . ,mn}] = f [M ].
Therefore, f [M ] ⊆ g[M ] but f 6= g which contradicts the assumption that M is a magic set
for Pn.

Lemma 26. Every magic set for Pn is also a magic set for Qn.

Proof. Let M ⊆ R be a magic set for Pn and let f, g ∈ Qn with f [M ] ⊆ g[M ]. Let

f(x) = f0(x) + if1(x) and g(x) = g0(x) + ig1(x)

where f0, f1, g0 and g1 are polynomials of degree at most n with real coefficients. By our
assumption we have that

f0[M ] ⊆ g0[M ] and f1[M ] ⊆ g1[M ],

because f [M ] ⊆ g[M ] and M contains only real numbers. Note that f0 or f1 is not constant.
Without loss of generality we assume that f1 is not constant. Since f1[M ] ⊆ g1[M ], g1 is
also not constant. So, we have that f1 = g1 because M is a magic set for Pn. If f0
is also not constant, it follows that f0 = g0 and therefore f = g. So, assume that f0
is constantly equal to c ∈ R. By Fact 25 there are m1,m2, . . . ,mn+1 ∈ M such that
f1(m1), f1(m2), . . . , f1(mn+1) are pairwise different. Since f [M ] ⊆ g[M ] there are pairwise
different mi1 ,mi2 , . . . ,min+1 ∈M such that for 1 ≤ k ≤ n+ 1 we have

c+ if1(mk) = g0(mik) + ig1(mik) ⇒ f1(mk) = g1(mik) ∧ c = g0(mik).

So, g0(x)− c is a polynomial of degree at most n that has at least n+ 1 zeros. This shows
that g0 is constantly equal to c. Therefore we have f0 = g0 which implies f = g.
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