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Abstract

A sequence on a �nite set of symbols is called strongly non-repetitive if no two adjacent (�nite)
segments are permutations of each other. Replacing the �nite set of symbols of a strongly
non-repetitive sequence by di�erent prime numbers, one gets an in�nite sequence on a �nite set
of integers such that no two adjacent segments have the same product. It is known that there
are in�nite strongly non-repetitive sequences on just four symbols. The aim of this paper is
to show that there is no in�nite sequence on a �nite set of integers such that no two adjacent
segments have the same sum. Thus, in the statement above, one cannot replace \product" by
\sum". Further we suggest some strengthened versions of the notion of strongly non-repetitive.

0. Introduction

A �nite set of one or more consecutive terms in a sequence is called a segment of the sequence.

A sequence on a �nite set of symbols is called non-repetitive if no two adjacent segments

are identical, where adjacent means abutting but not overlapping. It is known that there are

in�nite non-repetitive sequences on three symbols (see [Ple 70]), and on the other hand, it is

obvious that a non-repetitive sequence on two symbols is at most of length 3. Paul Erd}os has

raised in [Erd 61] the question of the maximum length of a sequence on k symbols, such that

no two adjacent segments are permutations of each other. Such a sequence is called strongly

non-repetitive. Veikko Ker�anen has shown that four symbols are enough to construct an

in�nite strongly non-repetitive sequence (see [Ker 92]). Replacing the �nite set of symbols of

an in�nite strongly non-repetitive sequence by di�erent prime numbers, one gets an in�nite

sequence on a �nite set of integers such that no two adjacent segments have the same product.

It is natural to ask whether one can replace in the statement above \product" by \sum".
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This leads to the following question: Is it possible to construct an in�nite sequence on a �nite

set of integers such that no two adjacent segments have the same sum?

In the next section we will see that such a sequence does not exist. Moreover, in any in�nite

sequence on a �nite set of integers we always �nd arbitrary large �nite sets of adjacent segments,

such that all these segments have the same sum.

1. An application of van der Waerden's Theorem

Let Z denote the set of integers and let N denote the set of non-negative integers. The theorem

of van der Waerden states as follows (cf. [vdW27]):

Van der Waerden's Theorem. For any coloring of N with �nitely many colors, and for each

l 2 N, there is a monochromatic arithmetic progression of length l.

Before we state the main result of this paper, we introduce some notations.

Let S = ha1; a2; : : : ; ai; : : :i be an in�nite sequence of Z. By de�nition, a �nite sequence of in-

tegers s is a segment of S, if and only if there is a positive i 2 N such that s = hai; ai+1; : : : ; ai+ki,

for some k 2 N. A �nite set s1; s2; : : : ; sl of segments of S is called a set of adjacent seg-

ments, if sj and sj+1 are adjacent for each j with 1 � j < l. For a segment s = hai; : : : ; ai+ki

of S, let
P

s :=
Pk

j=0 ai+j . A segment s of S of the form s = ha1; : : : ; aki is called the initial

segment of length k of S. Let
P
(S) denote the in�nite integer sequence ht1; t2; : : : ; tk; : : :i,

where tk :=
P

sk and sk is the initial segment of length k of S. We call
P
(S) the series of S.

The main result of this paper is the following:

Theorem. If SM is an in�nite sequence of some non-empty �nite set M � N, then for each

positive l 2N there is a set s1; s2; : : : ; sl of adjacent segments of SM , such that

X
s1 =
X

s2 = : : : =
X

sl :

Proof. Without loss of generality we may assume that 0 =2 M . Thus, the series of SM ,
P
(SM ) = ht1; t2; : : : ; ti; : : :i, is strictly increasing and hence an unbounded sequence of N.

De�ne the coloring � of N as follows:

�(n) is the least non-negative integer h such that n+ h = tj, for some j.

Because M is �nite, it has a biggest element, and therefore, since the series of SM is unbounded,

the coloring � is a well-de�ned �nite coloring ofN. Now, by van derWaerden's Theorem, for each

l 2 N, there is a monochromatic arithmetic progression of length l. Let n1 < n2 < : : : < nl+1
be such a monochromatic arithmetic progression with increment d. Since n1; n2; : : : ; nl+1 is

monochromatic, there is an h such that �(ni) = h (for 1 � i � l + 1). This implies that for

each 1 � i � l + 1 there is a ji such that ni + h = tji , and since the series of SM is strictly
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increasing, we have ji < ji+1 (for 1 � i � l). Hence, for SM = ha1; a2; : : : ; ai; : : :i, we get

j2X

i=j1+1

ai =
j3X

i=j2+1

ai = : : :

jl+1X

i=jl+1

ai = d :

Thus, we �nd a set of size l of adjacent segments of SM such that all these segments have the

same sum, which completes the proof of the Theorem.

Using a modi�cation of the arguments above we can prove the following:

Corollary. If SM is an in�nite sequence of some non-empty �nite set M � Z, then for each

positive l 2N there is a set s1; s2; : : : ; sl of adjacent segments of SM , such that

X
s1 =
X

s2 = : : : =
X

sl :

Proof. Let SM = ha1; a2; : : : ; ai; : : :i. If the series of SM has a lower and an upper bound, then

we �nd an in�nite set J � N and an integer c, such that for each j 2 J , tj = c. Hence, for any

j; j0 2 J with j < j0 we get
Pj0

i=j+1 ai = 0, which completes the proof of the \bounded" case.

On the other hand, if the series of SM does not have a lower bound, then the series of �SM ,

where �SM = h�a1;�a2; : : : ;�ai; : : :i, does not have an upper bound. Thus, without loss of

generality, we may assume that the series of SM does not have an upper bound, which implies

that
P
(SM ) = ht1; t2; : : : ; ti; : : :i does not have a maximal element. Now, let h�1; �2; : : : ; �j; : : :i

be the strictly increasing subsequence of
P
(SM ) such that �j = t�(j), where �(j) = minfi : ti >

�j�1g with �0 := �1. De�ne the coloring � of N by stipulating

�(n) is the least non-negative integer h such that n+ h = �j , for some j.

Again by van der Waerden's Theorem, for each l 2 N there is a monochromatic arithmetic

progression n1 < n2 < : : : < nl+1 of length l. Let ji be such that ni+�(ni) = �ji = t�(ji), then,

as in the proof of the Theorem, we get

�(j2)X

i=�(j1)+1

ai =

�(j3)X

i=�(j2)+1

ai = : : :

�(jl+1)X

i=�(jl)+1

ai ;

which completes the proof of the \unbounded" case.

2. Stronger versions of \strongly non-repetitive"

One can strengthen the notion of strongly non-repetitive in di�erent directions. For example,

one can consider more than two adjacent segments, or one can restrict the set of patterns which

may appear in the sequence.
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2.1. More than two adjacent segments

A sequence on k symbols is called a (k;n;m)-sequence if, and only if, in any set of n adjacent

segments of the same length we �nd no m segments which are permutations of each other.

Further, let �(k;n;m) denote the maximum length of a (k;n;m)-sequence. If there are (k;n;m)-

sequences of any length (for �xed k; n;m), then, by K�onig's Lemma, there is an in�nite (k;n;m)-

sequence and we stipulate �(k;n;m) =1.

First we consider the case when n = m. It is easy to see that each (k;n; n)-sequence is

also a (k + r;n � s; n � s)-sequence, where r; s 2 N. Michel Dekking showed in [Dek 79] that

�(2; 4; 4) = �(3; 3; 3) = 1, and, as mentioned above, Veikko Ker�anen showed in [Ker 92] that

�(4; 2; 2) =1. On the other hand, concerning the non-trivial cases, it is not hard to check that

�(2; 3; 3) = 9, �(3; 2; 2) = 7 and �(2; 2; 2) = 3. Thus, all the values of �(k;n; n) are determined.

With the help of PROLOG, we investigated some of the cases where n > m. For example

we know that �(5; 5; 2) = 24, �(3; 5; 3) = 38, �(2; 5; 4) = 49, �(5; 4; 2) = 16 and �(4; 3; 2) = 13.

Further, with the results for n = m, it is easy to see that �(4; 5; 4) = �(4; 4; 3) = 1. On the

other hand, we found long (3; 4; 3) and (4; 5; 3)-sequences, respectively. So, also �(3; 4; 3) and

�(4; 5; 3) might be in�nite.

2.2. Restricted versions

Let us now restrict the set of patterns which may appear in the non-repetitive sequence.

If a symbol appears in a sequence twice in a row, then we call it a simple repetition.

A sequence on k symbols is called a (k;n;m)�-sequence if it is a (k;n;m)-sequence without

simple repetitions. Again with the help of PROLOG, we know that the maximum length of a

(3; 4; 3)�-sequence is 55. An example of a (3; 4; 3)�-sequence of length 55 is given by ha, b, a, b,

a, c, a, c, a, b, a, b, c, b, c, b, a, b, a, c, a, c, a, b, a, b, c, b, c, b, a, b, a, c, a, c, a, b, a, b,

c, b, c, b, a, b, a, c, a, c, a, b, a, b, ai.

Another restriction on the set of patterns which may appear in the sequence is given by

the following example. Let S be a sequence on four symbols, say a; b; c; d. We say that S

is separating the symbols a and b, if neither ha; bi nor hb; ai appears as a segment of S.

Surprisingly, we found quite long abcd-sequences separating a and b, which are even (4; 2; 2)-

sequences.

Finally, concerning the Theorem, we like to ask the following question: Is it possible to

construct an in�nite sequence on a �nite set of integers such that no two adjacent segments of

the same length have the same sum?
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